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Resumo

Aneurismas cerebrais são patologias geralmente assintomáticas e com uma letalidade re-
lativamente alta. O diagnóstico é realizado por um especialista, que examina centenas de
imagens médicas diariamente em um processo repetitivo e fatigante. Para mitigar estes
problemas, soluções por aprendizado profundo são desenvolvidas. Estas soluções utilizam
apenas características locais da imagem para realizar a tarefa de segmentação semântica,
exceto o modelo GLIA-Net que concilia as informações globais de localização e contexto
do aneurisma com as informações locais referentes aos voxels vizinhos mais próximos da
região em uma única rede neural e estabeleceu um novo referencial de segmentação de
aneurismas em imagens de angiografia por tomografia computadorizada (ATC). Este tra-
balho é responsável pelas seguintes contribuições: 1) Adaptação do projeto GLIA-Net
para a segmentação semântica de aneurismas cerebrais em imagens de TOF angio-RM,
uma modalidade não ionizante e não invasiva diferentemente da modalidade ATC; 2)
Treinamento do modelo GLIA-Net no banco de dados do desafio ADAM, um desafio de
segmentação semântica de aneurismas intracranianos; 3) Proposição do uso de uma média
aritmética ponderada linearmente que ressalte os voxels centrais de um patch na compo-
sição da máscara de segmentação do exame a partir da máscara dos patches da imagem
original. Foram obtidos os seguintes resultados em um banco de dados de validação com
23 exames: coeficiente de similaridade de Sorensen-Dice = 0,110, distância de Hausdorff
0,95 = 47,006 mm, similaridade volumétrica = 0,406, sensibilidade por alvo = 0,447 e
quantidade de falso-positives por caso por alvo = 8,2.

Palavras-chave: Segmentação. Aneurismas cerebrais. Ressonância magnética. GLIA-
Net. Aprendizado profundo.



Abstract

Intracranial aneurysmas are patologies usually asymptomatic and with a letality relati-
vely. The diagnosis is conducted by a specialist that examines hundreds daily in repetitive
and tiresome. In order to mitigate these problems, deep learning solutions are developed.
These solutions emply only local characteristics of the images to accomplish the semantic
segmentation task, except the model GLIA-Net which conciliates the global information
of localization and context of the aneurysm and local information regarding the neighbor
voxels closer to its region in a single neural network and stablished a new reference for
segmentation of anerysms in computerized tomography angiography (CTA) images. This
work is responsable for the following contributions: 1) Adaptation of the GLIA-Net pro-
ject for the segmentation of intracranial aneurysms in TOF MRA images, a non-invasive
and non-ionizing modality differently from the CTA; 2) Training of the GLIA-Net model
in the dataset of the challenge ADAM, a challenge of semantic segmentation of intra-
cranial aneurysms; 3) Proposition of usage of a linear weighted arithmetic mean that
emphasizes the central voxels of a patch in the composition of the segmentatio mask of
the exam from the patches of the original image. The following results were obtained in
a validation dataset with 23 exams: Sorensen-Dice score coefficient = 0.110, Hausdorff
distance 0.95 = 47.006 mm, volumetric similarity = 0.406, sensitivity per target = 0.447
and false-positives per case per target = 8.2. Keywords: Segmentation. Intracranial

aneurysms. MRI. GLIA-Net. Deep learning.
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1 Introdução

Aneurismas cerebrais são dilatações patológicas na parede de artérias cerebrais.
Estas regiões estão propensas à ruptura, podendo provocar hemorragias subaracnoideas
(ZHAO et al., 2018). A incidência de hemorragias subaracnoideas globalmente é de 7,9
por 100.000 pessoas (6,9 - 9,0, IC 95%) (ETMINAN et al., 2019), sendo que 85% destas
são causadas pela ruptura de aneurismas cerebrais (van Gijn; KERR; RINKEL, 2007).
Quanto à taxa de fatalidade de hemorragias subaracnoides, ela é relativamente alta mun-
dialmente, variando de 8,3 a 66,7% (NIEUWKAMP et al., 2009).

O diagnóstico da patologia é geralmente realizado por meio da angiografia por
ressonância magnética "time-of-flight"(TOF angio-RM), da angiografia por tomografia
computadorizada (ATC) ou da angiografia por subtração digital (DSA), sendo apenas a
primeira uma técnica não invasiva sem a injeção de fluidos ionizantes e sem o emprego
de radiação ionizante (SETTECASE; RAYZ, 2021). Com o aumento da quantidade de
imagens geradas por exame, os radiologistas possuem um tempo cada vez menor para
a avaliação de cada imagem. A quantidade exorbitante de imagens a serem analisadas
durante longas jornadas de 8 h podem provocar fatiga e deterioração da qualidade das
avaliações (MAURER et al., 2021) (MCDONALD et al., 2015).

Estudo recente revela que algoritmos de aprendizado profundo já podem aumentar
a sensibilidade de radiologistas na detecção de aneurismas cerebrais, todavia o algoritmo
usado apresenta uma sensibilidade (90%) inferior a dos médicos que participaram do
exame (95% e 94%), uma taxa de falsos positivos elevada (6,1) e uma comparação dos
tempos de diagnóstico não foi apresentada (FARON et al., 2020).

Assim, o desenvolvimento de abordagens de detecção automáticas e semi-automáticas
pode ter um impacto importante na melhoria da detecção de aneurismas intracranianos e
no aumento da quantidade de exames realizados caso o tempo computacional de detecção
seja inferior ao do humano.

Quanto aos tratamentos convencionais, estes consistem em métodos cirúrgicos ou
endovasculares que visam isolar o aneurisma da circulação do vaso sanguíneo (ZHAO et
al., 2018). Nestes tratamentos, a visualização 3D do segmento que apresenta a patologia
pode auxiliar no entendimento da patologia e na aplicação do tratamento.

Estudos anteriores já implementaram arquiteturas de aprendizado profundo na
classificação e segmentação de aneurismas cerebrais, todavia muitos utilizam bases de
dados confidenciais de aneurismas e exames representados por voxels (UEDA et al., 2019)
(ALLENBY et al., 2020), enquanto no caso do banco de dados (YANG et al., 2020) utiliza-
se segmentos de vasos sanguíneos representados em nuvens de pontos, uma representação
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que apesar de mais eficiente exige um procedimento de restituição não automático e
trabalhoso.

Recentemente, foi publicado um desafio de detecção e segmentação de aneurismas
cerebrais, chamado ADAM - Aneurysm Detection And segMentation Challenge, que dis-
põe de dados de acesso sob inscrição e permite a comparação de algoritmos de maneira
mais fidedigna, usando as mesmas métricas e a mesma base de dados de teste (TIMMINS
et al., 2020).

A maioria das soluções bem classificadas neste desafio empregam a seguinte estra-
tégia: dividir a imagem em múltiplos elementos menores e segmentar separadamente cada
elemento por meio de uma variação do modelo 3D U-Net (ÇIÇEK et al., 2016). Ainda
que bons resultados sejam atingidos por meio desta abordagem, como consta na Tabela 2,
as informações globais sobre o posicionamento do suposto aneurisma na cabeça não são
utilizadas na tarefa, o que poderia melhorar os resultados de segmentação.

Neste contexto, o modelo GLIA-Net (BO et al., 2021) parece promissor por integrar
informações locais e globais em uma única solução. O modelo foi treinado em uma base
de dados de exames de angiografia por tomografia computadorizada (ATC) com 1363
aneurismas e 1186 casos, testado em três bases externas com pelo menos 50 aneurismas
cada e ainda testado em um experimento clínico com radiologistas e residentes. Em todas
estas tarefas, GLIA-Net mostrou resultados promissores, ultrapassando a performance de
modelos como uma versão 3D do clássico U-Net (RONNEBERGER; FISCHER; BROX,
2015) e o antigo estado da arte em segmentação de aneurismas HEADXNet (PARK et
al., 2019). Além de mostrar no experimento clínico o seu potencial para reduzir o tempo
de diagnóstico e aprimorar a sua qualidade.

Assim, neste trabalho almeja-se implementar uma arquitetura de aprendizado pro-
fundo GLIA-Net capaz de segmentar exames de TOF angio-RM representados em voxels
representando regiões normais e regiões com aneurismas cerebrais.

As principais contribuições deste trabalho são a adaptação do projeto GLIA-Net
para a segmentação de aneurismas cerebrais em exames de TOF angio-RM, o treinamento
deste modelo no desafio ADAM, o que permite a comparação dos resultados com outras
soluções, e a proposição de uma composição das máscaras de segmentação de cada bloco
da imagem com pesos que destaquem a região central do bloco, o que mitiga artefatos e
problemas na segmentação devido a aneurismas entre blocos.
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2 Revisão bibliográfica

A revisão bibliográfica foi dividida em três partes: a primeira retrata o processo
de diagnóstico de aneurismas cerebrais, a segunda discorre sobre o estado da arte dos
algoritmos de detecção e segmentação da patologia e a terceira aborda a transferência de
aprendizado no contexto de aprendizado profundo.

2.1 Diagnóstico de aneurismas cerebrais

A captura de imagens da vasculatura cerebral é geralmente realizada por meio de
três técnicas de captura de imagem: a angiografia por ressonância magnética (angio-RM),
a angiografia por tomografia computadorizada (ATC) e a angiografia por subtração digital
(DSA) (SETTECASE; RAYZ, 2021).

DSA é o padrão ouro usado na captura de imagens neurovasculares, sendo usado
para diagnóstico de patologias, planejamento cirúrgico e em intervenções intravasculares
guiadas por imagens. O método consiste na aplicação de um contraste radiopaco ionizado
no vaso de interesse por meio de um cateter e na captura de sequências de imagens de
raio X, que mostram o fluxo do material injetado pela vasculatura (SETTECASE; RAYZ,
2021).

ATC é uma modalidade de angiografia que consiste na aplicação de contraste io-
nizado intravenoso e na captura de sequências de imagens da vasculatura de interesse.
Esta técnica utiliza as propriedades de atenuação de raio X dos tecidos e do contraste
de forma semelhante à DSA, todavia por meios menos invasivos (SETTECASE; RAYZ,
2021). Estudos sobre a capacidade do ATC em detectar aneurismas cerebrais não rom-
pidos comparado ao DSA revelam valores de sensibilidade entre 90% e 100% valores de
especificidade entre 87,8% e 100% (HOWARD et al., 2019).

Na imagem de tomografia computadorizada, os valores da unidade da imagem são
representados na escala Hounsfield (HU), que expressa o coeficiente de atenuação da onda
eletromagnética de raio X do material em relação ao da água na temperatura ambiente,
da seguinte maneira:

HUmaterial =
µmaterial − µH2O

µH2O

(2.1)

onde µi é o coeficiente de atenuação da onda de raio X do material i eH2O é a água.
O coeficiente de atenuação de um material depende apenas da composição do material,
da temperatura e da voltagem do tubo do equipamento de raio X. Assim, intervalos de
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HU em uma imagem de tomografia computadorizada podem ser associados a um tecido
material específico (DANCE et al., 2014).

A angiografia por ressonância magnética Time of flight (TOF angio-RM) é a téc-
nica de captura de imagem sem uso de contraste mais utilizada no diagnóstico de aneu-
rismas cerebrais não rompidos e consiste na aplicação de um campo magnético sobre a
região de interesse e na captura de sequências de imagens da vasculatura de uma região
(KAKA; ZHANG; KHAN, 2021). Neste exame de imagem, a emissão de sucessivos pulsos
de frequências de rádio saturam a magnetização do spin de estruturas estacionárias supri-
mindo o sinal destas regiões, enquanto o sangue em movimento, que não exibe o mesmo
grau de saturação de spin, apresenta um sinal intenso (KUO et al., 2019). A grande
vantagem desta técnica é a ausência de injeção de fluidos ionizados e de raio x, sendo uma
técnica não invasiva. O estudo (SAILER et al., 2014) com 772 aneurismas indica que a
TOF angio-RM possui uma sensibilidade de 95% (95% IC 89-98%) e uma especificidade
de 89% (95% IC 80-95%).

Estes valores de sensibilidade de ATC e angio-RM dependem do tamanho do aneu-
risma, sendo que aneurismas menores que 3 mm são mais difíceis de se detectar (HOWARD
et al., 2019).

2.1.1 Imagens de suporte

Além das imagens de angiografia que destacam a estrutura vascular, imagens adi-
cionais contendo informações sobre a anatomia de uma região podem ser relevantes para o
diagnóstico semi-automático ou automático, como é o caso do desafio ADAM (TIMMINS
et al., 2020). Nele, além de imagens de angiografia por ressonância magnética do tipo
Time of flight, imagens 3D do tipo ponderadas em T1, em T2 ou FLAIR também são
disponíveis.

As imagens por ressonância magnética ponderadas em T1 e em T2 são imagens
geradas de tal forma que a intensidade de seus voxels estão relacionados principalmente
com a propriedade T1 ou T2 dos tecidos examinados, onde T1 é o tempo de relaxamento
longitudinal do spin e T2 é o tempo de relaxamento transversal do spin (MAIER et al.,
2018).

A sequência FLAIR (Fluid-Atenuated Inversion Recovery) de ressonância magné-
tica é uma imagem de ressonância magnética ponderada em T2 que reduz drasticamente
o sinal do fluido cerebrospinal (HAJNAL et al., 1992).
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2.2 Detectores automáticos de aneurismas

Como resultado da captura de imagens durante o diagnóstico, produz-se uma
representação volumétrica de três dimensões em voxels da vasculatura cerebral. Assim,
a maioria dos artigos encontrados (SICHTERMANN et al., 2019) (ALLENBY et al.,
2020) (LIU et al., 2021) (KAKA; ZHANG; KHAN, 2021) (UEDA et al., 2019) aplicam
métodos de aprendizado estatístico ou alguma ferramenta manualmente desenvolvida para
a detecção de aneurismas cerebrais usando a representação original dos exames em voxels.

A Tabela 1 mostra o estado da arte em detecção de aneurismas cerebrais. Todavia,
a comparação é complicada já que cada artigo utiliza um banco de dados distinto e
a sensibilidade dos métodos de captura de imagem e dos algoritmos de detecção são
impactados pelo tamanho dos aneurismas do banco de dados.

Tabela 1 – Comparação das arquiteturas de classificação de aneurismas intracranianos do
estado da arte

Modelo Representação SE (%) ESP (%) FP F1 AUC (%)
PointCNN Nuvem 85,81 98,95 - 0,9044 -
PointNet++ Nuvem 88,51 98,52 - 0,9029 -
SO-NET Nuvem 83,94 98,88 - 0,8950 -

SpiderCNN Nuvem 87,90 97,28 - 0,8722 -
DGCNN Nuvem 83,40 97,93 - 0,8594 -
PointNet Nuvem 69,50 93,74 - 0,6916 -
GLIA-Net Voxel 96,2 38,9 4 - 98.2
ResNet-18 Voxel 78,0 - 2 - -

3D-Dense-UNet Voxel 98,6 - 1,49 - -
Manual* Voxel 81 86 0,2 - -

DeepMedic Voxel 90 - 6 - 82

Nota: SE, ESP e FP representam, respectivamente, sensibilidade, especificidade, falso-positivos por
exame. A fonte das arquiteturas utilizadas consta no Quadro 1.

Nota: Manual se refere a um algoritmo desenvolvido sem um processo de aprendizado no qual os dados
atualizam os parâmetros de um modelo automaticamente visando minimizar um erro.

Nota: A representação anotada como nuvem se refere à representação de nuvem de pontos.

A comparação entre métodos de detecção que utilizam diretamente as sequências
de imagens representadas em voxels e os resultados obtidos a partir de banco de dados re-
presentado por nuvens de pontos (intrA) apresenta vários desafios. As métricas utilizadas
em ambos são distintas e a o processo de conversão da sequência de imagens capturadas
por meio de angio-RM representadas por voxels para uma nuvem de pontos exige uma
restauração manual dos dados (YANG et al., 2020). Assim, os algoritmos implementados
no banco de dados de nuvens de pontos não podem ser implementados de forma comple-
tamente automática e a avaliação do tempo de detecção do sistema depende da velocidade
dos médicos em restaurar os modelos CAD gerados.
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Quadro 1: Fonte das arquiteturas de classificação de aneurismas intracranianos do estado
da arte

Modelo Fonte
PointCNN (LI et al., 2018) (YANG et al., 2020)
PointNet++ (QI et al., 2017) (YANG et al., 2020)
SO-NET (LI; CHEN; LEE, 2018) (YANG et al., 2020)
SpiderCNN (XU et al., 2018) (YANG et al., 2020)
DGCNN (WANG et al., 2018) (YANG et al., 2020)
PointNet (QI et al., 2016) (YANG et al., 2020)
GLIA-Net (BO et al., 2021)
ResNet-18 (UEDA et al., 2019)
3D-Dense-UNet (LIU et al., 2021)
Manual (ALLENBY et al., 2020)
DeepMedic (SICHTERMANN et al., 2019) (KAMNITSAS et al., 2017)

Assim, bancos de dados de sequências de imagens provenientes de exames de angio-
RM, ATC ou DSA são mais interessantes do que bancos de dados convertidos em nuvens
de pontos. Nesse sentido, o banco de dados de detecção e segmentação de aneurismas à
partir sequências de imagens de TOF angio-RM, chamado ADAM (Aneurysm Detection
And segMentation) (TIMMINS et al., 2020), se apresenta com muita relevância.

ADAM é não só um banco de dados como também um desafio de detecção e
segmentação de aneurismas. No presente momento, o ranqueamento das equipes em
ambas as tarefas está exposto na Tabela 2.

Um problema geral para a comparação da performance é que as métricas sensi-
bilidade, especificidade, taxa de falsos-positivos e F1-score dependem do limiar escolhido
para determinar se um segmento contém aneurismas ou não. A variação deste limiar re-
sulta em um aumento da sensibilidade aliado a um aumento da taxa de falsos-positivos ou
na diminuição de ambos, caracterizando a curva ROC (curva Característica de Operação
do Receptor). Logo, a comparação ideal usaria uma métrica que engloba toda os pontos
desta curva. A métrica AUC (Área abaixo da curva ROC) desempenha este exato papel,
todavia poucos artigos revelam o seu valor.

O desafio ADAM possui vantagens tanto no aspecto da dependência de dados
quanto na variabilidade das métricas. O compartilhamento de um banco de dados de
teste único e secreto permite a comparação dos algoritmos mais fiel por ser independente
dos dos dados e uma avaliação automática baseada em diversas métricas estabelecidas
permite ponderar os diferentes erros possíveis de uma solução. Contudo, todas as métricas
do desafio dependem do limiar de classificação, e portanto, este deve ser bem escolhido
para obter uma boa performance nas tarefas.
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Tabela 2 – Classificação das equipes no desafio ADAM

Equipe Modelo 1 2 FP/caso RT DSC HD95 VS
abc 3D U-Net E5 1 1 0,40 0,68 0,43 16.78 0,59
Joker nnU-Net, 3D U-Net E4 3 3 0,16 0,63 0,40 8,67 0,48
JunMa nnU-net, 3D U-Net E5 4 2 0,18 0,61 0,41 8,96 0,50

mibaumgartner Retina U-Net E5 2 - 0,13 0,67 - - -
Kubiac U-Net, QuickNAT E18 5 5 0,36 0,60 0,28 18,13 0,39

Unil_chuv 3D U-Net 7 4 1,18 0,59 0,32 22,92 0,56
xlim AneurysmNet 6 7 4,03 0,70 0,21 36,82 0,39

quan12_ADAM - 10 5 1,28 0,51 0,32 20,30 0,45
Interneural NN (EfficientNet-B1) 8 6 0,88 0,49 0,17 23.98 0,36

Zelosmediacorp 3D version of U-Net E4 9 8 0,05 0,21 0,09 9,79 0,13
joana CNN 8 - 9,37 0,63 - - -

Stronger 3D U-Net, 3D CNN E3 10 9 0,45 0,20 0,07 24,42 0,21
Unil_chuv 3D U-Net 11 - 1,45 0,20 - - -

joana CNN 12 - 1,02 0,15 - - -
Trinet - 9 10 31,80 0,76 0,11 62,35 0,53
IBBM Btrfly 13 10 0,01 0,02 0,01 12.77 0,01

TUM_IBBM U-Net 14 11 22,62 0,43 0,07 65,02 0,31
DeepMedic DeepMedic 16 14 118,86 0,85 0,07 71,41 0,34

Fonte: (UTRECHT, 2020)

Nota: As colunas 1 e 2 contém a posição de cada equipe nas tarefas 1 e 2 do desafio, sendo a tarefa 1 a
detecção de aneurismas e a tarefa 2 a segmentação de aneurismas.

Nota: FP/caso, RT, DSC, HD95 e VS correspondem às seguintes métricas falso-positivos por caso,
sensibilidade, coeficiente de similaridade de Sorensen-Dice, distância de Hausdorff adaptada para
o percentil 95 em mm e similaridade volumétrica.

Nota: Quanto maior o valor de RT, DSC e VS melhor é a performance da solução, enquanto quanto
menor é o valor de FP/caso e HD95 melhor a performance da solução.

Nota: En indica que a predição final consiste no voto majoritário de n modelos treinados de forma
separada, usando ensemble methods.

Nota: A citação dos modelos utilizados consta no Quadro 2.

Quadro 2: Fonte das soluções ranqueadas no desafio ADAM

Model Fonte
U-Net (RONNEBERGER; FISCHER; BROX, 2015)
3D U-Net (ÇIÇEK et al., 2016)
nnU-net (ISENSEE et al., 2019)
Retina U-Net (JAEGER et al., 2018)
QuickNAT (ROY et al., 2018)
AneurysmNet -
NN (EfficientNet-B1) (TAN; LE, 2019)
CNN (NAKAO et al., 2018)
Btrfly (SHIMIZU et al., 2020)
DeepMedic (KAMNITSAS et al., 2017) (SICHTERMANN et al., 2019)
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2.2.1 Métricas

Métricas em aprendizado estatístico supervisionado são funções responsáveis por
quantificar a performance de um algoritmo em relação a uma tarefa anotada. As métricas
a seguir são utilizadas para a avaliação de algoritmos no banco de dados ADAM. A sua
descrição está baseada no artigo (TAHA; HANBURY, 2015) citado pelo website do desa-
fio ADAM <http://adam.isi.uu.nl/evaluation/> e pela análise do repositório do mesmo
desafio <https://github.com/hjkuijf/ADAMchallenge>. As métricas seguintes são apli-
cadas em cada exame/dado. A obtenção de métricas correspondentes a uma base de
dados completa é feita pela média de uma métrica para todas os dados.

No caso do desafio ADAM. classificações positivas corresponde à presença de aneu-
rismas não tratados nem rompidos e negativas à sua ausência.

Além das métricas utilizadas para a comparação de algoritmos no desafio ADAM,
outras métricas são úteis para acompanhar a performance de uma rede neural profunda
em treinamento.

Um conceito importante em tarefas de classificação é a matriz de confusão, que
contabiliza a quantidade de acertos e erros em função das classes envolvidas. No caso da
classificação com duas classes, chama-se uma classe de positiva e a outra de negativa e a
matriz de confusão toma a forma do Quadro 3:

Quadro 3: Matriz de confusão com duas classes.

Real
Positivo Negativo

Predição Positivo TP FP
Negativo FN TN

Nota: TP (número de verdadeiro-positivos): quantidade de casos da classe positiva classificada correta-
mente.

Nota: FP (número de falso-positivos): quantidade de casos da classe negativa classificada incorretamente
como positiva.

Nota: FN (número de falso-negativos): quantidade de casos da classe positiva classificada incorretamente
como negativa.

Nota: TN (número de verdadeiro-negativos): quantidade de casos da classe negativa classificada correta-
mente.

2.2.1.1 Métricas de detecção

Em imagens médicas, a tarefa de detecção consiste em encontrar a posição do
objeto procurado em uma imagens 2D ou 3D. Para quantificar a qualidade da localização
de um objeto para um algoritmo é necessário comparar o resultado com a posição real.
Para considerar uma localização correta não é necessário que a localização prevista seja

http://adam.isi.uu.nl/evaluation/
https://github.com/hjkuijf/ADAMchallenge
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idêntica à anotada, apenas que a distância entre as posições seja menor que o raio do
objeto detectado.

As métricas a seguir são responsáveis por quantificar a qualidade da localização
de algoritmos.

2.2.1.1.1 Quantidade de falso-positivos (FP)

FP corresponde ao número de falso-positivos, ou seja, o número de regiões sem
aneurismas não rompidos nem tratados mas detectadas como tal.

Esta métrica vale no mínimo 0 e não possui máximo real. Quanto menor o seu
valor, melhor a performance do algoritmo.

2.2.1.1.2 Sensibilidade

A sensibilidade é dada por:

Sensibilidade =
TP

FN + TP

onde TP e FP são, respectivamente, o número de verdadeiro-positivos e o número
de falso-positivos, ou seja, a sensibilidade é a razão entre o número de casos aneurismas
detectados corretamente e o número de aneurismas anotados.

Esta métrica pertence ao intervalo [0, 1] e quanto mais a sensibilidade está próxima
de 1, mais aneurismas são detectados corretamente e melhor a performance do algoritmo.

A sensibilidade e a quantidade de falso-positivos são métricas complementares no
sentido que elas avaliam erros distintos e que juntos agregam todos os erros de detecção
possíveis. Enquanto a quantidade de falso-positivos quantifica o número de aneurismas
detectados erroneamente, a sensibilidade quantifica o número de aneurismas não detec-
tados. Assim, a avaliação de um algoritmo de detecção deve ser feita com ambas as
métricas.

2.2.1.2 Métricas de segmentação

Em imagens médicas, a tarefa de segmentação consiste em classificar cada pixel (no
caso de imagens 2D) ou cada voxel (no caso de imagens 3D) em determinadas categorias.

A descrição de métricas desta seção compartilham as anotações Sit , Sig, |A|, TP ,
FN e FP . Sit e Sig são, respectivamente, o conjunto de voxels classificados como i por um
algoritmo e o conjunto de voxels anotados como i. Se A for um conjunto, |A| significa a
cardinalidade de um conjunto A – e como trabalhamos com conjuntos finitos a cardinali-
dade de A é o número de elementos de A – e se A for um número real, |A| é o seu módulo.
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TP , FN e FP representam, respectivamente, o número de voxels verdadeiro-positivos, o
número de voxels falso-negativos e número de voxels falso-positivos.

As métricas a seguir são responsáveis por quantificar a qualidade da segmentação
de algoritmos.

2.2.1.2.1 Coeficiente de similaridade de Sorensen-Dice

Segundo (TAHA; HANBURY, 2015), o coeficiente de similaridade de Sorensen-
Dice é a métrica mais utilizada na validação de segmentações de volumes na área biomé-
dica e é dado por:

DSC = 2
|S1
t ∩ S1

g |
|S1
t |+ |S1

g |
=

2TP

2TP + FN + FP

Esta métrica pertence ao intervalo [0, 1] e quanto mais DSC está próximo de 1,
menor o erro de segmentação e melhor a performance do algoritmo.

Como DSC mensura os erros falso-positivos e falso-positivos de forma conjunta
comparando apenas com os verdadeiro-positivos, esta métrica é robusta para tarefas com
dados desbalanceados, onde geralmente os verdadeiro-negativos são muito mais numerosos
que os verdadeiro-positivos.

No artigo (TAHA; HANBURY, 2015), o coeficiente de similaridade de Sorensen-
Dice é apresentado como uma métrica que avalia a intersecção entre a predição positiva
e a anotação positiva em relação aos erros. Argumenta-se que esta métrica é ideal para
mensurar a intersecção e que caso estas regiões sejam muito pequenas, intersecções vazias
são comuns e a métrica é pouco representativa.

2.2.1.2.2 Distância de Hausdorff

Segundo (TAHA; HANBURY, 2015), a distância de Hausdorff é dada por:

HD(A,B) = max(h(A,B), h(B,A))

com

h(A,B) = max
a∈A

min
b∈B

d(a, b)

com d(A,B) sendo uma métrica.

No desafio, é utilizado uma modificação desta métrica. A distância de Hausdorff
modificada consiste em substituir a função h(A,B) acima por:
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h95(A,B) = percentil_95a∈Amin
b∈B

d(a, b)

onde percentil_95 extrai o 95o percentil de um conjunto. Esta modificação per-
mite a desconsideração de distâncias anômalas muito elevadas entre pontos de ambos os
conjuntos.

No desafio, a métrica empregada é a distância Euclidiana, ou seja, dados que a, b
são vetores compostos por n elementos ai e bi, temos:

d(a, b) =

√√√√ n∑
i=1

(ai − bi)2

Além disso, no desafio os conjuntos A e B são as bordas dos aneurismas não
rompidos nem tratados.

Esta métrica, sendo uma distância, possui valor mínimo nulo e não possui valor
máximo real. Assim, quanto menor a distância de Hausdorff, melhor as bordas segmen-
tadas correspondem as bordas dos aneurismas anotados e melhor é a performance do
algoritmo de segmentação.

No artigo (TAHA; HANBURY, 2015), a distância de Hausdorff é considerada uma
métrica de distância. Argumenta-se que por ser uma métrica que considera a distância
espacial, a distância de Hausdorff é ideal para a avaliação dos contornos previsto em
relação ao anotado. Esta métrica é ideal também para bancos de dados com regiões
anotadas positivas muito pequenas, pois ainda que a intersecção entre os volumes previsto
e anotado seja nula, é possível estimar a distância entre estes volumes.

2.2.1.2.3 Similaridade volumétrica

Segundo (TAHA; HANBURY, 2015), a similaridade volumétrica é dada por:

V S = 1−
||S1

t | − |S1
g ||

|S1
t |+ |S1

g |
= 1− |FP − FN |

2TP + FN + FP

Esta métrica pertence ao intervalo [0, 1]. No cenário de segmentação ideal, em
que FP = FN = 0, temos que V S = 1. Assim, intuitivamente quanto maior a similari-
dade volumétrica, mais os voxels são classificados corretamente e melhor a performance
do algoritmo de segmentação. Note que ainda é possível obter uma similaridade volu-
métrica alta caso os números de falso-positivos e falso-negativos forem correlacionados,
em particular, é possível obter uma similaridade volumétrica igual a 1 mesmo com uma
segmentação com TP = 0, basta que FN = FP , e portanto, esta métrica não deve ser
usada de maneira isolada.



Capítulo 2. Revisão bibliográfica 25

No artigo (TAHA; HANBURY, 2015), a similaridade volumétrica é uma métrica de
intersecção. Da mesma forma que o coeficiente de similaridade de Sorense-Dice não é reco-
mendado para regiões de segmentação positivas muito pequenas em relação às negativas,
a similaridade volumétrica não é recomendada também. Esta métrica não é recomendada
também para a avaliação do alinhamento das regiões positivas anotadas e prevista, pois
os falso-positivos podem cancelar com os falso-negativos, indicando erroneamente uma
similaridade muito alta. Assim, a VS é ideal para a avaliação de intersecções no qual o
alinhamento não é muito importante.

2.2.1.2.4 AUC (ROC)

A curva ROC ou curva Característica do Operador do Receptor (Receiver Operator
Characteristic) é a curva dada pela especificidade e a sensibilidade de um algoritmo de
classificação em um banco de dados para uma gama de limiares. No eixo da abcissa temos
a taxa de falso-positivos (FPR) e no eixo da ordenada temos a taxa de verdadeiro-positivos
(TPR) (FAWCETT, 2006).

A taxa de falso-positivos é dada por:

FPR =
FP

TN + FP
= 1− Especificidade

A taxa de verdadeiro-positivos é dada por:

TPR =
TP

TP + FN
= Sensibilidade

As taxas FPR e TPR pertencem ao intervalo [0, 1] e são complementares já que a
FPR contabiliza o erro dos falso-positivos, enquanto a TPR contabiliza o erro dos falso-
negativos. A performance do algoritmo é melhor para valores maiores de TPR e menores
de FPR.

Assim, a Curva ROC ideal consiste em duas retas: a primeira vai do ponto (FPR =

0, TPR = 0), no qual o limiar é tão alto que todos os voxels são classificados como
negativos, até o ponto (FPR = 0, TPR = 1), no qual todos os voxels são classificados
corretamente ; e a segunda vai do ponto (FPR = 0, TPR = 1) até o ponto (FPR =

1, TPR = 1), no qual o limiar é tão baixo que todos os voxels são considerados como
positivos.

Como explicado em (FAWCETT, 2006), um algoritmo que classifica uma instân-
cia aleatoriamente, ou seja, independentemente das características da instância, possui
valores esperados de TPR e FPR iguais, já que podemos interpretar TPR como a pro-
babilidade do algoritmo classificar uma instância positiva como positiva e FPR como a
probabilidade do algoritmo classificar uma instância negativa como positiva. Assim, a
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linha diagonal TPR = FPR de (0,0) a (1,1) é a linha básica do comportamento esperado
de um classificador aleatório.

A métrica AUC é a área abaixo da curva (area under curve) e é útil para mensurar
os erros falso-positivos e falso-negativos de forma independente do limiar do algoritmo. No
cenário ideal, AUC = 1, enquanto espera-se AUC = 0, 5 no cenário em que o classificador
é aleatório.

Esta métrica pertence ao intervalo [0, 1] e quanto maior o seu valor melhor a
performance do classificador.

2.2.1.2.5 Precisão média (PRC)

Apesar da curva ROC ser muito interessante por ponderar ambos os erros de clas-
sificação para todos os valores de limiar, esta curva não é muito representativa, podendo
ser extremamente otimista no cenário de dados desbalanceados. Uma alternativa mais
informativa é a curva Precision-Recall (PRC) (SAITO; REHMSMEIER, 2015).

A curva PRC também é capaz de ponderar os erros falso-positivos e falso-negativos
para todos os valores de limiar e possui a precisão (precision) como abcissa e a revocação
(recall) como ordenada.

A precisão é dada por:

Precisão =
TP

TP + FP

A revocação, também chamada de TPR ou de sensibilidade, é dada por:

Revocação =
TP

TP + FN

Ambas as métricas pertencem ao intervalo [0, 1] e quanto maior os seus valores,
melhor a performance do algoritmo. A precisão e a revocação são complementares, já que a
precisão considera os erros falso-positivos e a revocação considera os erros falso-negativos.

Assim, a curva PRC ideal consiste na reta que começa em aproximadamente
(recall = 0, precision = 1), no qual o limiar está muito alto e um número ínfimo de voxels
são detectados corretamente como positivos, e termina em (recall = 1, precision = 1), no
qual todos os voxels são corretamente classificados.

No cenário em que o classificar é aleatório, ou seja, classifica as instâncias inde-
pendentemente de suas características, espera-se uma linha, chamada de base, dada por
precision = P/(P +N) onde P é o número de classes positivas e N é o número de classes
negativas do banco de dados. Logo, espera-se que AP = P/(P +N) para um classificador
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aleatório. Nota-se que apenas para bancos de dados com classes balanceadas espera-se
obter AP = 0, 5 com um classificador aleatório (SAITO; REHMSMEIER, 2015).

A métrica AP, ou precisão média (average precision), é a precisão média da curva
PRC, que corresponde à área abaixo da curva PRC já que a abcissa revocação varia de 0
a 1. Esta métrica também pertence ao intervalo [0, 1] e quanto maior o seu valor, melhor
a performance do algoritmo.

No cenário de dados desbalanceados, como é o caso da tarefa de segmentação de
aneurismas cerebrais, a métrica AP é mais representativa que a métrica AUC. Isso ocorre,
pois a curva PRC pondera os erros falso-negativos e falso-positivos utilizando apenas estes
erros e o número de verdadeiro-positivos, que é a classe menos numerosa geralmente, já
a curva ROC pondera os erros falso-negativos e falso-positivos utilizando tanto o número
de verdadeiro-positivos quanto o número de verdadeiro-negativos e como a classe negativa
geralmente é muito mais numerosa que a positiva a métrica considera os erros de maneira
desigual, permitindo um alto valor de AUC com uma performance relativamente baixa.

No artigo (SAITO; REHMSMEIER, 2015), Saito explica que a curva ROC inde-
pende da proporção do número de casos das classes positiva e negativa. Assim, no caso
de dados desbalanceados apesar da curva ROC poder apresentar precisão baixa em certas
regiões, a taxa FPR continua baixa na mesma região e a curva ROC não se altera. En-
quanto isso, a curva PRC se adapta de acordo com a proporção do número de casos das
classes positiva e negativa, acompanhando a mudança na performance dos classificadores.

O exemplo do Quadro 4 ilustra um cenário de dados desbalanceados em que um
ponto da curva ROC não é representativo da performance do algoritmo, enquanto a curva
PCR é mais informativa.

Quadro 4: Exemplo de matriz de confusão com duas classes desbalanceadas.

Real
Positivo Negativo

Predição Positivo 500 1600
Negativo 500 8400

Fonte: Adaptado de (SAITO; REHMSMEIER, 2015).

TPR = recall =
500

500 + 500
= 0, 5%

FPR =
1600

1600 + 8400
= 0, 06%

precision =
500

500 + 1600
= 0, 02%
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Uma taxa FPR abaixo de 1% induz um aparente baixo número de erros falso-
positivos. Todavia, quando comparado o número de falso-positivos com o número de
verdadeiro-positivos, nota-se que este erro é bem expressivo. A baixa precisão captura
esta informação sobre o erro de falso-positivos.

Para uma simples e rápida interpretação dos resultados, as métricas explicadas
nesta seção estão resumidas no Quadro 5.

Quadro 5: Resumo sobre a interpretação básica de métricas de detecção e de segmentação.

Métrica Mínimo Máximo Melhor
Falso-positivos (FP) 0 negativos (N) ↓
Falso-negativos (FN) 0 positivos (P) ↓

Verdadeiro-positivos (TP) 0 positivos (P) ↑
Verdadeiro-negativos (TN) 0 negativos (N) ↑

Sensibilidade = recall 0 1 ↑
Precisão 0 1 ↑

AUC (Área abaixo da curva ROC) 0 1 ↑
AP (precisão média da curva PRC) 0 1 ↑
Coeficiente de Sorensen-Dice (DSC) 0 1 ↑
Distância de Hausdorff considerando 0 - ↓apenas 95% das menores distâncias (HD95)

Similaridade volumétrica (VS) 0 1 ↑
Fonte: Autor.

Nota: Na coluna Melhor, ↓ representa que uma redução na métrica indica uma melhor performance da
solução, enquanto ↑ representa que um aumento na métrica indica uma melhor performance da
solução.

2.2.2 Arquiteturas de aprendizado profundo para segmentação

Em razão das vantagens proporcionadas pelo desafio ADAM e a representação
em voxels já mencionada na seção 2.2, foca-se apenas em arquiteturas de aprendizado
profundo em que os dados são representados em voxels.

Os modelos ranqueados no desafio ADAM (Tabela 2) revelam que U-Net e suas
variações são a arquitetura predominante e de excelente performance. A arquitetura
original do modelo U-Net consta na Figura 1.

A ideia principal por trás deste modelo é uma rede completamente convolucional
("fully convolutional network") em que por um caminho a rede extraí informações do
contexto em uma resolução cada vez menor e com o auxílio de conexões de maior resolução,
a resolução da informação extraída é aumentada até a resolução da imagem de entrada
(RONNEBERGER; FISCHER; BROX, 2015).

Este modelo processa imagens bidimensionais (RONNEBERGER; FISCHER; BROX,
2015). Assim, a sua versão para imagens tridimensionais foi desenvolvida, sendo chamada
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Figura 1 – Arquitetura U-Net.

Fonte: (RONNEBERGER; FISCHER; BROX, 2015).

de 3D U-Net (ÇIÇEK et al., 2016). Como mostrado na Figura 2, a ideia central por trás
do model U-Net remanesce, porém as operações passam a atuar em 3 dimensões no lugar
de 2.

Figura 2 – Arquitetura 3D U-Net.

Fonte: (ÇIÇEK et al., 2016)

A partir da Tabela 2, nota-se que usar uma rede neural do tipo 3D U-Net não
garante os melhores no desafio. As equipes Stronger e Unil_Chuv usaram esta rede, porém
obtiveram performances inferiores a outras redes neurais. O artigo (ISENSEE et al.,
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2019) justifica esta discrepância. Nele, argumenta-se que o desenvolvimento de soluções
especializadas de segmentação semântica é não trivial e dependente de propriedades do
banco de dados alvo e do hardware disponível. Os autores desenvolveram uma plataforma
de acesso aberto chamada nnU-Net ("nenhuma rede nova") para tratar da adaptação dos
hiperparâmetros do modelo para o treinamento da rede, como batch size, patch size,
a topologia da rede 3D U-Net e o pré-processamento, a partir de uma série de regras
heurísticas. No mesmo artigo, foi documentado que a implementação nnU-Net foi aplicada
em 10 desafios biomédicos internacionais de segmentação, englobando 19 bancos de dados
diferentes, 49 tarefas de segmentação diferentes envolvendo uma variedade de orgãos e as
modalidades IRM, ATC e microscopia eletrônica e das 49 tarefas a implementação nnU-
Net estabeleceu um novo estado da arte em 29. Em particular, os trabalhos das equipes
Unil_chuv (NOTO et al., 2020a) e Stronger (NOTO et al., 2020b) usaram a rede 3D U-
Net com patches de tamanho, respectivamente, 32 x 32 x 32 e 64 x 64 x 32, enquanto os
trabalhos das equipes ABC (ABC, 2020), JunMa (MA, 2020) e Joker (YANG, 2020), que
obtiveram os melhores resultados do desafio, usaram a rede 3D U-Net com os respectivos
tamanhos de patch 128 x 128 x 128, 256 x 224 x 56 e 225 x 192 x 56. É possível que
tamanhos de patch mais elevados sejam responsáveis pela diferença de performance.

Nota-se também que as equipes mais bem classificadas utilizaram alguma forma
de ensemble methods, métodos conjuntos. Nestes métodos, vários modelos são treinados
independentemente e a previsão final da solução é calculada a partir do balanço da previsão
dos modelos treinados.

A equipe com as melhores avaliações nas tarefas de detecção e segmentação é a
equipe ABC. Os resultados foram obtidos usando a rede profunda 3D U-Net (ÇIÇEK et
al., 2016), patch size igual a 128 x 128 x 128, uma função de custo dada pela combinação
linear das funções de custo de Dice e de entropia cruzada binária e um otimizador Adam
(KINGMA; BA, 2015). O resultado é a obtido usando um método conjunto com cinco
modelos. Uma vasta quantidade de operações aleatórias de aumento de dados artificial foi
utilizada no treinamento da rede, incluindo mudança de escala, rotação, espelhamento,
mudança no contraste e a aplicação dos ruídos aditivos Gaussiano e de Poisson. Não são
providos mais detalhes sobre o pré-processamento de dados (ABC, 2020).

Entre as equipes mais bem ranqueadas está a equipe JunMa, que utilizou a im-
plementação nnU-Net. Considerando uma entrada apenas de imagens TOF angio-RM,
a ferramenta nnU-Net inferiu os seguintes hiperparâmetros: patch size igual a 256 x 224
x 56, batch size igual a 2, rede 3D U-Net com cinco blocos convolucionais no caminho
de diminuição da resolução e no caminho do aumento da resolução cada um com uma
convolução 3D com kernels cúbicos de lado 3 seguidos por uma normalização por ins-
tância e por uma função de ativação Leaky ReLU (Equação 2.2) (XU et al., 2015). O
pré-processamento é constituído pela exclusão de voxels pretos, considerados como plano
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de fundo, normalização Z e as seguintes operações aleatórias para aumento de dados:
rotação, mudança de escala, espelhamento e transformação gamma. A otimização da
rede neural é feita pelo algoritmo do gradiente descendente estocástico. O resultado final
é calculado usando um método conjunto com cinco redes. Na sua breve descrição, não
há mais detalhes sobre a implementação destas operações de aumento de dados nem do
ensemble methods. (MA, 2020).

A equipe Joker, terceira colocada em segmentação e em detecção, também imple-
mentou uma rede 3D U-Net usando a implementação nnU-Net. O pré-processamento de
dados consiste no redimensionamento das imagens de tal forma que todas possuam o es-
paçamento mediano do banco de dados, na saturação dos valores da imagem nos percentis
0, 5% (mínimo) e 99, 5% (máximo) e na normalização Z da imagem saturada. A etapa
de aumento de dados é formada pelas operações aleatórias: transformação afina (rotação,
translação e deformação elástica), espelhamento e aumento por correção gamma, que na
mudança das intensidades por meio de um expoente aleatório comum à imagem. No
modelo, a normalização por batch (Batch Normalization) é substituída pela normalização
por grupo e a função de ativação ReLU (Equação 2.4) é substituída pela Leaky ReLU
(Equação 2.2) e função de custo usada é a Dice ranking loss, visando reduzir o erro de
patologias menores. No treinamento, utilizou-se um patch size igual a 192 x 224 x 56 e
um batch size igual a 6 (YANG, 2020). O resultado final é o voto majoritário de quatro
modelos treinados independentemente e com considerações distintas: variou-se as imagens
de entrada (ou apenas TOF angio-RM ou ambas as imagens) e variou-se a classificação
dos aneurismas tratados ou rompidos (ou como aneurismas não tratados nem rompidos
ou como regiões normais).

Com base nas descrições dos trabalhos anteriores e na Tabela 2, múltiplas redes
neurais profundas 3D U-Net agrupadas usando métodos conjuntos é a solução predomi-
nante entre as soluções que obtiveram os melhores resultados no desafio ADAM. Todavia,
os detalhes da sua microarquitetura, bem como o otimizador, o patch size, o batch size e
as operações para o aumento de dados variam entre as equipes participantes do desafio.
Como as soluções ranqueadas possuem múltiplas diferenças quando comparadas duas a
duas, não é possível inferir as melhores configurações de forma independente.

2.2.2.1 GLIA-Net

GLIA-Net é um modelo de aprendizado profundo de segmentação desenvolvido
para a segmentação de imagens 3D de ATC. O artigo (BO et al., 2021) relata que a
rede GLIA-Net foi treinada em um banco de dados com 1186 imagens tridimensionais
de ATC abragendo 1363 aneurismas cerebrais e testado em um banco de dados com 152
imagens abrangendo 126 aneurismas cerebrais. Para comparar os resultados, as redes
de segmentação semântica HeadXNet (PARK et al., 2019) e uma versão 3D da rede U-
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Net (RONNEBERGER; FISCHER; BROX, 2015) foram treinadas e testadas de maneira
análoga nos mesmos bancos de dados. Os resultados destes modelos no banco de dados
de teste são mostrados na Tabela 3 e indicam que o modelo GLIA-Net apresenta a me-
lhor performance. No mesmo artigo, um estudo clínico é apresentado, mostrando que o
modelo pode reduzir o tempo e melhorar o diagnóstico de aneurismas cerebrais por um
neurologista.

Tabela 3 – Performance das redes neurais na tarefa de segmentação de aneurismas cere-
brais em imagens de ATC no banco de dados de teste.

Modelo P SV DSC HD95 AUC AP ST FP/exame
U-Net 14,0 71,3 23,2 19,6 98,8 17,5 73,3 30,8

HeadXNet 16.2 55,6 23,2 15,9 98,2 25,0 54,9 15,9
GLIA-Net 48,8 72,9 57,9 9,07 98,2 61,9 82,1 4,38

Fonte: Adaptado de (BO et al., 2021).

Nota: P, SV, DSC, HD95, AUC, AP, ST e FP/exame representam, respectivamente, precisão,
sensibilidade por voxel, coeficiente de similaridade de Sorensen-Dice, a distância de Hausdorff
adaptado para 95% dos pares de voxels de aneurismas anotados e previstos, área sobre a curva
ROC, precisão média da curva PRC, sensibilidade por aglomerado de voxels conectados e falso-
positivos por exame.

Nota: As métricas ST e FP/exame são mensuradas por aglomerados de voxels vizinhos classificados
como aneurismas, enquanto as outras métricas são mensuradas por voxels.

Nota: Todas as métricas são dadas em porcentagem exceto HD95 dada em milímetros e FP/exame.

Nota: Apesar da rede do tipo U-Net ter obtido a métrica AUC superior às outras redes, o valor 98, 8%
está dentro do intervalo de confiança de 95 % da performance das redes GLIA-Net e HEADXNet.

Como aneurismas cerebrais são relativamente pequenos (da ordem de alguns milí-
metros) em relação a cabeça, que é mensurada na ordem de decímetros, exames de imagem
tridimensionais para o diagnóstico da patologia geram imagens com uma quantidade de
voxels exorbitante (no caso do desafio ADAM, na ordem de 107 e 108), no qual uma razão
ínfima representa a anomalia.

Por esta razão, é desafiador criar soluções baseadas em arquiteturas 3D U-Net com
entrada igual a uma imagem tridimensional inteira do exame com resolução original. Em
geral, divide-se a imagem do exame em blocos (patches) na forma de paralelepípedos e
a máscara de segmentação da imagem do exame completo é a composição das máscaras
de segmentação geradas pela rede neuronal para cada um desses blocos. O problema
desta solução é que apenas as informações locais dos blocos do exame de imagem são
consideradas.

Uma possível alternativa seria a redução de dimensão da imagem tridimensional
original para que esta possa ser utilizada como entrada da rede neuronal. Todavia, apesar
de neste caso a rede aprender informações globais da imagem para segmentação perde-
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se resolução e, portanto, as informações locais. Como aneurismas são extremamente
pequenos em relação ao tamanho da imagem completa, a perda é considerável.

Neste cenário, aparece a solução Global Localization-based IA (GLIA-Net), que
teve como objetivo conciliar a extração de informações locais e globais da imagem. A
solução é capaz de extrair informações de localização de um elemento na imagem da
cabeça como um todo ao mesmo tempo que extrai informações locais de elementos com a
mesma resolução que a imagem original. A macro arquitetura da solução é apresentada
na Figura 3.

A solução GLIA-Net utiliza a estratégia de dividir a imagem 3D em uma série de
blocos (patches) menores sobrepostos cujo tamanho é suficientemente pequeno para que
as operações possam ser implementadas na memória limitada da Unidade de Processa-
mento Gráfico (Graphical Processing Unit – GPU ), o que permite desfrutar de um elevado
grau de paralelismo, e por conseguinte, uma alta velocidade de execução. A segmentação
semântica da imagem 3D completa consiste na composição da segmentação semântica de
cada bloco individual. Assim, para cada bloco, o modelo GLIA-Net recebe como entrada
o bloco (local inputs), a posição do bloco na imagem completa (patch location bbox ) e a
imagem completa com dimensão reduzida (global inputs) e produz como saída uma más-
cara classificando os voxels em aneurismas ou em regiões normais (net) e uma estimativa
da probabilidade do bloco apresentar um aneurisma usando apenas global inputs (global
localizer logits).

A macro arquitetura da rede GLIA-Net é composta por dois componentes prin-
cipais: a rede de localização global (global localization network), responsável por extrair
informações globais da distribuição de aneurismas cerebrais na imagem global, e a rede
de segmentação local (local segmentation network), responsável por segmentar a imagem
semanticamente. Ainda que esta diferenciação seja importante conceitualmente, os dois
componentes não são isolados. A informação intermediária da global localization network
chamada de global localizer feature é transmitida a múltiplos níveis da local segmentation
network por meio dos componentes adaptadores do posicionamento global (Global Posi-
tioning Adaptor – GPA) e pela multiplicação elemento a elemento das informações locais
em cada nível, como mostrado na Figura 3.

A rede local segmentation network é basicamente uma versão da rede 3D U-Net
com quatro encoders (EB) e três decoders (DB) com a modificação já mencionada nas
conexões diretas (skip connections) por meio dos módulos GPAs. Sua entrada é o bloco
local da imagem (local inputs) e a sua saída é a máscara de segmentação correspondente
ao bloco de entrada (net). Esta rede isolada, sem os módulos GPAs, e com normalização
por batch (IOFFE; SZEGEDY, 2015) no lugar de normalização por grupo (WU; HE,
2018) é a versão 3D da rede U-Net utilizada nos testes do artigo (BO et al., 2021).

A rede global positioning network é composta por dois componentes: o localizador
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global (global localizer), que recebe como entrada a imagem global reduzida dimensio-
nalmente (global inputs) e a localização do bloco local na imagem global (patch location
bbox ) e produz como saída o mapa de características de localização global do bloco (global
localizer feature), e o localizador (localizer loss), que recebe como entrada a saída do glo-
bal localizer e produz como saída as probabilidades do bloco local apresentar aneurismas
(global localizer logits).

Conforme a Figura 4, o global localizer é constituído por quatro etapas principais
em série: o gerador de características (feature generator), a indexação (indexing), o po-
sicionamento adaptativo de regiões de interesse (roi adaptive positioning) e o gerador de
localização (localizer generator).

Figura 4 – Global localizer da rede GLIA-Net.

Fonte: Adaptado de (BO et al., 2021).

Nota: O número em cima das linhas corresponde ao número de canais do feature map representado pela
linha.

Nota: ÷4 indica que a operação divide a profundidade, a altura e a largura do feature map por 4. 6
abaixo da operação indica que esta iguala a profundidade, a altura e a largura do feature map a 6.

O feature generator, exibido na Figura 5, é constituído por cinco blocos de encoders
em série e produz um mapa de características da imagem global inteira. As dimensões
largura, altura e profundidade deste mapa são iguais as respectivas dimensões da imagem
global reduzida dimensionalmente (global inputs) divididas por quatro.

Figura 5 – Feature generator da rede GLIA-Net.

Fonte: Adaptado de (BO et al., 2021).

Nota: O número em cima das linhas corresponde ao número de canais do feature map representado pela
linha.

Nota: ÷2 indica que a operação divide a profundidade, a altura e a largura do feature map por 2.

O mapa de características globais gerado pelo feature generator possui informações
da imagem inteira. A operação de indexação é responsável por utilizar a posição do bloco
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na imagem completa (patch location bbox ) para extrair justamente a região do mapa de
características globais referente à região do bloco em questão.

A operação de posicionamento adaptativo da região de interesse (roi adaptive po-
sitioning) aplica a operação do PyTorch AdaptativeMaxPool3d, que seleciona valores
máximos do mapa de características da região de interesse gerado pela operação de inde-
xação de tal forma a gerar um novo mapa de características da região referente ao bloco
com altura, largura e profundidade iguais a 6.

O componente localizer generator recebe o mapa de características produzido pela
camada roi adaptive pooling e gera um novo mapa de características globais da região
de interesse (o bloco), chamado de global localizer feature, que é utilizado pela rede de
segmentação local (local segmentation network) por conter informações provenientes da
imagem completa. Esta operação é realizada por dois blocos de encoders, como apresen-
tado na Figura 6.

Figura 6 – Localizer generator da rede GLIA-Net.

Fonte: Adaptado de (BO et al., 2021).

Nota: O número em cima das linhas corresponde ao número de canais do feature map representado pela
linha.

A partir do global localizer feature, o localizador (localizer loss) estima a probabi-
lidade do bloco de interesse apresentar um aneurisma ou não, chamada de global localizer
logit. Assim, a rede global localization network produz uma estimativa da probabilidade
de um bloco da imagem apresentar aneurismas utilizando apenas a imagem inteira e re-
duzida dimensionalmente e a posição no bloco na imagem completa. O localizer loss é
exibido na Figura 7 e é formado pelas operações em série: convolução 3D com kernels
cúbicos de lado 3, normalização por grupo (WU; HE, 2018), a função de ativação Leaky
ReLU (Equação 2.2) (XU et al., 2015), AdaptativeMaxPool3d com a saída em cubos de
lado 1 e convolução 3D com kernels cúbicos de lado 1 e a função sigmoide (Equação 2.3),
que é utilizada para gerar números entre 0 e 1 a partir de uma entrada real, o que pode
ser entendido como uma probabilidade.

f : R→ R, f(x) =

x se x ≥ 0

0, 01x caso contrário
(2.2)

f : R→ [0, 1], f(x) =
1

1 + exp(−x)
=

exp(x)

1 + exp(x)
(2.3)
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Figura 7 – Localizer loss da rede GLIA-Net.

Fonte: Adaptado de (BO et al., 2021).

Nota: O número em cima das linhas corresponde ao número de canais do feature map representado pela
linha.

Nota: 1 abaixo da operação indica que esta iguala a profundidade, a altura e a largura do feature map a
1.

Os global positioning adaptors possuem a estrutura mostrada na Figura 8. Basica-
mente um GPA é composto por uma operação de convolução 3D com kernels cúbicos de
lado 1 e a função de ativação sigmoide (Equação 2.3). A operação AdaptiveMaxPool3d é
empregada quando as dimensões altura, largura e profundidade do feature map de entrada
e da saída do GPA são diferentes.

Figura 8 – Global positioning adaptor da rede GLIA-Net.

Fonte: Adaptado de (BO et al., 2021).

Nota: O número em cima das linhas corresponde ao número de canais do feature map representado pela
linha.

Nota: (D,H,W )out abaixo da operação indica que esta iguala as dimensões do feature map profundidade
a D, a altura a H e a largura a W .

Nota: O contorno pontilhado indica que a operação só é empregada quando a mudança de tamanho de
pelo menos uma das dimensões profundidade, altura e largura é necessária.

O bloco encoder utilizado por diversos componentes da rede GLIA-Net é consti-
tuído por uma operação MaxPooling3d quando for necessário reduzir com kernel cúbico
de lado e passo iguais a 2 – uma operação que consiste em interpretar o feature map de
entrada como cubos de lado 2 justapostos e selecionar o valor máximo de cada cubo – a
dimensão do feature map por 2 e um bloco ResNet. Este componente é apresentado na
Figura 9.

Já o bloco decoder é utilizado apenas na rede local segmentation network e é
constituído por uma operação de convolução transposta 3D com kernels cúbicos de lado
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Figura 9 – Encode block da rede GLIA-Net.

Fonte: Adaptado de (BO et al., 2021).

Nota: O número em cima das linhas corresponde ao número de canais do feature map representado pela
linha.

Nota: ÷2 indica que a operação divide a profundidade, a altura e a largura do feature map por 2.

Nota: O contorno pontilhado indica que a operação só é empregada quando a mudança de tamanho de
pelo menos uma das dimensões profundidade, altura e largura é necessária.

3 dobrando as dimensões altura, largura e profundidade da entrada de menor tamanho,
a concatenação na dimensão dos canais do resultado da convolução transposta com a
skip connection, a normalização por grupo (Group Normalization) (WU; HE, 2018), a
função de ativação Leaky ReLU (Equação 2.2) (XU et al., 2015) e um bloco ResNet. Este
componente é apresentado na Figura 10.

Figura 10 – Decode block da rede GLIA-Net.

Fonte: Adaptado de (BO et al., 2021).

Nota: O número em cima das linhas corresponde ao número de canais do feature map representado pela
linha.

Nota: ⊕ com Cat acima representa a operação de concatenação de tensores na dimensão dos canais.

Como abordado nos componentes antecessores, a microarquitetura principal utili-
zada pela rede GLIA-Net é o bloco ResNet. Os Blocos Residuais (Residual Blocks) foram
desenvolvidos inicialmente como os blocos fundamentais da rede ResNet implementada
para a tarefa de classificação de imagens. A ideia central por trás do Bloco Residual é
formular a função que deseja-se que a rede aprenda H(x) como F (x) + x, sendo F (x) o
resíduo de interesse. Esta formulação, segundo resultados experimentais, permite facilitar
a otimização da rede neural em relação a formulação direta (HE et al., 2015).

Em particular, o Bloco Residual gargalo (bottleneck building block), também pro-
posto no mesmo artigo, é utilizado em GLIA-Net. Nele, emprega-se para aproximar uma
função F (x) três convoluções em série seguidas por uma função de ativação Rectified Li-
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near Unit, ou ReLU (Equação 2.4). A segunda convolução possui kernels quadrados de
lado 3, sendo a única operação do bloco que é aplicada no voxel em questão em seus
vizinhos imediatos. A primeira e a última convolução possuem kernels quadrados de lado
1, e portanto, operam apenas na dimensão dos canais. A primeira reduz o número de
canais do feature map para que a convolução com kernels de lado 3 não seja tão custosa
computacionalmente e a terceira restaura o número de canais do feature map de entrada
(HE et al., 2015).

f : R→ R≥0, f(x) =

x se x ≥ 0

0 caso contrário
(2.4)

Como está exibido na Figura 11, a implementação do bottleneck building block na
rede GLIA-Net é ligeiramente diferente. Todas as operações de convolução utilizadas no
bloco possuem kernels cúbicos no lugar de quadrados, as convoluções obrigatórias são
seguidas de uma normalização por grupo (Group Normalization) (WU; HE, 2018) e as
funções de ativação ReLU são substituídas por Leaky ReLU (Equação 2.2) (XU et al.,
2015). Além disso, caso o número de canais dos tensores de entrada e de saída do bloco
sejam distintos, emprega-se uma operação de convolução com kernels de tamanho unitário
na entrada do bloco para igualá-los.

Figura 11 – ResNet block da rede GLIA-Net.

Fonte: Adaptado de (BO et al., 2021).

Nota: O número em cima das linhas corresponde ao número de canais do feature map representado pela
linha.

Nota: ⊕ representa a operação de soma de tensores termo a termo.

Nota: O contorno pontilhado indica que a operação só é empregada quando o número de canais dos
tensores de entrada e de saída são distintos.

Segundo (WU; HE, 2018), a normalização por grupo usada na rede GLIA-Net
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consiste na seguinte operação:

x̂ =
x− µ
σ

(2.5)

onde µ e σ são, respectivamente, a média e o desvio padrão da entrada x. Esta
operação é definida para x sendo um conjunto de canais abrangendo a largura, a altura e
a profundidade de um mapa de características (feature map) de uma rede neural. A saída
final da normalização por grupo (y) é calculada da seguinte forma a fim de evitar perdas
de representatividade por causa da normalização:

y = γx̂+ β (2.6)

onde γ e β são parâmetros de escala e deslocamento aprendidos no treinamento.

Como esta normalização opera independentemente do batch, as estatísticas µ e
σ podem ser estimadas da mesma forma no treinamento e na inferência e o tamanho
do batch pode ser dissociado à quantidade de memória exigida para executar o modelo.
Ainda sim, resultados apontam que a performance de redes neurais com esta normalização
é independente ao número de batch (WU; HE, 2018).

Finalmente, a Figura 12 apresenta o bloco output conv, que gera a máscara de
segmentação do bloco de interesse. Este bloco é simplesmente formado por uma operação
de convolução com kernels cúbicos de lado igual a 3 seguida por uma função de ativação
softmax (Equação 2.7), que torna todos os valores da máscara de segmentação entre 0 e
1, sendo que a soma dos canais de um mesmo voxel resulta sempre em 1. Dessa forma, a
máscara de segmentação contém uma estimativa da probabilidade de cada voxel do bloco
de interesse ser classificado como aneurisma ou não.

Figura 12 – Output conv da rede GLIA-Net.

Fonte: Adaptado de (BO et al., 2021).

Nota: O número em cima das linhas corresponde ao número de canais do feature map representado pela
linha.

i ∈ [1, N ] ∩ N, f : RN → [0, 1]N , f(xi) =
exp(xi)∑N
j=1 exp(xj)

(2.7)

onde N é o número de elementos de um vetor x e xi é o i-ésimo termo do vetor x.
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Como já foi explicado, a segmentação semântica de uma imagem 3D inteira con-
siste na composição da segmentação semântica de cada bloco individual e que para cada
bloco, o modelo GLIA-Net recebe como entrada o bloco, a posição do bloco na imagem
completa e a imagem completa com dimensão reduzida e produz como saída uma más-
cara classificando os voxels em aneurismas ou em regiões normais e uma estimativa da
probabilidade do bloco apresentar um aneurisma. A máscara de segmentação semântica
é formada pela união das máscaras semânticas de probabilidade de cada bloco, utilizando
a média aritmética para determinar o valor regiões sobrepostas. Para obter uma classe
exata e fixa para cada voxel, utiliza-se um limiar igual a 0,5.

Um processo análogo pode ser aplicado aos global localizer logits, tomando uma
máscara de segmentação de cada bloco no qual cada voxel é igual à probabilidade do
bloco apresentar aneurismas usando apenas informações globais (global localizer logits).
A composição desta máscara de segmentação para imagem completa representa a pro-
babilidade de cada região da imagem apresentar um aneurisma considerando apenas a
imagem completa de dimensão reduzida como entrada (global inputs).

2.2.2.1.1 Função de custo

Para guiar a rede neural GLIA-Net para que esta assuma valores de tal forma
que a solução desempenhe melhor na tarefa desejada, segmentação de aneurismas, com o
passar do treinamento é necessário de uma função de custo.

Como já foi explicado, a rede GLIA-Net classifica voxels e blocos em duas classes:
aneurisma ou normal. Assim, todos os componentes da função de custo são para a tarefa
de classificação ou segmentação binária. O artigo (BO et al., 2021) detalha que a função
de custo total (LTotal) é descrita pela seguinte equação:

LTotal = ωGlobalLGlobal + ωLocalLLocal (2.8)

onde ωGlobal e ωLocal são pesos ponderadores e LGlobal e LLocal são as funções de
custo global e local, respectivamente.

Em particular, para a saída da rede global localization network, que é um par de
números reais, a função de custo global (LGlobal) é aplicada como softmax cross-entropy
loss, descrita por:

LGlobal = −z ln ẑ − (1− z) ln (1− ẑ) (2.9)

onde z é o valor (0 ou 1) da classe real do bloco (patch) e ẑ é a predição da classe
dada pelo modelo. ẑ é calculado pela aplicação da função softmax (Equação 2.7) sobre
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os global localizer logits, resultando na probabilidade do bloco apresentar um aneurisma
ẑ ou não 1− ẑ.

Enquanto para a rede local segmentation network, a função de custo local (LLlobal)
é uma função de custo exponencial logarítmica (exponental logarithmic loss), expressa
por:

LLocal = ωDiceLDice + ωCrossLCross (2.10)

onde ωDice e ωCross são pesos ponderadores, LDice e LCross são funções de custo de
dice (dice loss) e de entropia cruzada (cross-entropy loss), respectivamente.

A função de custo de dice visa minimizar a diferença de forma da máscara de
segmentação predita e a anotada e é descrita pelo seguinte valor esperado:

LDice = E
(
− ln

2yŷ + ε

y + ŷ + ε

)γDice

(2.11)

onde E(∗) é a função que calcula a média de do valor ∗ iterando sobre todos
os voxels do bloco (patch) que está sendo segmentado, y e ŷ são, respectivamente, a
classe anotada e a probabilidade de representar um aneurisma de cada voxel, γDice é um
parâmetro que controla a não-linearidade da função de custo de dice e ε é uma constante
para suavizar a função.

Para finalizar, a função de custo de entropia cruzada (LCross) é descrita por:

LCross = E (ωp(−y ln ŷ − (1− y) ln (1− ŷ))ωCross) (2.12)

onde E(∗) é a função que calcula a média de do valor ∗ iterando sobre todos
os voxels do bloco (patch) que está sendo segmentado, y e ŷ são, respectivamente, a
classe anotada e a probabilidade de representar um aneurisma de cada voxel, γCross é um
parâmetro que controla a não-linearidade da função de custo de entropia cruzada e ωp
é um peso ponderador que desconta o valor de voxels próximos a borda do aneurisma e
mantém o valor de pixels internos e externos à aneurismas. Este desconto é importante,
pois há uma alta variabilidade de anotações entre especialistas (SUINESIAPUTRA et al.,
2015).

2.3 Transferência de aprendizado

Seguindo o artigo (PAN; YANG, 2010), esta seção define os conceitos de domínio
(domain) e tarefa (taks), que são utilizados para apresentar o conceito de transferência
por aprendizado (transfer learning).
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O domínio consiste de dois componentes: um espaço de características χ e uma
distribuição de probabilidades marginais P (X), onde X = x1, x2, ..., xn ∈ χ. Assim pode-
se definir um domínio como D = {χ, P (X)}.

Para um domínio específico D = {χ, P (X)}, uma tarefa consiste de dois com-
ponentes: um espaço de anotações υ e uma função preditiva objetiva f(.), que não é
conhecida mas pode ser aprendida por meio de dados de treinamento, formados por pa-
res {xi, yi} onde xi ∈ X e yi ∈ υ. Dessa forma, uma tarefa pode ser descrita por
τ = {υ, f(.)}. Para um novo x, a função f(.) pode ser utilizada para prever a sua anota-
ção correspondente, tentando aproximar a anotação y associada a x com f(x). A partir
de uma perspectiva probabilística, f(x) pode ser escrito como P (y|x).

No cenário de segmentação de aneurismas, o espaço de características χ é o con-
junto de imagens dos exames (RM, ATC ou DSA), X é um conjunto de imagens (RM,
ATC ou DSA) de um único exame, xi é cada voxel dos exames, o espaço de anotações
υ é o conjunto de máscaras de segmentação que anotam se um voxel dos exames corres-
ponde a um aneurisma ou a uma região normal e a função f(x) é a função que realiza a
segmentação dos exames em aneurismas e em regiões normais.

No contexto de transferência de aprendizado, utiliza-se o domínio DS e a ta-
refa τS fontes e o domínio DT e a tarefa τT alvos. Assim, para o domínio fonte, te-
mos: DS = {(xS1, yS1), ..., (xSnS

, ySnS
)} com xSi ∈ χS sendo uma instância de da-

dos fonte e ySi ∈ υS a sua anotação correspondente; e para o domínio alvo, temos:
DT = {(xT1, yT1), ..., (xTnT

, yTnT
)} com xT i ∈ χT sendo uma instância de dados alvo e

yT i ∈ υT a sua anotação correspondente. nS e nT são, respectivamente, o número de
instâncias da fonte e o número de instâncias alvo, no qual geralmente 0 < nT << nS.

Com base nas definições de domínio e tarefa, pode-se definir transferência de apren-
dizado:

Dado um domínio fonteDS, uma tarefa fonte TS, um domínio alvoDT e uma tarefa
alvo TT , a transferência de aprendizado visa melhorar o aprendizado da função preditiva
alvo fT (.) em DT usando o conhecimento em DS e TS, onde DS 6= DT ou TS 6= TT .

Voltando ao cenário de segmentação de aneurismas, particularmente se apenas a
modalidade dos exames é alterada, o que caracterizaria em uma diferença entre os espaços
de características fonte e alvo, temos DS 6= DT e TS = TT .

Segundo (TAN et al., 2018), a transferência de aprendizado profundo (deep
transfer learning) pode ser definida como um caso particular de transferência de apren-
dizado:

Dado uma tarefa de transferência de aprendizado definida por (DS, TS, DT , TT ,
fT (.)), define-se um tarefa de transferência de aprendizado profundo o caso particular no
qual fT (.) é uma função não-linear descrita por uma rede neural profunda.
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Este artigo também propõe a classificação da transferência de aprendizado pro-
fundo em quatro categorias: baseada em instâncias (instance-based deep transfer lear-
ning), baseada em mapeamento (mapping-based deep transfer learning), baseada em ad-
versários (adversarial-based deep transfer learning) e baseada em rede (network-based deep
transfer learning).

Na transferência de aprendizado profundo baseada em instâncias, ins-
tâncias parciais do domínio fonte são utilizadas no conjunto de dados de treinamento do
domínio alvo, utilizando um peso particular.

Na transferência de aprendizado profundo baseada em mapeamento, os
dados dos domínios fonte e alvo são mapeados em um novo espaço de dados. Este novo
domínio é utilizado na rede neural profunda.

Por último, a transferência de aprendizado profunda baseada em adversá-
rios se refere ao uso de instâncias adversárias devidamente escolhidas de modo a encontrar
representações aplicáveis tanto no domínio fonte como no domínio alvo.

A transferência de aprendizado profunda baseada em rede se refere ao
reuso parcial de uma rede neural pré-treinada no domínio fonte, incluindo a sua estrutura
e a conexão entre seus parâmetros, como uma parte integral da rede neural profunda
utilizada no domínio alvo. Nesta abordagem, trata-se as primeiras camadas da rede
neural como extratores gerais e versáteis de características e as últimas camadas como
estimadores particulares de uma tarefa específica em um domínio específico.

No contexto particular das redes de segmentação semântica que seguem a estrutura
básica do modelo 3D U-Net, o artigo (KARIMI; WARFIELD; GHOLIPOUR, 2020) apre-
senta indícios de que os parâmetros das camadas mais próximas à saída da rede neural são
os mais alterados no treinamento da rede. Os autores compararam o treinamento de uma
mesma rede neural partindo de dois cenários: de parâmetros inicializados aleatoriamente
e de parâmetros pré-treinados em outras tarefas de segmentação, variando idade do paci-
ente e órgão segmentado. Como métrica, foi usada uma média ponderada da correlação
entre os parâmetros de cada camada das duas redes neurais treinadas por meio da Análise
por Correlação Canônica (ACC) (BACH; JORDAN, 2005). Os resultados indicam que os
parâmetros dos encoders aleatoriamente inicializados e pré-treinados mudam menos e são
mais semelhantes que os parâmetros aleatoriamente inicializados e pré-treinados dos deco-
ders. A explicação proposta para este fenômeno é que os decoders são as últimas camadas
e, portanto, pequenas mudanças nas camadas precedentes impactam na entrada desses
componentes. Os autores interpretam que os encoders extraem mapas de características
genéricas, enquanto os decoders extraem informações particulares para a tarefa específica
do treinamento fino.

A partir desta interpretação, questionou-se a necessidade de treinar os encoders em
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uma rede do tipo 3D U-Net para segmentação. Para investigar esta questão, os autores
de (KARIMI; WARFIELD; GHOLIPOUR, 2020) realizaram o treinamento de uma rede
de segmentação do tipo 3D U-Net inicializada com valores aleatórios de duas formas
distintas: (1) congelando os parâmetros dos encoders e treinando apenas os decoders e (2)
treinando a rede inteira. Com o congelamento, o tempo de otimização dos parâmetros da
rede caiu em 40% e a queda de performance foi marginal. O experimento foi realizado em
duas tarefas de segmentação de imagens médicas e os resultados constam na Tabela 4.

Tabela 4 – Resultados do treinamento de uma rede de segmentação do tipo 3D U-Net
treinando apenas os decoders e treinando a rede inteira nos bancos de dados
Liver-CT e CP-younger fetus.

Banco de dados Congelamento dos encoders DSC
Liver-CT Não 0,967
Liver-CT Sim 0,940

CP-younger fetus Não 0,896
CP-younger fetus Sim 0,884

Fonte: Adaptado de (KARIMI; WARFIELD; GHOLIPOUR, 2020).

Nota: DSC representa o coeficiente de similaridade de Sorensen-Dice.

Assim, mostram que o treinamento apenas dos decoders da rede permite um au-
mento na velocidade de treinamento do modelo sem perdas consideráveis na performance.

O artigo também estuda o efeito da transferência de aprendizado no treinamento
da rede de segmentação semântica no cenário de mudança de modalidade, de ressonância
magnética para tomografia computadorizada (ambas anatômicas), de mudança de idade,
de mudança de tarefa e de mudança no protocolo de aquisição. No caso particular de
mudança de modalidade, a transferência de aprendizado gera um aumento marginal na
performance, conforme a Tabela 5, e uma redução de considerável no tempo de conver-
gência do algoritmo (KARIMI; WARFIELD; GHOLIPOUR, 2020).
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Tabela 5 – Performance de uma rede de segmentação de fígado do tipo 3D U-Net em
banco de dados de teste de imagens TC anotadas partindo de parâmetros
aleatoriamente inicializados (R.I) e partindo de parâmetros de um modelo
pré-treinado nos bancos de dados de imagens de RM anotadas.

Quantidade de dados de treino Inicialização DSC HD95 [mm]
15 R.I. 0, 97± 0, 01 5, 07± 1, 94
15 R.I. 0, 97± 0, 01 4, 75± 1, 81
6 T.L. 0, 95± 0, 01 5, 47± 2, 00
6 T.L. 0, 96± 0, 01 5, 25± 2, 09

Fonte: Adaptado de (KARIMI; WARFIELD; GHOLIPOUR, 2020).

Nota: DSC representa o coeficiente de similaridade de Sorensen-Dice e HD95 representa a distância de
Hausdorff considerando o percentil 95 das menores distâncias.

Nota: Os bancos de dados empregados são disponibilizados no desafio CHAOS (KAVUR et al., 2021).
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3 Materiais e Métodos

Para desenvolver a solução para a tarefa de segmentação de imagens médicas em
aneurismas e regiões saudáveis, este trabalho usa o banco de dados aberto do desafio
ADAM (TIMMINS et al., 2020). Este banco de dados aberto contém 113 exames de
ressonância magnética da cabeça anotados e é destinado ao desenvolvimento de soluções
de detecção e segmentação de aneurismas pelos participantes.

Cada exame contém uma imagem 3D de TOF angio-RM e uma imagem 3D su-
plementar de angio-RM, podendo ser ponderada em T1, em T2 ou ser do tipo FLAIR.
Está disponível também a versão da imagem 3D suplementar alinhada com a imagem
3D de TOF angio-RM de tal forma que os eixos x, y e z representem, respectivamente,
as direções direita-esquerda, frente-trás e baixo-cima. Os parâmetros da operação de ali-
nhamento bem como os parâmetros de captura de imagem são fornecidos. Quanto às
anotações, uma máscara 3D classificando cada voxel da imagem de TOF angio-RM e um
arquivo texto contendo as posições e o tamanho em mm do aneurisma são fornecidos,

Utiliza-se uma abordagem de aprendizado profundo para realizar a segmentação
automática de aneurismas destes exames de ressonância magnética. Visando acelerar o
treinamento, este é executado na plataforma Google Colab, que dispõe de GPUs gratuitas
K80 e pagas T4 e P100. O serviço Google Colab Pro foi assinado para se beneficiar de
GPUs com maior capacidade de processamento e mais memória RAM e do disco. Em
particular, a GPU P100 de 16 GB de RAM foi empregada na execução da rede neural.

A plataforma Colab disponibiliza a GPU P100 da Nvidia, 25,46 GB de memória
RAM e 147,15 GB de memória do disco rígido, sendo que o sistema já ocupa 38,99
GB. Assim, o ambiente fornece espaço no disco rígido suficiente para salvar o banco de
dados aberto ADAM, que ocupam 30 GB quando compactado e menos de 60 GB quando
descompactado.

De acordo com revisão bibliográfica, a arquitetura GLIA-Net é a mais promis-
sora para a segmentação de aneurismas intracranianos, superando outras arquiteturas do
estado da arte e mostrando o seu potencial para melhorar a qualidade e agilizar a de-
tecção de aneurismas em diagnóstico clínico. A implementação original, disponível em
<https://github.com/MeteorsHub/GLIA-Net>, foi implementada na linguagem de pro-
gramação Python e usa a biblioteca de aprendizado profundo PyTorch. O trabalho está
atribuído à licença de acesso aberto CC BY-NC-ND.

Como o projeto original de GLIA-Net aplica a segmentação de imagens de ATC
e o nosso objetivo e é segmentar imagens a partir de imagens de angio-RM, é necessário
adaptar o projeto original para esta nova modalidade. Assim, o proprietário do projeto

https://github.com/MeteorsHub/GLIA-Net
https://creativecommons.org/licenses/by-nc-nd/4.0/
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GLIA-Net foi contactado e este permitiu a extensão do projeto a partir de um fork,
disponível em <https://github.com/gabrielriqu3ti/GLIA-Net>.

3.1 Análise de dados do desafio ADAM

Para adaptar a solução GLIA-Net, desenvolvida para segmentar imagens de exames
de ATC, para segmentar imagens de exames de TOF angio-RM, é necessário compreender
o pré-processamento da entrada e os dados fornecidos pelos bancos de dados de ressonância
magnética e de tomografia computadorizada.

O banco de dados disponibilizado pelo desafio ADAM, contém 113 dados que
seguem a seguinte estrutura de arquivos:

dado

orig

reg_struct_to_TOF.txt

ScanParams_struct.txt

ScanParams_TOF.txt

struct.nii.gz

struct_aligned.nii.gz

TOF.nii.gz

pre

struct.nii.gz

struct_aligned.nii.gz

TOF.nii.gz

aneurysms.nii.gz

location.txt

Na pasta orig temos os arquivos de exames de imagem 3D originais e as informa-
ções para gerar os arquivos pré-processados, enquanto na pasta pre temos os exames de
imagem 3D pré-processados. Todas os arquivos com extensão .nii.gz estão no formato
de dados comprimido e padronizado NIfTI, específico para imagens de neurociência.

TOF.nii.gz é um arquivo que contém uma imagem 3D de um exame de TOF
angio-RM. Para todos os dados, este arquivo assume o mesmo alinhamento, conforme a
Figura 13.

struct.nii.gz e struct_aligned.nii.gz são arquivos que contêm uma imagem
3D de um exame de IRM, podendo este ser de uma das três modalidades: ponderada
em T1, ponderada em T2 ou FLAIR, variando de dado para dado. Note que estas
modalidades são exames anatômicos e não exames de angiografia, e portanto, não são
usados para ressaltar a estrutura vascular cerebral, mas sim para diferenciar os tecidos
da cabeça. O arquivo struct_aligned.nii.gz difere do arquivo struct.nii.gz por

https://github.com/gabrielriqu3ti/GLIA-Net


Capítulo 3. Materiais e Métodos 49

Figura 13 – Seções de imagem 3D do exame TOF angio-RM do dado 10072F do desafio
ADAM

Fonte: Autor.

Nota: O círculo vermelho artificialmente sobreposto à imagem localiza o aneurisma não tratado nem
rompido e a posição do seu centro foi obtida por meio do arquivo de localização do mesmo dado.

Nota: Os valores da imagem foram normalizados linearmente de tal forma que os valores mínimo e máximo
da imagem original passam a valer 0 e 1 na imagem normalizada.

apresentar o mesmo alinhamento e a mesma escala que a imagem 3D do exame TOF
angio-RM, conforme a Figura 14.

Esta transformação afina está documentada no arquivo reg_struct_to_TOF.txt

e provoca artefatos na imagem 3D gerada, como regiões nulas devido ao limite da imagem
original e à perda de foco devido à mudança de escala, como pode-se observar na Figura 14.

A configuração básica de um equipamento de ressonância magnética exige três
parâmetros: a intensidade do campo magnético, o tempo de repetição e o tempo de
eco. Estas quatro informações estão armazenadas nos arquivos ScanParams_TOF.txt

para imagens de exames de TOF angio-RM e ScanParams_struct.txt para imagens de
exames de ressonância magnética do tipo T1, T2 ou FLAIR.
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Figura 14 – Seções de imagem 3D do exame FLAIR do dado 10072F do desafio ADAM

Fonte: Autor.

Nota: O círculo vermelho artificialmente sobreposto à imagem localiza o aneurisma não tratado nem
rompido e a posição do seu centro foi obtida por meio do arquivo de localização do mesmo dado.

Nota: Os valores da imagem foram normalizados linearmente de tal forma que os valores mínimo e máximo
da imagem original passam a valer 0 e 1 na imagem normalizada.

Como as imagens dos arquivos que começam por struct podem ser de três moda-
lidades distintas, é importante estudá-las para avaliar se podemos utilizá-las indiscrimi-
nadamente na solução, se alguma adaptação específica para cada modalidade é necessária
ou se é melhor descartar esta informação.

As Figuras 14, 15 e 16 contém seções com aneurisma cerebral de exames das
três modalidades FLAIR, T1 e T2 respectivamente. Nas três modalidades, o aneurisma
aparece como uma região de baixa intensidade e os diferentes tecidos da cabeça apresentam
mais detalhes e menos ruído quando comparado à imagem do exame de TOF angio-
RM (Figura 13), o que sugere que de fato estas três imagens possam ser tratadas de
forma indistinta e que possam fornecer informações relevantes da anatomia da cabeça
para a segmentação de aneurismas. Todavia, os tecidos apresentam intensidades relativas
diferentes em cada modalidade e uso destas imagens no treinamento pode introduzir
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correlações artificiais entre as modalidades da imagem e as anotações. Para exemplificar
o problema, apenas um dos 113 pares de exames de imagem é composto por imagens
ponderadas em T1, e portanto, caso as imagens dos arquivos struct_aligned.nii.gz

sejam usadas como entrada do sistema, a rede neural teria apenas um exemplo de imagem
de ressonância magnética ponderada em T1 com anotação para aprender a lidar com uma
entrada desta modalidade.

Figura 15 – Seções de imagem 3D do exame de IRM ponderado em T1 do dado 10067B
do desafio ADAM

Fonte: Autor.

Nota: O círculo vermelho artificialmente sobreposto à imagem localiza o aneurisma não tratado nem
rompido e a posição do seu centro foi obtida por meio do arquivo de localização do mesmo dado.

Nota: Os valores da imagem foram normalizados linearmente de tal forma que os valores mínimo e máximo
da imagem original passam a valer 0 e 1 na imagem normalizada.

aneurysms.nii.gz é um arquivo que contém uma imagem 3D que representa a
anotação de segmentação da imagem do exame TOF angio-RM, ou seja, cada voxel desta
imagem contém um valor qualitativo que indica se o voxel representa uma região de um
aneurisma ou não, conforme mostrado na Figura 17. Esta imagem também é chamada
de máscara de segmentação e a informação qualitativa da máscara consta no Quadro 6.
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Figura 16 – Seções de imagem 3D do exame de IRM ponderado em T2 do dado 10033 do
desafio ADAM

Fonte: Autor.

Nota: O círculo vermelho artificialmente sobreposto à imagem localiza o aneurisma não tratado nem
rompido e a posição do seu centro foi obtida por meio do arquivo de localização do mesmo dado.

Nota: Os valores da imagem foram normalizados linearmente de tal forma que os valores mínimo e máximo
da imagem original passam a valer 0 e 1 na imagem normalizada.

Quadro 6: Legenda da máscara de segmentação do desafio ADAM

Valor Descrição
0 Normal
1 Aneurisma não rompido nem tratado
2 Aneurisma tratado ou rompido

Fonte: Adaptado de (TIMMINS et al., 2020)

location.txt é um arquivo de texto que contém a posição em pixels do centro de
todos os aneurismas não tratados nem rompidos nos exames de imagem e o raio tal que
todos os pontos do aneurisma estão dentro da esfera com este raio e o centro anotado.

As informações do arquivo location.txt não podem ser utilizadas diretamente
pelo modelo GLIA-Net. Entretanto, estes arquivo revelam informações referentes ao ta-
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Figura 17 – Seções de máscara 3D do dado 10072F do desafio ADAM. Consulte o Qua-
dro 6 para entender o mapa de cores.

Fonte: Autor.

manho e à localização dos aneurismas já obtidas do banco de dados ADAM, que podem
ser usados para sintetizar informações sobre o banco de dados completo. Utilizando estes
arquivos e normalizando a informação de posição contida neles para que ela fique entre
0 e 1 de acordo com o tamanho da imagem, expõem-se a distribuição e o tamanho dos
aneurismas não tratados nem rompidos no banco de dados nas Figuras 18, 19 e 20 e na
Tabela 6.

A partir destas figuras, pode-se notar que os aneurismas não são uniformemente
distribuídos na cabeça e há regiões da cabeça que concentram esta patologia. Logo, a ex-
ploração da localização de cada bloco da imagem pela rede GLIA-Net pode eliminar falso-
positivos em regiões pouco prováveis de aparecerem aneurismas e eliminar falso-negativos
em regiões que a patologia se concentra, melhorando a performance da segmentação em
relação ao uso exclusivo de blocos locais, como é feito em redes neurais análogas a U-Net.

A Tabela 6 e o histograma do raio da Figura 21 revelam que, exceto o aneurisma
anômalo de 15 mm de raio, os aneurismas não tratados nem rompidos possuem raios na
mesma ordem de grandeza e que o eixo y (frente-trás) é o que mais concentra aneurismas
já que este possui o menor desvio-padrão. É importante que os aneurismas possuam



Capítulo 3. Materiais e Métodos 54

Figura 18 – Projeção da localização de todos os aneurismas não tratados nem rompidos
do banco de dados ADAM. Os eixos x e y correspondem, respectivamente,
aos eixos da direita à esquerda do paciente e de frente para trás do paciente.

Fonte: Autor.

Tabela 6 – Estatísticas de localização e de tamanho dos 125 aneurismas não tratados
nem rompidos do banco de dados disponibilizado aos participantes do desafio
ADAM.

Estatísticas x y z Raio (mm)
Média 0,471 0,417 0,489 4,07

Desvio-padrão 0,140 0,070 0,109 2,20
Mínimo 0,133 0,172 0,145 0,70
25% 0,380 0,387 0,424 2,27
50% 0,457 0,420 0,492 3,96
75% 0,550 0,445 0,561 5,45

Máximo 0,889 0,703 0,700 15,92

Fonte: Autor.

Nota: x, y e z correspondem à posição dos aneurismas nos respectivos eixos direita-esquerda, frente-trás
e baixo-cima. O raio é corresponde ao raio da menor esfera centrada no baricentro do aneurisma
que engloba todos os seus voxels.

tamanhos semelhantes, pois aneurismas maiores são tratados com um peso maior já que
a função de custo local atua no nível dos voxels.

Ainda que os aneurismas possuam tamanhos em milímetros na mesma ordem de
grandeza, é possível que eles apresentem tamanhos em ordens de grandezas diferentes
se o espaçamento dos voxels for diferente. Observando a Tabela 7, pode-se notar que o
espaçamento dos voxels não é constante ao longo do banco de dados e o espaçamento
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Figura 19 – Projeção da localização de todos os aneurismas não tratados nem rompidos
do banco de dados ADAM. Os eixos x e z correspondem, respectivamente,
aos eixos da direita à esquerda do paciente e de baixo para cima do paciente.

Fonte: Autor.

em cada dimensão de uma imagem pode ser mais do que o dobro do espaçamento de
outra imagem, comparando os espaçamentos mínimo e máximo em cada dimensão. Uma
medida de mitigação possível para este problema é a fixação do espaçamento a um valor
representativo do banco de dados, como a mediana do espaçamento em cada dimensão.

Tabela 7 – Estatísticas referentes ao espaçamento dos 113 pares de imagens disponíveis
para treinamento e validação no desafio ADAM.

Estatísticas Largura Altura Profundidade
Média 0,352362 0,352362 0,544688

Desvio-padrão 0,056936 0,056936 0,092424
Mínimo 0,195312 0,195312 0,400000
25% 0,312500 0,312500 0,499999
50% 0,357143 0,357143 0,500000
75% 0,390625 0,390625 0,550000

Máximo 0,585938 0,585938 1,000000

Fonte: Autor.

A fixação do espaçamento das imagens do banco de dados é realizada através da
mudança no tamanho das imagens. Para viabilizar a operação, é necessário que estas ima-
gens tenham um tamanho suficientemente pequeno para o processamento computacional.
As estatísticas referentes ao tamanho das imagens médicas são mostradas na Tabela 8,
todas as imagens foram capazes de serem processadas pelos recursos computacionais dis-
poníveis.
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Figura 20 – Projeção da localização de todos os aneurismas não tratados nem rompidos
do banco de dados ADAM. Os eixos y e z correspondem, respectivamente,
aos eixos de frente para trás do paciente e de baixo para cima do paciente.

Fonte: Autor.

Tabela 8 – Estatísticas referentes ao tamanho dos 113 pares de imagens disponíveis para
treinamento e validação no desafio ADAM.

Estatísticas Largura Altura Profundidade
Média 556,9 556,9 131,9

Desvio-padrão 141,0 141,0 21,2
Mínimo 256 256 64
25% 512 512 138
50% 512 512 140
75% 560 560 140

Máximo 1024 1024 180

Fonte: Autor.

O banco de dados ADAM disponibiliza também a marcação de regiões de aneu-
rismas tratados ou rompidos, como apresentado no Quadro 6 e permite o questionamento
de como tratar esta nova classe. Há três opções: adaptar a solução para três classes
independentes, tratar os voxels desta classe como voxels de aneurismas não tratados nem
rompidos ou tratá-los como uma região normal da imagem. Para avaliar a melhor opção,
calculou-se o volume em voxels de cada região sem mudar o espaçamento e o seu per-
centual, que constam na Tabela 9. Pela tabela, o volume de regiões normais é ordens de
grandeza maior que o volume de regiões com aneurismas tratados ou rompidos e que este
é ordens de grandeza maior que o volume de regiões com aneurismas não tratados nem
rompidos. Logo, a classe 2 não pode ser tratada da mesma forma que a classe que deseja-
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Figura 21 – Histograma da localização e do tamanho dos 125 aneurismas não tratados
nem rompidos do banco de dados disponibilizado aos participantes do desafio
ADAM.

Fonte: Autor.

se segmentar no desafio (1) pela diferença na quantidade de ambas as classes, a adaptação
do projeto GLIA-Net para a segmentação de três classes é uma tarefa trabalhosa e que
levanta questionamentos sobre o balanceamento das três classes. Portanto, a solução mais
simples e que parece minimizar os efeitos desta terceira classe no treinamento da solução
é renomear os voxels anotados com 2, de 2 para 0.

No projeto original GLIA-Net, as imagens de angiografia por tomografia compu-
tadorizada passavam por uma etapa de normalização antes de serem usadas pela rede
neural. A normalização consistia no mapeamento de um intervalo de valores em unidades
Hounsfield para um intervalo entre 0 e 1. As intensidades de 0 a 100 eram mapeadas
no primeiro canal, as intensidades de 100 a 200 eram mapeadas no segundo canal e as
intensidades de 200 a 800 eram mapeadas no terceiro canal. Este mapeamento é possível
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Tabela 9 – Volume em voxels de cada classe nos 113 anotações com espaçamento original
disponíveis para treinamento e validação no desafio ADAM.

Classe 0 1 2
Volume total 5135773829 59743 3394588

Volume relativo (%) 99,93279 0,00116 0,06605

Fonte: Autor.

Nota: O significado das classes é explicado no Quadro 6.

para uma imagem de ATC, pois a intensidade dos voxels desta modalidade está associada
ao material que o voxel representa, à temperatura da região e à voltagem do equipamento
de raio X, como apresentado na revisão bibliográfica. Enquanto para uma imagem de an-
giografia por ressonância magnética do tipo TOF, a intensidade dos voxels não depende
só do material, da temperatura e da configuração do equipamento, o movimento interfere
no resultado, vide revisão bibliográfica.

Tabela 10 – Estatísticas referentes à intensidade dos voxels de valor mínimo, mediano e
máximo das 113 imagens de TOF angio-RM disponíveis para treinamento e
validação no desafio ADAM.

Estatísticas Voxel mínimo Voxel mediano Voxel máximo
Média 0,0 118,3 1647,6

Desvio-padrão 0,0 138,4 1259,8
Mínimo 0,0 3,0 128,8
25% 0,0 14,1 301,6
50% 0,0 66,4 1905,7
75% 0,0 155,7 2612,2

Máximo 0,0 620,7 6119,1

Fonte: Autor.

Observando a Tabela 10, nota-se que exceto que as imagens de TOF angio-RM
possuem sempre valor mínimo igual a zero, mas os valores máximo e mediano não têm
um limite bem definido. As imagens desta modalidade variam a ponto da mediana de
uma imagem ser mais intensa do que o máximo de outra imagem. Como os aneurismas
não tratados nem rompidos possuem um volume com ordens de grandeza menores que
o tamanho da imagem, estas variações de valores máximos e medianos não relacionadas
aos aneurismas nos exames, por isso é de interesse reduzir estas variações de modo a
evitar correlações não representativas. Como apresentado na revisão bibliográfica, as
soluções mais bem classificadas empregam uma normalização Z, que consiste em subtrair
da imagem a sua média e dividir esta diferença pelo desvio-padrão da imagem. Este
trabalho também usa esta normalização.



Capítulo 3. Materiais e Métodos 59

3.2 Treinamento do modelo GLIA-Net no banco de dados ADAM

3.2.1 Transferência de aprendizado

Como apresentado na revisão do estado da arte, a transferência de aprendizado
pode agilizar a convergência da performance de um modelo durante o treinamento.

No trabalho original, a rede neural profunda GLIA-Net foi treinada para segmentar
aneurismas em imagens de angiografia por tomografia computadorizada. Enquanto neste
trabalho, deseja-se treinar a mesma a rede GLIA-Net para segmentar aneurismas em
imagens de ressonância magnética.

Assim, podemos formular uma transferência de dados onde temos um domínio
fonte formado por imagens de ATC e suas anotações, um domínio alvo formado por ima-
gens de RM e suas anotações e uma tarefa composta pelo espaço de anotações classificando
voxels em aneurismas ou em regiões normais e pela função que realiza a segmentação se-
mântica de uma imagem tomográfica da cabeça em regiões com aneurismas e normais.
Desta forma, temos tarefas fonte e alvo idênticas e domínios fonte e alvo distintos.

A rede neural GLIA-Net emprega funções de ativação não lineares, como sigmoide
(Equação 2.3), softmax (Equação 2.7) e Leaky ReLU (Equação 2.2), e apresenta um com-
portamento não linear, por conseguinte a transferência de aprendizado é uma transferência
de aprendizado profundo.

Das quatro possibilidades de aplicação da transferência de aprendizado profundo
descritas na literatura, opta-se neste trabalho por empregar a transferência de aprendizado
profundo baseada em rede. No projeto GLIA-Net original, está disponível uma rede já
treinada no banco de dados de exames de ATC disponível através do link <https://github.
com/MeteorsHub/GLIA-Net/releases/download/v1.0/checkpoint-0245700.pt>.

Por conta das normalizações diferentes aplicadas às imagens de ATC e TOF angio-
RM, as entradas global inputs e local inputs no caso de cada modalidade possuem um
número diferente de canais. Isto implica que o número de parâmetros dos primeiros filtros
convolucionais possuem um número de parâmetros diferentes. Por esta razão, todos os
parâmetros da nova rede neural, exceto aqueles cuja entrada é a entrada da rede, são
inicializados com os parâmetros correspondentes da rede neural treinada com imagens
de ATC para segmentar imagens de TOF angio-RM. De forma mais explícita, apenas as
duas primeiras convoluções tridimensionais com kernels de tamanho unitário do primeiro
encoder do componente feature generator e do primeiro encoder da rede local segmentation
network não recebem os parâmetros do modelo já treinado.

https://github.com/MeteorsHub/GLIA-Net/releases/download/v1.0/checkpoint-0245700.pt
https://github.com/MeteorsHub/GLIA-Net/releases/download/v1.0/checkpoint-0245700.pt
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3.2.2 Protocolo de treinamento

O desenvolvimento de uma solução de aprendizado supervisionado exige geral-
mente três banco de dados: de treino, de validação e de teste. O banco de dados de treino
é usado para adaptar os parâmetros da solução de forma a minimizar uma função de custo
que deve estar associada à performance do algoritmo. Já o banco de dados de validação é
usado para avaliar ao longo do treinamento se os resultados obtidos são reproduzidos em
dados diferentes dos empregados no treinamento. Finalmente, o banco de dados de teste
é empregado para verificar a performance do algoritmo para dados diferentes dos usados
no treinamento da rede.

Neste contexto, a adaptação do modelo GLIA-Net para a tarefa de segmentar
aneurismas cerebrais em imagens de TOF angio-RM emprega três bancos de dados sem
intersecção: os bancos de dados de treino, de validação e de teste. O banco de dados
de treino é composto por 90 imagens de TOF angio-RM anotadas e selecionadas ale-
atoriamente do banco de dados disponibilizado do desafio ADAM. O banco de dados
de validação é composto pelas 23 imagens de TOF angio-RM anotadas que não foram
selecionadas do banco de dados disponibilizado do desafio ADAM para o treinamento.
O banco de dados de teste do desafio é composto por 140 imagens de TOF angio-RM
anotadas do banco de dados secreto de teste do desafio ADAM. Apesar do desafio dis-
ponibilizar o banco de dados secreto para uma comparação de resultados mais confiável,
neste trabalho, assumi-se o banco de dados de validação como banco de dados de teste.
Em particular, a composição dos bancos de dados disponibilizados aos participantes é
mostrada nos Quadros 7 e 8.

Quadro 7: Composição do banco de dados de treino.

10001.nii.gz 10002.nii.gz 10004.nii.gz 10006.nii.gz 10007.nii.gz
10008.nii.gz 10009.nii.gz 10011.nii.gz 10013.nii.gz 10014.nii.gz
10015.nii.gz 10016.nii.gz 10017.nii.gz 10018.nii.gz 10019.nii.gz
10020.nii.gz 10023.nii.gz 10024.nii.gz 10025.nii.gz 10026.nii.gz
10027.nii.gz 10028.nii.gz 10030.nii.gz 10031.nii.gz 10032.nii.gz
10033.nii.gz 10034.nii.gz 10036.nii.gz 10037.nii.gz 10038.nii.gz
10039.nii.gz 10041.nii.gz 10042.nii.gz 10043.nii.gz 10044F.nii.gz
10045B.nii.gz 10045F.nii.gz 10046B.nii.gz 10046F.nii.gz 10047B.nii.gz
10047F.nii.gz 10048B.nii.gz 10048F.nii.gz 10049B.nii.gz 10049F.nii.gz
10050B.nii.gz 10050F.nii.gz 10051B.nii.gz 10051F.nii.gz 10052B.nii.gz
10053B.nii.gz 10053F.nii.gz 10054B.nii.gz 10054F.nii.gz 10055B.nii.gz
10055F.nii.gz 10056B.nii.gz 10056F.nii.gz 10057B.nii.gz 10057F.nii.gz
10058B.nii.gz 10059B.nii.gz 10059F.nii.gz 10060B.nii.gz 10060F.nii.gz
10061B.nii.gz 10061F.nii.gz 10062F.nii.gz 10063B.nii.gz 10064B.nii.gz
10064F.nii.gz 10065B.nii.gz 10065F.nii.gz 10067B.nii.gz 10067F.nii.gz
10068B.nii.gz 10068F.nii.gz 10069B.nii.gz 10070F.nii.gz 10072B.nii.gz
10072F.nii.gz 10073B.nii.gz 10073F.nii.gz 10074B.nii.gz 10075B.nii.gz
10076B.nii.gz 10076F.nii.gz 10077B.nii.gz 10078B.nii.gz 10078F.nii.gz
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Quadro 8: Composição do banco de dados de validação.

10003.nii.gz 10005.nii.gz 10010.nii.gz
10012.nii.gz 10021.nii.gz 10022.nii.gz
10029.nii.gz 10035.nii.gz 10040.nii.gz
10044B.nii.gz 10052F.nii.gz 10058F.nii.gz
10062B.nii.gz 10063F.nii.gz 10066B.nii.gz
10066F.nii.gz 10069F.nii.gz 10070B.nii.gz
10071B.nii.gz 10071F.nii.gz 10074F.nii.gz
10075F.nii.gz 10077F.nii.gz -

O treinamento da rede GLIA-Net é realizado ao longo de épocas. A cada época,
a rede recebe a entrada de cada imagem do banco de dados de treinamento, calcula uma
saída, calcula a função de custo em função desta saída e, por meio de um algoritmo
de retro-propagação, os parâmetros da rede neural são atualizados de forma a tentar
reduzir a função de custo. A função de custo empregada no treinamento é apresentada
na subseção 2.2.2.1.1 e os pesos de cada não termo não foram modificados em relação ao
trabalho anterior, onde ωGlobal = 0, 1, ωLocal = 1, 0, ωDice = 0, 2, ωCross = 0, 8, γDice = 0, 3

e γCross = 0, 3.

Quanto ao algoritmo de retro-propagação, utiliza-se o otimizador Adam (KINGMA;
BA, 2015) com uma taxa de aprendizado inicial igual a 0,000058398, a taxa de aprendi-
zado final usada no treinamento do modelo pré-treinado para modalidade ATC. A taxa
de aprendizado é reduzida em 5% a cada 10000 passos de treinamento da rede, onde um
passo de treinamento corresponde a uma etapa de adaptação dos parâmetros da rede
neural por meio do algoritmo de retro-propagação, da mesma forma que o trabalho ori-
ginal GLIA-Net desenvolvido para a modalidade ATC. Esta atualização dos parâmetros
da rede ocorre após o modelo ser aplicado a três blocos (patches) de imagens, ou seja, o
tamanho do lote (batch size) é igual a três, análogo ao trabalho GLIA-Net original para
a modalidade ATC.

A atualização dos parâmetros do modelo não é aplicada a todas as camadas da
rede neural, atualiza-se apenas os componentes global localizer, localizer loss, global posi-
tioning adaptors, output conv e os decoders da rede local segmentation network, ou seja,
apenas os encoders da rede local segmentation network estão fixos. Na literatura, estas
camadas cujos parâmetros estão fixados, mas poderiam ser adaptados ao longo do treina-
mento são consideradas de camadas congeladas (frozen layers). Este método de treinar o
modelo foi baseado no artigo (KARIMI; WARFIELD; GHOLIPOUR, 2020), mencionado
na seção 2.3, em que mostra-se que o congelamento dos encoders e o treinamento apenas
dos decoders de uma rede do tipo 3D U-Net pode obter resultados equiparáveis ao treino
da rede completa.

Como já mencionado na subseção 2.2.2.1, o modelo GLIA-Net é aplicado a cada
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bloco (patch) da imagem. No treinamento e na validação, para cada imagem completa do
banco de dados o número de blocos selecionados para treinar/validar o modelo é igual a
duas vezes a razão entre o tamanho da imagem completa e o tamanho do bloco (patch).
Para lidar com o desbalanceamento de dados exposto na Tabela 9, metade destes blocos é
selecionada com aneurismas. Caso não haja aneurismas intracranianos no exame, apenas
metade dos blocos é selecionada e nenhuma imposição é imposta para a seleção das regiões.
Este treinamento em patches com balanceamento de dados já era feito no projeto GLIA-
Net aplicado a imagens de ATC (BO et al., 2021), porém os patches sem aneurismas
eram restritos àqueles cuja média é maior do que 0,05, ou seja, regiões pretas do plano de
fundo de imagens da modalidade ATC. No treinamento desenvolvido neste trabalho para
a modalidade TOF angio-RM, esta restrição não é imposta.

A seleção dos blocos é aleatória, porém na etapa de validação a semente do gerador
de números aleatórios é fixada para garantir que a avaliação do algoritmo em cada época
seja aplicada nas mesmas entradas. O tamanho dos blocos é fixado em 96 x 96 x 96, o
mesmo do projeto GLIA-Net para a modalidade ATC e para que um bloco seja considerado
com aneurisma, seu centro deve estar a uma distância máxima de 28 voxels em cada
direção do centro de um aneurisma.

O pré-processamento dos dados é composto pelas etapas sequenciais: mudança
de espaçamento, seleção de patches, aumento de dados e normalização. A mudança de
espaçamento é realizada conforme explicado na seção 3.1, todas as imagens são redimensi-
onadas de forma a apresentarem o espaçamento mediano 0,357143 x 0,357143 x 0,500000
mm3 (Tabela 7 linha 50%). Para cada exame duas imagens devem ser redimensionadas:
a imagem de entrada de TOF angio-RM e a anotação desta imagem. Para as imagens de
entrada da rede, que são contínuas no espaço, usa-se a interpolação polinomial do tipo
spline cúbica visando preservar a forma da imagem original, enquanto para as anotações
associadas, que são imagens binárias, usa-se a interpolação de vizinhos mais próximos,
que preserva os valores da anotação. Com o novo tamanho após o dimensionamento,
todas as imagens são pequenas o suficiente para serem armazenadas na memória RAM
e processadas pela GPU empregada. Contudo, a profundidade de algumas imagens é
inferior a 96 voxels – a profundidade do patch. Visando solucionar este problema, estas
imagens são completadas artificialmente com o valor de um dos voxels da ponta que faz
contato com a região estendida.

A etapa de aumento artificial de dados (data augmentation) consiste em aplicar
transformações aos dados de treino que não afetam as anotações ou que as afetam de
maneira conhecida e buscando a simular uma quantidade maior de dados distintos. Em
particular, aplica-se as seguintes transformações: ruído Gaussiano aditivo com média e
desvio-padrão iguais a, respectivamente, 0 e 1, correção gamma aleatória da imagem ele-
vando os valores dos pixels a um expoente normalmente distribuído com média igual a 1
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e desvio-padrão igual a 0,1, espelhamento aleatório da imagem nos três planos normais
aos eixos de indexação da imagem e permutação dos eixos da imagem. As duas primei-
ras transformações aumentam a diversidade da intensidade dos voxels entre cada época,
enquanto as duas últimas transformações aumentam a variedade de poses do paciente na
imagem, e portanto, do aneurisma na imagem. A normalização aplicada à entrada é a
normalização Z, já discutida na seção 3.1.

Como discutido na seção 3.1, a classe 2 é ordens de grandeza mais numerosa que
a classe 1, que gostaríamos de detectar, e ordens de grandeza inferior à classe 0 e que a
representação dos voxels da classe 2 como 0 deve ser a estratégia que melhor mitiga a
influência desta classe no treinamento do modelo. Por esta razão, o modelo só considera
duas classes: 0 e 1, sendo os voxels da classe 2 anotados como membros da classe 0.

Concernindo as métricas de avaliação do modelo na tarefa, são considerados dois
cenários: avaliação por patches e avaliação por exames.

No cenário de avaliação por patches, a avaliação da máscara de segmentação é
realizada selecionando apenas patches específicos da imagem de forma a mitigar artifici-
almente o desbalanceamento das classes. Esta avaliação ocorre durante o treinamento da
rede no banco de dados de treino e no banco de dados de validação e as métricas usadas
são as mesmas empregadas no trabalho original GLIA-Net (BO et al., 2021): precisão
média (AP), AUC (ROC), coeficiente de similaridade de Sorensen-Dice (DSC), precisão,
sensibilidade (recall), distância de Hausdorff modificada para considerar o percentil 95 das
menores distâncias (HD95) no nível dos voxels e precisão por alvo e sensibilidade por alvo
no nível dos conjuntos conectados de voxels anotados como aneurismas. Assim como em
no trabalho original GLIA-Net aplicado na modalidade ATC, as métricas de performance
do algoritmo em uma época é calculada em função do número de , verdadeiro-positivo,
verdadeiro-negativos, falso-positivos e falso-negativos total considerando todos os patches
empregados no treinamento ou na validação.

3.3 Segmentação de exames de TOF angio-RM

Na avaliação por exames, as imagens completas são segmentadas e comparadas às
respectivas anotações. Esta avaliação é mais fiel à aplicação concebida da solução GLIA-
Net, pois os patches são selecionados de forma a cobrir todas as regiões do exame e o
balanceamento das classes é preservado. Esta avaliação ocorre durante a inferência de
exames que se deseja detectar/segmentar aneurismas em imagens e as métricas usadas no
desafio ADAM são empregadas, incluindo o coeficiente de similaridade de Sorensen-Dice
(DSC), a distância de Hausdorff modificada para considerar o percentil 95 das menores
distâncias (HD95), a similaridade volumétrica (VS) no nível dos voxels e a sensibilidade e o
número de falso-positivos (FP) no nível dos conjuntos conectados de voxels anotados como
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aneurismas. A implementação destas métricas é baseada nos exemplos já desenvolvidos no
repositório de avaliação do desafio ADAM, disponível em <https://github.com/hjkuijf/
ADAMchallenge> (KUIJF, 2020). Diferentemente da avaliação por patches, as métricas
do algoritmo em um banco de dados são as médias das métricas calculadas em cada exame
individualmente do banco de dados em questão.

O processo de inferência das regiões com aneurismas dos exames de TOF angio-
RM funciona da seguinte maneira: redimensiona-se as imagens originais completas de
forma que estas apresentem o espaçamento 0,357143 x 0,357143 x 0,500000 – o mesmo
usado no treinamento da rede –, seleciona-se os patches dos exames de imagem cobrindo
a imagem inteira, aplica-se a rede neural GLIA-Net a cada patch gerando uma máscara
de segmentação para cada patch, compõem-se um máscara de segmentação da imagem
completa a partir das máscaras geradas a partir de cada patch e redimensiona-se esta
máscara de segmentação da imagem completa resituindo o espaçamento da imagem de
TOF angio-RM original.

Na etapa de seleção dos patches, patches de tamanho 96 x 96 x 96 são sobrepostos
de tal forma que dois patches lado a lado possuam 48 superfícies 96 x 96 de voxels, ou
seja, dois patches lado a lado possuem metade dos seus voxels compartilhados entre si.
Se um patch não está na borda da imagem completa, em cada direção este patch está
sobreposto a dois outros patches compartilhando 48 superfícies 96 x 96 de cada lado, e
portanto, todos os seus voxels são compartilhados com outros patches. Assim, apenas os
cubos 48 x 48 x 48 dos cantos da imagem são representados por apenas um patch.

Considerando que cada patch passa pela rede neural gerando uma máscara de
segmentação na mesma posição. levanta-se a questão de como unificar a informação de
todos os patches sobrepostos. No projeto original GLIA-Net voltado para a modalidade
ATC, a unificação das máscaras dos patches sobrepostos é realizada pela média aritmética
simples, a intensidade final de um voxel é a média aritmética simples da intensidade de
todas as máscaras que ocupam aquele voxel. Entretanto, esta solução é problemática no
sentido que os patches possuem o mesmo peso na geração da intensidade de um voxel
independentemente da posição do voxel nos patches. Lembrando que no treinamento a
seleção dos patches é realizada buscando minizar o desbalanceamento das classes e que
para um patch ser considerado com aneurisma este deve conter um centro de aneurisma
a uma distância menor ou igual a 28 voxels em cada direção, conclui-se que aneurismas
cujo centro está na borda de espessura 20 voxels de um patch não foram representados
no treinamento da rede neural, e logo a performance do algoritmo não é garantida pelo
processo de treinamento.

Neste trabalho, propõe-se o uso de um tensor de pesos linear para realizar a média
ponderada dos patches, onde o peso de um voxel é a distância de Manhattan (Equação 3.1)

https://github.com/hjkuijf/ADAMchallenge
https://github.com/hjkuijf/ADAMchallenge
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deste voxel em relação ao voxel do canto mais próximo do patch acrescentado de um.

d(p, q) = ||p− q||1 =
i=N∑
i=1

|pi − qi| (3.1)

onde p e q são dois pontos deN coordenadas e pi e qi são suas i-ésimas coordenadas.
Para um patch de tamanho 96 x 96 x 96, este os pesos deste tensor aumentam linearmente
do canto para o centro do patch, sendo os valores mínimo e máximo do tensor iguais a 1
nos cantos e 142 nos voxels centrais.

3.3.1 Determinação do limiar de segmentação

Todas as métricas usadas para avaliação de um algoritmo de segmentação e de
detecção no desafio ADAM, coeficiente de similaridade de Sorensen-Dice, distância de
Hausdorff considerando o percentil 95 das menores distâncias, coeficiente de similaridade
volumétrica, sensibilidade e quantidade de falso-positivos por caso, variam com o limiar de
segmentação. Assim, é necessário fixar um limiar de segmentação para avaliar o modelo
em um banco de dados.

Dentre as métricas usadas, apenas o coeficiente de similaridade de Sorensen-Dice, a
distância de Hausdorff modificada e o coeficiente de similaridade volumétrica consideram
tanto os erros falso-positivos quanto os erros falso-negativos. Logo, é possível otimizar o
modelo usando apenas uma dessas métricas. Como já explicado na subseção 2.2.1.2.3, uma
similaridade volumétrica melhor possível, igual a 1, não implica necessariamente em uma
segmentação boa. Por esta razão, esta métrica não é usada para a determinação do limiar.
Restam apenas duas métricas: a distância de Hausdorff modificada e o coeficiente de
similaridade de Sorensen-Dice. Neste trabalho, o coeficiente de Sorensen-Dice é empregado
para a determinação do limiar de segmentação.

Para isso, itera-se no banco de dados de validação varrendo a imagem completa
sem distorcer o balanceamento de classes e variando o limiar de segmentação. São esco-
lhidos 100 limiares com passo constante 1/101 entre 0 e 1. Para cada limiar e para cada
exame, uma máscara de segmentação binária é gerada a partir da máscara de segmenta-
ção prevista pelo modelo GLIA-Net contendo a probabilidade de cada voxel pertencer às
classes 0 (normal) e 1 (aneurisma não tratado nem rompido). Em seguida, esta máscara
binária é comparada com a máscara de segmentação anotada e as métricas coeficiente de
Sorensen-Dice, distância de Hausdorff modificada, similaridade volumétrica, sensibilidade
e quantidade de falso-positivos por caso são calculadas. Para cada limiar, este processo é
realizado em todas as instâncias do banco de dados de validação e as métricas para cada
limiar são as médias aritmética de cada métrica calculada para cada exame. O limiar de
segmentação escolhido é aquele que maximiza a média do coeficiente de Sorensen-Dice em
todas as imagens do banco de dados de validação.
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4 Resultados e Discussão

4.1 Treinamento de GLIA-Net no banco de dados ADAM

4.1.1 Função de custo

A função de custo da rede GLIA-Net no banco de dados de validação consta nas
Figuras 22, 23 e 24, enquanto a função de custo da rede GLIA-Net no banco de dados de
treinamento consta nas Figuras 25, 26 e 27.

Figura 22 – Função de custo total no banco de dados de validação do desafio ADAM ao
longo do treinamento da rede GLIA-Net.

Fonte: Autor.
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Figura 23 – Função de custo local no banco de dados de validação do desafio ADAM ao
longo do treinamento da rede GLIA-Net.

Fonte: Autor.

Figura 24 – Função de custo global no banco de dados de validação do desafio ADAM ao
longo do treinamento da rede GLIA-Net.

Fonte: Autor.
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Figura 25 – Função de custo total no banco de dados de treinamento do desafio ADAM
ao longo do treinamento da rede GLIA-Net.

Fonte: Autor.

Figura 26 – Função de custo local no banco de dados de treinamento do desafio ADAM
ao longo do treinamento da rede GLIA-Net.

Fonte: Autor.
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Figura 27 – Função de custo global no banco de dados de treinamento do desafio ADAM
ao longo do treinamento da rede GLIA-Net.

Fonte: Autor.

Com base nas Figuras 25 e 22, nota-se que a função de custo total do modelo
GLIA-Net reduziu ao longo do treinamento tanto no banco de dados de treino como de
validação, mas nos últimos 30 passos de treinamento a função de custo total diminui ape-
nas no banco de dados de treino. Este cenário indica que ocorreu overfitting nos últimos
passos de treinamento, ou seja, que o treinamento otimizou os parâmetros do modelo
visando aumentar o seu desempenho no banco de dados de treino usando características
particulares dos dados de treinamento, que não são generalizáveis para outros bancos de
dados da mesma tarefa, como o banco de dados de validação.

Analisando as Figuras 24, 23, 27 e 26, que contém os componentes local e global da
função de custo, nota-se que apenas a função de custo global sofre overfitting. A função de
custo local continua a diminuir no banco de dados de validação ao longo do treinamento.
Relembrando que a função de custo global é calculada a partir da saída global localizer
logits da rede neural, enquanto a função de custo local é calculada a partir da saída net da
rede neural e que a máscara de segmentação e as métricas de segmentação e de detecção
são calculadas usando a saída net da rede neural, não podemos afirmar que a continuação
do treinamento da rede GLIA-Net induza o modelo aprender características específicas
do banco de dados de treino e não generalizáveis no banco de dados de validação, mas
sim que a continuação do treinamento pode induzir a uma melhora na performance do
algoritmo em ambos os bancos de dados. Ainda sim, overfitting na função de custo global
pode em épocas futuras atrapalhar a performance do modelo nas tarefas de segmentação
e de detecção já que os parâmetros da camada global localizer são afetados por ambas
componentes da função de custo total.

Uma alternativa para mitigar o problema de overfitting da rede global localiza-
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tion network é adicionar e intensificar os processos de aumento articial de dados (data
augmentation). Em particular, como esta rede utiliza apenas a imagem completa dimensi-
onalmente reduzida (global inputs) e a posição do patch nesta imagem (patch location box ),
a adição de uma rotação com um ângulo aleatório pode reduzir a correlação particular de
orientação do banco de dados de treino.

Figura 28 – Taxa de aprendizado ao longo do treinamento do modelo GLIA-Net no desafio
ADAM.

Fonte: Autor.

É perceptível nas Figuras de 22 a 25 uma alta variabilidade nas curvas de função
de custo ao longo do treinamento. Uma possível justificativa para este fenômeno é o
emprego de uma taxa de aprendizado inadequada. O treinamento do modelo GLIA-
Net no artigo (BO et al., 2021) começou com uma taxa de aprendizado igual a 2 10−4,
enquanto a taxa de aprendizado inicial no treinamento de imagens de TOF angio-RM
começou em 5, 8398 10−5. É possível que uma redução da taxa de aprendizado deste
nível seja inadequada mesmo usando transferência de aprendizado. Testes exploratórios
adicionais são necessários para verificar esta hipótese.

4.1.2 Métricas

As métricas da rede GLIA-Net no banco de dados de validação constam nas Figuras
29, 30, 31, 32, 33, 34, 35 e 36, enquanto as métricas da rede GLIA-Net no banco de dados
de treinamento consta nas Figuras 37, 38, 39, 40, 41, 42, 43 e 44.
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Figura 29 – Métrica AP (precisão média) obtida no banco de dados de validação do desafio
ADAM ao longo do treinamento da rede GLIA-Net.

Fonte: Autor.

Figura 30 – Métrica AUC (área embaixo da curva ROC) obtida no banco de dados de
validação do desafio ADAM ao longo do treinamento da rede GLIA-Net.

Fonte: Autor.
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Figura 31 – Métrica DSC (coeficiente de similaridade de Sorensen-Dice) obtida no banco
de dados de validação do desafio ADAM ao longo do treinamento da rede
GLIA-Net.

Fonte: Autor.

Figura 32 – Métrica HD95 (distância de Hausdorff considerando o percentil 95) obtida no
banco de dados de validação do desafio ADAM ao longo do treinamento da
rede GLIA-Net.

Fonte: Autor.
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Figura 33 – Métrica precisão por voxel obtida no banco de dados de validação do desafio
ADAM ao longo do treinamento da rede GLIA-Net.

Fonte: Autor.

Figura 34 – Métrica sensibilidade por voxel obtida no banco de dados de validação do
desafio ADAM ao longo do treinamento da rede GLIA-Net.

Fonte: Autor.
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Figura 35 – Métrica precisão por exame obtida no banco de dados de validação do desafio
ADAM ao longo do treinamento da rede GLIA-Net.

Fonte: Autor.

Figura 36 – Métrica sensibilidade por exame obtida no banco de dados de validação do
desafio ADAM ao longo do treinamento da rede GLIA-Net.

Fonte: Autor.
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Figura 37 – Métrica AP (precisão média) obtida no banco de dados de treinamento do
desafio ADAM ao longo do treinamento da rede GLIA-Net.

Fonte: Autor.

Figura 38 – Métrica AUC (área embaixo da curva ROC) obtida no banco de dados de
treinamento do desafio ADAM ao longo do treinamento da rede GLIA-Net.

Fonte: Autor.
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Figura 39 – Métrica DSC (coeficiente de similaridade de Sorensen-Dice) obtida no banco
de dados de treinamento do desafio ADAM ao longo do treinamento da rede
GLIA-Net.

Fonte: Autor.

Figura 40 – Métrica HD95 (distância de Hausdorff considerando o percentil 95) obtida no
banco de dados de treinamento do desafio ADAM ao longo do treinamento
da rede GLIA-Net.

Fonte: Autor.
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Figura 41 – Métrica precisão por voxel obtida no banco de dados de treinamento do de-
safio ADAM ao longo do treinamento da rede GLIA-Net.

Fonte: Autor.

Figura 42 – Métrica sensibilidade por voxel obtida no banco de dados de treinamento do
desafio ADAM ao longo do treinamento da rede GLIA-Net.

Fonte: Autor.
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Figura 43 – Métrica precisão por exame obtida no banco de dados de treinamento do
desafio ADAM ao longo do treinamento da rede GLIA-Net.

Fonte: Autor.

Figura 44 – Métrica sensibilidade por exame obtida no banco de dados de treinamento
do desafio ADAM ao longo do treinamento da rede GLIA-Net.

Fonte: Autor.

Como já mencionado na subseção 2.2.1, a métrica precisão média (AP) é a mais
representativa da performance do algoritmo, pois considera os erros falso-positivos e falso-
negativos comparando com a classe menos numerosa (a positiva ou 1) e não depende do
limiar de segmentação. A mesma subseção explica que o valor esperado de AP para
uma classificador no qual a previsão não depende da entrada vale a quantidade de voxels
positivos (aneurismas não tratados nem rompidos) dividida pela quantidade total de vo-
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xels no banco de dados. Abaixo esta precisão média é calculada para o banco de dados
disponibilizado no desafio ADAM:

APbase_ADAM =
59743

5135773829 + 59743 + 3394588
= 1, 162 10−5 (4.1)

Logo, analisando as Figuras 29 e 37, que expressam a evolução da métrica AP
ao longo do treinamento, observa-se que o desempenho do algoritmo é aparentemente
ordens de grandeza superior que o desempenho esperado de um algoritmo de classificação
aleatório. Um fator que dificulta esta comparação é que o cálculo feito na Equação 4.1 con-
sidera as imagens inteiras sem mudança de espaçamento nem rebalanceamento de dados,
enquanto a métrica AP das Figuras 29 e 37 consideram o banco de dados selecionando
prioritariamente patches com aneurismas e exames redimensionados para padronizar o
espaçamento. Ainda sim, a quantidade máxima de patches observada em um exame re-
dimensionado foi de 363 com sobreposição, então estas diferenças de pré-processamento
sozinhas não são capazes de explicar a diferença de performance entre o algoritmo treinado
e um algoritmo aleatório, implicando que o modelo treinado apresenta um desempenho
melhor que um algoritmo aleatório.

Analogamente podemos comparar a performance do modelo GLIA-Net treinado
com um classificador aleatório usando a métrica AUC. Nas Figuras 30 e 38, que exibem
a evolução da métrica AUC ao longo do treinamento nos bancos de dados de treino e de
teste, esta métrica é consistentemente superior a 0,95 nas últimos passos de treinamento,
enquanto oAUC esperado de um classificador independente das entradas vale 0,5. Assim,
a performance do modelo é aparentemente superior a um classificador aleatório segundo a
métricaAUC. Nota-se que esta pouco varia ao longo do treinamento e está na maior parte
do treinamento próxima do seu melhor valor possível (1), enquanto as outras métricas
variam relativamente bastante e estão mais longe do seu melhor valor. Estes resultados
confirmam a falta de expressividade da métrica AUC para bancos de dados com classes
desbalanceadas, explicada na subseção 2.2.1.

Analisando as métricas anterioresAP eAUC, independentes do limiar de segmen-
tação, nota-se que ambas melhoram ao longo do treinamento como previsto pela análise
da função de custo local. Usando como critério exclusivamente a métrica AP, o modelo
GLIA-Net performa melhor no banco de dados de validação do desafio ADAM ao longo
do treinamento no final da última época do treinamento no passo de treinamento 370001.
As métricas obtidas no banco de dados de validação estão mostradas na Tabela 11.
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Tabela 11 – Métricas do melhor resultado da solução GLIA-Net no banco de dados de
validação do desafio ADAM ao longo do treinamento.

AP AUC DSC HD95 [mm] PV RV PT RT
0,3670 0,9962 0,4243 9,7767 0,3322 0,5869 0,2934 0,5723

Nota: AP, AUC, DSC, HD95, PV, RV, PT e RT representam, respectivamente, a precisão média na
curva precisão-revocação, área abaixo da curva ROC, o coeficiente de similaridade de Sorensen-Dice,
distância de Hausdorff adaptada para 95% das distâncias, precisão no nível dos voxels, sensibilidade
no nível dos voxels, precisão no nível dos conglomerados de voxels conexos e sensibilidade no nível
dos conglomerados de voxels conexos.

Nota: O melhor resultado é o resultado do modelo GLIA-Net na época em que a métrica AP calculada
no banco de dados de validação é a mais elevada durante todo treinamento.

4.2 Segmentação de exames de TOF angio-RM

Os resultados apresentados na seção 4.1 foram obtidos durante o treinamento, e
portanto, os patches foram selecionados de forma a mitigar o desbalanceamento de classes.
É necessário analisar os resultados em imagens completas já que na prática clínica os dados
estão desbalanceados. Nesta subseção todos os resultados são calculados sem modificar o
balanceamento dos dados e percorrendo com patches todas as partes das imagens.

Seguindo os passos descritos na seção 3.3, as métricas de segmentação e de detecção
em função do limiar de segmentação são mostradas nas Figuras 45 e 46. Maximizando a
métrica DSC (coeficiente de similaridade de Sorensen-Dice), obtemos um limiar igual a
0,624 e as métricas da Tabela 12.

Tabela 12 – Métricas do modelo GLIA-Net no passo 370001 no banco de dados de vali-
dação do desafio ADAM considerando a varredura completa da imagem dos
exames e um peso maior aos voxels centrais na composição da máscara de
segmentação a partir dos patches da imagem e escolhendo o limiar de seg-
mentação que maximiza a métrica DSC.

Limiar FP/exame RT DSC HD95 [mm] VS
0,624 8,2 0,447 0,110 47,006 0,406

Nota: DSC, HD95, VS, RT e FP/exame representam, respectivamente, o coeficiente de similaridade
de Sorensen-Dice, distância de Hausdorff adaptada para 95% das distâncias, a similaridade volu-
métrica, sensibilidade no nível dos conglomerados de voxels conexos e número de falso-positivos
por exame no nível dos conglomerados de voxels conexos.

Observe que os resultados apresentados na Tabela 12 são equiparáveis aos resul-
tados dos últimos colocados no desafio ADAM (Tabela 2) e são inferiores aos resultados
do modelo GLIA-Net treinado em imagens de ATC (Tabela 3). As razões para estas
diferenças são que o modelo ainda está treinando, performances elevadas exigem não só
redes neurais do estado da arte como também da adaptação do configurações dos hiper-
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parâmetros do modelo e do fluxo de dados ao banco de dados específico da tarefa, como
descrito em (ISENSEE et al., 2019) e na subseção 2.2.2. Além disso, a presença de aneu-
rismas cerebrais tratados ou rompidos considerados como regiões normais pode aumentar
a dificuldade do desafio em relação ao treinamento da rede na modalidade ATC. Outra
possibilidade é que o congelamento das camadas dos encoders e a inicialização aleató-
ria do primeiro encoder tenha adicionado um ruído na rede reduzido a capacidade de
aprendizado do modelo.

Figura 45 – Métricas de segmentação do modelo GLIA-Net no passo 370001 para dife-
rentes valores de limiar de segmentação calculadas no banco de dados de
validação do desafio ADAM dando um peso maior aos voxels centrais na
composição da máscara de segmentação a partir dos patches da imagem.

Fonte: Autor.

Nota: DSC, HD95 e VS representam, respectivamente, o coeficiente de similaridade de Sorensen-Dice,
distância de Hausdorff adaptada para 95% das distâncias e a similaridade volumétrica.
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Figura 46 – Métricas de detecção do modelo GLIA-Net no passo 370001 para diferentes
valores de limiar de segmentação calculadas no banco de dados de validação
do desafio ADAM dando um peso maior aos voxels centrais na composição
da máscara de segmentação a partir dos patches da imagem.

Fonte: Autor.

Nota: FP/caso representa o número de falso-positivos por exame no nível dos conglomerados de voxels
conexos.

Na Tabela 13 e nas Figuras 47 e 48, um processo análogo à geração da Tabela 12
e as Figuras 45 e 46 é realizado. A única diferença é que nas primeiras imagens e e
na primeira tabela apresentada a composição da máscara de segmentação considera um
tensor de pesos para os patches que varia linearmente com a posição do voxel no patch e
que se concentra no centro do patch enquanto nas imagens posteriores e na tabela posterior
a composição da máscara de segmentação considera um tensor de pesos uniforme, como
no projeto GLIA-Net original (BO et al., 2021).
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Tabela 13 – Métricas do modelo GLIA-Net no passo 370001 no banco de dados de vali-
dação do desafio ADAM considerando a varredura completa da imagem dos
exames e um peso constante para todos os voxels na composição da máscara
de segmentação a partir dos patches da imagem e escolhendo o limiar de
segmentação que maximiza a métrica DSC.

Limiar DSC HD95 [mm] VS RT FP/exame
0,366 0,098 60,906 0,390 0,605 19,7

Nota: DSC, HD95, VS, RT e FP/exame representam, respectivamente, o coeficiente de similaridade
de Sorensen-Dice, distância de Hausdorff adaptada para 95% das distâncias, a similaridade volu-
métrica, sensibilidade no nível dos conglomerados de voxels conexos e número de falso-positivos
por exame no nível dos conglomerados de voxels conexos.

Figura 47 – Métricas de segmentação do modelo GLIA-Net no passo 370001 para dife-
rentes valores de limiar de segmentação calculadas no banco de dados de
validação do desafio ADAM dando um peso igual para todos os voxels na
composição da máscara de segmentação a partir dos patches da imagem.

Fonte: Autor.

Nota: DSC, HD95 e VS representam, respectivamente, o coeficiente de similaridade de Sorensen-Dice,
distância de Hausdorff adaptada para 95% das distâncias e a similaridade volumétrica.

Comparando as Tabelas 12 e 13, nota-se que o emprego de uma interpolação com
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pesos variando linearmente da máscara de segmentação dos patches permite a obten-
ção de um coeficiente de similaridade de Sorensen-Dice máximo superior aos resultados
com uma interpolação com pesos uniformes. A Figura 45 aponta uma certa regularidade
deste fenômeno, pois entre os limiares 0,37 e 0,62 a métrica DSC para pesos variando
linearmente é consistentemente superior ao maior maior desta métrica para pesos unifor-
memente distribuídos. Além disso, todas as métricas usadas no desafio exceto a métrica
sensibilidade por alvo (RT) para o limiar que maximiza a métrica DSC são superiores
para pesos variando linearmente quando comparados a pesos uniformemente distribuídos.

Figura 48 – Métricas de detecção do modelo GLIA-Net no passo 370001 para diferentes
valores de limiar de segmentação calculadas no banco de dados de validação do
desafio ADAM dando um peso constante para todos os voxels na composição
da máscara de segmentação a partir dos patches da imagem.

Fonte: Autor.

Nota: FP/caso representa o número de falso-positivos por exame no nível dos conglomerados de voxels
conexos.

Ao comparar as Figuras 46 e 48, é perceptível que o uso de um tensor de pesos dis-
tribuídos linearmente eleva o número de conjuntos de voxels vizinhos conectados previstos
como aneurismas não tratados nem rompidos quando comparado a um tensor homogêneo
nos mesmo valores de limiar de segmentação, pois tanto a sensibilidade quanto a quan-
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tidade de falso-positivos são elevadas com a variação linear dos pesos para os mesmos
limiares.

Nota-se também que os limiares que maximizam a métrica DSC apresentam uma
diferença superior a 0,2. Uma possível justificativa para o limiar maior do 0,5 para tensor
linearmente variável é que o modelo foi treinado com uma proporção de casos positivos
(aneurismas) em relação a casos negativos (normais) superior à proporção real dos exames,
logo o modelo é exageradamente confiante nas previsões dos aneurismas e um limiar de
segmentação mais alto filtra indica uma redução na confiança do modelo na classificação
de aneurismas. Já para o tensor homogêneo, uma justificativa é que para todos voxels
que não pertencem aos patches da borda da imagem, que são a maioria, oito patches
são ponderados igualmente para obter a previsão total do voxel. Lembrando que no
treinamento o centro dos aneurismas está a uma distância máxima de 28 voxels do centro
do patch em cada direção, o voxel em questão deve cair a uma distância acima desta
distância de 28 voxels do centro do patch, e portanto, estes patches possuem um viés
de reduzir a probabilidade do voxel ser classificado como um aneurisma, logo o modelo é
pouco confiante em classificar voxels como aneurismas e o limiar de segmentação escolhido
é menor que 0,5 para compensar este viés.

Nas Figuras 49 e 50, estão exibidos um exame de TOF angio-RM do banco de
dados de validação com a anotação do aneurisma não tratado nem rompido em vermelho
e as máscaras de segmentação previstas pelo algoritmo. Observe que há um aneurisma
cerebral corretamente detectado na Figura 49 e uma outra região que o algoritmo previu
erroneamente como aneurismas. Além disso, nota-se que a segmentação não é perfeita e
que o aneurisma é mais cauteloso que o necessário, pois deixa alguns voxels do aneurisma
previsto como falso-negativos no nível dos voxels. Na Figura 50, este método de gerar
máscaras de segmentação não é capaz de prever com detalhes a região do aneurisma,
pois só recebe como entrada a imagem global reduzida dimensionalmente global inputs.
Todavia, isto permite compreender a atuação da rede global localizer network de maneira
distinta da rede local segmentation network. Note que a região destacada com maior
probabilidade de apresentar aneurismas na Figura 50 segue uma distribuição semelhante
a da Figura 20, o que levanta o questionamento se as máscaras de segmentação geradas
pela rede global localizer network são individualizadas ou se capturam a distribuição do
banco de dados como um todo.
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Figura 49 – Imagem de TOF angio-RM do exame 10063F do banco de dados de validação
do desafio ADAM anotada e segmentada pelo modelo GLIA-Net treinado
usando a saída net e o limiar de segmentação 0,624.

Fonte: Autor.

Nota: As regiões verdes são falso-positivos, as regiões vermelhas são falso-negativos, as regiões amarelas
são verdadeiro-positivos e as regiões incolores são verdadeiro-negativos.
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Figura 50 – Imagem de TOF angio-RM do exame 10063F do banco de dados de validação
do desafio ADAM anotada e segmentada pelo modelo GLIA-Net treinado
usando a saída global localizer logits.

Fonte: Autor.

Nota: As regiões verdes são falso-positivos, as regiões vermelhas são falso-negativos e as regiões amarelas
são verdadeiro-positivos. regiões incolores são verdadeiro-negativos.
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5 Conclusão

Neste trabalho, o projeto GLIA-Net desenvolvido para segmentar aneurismas ce-
rebrais na modalidade ATC foi adaptado para realizar a mesma tarefa na modalidade
TOF angio-RM. Este modelo foi treinado em um banco de dados com 113 images e 124
aneurismas craniais não tratados nem rompidos e os resultados apontam que a perfor-
mance do algoritmo ainda está melhorando, porém a performance já é equiparável aos
algoritmos com as piores notas no desafio.

A proposta de uma nova forma de compor a máscara de segmentação mostrou
ser capaz de melhorar a performance geral do modelo em todas as métricas exceto na
sensibilidade por vizinhança de voxels conectados e classificados como aneurismas não
tratados nem rompidos.

Os resultados de segmentação do modelo treinado em imagens completas de TOF
angio-RM foram realizados em um banco de dados de validação com 23 imagens. A escolha
do passo de treinamento do modelo treinado e do limiar de segmentação foram baseadas
em resultados neste banco de dados. Para aumentar a robustez e permitir a comparação
deste modelo com outras soluções do desafio, deve-se testar a solução GLIA-Net adaptada
para imagens de ressonância magnética no banco de dados secreto do desafio ADAM.

Como sugestões para projetos futuros, recomenda-se continuar o treinamento do
modelo GLIA-Net nas mesmas configurações deste trabalho até atingir a estabilização
das métricas no banco de dados de treinamento e obter overfitting para a função de custo
local e para a função de custo global. Visando mitigar o overfitting da rede global localizer
network, deve-se adicionar novas transformações aleatórias à etapa de aumento de dados,
como mudança de espaçamento e rotação. Durante o treinamento do modelo GLIA-Net
neste trabalho todas os encoders da rede local segmentation network foram congelados,
seria interessante treinar o modelo com estas camadas descongeladas e avaliar se há um
diferença de performance. A implementação nnU-Net foi capaz de adaptar o fluxo de
dados e os hiperparâmetros da rede U-Net de modo a atingir o estado da arte em diversas
tarefas, logo deve-se estudar a metodologia usada nesta solução e adaptá-la para a rede
GLIA-Net. Por último, para aumentar a robustez do modelo sugere-se separar o banco de
dados disponibilizado em cinco grupos e realizar um treinamento por validação cruzada.
Ao final do treinamento dos cinco modelos, deve-se implementar um algoritmo de votação
majoritária no nível dos voxels.
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