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Resumo

G. RI0s, Teoria dos Modelos inspirada em Geometria Algébrica Moderna: Representacao
de Categoria por Feixes. 2021. 58 p. Monografia — Bacharelado em Matematica — Instituto
de Matemaética e Estatistica, Universidade de Sdo Paulo, Sdo Paulo, 22 Semestre de 2021.

Em suma, essa monografia é dedicada a representacdo de categorias por feixes. Tendo
em mente o mantra “teorias sdo categorias com estruturas”, estamos entdo obtendo te-
orias como feixes. Comegamos apresentando a representacdo de topoi por grupoides
locélicos, de Joyal e Tierney. Para isso, desenvolvemos as técnicas basicas da teoria dos
locales, além de concepgdes categoriais da teoria da descida. Em sequéncia, seguindo o
trabalho de Carsten Butz e Ieke Moerdijk, estudamos uma representacdo por grupoides
topoldgicos dos topoi de Grothendieck com ponto suficientes. Usamos esse resultado
para melhorar nossa primeira representacdo de topoi por feixes. Apés isso, acompanha-
mos a tese de Henrik Forssell, que refina a construgdo de Butz e Moerdijk para obter uma
representacdo de teorias coerentes por grupoides. Exploraremos uma generalizacdo da
dualidade de Stone por meio dos grupoides de Forssell. Terminamos o trabalho seguindo
a tese de Spencer Breiner, expondo os esquemas l6gicos.

Com o intuito de tornar essa monografia suficiente ao leitor, incluimos também apéndices
relembrando os fatos fundamentais de Categorias e Logica Categorial.
Palavras-chave: topoi e grupoides; representagdes de topoi; esquemas l6gicos.
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Abstract

G. R10s, Model Theory Inspired by Modern Algebraic Geometry: Sheaf Representa-
tion of Categories. ano. 58 p. Monografia — Bacharelado em Matematica — Instituto de
Matematica e Estatistica, Universidade de Sdo Paulo, Sdo Paulo, 2° Semestre de 2021.

In short, this monograph is devoted to the representation of categories by sheaves. Kee-
ping in mind the slogan “theories are categories with structures”, we are thus obtaining
here theories as sheaves. We start by showing the Joyal and Tierney representation of
topoi by localic groupoids. For this, we present categorical analogues to the theory of
descent. Next, following the work of Carsten Butz and Ieke Moerdijk, we study a topo-
logical groupoid representation of Grothendieck topoi with enough points. We use this
result to improve our first sheaf representation of topoi. We follow then with Henrik
Forssell’s thesis, which builds over the construction of Butz and Moerdijk to obtain a re-
presentation of coherent theories by groupoides. We shall also explore a generalization of
Stone’s duality through Forssell’s groupoids. We conclude the work following the thesis
of Spencer Breiner, expounding the notion of logical schemes.

In order to make this monograph self-sufficient, we have also included appendices
recalling the fundamental facts of Categories and Categorical Logic.
Keywords: topoi and groupoids; representation of topoi; logical schemes.
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Motivacao

0.1 Entre a Geometria e a Légica

Historicamente, a Teoria dos Modelos e a Geometria Algébrica aproximam-se quanto
aos objetos estudos!. Incluimos, abaixo, uma curta subsecdes ilustrando as conexdes das
duas disciplinas.

0.1.1 A Completude e o Nullstellensatz

Expomos aqui uma observagdo de [Mar], conectando os cldssicos resultados do titulo
acima. Comecemos dando os teoremas em termos de operadores de fecho preparando,
dessa forma, a linguagem em que os resultados serdo comparados.

Dado teoria T deixe T* o conjunto de modelos satisfazendo-a e, dado modelo M,
faca M* o conjunto de sentengcas satisfeitas por esse. Com esse notagdo, a completude de
Godel pode entdo ser formulada como

TCT, TCT=TC(T), T*=T

Analogamente, fixado um corpo algébricamente fechado (2, deixe J* o conjunto de
zeros em () para um dado ideal ] < Q[x1x; - - - x,,] e, dado subconjunto I < (), deixe I*
o conjunto de polindmios identicamente nulos em I. O Nullstellensatz de Hilbert entdo
toma forma

JCI, JC)=TC(U), =]

Onde /] o radical de J, isto é, o conjunto {x € Qx1x2---x,] : In € N(x" € ])}.

O paralelo entre os dois resultados seria mais claro se o simbolo v/— acontecesse no
contexto l6gico também. No entanto, ndo se admira sua omissdo: A admite contragdo,
um modelo M desmontra ¢ se, e somente se, também o faz para ¢ A ¢. Desse modo,
poderiamos colocar \/— sem risco de alterar o significado.

Seguindo, mostremos agora uma equivaléncia entre formas dos dois teoremas. Dado
uma férmula atdmica ¢ em n-varidveis e sem relagdes, rescrevemo-a usando L, T, A e ®
(ou exclusivo, ou XOR). Usando entdoatradugdo | +— 0, T — 1,aAb+— abe® —a+b
podemos considerar ¢ com um elemento de F[x1, - - -, x,]. Agora, se existe valoragdo v
com v(¢p) = 0 teremos

4)6]**

Para | = (x% — Xy, X2 — xu). Logo, o Nullstenlenstaz (sobre o fecho algébrico) de
F, garante ¢ € /], ou seja, ¢ é 0 em Fpx;---x,]/+/]. Concluimos que partindo do
conjunto {x% — X1, -, x% — X, } e aplicando um nimero finito de combinagdes lineares e
multiplicagdes obteremos —¢.

A reciproca é mais stitil, e recomendamos ao leitor o texto citado para mais detalhes.
Sem embargo, fazemos aqui uma tradugéo livre de [Mar, pp. 163], a titulo de consciéncia,

Agradecemos a Hendrick Cordeiro Maia e Silva pela sugestdo do assunto e de referéncias para essa
secao
1Como exemplo, lembramos da equacéo “Teoria dos Modelos = Geometria Algébrica - Corpos”proposta
por Hodges em seu cldssico compéndio, [Hod]
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“O Nullstellensatz decorre da completude. Por exemplo, considere duas geo-
metrias infinitas sobre F,. Uma induzida por multiplica¢do infinitdria e outra
por coordenadas infinitas (x1, x2, - -+ , Xy, - - - ). Um teorema de Nullstellensatz
para essa dltima segue da completude (forte) da 16gica proposicional classica,
enquanto para a primeira usariamos da completude da légica infinitdria. Ex-
plorando a diferenga dimensional, portanto, a l6gica poderia contribuir para
a geometria algébrica co-dimensional”

0.1.2 Pontos como modelos

Seguindo, indicamos uma equivaléncia interessante a Geometria Algébrica e entdo
esperamos aqui alguma familiaridade com a drea. Especificamente, mostraremos como
o teorema de Chevalley sobre conjuntos construtiveis equivale a célebre eliminacao de
quantificadores para teorias algebricamente fechadas, de Tarski. Usamos como referéncia
o curto texto [Be].

Comecamos definindo a teoria dos corpos algebricamente fechados na assinatura
{0,1,+, }, cujos axiomas sdo os usuais para corpos juntos do conjunto abaixo, que ga-
rante que todo polindémio tem raiz.

{VapVay ---Va,3Ix(ap+mx+---+a,x" =0):n € w}

Seguindo, fixado anel R, estendemos a assinatura adicionando constantes ¢, para cada
r € R e formamos a teoria CAFr unindo os axiomas de corpos algebricamente fechados
com as sentengas ¢ = 1, c,4p = s+ Cp € ¢y = CcuCp. Logo, modelos de CAFr sdo
corpos algebricamente fechados k juntos de uma escolha de lementos {k, } g respeitando
as operagdes de R, isto é, um corpo k associado de um homomorfismo R — k. Pelo
teorema fundamental da Geometria Algébrica, temos uma bijecdo dos homomorfismos
R — k com os morfismos Spec(k) — Spec(R), isto é, com os pontos geométricos de R.
Logo, os modelos de CAFy estdo em bijecdo natural com os pontos geométricos de R.

Lema 0.1.1. Seja S = R[t]/(p;i)n uma R—dlgebra de apresentagio finita e Spec(S) — Spec(R)
o mapa estrutural. Um ponto geometrico x : Spec(k) — Spec(R) é levanta a Spec(S) sse S,
visto como modelo de ACFg, satisfaz a sente¢a 3y13y, - - - yn (/\jgn fily;) = 0). Essa férmula
sendo nomeada formula imagem associada a S.

Demonstragao: Com efeito, um levantamente do ponto x corresponde a um homomor-
fismo R[t]/(pi)n — k, isto é, a uma enupla (y;), € k" tal que p;(y;) = 0. O resultado
segue. O

Proposicao 0.1.2. Seja Y — X um morfismo de apresentagio localmente finita de esquema e
x : Spec(k) — X um ponto geométrico com ponto topolégico subjacente P € |X|. Temos que x
levanta a Y sse P estd na imagem de Y — X.

Demonstragio: Seja xp o corpo residual em P, de forma que x fatore unicamente por
Spec(xp) — X. Temos que P estd na imagem de Y — X sse a fibra Spec(xp) xx Y é
ndo trivial que, como xp — k é fielmente chato (faithfully flat), equivale a ser Spec(k) x x
Y ndo trivial. Pois, como temos apresentagdo finita sobre Spec(k), o Nullstenllensatz
garante Spec(k) xx Y ndo nulo sse hd seu morfismo estrutural a Spec(k) admite segao.
Finalmente, pela propriedade universal, secdo do produto fibrado estdo em bijecdo com
levantamentos de x a Y. ]

Precisaremos agora do seguinte resultado de teoria dos modelos.

Lema 0.1.3 (Lema da transferéncia). Seja AgA alguma teoria de base e T A um fragmento
fechado sob V e A. Suponha que uma frase ¢ tem a sequinte propriedade: sempre que A e B sdo
dois modelos T tais que A = ¢ eI’ N A* C B* entdo B E ¢. Entdo ¢ é equivalente em Ao a uma
formula deT.
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Teorema 0.1.4 (Chavelley). Seja S uma R-dlgebra finitamente apresentada. A imagem do mapa
|Spec(S)| — |Spec(R)| é construtivel. Equivalentemente, a férmula imagem ¢ associada a
Spec(S) — Spec(R) é equivalente sob CAFg a uma frase nio quantificada.

Demonstra¢ao: Traduzindo a proposi¢do acima para a linguagem da teoria do modelo,
vemos que se um modelo x : R — k de CAFg, satisfaz a férmula da imagem ¢ depende
apenas de ker(x) < R. Em particular, se um modelo satisfaz ¢ depende apenas de quais
sentengas livres de quantificador ele satisfaz. Assim, ¢ e o fragmento livre de quantifica-
dor de A satisfazem as condi¢des do lema de transferéncia, onde tomamos Ag = CAFg.
Como consequéncia, vemos que é equivalente em CAFr a uma sentenca livre de quan-
tificadores, conforme desejado. Reciprocamente, ¢ é equivalente a uma frase da forma

Vi ((bi #0) ANj(ai = 0)) Traduzindo para a linguagem da teoria do esquema, um
ponto geométrico de Spec(R) estd na imagem de Spec(S) — Spec(R) sse seu ponto to-
poldgico subjacente estd em |J; (D(bi) nN; V(aij)) O
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Capitulo 1

Locales

Mesmo sem fazer mencdes explicitas a essa, esse capitulo é profundamente influen-
ciado pela interpretagdo de Grothendieck da teoria de Galois. De fato, o célebre trata-
mento de André Joyal e Myles Tierney dessa teoria em An extension of the Galois theory of
Grothendieck ([JoTi]) foi basilar a maior parte da literatura citada aqui. Uma explicagdo
da influéncia desse trabalho pode ser encontrada na representagdo obtida nesse, que
caracteriza os topoi de Grothendieck como feixes de grupoides locdlicos. Com efeito,
conforme veremos na segunda secdo, o resultado teve importancia ndo s6 prética, mas
como também ajugou a legitimar o zeitgest da teoria. Exporemos nesse capitulo essa
representacdo de Joyal e Tierney e, para isso, desenvolvemos também a linguagem dos lo-
cales e a teoria da descida. Finalmente, usaremos as técnicas construidas para obter uma
segunda representacdo; essa caracterizando os topoi pequenos como as se¢des globais
de feixes de locales coerentes, devida a Joachim Lambek e Ieke Moerdijk. Descrevemos
abaixo a estrutura do capitulo.

Na primeira se¢do, tratamos dos locales e dos topoi de feixes construidos por meio
desses. Em especial, falamos sobre cobertura de Diaconescu — uma técnica que nos per-
mite associar um topos locélico a cada topos de Grothendieck, ferramenta que sera funda-
mental na representacdo de topoi por grupoides mencionada na introdugdo. Mencionare-
mos também a importante fatoracdo hiperconectado-localica dos morfismos geométricos.

Na secado segunda aprofundamo-nos na teoria da descida, a linguagem desenvolvida
ali permeando todo o seguinte da monografia. Notamos que exploramos aqui, primei-
ramente, a descida no contexto dos morfismos geométrico e prorrogamos ao préximo
capitulo o caso da descida a longo de categorias indexadas.

Finalmente, na terceira se¢do, apresentamos nossa primeira representacdo de Topoi
por feixes. Comegamos lembrando o teorema fundamental da Geometria Algébrica,
fazémo-lo para contextualizar nossa representagdo, que serd uma generalizacdo quase
direta das técnicas de esquemas afins.

1.1 Locales e seus feixes

O ponto de partida histérico da teoria dos topos é o estudo dos feixes sobre um espaco
topoldgico. Até hoje, as categorias da forma Sh(X) para X espago tem um importante
espago na teoria, tanto préatico quanto motivacional. No entanto, notamos que pode-
mos definir um feixe sobre um espago X sem fazer meng¢do alguma aos pontos desse
espago. De fato, pondo Con a categoria dos conjuntos!, um feixe é apenas um funtor

! Antevemos o leitor que a notagdo vigente para a referida categoria é Set. Similarmente, preferi-
mos Fei(X) a Sh(X) para denotar a categoria de feixes de um espago X e demais convengdes andlogas.
Alicer¢amo-nos aqui em um precedente histérico: Grothendieck, Verdier, Deligne e e demais escreviam Ens,
de ensemble!



1.1. LOCALES E SEUS FEIXES CAPITULO 1. LOCALES

F: O(X)°? — Con tal que para toda familia {U;}; de O(X) temos

HOW!@(JZU,F) ~ HOWZ&Y)(S, P)

com U = J; U;, S a peneira induzida pela familia e (’T(?) a categoria pré-feixes, isto é,
dos funtores O(X) — Con (para mais detalhes cf. [SGL, II]). Dessa forma, precisamos
apenas do reticulado de abertos de um espaco para definir a nogdo de feixe e essa reflexdo
nos leva ao estudo dos quadros. Seguiremos aqui os tratamentos de [SGL, IX] e [JoTi].

Definicao 1.1.1. Um quadro (frame) é um conjunto ordenado Q que admite infimos (/)
finito, supremos (V) quaisquer e satisfaz a lei distributiva abaixo

A/\\/Biz\/(A/\Bi)

iel iel

. . P ~
para quaisquer A, B; € Q. Naturalmente, um morfismo entre quadros A — B é uma func¢do
que preserva ordem, infimos finitos e supremos quaisquer. E claro entdo como podemos
formar a categoria Quadros de morfismos entre quadros.

Seguindo, enquanto seria possivel conduzir toda teoria usando apenas da nogdo de
quadro, queremos, como indicado na introdugdo, uma generalizacdo de espagos topolégicos.
Pois, gostariamos entdo que nossa generalizacdo tivesse, como os espagos, uma natu-
reza geométrica. No entanto, nossa definicdo de quadros tem aparéncia marcadamente
algébrica. Para retificar essa sensagdo, convencionou-se introduzir o conceito de locales e
tratar esses como nossos espagos generalizados,

Locales := (Quadros)®?

Ou seja, 0s locales tem uma existéncia puramente ficcional, sdo um truque simbdlico que
possibilita-nos a depositar sobre os locales nossas sensibilidades geométricas. A modo de
sublimar essa contradi¢do damos dois nomes ao mesmo objeto: denotaremos por O(X)
o quadro correspondente ao locale X e por f~! : O(Y) — O(X) o mapa entre quadros
vindo do morfismo de locales f : X — Y.

Observacao 1.1.2 (Adjuncdo Espacos | Locales). Claramente, todo espago topoldgico
X gera o locale O(X) e é entdo natural questionar se o caminho inverso é possivel.
Como obtemos O(X) “esquecendo os pontos”de X, é natural imaginar que para obter um
espago a partir de um locale devamos, de alguma forma, achar seus pontos. A intuicdo
chave é que, em Con, 0s elementos de um conjunto A estdo em bijecdo com as fungdes
1 — A. Inspirados nisso, dado um locale L definimos um espago cujos elementos sdo
seus pontos pt(L) := Locales(1,L), onde 1 é locale terminal, e cuja topologia tem como
abertos os conjuntos {p € pt(L) : p~1(U) = 1}, para U € O(X). O leitor pode facilmente
verificar que O(1) = Qg e, em especial, para S = Con temos O(1) = {0,1}. Final-
mente, pode-se verificar a adjun¢do O(—)  pt entre Locales e espagos topoldgicos. Para
um tratamento mais calmo, com uma discussdo da restri¢do da adjungdo acima a uma
equivaléncia, recomendamos [SGL, IX.3].

Continuando, podemos agora definir feixes sobre um locale da mesma maneira que
definimos para espagos topoldgicos. Por conveniéncia ao leitor, incluimos abaixo a defini¢do.

Defini¢do 1.1.3. Dado locale X, considere o conjunto ordenado O(X) como uma catego-
ria da forma usual. Dado F : O(X)?? — Con denotaremos sua agdo em U < V como
(=) lu: FV — FU. Dizemos o funtor F um feixe (sheaf) se para toda familia {U;}; de
O(X) o diagrama abaixo é um equalizador

F(U) — Ty F(U) =3 Ty U L))

6



CAPITULO 1. LOCALES 1.1. LOCALES E SEUS FEIXES

Onde U = Ul;, e(x) = x [y, e p e q sdo induzidos, respectivamente, pelas fun¢des
(pij)ijeu € (4i)ijeu dadas por

TTEW; Fuinu;) J]FU; F(U;nuy)

iel i€l
pii((xi)ker) = xilunu;  i5((x)ker) = Xj Tunu;

Denotamos por Fei(X) a subcategoria plena de (’7(?) cujos objetos sdo os feixes. Diremos
locdlico (localic) um topos que é, a menos de uma equivaléncia, da forma Fei(X) para
algum locale X.

Aviso 1.1.4. Nesse trabalho, principalmente nessa segdo, tomamos a habitual posicdo
de adotar um topos fixado qualquer como nosso universo S de conjuntos. Por meio
da légica interna, trabalhamos neste universo como fariamos na teoria dos conjuntos
usual, com tnicas exce¢des sendo que ndo usamos nem o axioma da escolha, nem a lei
do terceiro excluido. A titulo de exemplo desse ponto de vista, a categoria dos locales no
teorema 1.1.5 é, a valer, a categoria dos locales internos a S.

Restringindo o teorema de Diaconescu (B.3.5) aos topoi locélicos, podemos obter o
resultado abaixo.

Teorema 1.1.5. Seja X um locale e € 2 S um S-topos. Definindo o locale Loc(E) como
O(Loc(E)) = p.Qy¢ e considerando Locales como uma 2-categoria discreta, obtemos a equi-
valéncia

Topos/S(E,Fei(X)) ~ Locales(Loc(&), X)

natural em &.

Demonstrag¢do (esbogo): Primeiramente, notamos que Loc(&) é de fato um locale. Com
efeito, por ser um S-topos, temos que £ é S-completa e entdo construimos os supremos
de p.Q)¢ internamente por meio dos S-colimites.

Seguindo, usando o teorema B.3.12, um morfismo qualquer f : £ — Feis(X) em
Topos/S equivale a um mapa continuo plano f : O(X ) = &. Pois, como f é plano e
O(X) tem limites finitos, o corolario B.3.4 garante que f preserva limites finitos. Logo,
como O(X) um conjunto ordenado com maximo, podemos garantir que a imagem festa
contida em Subg (1) fato que, por meio da légica interna, induz um morfismo O(X) —
p«Qe¢. Finalmente, a continuidade de f garante que esse preserva supremos, ou seja, 0
mapa O(X) — p«(€) é um morfismo de quadros. O

O teorema acima nos permite obter a

Corolario 1.1.6 (Reflexdo Locélica). O 2-funtor Locales £, Topos/S admite adjunto a es-
querda, cuja agdo nos objetos mapeia a Loc(E) o S-topos . Em especial, a counidade da adjungdo
é isomodrfica a identidade, ou seja, Fei é plenifiel.

Como toda reflexdo, o teorema acima determina uma fatoracdo. Dado um morfismo
geométrico f : £ — S temos o tridngulo

£ — Fei(Loc(£))

S

S

Notamos que a unidade £ — Fei(Loc(&)) preserva o classificador de subobjetos, isto é, é
um morfismo geométrico hiperconectado (hyperconnected). Temos a seguinte caracterizagdo
de morfismos hiperconectados,



1.1. LOCALES E SEUS FEIXES CAPITULO 1. LOCALES

Lema 1.1.7. Para um morfismo geométrico £ LF , siio equivalentes:

i) f é hiperconectado.
ii) f* é plenifiel e sua imagem é fechada sob subobjetos.
iii) f* é plenifiel e sua imagem é fechada sob quocientes.
iv) A unidade e a couindade da adjungdo f* - f. sdo monicas.

Ademais, morfismos hiperconectados sio ortogonais aos locdlicos, onde dizemos um morfismo

geométrico £ IR F locdlico sse & locilico como um F-topos.

Demonstragio: Veja [Johl, 1.5]. O
Em suma, temos a

Coroldrio 1.1.8. (Fatoragdo Hiperconectado - locdlica) Todo morfismo geométrico £ — S pode
ser fatorado em um morfismo hiperconectado seguido de um morfismo locilico.

Seguindo, introduzimos agora a nogdo de morfismo geométrico aberto, inspirada
no conceito topoldgico de funcdo aberta. Incluimos abaixo, indicando referéncias de
demonstra¢des, duas proposi¢des importantes. A primeira dessas caracteriza o con-
ceito por meio de propriedades légicas (seguindo as sensibilidades dessa monografia),
enquanto a segunda estabelece claramente o elo com o conceito da topologia.

Defini¢ao 1.1.9. Diremos um morfismo geométrico £ IR J aberto quando os mapas indu-
zidos f5 : Subr(X) — Subg(f*X) admitem adjuntos a esquerda (fx)!, de forma natural
em X.

Proposi¢ao 1.1.10. Para um morfismo geométrico £ IR F, siio equivalentes:

i) f éaberto.

i) f* preserva quantificaciio universal, isto é, para todo par S — X > Y temos
f(VaS) = V) f7(S)
Demonstragao: Veja [JoTi, VIL1, prop. 1]. O
Proposicdo 1.1.11. O morfismo de locales X Ly Y induz um morfismo Sh(X) IR Sh(Y) aberto
se, e somente se, 0 mapa =1 : O(Y) — O(X) admite adjunto & esquerda f! satisfazendo a

identidade de Froebenius:
VAU = f(vyanlu

Demonstragao: Veja [SGL, IX.7, prop. 2]. O

Feito essa introdugdo, podemos mostrar o resultado abaixo, que serd fundamental as
secdes futuras.

Teorema 1.1.12 (Cobertura de Diaconescu). Seja S um topos com objeto de niimero natural.
Para todo S-topos de Grothendieck £ hi locale X e morfismo geométrico Fei(X) — & sobrejetivo
e aberto.

Demonstragdo (esbogo): Seja (C, ) um sitio para £. Defina o conjunto ordenado P cujos
f

elementos sdo sequéncias (cy, ﬂ;) Cn_1 ﬁi) D f—]> co) de setas de C e cuja ordem
é dada por s < t sse s um segmento inicial de ¢ (isto é, se s = (f,_1, -+, fo) entdo t =
(fatm—1s s fn, fa—1--+, fo))- Definimos entdo F : P — C por (¢, — ¢4—1 — - -+ €0) — Cn
e colocamos K como a menor topologia em IP que preserva e levanta as coberturas de J.
Por resultados padrdes de teoria dos topoi (cf., e.g., [SGL, IX.8, prop. 1]), o morfismo F
levanta-se a uma sobreje¢do aberta Fei(IP, K) — Fei(C,]) ~ £. O
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CAPITULO 1. LOCALES 1.2. DESCIDA PARA MORFISMOS GEOMéTRICOS

1.2 Descida para morfismos geométricos

Nessa sec¢do, apresentaremos a primeira das duas generalizagdes presentes nesse tra-
balho da teoria de descida de Médulos, concebida por Grothendieck. Focaremos aqui na
descida ao longo de morfismos geométricos e, posteriormente, no préximo capitulo, tra-
taremos da descida ao longo de categorias indexadas, mas ja adiantamos aqui que essa
é uma instanciacdo daquela. Apresentaremos resultados fundamentais ao campo e que
serdo usados nas segdes futuras. Acompanhamos de perto o celebrado artigo de Ieke
Moerdijk, [Mo1].

Faremos a exposi¢do da descida ao longo de morfismos geométricos usando da lin-
guagem dos topoi simpliciais. Essa decisdo é lastreada no fato que todo morfismo geométrico
induz um topos simplicial conforme serd exposto no exemplo 1.2.2.

Defini¢do 1.2.1. Deixe A a categoria de conjuntos finitos [n] = {1,2,--- ,n} e mapas que

preservam ordem. Um fopos simplicial £, é uma sequéncia (£,)., de topoi associada de
funtores a* : &, — &, para cada para cada mapa « : [n] — [m] em A de forma que

¢ Para cada n € w hd isomorfismo natural 17, : (1,)* = 1¢,;

* Para cada par de mapas n — m £, k de A hé isomorfismo natural Hap @ " p* 5

(Ba)*;

e Para cada tripla de mapas n = m Lok Lrdene para cada mapa a 2 bdeAos
diagramas abaixo comutam

* Rk A% 0(*]/[’5, * * 5%

at Byt Y k(4 B) 5 (1) 2y 5+ — (1)
.”oc,ﬁ'Yi L”a,ﬁ“r m ’ AJ
(Ba)* " —— (vpa)” o

Exemplo 1.2.2. Todo morfismo geométrico & 1, S induz um topos simplicial pondo
& =Ee&yq1 =€ xs &,y Como indicado na introdugdo, esse € o tipo de topos simplicial
que estamos capitalmente interessados em.

Observacao 1.2.3. Usando a linguagem da secdo 2.4, um topos simplicial é simplesmente
um topos indexado por A. Em geral, categorias indexadas por A sdo chamadas categorias
simpliciais. En passant, mencionamos que o estudo dessas é intimo a dlgebra homolégica,
uma das origens da teoria de categorias e, dessa forma, existe um interesse historico nessa
se¢do para além da teoria de descida.

E natural considerar os cocones sobre um topos simplicial.

Defini¢do 1.2.4. Um pseudococone sobre um topos simplicial £, é uma sequéncia de morfis-
PR . . o

mos geométricos f, : £, — F e isomorfismos f, : fy o a* — f,, para os mapas [n] — [m]

de A de forma que esses dados sdo compativeis com as condigdes de coeréncia do pseu-

dofuntor &,, isto é, tal que para todo [1] e par [m] = [k] LR [1] de A temos

fiy=1le, e fpa(fuT) = fp(fuf")

~J

onde T : a*p* = (Ba)* o isomorfismo dado pela estrutura de A-indexada. Seguindo, a
descida ao longo de £, serd o pseudocolimite desse sistema, o pseudocone &, — £ por qual
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1.2. DESCIDA PARA MORFISMOS GEOMéTRICOS CAPITULO 1. LOCALES

todo outro pseudocone é fatorado por, de forma (a menos de uma equivaléncia) univoca.
Graficamente:

Temos também uma nogéo alternativa de cocone, que considera apenas as primeiras
coordenadas de um topoi simplicial.

Defini¢ao 1.2.5. Dado um topos simplicial &, considere o seguinte diagrama

do1 do
E —dp+ & +—e— &
doz dy

Onde, e.g., 0 morfismo dg, é dado pela seta de [1] — [2] que manda 0 — Oe 1 — 2. Um
pseudococone curto sobre um topos simplicial £, é um morfismo geométrico & b Feuma

transformacao bd; L bdy satisfazendo as condigdes de cociclo,

e'(p) =1 digpodyp = dgpp
Denote por Des(E,) 0 cocone curto universal.

Notavelmente, os topos Des(&,.) e € sdo equivalentes, ou seja, um cocone curto tem
informacao suficiente para ser extendido de forma tinivoca a cocone.
Teorema 1.2.6. Os topoi Des(E,) e & sdo equivalentes. Ademais, Des(E,) sempre existe e admite
descrigdo explicita como a categoria cujos objetos sio pares (X,0), onde X € Eye 0 : di"X —
do* X um isomorfismo tal que i*0 = 1 e d15"0 o dg; ™0 = dp 6.
Demonstragio: Veja [Mol, 3.4]. O

Tendo agora acesso a uma descri¢ao explicita do cocone universal, é instrutivo consi-
derar alguns exemplos.

Exemplo 1.2.7. Dado Fei(X) i> &, podemos formar, como no exemplo 1.2.2, o topos
simplicial para o morfismo f,

Fei(X) x ¢ Sh(X) x¢ Fei(X) ——¢ Fei(X) x¢ Fei(X) —— Fei(X) ANy

Como locélicos sdo preservados por produtos fibrados (cf., e.g., [Joh1, 2.1]), teremos lo-
cales Y e Z com Fei(X) x¢ Fei(X) ~ Fei(Y) e Fei(X) x¢ Fei(X) x¢ Fei(X) ~ Fei(Z).
Ademais, por ser Loc 2-refletiva em Top/S, podemos garantir Z = Y xx Y. Em suma, o
diagrama acima é refletido ao grupoide locélico

d(]] dg
Y xxY —dp> Y +—i— X
_— —
dip dq

e Des(f), o cocone universal para o topos simplicial induzido por f, terd como objetos os
pares E € Fei(X) e 0 : djE = djx com

"0 =1 d12"0.dp1"0 = dp*6

O leitor entao talvez reconheca Des(f) como o topos de feixes equivariantes do grupoide
acima, exposto abaixo.
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CAPITULO 1. LOCALES 1.2. DESCIDA PARA MORFISMOS GEOMéTRICOS

Defini¢ao 1.2.8. Dado um grupoide de locales

do
—
G = G1 —i— Go
d
1

podemos formar um topos simplicial Fei(G), considerando os feixes do nervo de G.
Denotaremos por BG o cocone universal desse simplicial, conhecido como topos classifi-
cante de G na literatura. O teorema 1.2.6 nos da que BG ¢é dado por pares X € Sh(Go) e
6 :s5X — s7X, onde s; : Fei(Gy) — Fei(Gp) o morfismo induzido por d; : G; — Go. Al-
ternativamente, usando a equivaléncia Fei(X) ~ Et(X) podemos descrever os elementos
de BG como espagos étales E — G associados de uma acdo y : G; Xg, E — E unitaria e
associativa.

Observagao 1.2.9. Explicando a nomenclatura acima, quando G um grupo (isto ¢, quando
Go = 1), um resultado cldssico da teoria dos feixes nos dd que para qualquer espaco X,
temos Geom (Sh(X), BG) equivalente aos G-fibrados principais (principal G-bundles) sobre
X, isto é, BG é topos classificante dos G-fibrados principais. No caso geral, BG ainda é
um topos classificante, mas o resultado é um pouco mais sutil, cf. [Mo2, 6.1] e [Bu, 3.4,
5.3].

Dado um morfismo geométrico £ i) S e, usando a notac¢do do exemplo 1.2.7, temos
que a imagem inversa induz um morfismo canénico S — Des(f). Em analogia com
pilhas, estamos interessados em quais condi¢des sobre f garantem que esse morfismo seja
uma equivaléncia, isto é, em quando f é um morfismo de descida efetivo (effective descent).
Seguindo, um celebrado teorema de Joyal e Tierney afirma que

Teorema 1.2.10 (Joyal-Tierney). Morfismos geométricos abertos e sobrejetivos sdo morfismos de
descida efetivos.

Demonstragao: Veja [JoTi, 2, thm 1]. O

Logo, pelo resultado acima, o teorema 1.1.12, em conjungdo ao exemplo 1.2.7, nos da
a

Teorema 1.2.11 (Representacdo por grupoides localicos). Seja S um topos com objeto de
niimero natural. Para todo S-topos de Grothendieck &, hi um grupoide locdlico G interno a S tal
que

& ~ BG

Para além de sua natureza técnica, temos interesse moral no resultado. O topos, como
o nome trai?, foi concebido como uma generelizagéo de espacos topoldgicos. Deste modo,
o resultado de Joyal-Tierney d4 lastro a essa interpretacdo, classificando todo topoi de
Grothendieck como os feixes equivariantes de um grupoide locélico, um objeto marcada-
mente geométrico.

Para o caso de topoi £ pontilhados (que admite ponto, isto €, morfismo geométrico
Con — £), conectado (cujo tinico morfismo £ — Con tem imagem inversa plenifiel) e
atdmico (cujo tinico morfismo £ — Con tem como imagem inversa um funtor 16gico), o
resultado acima toma uma forma especialmente agradédvel as sensibilidades l6gicas dessa
monografia.

Teorema 1.2.12. Seja A um topos de Grothendieck atomico e conexo que admita um ponto S =
A. Existe um grupo locilico G € S com A = BG. Ademais, se M o S-modelo correspondente
ao ponto mencionado, teremos G o grupo Aut(M).

Demonstragao: Veja [JoTi, VIIL3, thm 1]. O

2”Comme le terme de <topos> lui-méme est censé précisément le suggérer, il semble raisonnable et
légitime aux auteurs du présent Séminaire de considérer que l'objet de la Topologie est I’étude des topos”,
[SGA4, IV,pp. 154]
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1.3. PRIMEIRA REPRESENTACAO DE TOPOS POR FEIXES CAPITULO 1. LOCALES

1.3 Primeira representacao de topos por feixes

Comecamos lembrando da dualidade entre os esquemas afins e os anéis comutativos
— da representagdo de anéis comutativos como feixes sobre um espago. Fazemos essa di-
gressdo ndo s6 como régua moral as representagdes de topoi por feixes que mostraremos,
mas como também para contextualizar-nos tecnicamente: a primeira representagdo de
topoi por feixes, exposta por Lambek e Moerdijk em [LaMo], é uma generalizagdo quase
direta da técnica de esquemas afins.

Espectro de um anél. Dado anel comutativo A com unidade defina o espago de Za-
riski, Spec(A) = {p <A : péumideal primo}, cuja topologia tem como bésicos os
conjuntos By = {p € Spec(A) : f & p} para f € A. Considere entdo o feixe de anéis
A : Spec(A) — Con dado por g(Bf):%[f]_lA, onde [f] ! A a localizacdo do anel por f,
isto é, o anel de fragdes com numeradores em A e denominadores de forma f".

Teorema 1.3.1. Dado um anel A, temos

i) Para todo p € Spec(A), a fibra ﬁp é um anel local (i.e., tem um tinico ideal maximal ou,
equivalentemente, se x +y = 1 implicaemoux =1ouy = 1);

ii) A é isomorfico as segdes globais de A e, A~ F(ﬁ)
iii) Existe um monomorfismo A — [T, /Tp.

Defina Esq,; — a categoria dos esquemas afins — como a subcategoria plena dos

espacos anelados® dada por pares (Spec(A), A). Obtemos entio que
Teorema 1.3.2. Temos a adjungio Esqy(X, Spec(A)) = anelCom(I'(Ox), A). Em especial,

obtemos Esq%} ~ anelCom.

Seguindo, falemos de topoi. Dado um topos pequeno £ deixe Spec(€) o conjunto de
ideais primos da 4lgebra de Heyting Subg(1). Definamos uma topologia em Spec(&),
pondo como base os conjuntos

B, = {P € Spec(€) : p € P}
para cada p € Subg(1). Definimos um pré-feixe € sobre Spec(&) pondo
SN(B,,) =&/p

Note que temos T'(£) = £(Bt) = £/1 = £. Inspirados na representacio dos anéis,
definimos

Definigdo 1.3.3. Dizemos sublocal* um topos € onde Subg (1) tem ideal maximal tnico.
Lema 1.3.4. O funtor £ é um feixe e todas suas fibras sdo topoi sublocais.

Demonstragdo: Como Spec(€) acontece como espaco de ideais de um reticulado dis-
tributivo temo-lo um locale coerente® e entdo, em especial, temo-lo compacto (cf., por
exemplo, [Joh3, IL.3]). Logo, para provar & um feixe basta mostrar que, para um par
p,q € Sub(1), temos o diagrama abaixo um equalizador.

E/png) —— E/pxE/qg —=X E/(pVa)

3Lembramos que um espago anelado é um par (X, Ox) onde X um espaco topoldgico e Ox um feixe de
anéis sobre X.

4QOriginalmente, em especial em [LaMo], o adjetivo vinha sem prefixo, mas a segunda representagao por
feixes indicou-nos outra propriedade ao titulo.

50 conceito localico que corresponde a nogao de espaco espectral
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Reproduzindo um belo argumento de [Aw2, 3, thm 3], usando elementos generalizados,
notamos que o diagrama acima é um equalizador sse dadoU — pAgq, A =+ peB — g
tal que as faces do cubo abaixo com aresta comum U — p A g sdo produtos fibrados, ha
tnico C — p V g que faz todas faces produtos fibrados.

u A

Definimos entdo C como a soma amalgamada das setas U —< 4 . Lembrando que

a base do cubo é um pullback e um pushout, é rotina verificar que esse C satisfaz as
condi¢des pedidas. Seguindo, dado P € Sub(€), temos

Ep=1lm&/p
pEpP

Pelo teorema fundamental e por existirem colimites de topoi, temos que &p é de fato um
topos. Para notarmo-lo sublocal, observe que o colimite filtrado acima nos d&, lembrando
que colimites em Topos sdo limites em CAT, que, considerando os seguintes conjuntos
como algebras de Heyting, temos Subg (1) = Subg(1)/{p : p ¢ P}. Por ser P primo,
pVgem{x:x & P} garanteou p ¢ Pou p ¢ P, como queriamos. O

Logo, temos a

Teorema 1.3.5 (Primeira representacdo por feixes). Dado um topos pequeno &, existe um
espago Spec(E) e um feixe £ sobre esse espago tal que

i) Para todo P € Spec(E), a fibra Ep é um topos sublocal;
ii) & é isomérfico as secdes globais de Eie, &~ F(g)

iii) Existe um morfismo logico conservativo & — [ Ipespec(s) Ep-
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Capitulo 2

Espacos

Nesse capitulo, passamos dos locales aos espacos, consequentemente desenvolvendo
nogdes mais trataveis as sensibilidades classicas. Grande parte dos resultados desenvol-
vidos aqui sdo relagdes entre as naturezas sintatica e semantica da l6gica matematica. De
certa forma, ndo se admira que esse seja o caso, o estudo das ligagdes entre essas é um
leitmotiv notoriamente presente no campo; citamos os teoremas de corregdo e comple-
tude, as dlgebras de Lindbaum-Tarski e o resultado de Post como mengdes da legido de
instancias da interagdo entre a sintaxe e a semantica. Colocamos abaixo um esqueleto do
capitulo.

Comegamos expondo uma representagao por grupoides topolégicos de teorias l6gicas.
Seguimos a tese de Henrik Forssell, um aluno de Awodey, e os artigos que a acompanha-
ram. Mostramos como obter uma adjuncdo sintaxe-semantica usando desses grupoi-
des, além de estabelecer uma conexdo de Galois entre as subteorias e os subgrupoides.
Continuamos seguindo a tese de Forssell no segundo capitulo, onde exploramos uma
generalizagdo da dualidade de Stone ao contexto da primeira ordem.

Seguindo, explicamos que a representagdo de Forssell é baseada nos resultados da
tese Carsten Butz, tema da terceira secdo. Orientado por Ietz Moerdijk, Butz mostra que
restringindo nossas consideragdes aos topoi com pontos suficientes podemos obter uma
representacdo desses em termos de grupoides topolégicos.

Na secdo quarta, cumprimos nossa promessa e expomos a descida ao longo de ca-
tegorias indexadas, além de apresentarmos relagdos entre as duas maneiras de descida.
Seguindo, aplicamos os resultados das duas tltimas se¢des na segdo cinco, melhorando
nossa primeira representagdo de topoi por feixes, seguindo la os passos da tese de Steve
Awodey.

Terminamos, na sexta se¢do, com uma introdugdo concisa da teoria de ultracatego-
rias, concebida por Makkai. Incluimos essa apresentagdo majoritariamente por motivos
histéricos, tendo sido a generalizagdo da Dualidade de Stone para pretopoi originalmente
obtida por meio dessa técnica. Seguimos a exposigdo de Jacob Lurie, [Lu], apresentando
as defini¢des e os principais teoremas, em especial, a celebrada completude conceitual.
Finalmente, apresentamos um resultado que nos permite representar as ultracategorias
como fibrag¢des sobre espacos Hausdorff compactos, fato que combina com nosso inte-
resse em pilhas para a topologia coerente.

2.1 Teorias e Grupoides

Nessa se¢do, exploramos a representacdo de teorias em termos de grupoides topoldgicos.
Veremos, na secdo trés, como mencionado na introdugdo, que a representagao obtida aqui
é uma instancia de uma construgado categorial mais geral. No entanto, urge este capitulo
haja vista a simplicidade que a construgdo toma quando restrita ao contexto l6gico. De
fato, enquanto a terceira segdo fala de conjuntos de enumeracéo, objeto artificial a pri-
meira vista, conversaremos aqui sobre isomorfismos dos modelos de nossa teoria!
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Para evitar problemas com tamanho, restringimos nossas considera¢des aos modelos
k-pequenos. Seguimos a tese mencionada, [Fol], além dos artigos que a acompanharam,
[AwFo], [Fo2] e [Fo3].

Dado teoria T sobre uma assinatura X, fixe um cardinal ¥ > || Uw. Deixe Xt o
espago dos T-modelos cujo conjunto subjacente é um elemento de «, sua topologia tendo
como bdsicos os conjuntos

([x: ¢],a) = {M €Xr:ac[x: qo]]M}
para as férmulas coerentes ¢ de X com n-variaveis livres e listas @ = (a1,a2,- - - ,a,) € «".

Observacao 2.1.1. Poderiamos, sem grandes mudangas na teoria, definir X1 como o
espaco dos modelos k-pequenos, isto é, cuja cardinalidade é menor que x. Enquanto essa
descricdo tem uma clara vantagem conceitual e didatica, ela peca nos aspectos técnicos,
em especial, citamos dois: i) Xt seria uma classe prépria e ii) para definir nossa topo-
logia precisariamos achar um modo de identificar as sequéncias @ € «” com elementos
do modelo. Um leitor motivado pode perceber que os espagos de enumeragao de Butz e
Moerdijk sdo uma resposta para ii), e foi essa a técnica adotada por Spencer Breiner em
sua tese.

Continuando, deixe Gt o grupoide de isomorfismos entre modelos. Sua topologia é

a mais grossa que torna continuos os mapas do,d; : Gt — =< Xr, que associam a um
isomorfismo seu dominio e codominio, e contém, para todo tipo A de X e para,b € «, os
conjuntos

(A,a— b) = {f:MiNeGT:ae [[A]]MAfA(a):b}
Como na representacdo de topoi, temos que
Lema 2.1.2. Os espagos G e X sio sobrios.

Demonstragao: Veja [AwFo, 1.2.7]. O

Note agora que para qualquer férmula ¢ temos um funtor [¥ : ¢](~) : Xy — Con
com acdo M > [¥ : ¢]™. Por meio da equivaléncia Con” ~ Con/A, podemos entio
obter a projegdo

[%: ¢lx, = {(M,a) M€ Xy,ac[x: q)ﬂM} 5 Xp
Ponha a topologia de [x : ¢]x, como a mais grossa que faz 7t continua. Usando a
descricdo dos bésicos de X, é claro que

Lema 2.1.3. Os bisicos de [x : ¢]x, sdo da forma
(x7:9],a) = {(M,E) cbxae X,y @A 1/;]]M}

para  coerente e a € x". Onde b * a denota a concatenacio de b e a. Consequentemente, 7t é um
homeomorfismo local.

Logo, a agdo (X : ¢) — [X : ¢]x, descreve um funtor Sin(T) — Fei(Xr ). Note que
podemos estender esse funtor 8 M : Sin(T) — BGy pondo [¥ : ¢] — ([X : ¢]x.,0),

onde

0((M,7), M L N) = (N, f(@))

Chamaremos definiveis os objetos na imagem de M.

Proposicao 2.1.4. O funtor M é coerente e reflete coberturas de BGt em familias da topologia co-
erentes. Em especial M é conservativo e, pelo teorema B.3.12, M induz um morfismo geométrico

BGr 5 Feicoo(Sin(T)).
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Demonstracao (esbo¢o): Para BGr LN Fei(Xr) % Con/ X funtores de esquecimento,
temos

Pt

Sin(T) —— Fei(Xr)

\ lu,

COI‘I/XT

Como os esquecimentos refletem estrutura coerente e coberturas, basta mostrar que a
acgdo [X : ¢] — [X : ¢]x, — X1 também o faz para obter M coerente e continuo. Pois,
temos o triangulo

/Sm T

Con/ Xt co th X Con/M

Onde F é induzido pelas setas M : Sin(T) — Con. Temos entdo que, por T ter suficien-
tes modelos, F é conservativo e, por serem todos M coerentes, seu produto F também
0 é. Pela equivaléncia, segue Sin(T) — Con/Xr conservativo e coerente, logo ele
também reflete coberturas, como queriamos. Para mais detalhes desse argumento, veja
[Fo3, 3.2.2]. O

Lema 2.1.5. Dado [x : ¢] € Sin(T), os abertos bdsicos de [X : ¢]x, fechados sob a agio 0 sio da
forma [x : {]xy C [¥ : @]x, para alguma férmula coerente ¢.

Demonstragdo: Seja U = ([X,y : ¢],a) um aberto basico de [x : ¢]x,. Passando & um iso-
morfismo se necessario (cf. [Fol, 2.3.4.1]), podemos assumir sem perda de generalidade
que parai < j com y;,y; de mesmo tipo temos a; # a;. Logo, pondo ¢ a conjuncdo das de-
sigualdes y; # y; parai < j com y;,y; de mesmo tipo, afirmo que para ¢ = Iy(c AP A ¢)
temos [x : ¢]x, o fecho de U sobre a a¢do 6. De fato, temos U C [x : ]x, e [¥ : Clxp
fechado sob 0. Ademais, se (M, b) € [x : ¢]x, entdiohdccom bxc € [x, i : o A A p]M.
Podemos construir, um isomorfismo f que troca as listas b e ¢ de lugar (cf., e.g., [AwFo,
1.2.5]), e entdo obtemos 6((M, b),c) € U, ou seja, obtemos (M, b) estd no fecho de U sob
6. O

O lema acima nos permite concluir que os subobjetos de objetos definiveis sdo unides
de objetos definiveis. Em especial, um subobjeto de um objeto compacto M ([X : ¢]) serd
da forma \V,, M([x : ¢;]) que, tomando a disjun¢do, reduzimos a M ([x : \/,, ¥i]), ou seja,
M é pleno nos subobjetos de compactos. Portanto, como M reflete coberturas, podemos
concluir que os definiveis sdo objetos compactos. Em especial, o grafico de um morfismo
entre dois objetos definiveis serd definivel e entdo, por ser M coerente e conservativo,
serd o grafico de um morfismo de Sin(T). Ou seja, M é pleno. Ademais, temos também
que

Proposi¢do 2.1.6. Os objetos definiveis geram o topos BGr.

Demonstracdao: Veja [AwFo, 1.4.7]. O

Teorema 2.1.7 (Representacdo de Butz-Moerdijk para teorias). Temos que BGr é o topos
classificador da teoria T. O funtor m da proposigdo 2.1.4 é metade de uma equivaléncia BGy ~
Feicoe(Sin(T))
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Demonstragao: Pela proposigdo 2.1.6, os objetos definiveis sdo um sitio para BGt. Ade-
mais, a dicussdo acima e a proposicdo 2.1.4 nos ddo que M é plenifiel e reflete cober-
turas, logo, pelo lema da comparagdo (veja, e.g, [Elephant, C, 2.2.3]), temos BGtr ~
Feic,e (Sin(T)). O

Finalmente, mencionamos que temos uma conexdo de Galois entre os subgrupoides
e subtopoi da nossa representacao.

Teorema 2.1.8 (Conexdo de Galois). Seja T uma teoria coerente, dado subtopos H < BGr
hd subteoria T' C T com H = Fei(Gy). Ademais, pondo Sub(BGr) a categoria de subtopoi
de BGy e Sub(Gr) a categoria de subgrupoides de Gr, defina um mapa pt : Sub(BGr) —
Sub(Gr) pondo

pt(BGT/) = {M S (G’]T)O tME T/}
Defina também B : Sub(Gr) — Sub(BGr) pondo BH = BGry,yy), onde

Th(H) = {¢ : VM € Ho(ME ¢)}

Temos que os mapas acima formam uma conexdo de Galois B : Sub(Gr) —— Sub(BGr) : pt ,
no sentido que BH < F se, e somente, H < pt(F).

Demonstracio: Veja [Fo2, 3.2.2]. O

2.2 Aplicacdo: Dualidade de Stone Generalizada

O assunto dessa se¢do é tangente ao tema principal do trabalho e os resultados sdo
auto-contidos. O leitor que prefir ignora-la em primeira leitura ndo sentird falta dela nos
capitulos futuros. Sem embargo, a dualidade de Stone é uma das j6ias da teoria dos mo-
delos classicas e entdo recomendamos a leitura dessa segao a qualquer leitor interessado
na légica categorial.

Munidos da representagdo para teorias da secdo anterior, podemos caminhar em
direcdo a uma generalizagdo da dualidade de Stone obtida por Henrik Forssell e Steve
Awodey e exposta em [AwFo] e [Fol]. Para contextualizar o que segue, incluimos abaixo
o resultado classico.

Observacao 2.2.1 (Dualidade de Stone). Dado uma algebra de boole B um ultrafiltro de
B é a pré-imagem f~!(1) de um morfismo de algebras de boole f : B — 2(= {0,1}).
Podemos tornar o conjunto de ultrafiltros de B em um espago, por meio da base de clopens
dada por {X C B : b € X} parab € B. Seguindo, um espaco de Stone é um espago
compacto, Hausdorff e totalmente desconexo, equivalentemente, é o limite indutivo de
espagos discretos finitos. Contas de rotina mostram que, dado espaco de stone S, seu
conjunto de clopens é uma algebra de Boole. Notavelmente, os conjuntos clopen de S
correspondem a fungdes continuas S — 2, onde 2 = {0,1} discreto. A dualidade de
Stone afirma que essas duas agdes sdo mutualmente inversas,

Teorema 2.2.2 (Dualidade de Stone). Pondo Stone a subcategoria plena dos espagos de Stone,

temos Stone(—,2) : Stone’” " Bool : Bool(—,2) sdo uma equivaléncia.

Feito essa contextualizagdo, precisamos definir dois conceitos antes de introduzir a
primeira parte da nossa adjuncao

Definicao 2.2.3. Seja T sobre uma assinatura .. Diremos que T tem igualdade decidivel
sse para todo tipo A temos um predicado # 4 tal que, dado um par de varidveis distintas
x # y de tipo A, temos

(xZay)AN(x=y)Fal e Tra(x#ay)V(x=y)

Assumimos, durante a duracdo dessa secdo, que a teoria T com qual trabalhamos tem
igualdade decidivel.
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Observagio 2.2.4. Note que T tem igualdade decidivel sse Sin(T), sua categoria sintatica,
é decidivel, isto é, sse para todo A € Sin(T) a diagonal A4 é um subobjeto complemen-
tado. Em especial, se T é uma teoria classica teremos Sin(T) booliana e consequente-
mente T terd igualdade decidivel.

Como na segdo anterior, para evitar problemas com tamanho precisamos restringir
nossas consideragdes aos modelos “abaixo”de um cardinal «. Para poder fazer isso, pre-
cisamos que nossas teorias ndo percam informagdo quando restringidas & esse contexto,
isto é, que tenham suficientes x-modelos.

Defini¢ao 2.2.5. Dado cardinal «, deixe Con, a subcategoria plena dos conjuntos heredi-
tariamente menores' que x. Uma categoria coerente D tem suficientes k-modelos (enough
k-models) sse os funtores coerentes D — Con, juntamente refletem coberturas, isto é, sse
dado uma familia {f; : d; — c}, de D, se para todo funtor M : D — Con, coerente temos

Jim(fi) = Mc

I

Entaoha iy, iy, -+ ,i, com 'V, Mfi]. =
Definimos CoeDec,, a categoria que de funtores coerentes entre categorias pequenas
decidiveis e coerentes com suficientes xk-modelos.

Observagio 2.2.6. Note a relagdo entre as nogao de suficientes k-modelos com a de sufi-
cientes pontos. Usando a maxima “modelos sdo funtores”, a primeira afirmagédo equivale
a suficientes x-pontos e a segunda a suficientes modelos em Con.

Podemos agora definir a primeira parte da nossa adjun¢do, que posteriormente res-
tringiremos a um dualidade. Notamos que o “espirito”da adjun¢do que mostraremos é
comum na légica categorial, sendo uma adjuncao entre sintaxe e semantica.

Dado D de CoeDec, defina o espago Xp := CoeDec(D, Cony), com topologia dada
pelos sub-bésicos

f,ﬁ:: {MEXDZHXEMLZ (/\Mﬂ(x):ai>}

i<n

para {f; : a — b;}i<, uma familia de setas de D e a; uma sequéncia de conjuntos he-
reditariamente menores que k. Seguindo, o funtor Mod : CoeDec, — Gpd associa a
uma categoria D o conjunto de isomorfismos naturais entre os funtores de Xp. Analo-
gamente ao grupoide da segdo anterior, a topologia de Mod(D) é dada pela mais grossa

que torna dy,dy : Mod(D) —= Xp continuas e contém, para todo objeto A € D e par
de conjuntos a e b hereditariamente menores que «, o conjunto

Vagss ={f: M= N:ae MAA fa(a) = b}

L. - o F -
E rotina entdo verificar que, dado um funtor coerente A — D em CoeDec,, a agdo de
composi¢ao

M MF
Ry S N
A-—Lt5D %ﬂzx Con, — A %ﬂaFCOIlK
" e

ldizemos um conjunto hereditariamente menor que um dado cardinal « se todos seus elementos i) tem
cardinalidade menor que « e ii) sdo hereditariamente menores que «.
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induz morfismos continuos fj e fi entre os grupoides,

Mod(D) L Mod(A)

ol ol

Xp — P x,

Chamamos Mod : CoeDec,’ — Gpd de funtor semantico. A notagdo Mod vem do caso?
D = Sin(T), uma vez que teremos Mod(Sin(T)) equivalente aos modelos de T em
Cony, cf. o teorema A.3.3. Mostramos abaixo a relacdo do grupoide definido acima com
o da segdo anterior.

Teorema 2.2.7. Para D € CoeDecy, pondo Tp a teoria gerada pela categoria D (cf. apéndice
A.3.4), temos um homeomorfismo de grupoides Mod(D) = Gr,,. Consequentemente, obtemos a
equivaléncia Feicy, (D) ~ B(Mod(D)), ou seja, BMod (D) classifica D.

Demonstragdo: Sabemos que os pontos de X, isto é, os modelos de Tp equivalem a
funtores coerentes M : Sin(Tp) — Con. Além disso, por defini¢do de Xt,, podemos
garantir que esses funtores fatoram em Cony. Pondo 6p : D — Sin(Tp) uma das me-
tades da equivaléncia entre essas categorias (cf. proposicdo A.3.6), definimos um mapa
$o : X1, — Mod(D)o pela agdo M : Sin(Tp) — Con, — M o fp, mostremos entdo
¢o um homeomorfismo. Pois, por ser p metade de uma equivaléncia, é facil ver que ¢y
admite inversa ¢p. Quanto a continuidade, note que dado sequéncias {f; : 4 — b;}i<, e

a € Con, é facil ver
(#0)"! (Uzz) = << [y‘ - (Aﬂ(’” ) y)] >>

para y; : b;. Analogamente, dado férmula coerente X.¢ com x; : A; e lista @ € x,, ponha
r: [x.¢] — [, A; a interpretagdo interna de ¢ em D. Com as proje¢des 71; : [, Ai — A;
podemos ver

Yo' ({[x: 9a) = Uza
Ou seja, concluimos que ¢y é um homemorfismo. Seguindo, definimos ¢; : G, —
Mod(D); por meio de ¢p assim como ¢y. Como acima, é claro que ¢; terd inversa ¢,
ademais é rotina verificar

¢ (Vaasp) = (Aa— b)

P ({Aa = b)) = Vo
O resultado segue. O

Seguindo, consideramos um grupoide distinguido.

Lema 2.2.8. Na assinatura com tinico tipo e par de relagdes bindrias # e =, defina a teoria neq,
cujos axiomas garantem que # é complemento de = e que neq tem igualdade decidivel.
Sequindo, deixe S, o grupoide de isomorfismos entre objetos de Con,, onde

 (Sx)o tem como bdsicos os conjuntos {X € Cony : ay,az,--- ,a, € X}, para sequéncias
a; € Cony;

[

* (Sx)1 tem como bisicos os conjuntos {f : A — B € Cony :a € A, f(a) = b}, para pares
a,b € Cony.

Temos Sy = Gneq em Gpd. Consequentemente, obtemos a equivaléncia BSy ~ BGneq

2Lembramos que esse é sempre o caso, ja que D =~ Sin(Tp).
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Demonstrac¢ao (esbogo): Para mostrar Sy = Gpeq note que todo conjunto X € Cony,
admite tinica extensdo a neq-modelo, pondo #M como X2\ Ay, logo é facil ver que
ha uma bijecdo Sx = Gpeq. Mostrar que essa bijecdo leva a um homeomorfismo é um
argumento direto, mas longo; omitimos-o entdo, recomendando o leitor a [Fol, 2.4.3.2].

L]

Cony,);
7

Observagdo 2.2.9. Mencionamos que temos uma outra equivaléncia, BS, ~ Con!
onde (Con,,); a categoria de inclusdes entre os conjuntos finitos, cf. [loc. cit., 2.4.3.3].

Pelo teorema 2.1.7, temos BGneq =~ Feico.(Sin(neq)) e entdao BGpeq classifica objetos
decidiveis na categoria dos topoi, isto é, um morfismo geométrico BGpeq — £ equivale
a um objeto decidivel no topos £. Isso, é claro, induz um objeto decidivel genérico em
BGneq, que agora descrevemos.

Definigao 2.2.10. O objeto decidivel genérico em BGpeq € dado por ([x : T]x,.,, ). Per-
correndo a equivaléncia do lema obtemos que o objeto decidivel genérico em BS, é dado
por (77 : [Tae(s)o A = (Sx)o,0) com 0(g : x — y,a) = g(a). A topologia de [[4¢(s,), A
sendo a mais grossa que torna a projegdo 7t continua e contém, para todo a, o conjunto
{(A,a): A € (5¢)o,a € A} como aberto.

Agora, precisaremos dos seguintes conceitos para definir nosso funtor sintatico.

Defini¢ao 2.2.11. Lembramos que um objeto X de um topos é dito compacto se toda co-
bertura de X por subobjetos admite subcobertura finita. Dizemos um topos & fracamente
coerente (weakly coherent) sse esse admite um conjunto de geradores compactos e o pro-
duto finito de compactos é compacto. Dizemos um grupoide G fracamente coerente sse o
topos BG é fracamente coerente.

Defina fcGpd como a subcategoria de Gpd cujos objetos sdo grupoides fracamente
coerentes e com morfismos f : G — H aqueles que a imagem inversa do funtor induzido,
f*: BH — BG, preserva objetos compactos.

Lema 2.2.12. A imagem do funtor CoeDec,’ Mod, Gpd esti em feGpd.

Demonstracio: A proposigio 2.2.7 garante Mod(C) coerente e, portanto®, fracamente co-

erente. Logo, temos Mod(C) € fcGpd para C € CoeDec,. Seguindo, dado C L Dem
CoeDec, é rotina verificar que temos o quadrado abaixo comuta

c—f .

tcl ltp

BGe oot BGp

Onde t¢ : C =~ Sin(T¢) M, Feicoe(Gsin(m,)) = BGe- Logo, vemos que Mod(F)* manda
os definiveis de BG¢ nos definiveis BGp e entdo preserva os objetos compactos. O

Definamos agora o funtor sintitico, a segunda parte da nossa adjunc¢do. Dado grupoide
G € fcGpd, ponha Form(G) como a subcategoria plena de BG cujos objetos sdo da forma
f*U para algum f : G — S, de fcGpd, onde U é o objeto decidivel genérico. Felizmente,
temos uma caracterizagdo explicita de Form(G).

Lema 2.2.13. Dado G € fcGpd, um feixe equivariante (p : E — Go, u : E xg, G1 — E) estd
em Form(G) se e somente se

i) (p:E— Go,p: Exg, Gt = E) éum objeto compacto e decidivel de BG;

3Vemos répidamente que um topos é fracamente coerente se admite um conjunto gerador de objetos com-
pactos fechados sob produtos finitos, e coerente se admite conjunto gerador de objetos compactos fechados
sob limites finitos
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ii) Para todo x € Gy, temos a fibra E, em Cony;

iii) Paratodoa € Cony, temosque {x € Gy :a € Ey} C Goéabertoe{x € Gy:a € Ex} — E,
dado por x — a, é uma secdo continua;

iv) Para todo par a,b € Cony, o conjunto {g:x —y € Gy :a € Ay, u(a,x) =b} C G é
aberto.

Demonstragao: Veja [AwFo, 2.4.11]. O
Notamos entdo que,

Coroldrio 2.2.14. Dado Sin(T) em CoeDecy, o funtor M : Sin(T) — BGr fatora-se em
Sin(T) — Form(Gr) < BGr

Lema 2.2.15. Dado grupoide G € fcGpd, a categoria Form(G) é coerente, decidivel e tem sufi-
cientes k-modelos. Ademais, para qualquer f : H — G € fceGpd o funtor induzido BG — BH
restringe-se a um funtor coerente como no quadrado abaixo,

Form(G) Form(f) Form(H)

[ [

BGTBH

Ou seja, temos um funtor Form : fcGpd° — CoeDec,
Demonstragao: Veja [AwFo, 2.4.13,2.4.14,2.4.15]. O
Finalmente, podemos obter a

Teorema 2.2.16 (Adjungao Sintaxe-Semantica). Temos a adjungio

Mod
—
CoeDec,” | 1L ' fcGpd
Form
Demonstracio: Veja [loc. cit., 2.5.3]. O

Restringindo a adjungdo acima, obtemos nossa generalizacdo da dualidade de Stone.

Teorema 2.2.17 (Dualidade de Stone para légica de primeira ordem). Deixe BoolPTop,
a subcategoria plena de CoeDec, cujos objetos sio os pretopos boolianos. A adjungdo sintaxe-
semdntica se restrige a dualidade

Mod

/\
BoolPTop,” =~ StoneGpd

v

Form

Ademais, tratanto dlgebras boolianas como categorias discretas, restringindo a equivaléncia acima
ao longo da inclusdo BA, — BoolPTop, obtemos a dualidade de Stone cldssica,

Mod
T
BA) ~ Stone
e~
Form
Demonstracao: Veja [loc. cit., 2.6.2]. O
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2.3 Topoi e Grupoides

Mostramos aqui uma versdo mais tratdvel da representagdo de topoi por grupoides
localicos, devida a Carsten Butz e Ieke Moerdijk. Restringindo nossa atengdo aos topoi
de Grothendieck com suficientes pontos, podemos associar a cada um desses um gru-
poide topolégico cujos feixes equivariantes equivalem ao topos inicial. Seguimos o par
de artigos [BuMo1] e [BuMo2].

Comegemos explicitando a no¢do de pontos e o que constitui ter suficientes desses.

Defini¢ao 2.3.1. Dado um topos de Grothendieck &£, um ponto de £ é um morfismo
geométrico x : Con — & e, dado algum objeto A € &, a fibra (stalk) Ay de A em x é
x*(A).

Dizemos que um topos de Grothendieck £ tem suficientes pontos se “isomorfismo pode
ser testado fibra a fibra”, isto é, se para todo morfismo f : A — B de £ que ndo é um
isomorfismo existe ponto x : Con — £ com x*f : x*A 2 x*B. Note que essa condicdo
equivale a

VAQB(VCongi(x*f:x*A%x*B) — f:A=B)

Ou seja, a afirmagdo que a classe de pontos é juntamente conservativa. Um resultado
classico (cf. [Elephant, C, 2.2.11]) nos permite garantir que quando £ tem suficientes
pontos entdo £ tem um conjunto de suficientes pontos, fato que faremos uso no que
segue.

Observacao 2.3.2. Mencionamos que a condi¢do de suficientes pontos tem uma interepretacdo
l6gica interessante. Em suma, para um topos S[T| que classifica um teoria T, como cada
ponto equivale a um modelo em Con, ter suficientes pontos equivale a teoria ter suficien-

tes modelos de conjuntos, isto é, satisfazer um teorema de completude para modelos de
conjuntos. Notamos entdo que o caso ao qual restringimos nossa aten¢do, os topoi com
pontos suficientes, é bastante comum no mundo légico.

Feito essa introducdo, podemos comegar a definir nosso espago topolégico. Dado um
topos de Grothendieck £ com suficientes pontos sejam

¢ Pg um conjunto de pontos juntamente conservativos;

* Sg um objeto de £ cujos subojetos de poténcias (i.e., os feixes B < S§ para algum n
natural) separam &, e

* g um cardinal tal que card(S,) < I para todo p € Ps.

Observacgdo 2.3.3. O objeto Sg sempre existe. Podemos tomé-lo como, e.g., a unido dis-
junta dos objetos do sitio de defini¢do de £. Alternativamente, se £ o topos classificante
de uma teoria entdo podemos tomar Sg como o modelo genérico dessa teoria.

Dado um conjunto A com card(A) < I¢, considere o conjunto de enumeragoes de A,
Enj, (A) = {D Y A:DC I, Vae A(f Ya) éinﬁnito)}

Definiremos entdo o espago X¢ como o conjunto de enumeragdes dos S, médulo isomor-
fismos das enumeracdes, isto é,

Xe =[] Enj(Sp)/ ~
pEPe

Onde ~ ¢ a relacdo de equivaléncia gerada por
(D1 = Sp,p) ~ (D2 = Sg,q) < It(T:p* 2 g"Atsou=0)
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Denotaremos a classe (u, p)/ ~ por [u, p]. Seguindo, definimos uma topologia em X¢
colocando como abertos basicos 0s conjuntos

Usqs = {[u,p) € Xe : (ular), -~ ulan)) € By}

paracada B < St defed = (aj,az--- ,a,) € Ig".

Definamos agora um morfismo Fei(X¢) SNYS Comegamos descrevendo a imagem
inversa, especificando sua agdo nas fibras: para cada objeto E de £, ponha (¢*E), ,) = Ep.
Mais explicitamente associamos a cada E o étale ¢*E — X¢, onde

¢°E = {([“/p]re) tu,p) € Xe e € Ep}
com abertos bésicos, para B < S",a = (ay, a2, -+ ,a,) € Ic" e B focee

Vias = {([uple): [up] € Uae = fp(u(a))}

e 7T a projecdo 6bvia. Pois, observando a agdo nas fibras, é rotina entdo verificar que ¢*
preserva limites finitos e colimites quaisquer, logo, podemos concluir que ¢* tem adjunto
a direita, ou seja, determina um morfismo geométrico. Notamos ainda que a imagem

inversa admite adjunto a esquerda Fei(X¢) &, definido nos basicos por ¢;(U; 5) = B
e estendido por colimites.

Lema 2.3.4. Dado ponto p ponha uma topologia em Enj, (Sp) por meio dos bdsicos
ﬁg = {T/l D — S /\ =5; )}
Afirmo que o diagrama abaixo comuta

Fei(Eny.(Sp)) SN Fei(X¢)

Hl £¢

Con —>

Demonstragio: Notamos que os componentes conexos de i, (Upz) sdo os basicos de
forma Zz5 paras € S} e a qualquer. Considere entdo a segao Upz — Vpa,r dada por
o([u,p]) = ([u, p], fy(ua) e observe que ¢ é constante nos nossos conexos Zz5, com valor
fp(s). Concluimos que i;¢*(E) € o feixe constante de fibra E, e, como 7*p*(E) = Ej, 0
resultado segue. O

Podemos agora provar o seguinte resultado.

Proposicao 2.3.5. Seja & um topos de Grothendieck com suficientes pontos. O morfismo geométrico
Fei(Xe) 2 € é conexo, ie., ¢* é plenifiel.
Demonstragdo: Usemos a notagdo do quadrado do lema 2.3.4. Lembramos que ¢* é

plenifiel sse temos um isomorfismo @.¢* = 1, logo, por hipotese, basta checar fibra a
fibra. Dado p € Pg, temos

Onde =" vem da condigdo de Beck-Chevalley (lembrando que espagos de enumeragéo
sdo localmente conexos, [BuMo2, 3.3]), =* do lema 2.3.4 e a tiltima igualdade do fato que
todo espago de enumeracédo é conexo (cf. [loc. cit.]). O
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Observagdo 2.3.6. Note que a construcdo de X¢ depende funtorialmente dos parametros
que Pg,S¢ e Ic. Com efeito, se expandimos o namero de pontos P C P’ entdo temos
um funtor de inclusdo Xg(P) — X¢(P'). Analégamente, um epimorfismo | — [ gera
um funtor X¢(I) — Xg(J) assim como um feixe S < S’ induz um Xg(S') — Xg(S). Em
especial, dado um morfismo geométrico & — F podemos fixar parametros P; e I para
& e escolher P, e I, para F grandes o suficiente de modo que os espagos X; e X, formam
o digrama comutativo

Veja [BuMo2, 2.4] para mais detalhes.

Continuando, podemos agora descrever o grupoide topolégico G¢ que representara o
topos £. G¢ terd, como objetos, pontos de X¢ e, como mapas, isomorfismos entre pontos
de £ que comutam com as enumeracdes. Explicitamente, os pontos de G¢ sdo as triplas

“ 0 ”
(u,p) = (v,9)

onde (u, p), (v,q) € Llp, En(Sy) e 8 : p* = g*, médulo a relagdo de equivaléncia

((w,p), (v,9),0) = ((u', p"), (¢, 4),6")

dada por
S, Blla p = (p) Awsou=uw)A(Big = () APsov—o) A (B0 = ')
As duas primeiras condi¢des garantem que [u, p] = [v/,p'] e [v,q] = [V, 4], enquanto a

ultima que 6 e 6’ “preservam”essas equivaléncias. Denotaremos a classe ((u, p), (v,q),0)/=
por [0 (u,p) = (0, q)]-

Observagio 2.3.7. Note que todo ponto de G é da forma [id : (u,p) — (v,p)]. De fato,
basta notar que as classes [0 : (a,p) — (b,q)] e [id : (a,p) — (050D, p)] coincidem.

Seguindo, definimos uma topologia em Gg. Para cada par de subfeixes B,C < S e

parad = (ai, -+ ,an),b = (b1, --,by) € I, defina o aberto basico

0 _ — _ —
Wysee = {10p) 5 (0,0)] : u(a) € B, A0(B) € Cg A O(u(a)) = 0(b) |
Precisaremos do seguinte lema para provar nossa representacao.

Lema 2.3.8. Sejam do,dy : BGe ——= Fei(X¢) o0s mapas de codominio e dominio*. O dia-
grama abaixo comuta e satisfaz a férmula de Beck-Chevalley, “do,d} (F) = ¢*¢:(F)”.

Demonstragio: Dado [0 : (u,p) — (v,q)] € Ge e E € £, temos dj¢*E, = E, e d;¢*E; =
E; e entdo as fibras do isomorfismo dj¢* — d] ¢* vem do isomorfismo E, — E;, induzido
por 6. Seguindo, mostremos que dodj(F) = ¢*¢i(F). Dado ponto x = (u,r) € X¢
considere o diagrama

“Veja, por ser Gg¢ um grupoide nao precisamos de um “respectivamente”!
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kllV
Fei(En(S,)) — s BGe —" 5 Fei(X)

| L J»
Con ———— Fei(X) — £

Para En(S;) como no lema 2.3.4 e onde k(,, : En(S;) — Gg¢ vem da agdo v — [id :
(u,r) — (v,7)]. Note que k(;l,r) Weice) = Zy; (o) € entdo a fungdo € continua. Além disso,
usando o fato que todo ponto [0 : (u,p) — (v,q)] pode ser escrito como [id : (u,p) —

(v, p)], notamos que k(_ul,r) estd em bijecdo com d,'((u,7)), logo temos dy*((u,r)) =
En(S,), ou seja, o quadrado da esquerda é um produto fibrado. Seguindo, usando que o
grupoide G¢ é locamente conexo (cf. [BuMol, 4.2]), podemos usar a condigdo de Beck-
Chevalley para obter x*(dp)1 = mk*(‘u e Ademais, como dy.k(,,) = ip e ¢.x = p, 0 lema
2.3.4 garante (¢x)* @1 = m(dik(, )", e entdo, juntando as igualdades obtemos

dogdl*(P)x = X*dongF = ﬂgk?uﬂ,)dTP = q0*¢l(F) = (P*q)l(F)x
Como queriamos. O
Podemos agora provar a

Teorema 2.3.9 (Representagdo de Butz-Moerdijk para topoi). Seja & um topos de Grothen-
dieck com suficientes pontos. O funtor ¢* : € — Fei(Xg) descrito acima induz uma equivaléncia
de categorias £ ~ BGg, onde BG¢ o topos classificante do grupoide Gg, como na definigio 1.2.8.

Demonstragdo: Pela proposicdo 2.3.5, £ é equivalente a categoria de codlgebras para
comdnada ¢*¢., ou seja, é equivalente as dlgebras para moénada ¢* ¢, em Fei(X¢). Mos-
tremos entdo que essa dltima categoria é equivalente aos feixes equivariantes sobre Gg.
Por Beck-Chevalley, dod; (F) = ¢*¢:(F) e entdo um morfismo 7 : ¢*¢,(F) — F equivale
a um mapa d;(F) — d§(F) que, passando a projecdo dj(F) — F, equivale a uma agdo
u : dj(F) — F. Mostremos que esse y satisfaz as condi¢des de cociclo sse o morfismo
inicial T é uma algebra. Usando os lemas 2.3.4 e 2.3 temos, para qualquer (u,p) € Xg,
que
@ 1 (F)y,p) = mi,(F) = “conjunto das componentes conexas de i, (F)”
[

Logo, um ponto x € F, ) define uma componente conexa [x] € i, (F) e 7(,,,)([x]) define
um ponto de F, . Dado um ponto [id : (u,p) — (v,p)] de Gg ex E F( p) temos
V(g'x) = (u,p)([x])' Se T uma élgebra, T(u,p)([x]) =Xxe T(u,p)([r(v,p)([x])]) = (u,p)([x]) €
entdo obtemos y(1,x) = xe u(goh,x) = u(g, (uh, x)) e analogamente para a reciproca.

O

Observacgio 2.3.10. Poderiamos obter uma demonstragéo alternativa do teorema acima
observando que temos resultados suficientes para mostrar ¢ comonddico e entdo usando
o teorema 2.4.11 em conjungdo ao exemplo 1.2.7. Enquanto essa seria uma demonstragdo
mais “limpa”, ndo obteriamos uma descri¢do tdo explicita do nosso grupoide Gg¢.

Observagao 2.3.11. Podemos estabelecer uma relagdo entre as duas representagdes que
vimos. Dado uma teoria coerente T, o teorema de Deligne garante que seu topos classifi-
cador, dado por S[T] := Feicy(Sin(T)), tem suficientes pontos, portanto podemos usar
o teorema 2.3.9 para obter um grupoide Gg|j que representa o topos S[T]. O corolério
acima garante entdo que teremos BGgp) =~ BGr, ou seja, que os grupoides obtidos serdo
“Morita equivalentes”.

24 Descida para categorias indexadas

Em certos pontos do nosso estudo de categorias somos forgados a considerar os as-
pectos 2-dimensionais da teoria. De fato, certas ideias naturalmente nos levam a um
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ambiente 2-categorial e, em especial, a nogdo de descida é uma dessas. Para desenvolver
a lingua que a teoria de descida deve falada em, nés precisamos de uma nogao de “2-pré-
feixes”e é esse o papel das categorias indexadas. Aqui, a tese de Steve Awodey, [Aw1, V],
e o artigo de Marta Bunge, [Bu], sdo nossas principais referéncias.

Defini¢ao 2.4.1. Dado categoria £, uma categoria £-indexada é um pseudofunctor Ag :
£ — CAT, ou seja, consiste de

¢ Para todo objeto i de £, uma categoria Al
e Para cada morfismo i — j de £, um funtor Al L5 Al

e Para cada objeto e de £, um isomorfismo natural (1,)* — 14¢;

= ine

o)

e Para cada pari = j 5 kde £, um isomorfismo natural a*p* — (Ba)*;
Hap

De forma que, para cada triplai = j LNy e paraa % bos diagramas analogos ao

das defini¢do 1.2.1 comutam, isto é, as identidadesa abaixo sado satisfeitas

Ha,py (D‘*.uﬁ,v) = Vﬁa,v(ﬂa,ﬁ'y*) Y = Hs 1, HaY" = Mi,5

Exemplo 2.4.2. Se £ tem todos produtos fibrados, podemos definir uma indexagado candnica
de &£ sobre si mesma, que denotaremos por &, pela agdo de produto fibrado: associamos

a £/i cada objeto i e ao pullback a* : £/j — £ /i cadasetaa : i — j. Como o pullback da
composicdo é isomorfico a composigdo dos pullbacks, é rotina verificar que as condi¢oes
de coeréncia sdo observadas. Generalizando, se F : £ — C preseva produtos fibrados
entdo C tem £-indexagdo candnica dada por i — C/Fi.

Diremos estrita uma categoria indexada onde os isomorfismos de coeréncia sao igual-
dades, ou seja, quando A¢ é um funtor. Convenientemente, toda indexada A essencial-
mente pequena (isto é, cujas fibras A’ sdo equivalentes a categorias pequenas) é equiva-
lente & uma categoria indexada estrita.

Lema 2.4.3. Toda categoria £-indexada essencialmente pequena admite estritificagdo.

Demonstrac¢do (esbo¢o): Uma demonstragdo completa desse fato estaria melhor colo-
cada em um trabalho onde categorias indexadas tém um papel mais central, logo, restringimo-
nos a um esboco. Em suma, a ideia é definir uma categoria indexada Bs pondo

B' := Homg([i], Ag)

Onde [i] ¢é a categoria £-indexada dada por j — £(j,i) e Homg([i], A) denota a catego-
ria das transformacdes naturais £-indexadas entre os funtores £-indexados [i] — Ag
ou, em linguagem 2-categorial, Homg([i], A) é a categoria das modificagdes entre as
pseudotransformacdes naturais entre [i] e A¢. Para mais detalhes, recomendando aos lei-
tores o trabalho de [PaSc], que conta com descri¢des explicita dessa categoria e também
com uma versdo do lema de Yoneda (cf. [loc. cit., I.1.2]) para categorias indexadas que,
em especial, garante que '
Homg([i], Ag) ~ A’
Ou seja, que B' ~ A’, como queriamos. Finalmente, lembrando-se que a agéo de B¢ é
. . N E(= . .
i i E(—,)) e, E(—,i), vemos B¢ de fato estrita. O
Podemos agora falar de objetos de descida e pilhas (stacks). Seguindo a motivagdo da
introducao, se as categoria indexadas sdo nossos 2-pré-feixes entdo as pilhas serdo nossos
2-feixes e os objetos de descida nossas familias combinantes ou compativeis (matching

families).
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Definicao 2.4.4. Sejam £ uma categoria com pullbacks, A¢ uma categoria £-indexada e

R = {U; % U}; uma familia de morfismos de £. Um objeto de descida em Ag ao longo de
R é uma familia (c;, a;j); je; onde

e Paracadai € I temosc; € AY;

Y77

(7)*(cj), onde os mapas “7t”vem do produto

1

e Paracadai,j € I temos (71;)*(c;)

2

1

fibrado abaixo

uiquj L> U;

5 ]

U ——— u
]

De forma que esses dados satisfagam as condi¢des de cociclo:

Ay (i) = 1 o (agpe) 7™ (aj) = 7o (i)

£ 77

para todo i,j,k € I, onde Ay, a diagonal® e os mapas “71”vem do cubo de pullbacks

uiququuk i U, qu]'
Ttij \
Tlik Ui XU U]‘ U]-
U; xy Uk l uk
\ i ;

Podemos entdo formar Desc(Ag, R), a categoria de objetos objetos de descida ao longo
de R em A, onde um morfismos entre dois objetos de descida (c;, a;j); — (d;, Bij)1 €
dado por uma familia (f; : ¢; — d;); que faz o quadrado abaixo comutar

0(,']‘
7'(1'*Cl' —_— 7T]‘*C]'

”i*fil l”f*fj

7'C1'*d1' *>ﬁ~ 7'L']'*C]'
i

Finalmente, existe um claro funtor candnico AY — Desc(Ag, R), definido pela agdo
¢ — m;*c. Diremos entdo que Ag desce ao longo de R quando esse mapa candnico é uma
equivaléncia. Ademais, para um sitio (£, J), diremos a £-indexada Ag uma pilha (stack)
se essa desce ao longo de todo R de J.

Observagio 2.4.5. Convencionamos Des(Ag, @) = 1.

Observagdo 2.4.6. Notamos que o paralelo entre objetos de descida e familias combi-
nantes é bem preciso: dado uma base K e familia {f; : d; — ¢} de K(c¢), uma familia
combinante para F : C°” — Con é uma lista x; € F(d;) com Frt;(x;) = Frrj(x;).

5A diagonal de um objeto X é mapa universal A : X — X2 com mAx = moAx = 1x
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Exemplo 2.4.7. Existe uma ligac¢do clara entre as duas nogdes de descida, dado morfismo
geométrico £ 1, § formemos um topos simplicial (£)s usando uma técnica anéloga
(mas distinta!) a dada no exemplo 1.2.2 pondo (£')g = S e (&)1 = (£ xs €.
Considere entdo Desc(&,, [1] — [0]), seus elementos sdo pares x € & = £ e : djx = dix
satisfazendo as condi¢des de cociclo, ou seja, temos Desc(E], [1] — [0]) ~ Des(f).

Observagao 2.4.8. Para além do exemplo acima, mencionamos uma segunda ligagdo en-
tre as duas nog¢oes de descida: o resultado encontrado em [Bu, 2.1].

Proposicao 2.4.9. Seja S um topos com objeto de niimero natural. Dado & L, S deixe S[0]
o topos classificante da teoria dos objetos (cf., e.g., [Elephant, D, 3.2]. Notamos que S[O] ~
[Sfin, S]). Os seguintes sio equivalentes,

i) f éum morfismo de descida efetivo.
ii) A categoria Top/S-indexada Top/S(—, S[0O]) desce ao longo de f.

Exemplo 2.4.10. Seja C uma categoria com produtos fibrados e a identifique com seu

. A . . P4 . .
indexamento candnico sobre si mesma (cf. 2.4.2). Dado morfismo i — j de C considere o
diagrama abaixo

701 7T0
lleXjZfﬂ1z%l><jzeA,—l*>]
—_— e
7T02 m

Um objeto de descida em C ao longo de « é dado por uma seta c — i de C e um isomor-
fismo 6 : 7rp*c = 711*c com

A (0) =1 mp"(0) oo™ (0) = 702" (6)
Expandindo no exemplo acima, temos

Teorema 2.4.11 (Bénabou-Roubaud). Seja A uma categoria £-indexada satisfazendo a condigio
de Beck-Chevalley. Para qualquer o : i — j temos Desc(Ag, {a}) equivalente a codlgebra gerada
pela comonada o = 11, e, portanto, Ag¢ descerd ao longo de « sse a* for comonddico.

Demonstragao: Comegamos, lembrando o leitor da condigdo de Beck-Chevally. Dizemos
que uma categoria indexada A¢ a satisfaz se para todo morfismo « : i — j de £ temos
adjunto a direita a* - I, tal que, para todo quadrado de produto fibrado como o na
esquerda,

Al A

LS Hﬁl = lﬁw

AkTAl

{ L}

~J

O mapa "1l — Il,a*, vindo do adjunto de v*6*I1g = a*B*11p o a*, é um isomor-
fismo.

Agora, dado objeto de descida 6 : 7p*c = 711 *c note que 6 corresponde bijetivamente
aum c — Il m*ce como Il m* = a*Il, por Beck-Chevally, obtemos o morfismo
0 : ¢ = a*Ilc. Provemos entdo que essa agdo é uma coélgebra sse o morfismo inicial
6 : mo*c = my*c satisfaz as condi¢des de cociclo. Pois, vemos que A*(6) corresponde a

composigdo

é A
¢ = &' Tlye = I, m"c T, I TIAA™ 1% () = TTpa(mA) c = c

Com 7% a unidade de A* - IT5. Note agora que, por Beck-Chevalley, o diagrama abaixo
comuta
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o

1
«*Tlyc ——— a

= F

[Ty, m1*c —— T IIaA* 1% (c)
Logo, A*0 = 1sse .0 = 1. Analogamente, temos que 71}, (6) 75, (6) corresponde a

“T1,(0)
—_—

] o
¢ — a*Tl,c A B % B G

e que 715, (0) corresponde a
[ He o x *
c — «'Ilyc — o T I1,c
Com u a multiplicacio da coménada. Logo, 6 é associativo sse a seta § também o for. [

Observacido 2.4.12. A condigdo sobre o do lema 2.4.11 é satisfeita, por exemplo, para
a S-indexada dada por i — S/F(i), onde F : & — C preserva produtos fibrados e
C é localmente cartesiana. Em especial, para qualquer S-topos & — S, a S-indexacdo
correspondente a £ satisfaz as condi¢des do lema.

Nesse trabalho, estaremos principalmente interessados nas pilhas para a topologia
coerente — a topologia de Grothendieck dada pelas peneiras que contém familias finitas
juntamente epimorficas. Convenientemente, pilhas para essa topologia admitem uma
boa descri¢do quando indexamos ao longo de um pretopos.

Lema 2.4.13. Se £ um pretopos, Ag serd uma pilha para a topologia coerente sse temos
e A0=1
e Paratodopari,j € € temos AT =2 Al x Al.
* Para todo epimorfismo « : i — j, Ag desce ao longo de «.

Demonstragido: Se Ag uma pilha para a topologia coerente, note que, como a familia
vazia cobre 0 e convencionamos Des(A¢, @) = 1 temos A? = 1. Seguindo, dado par i, j
ponha P = {i — i+j,j — i+ j}. Como pretopoi tem produtos disjuntos o diagram
abaixo é um produto fibrado

O%H'
o]

j—rit]

Logo, usando A? = 1, dado par de objetos x € Al ey € A/ temos a*(x) = b*(y). E
facil verificar que a identidade vai satisfazer as condi¢des de cociclo e, portanto, temos
que Desc(Ag, P) = A’ x Al. Seguindo, por ser P juntamente sobrejetiva temos entdo
Al =2 Al x Al. Por fim, a tltima condigdo é trivialmente satisfeita.

Reciprocamente, dado cobertura X = {f; : U; — V'}, podemos fatora-la nas familias
Y=A{gi:U — 1I,U}neZ={f:11,U — V}. Por hipbtese, temos equivaléncia P :
Alln Ui — TT AU ¥. Note que um elmento de Desc(Ag, Z) serd um par (x € AllnUi 4 :
k*x — k*x) com A*x = 1. Definia entdo um mapa Desc(Ag, Z) — Desc(Ag, X) por
(x,a&) — (¥(x),a;), com a;; 0 mapa 6bvio. E rotina mostrar que essa agdo estd bem
definida (i.e., a familia satisfaz as condi¢des de coclico) e induz um funtor. Seguindo,
defina Desc(Ag, X) — Desc(Ag, Z) por ((xi)n, aij) + (P((xi)n), &) com & 0 mapa indu-
zido pelos w;j. Verificamos entao que Desc(Ag, Z) ~ Desc(Ag, X). Por hipétese, temos
Desc(Ag, Z) ~ AY. O resultado segue. O
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Finalmente, estamos em posigdo de provar o resultado abaixo, que sera fundamental
na representagdo de feixes de Awodey e Breiner.

Proposicao 2.4.14. Dado um pretopos P sua ‘P-indexagdo candnica, P, definida no exemplo
2.4.2, é uma pilha para a topologia coerente.

Demonstragdo: Basta verificar que as condi¢des dos lema 2.4.13 sdo satisfeitas. Clara-
mente temos P/0 = 1e P/(i+j) = P/ix P/j. Para a condigdo final, dado epimor-
fismo & : i — j basta, pelo teorema 2.4.11, provar que a* serd comonddico, usemos entdo
(co)monacidade de Beck. Por ser P localmente cartesiana fechada, a* tem adjunto a di-
reita. Ademais, P tem todos equalizadores que a*, por ter adjunto a esquerda, preserva.
Logo, resta apenas mostrar a* conservativo e para isso usamos o resultado cldssico que
garante que a mudanca de base a* : P/j — P /i em uma categoria regular é conservativa
sse &« um epimorfismo regular (cf., e.g., [Elephant, A, 1.3.2, 1.3.4]), lembrando que todo
epimorfismo é regular em um pretopos, [loc. cit., A, 1.4.9]. O

2.5 Segunda Representacao de Topoi por Feixes

Podemos agora expor um resultado da tese de Steve Awodey, [Aw1], que melhora a
primeira representacdo de topoi por feixes que obtemos.

Lema 2.5.1. Toda pilha pequena estrita para a topologia coerente é equivalente a um feixe na
topologia coerente.

Demonstragdo: Seja P : £°7 — €AT uma pilha e R uma peneira da topologia coerente,
essa ultima gerada por uma familia {«, : A, — I}, jutamente sobrejetiva. Mostremos
que Hom (R, P) = Hom( &I, P) por meio da inclusdo R — & I. Considere a seta induzida

ya : 11, £ A, — &I etome sua fatoragdo regular, que obtemos tomando o coequalisador
do par nacleode [, £A, — X1,

L £A, %y 11, £ A, —= 11, £ A, —— R

BN

KT

Aplicando o funtor Hom(—, P) e denotando yA := [, & A, podemos formar o diagrama
abaixo

an
Hom(R,P) 21— Hom(yA,P) — Hom(yA X 11 YA, P) Eg P(yA x y ;yA X 1 yA)

T/W N

Hom( &I, P)

Note que ¢* : Hom(R,P) — Hom(yA, P) é o equalizador do par que o segue. Seguindo,
usando o lema 2.4.13 e denotando A :=[],, A,;, garantimos

Hom(yA, P) = Hom (]_[ otAn,P> =~ [[Hom(& A, P) =][P(A,) =P (HAH> =P(A
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Também temos que

Hom (yA X y;yA,P) = Hom (H LA, X;IHJ:An,P> >~ Hom (HJ: (Ay xIAm),P>

I

HHOW[( A X[A g P A X]A
n,m

nm

1%

P(H(AHXIA ) —P(]_[A XIHA ) = P(A %1 A)

Analogamente mostramos P(A x; A x| A) = Hom (yA X y ;yA X y;yA,P). Pondo « :
L1, Ax — I a seta induzida pela familia, formemos o diagrama abaixo, com u uma equi-
valéncia,

des(a) »—— P(A) =3 P(A x; A) —f P(Ax A x; A)

T A
)

P(I

Usando as equivaléncias acima, podemos garantir (y«)* um pseudoequalizador. Logo,
existe, pela propriedade universal, um morfismo s : Hom(R,P) — Hom(&XI,P) e um
isomorfismo natural 6 : (ya)*s = g* tal que gof = ¢16. Por ser g* modnico, podemos
concluir s fiel. Seguindo, note que (ya)*sr* = g*r* = (rg)* = a* e entdo, por ser u
uma equivaléncia e, portanto, (& a)* modnico, temos sr* = 1, ou seja, s é essencialmente
sobrejetor. Finalmente, resta provar s pleno. Dado x,y : R — Pe f : sx — sy, usando
06 = q16 é rotina verificar que para f’ := 6, o (&a)*f o 67! temos qof’ = q1f’, logo h4
h:x —y € Hom(R,P) comq*h = f'. Note que 0, o (£a)*s(h) = g*(h) o 6y, e entdo
(&a)'s(h) = 9y_1 oq*(h)ob, = 9y_l ofloby= 9;109yo (ka) foblol, = (ka)f

Como (&a)* fiel, segue s pleno. Pois, concluimos s uma equivaléncia e, como sr* = 1,
obtemos nosso resultado. O

Corolario 2.5.2. Toda pilha pequena na topologia coerente é equivalente a um feixe na topologia
coerente.

Em especial, pelo lema 2.4.14, para todo topos £ pequeno sua externalizacéo £ € equi-
valente a um feixe de categorias pequenas, que denotaremos por £ : £7 — Cat.

Definigao 2.5.3. Diremos local um topos cujo objeto terminal é projetivo e indecomponivel.
Note que essas propriedades equivalem a, respectivamente, “M F ¢ V ¢ sse M F ¢ ou
ME p”e“ME Ix(¢(x)) sse M E ¢(c), para algum c¢”.

Lema 2.5.4. Dado um topos & e um ponto Con ~» Feicy,(E) temos que x*(E) é um topos local.

Demonstragio: Primeiramente, mostremos x*(€) um topos. Lembramos que as fibras
de um feixe F sdo dadas por
x*(F) = colim  Fc

(cz)ef L

para £ a fe1x1f1ca<;ao de &. Em especial, x*(&) = olim [ xFe E(c) & olim I cra /e

Temos [ X" filtrado por ser £ exato a esquerda. Pelo teorema fundamental de topoi,
todos cortes £/c sdo topoi. Finalmente, como limites filtrados dE topoi existem (cf, e.g.,
[Mo1, 2.5]) temos x*(€) um topos. Seguindo, mostremos que &£ é local. Dados p,q €
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Sub,.z(1) com pV g = 1, existem (I, y,), (I, y4) € [ £ e setas p'— lem &/I,
e q — 1em £/I, projetando em, respectivamente, p e q. Por ser [ & filtrado, ha
(Iy) com setas (I,y) — (Ip,yp) e (I,y) — (I;,y4)- Restringindo p’ e 4" ao longo dessas
setas obtemos p”’,q” — 1em £/I. Como pV q = 1no colimite, ha h : (J,z) — (L, y)
com h*(p” Vv q") = 1. Note entdo que dadoa — leb — lem E/ccomaVb =1
teremos a + b — 1 épico, logo, com m : p+q — 1 temos ou m*(p) = 1 oum*(q) = 1.
Portando, hé seta k : (K,w) — (J,z) com ou k*h*(p”) = 1 ou k*h*(q"”) = 1. Note que,
passado ao colimite temos k*h*(p”') projetando em p e k*h*(q") projetando em 4. Logo 1
¢ indecomponivel em x*(£). A demonstragdo que 1 é projetivo é perfeitamente andloga,
omitimos-a entdo e recomendamos o leitor a [Aw1, V,2.1] para essa. O

Podemos entdo obter

Teorema 2.5.5 (Awodey). Todo topos pequeno £ admite um espago Ag e um feixe Fg sobre Ag
com

i) Para todo ponto P € Ag, a fibra (Fg¢)p é um topos local;
ii) & éisomérfico as secdes globais de F¢, i.e., € ~ T'(F¢)
iii) Existe um morfismo logico conservativo & — [Tpegpec(e) (Fe)p-

A saber, podemos por Ag = Xpei.,, (¢ € Fe = ¢*(&), onde Feic,(£) LiN Fei( X, (¢)) vem do
teorema 2.3.5, que podemos aplicar pelo Teorema de Deligne.

Podemos melhorar um pouco o resultado no caso booliano.

Teorema 2.5.6. Dizemos uma categoria bem pontilhada (well-pointed) sse o funtor de segoes glo-
bais Hom(1, —) é fiel. Dado topos booliano pequeno & e pondo Fg como acima, podemos garantir
que toda fibra (Fg)p é bem pontilhada.

Demonstragdo: Veja [Aw1,V, 2.4]. O
Finalmente, mencionamos uma propriedade légica interessante dos topoi locais
Teorema 2.5.7. Légica intuicionista é completa para modelos em topoi locais.

Demonstrac¢do: Veja [loc. cit, V, 3.3]. O

2.6 Ultracategorias

Incluimos essa se¢do por completude histérica. Mostramos aqui uma outra generalizagdo
da dualidade de Stone, obtida por Michael Makkai por meio da teoria de ultracategorias.
Essencialmente, uma ultracategoria é uma categoria associada de estrutura suficiente
para desenvolver a teoria de ultraprodutos. Lembramos, por fim, que os ultraprodu-
tos sdo uma ferramenta imporante da teoria dos modelos clasica, vide teorema de L6s, e
sdo entdo de interesse da ldgica categorial as técnicas de Makkai.

Seguimos a exposi¢do de Jacob Lurie, [Lu], e, devido ao carater tangente ao resto do
trabalho dessa se¢do, omitimos as demonstragdes.

Definic¢do 2.6.1. Uma ultracategoria é uma categoria S associada de

—)du
¢ Para todo conjunto I e ultrafiltro U em I, um funtor st fl(—)> S
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* Para uma familia {M;}; € S’ e elemento iy € I, um isomorfismo

110 /Md 10 :

onde (ip) o ultrafiltro principal gerado por iy. Ademais, o isomorfismo tem que
depender funtorialmente da familia M;;

* Seja {M;}, € S'. Dado uma familia U = {U;} ; de ultrafiltros de I e ultrafiltro K de

], temos
J

De forma que, os demais fixados, o isomorfismo # é funtorial na familia { M;},.
Assumimos que esses dados satisfazem as seguintes condi¢des de coeréncia,

e Dado {M;}, € S euma familia U = {U;}, de ultrafiltros de I, para qualquer jy € |
I iry para qualquer j

e /Md(HU/ ) /(/Mdu)

é inverso do morfismo

/</Mdu> MULN /Md ‘Og/IMid <]7[uj/(]-o)>

* Dado {M;}; € §',injegdo f : ] ~— I e ultrafiltro U de ], pondo f*U = [T;¢;(f(j)) /U
a transformacgdo abaixo é um isomorfismo

W({(f(j))}],uw/IMidf*U /(/Md ) du

* Dado {M;}, € S', uma familia {U;}; de ultrafiltros de I, uma familia {Vi}x de
ultrafiltros de | e um ultrafiltro T de K temos que, pondo

-1 () )= () /| w1

O diagrama abaixo comuta
Ji Mida : Jx [fl Mid ((HJEI ) /Vk)}

UJ lfK(W)dT

Jy (Jy MidU) d (Thkek Vi) /T) —— fic | [; (J; Midl) V| aT

Um ultrafuntor a esquerda S i) R entre duas ultracategorias é um funtor S i> M
associado de, para todo conjunto I e ultrafiltro U de I, uma transformacédo natural

oy :Fo /(—)du - /(—)duopf
I S
Tal que,
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* Para toda familia {M;}; € S’ e iy € I, o diagrama abaixo comuta

F(f, Mid(io)) z J; FM;d(io)

FM;

1o

e Para {M;}; € S!, familia {U;}; de ultrafiltros de I e ultrafiltro K de ], o diagrama
abaixo comuta

F(JiMid (T, U/ K)) - Jy EMd (T1; Uj/K)

F nl JW

F (U Malth) dK) —— [, (f; Mall) dK |, (f; M) aK

Finalmente, quando todos os ¢ forem isomorfismos diremos o funtor um ultrafuntor. De-
notamos por LUIt(M, N) a categoria de ultrafuntores a esquerda e por Ult(M, N) a cate-
goria de ultafuntores entre duas ultracategorias.

Assim como todo conjunto admite estrutura de ultracategoria, podemos definir ultra-
produtos candnicos sobre uma categoria com estrutura suficiente.

Teorema 2.6.2. Se S uma categoria que admite produtos e colimites filtrados entdo podemos
promove-la a ultracategoria pondo

| Midut = tim <HMi> /P
I peur \'I

Ademais, se S e M tem produtos e colimites filtrados entdo qualquer funtor S — R que preserva
esses pode ser promovido a ultrafuntor e qualquer funtor que preserva colimites filtrados pode ser
promovido a ultrafuntor a esquerda.

Demonstragao: Veja [Lu, 1.3.8]. O

Dado um pretopos pequeno P, deixe Mod(P) a categoria de modelos em Con da
teoria de P (equivalentemnte, dos funtores P — Con). Note que, por L6s, podemos
garantir que Mod(P) é uma ultracategoria. Temos entdo

Teorema 2.6.3. Dado um pretopos pequno P, temos

e (Completude Conceitual) O funtor ev : P — Ult(Mod(P), Con), cuja agiio manda p
((F : Mod(P) — Con) — F(p)), induz uma equivaléncia.

e LUIt(Mod(P), Con) ~ Feicoe(P).
* (Dualidade) Para qualqur par de pretopoi pequenos Py e Pa, temos que

PTopos(P,, Py) ~ Ult(Mod(P1), Mod(P;))

Demonstragao: Veja [Lu, 2.3.1,2.2.2,2.3.3]. O

Teorema 2.6.4 (Dualidade de Stone generalizada - Makkai). Deixe BoolPtop a subca-
tegoria plena de PTopos cujos objetos sio pretopoi boolianos. Deixe UltGpd a subcategoria
plena de ultracategorias cujas categorias subjacente sdo grupoides. Temos entdo a equivaléncia
BoolPtop® ~ UltGpd.
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Demonstragao: Veja [Ma, 8.1]. O

Finalmente, mostramos como podemos tratar de ultracategorias como pilhas. Dado
uma ultracategoria S deixe KHausg a categoria cujos objetos sdo pares (X,Ox) onde X

um espaco de Hausdorff compacto e X 9%, M é um ultrafuntor a esquerda. Temos que
Lema 2.6.5. A fibragido KHausy; — KHaus é uma pilha para a topologia coerente.
Demonstragio: Veja [Lu, 4.1.5]. O

Dado fibragdes F : C — Se G : D — S defina Carts(F, G) pondo, como objetos,
morfismos H : C — D de fibra¢gdes que mandam F-cartesianos em G-cartesianos e, como
morfismos, 2-morfismos estritos de fibragdo. Temos entdo que

Teorema 2.6.6. Dado ultracategorias S e M temos
LUIt(S,M)°? ~ Cartgpaus(KHauss, KHausyy)

Demonstragao: Veja [Lu, 4.3.3]. O
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Capitulo 3

Pretopoi

Nesse capitulo final, seguimos de perto a tese de PhD de Spencer Breiner. Como
instancia final das representagdo por feixes que viemos desenvolvendo durante essa mo-
nografia, expomos os esquemas l6gicos. Tal qual o nome indica, esquemas l6gicos serdo
0s objetos que associaremos as nossas teorias de primeira ordem em um esforgo de espe-
lhar ao contexto l6gico a relacdo entre esquemas afins (cf. secao 1.3) e anéis comutativos.
Desenvolvemos mais ainda essas idéias, definidos nossos andlogos a esquemas e pro-
vando um lema de colagem.

Por fim, incluimos com uma curta exposigdo de aplicacdo dos métodos desse capitulo,
descrevendo o grupo de isotropia de um topos por meio de automorfismos definiveis.

3.1 Meétodo dos Diagramas

Mostramos aqui uma adaptagdo do cldssico método de diagramas de Robinson ao
contexto da légica categorial. Os objetos definidos aqui serdo fundamentais no que segue,
ja que as fibras dos nossos esquemas afins supracitados serdo descritas em termos de
diagramas.

Defini¢ao 3.1.1. Seja P um pretopos. Dado um diagrama filtrado J°F L, P, definimos a
localizagio de P em D como

P = colim P/ Dj
i€l

Usando resultados padrdes de teoria das categorias, temos.
Lema 3.1.2. A localizagdo de um pretopos P por um diagrama filtrado qualquer D é um pretopos.
Lembremamos agora de um conceito da teoria dos modelos cléssica.

Definicao 3.1.3. Seja T uma teoria na assinatura X. O diagrama de Robinson de um T-
modelo M é uma extensdo T C D (M) construida na assinatura X, obtida adicionando
uma constante c,, & ¥ para cada m € M, e cujas sequentes sdo TU {T F ¢(c,) : a € pM}.

Notoriamente, o diagrama de um modelo classifica 0s homomorfismos partindo desse.

Teorema 3.1.4. Dado T-modelo M, homomorfismos h : M — N estdo em bijegdo com extensos
de N a D(M)-modelo.

Demonstragio: Dado extensido N’ DO N ponha /(m) := c)' e dado homomorfismo  :
M — N ponha cN' := h(m). E trivial verificar que essas acdes estio bem definidas. [

Notavelmente, podemos dar uma descricao do pretopos classificante do diagrama de
Robinson de um dado modelo por meio da técnica de localizagdes.
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Defini¢io 3.1.5. Dado um modelo P M, Con, defina o diagrama de M como a localizagdo
de P pelo diagrama [ M — P,

Diag(M) = colim P/A
(Ax)e[M

Observagao 3.1.6. Como M preserva limites finitos categoria [M é filtrada, confira o
corolario B.3.4.

Temos entdo o surpreendente teorema.

Teorema 3.1.7. Seja P o pretopos classificador da teoria T e P M, Con um modelo qualquer.
Diag(M) é o pretopos classificante do diagrama de Robinson do modelo (correspondente a) M.

Provemos antes o lema

Lema 3.1.8. Seja P um pretopos e ¢ um elemento de P. O corte P / ¢ classifica os definiveis por
@, isto é, dado pretopos Q temos

PTopos(P/¢,Q) = || Q(1,Mg)
M:P—Q

Demonstragdo: Especificamos que os objeto da categoria na esquerda sdo pares (M :
P — Q,a:1 — Mg) e os morfismos (M,a) — (N, b) sdo transformacdes a« : M = N
com &y(a) = b. Dado M : P/¢ — Q enviamos-o ao par (M¢*, M(A,)), onde ¢* : P —
P/¢ comagio A — 7m: AX @ — ¢el,adiagonal A, : ¢ — ¢ X ¢, lembrando que
Ip/g = e x ¢ =¢*(¢)). Aagdonos morfismos entdo é Gbvia.

Reciprocamente, dado par (M, a) definimos M : P/¢ — Q mandando x : A — ¢ ao
produto fibrado de Mx ao longo de a. E rotina entéo verificar que essas acdes estao bem
definidas e sio mutualmente inversas. Para mais detalhes, veja [Br, 2.3.1]. O

Demonstragdo do Teorema (esbogo): Um funtor Diag(M) — Q decompde-se em uma
familia (P/¢ — Q) que, pelo lema, equivale a Ny : P — Q,a : 1 — N¢) .
Pois, os funtores Ny correspondem a um modelo Ny € T-Mod(Q). Logo, o funtor
Diag(M) — Q determina para cada (¢ € P,x € ¢) um T-modelo N, em Q e uma
constante ¢ : 1 — N¢ que entdo, passando ao colimite, induz um modelo N € T-Mod(Q)
associado de constantes ¢y para cada x € pM.

Para mais detalhes, veja [Br, 2.4.3]. O

Proposicao 3.1.9. Todo diagrama Diag(M) é um pretopos local, isto é, o objeto terminal de
Diag(M) é projetivo e indecomponivel.

Demonstragao: Veja [Br, 2.4.8]. O

Mencionamos, por fim, a relagdo do ponto de vista categorial dos conjuntos definiveis
com o diagrama da nosso modelo.

Definic¢do 3.1.10. Dado modelo M, dizemos S C M A definivel sse hd formula ¢ — A x B
ebe MBtalque S = {x € MA : M F ¢(x,b)}. Deixamos Def (M) denotar a categoria
dos conjuntos definiveis de um modelo M.

Proposicdo 3.1.11. A fatoragdo quociente-conservativo do modelo Diag(M) — Con é dada por

Diag(M) Con

~

Def(M)
Demonstragao: Veja [Br, 2.4.4]. O

38



CAPITULO 3. PRETOPOI 3.2. ESQUEMAS LOGICOS

3.2 Esquemas Légicos

Podemos agora expor a no¢ao de esquemas légicos, mas antes lembremos de alguns
fatos.

Dado um pretopos P, lembramos que sua indexagdo candnica sobre si mesmo, P,
definida no exemplo 2.4.2, é uma pilha para a topologia coerente e, portanto (cf. corolario
2.5.2) equivale a um feixe na topologia coerente P € Feic,.(P) que por sua vez, pelo
teorema 2.3.9, equivale a um feixe equivariante Op € BGgei,, (P). Alternativamente,
como todo pretopos P classifica uma teoria T, podemos equivalentemente descrever Op
como um feixe equivariante em BGr, pela proposicdo 2.1.7. Nomemamos Op de o feixe
estrutural de P. Daremos abaixo uma descrigdo explicita desse feixe como um objeto de
BGr, mas antes relembramos o leitor da descri¢do do grupoide da nossa teoria T.

Observagao 3.2.1. Durante essas segdo, trabalheremos com pretopoi associados das te-
orias que esses classificam, isto é, pares P e T com P ~ PTop(Sin(T)), onde PTop(—)
o completamento a pretopos. Pois, lembrando que o funtor Sin(T) — PTop(Sin(T)) é
plenifiel e conservativo, indentificamos Sin(T) com sua imagem em P.

Defini¢ao 3.2.2 (bis). Deixe Xt o espago dos modelos cujos conjuntos subjacentes sao
elementos de « := max (|X|, w) e cuja topologia é dada pelos bésicos

B(p(a) = {M eXr:a€ §0M}

Para ¢ uma férmula coerente em n varidveis livres e a = (a;), € x". Seguindo, Gt é
o grupoide de isomorfismos entre os modelos de X, cuja topologia é a mais grossa que

torna os mapas de dominio e codominio dp,d; : Gy ——< Xt continuos e contém, para
todo tipo A e par a,b € x, os conjuntos

Vaass ={f:M>N:aecAM fi(a) = b}
Obtemos agora a descri¢ao de Op.

Teorema 3.2.3. Seja P o pretopos classificante da teoria T. Temos Op(B,)) ~ P/¢. Em
especial, T (Op) ~ P.

Demonstragdo: Lembramos que estabelecemos a equivaléncia BGt =~ Feic,.(Sin(T))
mostrando que os feixes equivariantes ([¢], 6), onde

[o] = {(M,a) : M€ Xp,ac oM} 5 Xy e 6(f:M— N,(M,a)) = (N, f(a))

geram o topoi BGy. Logo, garantimos que a equivaléncia! BGt ~ Feic,.(P) envia
([¢],0) ao representavel & ¢. Logo,

Hom([[gp]], Op) ~ Hom( & gD,P)

Seguindo, dado étale equivariante (E, u) de BGy e secdo s : By () — E, afirmo que ha
extensdo unica

B — [¢]

X‘s

E

@(a)

Lembramos que, para P =~ PTop(Sin(T)) temos uma equivaléncia Feico(Sin(T)) =~
Feicye (PTop(Sin(T))) dada levantando a inclusdo Sin(T) < Ptop(Sin(T))
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Com efeito, dado (M, b) € [¢] é facilconstruir um isomorfismo f : M = N que manda a
sequéncia b em a. Como 5 deve ser equivariante, teremos que

s((M,b)) = f71fs((M, b))
= fT18(f.(M,b))
= fT15((N, £(b)))
= f7'5((N,a))
= f1s(N)

Por ser equivariante, é claro que a defini¢do acima ndo depende do isomorfismo f e que

~

determina univocamente s. Em suma, para um feixe equivariante F, teremos F (B (P(a)) =

Hom([¢], F).
Finalmente, podemos obter

2l

wn

Op(By(a)) = Hom([¢], Op) ~ Hom(& ¢, P) ~P(¢) =P/¢

Em especial, ['(Op) = Hom([1], Op) =~ Hom(&1,P) ~P/1 ~P. O

Teorema 3.2.4. Seja ‘P o pretopos classificante da teoria T. Dado um modelo M € Xr, temos
(Op)m = Diag(M)

Demonstracao: Veja [Br, 3.2.4]. O

Corolario 3.2.5 (Representacdo subdireta). Todo pretopos admite merqulho em um produto de
pretopoi locais.

Em suma,

Teorema 3.2.6 (Breiner). Seja P o pretopos classificante da teoria T. Pondo G X o grupoide
e Op € BGr o feixe equivariante definidos acima, temos

i) Para todo ponto M € X, a fibra (Op)a é um pretopos local;
ii) P é isomérfico as secdes globais de Op,i.e., P ~T(Op)
iii) Existe um morfismo conservativo de pretopos P — [Tpex, (Op) M-
Somos entdo motivados a seguinte definigdo.

Defini¢do 3.2.7. Para todo pretopos P, denotamos por Spec(P) o par (P, Op), e referimos-
nos a ele como o esquema légico afim (affine logical scheme) associado a P.

3.3 Espacos axiomatizados

Continuando no nossa translagdo das técnicas da Geometria Algébrica ao contexto
l6gico, adaptamos as seguintes definigdes classicas (cf., e.g., [EGA1, 1]) ao nosso ambi-
ente.

Defini¢do 3.3.1. Um espaco axiomatizado é um par (G, Og), onde G um grupoide topoldgico
e Og um feixe equivariante de pretopoi em G. Dizemos (G, Og) localmente axiomatizado
(locally axiomatized) sse, para todo x € Gy temos a fibra (Og), um pretopos local. Um
morfismo entre espagos axiomatizados (G, Og) — (F, Or) é um morfismo de grupoides
f 1 G — F associado de um morfismo de pretopoi ¢ : Or — f.Og em BF. Um morfismo
entre espagos localmente axiomatizados (f, ¢) : (G, Og) — (F, Or) é um morfismo entre
espagos axiomatizados tal que cada fibra do mapa transposto ¢ : f*Og — O preserva
o ideal méximal (dos subobjetos do terminal) das fibras de f*Og.
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Mostremos que o funtor esquema afim Spec(—) é um morfismo de PTopos aos local-
mente axiomatizados.

Teorema 3.3.2. Seja P e Q os pretopoi classificante de, respectivamente, Ty e T1. Afirmo que
um morfismo de pretopoi P — Q induz um morfismo de grupoides f : Gy, — Gr, e um
morfismo de pretopoi ¢ : Op — f.Og tal que as fibras do mapa transposto ¢* : f*Op — Og
sdo conservativas®.

Demonstra¢dao: Usando as equivaléncias
To-Mod(Con) ~ PTopos(P,Con) T;-Mod(Con) ~ PTopos(Q, Con)

é claro que temos um morfismo f : Gy, — G, induzido por pés-composi¢do. Ade-
mais, como a metade T1-Mod(Con) — PTopos(Q, Con) da equivaléncia acima é dada
enviando modelo M ao funtor cuja agdo em Sin(T;) é ¢ — [¢]™, dado ¢ € P teremos

f 1 (By)) = {M € Xr, : k € [o]/™}
~ (0 M Con: ke (MF)(¢)}

— {Q X Con: k € M(F(¢))}
=~ {M € Xr, : k € [Fp]"}
= Bro)w

E entédo fo : X1, — Xt, continuo. Analogamente, mostramos que f; continua e, poranto,
temos f de fato um morfismo de grupoides. Seguindo, ¢ é definido na base como o ébvio

Op(By(k)) =~P/¢ — Q/Fp = Og(Bryx))

Finalmente, lembrando que as fibras de Op sao diagrams (cf. teorema 3.2.4) e a imagem
inversa f* preserva fibras, é facil ver que as fibras do adjunto ¢* : f*Op — Og sao
da forma Diag(FM) — Diag(M). Pois, lembrando que um morfismo entre pretopoi
é conservativo sse € injetivo nos subobjetos (cf. [Br, 2.2.1]), usando que Diag(M) é o
pretopos classificador de D(M) temos o morfismo em questdo conservativo por ser FM
um reduto do modelo M, cf. [loc. cit., 3.3.1]. O

Estamos agora em posicdo de definir nossa versdo de esquemas, mas antes precisa-
mos falar sobre subabertos e coberturas.

Defini¢do 3.3.3. Dado espago axiomatizado (G, Og) e subgrupoide U C G, subespago axio-
matizado associado a U é definido restringindo Og a Uy, com agdo herdada de U; C G;. Ge-
ralmente, indentificamos um subgrupoide com seu subespago associado. Um subespaco
U C G é dito aberto sse Uy C Gg e U; € Gy sdo ambos abertos. Finalmente, dize-
mos uma familia de subespacos abertos {U; }; uma cobertura aberta para G para qualquer
a:x — y € Gy hd sequéncia B; : z; — zi1 € (Uj,)1,i € [0,n), comzy =xez, =1e
& = BuPu—1- - B1Po- Note que, em especial, teremos J;(U;)o = Go.

Defini¢ao 3.3.4 (Esquemas). Um esquema I6gico (logical scheme) é um espago localmente
axiomatizado (G, Og) que admite uma cobertura aberta {U; } tal que hé pretopoi P; com
U; ~ Spec(P;). Deixe EsqLog a subcategoria plena de EspAx cujos objetos sdo esquemas
l6gicos.

Temos a seguinte interessante resultado, que nos permite tratar esquemas légicos
como objetos de descida.

2e, portanto, preservam o méximal de f*Og
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Proposicdo 3.3.5. Se (G, Og) um esquema logico e { U; } 1 uma cobertura aberta entdo o morfismo
geométrico candnico i : [ [; BU; — BG é uma sobrejegdo aberta. Em especial, pelo teorema 1.2.10,
temos BG ~ Des(i).

Demonstragao: Veja [Br, 3.3.5]. O

Seguindo, estabelecemos que a propriedade de ser esquema é estavel, e que ser es-
quema légico é estdvel para basicos.

Lema 3.3.6. O subespago aberto By, C Spec(P) é afim, com B,y ~ Spec(P/¢). O su-
bespago aberto U C G de um esquema G é um esquema.

Demonstragio: Veja [Br, 3.4.1] O
Mostramos também um resultado de colagem de esquemas

Observacgdo 3.3.7. Abaixo, para facilitar a leitura (e escrita), denotamos Ggleg? para,
respectivamente, os morfismos e objetos de um grupoide G.

Lema 3.3.8 (Colagem). Seja (G;, Og,)1 uma familia de espagos axiomatizados, (U;j) 1 uma familia
de subespagos Uj; C G; e @i = Uj; — Uj; uma familia de isomorfismos de EspAx tal que esses
dados satisfazem U;; = G;, q)i; 1(Uﬁ N Ujk) =U;;NUjye

@i =1g, @0 @ij = Qi (¥)

Entdo existe espago axiomatizado (G, Og), cobertura aberta {U; } de G e isomorfismos de espagos
axiomatiados @; : G; — U; tal que ¢;(U;j) = U;NUj e @j; = goj‘l o ¢;. Ademais, dado espago
(F,Ogr), os morfismos entre espaco axiomatiados f : G — F estio em bijegdo com as familias
fi: Gi — F que satisfazem f; o ¢;; = f;.

Demonstragdo: Para k € {0,1}, defina G* := [];(G¥)/ ~ onde (x,i) ~ (y,]) sse x € Ul’-‘j,
yE U]’.‘i e (pfj(x) = y, note que as equagdes em (%) garantem ~ uma equivaléncia. Ponha
goif : glk — Gk os mapas de inclusdo, a topolgia em Gk ¢é dada por “V C Gk ¢ aberto
sse (¢¥)"1(V) C GF para todo i € I”. O mapa codominio dy : G! — G° é dados por,
representado por [—] as classes de equivaléncia, [f : x — y] — [x]. Como doq)}j = (pgjdo
temos que a agdo estd bem definida. Ademais, dado aberto V' C g? temos

(1)~ (dg (V) = (dogi) " (V) = (¢}do) " (V) = dg " ((¢]) (V)

Logo dy é continuo. Analogamente, mostramos os demais mapas do grupoide bem de-
finidos e continuos. Pondo U; := ¢;(G;) note (¢f)"1U; = Ulkj e entdo é claro a familia
uma cobertura aberta de G. Ademais, dado aberto W C GF temos ((p;.‘)*l(q)i(W)) =

3. Finalmente, definomos o

((pf-‘]-)*l(W N Ujj), logo ¢f : Gi — U; sdo homeomorfismos
feixe Og colando os feixes Og, como usual. Sua agdo equivariante é definida fibra a fibra:

dadof:x—>ye€Glhdielef:x — ycom ¢ (f) = f, ponha entdo por
((d0)"Og) s = (Og)ay(r) = (Og)x = (Og,)x — (Og,)y = ((d1)"Og) s

Seguindo, dado familia f; como no enunciado, definimos, para x € U; e k € {0,1},
mapas f*(gi(x)) = fF(x). A agdo é obviamente bem definida. Esquecendo a estrutra
de grupoide, o enunciado nos da informagdo suficiente para colar os mapas de feixes
e portanto obtemos um morfismo Or — f.Og de feixes e, como equivaridncia é che-
cada fibra a fibra, temos-o um morfismo de feixees equivariates. Ademais, como temos
(0g) ¢,(x) = (Og,)x notamos que os morfismos vao preservar o ideal maximal.

Finalmente, dado f : G — F simplesmente defina f; := f o ¢;. E rotina entdo verificar
que essa familia satisfard a condigdo requirida. O

3E rotina verificar que um homemorfismo de grupoides levanta a isomorfismo de espagos axiomatizados.
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Obtemos agora um resultado fundamental.
Teorema 3.3.9. Temos a sequinte adjungdo

Spec

N

PTopos®” T  EsqLog

N

r
Em especial, PTopos(E, F) ~ EsqLog(Spec(F), Spec(E)).

Demonstragdo (esbogo): Dado G, fixe uma cobertura afim {Spec(P;)}. Note que as
segdes globais induzem uma familia s; : I'(G) — &; que, pelo teorema 3.3.2, levantam
as; : Spec(&;) — Spec(I'(G)). Definimos entdo a counidade 77 : G — Spec(I'(G)) pondo
17(x) = 5i(x) para x € Spec(P;). Definimos o mapa estrutural ¢ : 7*Or(G) — Og
usando que, por 3.3.5, temos BG ~ Des(]) e entdo herdando os mapas s? :s70r(G) —
Ogpec(p;)- Seguindo, a unidade é dada pela equivaléncia P ~ T'(Spec(P)).

Para a verificagdo dos diagramas triangulares, veja [Br, 3.5.1] O

Teorema 3.3.10. A categoria dos esquemas l6gicos admite limites finitos, sendo esses calculados
como colimites na categoria dos pretopoi.

Demonstra¢do: Veja [Br, 3.5.4]. A ideia da demonstragdo é clara: usar o teorema 3.3.9
para obter diretamente os limites dos esquemas afins como colimites de pretopoi e, no
caso geral, colar esquemas ao longo de uma base afim, por meio do lema 3.3.8. O

3.4 Grupo de Isotropia

Apresentamos agora uma aplicacdo dos nossos métodos de esquemas l6gicos. Con-
sideramos aqui a teoria de “Topoi Cruzados (Crossed Topoi)”, desenvolvida por Jonathon
Funk, Pieter Hofstra e Benjamin Steinberg, [FHS]. Os objetos sdo os analogos topos-
tedricos aos médulos cruzados (Crossed Modules) da dlgebra homoldgica. O trabalho ex-
plora (e define!) o grupo de isotropia de um topos, objeto que pode ser usado para in-
duzir estrutura cruzada candnica. Nosso interesse aqui, no entanto, é na descrigdo l6gica
desse grupo obtida por Breiner, que o caracteriza por meio de automorfismos definiveis.

Defini¢ao 3.4.1. Dado um topos &, o funtor de isotropia é o mapa Z : £7 — Grp que
associa a cada a € £ o grupo de automorfismos da projecdo £/a — £. No trabalho de
Funk et al é verificado que Z preserva colimites e é, portanto, representdvel. Chamamos
de grupo de isotropia o grupo Z € Grp(&) que representa nosso funtor Z.

Um caso especial de interesse é o

Proposigdo 3.4.2. Para P um pretopos, o grupo de isotropia de Feic,.(P) é dado por

o
Z(A) = Aut(A*) =Sa| P =& P/A
U
Demonstragio: [Br, 4.3.3] O

Introduzimos agora os objetos 16gicos que descreverao nosso grupo de isotropia.

43



3.4. GRUPO DE ISOTROPIA CAPITULO 3. PRETOPOI

Definicdo 3.4.3. Dado pretopos P e modelo M : P — Con, dizemos que um automor-
fismo « : M = M é definivel sse para todo tipo B ha objeto Ap, elemento xp € AM e
férmula o (x, y, z) tal que

a(a) =b <= MFEo(a,b,xg)

Seja A um tipo. Dado uma familia de férmulas {xyz : 0g}p, com x,y : Be z : A, dizemos-
a uma familia de automorfismos A-definiveis sse para todo modelo M e a € AM as
férmulas {o3(x,y,a) } g definem um automorfismo de M.

Seja M um modelo. Dado uma familia de férmulas {0g(x, y, ap) } s no diagrama de Ro-
binson de M, com x,y : B e ag uma constante, dizemos-a uma familia de automorfismos
M-definiveis sse para todo homomorfismo h : M — N as férmulas {op(x,y,h(ap))}s
definem um automorfismo de N.

Proposigdo 3.4.4. Dado pretopos P e A € P, o grupo de isotropia Z(A) é isomorfico a familia
de atuomorfismos A-definiveis. Ademais, dado modelo M : P — Con, a fibra Zy; do grupo de
isotropia é isomérfica a familia de automorfismos M-definiveis.

Demonstracdo: Veja [Br, 4.3.7,4.3.9]. O
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Apéndice A

Logica Categorial

A.1 Sintaxe

Definimos abaixo a sintaxe da nossa lingua. Trabalhamos em uma linguagem tipada,
como usual em légica categorial.

Defini¢ao A.1.1. Uma assinatura (signature) ¥. é
* Um cojunto X, cujos membros chamamos de tipos;

e Paracadalista Aj, Ay, - - - , A, de tipos, um conjunto (possivelmente vazio) (Xg)a, 4, A,
de relagdes. Escrevemos R < A1A; - - - A, para denotar que R estd em (Xg) 4, A, A, -
Permitimos que n = 0 e, nesse caso, chamamos R de varidvel proposicional;

* Paracadalista Ay, Ay, - -+, Ay, B de tipos, um conjunto (possivelmente vazio) (X) 4,4, ,4,,

de fungoes. Escrevemos A1 A; - - - Ay, 1, B para denotar que f estd em (Xf) 4, 4,,---,4,,B-
Permitimos que n = 0 e, nesse caso, chamamos f de constante e escrevemos f : B;

Exemplo A.1.2. Damos abaixo dois exemplos de assinaturas,

a) A teoria dos anéis é geralmente especificada na assinatura que tem um tnico tipo *,
par de constantes 0,1 : %, terna de fungdes +, * : xx — x e (—)*1 1 % — * e nenhuma
relacao.

b) A teoria dos espacos vetoriais é geralmente especificada em uma assinatura com dois
tipos, um para escalares e outro para vetores.

Podemos agora definir uma lingua sobre nossa assinatura.

Defini¢ao A.1.3. Dado uma assinatura X, os termos sobre ¥ sdo uma familia de conjuntos
(Term(X) 4) sy, definidos recursivamente por

i) Para cada nimero natural i e tipo A de X, temos a varidvel x em Term(X) 4. Geral-
mente, omitiremos o sobrescrito das variaveis.

ii) Para cada constante ¢ : A, temos ¢ € Term(X)4;

iii) Para cada fungao A1A;--- A, LBe sequéncia t; € Term(X),4, parai < n, temos
f(t, b2, -+, ty) € Term(X)p.

Geralmente escrevemos ¢ € Term(X)4 como ¢ : A.
Seguindo, o conjunto das férmulas sobre ¥, denotado por Form(X), é definido recursi-
vamente por

i) T, L € Form(X);
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ii) Para cada par de termos t,s € Term(X) com t,s : A, temos t = s € Form(X);

iii) Para cada relagdo R < AjA;--- A, e sequéncia t; € Term(X),, parai < n, temos
R(ty,tp, -+ ,t,) € Form(X).

iv) Para cada par ¢, ¢ € Form(X) temos ¢ V i e ¢ A ¢ em Form(X);

v) Para cada ¢ € Form(X), i natural e tipo A temos 3x7 ¢ € Form(X);
vi) Para cada par ¢, € Form(X) temos ¢ — ¢ e =¢ em Form(X).
vii) Para cada ¢ € Form(X), i natural e tipo A temos Vx¢ € Form(X);

O subconjunto de Form(X) fechado para as condi¢des de i) a v) serd o conjunto de
férmulas coerentes de ¥, denotado por Formc, (X)

As férmulas admitem uma nogdo similar a de tipo, mas para descrever essa precisa-
mos definir o conceito de varidvel livre. Intuitivamente, diremos que uma ocorréncia de
variavel é livre quando ndo é quantificada.

Defini¢do A.1.4. Dado uma assinatura %, defina recursivamente a fun¢do VL em Term(X)
pondo VL(x;) = x;e VL(f(t1,t2,- -+ ,tn)) = U, VL(t;). Seguindo, defina VL em Form(X)
pondo

i) VL(T) = VL(1) = Q;
ii) VL(t =s) = VL(t) UVL(S);
iii) VL(R(t1,t2,- -+ ,tn)) = Up VL(E);

iv) VL(¢ Ap) = VL(¢Ay) = VL(e¢ = ¢) = VL(9p) UV (y);
v) VL(3xf'g) = VL(Vxi'e) = VL(9) \ {x{'};
vi) VL(=¢) = VL(9).

As varidveis livres de uma férmula ¢ sdo os elementos de VL(¢).

Podemos agora definir férmulas contextualizadas. Um contexto é uma lista finita X =
X1X2 - - - X, de varidveis distintas. O caso n = 0 é permitido, denotamos esse contexto
vazio por []. O tipo de um contexto é a lista (possivelmente com repeti¢des) dos tipos das
varidveis que ocorrem no contexto em questdo, em ordem de aparecimento. Diremos um
contexto X adequado a uma férmula ¢ se todas variaveis livres de ¢ ocorrem em ¥. Uma
formula contextualizada é um par x.¢, onde X um contexto adequado a férmula ¢.

Observagao A.1.5. Uma varidvel pode ser livre em uma férmula mesmo tendo instancias
ndo livres, como em ¢ = (Ix1(x; = x2)) V (x1 = x7), onde apenas as duas tltimas
ocorréncias de x; sdo livres, mas VL(¢p) = {x1,x2}.

Podemos agora definir teorias.
Definicdo A.1.6. Um sequente (sequent) é uma expressdo formal (¢ Fx ), com ¢ e ¢
férmulas e X um contexto adequado a ambas. Uma teoria € um conjunto T (possivelmente

vazio) de férmulas.

46



APENDICE A. LOGICA CATEGORIAL A.2. SEMANTICA CATEGORIAL

A.2 Semantica Categorial

Descrevemos nessa se¢do uma maneira de interpretar as expressoes l6gicas da se¢ao
anterior dentro de uma categoria. O contetido abaixo é fundamental a l6gica categorial.

Defini¢do A.2.1. Seja X uma assinatura e P um pretopos. Uma XZ-estrutura M em P
consiste dos seguintes dados,

¢ Para cada tipo A de ¥, uma objeto MA de P. Extendemos essa defini¢do pondo
M(A1Az -+ Ay) =TT, MA;

e Para cada relagdo R < A1A; - -- Ay, um subobjeto MR < M(A1A;---A,) de P;

e Para cada fungdo A1 A - -- Ay i> B, um morfismo M(A1A; -+ Ay) M—f> MB em P;
Um homomorfismo M %, N entre duas Z-estruturas M e N em P é uma familia de morfis-
mos MA ™4 NA de P para cada tipo A tal que

i) Para toda relagdo R < AjA;--- A, existe um morfismo MR — NR que faz o dia-
grama abaixo comutar

NR —— N(A1---Ay)

ii) Para toda funcdo A1A;,--- A, i> B, o diagrama abaixo comuta

M(A; - Ay) Y5 MB

Hn hA,-l lhB

Definimos X-Str(P) como a categoria dos homorfismos entre X-estruturas.

Seguindo, podemos estender as interpreta¢des de uma X-estrutura ao resto da nossa
lingua.

Defini¢do A.2.2. Seja P um pretopos e M € X-Str(P). Dado um termo ¢ : B e um
contexto x de tipo A1 A; - - - A, tal que todas varidveis presentes em t ocorrem em ¥, defi-
nimos a seta [x.t]M : M(A;--- A,) — MB como

* Se t é uma varidvel, teremos-o igual a um dos x; e entio pomos [x.t]" como a
i-ésima projegdo de M(A; - - - Ay);

e Setédaforma f(ty,- - ,t,) entdo [X.t]M := Mf o ([x.t;]M),

Analogamente, definimos recursivamente as interpretacdes das férmulas. Assumindo
que em todos o casos abaixo x é adequado a férmula em questdo, temos que

o [x.T]Me [x.L]M sao, respectivamente, o objeto méximo e minimo de Subp (M (A1 - - -

e Para cada par de termos t,s € Term(X) com t,s : B, [x.(t = s)]M

par [x.t]M, [x.s]M: M(A;---A,) —= MB ;

é o equalizador do
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e Paracadarelacio R < BiB, - - - B, esequéncia t; € Term(X)p parai < n, [X.R(t,t2,-- -, tn)]]M
é definido pelo produto fibrado abaixo

[[YR<t1/ ta, -+ /tn)]]M —— MR
[ I
M(Ay-+ Ay) s M(By-+-B)

e Para cada ¢ € Form(X), pomos [¥.=¢]|M := —[x. # ¢]M em Subp(M(A; - - - Ay));

e Para cada par ¢, € Form(X), pomos

[%(p Vv )M = [x.o]" v [xy]"
[%.(¢ = 9)I" = [X.0]" — [x.p]™
[%(p A = [pl™ — [xg]™

Onde cada operagédo é definida em Subp(M(A; - - Ay));

¢ Para cada ¢ € Form(X) e varidvel y de tipo B, pomos [.3y¢]™ como a imagem da
composigao

Analogamente, [X.Vyg]|M := V. ([Xy.9]M), onde 7 é 0 mesmo mapa que acima.

Dado uma sequente ¢ = (¢ Fz ), dizemos que M satisfaz ¢ se [x.¢]" < [x.¢]" em
Sub(M(A; - - Ay)). Quando M satisfaz todas sequentes de uma teoria T dizemos-o um
modelo de T. Denotamos por T-Mod(P) a subcategoria plena de X-Str(P) dos modelos
deT.

Observagio A.2.3. E claro, se reduzirmos nossas consideracdes a fragmentos da nossa
lingua, ndo precisamos de toda estrutura categorial que um pretopos dispde de. Um
exemplo trivial: se estamos interessados apenas em férmulas geradas por conjucdes de
atdmicas entdo uma categoria com limites finitos nos basta.

Lema A.2.4. Funtores de pretopos preservam validacio. Explicitamente, seja F : P — Q em
PTopos e M € T-Mod(P). Defina FM € X-Str(Q) pondo (FM)A := F(MA), (FM)R =
F(MR) e (FM)f = F(Mf). Temos entdo FM € T-Mod(Q). Ademais, dado sequente o, se
M E o entdo FM F ¢, com a reciproca valendo se T é conservativo.

Demonstragdo: Trivial. Para a condigdo final basta notar que M F (¢ = ¢) sse [¢ A ¢] =
[¢]- O

Exemplo A.2.5. Mencionamos dois de interpretagdes de teorias em uma categoria.

1. Um exemplo comum de interpretacdo de teorias em um topoi é dado pelos feixes de
anéis, que o leitor pode reconhecer como AnélCom — Mod(Fei(X)), com AnélCom
a teoria dos anéis comutativos.

2. Outro exemplo comum sdo os grupos de Lie, que reconhecemos como Grupo —
Mod(VarSua), com Grupo a teoria dos grupos e VarSua a categoria das varieda-
des suaves. Note que VarSua ndo é um pretopos, mas ainda assim tem estrutura
suficiente! para interpretar a teoria dos grupos, cf. a observagio A.2.3.

'Nomeadamente, a estrutura necessaria é a presenca de produtos finitos
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A.3 Teorias e Categorias

Mostramos agora uma maneira de obter uma categoria a partir de uma teoria e vice-
versa.

Defini¢do A.3.1. Dado contextos X = (x1,%2, -+ ,Xz) €y = (Y1,Y2,- - ,Yn), diremos as
férmulas x.¢ e y.¢ a-equivalentes se podemos obter ¢ substituindo as ocorréncias livres
de x; por y; em ¢. Dado uma teoria coerente T, sua categoria sintitica (syntactical category),
Sin(T), tem como objetos classe de férmulas coerentes [X.¢| a-equivalentes e como mor-
fismos? [¥.¢] — [y.1] classes de férmulas coerentes [¥3.0] T-demonstravelmente funcio-
nais, isto &, tal que as sequentes abaixo sio demonstraveis® em T

pFxY(0) Ol oAy 0N Fxyz7 =2

Onde €’ é 6 onde toda instancia livre de y; foi substituida por z;, para Z um contexto
qualquer disjunto de x e ¥/.

Proposicdo A.3.2. Sin(T) é uma categoria coerente.
Demonstragdo: Veja [Elephant, D, 1.4.10]. O

Proposicao A.3.3. Dado uma teoria coerente T, temos uma equivaléncia natural em D
Coe(Sin(T), D) ~ T-Mod(D)

para uma categoria coerente D. Analogamente, pondo P[T| o completamento a pretopos (cf.
B.1.3) de Sin(T), temos equivaléncia natural em Q

PTopos(P[T], Q) ~ T-Mod(Q)

para um pretopos Q. Em especial, temos uma equivaléncia PTopos(P[T], Q) ~ Coe(P[T], Q),
natural no pretopos Q.

Demonstragao (esbogo): Veja [loc. cit., D, 1.4.12] para os detalhes. Mencionamos que a
metade T-Mod(Q) — PTopos(P[T], Q) da equivaléncia envia M no funtor cuja acéo é
[¢] — [@]M. A outra metade, por Yoneda, corresponde a tomar o funtor P[T] — Q em
algum objeto genérico U € P|T|, que batizamos de modelo genérico de T. Consideracdes
andlogas se aplicam ao caso coerente. [

Fazemos agora o caminho inverso da defini¢do A.3.1, definindo uma teoria a partir
de uma categoria.

Defini¢do A.3.4. Dado uma categoria coerente pequena C, defina uma assinatura X¢
pondo

e Para cada ¢ € Cp, um tipo [c];

* Para cada subobjeto R : [], A; — B, umarelagdo [R] : [],[Ai| < [B].

e Para cada morfismo f : [T, A; — B, uma fungédo [ f] : T[,,[Ai] — [B].
Defina entédo a teoria T¢ sobre ¢ cujas sequentes sdo

e Ty [1:](x) = x, para cada c € Cy;

e Thylgfl(x)=[gl([f](x)), paracadac i> d%ec C;

2assumimos ¥ e § disjuntos. Como estamos falando de classes de férmulas a-equivalentes ndo hé perda

de generalidade
3Dizemos uma sequente ¢ demonstravel sse para todo M € TMod(Con) temos M F ¢
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e Thy3x(T)eTkyy x =y, para qualquer par de varidveis x e y de tipo [1], com 1
o terminal de C;

o T [[RI(A1() = TEI SN [Th1(x) = TkI()] Fry [B2(1£1(z) = y) A
(Te1(z) =yl e [(1f1(x) = [f1) A([](x) = [g](¥))] Fxy x =y, as chaves

adicionadas para facilitar a leitura, para cada produto fibrado em C como o abaixo

AchLA

hl - Jf
BTC

e T Fx V,(3vi([fil(vi) = x)), para cada familia finita juntamente epimorfica {f; :

Lema A.3.5. Dado categorias coerentes C e D, um funtor F : C — D que preserva limites finitos
é coerente sse ele preserva familia finitas juntamente epimérfica.

Demonstracao: Lembramos que um funtor é coerente sse é regular e preserva unides
finitas. Pois, um funtor é regular sse preserva limites finitos e epimorfismos regulares.
Note que em uma categoria regular os epimorfismos regulares coincidem com os epi-
morfismos ortogonais a monomorfismos pela esquerda. Como F preserva familias finitas
juntamente epimorfica, em especial, ele preserva epimorfismos. Ademais, por preservar
limites finitos, o funtor preserva monomorfismos. E claro entdo que um epimorfismo é
ortognal & um monomorfismo pela esquerda entdo sua imagem por F também o serd,
logo F é regular. Finalmente, note que uma familia finita de subobjetos {U; — U}, é
juntamente epimorfica sse \/,, U; = U, portanto F preserva unides. O

Proposi¢dao A.3.6. Para toda categoria coerente C, temos Sin(T¢) ~ C. Para todo pretopos P,
temos PTop(Sin(Tp)) ~ P.

Demonstragdo: Dado categoria coerente D, a equivaléncia entre modelos T¢-Mod(D) e
funtores C — D que preservam limites finitos e familias finitas juntamente sobrejetivos
é imediata. Logo, pelo lema, temos Coe(C,D) ~ T-Mod(D). Obtemos entdo a equi-
valéncia Coe(C, D) ~ Coe(Sin(T¢), D) e, por Yoneda, obtemos Sin(T¢) ~ C. O caso
para um pretopos é andlogo. ]
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Apéndice B

Revisdo de categorias

B.1 Pretopoi

Relembramos aqui alguns fatos basicos de pretopoi e categorias coerentes que serdo
usados durante o trabalho.

Defini¢ao B.1.1. Dizemos que uma categoria C tem imagens sse para todo f : x — y existe
subobjeto im(f) — y tal que im(f) é o menor subobjeto pelo o qual f fatora por, ou seja,
sse a inclusdo Sub(y) — C/y admite adjunto a esquerda im. Uma categoria é dita coe-
rente (coherent) sse i) tem limites finitos; ii) tem imagens; iii) epimorfismos regular (i.e.,
aqueles que acontecem como coequalizadores) sdo estdveis sob produtos fibrados e iv)
os reticulados de subobjetos tem unides e essas sdo estdveis sob produtos fibrados. Um
funtor entre categorias coerentes é dito coerente sse preserva limites finitos, epimorfismos
regulares e unides. Denotamos por Coe a categoria dos funtores coerentes entre catego-
rias coerentes.

Definic¢ao B.1.2. Dado A,B € C dizemos o coproduto A]]B disjunto sse as inclusdes
A — A]IBe B — A]]B sdo mdnicas e sua intesersec¢do (em Sub(A LI B)) é o objeto
inicial. Dizemos positiva uma categoria coerente onde os coprodutos sdo disjuntos.

Dado subobjeto R — A2 em uma categoria C com limites finitos, dizemos-o uma
relagdo de equivaléncia sse, pondo 7o, 711 : A2 — A as projecdes, i) hadr : A — R com
oRr = 14 = mRr; ii) hds: R — R com myRs = mR e myRs = moR; iii) hdt: P — R,
com P o fibrado abaixo

o Ry

L
g
D>TW
2

tal que myRt = myRp e mRt = mRqg. Note que todo ntcleo par (kernel-pair) de um
morfismo induz uma relagdo de equivaléncia. Dizemos efetiva uma categoria onde toda
relacdo de equivaléncia vem de um ntcleo par.

Um pretopos é uma categoria regular positiva e efetiva. Denotamos por PTopos a
subcategoria plena de Coe cujos objetos sdo pretopoi.

Teorema B.1.3 (Completamento a Pretopos). O funtor inclusio PTopos — Coe admite
adjunto a esquerda PTop(—). Ademais, a unidade C — PTop(C) é conservativa, plena e plena
nos subojetos’.

Demonstra¢dao: Veja [Elephant, A, 1.4.5,3.3.10] O

sto 6, se para qualquer B < IAh4d A’ € P com [A’ = B
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Por ser conservativo, identificaremos C com sua imagem em PTop(C).

Observacgao B.1.4. Como toda categoria coerente acontece como uma categoria sintatica
Sin(T), podemos descrever o completamento a pretopos como uma operagéo nas teorias.
Uma observagédo celebrada de Makkai e Reyes (cf. [MaRe]) afirma que o funtor acima
corresponde a T — T*, com T a eliminacdo de imagindrios da teoria, como definido
por Shelah.

Falemos agora de fatoragdo de morfismos entre pretopoi.

Defini¢do B.1.5. Dizemos um funtor entre pretopos F : P — Q um quociente sse i) para
todo B € Q existe A € P com epimorfismo IA — B e ii) F é pleno nos subobjetos.

Proposicao B.1.6 (Fatoragdo conservativo-quociente). Todo funtor entre pretopos F : P —
Q admite fatoragdo em um funtor quociente sequido de um funtor conservativo. Ademais, o0s
morfismos quocientes sdo ortogonais aos conservativos.

Demonstracio: Veja [Br, 2.2.4]. O

Observacgdo B.1.7. Notamos que o funtor de feixes coerentes, Feic,,, manda a fatoragado
conservativo-quociente de morfismos coerentes na fatoracao sobrejecdo-mergulho de mor-
fismos geométricos.

B.2 Categorias Internas

Expomos aqui alguns fatos sobre categorias interna. Incluimos essa secdo em ten-
tativa de tornar o trabalho mais autosuficiente, fornecendo ferramentas para a préoxima
se¢do. Fixamos um topos S no que segue.

Definicao B.2.1. Uma categoria C interna a S consiste de

* Objetos C; e Cp de S, que serdo tratados como, respectivamente, os objetos de mor-
fismos e de objetos da categoria C;

d .
¢ Morfismos C; :0§ Co —— C; eCy = Cyde S, com C, sendo definido por
dq

De forma que esses dados satisfazem os axiomas usuais de categorias na légica interna a
S. Explicitamente,

doi = 1C0 = dll dOC = doTL’] d]C = d17'[0 C(l X C) = C(C X 1) C(l X l) = 1C1 = C(Z X 1)

Analogamente, um funtor interno IF entre categorias internas C eID 4 S é um par de morfis-

mosCof—°>DoeC1 f—1>D1deScom

fods = dg'fo  f1dT =dPfi iPfo= A€ A =P(fix fr)

Denotamos por Cat(S) a categoria de funtores internos a S.
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Observacgdo B.2.2. Existe uma boa relagdo entre as categorias internas definidas aqui e as
indexadas, tratadas no primeiro capitulo. Toda categoria C interna a S admite indexacao
candnica [C] .. De fato, a cada i de S associemos a categoria [C]’, cujos objetos sdo da

. X . P . . ) .
forma i = Cp e morfismos “x — y” sdo setas i N C; satisfazendo o diagrama abaixo

i —— Co

yl\f\ Ts

CQ%Cl

A agdo C — [C] define um mergulho pleno da 2-categoria Cat(S) a 2-categoria das cate-
gorias S-indexadas, cf. [Elephant, B, 2.3.3]

Dado uma categoria S-indexada Dg e uma C interna a S, um diagrama de formato

C em Dg é um par (F € D%, d;F LN d;F) de forma que y é, a menos de isomorfismo,
unitdrio é associativo, onde (—)* denota a agdo de pullback. Note que um diagrama de

formato C na indexacdo candnica de S é simplesmente um par (F i) Co,diF 5 F ), com
} uma agdo unitdria e associativa. Um morfismo de diagramas (F, ) — (G, o) é uma seta
F— Gem ng que comuta com i e 0. Denotamos por [C, D] a categoria de diagramas
de formato C em Dg.

Lema B.2.3. Para uma categoria interna C e uma S-indexada Dg, a cateoria [[C] ., Dg]| de
transformagdes naturais S-indexadas, é equivalente i [C, Dg].
Demonstragao: Veja [Elephant, B, 2.3.13] O

Uma fibragdo discreta em S é um funtor interno J L Ctal que o diagrama abaixo

E um produto fibrado.

Lema B.2.4. Fazendo dFib(S) é a categoria de fibragioes internas entre categorias internas a S
entdo, para qualquer C interna a S, temos

dFib(S)/C ~ [C?, S]
Evocativamente, denotamos a fibragdo discreta corespondente a um diagrama C LS por [F

Demonstragdo (esbogo): Dado diagrama (F IR Co,diF Y F) considere o produto fi-
brado abaixo,
C1 X F # F

ﬂl - Jf
Ct —— G
1

E rotina mostrar que as setas y, 7 : C; X, F —— F formam uma categoria (com

dy = medy = u), que claramente define uma fibregdo discreta sobre C. Seguindo, temos
a clara agdo nas setas

f — k 8 s O k 1xcok
[(F = Co,diF = F) = (G = Co,d1G = G)] — (Fo = Go,C1x¢c, — C1 X¢, G)
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O “lema do pullback”mostra que, para um par de funtores internos A LB & C, temos
f uma fibrecdo discreta sse gf uma fibragdo discreta, e entdo a agdo acima é bem definida.
Reciprocamente, dado uma fibragao discreta

]1L>]o

]
C1 T1> Co

. . - . 2 d
Como d7 Jo & ] basta associar a fibracdo ao diagrama (Jo —,d}Jo — Jo)-
As agdes sdo rapidamente vistas como, a menos de um isomorfismo, mutualmente
inversas e o resultado segue. Para mais detalhes, cf. [Elephant, B, 2.5.3] O

B.3 Topoi sobre uma base

Fazemos aqui uma curta exposigao da teoria de Topoi sobre uma base, seguimos os
textos [Elephant, B] e [Joh2].

Um S-topos é simplesmente um morfismo gemétrico p : £ — S. Dado C uma cate-
goria interna a § e um S-topos p : £ — S, note que defininindo p*C da maneira 6biva,
obtemos uma categoria interna a £. Note ademais que um diagrama C — £ equivale a
um p*C — €£.

Observagao B.3.1. Note que todo S-topos & Y, S induz um topos S-indexado pondo
£l = £/p*i. Por meio dessa agdo, podemos considerar Topos/S, a 2-categoria dos S-
topoi, como uma sub-2-categoria da 2-catagoria dos topoi S-indexados, Toposg. Uma
demonstragdo disso pode ser encontrada em [Elephant, B, 3.1.5].

Definic¢do B.3.2. Seja £ P SumsS -topos e C uma categoria interna a . Diremos que um

diagrama C°F Lee plano (flat) sse, para [F — p*C a fibragdo discreta correspondente
ao F, temos [F uma categoria filtrada na logica interna a S. Denotamos por Pla(C%, £)
a subcategoria plena de diagramas planos.

coli

Teorema B.3.3. Dado C € Cat(S), C é filtrada sse o funtor S¢ —< S, dado por

colim(ID — C) == coeq(D; ——= Dy)

C
preserva limites finitos

Demonstra¢io: Veja [Joh2, 2.58] O

Corolario B.3.4. Seja C € Cat(S) e £ € Topos/S. Se C tem limites finitos entio C°F LYY
plano sse F preserva limites finitos

Teorema B.3.5 (Diaconescu). Dado S-topos £ P Se categoria interna C, temos a equivaléncia
Pla(C",&) ~ Topos/S(E,[C,S])
natural em E.

Demonstragao: Veja [Elephant, B, 3.2.7] O

Teorema B.3.6. Dado um S-topos £ 2, 8, siio equivalentes

i) Eg tem admite familia S-indexda de separadores;
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ii) Existe um objeto B de £ tal que todo objeto e de £ aconte como subquociente de algum p*i x B,
isto é, para todo objeto e de £ hd i de S e a de £ com morfismos

a

O\

p*i x B e

Se as condigdes acima ocorrem diremos p limitado e B um limite para p.
Demonstra¢ao: Veja [Elephant, B, 3.1.6]. O
Lema B.3.7. O S-topos [C, S| é limitado.

Demonstrac¢ao: Veja [loc. cit., B, 3.2.1] O

Teorema B.3.8 (Giraud para S-topoi). Dado um S-topos £ 2, 8, sio equivalentes
i) p é limitado;
ii) Existe categoria interna C a S e uma inclusio € — [C, S]
Demonstracdo: Veja [loc. cit., B, 3.3.4] O

Para entender o paralelo do teorema acima com o resultado classico de Giraud, pre-
cisamos relembrar-nos da equivaléncia entre subtopoi e categorias de feixes internos.

Defini¢ao B.3.9. Dado um topos £ com classificador de subobjetos (2, um operador local

. . j .
em & é um morfismo (2 — () que faz os diagramas comutarem

150 ao—5o0 aOx0 50
N N il L
0 0 Ox0—— QO

Como () representa o (pseudo)funtor Sub, o operador local j induz uma agéo nos suboje-

tos que denotaremos por (—) : Sub(A) — Sub(A). Dizemos j-feixe um objeto F € £ tal
que, para todo subobjeto S < A com S = A, a inclusdo induz uma bijecdo

E(S,F) = E(AF)
Denotamos por Fei;(£) a subcategoria plena de j-feixes.

Teorema B.3.10. Operadores locais em um topos S equivalem a inclusoes £ — S por meio da
agio j — (Shi(S) — S). Para a agio inversa, se L o refletor de £ — S note que para S < A
temos LS < LA e, portanto, fazendo o pullback ao longo da unidade A — LA, obtemos um
subobjeto c;.(A) < A. No total, temos um endomorfismo em Sub(A) natural em A que, por
Yoneda, induz um mapa (3 — Q).

Demonstra¢do: Veja [Elephant, A, 4.4.8]. O
Obtemos entdo

Teorema B.3.11. Dado C internaa S, defina topologias de grothendieck internas e feixes internos
usando a légica interna. Para cada topologia de grothendieck interna | existe operador local j
correspondente a | com Fei;[C, S] ~ FeijC.

Demonstragao: Uma demonstracdo para S = Con estd diponivel em [SGL, V, 1.2]. Ob-
temos o caso geral por meio da légica interna, cf. 1.1.4. O
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Deixe Plaj(C, £) a subcategoria plena de Pla(C, £) dos funtores J-continuos.
Teorema B.3.12. Dado S-topos £ Ly S e sitio interno (C,]), temos a equivaléncia
Plaj(C, ) ~ Topos/S(E, Feis(C,T))
natural em E.

Demonstragido: Para S = Con, veja [SGL, VII, 10.2]. Confira a observagdo acima. O
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