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Resumo

G. RIOS, Teoria dos Modelos inspirada em Geometria Algébrica Moderna: Representação
de Categoria por Feixes. 2021. 58 p. Monografia – Bacharelado em Matemática – Instituto
de Matemática e Estatı́stica, Universidade de São Paulo, São Paulo, 2o Semestre de 2021.

Em suma, essa monografia é dedicada à representação de categorias por feixes. Tendo
em mente o mantra “teorias são categorias com estruturas”, estamos então obtendo te-
orias como feixes. Começamos apresentando a representação de topoi por grupoides
locálicos, de Joyal e Tierney. Para isso, desenvolvemos as técnicas básicas da teoria dos
locales, além de concepções categoriais da teoria da descida. Em sequência, seguindo o
trabalho de Carsten Butz e Ieke Moerdijk, estudamos uma representação por grupoides
topológicos dos topoi de Grothendieck com ponto suficientes. Usamos esse resultado
para melhorar nossa primeira representação de topoi por feixes. Após isso, acompanha-
mos a tese de Henrik Forssell, que refina a construção de Butz e Moerdijk para obter uma
representação de teorias coerentes por grupoides. Exploraremos uma generalização da
dualidade de Stone por meio dos grupoides de Forssell. Terminamos o trabalho seguindo
a tese de Spencer Breiner, expondo os esquemas lógicos.

Com o intuito de tornar essa monografia suficiente ao leitor, incluı́mos também apêndices
relembrando os fatos fundamentais de Categorias e Lógica Categorial.
Palavras-chave: topoi e grupoides; representações de topoi; esquemas lógicos.
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Abstract

G. RIOS, Model Theory Inspired by Modern Algebraic Geometry: Sheaf Representa-
tion of Categories. ano. 58 p. Monografia – Bacharelado em Matemática – Instituto de
Matemática e Estatı́stica, Universidade de São Paulo, São Paulo, 2o Semestre de 2021.

In short, this monograph is devoted to the representation of categories by sheaves. Kee-
ping in mind the slogan “theories are categories with structures”, we are thus obtaining
here theories as sheaves. We start by showing the Joyal and Tierney representation of
topoi by localic groupoids. For this, we present categorical analogues to the theory of
descent. Next, following the work of Carsten Butz and Ieke Moerdijk, we study a topo-
logical groupoid representation of Grothendieck topoi with enough points. We use this
result to improve our first sheaf representation of topoi. We follow then with Henrik
Forssell’s thesis, which builds over the construction of Butz and Moerdijk to obtain a re-
presentation of coherent theories by groupoides. We shall also explore a generalization of
Stone’s duality through Forssell’s groupoids. We conclude the work following the thesis
of Spencer Breiner, expounding the notion of logical schemes.

In order to make this monograph self-sufficient, we have also included appendices
recalling the fundamental facts of Categories and Categorical Logic.
Keywords: topoi and groupoids; representation of topoi; logical schemes.
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A.2 Semântica Categorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
A.3 Teorias e Categorias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

B Revisão de categorias 51
B.1 Pretopoi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
B.2 Categorias Internas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
B.3 Topoi sobre uma base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

vii





Motivação

0.1 Entre a Geometria e a Lógica

Historicamente, a Teoria dos Modelos e a Geometria Algébrica aproximam-se quanto
aos objetos estudos1. Incluı́mos, abaixo, uma curta subseções ilustrando as conexões das
duas disciplinas.

0.1.1 A Completude e o Nullstellensatz

Expomos aqui uma observação de [Mar], conectando os clássicos resultados do tı́tulo
acima. Comecemos dando os teoremas em termos de operadores de fecho preparando,
dessa forma, a linguagem em que os resultados serão comparados.

Dado teoria T deixe T? o conjunto de modelos satisfazendo-a e, dado modelo M,
faça M? o conjunto de sentenças satisfeitas por esse. Com esse notação, a completude de
Gödel pode então ser formulada como

T ⊆ T?, T ⊆ T′ ⇒ T? ⊆ (T′)?, T?? = T

Analogamente, fixado um corpo algébricamente fechado Ω, deixe J? o conjunto de
zeros em Ω para um dado ideal J ≤ Ω[x1x2 · · · xn] e, dado subconjunto I ≤ Ω, deixe I?

o conjunto de polinômios identicamente nulos em I. O Nullstellensatz de Hilbert então
toma forma

J ⊆ J?, J ⊆ J′ ⇒ J? ⊆ (J′)?, J?? =
√

J

Onde
√

J o radical de J, isto é, o conjunto {x ∈ Ω[x1x2 · · · xn] : ∃n ∈N(xn ∈ J)}.
O paralelo entre os dois resultados seria mais claro se o sı́mbolo

√
− acontecesse no

contexto lógico também. No entanto, não se admira sua omissão: ∧ admite contração,
um modelo M desmontra ϕ se, e somente se, também o faz para ϕ ∧ ϕ. Desse modo,
poderiamos colocar

√
− sem risco de alterar o significado.

Seguindo, mostremos agora uma equivalência entre formas dos dois teoremas. Dado
uma fórmula atômica ϕ em n-variáveis e sem relações, rescrevemo-a usando ⊥, >, ∧ e ⊕
(ou exclusivo, ou XOR). Usando então a tradução⊥ 7→ 0,> 7→ 1, a∧ b 7→ a.b e⊕ 7→ a + b
podemos considerar ϕ com um elemento de F2[x1, · · · , xn]. Agora, se existe valoração v
com v(ϕ) = 0 teremos

ϕ ∈ J??

Para J = 〈x2
1 − x1, · · · , x2

n − xn〉. Logo, o Nullstenlenstaz (sobre o fecho algébrico) de
F2 garante ϕ ∈

√
J, ou seja, ϕ é 0 em F2[x1 · · · xn]/

√
J. Concluı́mos que partindo do

conjunto {x2
1 − x1, · · · , x2

n − xn} e aplicando um número finito de combinações lineares e
multiplicações obteremos ¬ϕ.

A recı́proca é mais sútil, e recomendamos ao leitor o texto citado para mais detalhes.
Sem embargo, fazemos aqui uma tradução livre de [Mar, pp. 163], à tı́tulo de consciência,

Agradecemos a Hendrick Cordeiro Maia e Silva pela sugestão do assunto e de referências para essa
seção

1Como exemplo, lembramos da equação “Teoria dos Modelos = Geometria Algébrica - Corpos”proposta
por Hodges em seu clássico compêndio, [Hod]
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0.1. ENTRE A GEOMETRIA E A LÓGICA SUMÁRIO

“O Nullstellensatz decorre da completude. Por exemplo, considere duas geo-
metrias infinitas sobre F2. Uma induzida por multiplicação infinitária e outra
por coordenadas infinitas (x1, x2, · · · , xn, · · · ). Um teorema de Nullstellensatz
para essa última segue da completude (forte) da lógica proposicional clássica,
enquanto para a primeira usariamos da completude da lógica infinitária. Ex-
plorando a diferença dimensional, portanto, a lógica poderia contribuir para
a geometria algébrica ∞-dimensional”

0.1.2 Pontos como modelos

Seguindo, indicamos uma equivalência interessante à Geometria Algébrica e então
esperamos aqui alguma familiaridade com a área. Especificamente, mostraremos como
o teorema de Chevalley sobre conjuntos construtı́veis equivale à célebre eliminação de
quantificadores para teorias algebricamente fechadas, de Tarski. Usamos como referência
o curto texto [Be].

Começamos definindo a teoria dos corpos algebricamente fechados na assinatura
{0, 1, +, }, cujos axiomas são os usuais para corpos juntos do conjunto abaixo, que ga-
rante que todo polinômio tem raiz.

{∀a0∀a1 · · · ∀an∃x(a0 + a1x + · · ·+ anxn = 0) : n ∈ ω}

Seguindo, fixado anel R, estendemos a assinatura adicionando constantes cr para cada
r ∈ R e formamos a teoria CAFR unindo os axiomas de corpos algebricamente fechados
com as sentenças c1 = 1, ca+b = ca + cb e cab = cacb. Logo, modelos de CAFR são
corpos algebricamente fechados k juntos de uma escolha de lementos {kr}R respeitando
as operações de R, isto é, um corpo k associado de um homomorfismo R → k. Pelo
teorema fundamental da Geometria Algébrica, temos uma bijeção dos homomorfismos
R → k com os morfismos Spec(k) → Spec(R), isto é, com os pontos geométricos de R.
Logo, os modelos de CAFR estão em bijeção natural com os pontos geométricos de R.

Lema 0.1.1. Seja S = R[t]/〈pi〉n uma R−álgebra de apresentação finita e Spec(S)→ Spec(R)
o mapa estrutural. Um ponto geometrico x : Spec(k) → Spec(R) é levanta a Spec(S) sse S,
visto como modelo de ACFR, satisfaz a senteça ∃y1∃y2 · · · ∃yn

(∧
j≤n f j(yj) = 0

)
. Essa fórmula

sendo nomeada fórmula imagem associada à S.

Demonstração: Com efeito, um levantamente do ponto x corresponde a um homomor-
fismo R[t]/〈pi〉n → k, isto é, a uma enupla (yi)n ∈ kn tal que pi(yi) = 0. O resultado
segue.

Proposição 0.1.2. Seja Y → X um morfismo de apresentação localmente finita de esquema e
x : Spec(k) → X um ponto geométrico com ponto topológico subjacente P ∈ |X|. Temos que x
levanta a Y sse P está na imagem de Y → X.

Demonstração: Seja κP o corpo residual em P, de forma que x fatore unicamente por
Spec(κP) → X. Temos que P está na imagem de Y → X sse a fibra Spec(κP) ×X Y é
não trivial que, como κP → k é fielmente chato (faithfully flat), equivale a ser Spec(k)×X
Y não trivial. Pois, como temos apresentação finita sobre Spec(k), o Nullstenllensatz
garante Spec(k) ×X Y não nulo sse há seu morfismo estrutural a Spec(k) admite seção.
Finalmente, pela propriedade universal, seção do produto fibrado estão em bijeção com
levantamentos de x a Y.

Precisaremos agora do seguinte resultado de teoria dos modelos.

Lema 0.1.3 (Lema da transferência). Seja Λ0Λ alguma teoria de base e ΓΛ um fragmento
fechado sob ∨ e ∧. Suponha que uma frase φ tem a seguinte propriedade: sempre que A e B são
dois modelos Γ tais que A � φ e Γ ∩ A? ⊆ B? então B � φ. Então φ é equivalente em Λ0 a uma
fórmula de Γ.
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SUMÁRIO 0.1. ENTRE A GEOMETRIA E A LÓGICA

Teorema 0.1.4 (Chavelley). Seja S uma R-álgebra finitamente apresentada. A imagem do mapa
|Spec(S)| → |Spec(R)| é construtı́vel. Equivalentemente, a fórmula imagem φ associada à
Spec(S)→ Spec(R) é equivalente sob CAFR a uma frase não quantificada.

Demonstração: Traduzindo a proposição acima para a linguagem da teoria do modelo,
vemos que se um modelo x : R → k de CAFR satisfaz a fórmula da imagem φ depende
apenas de ker(x) � R. Em particular, se um modelo satisfaz φ depende apenas de quais
sentenças livres de quantificador ele satisfaz. Assim, φ e o fragmento livre de quantifica-
dor de Λ satisfazem as condições do lema de transferência, onde tomamos Λ0 = CAFR.
Como consequência, vemos que é equivalente em CAFR a uma sentença livre de quan-
tificadores, conforme desejado. Reciprocamente, φ é equivalente a uma frase da forma∨

i

(
(bi 6= 0) ∧∧j(aij = 0)

)
. Traduzindo para a linguagem da teoria do esquema, um

ponto geométrico de Spec(R) está na imagem de Spec(S) → Spec(R) sse seu ponto to-
pológico subjacente está em

⋃
i

(
D(bi) ∩

⋂
j V(aij)

)
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0.1. ENTRE A GEOMETRIA E A LÓGICA SUMÁRIO
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Capı́tulo 1

Locales

Mesmo sem fazer menções explı́citas a essa, esse capı́tulo é profundamente influen-
ciado pela interpretação de Grothendieck da teoria de Galois. De fato, o célebre trata-
mento de André Joyal e Myles Tierney dessa teoria em An extension of the Galois theory of
Grothendieck ([JoTi]) foi basilar à maior parte da literatura citada aqui. Uma explicação
da influência desse trabalho pode ser encontrada na representação obtida nesse, que
caracteriza os topoi de Grothendieck como feixes de grupoides locálicos. Com efeito,
conforme veremos na segunda seção, o resultado teve importância não só prática, mas
como também ajugou a legitimar o zeitgest da teoria. Exporemos nesse capı́tulo essa
representação de Joyal e Tierney e, para isso, desenvolvemos também a linguagem dos lo-
cales e a teoria da descida. Finalmente, usaremos as técnicas construı́das para obter uma
segunda representação; essa caracterizando os topoi pequenos como as seções globais
de feixes de locales coerentes, devida a Joachim Lambek e Ieke Moerdijk. Descrevemos
abaixo a estrutura do capı́tulo.

Na primeira seção, tratamos dos locales e dos topoi de feixes construı́dos por meio
desses. Em especial, falamos sobre cobertura de Diaconescu – uma técnica que nos per-
mite associar um topos locálico a cada topos de Grothendieck, ferramenta que será funda-
mental na representação de topoi por grupoides mencionada na introdução. Mencionare-
mos também a importante fatoração hiperconectado-locálica dos morfismos geométricos.

Na seção segunda aprofundamo-nos na teoria da descida, a linguagem desenvolvida
ali permeando todo o seguinte da monografia. Notamos que exploramos aqui, primei-
ramente, a descida no contexto dos morfismos geométrico e prorrogamos ao próximo
capı́tulo o caso da descida a longo de categorias indexadas.

Finalmente, na terceira seção, apresentamos nossa primeira representação de Topoi
por feixes. Começamos lembrando o teorema fundamental da Geometria Algébrica,
fazêmo-lo para contextualizar nossa representação, que será uma generalização quase
direta das técnicas de esquemas afins.

1.1 Locales e seus feixes

O ponto de partida histórico da teoria dos topos é o estudo dos feixes sobre um espaço
topológico. Até hoje, as categorias da forma Sh(X) para X espaço tem um importante
espaço na teoria, tanto prático quanto motivacional. No entanto, notamos que pode-
mos definir um feixe sobre um espaço X sem fazer menção alguma aos pontos desse
espaço. De fato, pondo Con a categoria dos conjuntos1, um feixe é apenas um funtor

1Antevemos o leitor que a notação vigente para a referida categoria é Set. Similarmente, preferi-
mos Fei(X) à Sh(X) para denotar a categoria de feixes de um espaço X e demais convenções análogas.
Alicerçamo-nos aqui em um precedente histórico: Grothendieck, Verdier, Deligne e e demais escreviam Ens,
de ensemble!
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1.1. LOCALES E SEUS FEIXES CAPÍTULO 1. LOCALES

F : O(X)op → Con tal que para toda famı́lia {Ui}I de O(X) temos

HomÔ(X)
(よU, F) ' HomÔ(X)

(S, F)

com U =
⋃

I Ui, S a peneira induzida pela famı́lia e Ô(X) a categoria pré-feixes, isto é,
dos funtores O(X) → Con (para mais detalhes cf. [SGL, II]). Dessa forma, precisamos
apenas do reticulado de abertos de um espaço para definir a noção de feixe e essa reflexão
nos leva ao estudo dos quadros. Seguiremos aqui os tratamentos de [SGL, IX] e [JoTi].

Definição 1.1.1. Um quadro (frame) é um conjunto ordenado Q que admite ı́nfimos (∧)
finito, supremos (∨) quaisquer e satisfaz a lei distributiva abaixo

A ∧
∨
i∈I

Bi =
∨
i∈I

(A ∧ Bi)

para quaisquer A, Bi ∈ Q. Naturalmente, um morfismo entre quadros A
φ−→ B é uma função

que preserva ordem, ı́nfimos finitos e supremos quaisquer. É claro então como podemos
formar a categoria Quadros de morfismos entre quadros.

Seguindo, enquanto seria possı́vel conduzir toda teoria usando apenas da noção de
quadro, queremos, como indicado na introdução, uma generalização de espaços topológicos.
Pois, gostarı́amos então que nossa generalização tivesse, como os espaços, uma natu-
reza geométrica. No entanto, nossa definição de quadros tem aparência marcadamente
algébrica. Para retificar essa sensação, convencionou-se introduzir o conceito de locales e
tratar esses como nossos espaços generalizados,

Locales := (Quadros)op

Ou seja, os locales tem uma existência puramente ficcional, são um truque simbólico que
possibilita-nos a depositar sobre os locales nossas sensibilidades geométricas. A modo de
sublimar essa contradição damos dois nomes ao mesmo objeto: denotaremos por O(X)
o quadro correspondente ao locale X e por f−1 : O(Y) → O(X) o mapa entre quadros
vindo do morfismo de locales f : X → Y.

Observação 1.1.2 (Adjunção Espaços a Locales). Claramente, todo espaço topológico
X gera o locale O(X) e é então natural questionar se o caminho inverso é possı́vel.
Como obtemosO(X) “esquecendo os pontos”de X, é natural imaginar que para obter um
espaço a partir de um locale devamos, de alguma forma, achar seus pontos. A intuição
chave é que, em Con, os elementos de um conjunto A estão em bijeção com as funções
1 → A. Inspirados nisso, dado um locale L definimos um espaço cujos elementos são
seus pontos pt(L) := Locales(1, L), onde 1 é locale terminal, e cuja topologia tem como
abertos os conjuntos {p ∈ pt(L) : p−1(U) = 1}, para U ∈ O(X). O leitor pode facilmente
verificar que O(1) = ΩS e, em especial, para S = Con temos O(1) = {0, 1}. Final-
mente, pode-se verificar a adjunçãoO(−) a pt entre Locales e espaços topológicos. Para
um tratamento mais calmo, com uma discussão da restrição da adjunção acima a uma
equivalência, recomendamos [SGL, IX.3].

Continuando, podemos agora definir feixes sobre um locale da mesma maneira que
definimos para espaços topológicos. Por conveniência ao leitor, incluı́mos abaixo a definição.

Definição 1.1.3. Dado locale X, considere o conjunto ordenado O(X) como uma catego-
ria da forma usual. Dado F : O(X)op → Con denotaremos sua ação em U ≤ V como
(−) �U : FV → FU. Dizemos o funtor F um feixe (sheaf) se para toda famı́lia {Ui}I de
O(X) o diagrama abaixo é um equalizador

F(U) ∏i∈I F(Ui) ∏i,j∈I F(Ui ∩Uj)
e

p

q

6



CAPÍTULO 1. LOCALES 1.1. LOCALES E SEUS FEIXES

Onde U = ∪IUi, e(x) = x �Ui e p e q são induzidos, respectivamente, pelas funções
(pij)i,j∈U e (qij)i,j∈U dadas por

∏
i∈I

F(Ui)
pij−→ F(Ui ∩Uj) ∏

i∈I
F(Ui)

pij−→ F(Ui ∩Uj)

pij((xk)k∈I) = xi �Ui∩Uj qij((xk)k∈I) = xj �Ui∩Uj

Denotamos por Fei(X) a subcategoria plena de Ô(X) cujos objetos são os feixes. Diremos
locálico (localic) um topos que é, a menos de uma equivalência, da forma Fei(X) para
algum locale X.

Aviso 1.1.4. Nesse trabalho, principalmente nessa seção, tomamos a habitual posição
de adotar um topos fixado qualquer como nosso universo S de conjuntos. Por meio
da lógica interna, trabalhamos neste universo como farı́amos na teoria dos conjuntos
usual, com únicas exceções sendo que não usamos nem o axioma da escolha, nem a lei
do terceiro excluı́do. A tı́tulo de exemplo desse ponto de vista, a categoria dos locales no
teorema 1.1.5 é, a valer, a categoria dos locales internos à S .

Restringindo o teorema de Diaconescu (B.3.5) aos topoi locálicos, podemos obter o
resultado abaixo.

Teorema 1.1.5. Seja X um locale e E p−→ S um S-topos. Definindo o locale Loc(E) como
O(Loc(E)) := p∗ΩE e considerando Locales como uma 2-categoria discreta, obtemos a equi-
valência

Topos/S(E , Fei(X)) ' Locales(Loc(E), X)

natural em E .

Demonstração (esboço): Primeiramente, notamos que Loc(E) é de fato um locale. Com
efeito, por ser um S-topos, temos que E é S-completa e então construı́mos os supremos
de p∗ΩE internamente por meio dos S-colimites.

Seguindo, usando o teorema B.3.12, um morfismo qualquer f : E → FeiS (X) em
Topos/S equivale a um mapa contı́nuo plano f̂ : O(X) → E . Pois, como f̂ é plano e
O(X) tem limites finitos, o corolário B.3.4 garante que f̂ preserva limites finitos. Logo,
comoO(X) um conjunto ordenado com máximo, podemos garantir que a imagem f̂ está
contida em SubE (1) fato que, por meio da lógica interna, induz um morfismo O(X) →
p∗ΩE . Finalmente, a continuidade de f̂ garante que esse preserva supremos, ou seja, o
mapa O(X)→ p∗(E) é um morfismo de quadros.

O teorema acima nos permite obter a

Corolário 1.1.6 (Reflexão Locálica). O 2-funtor Locales Fei−→ Topos/S admite adjunto à es-
querda, cuja ação nos objetos mapeia a Loc(E) o S-topos E . Em especial, a counidade da adjunção
é isomórfica à identidade, ou seja, Fei é plenifiel.

Como toda reflexão, o teorema acima determina uma fatoração. Dado um morfismo
geométrico f : E → S temos o triângulo

E Fei(Loc(E))

S

εE

f

Notamos que a unidade E → Fei(Loc(E)) preserva o classificador de subobjetos, isto é, é
um morfismo geométrico hiperconectado (hyperconnected). Temos a seguinte caracterização
de morfismos hiperconectados,

7
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Lema 1.1.7. Para um morfismo geométrico E f−→ F , são equivalentes:

i) f é hiperconectado.

ii) f ∗ é plenifiel e sua imagem é fechada sob subobjetos.

iii) f ∗ é plenifiel e sua imagem é fechada sob quocientes.

iv) A unidade e a couindade da adjunção f ∗ a f∗ são mônicas.

Ademais, morfismos hiperconectados são ortogonais aos locálicos, onde dizemos um morfismo

geométrico E f−→ F locálico sse E locálico como um F -topos.

Demonstração: Veja [Joh1, 1.5].

Em suma, temos a

Corolário 1.1.8. (Fatoração Hiperconectado - locálica) Todo morfismo geométrico E → S pode
ser fatorado em um morfismo hiperconectado seguido de um morfismo locálico.

Seguindo, introduzimos agora a noção de morfismo geométrico aberto, inspirada
no conceito topológico de função aberta. Incluı́mos abaixo, indicando referências de
demonstrações, duas proposições importantes. A primeira dessas caracteriza o con-
ceito por meio de propriedades lógicas (seguindo as sensibilidades dessa monografia),
enquanto a segunda estabelece claramente o elo com o conceito da topologia.

Definição 1.1.9. Diremos um morfismo geométrico E f−→ F aberto quando os mapas indu-
zidos f ∗X : SubF (X) → SubE ( f ∗X) admitem adjuntos à esquerda ( fX)!, de forma natural
em X.

Proposição 1.1.10. Para um morfismo geométrico E f−→ F , são equivalentes:

i) f é aberto.

ii) f ∗ preserva quantificação universal, isto é, para todo par S � X α−→ Y temos

f ∗(∀αS) = ∀ f ∗(α) f ∗(S)

Demonstração: Veja [JoTi, VII.1, prop. 1].

Proposição 1.1.11. O morfismo de locales X
f−→ Y induz um morfismo Sh(X)

f−→ Sh(Y) aberto
se, e somente se, o mapa f−1 : O(Y) → O(X) admite adjunto à esquerda f ! satisfazendo a
identidade de Froebenius:

f !(V ∧ f−1U) = f !(V) ∧U

Demonstração: Veja [SGL, IX.7, prop. 2].

Feito essa introdução, podemos mostrar o resultado abaixo, que será fundamental às
seções futuras.

Teorema 1.1.12 (Cobertura de Diaconescu). Seja S um topos com objeto de número natural.
Para todo S-topos de Grothendieck E há locale X e morfismo geométrico Fei(X) � E sobrejetivo
e aberto.

Demonstração (esboço): Seja (C, J) um sı́tio para E . Defina o conjunto ordenado P cujos

elementos são sequências (cn
fn−1−−→ cn−1

fn−1−−→ · · · f2−→ c1
f1−→ c0) de setas de C e cuja ordem

é dada por s ≤ t sse s um segmento inicial de t (isto é, se s = ( fn−1, · · · , f0) então t =
( fn+m−1, . . . , fn, fn−1 · · · , f0)). Definimos então F : P→ C por (cn → cn−1 → · · · c0) 7→ cn
e colocamos K como a menor topologia em P que preserva e levanta as coberturas de J.
Por resultados padrões de teoria dos topoi (cf., e.g., [SGL, IX.8, prop. 1]), o morfismo F
levanta-se a uma sobrejeção aberta Fei(P, K)→ Fei(C, J) ' E .
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1.2 Descida para morfismos geométricos

Nessa seção, apresentaremos a primeira das duas generalizações presentes nesse tra-
balho da teoria de descida de Módulos, concebida por Grothendieck. Focaremos aqui na
descida ao longo de morfismos geométricos e, posteriormente, no próximo capı́tulo, tra-
taremos da descida ao longo de categorias indexadas, mas já adiantamos aqui que essa
é uma instanciação daquela. Apresentaremos resultados fundamentais ao campo e que
serão usados nas seções futuras. Acompanhamos de perto o celebrado artigo de Ieke
Moerdijk, [Mo1].

Faremos a exposição da descida ao longo de morfismos geométricos usando da lin-
guagem dos topoi simpliciais. Essa decisão é lastreada no fato que todo morfismo geométrico
induz um topos simplicial conforme será exposto no exemplo 1.2.2.

Definição 1.2.1. Deixe ∆ a categoria de conjuntos finitos [n] = {1, 2, · · · , n} e mapas que
preservam ordem. Um topos simplicial E• é uma sequência (En)ω de topoi associada de
funtores α∗ : Em → En para cada para cada mapa α : [n]→ [m] em ∆ de forma que

• Para cada n ∈ ω há isomorfismo natural ηn : (1n)∗
∼=−→ 1En ;

• Para cada par de mapas n α−→ m
β−→ k de ∆ há isomorfismo natural µα,β : α∗β∗

∼=−→
(βα)∗;

• Para cada tripla de mapas n α−→ m
β−→ k

γ−→ l de ∆ e para cada mapa a δ−→ b de ∆ os
diagramas abaixo comutam

α∗β∗γ∗ α∗(γβ)∗

(βα)∗γ∗ (γβα)∗

α∗µβ,γ

µα,βγ∗ µα,βγ

µβα,γ

δ∗(1b)
∗ δ∗ (1a)∗δ∗

δ∗

δ∗ηb

µδ,1b

ηaδ∗

µ1a ,δ

Exemplo 1.2.2. Todo morfismo geométrico E f−→ S induz um topos simplicial pondo
E0 := E e En+1 := E ×S En. Como indicado na introdução, esse é o tipo de topos simplicial
que estamos capitalmente interessados em.

Observação 1.2.3. Usando a linguagem da seção 2.4, um topos simplicial é simplesmente
um topos indexado por ∆. Em geral, categorias indexadas por ∆ são chamadas categorias
simpliciais. En passant, mencionamos que o estudo dessas é ı́ntimo à álgebra homológica,
uma das origens da teoria de categorias e, dessa forma, existe um interesse histórico nessa
seção para além da teoria de descida.

É natural considerar os cocones sobre um topos simplicial.

Definição 1.2.4. Um pseudococone sobre um topos simplicial E• é uma sequência de morfis-
mos geométricos fn : En → F e isomorfismos fα : fn ◦ α∗ → fm para os mapas [n]

α−→ [m]
de ∆ de forma que esses dados são compatı́veis com as condições de coerência do pseu-

dofuntor E•, isto é, tal que para todo [n] e par [m]
α−→ [k]

β−→ [l] de ∆ temos

f1[n]
= 1En e fβα( fnτ) = fβ( fαβ∗)

onde τ : α∗β∗ ∼= (βα)∗ o isomorfismo dado pela estrutura de ∆-indexada. Seguindo, a
descida ao longo de E• será o pseudocolimite desse sistema, o pseudocone En → Ê por qual
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todo outro pseudocone é fatorado por, de forma (a menos de uma equivalência) unı́voca.
Graficamente:

En

Ê F

Em

µn

fn

α

µm

fm

Temos também uma noção alternativa de cocone, que considera apenas as primeiras
coordenadas de um topoi simplicial.

Definição 1.2.5. Dado um topos simplicial E•, considere o seguinte diagrama

E2 E1 E0

d01

d02

d12

d0

d1

e

Onde, e.g., o morfismo d02 é dado pela seta de [1] → [2] que manda 0 7→ 0 e 1 7→ 2. Um

pseudococone curto sobre um topos simplicial E• é um morfismo geométrico E0
b−→ F e uma

transformação bd1
µ
=⇒ bd0 satisfazendo as condições de cociclo,

e∗(µ) ∼= 1 d∗12µ ◦ d∗01µ ∼= d∗02µ

Denote por Des(E•) o cocone curto universal.

Notavelmente, os topos Des(E•) e Ê são equivalentes, ou seja, um cocone curto tem
informação suficiente para ser extendido de forma únivoca a cocone.

Teorema 1.2.6. Os topoi Des(E•) e Ê são equivalentes. Ademais, Des(E•) sempre existe e admite
descrição explı́cita como a categoria cujos objetos são pares (X, θ), onde X ∈ E0 e θ : d1

∗X
∼=−→

d0
∗X um isomorfismo tal que i∗θ = 1 e d12

∗θ ◦ d01
∗θ ∼= d02

∗θ.

Demonstração: Veja [Mo1, 3.4].

Tendo agora acesso a uma descrição explı́cita do cocone universal, é instrutivo consi-
derar alguns exemplos.

Exemplo 1.2.7. Dado Fei(X)
f−→ E , podemos formar, como no exemplo 1.2.2, o topos

simplicial para o morfismo f ,

Fei(X)×E Sh(X)×E Fei(X) Fei(X)×E Fei(X) Fei(X) Ef

Como locálicos são preservados por produtos fibrados (cf., e.g., [Joh1, 2.1]), teremos lo-
cales Y e Z com Fei(X) ×E Fei(X) ' Fei(Y) e Fei(X) ×E Fei(X) ×E Fei(X) ' Fei(Z).
Ademais, por ser Loc 2-refletiva em Top/S , podemos garantir Z ∼= Y ×X Y. Em suma, o
diagrama acima é refletido ao grupoide locálico

Y×X Y Y X
d01

d12

d02

d0

d1

i

e Des( f ), o cocone universal para o topos simplicial induzido por f , terá como objetos os
pares E ∈ Fei(X) e θ : d∗0E

∼=−→ d∗1 x com

i∗θ = 1E d12
∗θ.d01

∗θ = d02
∗θ

O leitor então talvez reconheça Des( f ) como o topos de feixes equivariantes do grupoide
acima, exposto abaixo.
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Definição 1.2.8. Dado um grupoide de locales

G = G1 G0

d0

d1

i

podemos formar um topos simplicial Fei(G)• considerando os feixes do nervo de G.
Denotaremos por BG o cocone universal desse simplicial, conhecido como topos classifi-
cante de G na literatura. O teorema 1.2.6 nos dá que BG é dado por pares X ∈ Sh(G0) e
θ : s∗0X → s∗1X, onde si : Fei(G1) → Fei(G0) o morfismo induzido por di : G1 → G0. Al-
ternativamente, usando a equivalência Fei(X) ' Ét(X) podemos descrever os elementos
de BG como espaços étales E → G0 associados de uma ação µ : G1 ×G0 E → E unitária e
associativa.

Observação 1.2.9. Explicando a nomenclatura acima, quando G um grupo (isto é, quando
G0 = 1), um resultado clássico da teoria dos feixes nos dá que para qualquer espaço X,
temos Geom(Sh(X), BG) equivalente aos G-fibrados principais (principal G-bundles) sobre
X, isto é, BG é topos classificante dos G-fibrados principais. No caso geral, BG ainda é
um topos classificante, mas o resultado é um pouco mais sútil, cf. [Mo2, 6.1] e [Bu, 3.4,
5.3].

Dado um morfismo geométrico E f−→ S e, usando a notação do exemplo 1.2.7, temos
que a imagem inversa induz um morfismo canônico S → Des( f ). Em analogia com
pilhas, estamos interessados em quais condições sobre f garantem que esse morfismo seja
uma equivalência, isto é, em quando f é um morfismo de descida efetivo (effective descent).
Seguindo, um celebrado teorema de Joyal e Tierney afirma que

Teorema 1.2.10 (Joyal-Tierney). Morfismos geométricos abertos e sobrejetivos são morfismos de
descida efetivos.

Demonstração: Veja [JoTi, 2, thm 1].

Logo, pelo resultado acima, o teorema 1.1.12, em conjunção ao exemplo 1.2.7, nos dá
a

Teorema 1.2.11 (Representação por grupoides locálicos). Seja S um topos com objeto de
número natural. Para todo S-topos de Grothendieck E , há um grupoide locálico G interno à S tal
que

E ' BG

Para além de sua natureza técnica, temos interesse moral no resultado. O topos, como
o nome trai2, foi concebido como uma generelização de espaços topológicos. Deste modo,
o resultado de Joyal-Tierney dá lastro a essa interpretação, classificando todo topoi de
Grothendieck como os feixes equivariantes de um grupoide locálico, um objeto marcada-
mente geométrico.

Para o caso de topoi E pontilhados (que admite ponto, isto é, morfismo geométrico
Con → E ), conectado (cujo único morfismo E → Con tem imagem inversa plenifiel) e
atômico (cujo único morfismo E → Con tem como imagem inversa um funtor lógico), o
resultado acima toma uma forma especialmente agradável às sensibilidades lógicas dessa
monografia.

Teorema 1.2.12. Seja A um topos de Grothendieck atômico e conexo que admita um ponto S x−→
A. Existe um grupo locálico G ∈ S com A ∼= BG. Ademais, se Mx o S-modelo correspondente
ao ponto mencionado, teremos G o grupo Aut(M).

Demonstração: Veja [JoTi, VIII.3, thm 1].
2”Comme le terme de �topos� lui-même est censé précisément le suggérer, il semble raisonnable et

légitime aux auteurs du présent Séminaire de considérer que l’objet de la Topologie est l’étude des topos”,
[SGA4, IV,pp. 154]
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1.3 Primeira representação de topos por feixes

Começamos lembrando da dualidade entre os esquemas afins e os anéis comutativos
– da representação de anéis comutativos como feixes sobre um espaço. Fazemos essa di-
gressão não só como régua moral às representações de topoi por feixes que mostraremos,
mas como também para contextualizar-nos tecnicamente: a primeira representação de
topoi por feixes, exposta por Lambek e Moerdijk em [LaMo], é uma generalização quase
direta da técnica de esquemas afins.

Espectro de um anél. Dado anel comutativo A com unidade defina o espaço de Za-
riski, Spec(A) := {p � A : p é um ideal primo}, cuja topologia tem como básicos os
conjuntos B f := {p ∈ Spec(A) : f 6∈ p} para f ∈ A. Considere então o feixe de anéis
Ã : Spec(A) → Con dado por Ã(B f ):∼=[ f ]−1A, onde [ f ]−1A a localização do anel por f ,
isto é, o anel de frações com numeradores em A e denominadores de forma f n.

Teorema 1.3.1. Dado um anel A, temos

i) Para todo p ∈ Spec(A), a fibra Ãp é um anel local (i.e., tem um único ideal maximal ou,
equivalentemente, se x + y = 1 implica em ou x = 1 ou y = 1);

ii) A é isomórfico às seções globais de Ã, i.e., A ' Γ(Ã).

iii) Existe um monomorfismo A � ∏p Ãp.

Defina EsqA f – a categoria dos esquemas afins – como a subcategoria plena dos

espaços anelados3 dada por pares (Spec(A), Ã). Obtemos então que

Teorema 1.3.2. Temos a adjunção Esqop
A f (X, Spec(A)) ∼= anelCom(Γ(OX), A). Em especial,

obtemos Esqop
A f ' anelCom.

Seguindo, falemos de topoi. Dado um topos pequeno E deixe Spec(E) o conjunto de
ideais primos da álgebra de Heyting SubE (1). Definamos uma topologia em Spec(E),
pondo como base os conjuntos

Bp := {P ∈ Spec(E) : p 6∈ P}

para cada p ∈ SubE (1). Definimos um pré-feixe Ẽ sobre Spec(E) pondo

Ẽ(Bp) := E/p

Note que temos Γ(Ẽ) = Ẽ(B>) = E/1 ∼= E . Inspirados na representação dos anéis,
definimos

Definição 1.3.3. Dizemos sublocal4 um topos E onde SubE (1) tem ideal maximal único.

Lema 1.3.4. O funtor Ẽ é um feixe e todas suas fibras são topoi sublocais.

Demonstração: Como Spec(E) acontece como espaço de ideais de um reticulado dis-
tributivo temo-lo um locale coerente5 e então, em especial, temo-lo compacto (cf., por
exemplo, [Joh3, II.3]). Logo, para provar Ẽ um feixe basta mostrar que, para um par
p, q ∈ Sub(1), temos o diagrama abaixo um equalizador.

E/(p ∧ q) E/p× E/q E/(p ∨ q)

3Lembramos que um espaço anelado é um par (X,OX) onde X um espaço topológico e OX um feixe de
anéis sobre X.

4Originalmente, em especial em [LaMo], o adjetivo vinha sem prefixo, mas a segunda representação por
feixes indicou-nos outra propriedade ao tı́tulo.

5O conceito locálico que corresponde à noção de espaço espectral
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Reproduzindo um belo argumento de [Aw2, 3, thm 3], usando elementos generalizados,
notamos que o diagrama acima é um equalizador sse dado U → p ∧ q, A → p e B → q
tal que as faces do cubo abaixo com aresta comum U → p ∧ q são produtos fibrados, há
único C → p ∨ q que faz todas faces produtos fibrados.

U A

B C

p ∧ q p

q p ∨ q

Definimos então C como a soma amalgamada das setas U A
B . Lembrando que

a base do cubo é um pullback e um pushout, é rotina verificar que esse C satisfaz as
condições pedidas. Seguindo, dado P ∈ Sub(E), temos

ẼP = lim−→
p 6∈P
E/p

Pelo teorema fundamental e por existirem colimites de topoi, temos que ÊP é de fato um
topos. Para notarmo-lo sublocal, observe que o colimite filtrado acima nos dá, lembrando
que colimites em Topos são limites em CAT, que, considerando os seguintes conjuntos
como álgebras de Heyting, temos SubẼP

(1) ∼= SubE (1)/{p : p 6∈ P}. Por ser P primo,
p ∨ q em {x : x 6∈ P} garante ou p 6∈ P ou p 6∈ P, como querı́amos.

Logo, temos a

Teorema 1.3.5 (Primeira representação por feixes). Dado um topos pequeno E , existe um
espaço Spec(E) e um feixe Ẽ sobre esse espaço tal que

i) Para todo P ∈ Spec(E), a fibra ẼP é um topos sublocal;

ii) E é isomórfico às seções globais de Ẽ , i.e., E ' Γ(Ẽ).

iii) Existe um morfismo lógico conservativo E � ∏P∈Spec(E) ẼP.
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Capı́tulo 2

Espaços

Nesse capı́tulo, passamos dos locales aos espaços, consequentemente desenvolvendo
noções mais tratáveis às sensibilidades clássicas. Grande parte dos resultados desenvol-
vidos aqui são relações entre as naturezas sintática e semântica da lógica matemática. De
certa forma, não se admira que esse seja o caso, o estudo das ligações entre essas é um
leitmotiv notoriamente presente no campo; citamos os teoremas de correção e comple-
tude, as álgebras de Lindbaum-Tarski e o resultado de Post como menções da legião de
instâncias da interação entre a sintaxe e a semântica. Colocamos abaixo um esqueleto do
capı́tulo.

Começamos expondo uma representação por grupoides topológicos de teorias lógicas.
Seguimos a tese de Henrik Forssell, um aluno de Awodey, e os artigos que a acompanha-
ram. Mostramos como obter uma adjunção sintaxe-semântica usando desses grupoi-
des, além de estabelecer uma conexão de Galois entre as subteorias e os subgrupoides.
Continuamos seguindo a tese de Forssell no segundo capı́tulo, onde exploramos uma
generalização da dualidade de Stone ao contexto da primeira ordem.

Seguindo, explicamos que a representação de Forssell é baseada nos resultados da
tese Carsten Butz, tema da terceira seção. Orientado por Ietz Moerdijk, Butz mostra que
restringindo nossas considerações aos topoi com pontos suficientes podemos obter uma
representação desses em termos de grupoides topológicos.

Na seção quarta, cumprimos nossa promessa e expomos a descida ao longo de ca-
tegorias indexadas, além de apresentarmos relaçãos entre as duas maneiras de descida.
Seguindo, aplicamos os resultados das duas últimas seções na seção cinco, melhorando
nossa primeira representação de topoi por feixes, seguindo lá os passos da tese de Steve
Awodey.

Terminamos, na sexta seção, com uma introdução concisa da teoria de ultracatego-
rias, concebida por Makkai. Incluı́mos essa apresentação majoritariamente por motivos
históricos, tendo sido a generalização da Dualidade de Stone para pretopoi originalmente
obtida por meio dessa técnica. Seguimos a exposição de Jacob Lurie, [Lu], apresentando
as definições e os principais teoremas, em especial, a celebrada completude conceitual.
Finalmente, apresentamos um resultado que nos permite representar as ultracategorias
como fibrações sobre espaços Hausdorff compactos, fato que combina com nosso inte-
resse em pilhas para a topologia coerente.

2.1 Teorias e Grupoides

Nessa seção, exploramos a representação de teorias em termos de grupoides topológicos.
Veremos, na seção três, como mencionado na introdução, que a representação obtida aqui
é uma instância de uma construção categorial mais geral. No entanto, urge este capı́tulo
haja vista a simplicidade que a construção toma quando restrita ao contexto lógico. De
fato, enquanto a terceira seção fala de conjuntos de enumeração, objeto artificial à pri-
meira vista, conversaremos aqui sobre isomorfismos dos modelos de nossa teoria!
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Para evitar problemas com tamanho, restringimos nossas considerações aos modelos
κ-pequenos. Seguimos a tese mencionada, [Fo1], além dos artigos que a acompanharam,
[AwFo], [Fo2] e [Fo3].

Dado teoria T sobre uma assinatura Σ, fixe um cardinal κ ≥ |Σ| ∪ ω. Deixe XT o
espaço dos T-modelos cujo conjunto subjacente é um elemento de κ, sua topologia tendo
como básicos os conjuntos

〈〈[x : ϕ], a〉〉 :=
{

M ∈ XT : a ∈ Jx : ϕKM
}

para as fórmulas coerentes ϕ de Σ com n-variáveis livres e listas a = (a1, a2, · · · , an) ∈ κn.

Observação 2.1.1. Poderiamos, sem grandes mudanças na teoria, definir XT como o
espaço dos modelos κ-pequenos, isto é, cuja cardinalidade é menor que κ. Enquanto essa
descrição tem uma clara vantagem conceitual e didática, ela peca nos aspectos técnicos,
em especial, citamos dois: i) XT seria uma classe própria e ii) para definir nossa topo-
logia precisarı́amos achar um modo de identificar as sequências a ∈ κn com elementos
do modelo. Um leitor motivado pode perceber que os espaços de enumeração de Butz e
Moerdijk são uma resposta para ii), e foi essa a técnica adotada por Spencer Breiner em
sua tese.

Continuando, deixe GT o grupoide de isomorfismos entre modelos. Sua topologia é
a mais grossa que torna contı́nuos os mapas d0, d1 : GT XT , que associam a um
isomorfismo seu domı́nio e codomı́nio, e contém, para todo tipo A de Σ e par a, b ∈ κ, os
conjuntos

〈〈A, a 7→ b〉〉 :=
{

f : M
∼=−→ N ∈ GT : a ∈ JAKM ∧ fA(a) = b

}
Como na representação de topoi, temos que

Lema 2.1.2. Os espaços GT e XT são sóbrios.

Demonstração: Veja [AwFo, 1.2.7].

Note agora que para qualquer fórmula ϕ temos um funtor Jx : ϕK(−) : XT → Con
com ação M 7→ Jx : ϕKM. Por meio da equivalência ConA ' Con/A, podemos então
obter a projeção

Jx : ϕKXT =
{
〈M, a〉 : M ∈ XT, a ∈ Jx : ϕKM

}
π−→ XT

Ponha a topologia de Jx : ϕKXT como a mais grossa que faz π contı́nua. Usando a
descrição dos básicos de XT, é claro que

Lema 2.1.3. Os básicos de Jx : ϕKXT são da forma

〈〈[x, y : ψ], a〉〉 :=
{
〈M, b〉 : b ? a ∈ Jx, y : ϕ ∧ ψKM

}
para ψ coerente e a ∈ κn. Onde b ? a denota a concatenação de b e a. Consequentemente, π é um
homeomorfismo local.

Logo, a ação (x : ϕ) 7→ Jx : ϕKXT descreve um funtor Sin(T) → Fei(XT). Note que
podemos estender esse funtor à M : Sin(T) → BGT pondo [x : ϕ] 7→ (Jx : ϕKXT , θ),
onde

θ(〈M, a〉, M
f−→ N) = 〈N, f (a)〉

Chamaremos definı́veis os objetos na imagem deM.

Proposição 2.1.4. O funtorM é coerente e reflete coberturas de BGT em famı́lias da topologia co-
erentes. Em especialM é conservativo e, pelo teorema B.3.12,M induz um morfismo geométrico
BGT

m−→ FeiCoe(Sin(T)).
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Demonstração (esboço): Para BGT
U−→ Fei(XT)

U′−→ Con/XT funtores de esquecimento,
temos

BGT

Sin(T) Fei(XT)

Con/XT

U
M

U′

Como os esquecimentos refletem estrutura coerente e coberturas, basta mostrar que a
ação [x : ϕ] 7→ Jx : ϕKXT → XT também o faz para obterM coerente e contı́nuo. Pois,
temos o triângulo

Sin(T)

Con/XT colim−−−→M∈XT
Con/M

F

'

Onde F é induzido pelas setas M : Sin(T) → Con. Temos então que, por T ter suficien-
tes modelos, F é conservativo e, por serem todos M coerentes, seu produto F também
o é. Pela equivalência, segue Sin(T) → Con/XT conservativo e coerente, logo ele
também reflete coberturas, como querı́amos. Para mais detalhes desse argumento, veja
[Fo3, 3.2.2].

Lema 2.1.5. Dado [x : ϕ] ∈ Sin(T), os abertos básicos de Jx : ϕKXT fechados sob a ação θ são da
forma Jx : ξKXT ⊆ Jx : ϕKXT para alguma fórmula coerente ξ.

Demonstração: Seja U = 〈〈[x, y : ψ], a〉〉 um aberto básico de Jx : φKXT . Passando à um iso-
morfismo se necessário (cf. [Fo1, 2.3.4.1]), podemos assumir sem perda de generalidade
que para i < j com yi, yj de mesmo tipo temos ai 6= aj. Logo, pondo σ a conjunção das de-
sigualdes yi 6= yj para i < j com yi, yj de mesmo tipo, afirmo que para ξ = ∃y(σ ∧ ψ ∧ ϕ)
temos Jx : ξKXT o fecho de U sobre a ação θ. De fato, temos U ⊆ Jx : ξKXT e Jx : ξKXT
fechado sob θ. Ademais, se (M, b) ∈ Jx : ξKXT então há c com b ? c ∈ Jx, y : σ ∧ ψ ∧ ϕKM.
Podemos construir, um isomorfismo f que troca as listas b e c de lugar (cf., e.g., [AwFo,
1.2.5]), e então obtemos θ((M, b), c) ∈ U, ou seja, obtemos (M, b) está no fecho de U sob
θ.

O lema acima nos permite concluir que os subobjetos de objetos definı́veis são uniões
de objetos definı́veis. Em especial, um subobjeto de um objeto compactoM([x : ϕ]) será
da forma

∨
nM([x : ψi]) que, tomando a disjunção, reduzimos aM([x :

∨
n ψi]), ou seja,

M é pleno nos subobjetos de compactos. Portanto, comoM reflete coberturas, podemos
concluir que os definı́veis são objetos compactos. Em especial, o gráfico de um morfismo
entre dois objetos definı́veis será definı́vel e então, por ser M coerente e conservativo,
será o gráfico de um morfismo de Sin(T). Ou seja,M é pleno. Ademais, temos também
que

Proposição 2.1.6. Os objetos definı́veis geram o topos BGT.

Demonstração: Veja [AwFo, 1.4.7].

Teorema 2.1.7 (Representação de Butz-Moerdijk para teorias). Temos que BGT é o topos
classificador da teoria T. O funtor m da proposição 2.1.4 é metade de uma equivalência BGT '
FeiCoe(Sin(T))
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Demonstração: Pela proposição 2.1.6, os objetos definı́veis são um sı́tio para BGT. Ade-
mais, a dicussão acima e a proposição 2.1.4 nos dão que M é plenifiel e reflete cober-
turas, logo, pelo lema da comparação (veja, e.g, [Elephant, C, 2.2.3]), temos BGT '
FeiCoe(Sin(T)).

Finalmente, mencionamos que temos uma conexão de Galois entre os subgrupoides
e subtopoi da nossa representação.

Teorema 2.1.8 (Conexão de Galois). Seja T uma teoria coerente, dado subtopos H ≤ BGT
há subteoria T′ ⊆ T com H ∼= Fei(GT′). Ademais, pondo Sub(BGT) a categoria de subtopoi
de BGT e Sub(GT) a categoria de subgrupoides de GT, defina um mapa pt : Sub(BGT) →
Sub(GT) pondo

pt(BGT′) = {M ∈ (GT)0 : M � T′}
Defina também B : Sub(GT)→ Sub(BGT) pondo BH = BGTh(H), onde

Th(H) = {ϕ : ∀M ∈ H0(M � ϕ)}

Temos que os mapas acima formam uma conexão de Galois B : Sub(GT) Sub(BGT) : pt ,

no sentido que BH ≤ F se, e somente,H ≤ pt(F ).

Demonstração: Veja [Fo2, 3.2.2].

2.2 Aplicação: Dualidade de Stone Generalizada

O assunto dessa seção é tangente ao tema principal do trabalho e os resultados são
auto-contidos. O leitor que prefir ignorá-la em primeira leitura não sentirá falta dela nos
capı́tulos futuros. Sem embargo, a dualidade de Stone é uma das jóias da teoria dos mo-
delos clássicas e então recomendamos a leitura dessa seção a qualquer leitor interessado
na lógica categorial.

Munidos da representação para teorias da seção anterior, podemos caminhar em
direção a uma generalização da dualidade de Stone obtida por Henrik Forssell e Steve
Awodey e exposta em [AwFo] e [Fo1]. Para contextualizar o que segue, incluı́mos abaixo
o resultado clássico.

Observação 2.2.1 (Dualidade de Stone). Dado uma álgebra de boole B um ultrafiltro de
B é a pré-imagem f−1(1) de um morfismo de álgebras de boole f : B → 2(= {0, 1}).
Podemos tornar o conjunto de ultrafiltros de B em um espaço, por meio da base de clopens
dada por {X ⊆ B : b ∈ X} para b ∈ B. Seguindo, um espaço de Stone é um espaço
compacto, Hausdorff e totalmente desconexo, equivalentemente, é o limite indutivo de
espaços discretos finitos. Contas de rotina mostram que, dado espaço de stone S, seu
conjunto de clopens é uma álgebra de Boole. Notavelmente, os conjuntos clopen de S
correspondem a funções contı́nuas S → 2, onde 2 = {0, 1} discreto. A dualidade de
Stone afirma que essas duas ações são mutualmente inversas,

Teorema 2.2.2 (Dualidade de Stone). Pondo Stone a subcategoria plena dos espaços de Stone,

temos Stone(−, 2) : Stoneop Bool : Bool(−, 2) são uma equivalência.

Feito essa contextualização, precisamos definir dois conceitos antes de introduzir a
primeira parte da nossa adjunção

Definição 2.2.3. Seja T sobre uma assinatura Σ. Diremos que T tem igualdade decidı́vel
sse para todo tipo A temos um predicado 6=A tal que, dado um par de variáveis distintas
x 6= y de tipo A, temos

(x 6=A y) ∧ (x = y) `A ⊥ e > `A (x 6=A y) ∨ (x = y)

Assumimos, durante a duração dessa seção, que a teoriaT com qual trabalhamos tem
igualdade decidı́vel.
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Observação 2.2.4. Note queT tem igualdade decidı́vel sse Sin(T), sua categoria sintática,
é decidı́vel, isto é, sse para todo A ∈ Sin(T) a diagonal ∆A é um subobjeto complemen-
tado. Em especial, se T é uma teoria clássica teremos Sin(T) booliana e consequente-
mente T terá igualdade decidı́vel.

Como na seção anterior, para evitar problemas com tamanho precisamos restringir
nossas considerações aos modelos “abaixo”de um cardinal κ. Para poder fazer isso, pre-
cisamos que nossas teorias não percam informação quando restringidas à esse contexto,
isto é, que tenham suficientes κ-modelos.

Definição 2.2.5. Dado cardinal κ, deixe Conκ a subcategoria plena dos conjuntos heredi-
tariamente menores1 que κ. Uma categoria coerente D tem suficientes κ-modelos (enough
κ-models) sse os funtores coerentes D → Conκ juntamente refletem coberturas, isto é, sse
dado uma famı́lia { fi : di → c}I de D, se para todo funtor M : D → Conκ coerente temos

⋃
I

im( fi) = Mc

Então há i1, i2, · · · , in com
∨

n M fij = c.
Definimos CoeDecκ, a categoria que de funtores coerentes entre categorias pequenas

decidı́veis e coerentes com suficientes κ-modelos.

Observação 2.2.6. Note a relação entre as noção de suficientes κ-modelos com a de sufi-
cientes pontos. Usando a máxima “modelos são funtores”, a primeira afirmação equivale
à suficientes κ-pontos e a segunda à suficientes modelos em Con.

Podemos agora definir a primeira parte da nossa adjunção, que posteriormente res-
tringiremos à um dualidade. Notamos que o “espı́rito”da adjunção que mostraremos é
comum na lógica categorial, sendo uma adjunção entre sintaxe e semântica.

Dado D de CoeDecκ defina o espaço XD := CoeDec(D, Conκ), com topologia dada
pelos sub-básicos

U f ,a :=

{
M ∈ XD : ∃x ∈ Ma

(∧
i≤n

M fi(x) = ai

)}

para { fi : a → bi}i≤n uma famı́lia de setas de D e ai uma sequência de conjuntos he-
reditariamente menores que κ. Seguindo, o funtor Mod : CoeDecκ → Gpd associa a
uma categoria D o conjunto de isomorfismos naturais entre os funtores de XD. Analo-
gamente ao grupoide da seção anterior, a topologia de Mod(D) é dada pela mais grossa

que torna d0, d1 : Mod(D) XD contı́nuas e contém, para todo objeto A ∈ D e par
de conjuntos a e b hereditariamente menores que κ, o conjunto

VA,a 7→b := { f : M
∼=
=⇒ N : a ∈ MA ∧ fA(a) = b}

É rotina então verificar que, dado um funtor coerenteA F−→ D em CoeDecκ, a ação de
composição

A D Conκ
F

M

N

α∼= 7→ A Conκ

MF

NF

αF∼=

1dizemos um conjunto hereditariamente menor que um dado cardinal α se todos seus elementos i) tem
cardinalidade menor que α e ii) são hereditariamente menores que α.
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induz morfismos contı́nuos f0 e f1 entre os grupoides,

Mod(D) Mod(A)

XD XA

d0 d1

f1

d0 d1

f0

Chamamos Mod : CoeDecop
κ → Gpd de funtor semântico. A notação Mod vem do caso2

D = Sin(T), uma vez que teremos Mod(Sin(T)) equivalente aos modelos de T em
Conκ, cf. o teorema A.3.3. Mostramos abaixo a relação do grupoide definido acima com
o da seção anterior.

Teorema 2.2.7. Para D ∈ CoeDecκ, pondo TD a teoria gerada pela categoria D (cf. apêndice
A.3.4), temos um homeomorfismo de grupoides Mod(D) ∼= GTD . Consequentemente, obtemos a
equivalência FeiCoe(D) ' B(Mod(D)), ou seja, BMod(D) classifica D.

Demonstração: Sabemos que os pontos de XTD , isto é, os modelos de TD equivalem a
funtores coerentes M : Sin(TD) → Con. Além disso, por definição de XTD , podemos
garantir que esses funtores fatoram em Conκ. Pondo θD : D → Sin(TD) uma das me-
tades da equivalência entre essas categorias (cf. proposição A.3.6), definimos um mapa
φ0 : XTD → Mod(D)0 pela ação M : Sin(TD) → Conκ 7→ M ◦ θD, mostremos então
φ0 um homeomorfismo. Pois, por ser θD metade de uma equivalência, é fácil ver que φ0
admite inversa ψ0. Quanto à continuidade, note que dado sequências { fi : a → bi}i≤n e
a ∈ Conκ é fácil ver

(φ0)−1(U f ,a) =

〈〈[
y : ∃x

(∧
n

fi(x) = yi

)]
, a

〉〉

para yi : bi. Analogamente, dado fórmula coerente x.ϕ com xi : Ai e lista a ∈ κn, ponha
r : [x.ϕ] � ∏n Ai a interpretação interna de ϕ em D. Com as projeções πi : ∏n Ai → Ai
podemos ver

ψ−1
0 (〈〈[x : ϕ], a〉〉) = Uπir,a

Ou seja, concluı́mos que φ0 é um homemorfismo. Seguindo, definimos φ1 : GTD →
Mod(D)1 por meio de φD assim como φ0. Como acima, é claro que φ1 terá inversa ψ1,
ademais é rotina verificar

φ−1
1 (VA,a 7→b) = 〈〈A, a 7→ b〉〉

e
ψ−1

1 (〈〈A, a 7→ b〉〉) = VA,a 7→b

O resultado segue.

Seguindo, consideramos um grupoide distinguido.

Lema 2.2.8. Na assinatura com único tipo e par de relações binárias 6= e =, defina a teoria neq,
cujos axiomas garantem que 6= é complemento de = e que neq tem igualdade decidı́vel.

Seguindo, deixe Sκ o grupoide de isomorfismos entre objetos de Conκ, onde

• (Sκ)0 tem como básicos os conjuntos {X ∈ Conκ : a1, a2, · · · , an ∈ X}, para sequências
ai ∈ Conκ;

• (Sκ)1 tem como básicos os conjuntos { f : A
∼=−→ B ∈ Conκ : a ∈ A, f (a) = b}, para pares

a, b ∈ Conκ.

Temos Sκ
∼= Gneq em Gpd. Consequentemente, obtemos a equivalência BSκ ' BGneq

2Lembramos que esse é sempre o caso, já que D ' Sin(TD).
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Demonstração (esboço): Para mostrar Sκ
∼= Gneq note que todo conjunto X ∈ Conκ

admite única extensão à neq-modelo, pondo 6=M como X2 \ ∆X, logo é fácil ver que
há uma bijeção Sκ

∼= Gneq. Mostrar que essa bijeção leva a um homeomorfismo é um
argumento direto, mas longo; omitimos-o então, recomendando o leitor a [Fo1, 2.4.3.2].

Observação 2.2.9. Mencionamos que temos uma outra equivalência, BSκ ' Con(Conω)i ,
onde (Conω)i a categoria de inclusões entre os conjuntos finitos, cf. [loc. cit., 2.4.3.3].

Pelo teorema 2.1.7, temos BGneq ' FeiCoe(Sin(neq)) e então BGneq classifica objetos
decidı́veis na categoria dos topoi, isto é, um morfismo geométrico BGneq → E equivale
a um objeto decı́divel no topos E . Isso, é claro, induz um objeto decidı́vel genérico em
BGneq, que agora descrevemos.

Definição 2.2.10. O objeto decı́divel genérico em BGneq é dado por (Jx : >KXneq , θ). Per-
correndo a equivalência do lema obtemos que o objeto decı́divel genérico em BSκ é dado
por (π : äA∈(Sκ)0

A → (Sκ)0, θ) com θ(g : x → y, a) = g(a). A topologia de äA∈(Sκ)0
A

sendo a mais grossa que torna a projeção π contı́nua e contém, para todo a, o conjunto
{(A, a) : A ∈ (Sκ)0, a ∈ A} como aberto.

Agora, precisaremos dos seguintes conceitos para definir nosso funtor sintático.

Definição 2.2.11. Lembramos que um objeto X de um topos é dito compacto se toda co-
bertura de X por subobjetos admite subcobertura finita. Dizemos um topos E fracamente
coerente (weakly coherent) sse esse admite um conjunto de geradores compactos e o pro-
duto finito de compactos é compacto. Dizemos um grupoide G fracamente coerente sse o
topos BG é fracamente coerente.

Defina fcGpd como a subcategoria de Gpd cujos objetos são grupoides fracamente
coerentes e com morfismos f : G→ H aqueles que a imagem inversa do funtor induzido,
f ∗ : BH→ BG, preserva objetos compactos.

Lema 2.2.12. A imagem do funtor CoeDecop
κ

Mod−−→ Gpd está em fcGpd.

Demonstração: A proposição 2.2.7 garante Mod(C) coerente e, portanto3, fracamente co-

erente. Logo, temos Mod(C) ∈ fcGpd para C ∈ CoeDecκ. Seguindo, dado C F−→ D em
CoeDecκ é rotina verificar que temos o quadrado abaixo comuta

C D

BGC BGD

F

tC tD

Mod(F)∗

Onde tC : C ' Sin(TC)
M−→ FeiCoe(GSin(TC )) ' BGC . Logo, vemos que Mod(F)∗ manda

os definı́veis de BGC nos definı́veis BGD e então preserva os objetos compactos.

Definamos agora o funtor sintático, a segunda parte da nossa adjunção. Dado grupoide
G ∈ fcGpd, ponha Form(G) como a subcategoria plena de BG cujos objetos são da forma
f ∗U para algum f : G → Sκ de fcGpd, onde U é o objeto decidı́vel genérico. Felizmente,
temos uma caracterização explı́cita de Form(G).

Lema 2.2.13. Dado G ∈ fcGpd, um feixe equivariante (p : E → G0, µ : E×G0 G1 → E) está
em Form(G) se e somente se

i) (p : E→ G0, µ : E×G0 G1 → E) é um objeto compacto e decidı́vel de BG;

3Vemos rápidamente que um topos é fracamente coerente se admite um conjunto gerador de objetos com-
pactos fechados sob produtos finitos, e coerente se admite conjunto gerador de objetos compactos fechados
sob limites finitos
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ii) Para todo x ∈ G0, temos a fibra Ex em Conκ;

iii) Para todo a ∈ Conκ, temos que {x ∈ G0 : a ∈ Ex} ⊆ G0 é aberto e {x ∈ G0 : a ∈ Ex} → E,
dado por x 7→ a, é uma seção contı́nua;

iv) Para todo par a, b ∈ Conκ, o conjunto {g : x → y ∈ G1 : a ∈ Ax, µ(a, x) = b} ⊆ G1 é
aberto.

Demonstração: Veja [AwFo, 2.4.11].

Notamos então que,

Corolário 2.2.14. Dado Sin(T) em CoeDecκ, o funtor M : Sin(T) → BGT fatora-se em
Sin(T)→ Form(GT) ↪→ BGT

Lema 2.2.15. Dado grupoide G ∈ fcGpd, a categoria Form(G) é coerente, decidı́vel e tem sufi-
cientes κ-modelos. Ademais, para qualquer f : H → G ∈ fcGpd o funtor induzido BG → BH
restringe-se à um funtor coerente como no quadrado abaixo,

Form(G) Form(H)

BG BH

Form( f )

f ∗

Ou seja, temos um funtor Form : fcGpdop → CoeDecκ

Demonstração: Veja [AwFo, 2.4.13, 2.4.14, 2.4.15].

Finalmente, podemos obter a

Teorema 2.2.16 (Adjunção Sintaxe-Semântica). Temos a adjunção

CoeDecop
κ fcGpd

Mod

Form

a

Demonstração: Veja [loc. cit., 2.5.3].

Restringindo a adjunção acima, obtemos nossa generalização da dualidade de Stone.

Teorema 2.2.17 (Dualidade de Stone para lógica de primeira ordem). Deixe BoolPTopκ

a subcategoria plena de CoeDecκ cujos objetos são os pretopos boolianos. A adjunção sintaxe-
semântica se restrige à dualidade

BoolPTopop
κ StoneGpd

Mod

Form

'

Ademais, tratanto álgebras boolianas como categorias discretas, restringindo a equivalência acima
ao longo da inclusão BAκ ↪→ BoolPTopκ obtemos a dualidade de Stone clássica,

BAop
κ Stone

Mod

Form

'

Demonstração: Veja [loc. cit., 2.6.2].
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2.3 Topoi e Grupoides

Mostramos aqui uma versão mais tratável da representação de topoi por grupoides
locálicos, devida à Carsten Butz e Ieke Moerdijk. Restringindo nossa atenção aos topoi
de Grothendieck com suficientes pontos, podemos associar a cada um desses um gru-
poide topológico cujos feixes equivariantes equivalem ao topos inicial. Seguimos o par
de artigos [BuMo1] e [BuMo2].

Começemos explicitando a noção de pontos e o que constitui ter suficientes desses.

Definição 2.3.1. Dado um topos de Grothendieck E , um ponto de E é um morfismo
geométrico x : Con → E e, dado algum objeto A ∈ E , a fibra (stalk) Ax de A em x é
x∗(A).

Dizemos que um topos de Grothendieck E tem suficientes pontos se “isomorfismo pode
ser testado fibra à fibra”, isto é, se para todo morfismo f : A → B de E que não é um
isomorfismo existe ponto x : Con → E com x∗ f : x∗A 6∼= x∗B. Note que essa condição
equivale à

∀A
f−→ B(∀Con x−→ E(x∗ f : x∗A ∼= x∗B) =⇒ f : A ∼= B)

Ou seja, à afirmação que a classe de pontos é juntamente conservativa. Um resultado
clássico (cf. [Elephant, C, 2.2.11]) nos permite garantir que quando E tem suficientes
pontos então E tem um conjunto de suficientes pontos, fato que faremos uso no que
segue.

Observação 2.3.2. Mencionamos que a condição de suficientes pontos tem uma interepretação
lógica interessante. Em suma, para um topos S [T] que classifica um teoria T, como cada
ponto equivale à um modelo em Con, ter suficientes pontos equivale à teoria ter suficien-
tes modelos de conjuntos, isto é, satisfazer um teorema de completude para modelos de
conjuntos. Notamos então que o caso ao qual restringimos nossa atenção, os topoi com
pontos suficientes, é bastante comum no mundo lógico.

Feito essa introdução, podemos começar a definir nosso espaço topológico. Dado um
topos de Grothendieck E com suficientes pontos sejam

• PE um conjunto de pontos juntamente conservativos;

• SE um objeto de E cujos subojetos de potências (i.e., os feixes B ≤ Sn
E para algum n

natural) separam E , e

• IE um cardinal tal que card(Sp) ≤ I para todo p ∈ PE .

Observação 2.3.3. O objeto SE sempre existe. Podemos tomá-lo como, e.g., a união dis-
junta dos objetos do sı́tio de definição de E . Alternativamente, se E o topos classificante
de uma teoria então podemos tomar SE como o modelo genérico dessa teoria.

Dado um conjunto A com card(A) ≤ IE , considere o conjunto de enumerações de A,

EnIE (A) =
{

D u−→ A : D ⊆ IE , ∀a ∈ A( f−1(a) é infinito)
}

Definiremos então o espaço XE como o conjunto de enumerações dos Sp módulo isomor-
fismos das enumerações, isto é,

XE := ä
p∈PE

EnIE (Sp)/ ∼

Onde ∼ é a relação de equivalência gerada por

(D1
u−→ Sp, p) ∼ (D2

v−→ Sq, q) ⇐⇒ ∃τ(τ : p∗ ∼= q∗ ∧ τS ◦ u = v)
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Denotaremos a classe (u, p)/∼ por [u, p]. Seguindo, definimos uma topologia em XE
colocando como abertos básicos os conjuntos

UB,ā =
{

[u, p] ∈ XE : (u(a1), · · · , u(an)) ∈ Bp
}

para cada B ≤ Sn
E de E e ā = (a1, a2, · · · , an) ∈ IE n.

Definamos agora um morfismo Fei(XE )
ϕ−→ E . Começamos descrevendo a imagem

inversa, especificando sua ação nas fibras: para cada objeto E de E , ponha (ϕ∗E)[u,p] = Ep.
Mais explicitamente associamos a cada E o étale ϕ∗E→ XE , onde

ϕ∗E =
{

([u, p], e) : [u, p] ∈ XE , e ∈ Ep
}

com abertos básicos, para B ≤ Sn, ā = (a1, a2, · · · , an) ∈ IE n e B
f−→ C ∈ E

VB,ā, f =
{

([u, p], e) : [u, p] ∈ UB,ā, e = fp(u(ā))
}

e π a projeção óbvia. Pois, observando a ação nas fibras, é rotina então verificar que ϕ∗

preserva limites finitos e colimites quaisquer, logo, podemos concluir que ϕ∗ tem adjunto
à direita, ou seja, determina um morfismo geométrico. Notamos ainda que a imagem
inversa admite adjunto à esquerda Fei(XE )

ϕ!−→ E , definido nos básicos por ϕ!(Uā,B) = B
e estendido por colimites.

Lema 2.3.4. Dado ponto p ponha uma topologia em EnIE (Sp) por meio dos básicos

Za,s := {u : D → Sp :
∧
n

(u(ai) = si)}

Afirmo que o diagrama abaixo comuta

Fei(EnIE (Sp)) Fei(XE )

Con E

ip

π ϕ

p

Demonstração: Notamos que os componentes conexos de i−1
p (UB,ā) são os básicos de

forma Za,s para s ∈ Sn
p e a qualquer. Considere então a seção UB,ā → VB,ā, f dada por

σ([u, p]) = ([u, p], fp(ua) e observe que σ é constante nos nossos conexos Za,s, com valor
fp(s). Concluı́mos que i∗p ϕ∗(E) é o feixe constante de fibra Ep e, como π∗p∗(E) = Ep, o
resultado segue.

Podemos agora provar o seguinte resultado.

Proposição 2.3.5. Seja E um topos de Grothendieck com suficientes pontos. O morfismo geométrico
Fei(XE )

ϕ−→ E é conexo, i.e., ϕ∗ é plenifiel.

Demonstração: Usemos a notação do quadrado do lema 2.3.4. Lembramos que ϕ∗ é
plenifiel sse temos um isomorfismo ϕ∗ϕ∗ ∼= 1, logo, por hipótese, basta checar fibra à
fibra. Dado p ∈ PE , temos

ϕ! ϕ
∗(X)p =† p∗ϕ! ϕ

∗(E)

=? π!(ip)∗ϕ∗(X)

= π!π
∗(Xp)

= Xp

Onde =† vem da condição de Beck-Chevalley (lembrando que espaços de enumeração
são localmente conexos, [BuMo2, 3.3]), =? do lema 2.3.4 e a última igualdade do fato que
todo espaço de enumeração é conexo (cf. [loc. cit.]).
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Observação 2.3.6. Note que a construção de XE depende funtorialmente dos parâmetros
que PE , SE e IE . Com efeito, se expandimos o número de pontos P ⊆ P ′ então temos
um funtor de inclusão XE (P) → XE (P ′). Analógamente, um epimorfismo J � I gera
um funtor XE (I) → XE (J) assim como um feixe S ≤ S′ induz um XE (S′) → XE (S). Em
especial, dado um morfismo geométrico E → F podemos fixar parametros P1 e I1 para
E e escolher P2 e I2 para F grandes o suficiente de modo que os espaços X1 e X2 formam
o digrama comutativo

Fei(X1) Fei(X2)

E F

ϕ1 ϕ2

f

Veja [BuMo2, 2.4] para mais detalhes.

Continuando, podemos agora descrever o grupoide topológico GE que representará o
topos E . GE terá, como objetos, pontos de XE e, como mapas, isomorfismos entre pontos
de E que comutam com as enumerações. Explicitamente, os pontos de GE são as triplas

“(u, p)
θ−→ (v, q)”

onde (u, p), (v, q) ∈ äPE En(Sp) e θ : p∗ ∼= q∗, módulo a relação de equivalência

((u, p), (v, q), θ) ≡ ((u′, p′), (v′, q′), θ′)

dada por

∃α, β[(α : p∗ ∼= (p′)∗ ∧ αS ◦ u = u′) ∧ (β : q∗ ∼= (q′)∗ ∧ βS ◦ v = v′) ∧ (βθ = θ′α)]

As duas primeiras condições garantem que [u, p] = [u′, p′] e [v, q] = [v′, q′], enquanto a
última que θ e θ′ “preservam”essas equivalências. Denotaremos a classe ((u, p), (v, q), θ)/≡
por [θ : (u, p)→ (v, q)].

Observação 2.3.7. Note que todo ponto de G é da forma [id : (u, p) → (v, p)]. De fato,
basta notar que as classes [θ : (a, p)→ (b, q)] e [id : (a, p)→ (θS ◦ b, p)] coincidem.

Seguindo, definimos uma topologia em GE . Para cada par de subfeixes B, C ≤ Sn
E e

par ā = (a1, · · · , an), b̄ = (b1, · · · , bn) ∈ In
E , defina o aberto básico

WB,b̄,C,c̄ =
{

[(u, p)
θ−→ (v, q)] : u(ā) ∈ Bp ∧ v(b̄) ∈ Cq ∧ θ(u(ā)) = v(b̄)

}
Precisaremos do seguinte lema para provar nossa representação.

Lema 2.3.8. Sejam d0, d1 : BGE Fei(XE ) os mapas de codomı́nio e domı́nio4. O dia-
grama abaixo comuta e satisfaz a fórmula de Beck-Chevalley, “d0!d∗1(F) = ϕ∗ϕ!(F)”.

BGE Fei(XE )

Fei(XE ) E

d0

d1 ϕ

ϕ

Demonstração: Dado [θ : (u, p) → (v, q)] ∈ GE e E ∈ E , temos d∗0 ϕ∗Ep = Ep e d∗1 ϕ∗Eq =
Eq e então as fibras do isomorfismo d∗0 ϕ∗ → d∗1 ϕ∗ vem do isomorfismo Ep → Eq, induzido
por θ. Seguindo, mostremos que d0!d∗1(F) = ϕ∗ϕ!(F). Dado ponto x = (u, r) ∈ XE
considere o diagrama

4Veja, por ser GE um grupoide não precisamos de um “respectivamente”!
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Fei(En(Sr)) BGE Fei(X)

Con Fei(X) E

π

k(u,r)

s

d0

ϕ

x ϕ

Para En(Sr) como no lema 2.3.4 e onde k(u,r) : En(Sr) → GE vem da ação v 7→ [id :
(u, r)→ (v, r)]. Note que k−1

(u,r)(WB,b̄,C,c̄) = Zb,u(c) e então a função é contı́nua. Além disso,
usando o fato que todo ponto [θ : (u, p) → (v, q)] pode ser escrito como [id : (u, p) →
(v, p)], notamos que k−1

(u,r) está em bijeção com d−1
0 ((u, r)), logo temos d−1

0 ((u, r)) ∼=
En(Sr), ou seja, o quadrado da esquerda é um produto fibrado. Seguindo, usando que o
grupoide GE é locamente conexo (cf. [BuMo1, 4.2]), podemos usar a condição de Beck-
Chevalley para obter x∗(d0)!

∼= π!k∗(u,r). Ademais, como d1.k(u,r) = ip e ϕ.x = p, o lema
2.3.4 garante (ϕx)∗ϕ! = π!(d1k(u,r))

∗, e então, juntando as igualdades obtemos

d0!d1
∗(F)x = x∗d0!d∗1 F = π!k∗(u,r)d

∗
1 F = ϕ∗ϕ!(F) = ϕ∗ϕ!(F)x

Como querı́amos.

Podemos agora provar a

Teorema 2.3.9 (Representação de Butz-Moerdijk para topoi). Seja E um topos de Grothen-
dieck com suficientes pontos. O funtor ϕ∗ : E → Fei(XE ) descrito acima induz uma equivalência
de categorias E ' BGE , onde BGE o topos classificante do grupoide GE , como na definição 1.2.8.

Demonstração: Pela proposição 2.3.5, E é equivalente à categoria de coálgebras para
comônada ϕ∗ϕ∗, ou seja, é equivalente às álgebras para mônada ϕ∗ϕ! em Fei(XE ). Mos-
tremos então que essa última categoria é equivalente aos feixes equivariantes sobre GE .
Por Beck-Chevalley, d0!d∗1(F) = ϕ∗ϕ!(F) e então um morfismo τ : ϕ∗ϕ!(F) → F equivale
a um mapa d∗1(F) → d∗0(F) que, passando à projeção d∗0(F) → F, equivale à uma ação
µ : d∗1(F) → F. Mostremos que esse µ satisfaz as condições de cociclo sse o morfismo
inicial τ é uma álgebra. Usando os lemas 2.3.4 e 2.3 temos, para qualquer (u, p) ∈ XE ,
que

ϕ∗ϕ!(F)(u,p) = π!i∗p(F) = “conjunto das componentes conexas de i∗p(F)”

Logo, um ponto x ∈ F(u,p) define uma componente conexa [x] ∈ i∗p(F) e τ(u,p)([x]) define
um ponto de F(u,p). Dado um ponto [id : (u, p) → (v, p)] de GE e x ∈ F(v,p) temos
µ(g, x) = τ(u,p)([x]). Se τ uma álgebra, τ(u,p)([x]) = x e τ(u,p)([τ(v,p)([x])]) = τ(u,p)([x]) e
então obtemos µ(1, x) = x e µ(g ◦ h, x) = µ(g, (µh, x)) e analogamente para a recı́proca.

Observação 2.3.10. Poderiamos obter uma demonstração alternativa do teorema acima
observando que temos resultados suficientes para mostrar ϕ comonádico e então usando
o teorema 2.4.11 em conjunção ao exemplo 1.2.7. Enquanto essa seria uma demonstração
mais “limpa”, não obteriamos uma descrição tão explı́cita do nosso grupoide GE .

Observação 2.3.11. Podemos estabelecer uma relação entre as duas representações que
vimos. Dado uma teoria coerente T, o teorema de Deligne garante que seu topos classifi-
cador, dado por S [T] := FeiCoe(Sin(T)), tem suficientes pontos, portanto podemos usar
o teorema 2.3.9 para obter um grupoide GS [T] que representa o topos S [T]. O corolário
acima garante então que teremos BGS [T] ' BGT, ou seja, que os grupoides obtidos serão
“Morita equivalentes”.

2.4 Descida para categorias indexadas

Em certos pontos do nosso estudo de categorias somos forçados a considerar os as-
pectos 2-dimensionais da teoria. De fato, certas ideias naturalmente nos levam a um
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ambiente 2-categorial e, em especial, a noção de descida é uma dessas. Para desenvolver
a lı́ngua que a teoria de descida deve falada em, nós precisamos de uma noção de “2-pré-
feixes”e é esse o papel das categorias indexadas. Aqui, a tese de Steve Awodey, [Aw1, V],
e o artigo de Marta Bunge, [Bu], são nossas principais referências.

Definição 2.4.1. Dado categoria E , uma categoria E -indexada é um pseudofunctor AE :
E op → CAT, ou seja, consiste de

• Para todo objeto i de E , uma categoria Ai;

• Para cada morfismo i α−→ j de E , um funtor Aj α∗−→ Aj;

• Para cada objeto e de E , um isomorfismo natural (1e)∗
∼=−→
ηe

1Ae ;

• Para cada par i α−→ j
β−→ k de E , um isomorfismo natural α∗β∗

∼=−→
µαβ

(βα)∗;

De forma que, para cada tripla i α−→ j
β−→ k

γ−→ l e para a δ−→ b os diagramas análogos ao
das definição 1.2.1 comutam, isto é, as identidadesa abaixo são satisfeitas

µα,βγ(α∗µβ,γ) = µβα,γ(µα,βγ∗) γ∗ηb = µδ,1b ηaγ∗ = µ1a,δ

Exemplo 2.4.2. Se E tem todos produtos fibrados, podemos definir uma indexação canônica
de E sobre si mesma, que denotaremos por E , pela ação de produto fibrado: associamos
à E/i cada objeto i e ao pullback α∗ : E/j→ E/i cada seta α : i → j. Como o pullback da
composição é isomórfico à composição dos pullbacks, é rotina verificar que as condições
de coerência são observadas. Generalizando, se F : E → C preseva produtos fibrados
então C tem E -indexação canônica dada por i 7→ C/Fi.

Diremos estrita uma categoria indexada onde os isomorfismos de coerência são igual-
dades, ou seja, quando AE é um funtor. Convenientemente, toda indexada AE essencial-
mente pequena (isto é, cujas fibras Ai são equivalentes à categorias pequenas) é equiva-
lente à uma categoria indexada estrita.

Lema 2.4.3. Toda categoria E -indexada essencialmente pequena admite estritificação.

Demonstração (esboço): Uma demonstração completa desse fato estaria melhor colo-
cada em um trabalho onde categorias indexadas têm um papel mais central, logo, restringimo-
nos a um esboço. Em suma, a ideia é definir uma categoria indexada BE pondo

Bi := HomE ([i], AE )

Onde [i] é a categoria E -indexada dada por j 7→ E(j, i) e HomE ([i], A) denota a catego-
ria das transformações naturais E -indexadas entre os funtores E -indexados [i] → AE
ou, em linguagem 2-categorial, HomE ([i], A) é a categoria das modificações entre as
pseudotransformações naturais entre [i] e AE . Para mais detalhes, recomendando aos lei-
tores o trabalho de [PaSc], que conta com descrições explı́cita dessa categoria e também
com uma versão do lema de Yoneda (cf. [loc. cit., I.1.2]) para categorias indexadas que,
em especial, garante que

HomE ([i], AE ) ' Ai

Ou seja, que Bi ' Ai, como querı́amos. Finalmente, lembrando-se que a ação de BE é

i α−→ j 7→ E(−, j)
E(−,α)−−−→ E(−, i), vemos BE de fato estrita.

Podemos agora falar de objetos de descida e pilhas (stacks). Seguindo a motivação da
introdução, se as categoria indexadas são nossos 2-pré-feixes então as pilhas serão nossos
2-feixes e os objetos de descida nossas famı́lias combinantes ou compatı́veis (matching
families).
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Definição 2.4.4. Sejam E uma categoria com pullbacks, AE uma categoria E -indexada e
R = {Ui

ri−→ U}I uma famı́lia de morfismos de E . Um objeto de descida em AE ao longo de
R é uma famı́lia (ci, αij)i,j∈I onde

• Para cada i ∈ I temos ci ∈ AUi ;

• Para cada i, j ∈ I temos (πi)
∗(ci)

∼=−→
αij

(πj)
∗(cj), onde os mapas “π”vem do produto

fibrado abaixo

Ui ×U Uj Ui

Uj U

πi

πj ri

rj

De forma que esses dados satisfaçam as condições de cociclo:

∆Ui
∗(αii) = 1ci πjk

∗(αjk).πij
∗(αij) = πik

∗(αik)

para todo i, j, k ∈ I, onde ∆Ui a diagonal5 e os mapas “π”vem do cubo de pullbacks

Ui ×U Uj ×U Uk Uk ×U Uj

Ui ×U Uj Uj

Ui ×U Uk Uk

Ui U

πkj

πik

πij

Podemos então formar Desc(AE , R), a categoria de objetos objetos de descida ao longo
de R em AE , onde um morfismos entre dois objetos de descida (ci, αij)I → (di, βij)I é
dado por uma famı́lia ( fi : ci → di)I que faz o quadrado abaixo comutar

πi
∗ci πj

∗cj

πi
∗di πj

∗cj

αij

πi
∗ fi πj

∗ f j

βij

Finalmente, existe um claro funtor canônico AU → Desc(AE , R), definido pela ação
c 7→ πi

∗c. Diremos então que AE desce ao longo de R quando esse mapa canônico é uma
equivalência. Ademais, para um sı́tio (E , J), diremos a E -indexada AE uma pilha (stack)
se essa desce ao longo de todo R de J.

Observação 2.4.5. Convencionamos Des(AE , ∅) ∼= 1.

Observação 2.4.6. Notamos que o paralelo entre objetos de descida e famı́lias combi-
nantes é bem preciso: dado uma base K e famı́lia { fi : di → c} de K(c), uma famı́lia
combinante para F : Cop → Con é uma lista xi ∈ F(di) com Fπi(xi) = Fπj(xj).

5A diagonal de um objeto X é mapa universal ∆ : X → X2 com π1∆X = π0∆X = 1X
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Exemplo 2.4.7. Existe uma ligação clara entre as duas noções de descida, dado morfismo

geométrico E f−→ S formemos um topos simplicial (E ′)• usando uma técnica análoga
(mas distinta!) à dada no exemplo 1.2.2 pondo (E ′)0 := S e (E ′)n+1 := (E ′)n ×S E .
Considere então Desc(E•, [1]→ [0]), seus elementos são pares x ∈ E1 = E e θ : d∗0 x ∼= d∗1 x
satisfazendo as condições de cociclo, ou seja, temos Desc(E ′•, [1]→ [0]) ' Des( f ).

Observação 2.4.8. Para além do exemplo acima, mencionamos uma segunda ligação en-
tre as duas noções de descida: o resultado encontrado em [Bu, 2.1].

Proposição 2.4.9. Seja S um topos com objeto de número natural. Dado E f−→ S deixe S[O]
o topos classificante da teoria dos objetos (cf., e.g., [Elephant, D, 3.2]. Notamos que S[O] '
[S f in,S ]). Os seguintes são equivalentes,

i) f é um morfismo de descida efetivo.

ii) A categoria Top/S-indexada Top/S(−, S[O]) desce ao longo de f .

Exemplo 2.4.10. Seja C uma categoria com produtos fibrados e a identifique com seu
indexamento canônico sobre si mesma (cf. 2.4.2). Dado morfismo i α−→ j de C considere o
diagrama abaixo

i×j i×j i i×j i i j
π01

π02

π12

π0

π1

∆i
α

Um objeto de descida em C ao longo de α é dado por uma seta c → i de C e um isomor-
fismo θ : π0

∗c ∼= π1
∗c com

∆i
∗(θ) = 1 π12

∗(θ) ◦ π01
∗(θ) = π02

∗(θ)

Expandindo no exemplo acima, temos

Teorema 2.4.11 (Bénabou–Roubaud). Seja AE uma categoria E -indexada satisfazendo a condição
de Beck-Chevalley. Para qualquer α : i→ j temos Desc(AE , {α}) equivalente à coálgebra gerada
pela comônada α∗ a Πα e, portanto, AE descerá ao longo de α sse α∗ for comonádico.

Demonstração: Começamos, lembrando o leitor da condição de Beck-Chevally. Dizemos
que uma categoria indexada AE a satisfaz se para todo morfismo α : i → j de E temos
adjunto à direita α∗ a Πα tal que, para todo quadrado de produto fibrado como o na
esquerda,

i j

l k

α

γ β

δ

Aj Ai

Ak Al

α∗

Πβ Πγ

δ∗

∼=

O mapa δ∗Πβ → Πγα∗, vindo do adjunto de γ∗δ∗Πβ
∼= α∗β∗Πβ

α∗η−−→ α∗, é um isomor-
fismo.

Agora, dado objeto de descida θ : π0
∗c ∼= π1

∗c note que θ corresponde bijetivamente
a um c → Ππ0 π1

∗c e, como Ππ0 π1
∗ ∼= α∗Πα por Beck-Chevally, obtemos o morfismo

θ : c → α∗Παc. Provemos então que essa ação é uma coálgebra sse o morfismo inicial
θ : π0

∗c ∼= π1
∗c satisfaz as condições de cociclo. Pois, vemos que ∆∗(θ) corresponde à

composição

c θ−→ α∗Παc ∼= Ππ0 π1
∗c

η∆

−→ Ππ0 Π∆∆∗π1
∗(c) ∼= Ππ0∆(π1∆)∗c ∼= c

Com η∆ a unidade de ∆∗ a Π∆. Note agora que, por Beck-Chevalley, o diagrama abaixo
comuta
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α∗Παc a

Ππ0 π1
∗c Ππ0 Π∆∆∗π1

∗(c)

ηα

∼= ∼=

Logo, ∆∗θ = 1 sse η.θ = 1. Analogamente, temos que π∗12(θ)π∗01(θ) corresponde à

c θ−→ α∗Παc
α∗Πα(θ)−−−−→ α∗Παα∗Παc

e que π∗02(θ) corresponde à

c θ−→ α∗Παc
µc−→ α∗Παα∗Παc

Com µ a multiplicação da comônada. Logo, θ é associativo sse a seta θ também o for.

Observação 2.4.12. A condição sobre α do lema 2.4.11 é satisfeita, por exemplo, para
a S-indexada dada por i 7→ S/F(i), onde F : S → C preserva produtos fibrados e
C é localmente cartesiana. Em especial, para qualquer S-topos E → S , a S-indexação
correspondente à E satisfaz as condições do lema.

Nesse trabalho, estaremos principalmente interessados nas pilhas para a topologia
coerente – a topologia de Grothendieck dada pelas peneiras que contém famı́lias finitas
juntamente epimórficas. Convenientemente, pilhas para essa topologia admitem uma
boa descrição quando indexamos ao longo de um pretopos.

Lema 2.4.13. Se E um pretopos, AE será uma pilha para a topologia coerente sse temos

• A0 ∼= 1

• Para todo par i, j ∈ E temos Ai+j ∼= Ai × Aj.

• Para todo epimorfismo α : i→ j, AE desce ao longo de α.

Demonstração: Se AE uma pilha para a topologia coerente, note que, como a famı́lia
vazia cobre 0 e convencionamos Des(AE , ∅) ∼= 1 temos A0 ∼= 1. Seguindo, dado par i, j
ponha P = {i → i + j, j → i + j}. Como pretopoi tem produtos disjuntos o diagram
abaixo é um produto fibrado

0 i

j i + j

a

b

Logo, usando A0 ∼= 1, dado par de objetos x ∈ Ai e y ∈ Aj temos a∗(x) = b∗(y). É
fácil verificar que a identidade vai satisfazer as condições de cociclo e, portanto, temos
que Desc(AE , P) ∼= Ai × Aj. Seguindo, por ser P juntamente sobrejetiva temos então
Ai+j ∼= Ai × Aj. Por fim, a última condição é trivialmente satisfeita.

Reciprocamente, dado cobertura X = { fi : Ui → V}n podemos fatorá-la nas famı́lias
Y = {gi : Ui → än Ui}n e Z = { f : än Ui � V}. Por hipótese, temos equivalência Φ :
Aän Ui → ∏n AUi : Ψ. Note que um elmento de Desc(AE , Z) será um par (x ∈ Aän Ui , α :
k∗x → k∗x) com ∆∗α = 1. Definia então um mapa Desc(AE , Z) → Desc(AE , X) por
(x, α) 7→ (Ψ(x), αij), com αij o mapa óbvio. É rotina mostrar que essa ação está bem
definida (i.e., a famı́lia satisfaz as condições de coclico) e induz um funtor. Seguindo,
defina Desc(AE , X) → Desc(AE , Z) por ((xi)n, αij) 7→ (Φ((xi)n), α) com α o mapa indu-
zido pelos αij. Verificamos então que Desc(AE , Z) ' Desc(AE , X). Por hipótese, temos
Desc(AE , Z) ' AV . O resultado segue.
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Finalmente, estamos em posição de provar o resultado abaixo, que será fundamental
na representação de feixes de Awodey e Breiner.

Proposição 2.4.14. Dado um pretopos P sua P-indexação canônica, P , definida no exemplo
2.4.2, é uma pilha para a topologia coerente.

Demonstração: Basta verificar que as condições dos lema 2.4.13 são satisfeitas. Clara-
mente temos P/0 ∼= 1 e P/(i + j) ∼= P/i × P/j. Para a condição final, dado epimor-
fismo α : i → j basta, pelo teorema 2.4.11, provar que α∗ será comonádico, usemos então
(co)monacidade de Beck. Por ser P localmente cartesiana fechada, α∗ tem adjunto à di-
reita. Ademais, P tem todos equalizadores que α∗, por ter adjunto à esquerda, preserva.
Logo, resta apenas mostrar α∗ conservativo e para isso usamos o resultado clássico que
garante que a mudança de base α∗ : P/j→ P/i em uma categoria regular é conservativa
sse α um epimorfismo regular (cf., e.g., [Elephant, A, 1.3.2, 1.3.4]), lembrando que todo
epimorfismo é regular em um pretopos, [loc. cit., A, 1.4.9] .

2.5 Segunda Representação de Topoi por Feixes

Podemos agora expor um resultado da tese de Steve Awodey, [Aw1], que melhora a
primeira representação de topoi por feixes que obtemos.

Lema 2.5.1. Toda pilha pequena estrita para a topologia coerente é equivalente a um feixe na
topologia coerente.

Demonstração: Seja P : E op → CAT uma pilha e R uma peneira da topologia coerente,
essa última gerada por uma famı́lia {αn : An → I}n jutamente sobrejetiva. Mostremos
que Hom(R, P) ∼= Hom(よI, P) por meio da inclusão R �よI. Considere a seta induzida
yα : änよAn →よI e tome sua fatoração regular, que obtemos tomando o coequalisador
do par núcleo de änよAn →よI,

änよAn ×よI änよAn änよAn R

よI
yα

q

r

Aplicando o funtor Hom(−, P) e denotando yA := änよAn podemos formar o diagrama
abaixo

Hom(R, P) Hom(yA, P) Hom(yA×よI yA, P) P(yA×よI yA×よI yA)

Hom(よI, P)

q∗

q0

q1

r∗
(yα)∗

Note que q∗ : Hom(R, P) � Hom(yA, P) é o equalizador do par que o segue. Seguindo,
usando o lema 2.4.13 e denotando A := än An, garantimos

Hom(yA, P) = Hom

(
ä

n
よAn, P

)
∼= ∏

n
Hom(よAn, P) ∼= ∏

n
P(An) ∼= P

(
ä

n
An

)
= P(A)
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Também temos que

Hom
(
yA×よI yA, P

)
= Hom

(
ä

n
よAn ×よI ä

n
よAn, P

)
∼= Hom

(
ä
n,m
よ (An ×I Am) , P

)

∼= ∏
n,m

Hom
(
よ (An ×I Am) , P

) ∼= ∏
n,m

P (An ×I Am)

∼= P

(
ä
n,m

(An ×I Am)

)
∼= P

(
ä

n
An ×I ä

n
An

)
= P(A×I A)

Analogamente mostramos P(A×I A×I A) ∼= Hom
(
yA×よI yA×よI yA, P

)
. Pondo α :

än An → I a seta induzida pela famı́lia, formemos o diagrama abaixo, com u uma equi-
valência,

des(α) P(A) P(A×I A) P(A×I A×I A)

P(I)

u
α∗

Usando as equivalências acima, podemos garantir (yα)∗ um pseudoequalizador. Logo,
existe, pela propriedade universal, um morfismo s : Hom(R, P) → Hom(よI, P) e um
isomorfismo natural θ : (yα)∗s ⇒ q∗ tal que q0θ = q1θ. Por ser q∗ mônico, podemos
concluir s fiel. Seguindo, note que (yα)∗sr∗ ∼= q∗r∗ = (rq)∗ = α∗ e então, por ser u
uma equivalência e, portanto, (よα)∗ mônico, temos sr∗ = 1, ou seja, s é essencialmente
sobrejetor. Finalmente, resta provar s pleno. Dado x, y : R → P e f : sx → sy, usando
q0θ = q1θ é rotina verificar que para f ′ := θy ◦ (よα)∗ f ◦ θ−1

x temos q0 f ′ = q1 f ′, logo há
h : x → y ∈ Hom(R, P) com q∗h = f ′. Note que θy ◦ (よα)∗s(h) = q∗(h) ◦ θx, e então

(よα)∗s(h) = θ−1
y ◦ q∗(h) ◦ θx = θ−1

y ◦ f ′ ◦ θx = θ−1
y ◦ θy ◦ (よα)∗ f ◦ θ−1

x ◦ θx = (よα)∗ f

Como (よα)∗ fiel, segue s pleno. Pois, concluı́mos s uma equivalência e, como sr∗ = 1,
obtemos nosso resultado.

Corolário 2.5.2. Toda pilha pequena na topologia coerente é equivalente a um feixe na topologia
coerente.

Em especial, pelo lema 2.4.14, para todo topos E pequeno sua externalização E é equi-
valente à um feixe de categorias pequenas, que denotaremos por E : E op → Cat.

Definição 2.5.3. Diremos local um topos cujo objeto terminal é projetivo e indecomponı́vel.
Note que essas propriedades equivalem a, respectivamente, “M � ϕ ∨ ψ sse M � ϕ ou
M � ψ”e “M � ∃x(ϕ(x)) sse M � ϕ(c), para algum c”.

Lema 2.5.4. Dado um topos E e um ponto Con x−→ FeiCoe(E) temos que x∗(E) é um topos local.

Demonstração: Primeiramente, mostremos x∗(E) um topos. Lembramos que as fibras
de um feixe F são dadas por

x∗(F) ∼= colim−−−→
(c,z)∈

∫
よ

Fei

Fc

para よFei a feixificação de よ. Em especial, x∗(E) ∼= colim−−−→∫
よ

Fei E(c) ∼= colim−−−→∫
よ

Fei E/c.

Temos
∫
よ

Fei filtrado por serよFei exato à esquerda. Pelo teorema fundamental de topoi,
todos cortes E/c são topoi. Finalmente, como limites filtrados de topoi existem (cf, e.g.,
[Mo1, 2.5]) temos x∗(E) um topos. Seguindo, mostremos que E é local. Dados p, q ∈
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Subx∗E(1) com p ∨ q = 1, existem (Ip, yp), (Iq, yq) ∈
∫
よ

Fei e setas p′ � 1 em E/Ip

e q′ � 1 em E/Iq projetando em, respectivamente, p e q. Por ser
∫
よ

Fei filtrado, há
(I, y) com setas (I, y) → (Ip, yp) e (I, y) → (Iq, yq). Restringindo p′ e q′ ao longo dessas
setas obtemos p′′, q′′ � 1 em E/I. Como p ∨ q = 1 no colimite, há h : (J, z) → (I, y)
com h∗(p′′ ∨ q′′) = 1. Note então que dado a � 1 e b � 1 em E/c com a ∨ b = 1
teremos a + b → 1 épico, logo, com m : p + q � 1 temos ou m∗(p) = 1 ou m∗(q) = 1.
Portando, há seta k : (K, w) → (J, z) com ou k∗h∗(p′′) = 1 ou k∗h∗(q′′) = 1. Note que,
passado ao colimite temos k∗h∗(p′′) projetando em p e k∗h∗(q′′) projetando em q. Logo 1
é indecomponı́vel em x∗(E). A demonstração que 1 é projetivo é perfeitamente análoga,
omitimos-a então e recomendamos o leitor a [Aw1, V,2.1] para essa.

Podemos então obter

Teorema 2.5.5 (Awodey). Todo topos pequeno E admite um espaço AE e um feixe FE sobre AE
com

i) Para todo ponto P ∈ AE , a fibra (FE )P é um topos local;

ii) E é isomórfico às seções globais de FE , i.e., E ' Γ(FE )

iii) Existe um morfismo lógico conservativo E � ∏P∈Spec(E)(FE )P.

A saber, podemos por AE = XFeiCoe(E) e FE := ϕ∗(E), onde FeiCoe(E)
ϕ∗−→ Fei(XFeiCoe(E)) vem do

teorema 2.3.5, que podemos aplicar pelo Teorema de Deligne.

Podemos melhorar um pouco o resultado no caso booliano.

Teorema 2.5.6. Dizemos uma categoria bem pontilhada (well-pointed) sse o funtor de seções glo-
bais Hom(1,−) é fiel. Dado topos booliano pequeno E e pondo FE como acima, podemos garantir
que toda fibra (FE )P é bem pontilhada.

Demonstração: Veja [Aw1, V, 2.4].

Finalmente, mencionamos uma propriedade lógica interessante dos topoi locais

Teorema 2.5.7. Lógica intuicionista é completa para modelos em topoi locais.

Demonstração: Veja [loc. cit, V, 3.3].

2.6 Ultracategorias

Incluı́mos essa seção por completude histórica. Mostramos aqui uma outra generalização
da dualidade de Stone, obtida por Michael Makkai por meio da teoria de ultracategorias.
Essencialmente, uma ultracategoria é uma categoria associada de estrutura suficiente
para desenvolver a teoria de ultraprodutos. Lembramos, por fim, que os ultraprodu-
tos são uma ferramenta imporante da teoria dos modelos clásica, vide teorema de Łós, e
são então de interesse da lógica categorial as técnicas de Makkai.

Seguimos a exposição de Jacob Lurie, [Lu], e, devido ao caráter tangente ao resto do
trabalho dessa seção, omitimos as demonstrações.

Definição 2.6.1. Uma ultracategoria é uma categoria S associada de

• Para todo conjunto I e ultrafiltro U em I, um funtor SI
∫

I(−)dU
−−−−→ S
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• Para uma famı́lia {Mi}I ∈ SI e elemento i0 ∈ I, um isomorfismo

ε(I,i0) :
∫

I
Md(i0)

∼=−→ Mi0

onde (i0) o ultrafiltro principal gerado por i0. Ademais, o isomorfismo tem que
depender funtorialmente da famı́lia Mi I ;

• Seja {Mi}I ∈ SI . Dado uma famı́lia U =
{

Uj
}

J de ultrafiltros de I e ultrafiltro K de
J, temos

η(U,K) :
∫

I
Mid

(
∏

J
Uj/K

)
→
∫

J

(∫
I

MidUj

)
j
dK

De forma que, os demais fixados, o isomorfismo η é funtorial na famı́lia {Mi}I .

Assumimos que esses dados satisfazem as seguintes condições de coerência,

• Dado {Mi}I ∈ SI e uma famı́lia U =
{

Uj
}

J de ultrafiltros de I, para qualquer j0 ∈ J
o morfismo ∫

I
Mid

(
∏

J
Uj/(j0)

)
η(U,(j0))−−−−→

∫
J

(∫
I

MidUj

)
j
d(j0)

é inverso do morfismo∫
J

(∫
I

MidUj

)
j
d(j0)

ε(J,j0)−−→
∫

I
MidUj0

∼=
∫

I
Mid

(
∏

J
Uj/(j0)

)

• Dado {Mi}I ∈ SI , injeção f : J � I e ultrafiltro U de J, pondo f ∗U := ∏j∈J( f (j))/U
a transformação abaixo é um isomorfismo

η({( f (j))}J ,U) :
∫

I
Mid f ∗U ∼=

∫
J

(∫
I

Mid( f (j))
)

j
dU

• Dado {Mi}I ∈ SI , uma famı́lia {Uj}J de ultrafiltros de I, uma famı́lia {Vk}K de
ultrafiltros de J e um ultrafiltro T de K temos que, pondo

α := ∏
k∈K

[(
∏
j∈J

Uj

)
/Vk

]
/T =

(
∏
j∈J

Uj

)
/

[(
∏
k∈K

Vk

)
/T

]

O diagrama abaixo comuta

∫
I Midα

∫
K

[∫
I Mid

((
∏j∈J Uj

)
/Vk

)]
dT

∫
J

(∫
I MidUj

)
d ((∏k∈K Vk) /T)

∫
K

[∫
J

(∫
I MidUj

)
dVk

]
dT

η

η

∫
K(η)dT

η

Um ultrafuntor à esquerda S F−→ R entre duas ultracategorias é um funtor S F−→ M
associado de, para todo conjunto I e ultrafiltro U de I, uma transformação natural

σU : F ◦
∫

I
(−)dU →

∫
S
(−)dU ◦ FI

Tal que,
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• Para toda famı́lia {Mi}I ∈ SI e i0 ∈ I, o diagrama abaixo comuta

F(
∫

I Mid(i0))
∫

I FMid(i0)

FMi0

σ

Fε ε

• Para {Mi}I ∈ SI , famı́lia {Uj}J de ultrafiltros de I e ultrafiltro K de J, o diagrama
abaixo comuta

F
(∫

I Mid
(
∏J Uj/K

)) ∫
I FMid

(
∏J Uj/K

)

F
(∫

J

(∫
I MidUj

)
dK
) ∫

J F
(∫

I MidUj
)

dK
∫

J

(∫
I FMidUj

)
dK

Fη

σ

η

σ ∫
J(σ)dK

Finalmente, quando todos os σ forem isomorfismos diremos o funtor um ultrafuntor. De-
notamos por LUlt(M, N) a categoria de ultrafuntores à esquerda e por Ult(M, N) a cate-
goria de ultafuntores entre duas ultracategorias.

Assim como todo conjunto admite estrutura de ultracategoria, podemos definir ultra-
produtos canônicos sobre uma categoria com estrutura suficiente.

Teorema 2.6.2. Se S uma categoria que admite produtos e colimites filtrados então podemos
promove-la a ultracategoria pondo

∫
I

MidU := lim−→
P∈Uop

(
∏

I
Mi

)
/P

Ademais, se S e M tem produtos e colimites filtrados então qualquer funtor S → R que preserva
esses pode ser promovido à ultrafuntor e qualquer funtor que preserva colimites filtrados pode ser
promovido à ultrafuntor à esquerda.

Demonstração: Veja [Lu, 1.3.8].

Dado um pretopos pequeno P , deixe Mod(P) a categoria de modelos em Con da
teoria de P (equivalentemnte, dos funtores P → Con). Note que, por Łós, podemos
garantir que Mod(P) é uma ultracategoria. Temos então

Teorema 2.6.3. Dado um pretopos pequno P , temos

• (Completude Conceitual) O funtor ev : P → Ult(Mod(P), Con), cuja ação manda p 7→
((F : Mod(P)→ Con) 7→ F(p)), induz uma equivalência.

• LUlt(Mod(P), Con) ' FeiCoe(P).

• (Dualidade) Para qualqur par de pretopoi pequenos P1 e P2, temos que

PTopos(P2,P1) ' Ult(Mod(P1), Mod(P2))

Demonstração: Veja [Lu, 2.3.1, 2.2.2, 2.3.3].

Teorema 2.6.4 (Dualidade de Stone generalizada - Makkai). Deixe BoolPtop a subca-
tegoria plena de PTopos cujos objetos são pretopoi boolianos. Deixe UltGpd a subcategoria
plena de ultracategorias cujas categorias subjacente são grupoides. Temos então a equivalência
BoolPtopop ' UltGpd.
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Demonstração: Veja [Ma, 8.1].

Finalmente, mostramos como podemos tratar de ultracategorias como pilhas. Dado
uma ultracategoria S deixe KHausS a categoria cujos objetos são pares (X, OX) onde X

um espaço de Hausdorff compacto e X OX−→ M é um ultrafuntor à esquerda. Temos que

Lema 2.6.5. A fibração KHausM → KHaus é uma pilha para a topologia coerente.

Demonstração: Veja [Lu, 4.1.5].

Dado fibrações F : C → S e G : D → S defina CartS(F, G) pondo, como objetos,
morfismos H : C → D de fibrações que mandam F-cartesianos em G-cartesianos e, como
morfismos, 2-morfismos estritos de fibração. Temos então que

Teorema 2.6.6. Dado ultracategorias S e M temos

LUlt(S, M)op ' CartKHaus(KHausS, KHausM)

Demonstração: Veja [Lu, 4.3.3].
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Capı́tulo 3

Pretopoi

Nesse capı́tulo final, seguimos de perto a tese de PhD de Spencer Breiner. Como
instância final das representação por feixes que viemos desenvolvendo durante essa mo-
nografia, expomos os esquemas lógicos. Tal qual o nome indica, esquemas lógicos serão
os objetos que associaremos às nossas teorias de primeira ordem em um esforço de espe-
lhar ao contexto lógico a relação entre esquemas afins (cf. seção 1.3) e anéis comutativos.
Desenvolvemos mais ainda essas idéias, definidos nossos análogos à esquemas e pro-
vando um lema de colagem.

Por fim, incluı́mos com uma curta exposição de aplicação dos métodos desse capı́tulo,
descrevendo o grupo de isotropia de um topos por meio de automorfismos definı́veis.

3.1 Método dos Diagramas

Mostramos aqui uma adaptação do clássico método de diagramas de Robinson ao
contexto da lógica categorial. Os objetos definidos aqui serão fundamentais no que segue,
já que as fibras dos nossos esquemas afins supracitados serão descritas em termos de
diagramas.

Definição 3.1.1. Seja P um pretopos. Dado um diagrama filtrado Jop D−→ P , definimos a
localização de P em D como

P := colim−−−→
j∈J
P/Dj

Usando resultados padrões de teoria das categorias, temos.

Lema 3.1.2. A localização de um pretopos P por um diagrama filtrado qualquer D é um pretopos.

Lembremamos agora de um conceito da teoria dos modelos clássica.

Definição 3.1.3. Seja T uma teoria na assinatura Σ. O diagrama de Robinson de um T-
modelo M é uma extensão T ⊆ D(M) construı́da na assinatura ΣM, obtida adicionando
uma constante cm à Σ para cada m ∈ M, e cujas sequentes são T∪ {> ` ϕ(ca) : a ∈ ϕM}.

Notoriamente, o diagrama de um modelo classifica os homomorfismos partindo desse.

Teorema 3.1.4. Dado T-modelo M, homomorfismos h : M → N estão em bijeção com extensõs
de N à D(M)-modelo.

Demonstração: Dado extensão N′ ⊇ N ponha h(m) := cN′
m e dado homomorfismo h :

M→ N ponha cN′
m := h(m). É trivial verificar que essas ações estão bem definidas.

Notavelmente, podemos dar uma descrição do pretopos classificante do diagrama de
Robinson de um dado modelo por meio da técnica de localizações.
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Definição 3.1.5. Dado um modelo P M−→ Con, defina o diagrama de M como a localização
de P pelo diagrama

∫
Mop → P ,

Diag(M) := colim−−−→
(A,x)∈

∫
M

P/A

Observação 3.1.6. Como M preserva limites finitos categoria
∫

M é filtrada, confira o
corolário B.3.4.

Temos então o surpreendente teorema.

Teorema 3.1.7. Seja P o pretopos classificador da teoria T e P M−→ Con um modelo qualquer.
Diag(M) é o pretopos classificante do diagrama de Robinson do modelo (correspondente à) M.

Provemos antes o lema

Lema 3.1.8. Seja P um pretopos e ϕ um elemento de P . O corte P/ϕ classifica os definı́veis por
ϕ, isto é, dado pretopos Q temos

PTopos(P/ϕ,Q) ∼=
⊔

M:P→Q
Q(1, Mϕ)

Demonstração: Especificamos que os objeto da categoria na esquerda são pares (M :
P → Q, a : 1 → Mϕ) e os morfismos (M, a) → (N, b) são transformações α : M ⇒ N
com αϕ(a) = b. Dado M : P/ϕ → Q enviamos-o ao par (Mϕ∗, M(∆ϕ)), onde ϕ∗ : P →
P/ϕ com ação A 7→ π : A× ϕ → ϕ e ∆ϕ a diagonal ∆ϕ : ϕ → ϕ× ϕ, lembrando que
1P/ϕ

∼= ϕ e ϕ× ϕ ∼= ϕ∗(ϕ)). A ação nos morfismos então é óbvia.
Recı́procamente, dado par (M, a) definimos M : P/ϕ → Q mandando x : A → ϕ ao

produto fibrado de Mx ao longo de a. É rotina então verificar que essas ações estão bem
definidas e são mutualmente inversas. Para mais detalhes, veja [Br, 2.3.1].

Demonstração do Teorema (esboço): Um funtor Diag(M) → Q decompõe-se em uma
famı́lia (P/ϕ → Q)∫ M que, pelo lema, equivale à Nϕ : P → Q, a : 1 → Nϕ)∫ M.
Pois, os funtores NA correspondem à um modelo NA ∈ T-Mod(Q). Logo, o funtor
Diag(M) → Q determina para cada (ϕ ∈ P , x ∈ ϕM) um T-modelo Nϕ em Q e uma
constante c : 1→ Nϕ que então, passando ao colimite, induz um modelo N ∈ T-Mod(Q)
associado de constantes cx para cada x ∈ ϕM.

Para mais detalhes, veja [Br, 2.4.3].

Proposição 3.1.9. Todo diagrama Diag(M) é um pretopos local, isto é, o objeto terminal de
Diag(M) é projetivo e indecomponı́vel.

Demonstração: Veja [Br, 2.4.8].

Mencionamos, por fim, a relação do ponto de vista categorial dos conjuntos defı́niveis
com o diagrama da nosso modelo.

Definição 3.1.10. Dado modelo M, dizemos S ⊆ MA definı́vel sse há fórmula ϕ � A× B
e b ∈ MB tal que S = {x ∈ MA : M � ϕ(x, b)}. Deixamos De f (M) denotar a categoria
dos conjuntos definı́veis de um modelo M.

Proposição 3.1.11. A fatoração quociente-conservativo do modelo Diag(M)→ Con é dada por

Diag(M) Con

De f (M)

Demonstração: Veja [Br, 2.4.4].
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3.2 Esquemas Lógicos

Podemos agora expor a noção de esquemas lógicos, mas antes lembremos de alguns
fatos.

Dado um pretopos P , lembramos que sua indexação canônica sobre si mesmo, P ,
definida no exemplo 2.4.2, é uma pilha para a topologia coerente e, portanto (cf. corolário
2.5.2) equivale à um feixe na topologia coerente P ∈ FeiCoe(P) que por sua vez, pelo
teorema 2.3.9, equivale à um feixe equivariante OP ∈ BGFeiCoe (P). Alternativamente,
como todo pretopos P classifica uma teoria T, podemos equivalentemente descreverOP
como um feixe equivariante em BGT, pela proposição 2.1.7. Nomemamos OP de o feixe
estrutural de P . Daremos abaixo uma descrição explı́cita desse feixe como um objeto de
BGT, mas antes relembramos o leitor da descrição do grupoide da nossa teoria T.

Observação 3.2.1. Durante essas seção, trabalheremos com pretopoi associados das te-
orias que esses classificam, isto é, pares P e T com P ' PTop(Sin(T)), onde PTop(−)
o completamento a pretopos. Pois, lembrando que o funtor Sin(T) → PTop(Sin(T)) é
plenifiel e conservativo, indentificamos Sin(T) com sua imagem em P .

Definição 3.2.2 (bis). Deixe XT o espaço dos modelos cujos conjuntos subjacentes são
elementos de κ := max (|Σ|, ω) e cuja topologia é dada pelos básicos

Bϕ(a) := {M ∈ XT : a ∈ ϕM}

Para ϕ uma fórmula coerente em n variáveis livres e a = (ai)n ∈ κn. Seguindo, GT é
o grupoide de isomorfismos entre os modelos de XT, cuja topologia é a mais grossa que
torna os mapas de domı́nio e codomı́nio d0, d1 : GT XT contı́nuos e contém, para
todo tipo A e par a, b ∈ κ, os conjuntos

VA,a 7→b := { f : M
∼=−→ N : a ∈ AM, fA(a) = b}

Obtemos agora a descrição de OP .

Teorema 3.2.3. Seja P o pretopos classificante da teoria T. Temos OP (Bϕ(a)) ' P/ϕ. Em
especial, Γ(OP ) ' P .

Demonstração: Lembramos que estabelecemos a equivalência BGT ' FeiCoe(Sin(T))
mostrando que os feixes equivariantes (JϕK, θ), onde

JϕK = {(M, a) : M ∈ XT, a ∈ ϕM} π−→ XT e θ( f : M→ N, (M, a)) = (N, f (a))

geram o topoi BGT. Logo, garantimos que a equivalência1 BGT ' FeiCoe(P) envia
(JϕK, θ) ao representávelよϕ. Logo,

Hom(JϕK,OP ) ' Hom(よϕ,P)

Seguindo, dado étale equivariante (E, µ) de BGT e seção s : Bϕ(a) → E, afirmo que há
extensão única

Bϕ(a) JϕK

E
s

s

1Lembramos que, para P ' PTop(Sin(T)) temos uma equivalência FeiCoe(Sin(T)) '
FeiCoe(PTop(Sin(T))) dada levantando a inclusão Sin(T) ↪→ Ptop(Sin(T))
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Com efeito, dado (M, b) ∈ JϕK é fácilconstruir um isomorfismo f : M ⇒ N que manda a
sequência b em a. Como s deve ser equivariante, teremos que

s((M, b)) = f−1 f s((M, b))

= f−1.s( f .(M, b))

= f−1.s((N, f (b)))

= f−1.s((N, a))

= f−1.s(N)

Por ser equivariante, é claro que a definição acima não depende do isomorfismo f e que
determina univocamente s. Em suma, para um feixe equivariante F, teremos F(Bϕ(a)) ∼=
Hom(JϕK, F).

Finalmente, podemos obter

OP (Bϕ(a)) ∼= Hom(JϕK,OP ) ' Hom(よϕ,P) ' P(ϕ) = P/ϕ

Em especial, Γ(OP ) = Hom(J1K,OP ) =' Hom(よ1,P) ' P/1 ' P .

Teorema 3.2.4. Seja P o pretopos classificante da teoria T. Dado um modelo M ∈ XT, temos
(OP )M ' Diag(M)

Demonstração: Veja [Br, 3.2.4].

Corolário 3.2.5 (Representação subdireta). Todo pretopos admite mergulho em um produto de
pretopoi locais.

Em suma,

Teorema 3.2.6 (Breiner). SejaP o pretopos classificante da teoriaT. Pondo GT−→−→XT o grupoide
e OP ∈ BGT o feixe equivariante definidos acima, temos

i) Para todo ponto M ∈ XT, a fibra (OP )M é um pretopos local;

ii) P é isomórfico às seções globais de OP , i.e., P ' Γ(OP )

iii) Existe um morfismo conservativo de pretopos P � ∏M∈XT(OP )M.

Somos então motivados à seguinte definição.

Definição 3.2.7. Para todo pretoposP , denotamos por Spec(P) o par (P ,OP ), e referimos-
nos a ele como o esquema lógico afim (affine logical scheme) associado à P .

3.3 Espaços axiomatizados

Continuando no nossa translação das técnicas da Geometria Algébrica ao contexto
lógico, adaptamos as seguintes definições clássicas (cf., e.g., [EGA1, 1]) ao nosso ambi-
ente.

Definição 3.3.1. Um espaço axiomatizado é um par (G,OG), onde G um grupoide topológico
e OG um feixe equivariante de pretopoi em G. Dizemos (G,OG) localmente axiomatizado
(locally axiomatized) sse, para todo x ∈ G0 temos a fibra (OG)x um pretopos local. Um
morfismo entre espaços axiomatizados (G,OG)→ (F ,OF ) é um morfismo de grupoides
f : G → F associado de um morfismo de pretopoi φ : OF → f∗OG em BF . Um morfismo
entre espaços localmente axiomatizados ( f , φ) : (G,OG)→ (F ,OF ) é um morfismo entre
espaços axiomatizados tal que cada fibra do mapa transposto φ] : f ∗OG → OF preserva
o ideal máximal (dos subobjetos do terminal) das fibras de f ∗OG .
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Mostremos que o funtor esquema afim Spec(−) é um morfismo de PTopos aos local-
mente axiomatizados.

Teorema 3.3.2. Seja P e Q os pretopoi classificante de, respectivamente, T0 e T1. Afirmo que
um morfismo de pretopoi P → Q induz um morfismo de grupoides f : GT1 → GT0 e um
morfismo de pretopoi φ : OP → f∗OQ tal que as fibras do mapa transposto φ] : f ∗OP → OQ
são conservativas2.

Demonstração: Usando as equivalências

T0-Mod(Con) ' PTopos(P , Con) T1-Mod(Con) ' PTopos(Q, Con)

é claro que temos um morfismo f : GT1 → GT0 induzido por pós-composição. Ade-
mais, como a metade T1-Mod(Con) → PTopos(Q, Con) da equivalência acima é dada
enviando modelo M ao funtor cuja ação em Sin(T1) é ψ 7→ JψKM, dado ϕ ∈ P teremos

f−1(Bϕ(k)) = {M ∈ XT1 : k ∈ JϕK f M}

∼= {Q M−→ Con : k ∈ (MF)(ϕ)}

= {Q M−→ Con : k ∈ M(F(ϕ))}
∼= {M ∈ XT1 : k ∈ JFϕKM}
∼= B(Fϕ)(k)

E então f0 : XT1 → XT0 contı́nuo. Analogamente, mostramos que f1 contı́nua e, poranto,
temos f de fato um morfismo de grupoides. Seguindo, φ é definido na base como o óbvio

OP (Bϕ(k)) ' P/ϕ→ Q/Fϕ ' OQ(BFϕ(k))

Finalmente, lembrando que as fibras de OP são diagrams (cf. teorema 3.2.4) e a imagem
inversa f ∗ preserva fibras, é fácil ver que as fibras do adjunto φ] : f ∗OP → OQ são
da forma Diag(FM) → Diag(M). Pois, lembrando que um morfismo entre pretopoi
é conservativo sse é injetivo nos subobjetos (cf. [Br, 2.2.1]), usando que Diag(M) é o
pretopos classificador de D(M) temos o morfismo em questão conservativo por ser FM
um reduto do modelo M, cf. [loc. cit., 3.3.1].

Estamos agora em posição de definir nossa versão de esquemas, mas antes precisa-
mos falar sobre subabertos e coberturas.

Definição 3.3.3. Dado espaço axiomatizado (G,OG) e subgrupoide U ⊆ G, subespaço axio-
matizado associado a U é definido restringindoOG à U0, com ação herdada de U1 ⊆ G1. Ge-
ralmente, indentificamos um subgrupoide com seu subespaço associado. Um subespaço
U ⊆ G é dito aberto sse U0 ⊆ G0 e U1 ⊆ G1 são ambos abertos. Finalmente, dize-
mos uma famı́lia de subespaços abertos {Ui}I uma cobertura aberta para G para qualquer
α : x → y ∈ G1 há sequência βi : zi → zi+1 ∈ (Uin )1, i ∈ [0, n), com z0 = x e zn = 1 e
α = βnβn−1 · · · β1β0. Note que, em especial, teremos

⋃
I(Ui)0 = G0.

Definição 3.3.4 (Esquemas). Um esquema lógico (logical scheme) é um espaço localmente
axiomatizado (G,OG) que admite uma cobertura aberta {Ui}I tal que há pretopoi Pi com
Ui ' Spec(Pi). Deixe EsqLog a subcategoria plena de EspAx cujos objetos são esquemas
lógicos.

Temos a seguinte interessante resultado, que nos permite tratar esquemas lógicos
como objetos de descida.

2e, portanto, preservam o máximal de f ∗OG
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Proposição 3.3.5. Se (G,OG) um esquema lógico e {Ui}I uma cobertura aberta então o morfismo
geométrico canônico i : ∏I BUi → BG é uma sobrejeção aberta. Em especial, pelo teorema 1.2.10,
temos BG ' Des(i).

Demonstração: Veja [Br, 3.3.5].

Seguindo, estabelecemos que a propriedade de ser esquema é estável, e que ser es-
quema lógico é estável para básicos.

Lema 3.3.6. O subespaço aberto Bϕ(a) ⊆ Spec(P) é afim, com Bϕ(k) ' Spec(P/ϕ). O su-
bespaço aberto U ⊆ G de um esquema G é um esquema.

Demonstração: Veja [Br, 3.4.1]

Mostramos também um resultado de colagem de esquemas

Observação 3.3.7. Abaixo, para facilitar a leitura (e escrita), denotamos G1 e G0 para,
respectivamente, os morfismos e objetos de um grupoide G.

Lema 3.3.8 (Colagem). Seja (Gi,OGi )I uma famı́lia de espaços axiomatizados, (Uij)I uma famı́lia
de subespaços Uij ⊆ Gi e ϕij : Uij → Uji uma famı́lia de isomorfismos de EspAx tal que esses
dados satisfazem Uii = Gi, ϕ−1

ij (Uji ∩Ujk) = Uij ∩Uik e

ϕii = 1Gi ϕjk ◦ ϕij = ϕik (?)

Então existe espaço axiomatizado (G,OG), cobertura aberta {Ui}I de G e isomorfismos de espaços
axiomatiados ϕi : Gi → Ui tal que ϕi(Uij) = Ui ∩Uj e ϕij = ϕ−1

j ◦ ϕi. Ademais, dado espaço
(F ,OF ), os morfismos entre espaço axiomatiados f : G → F estão em bijeção com as famı́lias
fi : Gi → F que satisfazem f j ◦ ϕij = fi.

Demonstração: Para k ∈ {0, 1}, defina Gk := äI(Gk
i )/ ∼ onde (x, i) ∼ (y, j) sse x ∈ Uk

ij,
y ∈ Uk

ji e ϕk
ij(x) = y, note que as equações em (?) garantem ∼ uma equivalência. Ponha

ϕk
i : Gk

i → Gk os mapas de inclusão, a topolgia em Gk é dada por “V ⊆ Gk é aberto
sse (ϕk

i )
−1(V) ⊆ Gk

i para todo i ∈ I”. O mapa codomı́nio d0 : G1 → G0 é dados por,
representado por [−] as classes de equivalência, [ f : x → y] 7→ [x]. Como d0ϕ1

ij = ϕ0
ijd0

temos que a ação está bem definida. Ademais, dado aberto V ⊆ G0
i temos

(ϕ1
i )−1(d−1

0 (V)) = (d0ϕ1
i )−1(V) = (ϕ0

i d0)−1(V) = d−1
0 ((ϕ0

i )−1(V))

Logo d0 é contı́nuo. Análogamente, mostramos os demais mapas do grupoide bem de-
finidos e contı́nuos. Pondo Ui := ϕi(Gi) note (ϕk

i )
−1Uj = Uk

ij e então é claro a famı́lia
uma cobertura aberta de G. Ademais, dado aberto W ⊆ Gk

i temos (ϕk
j )
−1(ϕi(W)) =

(ϕk
ij)
−1(W ∩ Uij), logo ϕk

i : Gi → Ui são homeomorfismos3. Finalmente, definomos o
feixeOG colando os feixesOGi como usual. Sua ação equivariante é definida fibra à fibra:
dado f : x → y ∈ G1 há i ∈ I e f : x → y com ϕ1

i ( f ) = f , ponha então por

((d0)∗OG) f
∼= (OG)d0( f ) = (OG)x ∼= (OGi )x → (OGi )y ∼= ((d1)∗OG) f

Seguindo, dado famı́lia fi como no enunciado, definimos, para x ∈ Ui e k ∈ {0, 1},
mapas f k(ϕi(x)) = f k

i (x). A ação é obviamente bem definida. Esquecendo a estrutra
de grupoide, o enunciado nos dá informação suficiente para colar os mapas de feixes
e portanto obtemos um morfismo OF → f∗OG de feixes e, como equivariância é che-
cada fibra a fibra, temos-o um morfismo de feixees equivariates. Ademais, como temos
(OG)ϕi(x)

∼= (OGi )x notamos que os morfismos vão preservar o ideal maximal.
Finalmente, dado f : G → F simplesmente defina fi := f ◦ ϕi. É rotina então verificar

que essa famı́lia satisfará a condição requirida.

3É rotina verificar que um homemorfismo de grupoides levanta à isomorfismo de espaços axiomatizados.
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Obtemos agora um resultado fundamental.

Teorema 3.3.9. Temos a seguinte adjunção

PToposop EsqLog

Spec

Γ

>

Em especial, PTopos(E ,F ) ' EsqLog(Spec(F ), Spec(E)).

Demonstração (esboço): Dado G, fixe uma cobertura afim {Spec(Pi)}. Note que as
seções globais induzem uma famı́lia si : Γ(G) → Ei que, pelo teorema 3.3.2, levantam
a si : Spec(Ei) → Spec(Γ(G)). Definimos então a counidade η : G → Spec(Γ(G)) pondo
η(x) := si(x) para x ∈ Spec(Pi). Definimos o mapa estrutural ϕ] : η∗OΓ(G) → OG
usando que, por 3.3.5, temos BG ' Des(J) e então herdando os mapas s]i : s∗i OΓ(G) →
OSpec(Pi). Seguindo, a unidade é dada pela equivalência P ' Γ(Spec(P)).

Para a verificação dos diagramas triangulares, veja [Br, 3.5.1]

Teorema 3.3.10. A categoria dos esquemas lógicos admite limites finitos, sendo esses calculados
como colimites na categoria dos pretopoi.

Demonstração: Veja [Br, 3.5.4]. A ideia da demonstração é clara: usar o teorema 3.3.9
para obter diretamente os limites dos esquemas afins como colimites de pretopoi e, no
caso geral, colar esquemas ao longo de uma base afim, por meio do lema 3.3.8.

3.4 Grupo de Isotropia

Apresentamos agora uma aplicação dos nossos métodos de esquemas lógicos. Con-
sideramos aqui a teoria de “Topoi Cruzados (Crossed Topoi)”, desenvolvida por Jonathon
Funk, Pieter Hofstra e Benjamin Steinberg, [FHS]. Os objetos são os análogos topos-
teóricos aos módulos cruzados (Crossed Modules) da álgebra homológica. O trabalho ex-
plora (e define!) o grupo de isotropia de um topos, objeto que pode ser usado para in-
duzir estrutura cruzada canônica. Nosso interesse aqui, no entanto, é na descrição lógica
desse grupo obtida por Breiner, que o caracteriza por meio de automorfismos definı́veis.

Definição 3.4.1. Dado um topos E , o funtor de isotropia é o mapa Z : E op → Grp que
associa a cada a ∈ E o grupo de automorfismos da projeção E/a → E . No trabalho de
Funk et al é verificado que Z preserva colimites e é, portanto, representável. Chamamos
de grupo de isotropia o grupo Z ∈ Grp(E) que representa nosso funtor Z .

Um caso especial de interesse é o

Proposição 3.4.2. Para P um pretopos, o grupo de isotropia de FeiCoe(P) é dado por

Z(A) := Aut(A∗) =

α

∣∣∣∣ P P/A∼= α


Demonstração: [Br, 4.3.3]

Introduzimos agora os objetos lógicos que descreverão nosso grupo de isotropia.
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Definição 3.4.3. Dado pretopos P e modelo M : P → Con, dizemos que um automor-
fismo α : M ∼= M é definı́vel sse para todo tipo B há objeto AB, elemento x0 ∈ AM

B e
fórmula σ(x, y, z) tal que

α(a) = b ⇐⇒ M � σ(a, b, x0)

Seja A um tipo. Dado uma famı́lia de fórmulas {xyz : σB}B, com x, y : B e z : A, dizemos-
a uma famı́lia de automorfismos A-definı́veis sse para todo modelo M e a ∈ AM, as
fórmulas {σB(x, y, a)}B definem um automorfismo de M.

Seja M um modelo. Dado uma famı́lia de fórmulas {σB(x, y, aB)}B no diagrama de Ro-
binson de M, com x, y : B e aB uma constante, dizemos-a uma famı́lia de automorfismos
M-definı́veis sse para todo homomorfismo h : M → N as fórmulas {σB(x, y, h(aB))}B
definem um automorfismo de N.

Proposição 3.4.4. Dado pretopos P e A ∈ P , o grupo de isotropia Z(A) é isomórfico à famı́lia
de atuomorfismos A-definı́veis. Ademais, dado modelo M : P → Con, a fibra ZM do grupo de
isotropia é isomórfica à famı́lia de automorfismos M-definı́veis.

Demonstração: Veja [Br, 4.3.7, 4.3.9].
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Apêndice A

Lógica Categorial

A.1 Sintaxe

Definimos abaixo a sintaxe da nossa lı́ngua. Trabalhamos em uma linguagem tipada,
como usual em lógica categorial.

Definição A.1.1. Uma assinatura (signature) Σ é

• Um cojunto Σt, cujos membros chamamos de tipos;

• Para cada lista A1, A2, · · · , An de tipos, um conjunto (possivelmente vazio) (ΣR)A1,A2,··· ,An

de relações. Escrevemos R ≤ A1A2 · · · An para denotar que R está em (ΣR)A1,A2,··· ,An .
Permitimos que n = 0 e, nesse caso, chamamos R de variável proposicional;

• Para cada lista A1, A2, · · · , An, B de tipos, um conjunto (possivelmente vazio) (Σ f )A1,A2,··· ,An,B

de funções. Escrevemos A1A2 · · · An
f−→ B para denotar que f está em (Σ f )A1,A2,··· ,An,B.

Permitimos que n = 0 e, nesse caso, chamamos f de constante e escrevemos f : B;

Exemplo A.1.2. Damos abaixo dois exemplos de assinaturas,

a) A teoria dos anéis é geralmente especı́ficada na assinatura que tem um único tipo ?,
par de constantes 0, 1 : ?, terna de funções +, ∗ : ?? → ? e (−)−1 : ? → ? e nenhuma
relação.

b) A teoria dos espaços vetoriais é geralmente especı́ficada em uma assinatura com dois
tipos, um para escalares e outro para vetores.

Podemos agora definir uma lı́ngua sobre nossa assinatura.

Definição A.1.3. Dado uma assinatura Σ, os termos sobre Σ são uma famı́lia de conjuntos
(Term(Σ)A)A∈Σt definidos recursivamente por

i) Para cada número natural i e tipo A de Σ, temos a variável xA
i em Term(Σ)A. Geral-

mente, omitiremos o sobrescrito das variáveis.

ii) Para cada constante c : A, temos c ∈ Term(Σ)A;

iii) Para cada função A1A2 · · · An
f−→ B e sequência ti ∈ Term(Σ)Ai para i ≤ n, temos

f (t1, t2, · · · , tn) ∈ Term(Σ)B.

Geralmente escrevemos t ∈ Term(Σ)A como t : A.
Seguindo, o conjunto das fórmulas sobre Σ, denotado por Form(Σ), é definido recursi-

vamente por

i) >,⊥ ∈ Form(Σ);
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ii) Para cada par de termos t, s ∈ Term(Σ) com t, s : A, temos t = s ∈ Form(Σ);

iii) Para cada relação R ≤ A1A2 · · · An e sequência ti ∈ Term(Σ)Ai para i ≤ n, temos
R(t1, t2, · · · , tn) ∈ Form(Σ).

iv) Para cada par ϕ, ψ ∈ Form(Σ) temos ϕ ∨ ψ e ϕ ∧ ψ em Form(Σ);

v) Para cada ϕ ∈ Form(Σ), i natural e tipo A temos ∃xA
i ϕ ∈ Form(Σ);

vi) Para cada par ϕ, ψ ∈ Form(Σ) temos ϕ→ ψ e ¬ϕ em Form(Σ).

vii) Para cada ϕ ∈ Form(Σ), i natural e tipo A temos ∀xA
i ϕ ∈ Form(Σ);

O subconjunto de Form(Σ) fechado para as condições de i) a v) será o conjunto de
fórmulas coerentes de Σ, denotado por FormCo(Σ)

As fórmulas admitem uma noção similar a de tipo, mas para descrever essa precisa-
mos definir o conceito de variável livre. Intuitivamente, diremos que uma ocorrência de
váriavel é livre quando não é quantificada.

Definição A.1.4. Dado uma assinatura Σ, defina recursivamente a função VL em Term(Σ)
pondo VL(xi) = xi e VL( f (t1, t2, · · · , tn)) =

⋃
n VL(ti). Seguindo, defina VL em Form(Σ)

pondo

i) VL(>) = VL(⊥) = ∅;

ii) VL(t = s) = VL(t) ∪VL(S);

iii) VL(R(t1, t2, · · · , tn)) =
⋃

n VL(ti);

iv) VL(ϕ ∧ ψ) = VL(ϕ ∧ ψ) = VL(ϕ→ ψ) = VL(ϕ) ∪V(ψ);

v) VL(∃xA
i ϕ) = VL(∀xA

i ϕ) = VL(ϕ) \ {xA
i };

vi) VL(¬ϕ) = VL(ϕ).

As variáveis livres de uma fórmula ϕ são os elementos de VL(ϕ).
Podemos agora definir fórmulas contextualizadas. Um contexto é uma lista finita x =

x1x2 · · · xn de variáveis distintas. O caso n = 0 é permitido, denotamos esse contexto
vazio por []. O tipo de um contexto é a lista (possivelmente com repetições) dos tipos das
variáveis que ocorrem no contexto em questão, em ordem de aparecimento. Diremos um
contexto x adequado a uma fórmula ϕ se todas variáveis livres de ϕ ocorrem em x. Uma
fórmula contextualizada é um par x.ϕ, onde x um contexto adequado à fórmula ϕ.

Observação A.1.5. Uma variável pode ser livre em uma fórmula mesmo tendo instâncias
não livres, como em ϕ = (∃x1(x1 = x2)) ∨ (x1 = x1), onde apenas as duas últimas
ocorrências de x1 são livres, mas VL(ϕ) = {x1, x2}.

Podemos agora definir teorias.

Definição A.1.6. Um sequente (sequent) é uma expressão formal (ϕ `x ψ), com ϕ e ψ
fórmulas e x um contexto adequado à ambas. Uma teoria é um conjuntoT (possı́velmente
vazio) de fórmulas.
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A.2 Semântica Categorial

Descrevemos nessa seção uma maneira de interpretar as expressões lógicas da seção
anterior dentro de uma categoria. O conteúdo abaixo é fundamental à lógica categorial.

Definição A.2.1. Seja Σ uma assinatura e P um pretopos. Uma Σ-estrutura M em P
consiste dos seguintes dados,

• Para cada tipo A de Σ, uma objeto MA de P . Extendemos essa definição pondo
M(A1A2 · · · An) = ∏n MAi;

• Para cada relação R ≤ A1A2 · · · An, um subobjeto MR ≤ M(A1A2 · · · An) de P ;

• Para cada função A1A2 · · · An
f−→ B, um morfismo M(A1A2 · · · An)

M f−→ MB em P ;

Um homomorfismo M h−→ N entre duas Σ-estruturas M e N em P é uma famı́lia de morfis-

mos MA
hA−→ NA de P para cada tipo A tal que

i) Para toda relação R ≤ A1A2 · · · An, existe um morfismo MR → NR que faz o dia-
grama abaixo comutar

MR M(A1 · · · An)

NR N(A1 · · · An)

(hAi )n

ii) Para toda função A1A2 · · · An
f−→ B, o diagrama abaixo comuta

M(A1 · · · An) MB

N(A1 · · · An) NB

M f

∏n hAi hB

N f

Definimos Σ-Str(P) como a categoria dos homorfismos entre Σ-estruturas.

Seguindo, podemos estender as interpretações de uma Σ-estrutura ao resto da nossa
lı́ngua.

Definição A.2.2. Seja P um pretopos e M ∈ Σ-Str(P). Dado um termo t : B e um
contexto x de tipo A1A2 · · · An tal que todas variáveis presentes em t ocorrem em x, defi-
nimos a seta Jx.tKM : M(A1 · · · An)→ MB como

• Se t é uma variável, teremos-o igual a um dos xi e então pomos Jx.tKM como a
i-ésima projeção de M(A1 · · · An);

• Se t é da forma f (t1, · · · , tn) então Jx.tKM := M f ◦ (Jx.tiKM)n

Analogamente, definimos recursivamente as interpretações das fórmulas. Assumindo
que em todos o casos abaixo x é adequado à fórmula em questão, temos que

• Jx.>KM e Jx.⊥KM são, respectivamente, o objeto máximo e mı́nimo de SubP (M(A1 · · · An));

• Para cada par de termos t, s ∈ Term(Σ) com t, s : B, Jx.(t = s)KM é o equalizador do

par Jx.tKM, Jx.sKM : M(A1 · · · An) MB ;
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• Para cada relação R ≤ B1B2 · · · Bn e sequência ti ∈ Term(Σ)Bi para i ≤ n, Jx.R(t1, t2, · · · , tn)KM

é definido pelo produto fibrado abaixo

Jx.R(t1, t2, · · · , tn)KM MR

M(A1 · · · An) M(B1 · · · Bn)
(Jx.tiKM)n

• Para cada ϕ ∈ Form(Σ), pomos Jx.¬ϕKM := ¬Jx. 6= ϕKM em SubP (M(A1 · · · An));

• Para cada par ϕ, ψ ∈ Form(Σ), pomos

Jx.(ϕ ∨ ψ)KM := Jx.ϕKM ∨ Jx.ψKM

Jx.(ϕ→ ψ)KM := Jx.ϕKM → Jx.ψKM

Jx.(ϕ ∧ ψ)KM := Jx.ϕKM → Jx.ψKM

Onde cada operação é definida em SubP (M(A1 · · · An));

• Para cada ϕ ∈ Form(Σ) e variável y de tipo B, pomos Jx.∃yϕKM como a imagem da
composição

Jxy.ϕKM � M(A1A2 · · · AnB)
π−→ M(A1A1 · · · An)

Analogamente, Jx.∀yϕKM := ∀π(Jxy.ϕKM), onde π é o mesmo mapa que acima.

Dado uma sequente σ = (ϕ `x ψ), dizemos que M satisfaz σ se Jx.ϕKM ≤ Jx.ψKM em
Sub(M(A1 · · · An)). Quando M satisfaz todas sequentes de uma teoria T dizemos-o um
modelo de T. Denotamos por T-Mod(P) a subcategoria plena de Σ-Str(P) dos modelos
de T.

Observação A.2.3. É claro, se reduzirmos nossas considerações à fragmentos da nossa
lı́ngua, não precisamos de toda estrutura categorial que um pretopos dispõe de. Um
exemplo trivial: se estamos interessados apenas em fórmulas geradas por conjuções de
atômicas então uma categoria com limites finitos nos basta.

Lema A.2.4. Funtores de pretopos preservam validação. Explı́citamente, seja F : P → Q em
PTopos e M ∈ T-Mod(P). Defina FM ∈ Σ-Str(Q) pondo (FM)A := F(MA), (FM)R :=
F(MR) e (FM) f := F(M f ). Temos então FM ∈ T-Mod(Q). Ademais, dado sequente σ, se
M � σ então FM � σ, com a recı́proca valendo se T é conservativo.

Demonstração: Trivial. Para a condição final basta notar que M � (ϕ ` ψ) sse Jϕ ∧ ψK ∼=
JϕK.

Exemplo A.2.5. Mencionamos dois de interpretações de teorias em uma categoria.

1. Um exemplo comum de interpretação de teorias em um topoi é dado pelos feixes de
anéis, que o leitor pode reconhecer como AnélCom−Mod(Fei(X)), com AnélCom
a teoria dos anéis comutativos.

2. Outro exemplo comum são os grupos de Lie, que reconhecemos como Grupo −
Mod(VarSua), com Grupo a teoria dos grupos e VarSua a categoria das varieda-
des suaves. Note que VarSua não é um pretopos, mas ainda assim tem estrutura
suficiente1 para interpretar a teoria dos grupos, cf. a observação A.2.3.

1Nomeadamente, a estrutura necessária é a presença de produtos finitos
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A.3 Teorias e Categorias

Mostramos agora uma maneira de obter uma categoria a partir de uma teoria e vice-
versa.

Definição A.3.1. Dado contextos x = (x1, x2, · · · , xn) e y = (y1, y2, · · · , yn), diremos as
fórmulas x.ϕ e y.ψ α-equivalentes se podemos obter ψ substituindo as ocorrências livres
de xi por yi em ϕ. Dado uma teoria coerente T, sua categoria sintática (syntactical category),
Sin(T), tem como objetos classe de fórmulas coerentes [x.ϕ] α-equivalentes e como mor-
fismos2 [x.ϕ] → [y.ψ] classes de fórmulas coerentes [xy.θ] T-demonstravelmente funcio-
nais, isto é, tal que as sequentes abaixo são demonstráveis3 em T

ϕ `x ∃y(θ) θ `xy ϕ ∧ ψ θ ∧ θ′ `x,y,z y = z

Onde θ′ é θ onde toda instância livre de yi foi substituida por zi, para z um contexto
qualquer disjunto de x e y.

Proposição A.3.2. Sin(T) é uma categoria coerente.

Demonstração: Veja [Elephant, D, 1.4.10].

Proposição A.3.3. Dado uma teoria coerente T, temos uma equivalência natural em D

Coe(Sin(T),D) ' T-Mod(D)

para uma categoria coerente D. Analogamente, pondo P [T] o completamento a pretopos (cf.
B.1.3) de Sin(T), temos equivalência natural em Q

PTopos(P [T],Q) ' T-Mod(Q)

para um pretoposQ. Em especial, temos uma equivalência PTopos(P [T],Q) ' Coe(P [T],Q),
natural no pretopos Q.

Demonstração (esboço): Veja [loc. cit., D, 1.4.12] para os detalhes. Mencionamos que a
metade T-Mod(Q) → PTopos(P [T],Q) da equivalência envia M no funtor cuja ação é
[ϕ] 7→ JϕKM. A outra metade, por Yoneda, corresponde à tomar o funtor P [T] → Q em
algum objeto genérico U ∈ P [T], que batizamos de modelo genérico de T. Considerações
análogas se aplicam ao caso coerente.

Fazemos agora o caminho inverso da definição A.3.1, definindo uma teoria a partir
de uma categoria.

Definição A.3.4. Dado uma categoria coerente pequena C, defina uma assinatura ΣC
pondo

• Para cada c ∈ C0, um tipo dce;

• Para cada subobjeto R : ∏n Ai � B, uma relação dRe : ∏ndAie ≤ dBe.

• Para cada morfismo f : ∏n Ai → B, uma função d f e : ∏ndAie → dBe.

Defina então a teoria TC sobre ΣC cujas sequentes são

• > `x d1ce(x) = x, para cada c ∈ C0;

• > `x dg f e(x) = dge(d f e(x)), para cada c
f−→ d

g−→ e ∈ C;

2assumimos x e y disjuntos. Como estamos falando de classes de fórmulas α-equivalentes não há perda
de generalidade

3Dizemos uma sequente σ demonstrável sse para todo M ∈ TMod(Con) temos M � σ
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• > `[] ∃x(>) e > `x,y x = y, para qualquer par de variáveis x e y de tipo d1e, com 1
o terminal de C;

• > `x [dhe(d f e(x)) = dke(d f e(g))], [dhe(x) = dke(y)] `x,y [∃z(d f e(z) = y) ∧
(dge(z) = y)] e [(d f e(x) = d f e(y)) ∧ (dge(x) = dge(y))] `x,y x = y, as chaves
adicionadas para facilitar a leitura, para cada produto fibrado em C como o abaixo

A×C B A

B C

k

h f

g

• > `x
∨

n(∃yi(d fie(yi) = x)), para cada famı́lia finita juntamente epimórfica { fi :
Ui → U}n

Lema A.3.5. Dado categorias coerentes C e D, um funtor F : C → D que preserva limites finitos
é coerente sse ele preserva famı́lia finitas juntamente epimórfica.

Demonstração: Lembramos que um funtor é coerente sse é regular e preserva uniões
finitas. Pois, um funtor é regular sse preserva limites finitos e epimorfismos regulares.
Note que em uma categoria regular os epimorfismos regulares coincidem com os epi-
morfismos ortogonais à monomorfismos pela esquerda. Como F preserva famı́lias finitas
juntamente epimórfica, em especial, ele preserva epimorfismos. Ademais, por preservar
limites finitos, o funtor preserva monomorfismos. É claro então que um epimorfismo é
ortognal à um monomorfismo pela esquerda então sua imagem por F também o será,
logo F é regular. Finalmente, note que uma famı́lia finita de subobjetos {Ui � U}n é
juntamente epimórfica sse

∨
n Ui = U, portanto F preserva uniões.

Proposição A.3.6. Para toda categoria coerente C, temos Sin(TC) ' C. Para todo pretopos P ,
temos PTop(Sin(TP )) ' P .

Demonstração: Dado categoria coerente D, a equivalência entre modelos TC-Mod(D) e
funtores C → D que preservam limites finitos e famı́lias finitas juntamente sobrejetivos
é imediata. Logo, pelo lema, temos Coe(C,D) ' TC-Mod(D). Obtemos então a equi-
valência Coe(C,D) ' Coe(Sin(TC),D) e, por Yoneda, obtemos Sin(TC) ' C. O caso
para um pretopos é análogo.
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Apêndice B

Revisão de categorias

B.1 Pretopoi

Relembramos aqui alguns fatos básicos de pretopoi e categorias coerentes que serão
usados durante o trabalho.

Definição B.1.1. Dizemos que uma categoria C tem imagens sse para todo f : x → y existe
subobjeto im( f ) � y tal que im( f ) é o menor subobjeto pelo o qual f fatora por, ou seja,
sse a inclusão Sub(y) ↪→ C/y admite adjunto à esquerda im. Uma categoria é dita coe-
rente (coherent) sse i) tem limites finitos; ii) tem imagens; iii) epimorfismos regular (i.e.,
aqueles que acontecem como coequalizadores) são estáveis sob produtos fibrados e iv)
os retı́culados de subobjetos tem uniões e essas são estáveis sob produtos fibrados. Um
funtor entre categorias coerentes é dito coerente sse preserva limites finitos, epimorfismos
regulares e uniões. Denotamos por Coe a categoria dos funtores coerentes entre catego-
rias coerentes.

Definição B.1.2. Dado A, B ∈ C dizemos o coproduto A ä B disjunto sse as inclusões
A � A ä B e B � A ä B são mônicas e sua intesersecção (em Sub(A t B)) é o objeto
inicial. Dizemos positiva uma categoria coerente onde os coprodutos são disjuntos.

Dado subobjeto R � A2 em uma categoria C com limites finitos, dizemos-o uma
relação de equivalência sse, pondo π0, π1 : A2 → A as projeções, i) há r : A → R com
π0Rr = 1A = π1Rr; ii) há s : R → R com π0Rs = π1R e π1Rs = π0R; iii) há t : P → R,
com P o fibrado abaixo

P R

R A

q

p π0R

π1R

tal que π0Rt = π0Rp e π1Rt = π1Rq. Note que todo núcleo par (kernel-pair) de um
morfismo induz uma relação de equivalência. Dizemos efetiva uma categoria onde toda
relação de equivalência vem de um núcleo par.

Um pretopos é uma categoria regular positiva e efetiva. Denotamos por PTopos a
subcategoria plena de Coe cujos objetos são pretopoi.

Teorema B.1.3 (Completamento a Pretopos). O funtor inclusão PTopos ↪→ Coe admite
adjunto à esquerda PTop(−). Ademais, a unidade C → PTop(C) é conservativa, plena e plena
nos subojetos1.

Demonstração: Veja [Elephant, A, 1.4.5, 3.3.10]

1Isto é, se para qualquer B ≤ IA há A′ ∈ P com IA′ ∼= B
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Por ser conservativo, identificaremos C com sua imagem em PTop(C).

Observação B.1.4. Como toda categoria coerente acontece como uma categoria sintática
Sin(T), podemos descrever o completamento a pretopos como uma operação nas teorias.
Uma observação celebrada de Makkai e Reyes (cf. [MaRe]) afirma que o funtor acima
corresponde à T 7→ Teq, com Teq a eliminação de imaginários da teoria, como definido
por Shelah.

Falemos agora de fatoração de morfismos entre pretopoi.

Definição B.1.5. Dizemos um funtor entre pretopos F : P → Q um quociente sse i) para
todo B ∈ Q existe A ∈ P com epimorfismo IA � B e ii) F é pleno nos subobjetos.

Proposição B.1.6 (Fatoração conservativo-quociente). Todo funtor entre pretopos F : P →
Q admite fatoração em um funtor quociente seguido de um funtor conservativo. Ademais, os
morfismos quocientes são ortogonais aos conservativos.

Demonstração: Veja [Br, 2.2.4].

Observação B.1.7. Notamos que o funtor de feixes coerentes, FeiCoe, manda a fatoração
conservativo-quociente de morfismos coerentes na fatoração sobrejeção-mergulho de mor-
fismos geométricos.

B.2 Categorias Internas

Expomos aqui alguns fatos sobre categorias interna. Incluı́mos essa seção em ten-
tativa de tornar o trabalho mais autosuficiente, fornecendo ferramentas para a próxima
seção. Fixamos um topos S no que segue.

Definição B.2.1. Uma categoria C interna à S consiste de

• Objetos C1 e C0 de S , que serão tratados como, respectivamente, os objetos de mor-
fismos e de objetos da categoria C;

• Morfismos C1 C0 C1
d0

d1

i e C2
c−→ C1 de S , com C2 sendo definido por

C2 C1

C1 C0

π0

π1

d0

d1

De forma que esses dados satisfazem os axiomas usuais de categorias na lógica interna à
S . Explicitamente,

d0i = 1C0 = d1i d0c = d0π1 d1c = d1π0 c(1× c) = c(c× 1) c(1× i) = 1C1 = c(i× 1)

Analogamente, um funtor interno F entre categorias internas C e D à S é um par de morfis-

mos C0
f0−→ D0 e C1

f1−→ D1 de S com

f0dC
0 = dD

0 f0 f1dC
1 = dD

1 f1 iD f0 = f1iC f1cC = cD( f1 × f1)

Denotamos por Cat(S) a categoria de funtores internos à S .

52
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Observação B.2.2. Existe uma boa relação entre as categorias internas definidas aqui e as
indexadas, tratadas no primeiro capı́tulo. Toda categoria C interna à S admite indexação
canônica [C]S . De fato, a cada i de S associemos à categoria [C]i, cujos objetos são da

forma i x−→ C0 e morfismos “x
f−→ y” são setas i

f−→ C1 satisfazendo o diagrama abaixo

i C0

C0 C1

x

y f

t

s

A ação C 7→ [C] define um mergulho pleno da 2-categoria Cat(S) à 2-categoria das cate-
gorias S-indexadas, cf. [Elephant, B, 2.3.3]

Dado uma categoria S-indexada DS e uma C interna à S , um diagrama de formato
C em DS é um par (F ∈ DC0 , d∗0 F

µ−→ d∗1 F) de forma que µ é, a menos de isomorfismo,
unitário é associativo, onde (−)∗ denota a ação de pullback. Note que um diagrama de

formato C na indexação canônica de S é simplesmente um par (F
f−→ C0, d∗1 F

µ−→ F), com
µ uma ação unitária e associativa. Um morfismo de diagramas (F, µ)→ (G, σ) é uma seta
F → G em DC0

S que comuta com µ e σ. Denotamos por [C,DS ] a categoria de diagramas
de formato C em DS .

Lema B.2.3. Para uma categoria interna C e uma S-indexada DS , a categoria [[C]S ,DS ] de
transformações naturais S-indexadas, é equivalente à [C,DS ].

Demonstração: Veja [Elephant, B, 2.3.13]

Uma fibração discreta em S é um funtor interno J
F−→ C tal que o diagrama abaixo

J1 J0

C1 C0

d1

F1 F0

d1

É um produto fibrado.

Lema B.2.4. Fazendo dFib(S) é a categoria de fibraçãoes internas entre categorias internas à S
então, para qualquer C interna à S , temos

dFib(S)/C ' [Cop,S ]

Evocativamente, denotamos a fibração discreta corespondente a um diagrama C
F−→ S por

∫
F

Demonstração (esboço): Dado diagrama (F
f−→ C0, d∗1 F

µ−→ F) considere o produto fi-
brado abaixo,

C1 ×C0 F F

C1 C0

π

π f

d1

É rotina mostrar que as setas µ, π : C1 ×C0 F F formam uma categoria (com
d1 = π e d0 = µ), que claramente define uma fibreção discreta sobre C. Seguindo, temos
a clara ação nas setas

[(F
f−→ C0, d∗1 F

µ−→ F)
k−→ (G

g−→ C0, d∗1G
φ−→ G)] 7→ (F0

k−→ G0, C1×C0

1×C0 k
−−−→ C1 ×C0 G)
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O “lema do pullback”mostra que, para um par de funtores internos A
f−→ B

g−→ C, temos
f uma fibreção discreta sse g f uma fibração discreta, e então a ação acima é bem definida.

Reciprocamente, dado uma fibração discreta

J1 J0

C1 C0

d1

F1 F0

d1

Como d∗1 J0 ∼= J1 basta associar a fibração ao diagrama (J0
F0−→, d∗1 J0

d1−→ J0).
As ações são rapidamente vistas como, a menos de um isomorfismo, mutualmente

inversas e o resultado segue. Para mais detalhes, cf. [Elephant, B, 2.5.3]

B.3 Topoi sobre uma base

Fazemos aqui uma curta exposição da teoria de Topoi sobre uma base, seguimos os
textos [Elephant, B] e [Joh2].

Um S-topos é simplesmente um morfismo gemétrico p : E → S . Dado C uma cate-
goria interna à S e um S-topos p : E → S , note que defininindo p∗C da maneira óbiva,
obtemos uma categoria interna à E . Note ademais que um diagrama C→ ES equivale a
um p∗C→ E .

Observação B.3.1. Note que todo S-topos E p−→ S induz um topos S-indexado pondo
E i
S = E/p∗i. Por meio dessa ação, podemos considerar Topos/S , a 2-categoria dos S-

topoi, como uma sub-2-categoria da 2-catagoria dos topoi S-indexados, ToposS . Uma
demonstração disso pode ser encontrada em [Elephant, B, 3.1.5].

Definição B.3.2. Seja E p−→ S um S-topos e C uma categoria interna à S . Diremos que um

diagrama Cop F−→ E é plano (flat) sse, para
∫

F → p∗C a fibração discreta correspondente
ao F, temos

∫
F uma categoria filtrada na lógica interna à S . Denotamos por Pla(Cop, E)

a subcategoria plena de diagramas planos.

Teorema B.3.3. Dado C ∈ Cat(S), C é filtrada sse o funtor SC
colim−−→C−−−→ S , dado por

colim−−−→
C

(D→ C) := coeq( D1 D0 )

preserva limites finitos

Demonstração: Veja [Joh2, 2.58]

Corolário B.3.4. Seja C ∈ Cat(S) e E ∈ Topos/S . Se C tem limites finitos então Cop F−→ E é
plano sse F preserva limites finitos

Teorema B.3.5 (Diaconescu). Dado S-topos E p−→ S e categoria interna C, temos a equivalência

Pla(Cop, E) ' Topos/S(E , [C,S ])

natural em E .

Demonstração: Veja [Elephant, B, 3.2.7]

Teorema B.3.6. Dado um S-topos E p−→ S , são equivalentes

i) ES tem admite famı́lia S-indexda de separadores;
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ii) Existe um objeto B de E tal que todo objeto e de E aconte como subquociente de algum p∗i× B,
isto é, para todo objeto e de E há i de S e a de E com morfismos

a

p∗i× B e

Se as condições acima ocorrem diremos p limitado e B um limite para p.

Demonstração: Veja [Elephant, B, 3.1.6].

Lema B.3.7. O S-topos [C,S ] é limitado.

Demonstração: Veja [loc. cit., B, 3.2.1]

Teorema B.3.8 (Giraud para S-topoi). Dado um S-topos E p−→ S , são equivalentes

i) p é limitado;

ii) Existe categoria interna C à S e uma inclusão E ↪→ [C,S ]

Demonstração: Veja [loc. cit., B, 3.3.4]

Para entender o paralelo do teorema acima com o resultado clássico de Giraud, pre-
cisamos relembrar-nos da equivalência entre subtopoi e categorias de feixes internos.

Definição B.3.9. Dado um topos E com classificador de subobjetos Ω, um operador local

em E é um morfismo Ω
j−→ Ω que faz os diagramas comutarem

1 Ω

Ω

>

>
j

Ω Ω

Ω

j

j
j

Ω×Ω Ω

Ω×Ω Ω

∧

j×j j

∧

Como Ω representa o (pseudo)funtor Sub, o operador local j induz uma ação nos suboje-
tos que denotaremos por (−) : Sub(A) → Sub(A). Dizemos j-feixe um objeto F ∈ E tal
que, para todo subobjeto S ≤ A com S = A, a inclusão induz uma bijeção

E(S, F) ∼= E(A, F)

Denotamos por Feij(E) a subcategoria plena de j-feixes.

Teorema B.3.10. Operadores locais em um topos S equivalem a inclusões E ↪→ S por meio da
ação j 7→ (Shj(S) ↪→ S). Para a ação inversa, se L o refletor de E ↪→ S note que para S ≤ A
temos LS ≤ LA e, portanto, fazendo o pullback ao longo da unidade A → LA, obtemos um
subobjeto cL(A) ≤ A. No total, temos um endomorfismo em Sub(A) natural em A que, por
Yoneda, induz um mapa Ω→ Ω.

Demonstração: Veja [Elephant, A, 4.4.8].

Obtemos então

Teorema B.3.11. Dado C interna à S , defina topologias de grothendieck internas e feixes internos
usando a lógica interna. Para cada topologia de grothendieck interna J existe operador local j
correspondente à J com Feij[C,S ] ' FeiJC.

Demonstração: Uma demonstração para S = Con está diponı́vel em [SGL, V, 1.2]. Ob-
temos o caso geral por meio da lógica interna, cf. 1.1.4.
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Deixe PlaJ(C, E) a subcategoria plena de Pla(C, E) dos funtores J-contı́nuos.

Teorema B.3.12. Dado S-topos E p−→ S e sı́tio interno (C, J), temos a equivalência

PlaJ(C, E) ' Topos/S(E , FeiS (C, J))

natural em E .

Demonstração: Para S = Con, veja [SGL, VII, 10.2]. Confira a observação acima.
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