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Resumo

Aneurismas cerebrais sao patologias geralmente assintométicas e com uma letalidade re-
lativamente alta. O diagnoéstico é realizado por um especialista, que examina centenas de
imagens médicas diariamente em um processo repetitivo e fatigante. Para mitigar estes
problemas, solugoes por aprendizado profundo sao desenvolvidas. Estas solugoes utilizam
apenas caracteristicas locais da imagem para realizar a tarefa de segmentacao seméantica,
exceto o modelo GLIA-Net que concilia as informagoes globais de localizagao e contexto
do aneurisma com as informagcoes locais referentes aos voxels vizinhos mais préximos da
regiao em uma unica rede neural e estabeleceu um novo referencial de segmentagao de
aneurismas em imagens de angiografia por tomografia computadorizada (ATC). Este tra-
balho é responsavel pelas seguintes contribui¢oes: 1) Adaptagao do projeto GLIA-Net
para a segmentacao semantica de aneurismas cerebrais em imagens de TOF angio-RM,
uma modalidade ndo ionizante e nao invasiva diferentemente da modalidade ATC; 2)
Treinamento do modelo GLIA-Net no banco de dados do desafio ADAM, um desafio de
segmentagao seméntica de aneurismas intracranianos; 3) Proposi¢ao do uso de uma média,
aritmética ponderada linearmente que ressalte os voxels centrais de um patch na compo-
sicao da mascara de segmentacao do exame a partir da méascara dos patches da imagem
original. Foram obtidos os seguintes resultados em um banco de dados de validagao com
23 exames: coeficiente de similaridade de Sorensen-Dice = 0,110, distancia de Hausdorff
0,95 = 47,006 mm, similaridade volumétrica = 0,406, sensibilidade por alvo = 0,447 e

quantidade de falso-positives por caso por alvo = 8,2.

Palavras-chave: Segmentacao. Aneurismas cerebrais. Ressonancia magnética. GLIA-

Net. Aprendizado profundo.



Abstract

Intracranial aneurysmas are patologies usually asymptomatic and with a letality relati-
vely. The diagnosis is conducted by a specialist that examines hundreds daily in repetitive
and tiresome. In order to mitigate these problems, deep learning solutions are developed.
These solutions emply only local characteristics of the images to accomplish the semantic
segmentation task, except the model GLIA-Net which conciliates the global information
of localization and context of the aneurysm and local information regarding the neighbor
voxels closer to its region in a single neural network and stablished a new reference for
segmentation of anerysms in computerized tomography angiography (CTA) images. This
work is responsable for the following contributions: 1) Adaptation of the GLIA-Net pro-
ject for the segmentation of intracranial aneurysms in TOF MRA images, a non-invasive
and non-ionizing modality differently from the CTA; 2) Training of the GLIA-Net model
in the dataset of the challenge ADAM, a challenge of semantic segmentation of intra-
cranial aneurysms; 3) Proposition of usage of a linear weighted arithmetic mean that
emphasizes the central voxels of a patch in the composition of the segmentatio mask of
the exam from the patches of the original image. The following results were obtained in
a validation dataset with 23 exams: Sorensen-Dice score coefficient = 0.110, Hausdorff
distance 0.95 = 47.006 mm, volumetric similarity = 0.406, sensitivity per target = 0.447

and false-positives per case per target = 8.2. Keywords: Segmentation. Intracranial

aneurysms. MRI. GLIA-Net. Deep learning.



Figura 1 —
Figura 2 —
Figura 3 —
Figura 4 —
Figura 5 —
Figura 6 —
Figura 7 —
Figura 8 —
Figura 9 —
Figura 10 —
Figura 11 —
Figura 12 —
Figura 13 —

Figura 14 —

Figura 15 —

Figura 16 —

Figura 17 —

Figura 18 —

Figura 19 —

Figura 20 —

Lista de ilustracdes

Arquitetura U-Net. . . . . . . . .. o 29
Arquitetura 3D U-Net. . . . . . . . . .. ... 29
Arquitetura GLIA-Net. . . . . . . . . . ... L 34
Global localizer da rede GLIA-Net. . . . . . . .. .. ... . ... ... 35
Feature generator da rede GLIA-Net. . . . . . . . ... ... ... ... 35
Localizer generator da rede GLIA-Net. . . . . . ... .. .. ... ... 36
Localizer loss da rede GLIA-Net. . . . . . . . . ... ... ... .... 37
Global positioning adaptor da rede GLIA-Net. . . . . . . . . ... ... 37
Encode block da rede GLIA-Net. . . . . . .. .. ... ... ...... 38
Decode block da rede GLIA-Net. . . . . . . ... ... ... ...... 38
ResNet block da rede GLIA-Net. . . . . ... .. .. ... ... .... 39
Output conv da rede GLIA-Net. . . . . . . . . . ... ... ... .... 40
Secoes de imagem 3D do exame TOF angio-RM do dado 10072F do

desafio ADAM . . . . . .. 49
Secoes de imagem 3D do exame FLAIR do dado 10072F do desafio

ADAM . . . . e 50
Secoes de imagem 3D do exame de IRM ponderado em T1 do dado

10067B do desafio ADAM . . . . ... 51
Secoes de imagem 3D do exame de IRM ponderado em T2 do dado

10033 do desafio ADAM . . . . . . . ... 52
Secoes de méascara 3D do dado 10072F do desafio ADAM. Consulte o

Quadro 6 para entender o mapa de cores. . . . . . .. ... ... ... 53

Projegao da localizagao de todos os aneurismas nao tratados nem rom-
pidos do banco de dados ADAM. Os eixos x e y correspondem, respec-
tivamente, aos eixos da direita a esquerda do paciente e de frente para
tras do paciente. . . . . . ... 54
Projegao da localizagao de todos os aneurismas nao tratados nem rom-
pidos do banco de dados ADAM. Os eixos x e z correspondem, respec-
tivamente, aos eixos da direita & esquerda do paciente e de baixo para
cima do paciente. . . . . . . ... 55
Projecao da localizacao de todos os aneurismas nao tratados nem rom-
pidos do banco de dados ADAM. Os eixos y e z correspondem, respec-
tivamente, aos eixos de frente para trias do paciente e de baixo para

cima do paciente. . . . . . . ... 56



Figura 21 — Histograma da localizacao e do tamanho dos 125 aneurismas nao trata-
dos nem rompidos do banco de dados disponibilizado aos participantes
do desafio ADAM. . . . . . ...

Figura 22 — Funcao de custo total no banco de dados de validacao do desafio ADAM
ao longo do treinamento da rede GLIA-Net. . . . . . . ... ... ...

Figura 23 — Funcao de custo local no banco de dados de validagao do desafio ADAM
ao longo do treinamento da rede GLIA-Net. . . . . . ... .. ... ..

Figura 24 — Funcao de custo global no banco de dados de validagao do desafio
ADAM ao longo do treinamento da rede GLIA-Net. . . . . . . . .. ..

Figura 25 — Funcao de custo total no banco de dados de treinamento do desafio
ADAM ao longo do treinamento da rede GLIA-Net. . . . . . . . .. ..

Figura 26 — Funcao de custo local no banco de dados de treinamento do desafio
ADAM ao longo do treinamento da rede GLIA-Net. . . . . . .. .. ..

Figura 27 — Funcao de custo global no banco de dados de treinamento do desafio
ADAM ao longo do treinamento da rede GLIA-Net. . . . . . . . .. ..

Figura 28 — Taxa de aprendizado ao longo do treinamento do modelo GLIA-Net no
desafio ADAM. . . . . . . ..

Figura 29 — Métrica AP (precisao média) obtida no banco de dados de validagao
do desafio ADAM ao longo do treinamento da rede GLIA-Net. . . . . .

Figura 30 — Métrica AUC (4rea embaixo da curva ROC) obtida no banco de dados
de validacao do desafio ADAM ao longo do treinamento da rede GLIA-
Net. . . o e

Figura 31 — Métrica DSC (coeficiente de similaridade de Sorensen-Dice) obtida no
banco de dados de validagao do desafio ADAM ao longo do treinamento
da rede GLIA-Net. . . . . . . . . . .. ... ...

Figura 32 — Métrica HD95 (distancia de Hausdorff considerando o percentil 95)
obtida no banco de dados de validagao do desafio ADAM ao longo do
treinamento da rede GLIA-Net. . . . . . . . . ... ... ... .....

Figura 33 — Métrica precisao por voxel obtida no banco de dados de validacao do
desafio ADAM ao longo do treinamento da rede GLIA-Net. . . . . . . .

Figura 34 — Métrica sensibilidade por voxel obtida no banco de dados de validacao
do desafio ADAM ao longo do treinamento da rede GLIA-Net. . . . . .

Figura 35 — Métrica precisao por exame obtida no banco de dados de validagao do
desafio ADAM ao longo do treinamento da rede GLIA-Net. . . . . . . .

Figura 36 — Métrica sensibilidade por exame obtida no banco de dados de validagao
do desafio ADAM ao longo do treinamento da rede GLIA-Net. . . . . .

Figura 37 — Métrica AP (precisao média) obtida no banco de dados de treinamento
do desafio ADAM ao longo do treinamento da rede GLIA-Net. . . . . .



Figura 38 —

Figura 39 —

Figura 40 —

Figura 41 —

Figura 42 —

Figura 43 —

Figura 44 —

Figura 45 —

Figura 46 —

Figura 47 —

Figura 48 —

Métrica AUC (area embaixo da curva ROC) obtida no banco de dados

de treinamento do desafio ADAM ao longo do treinamento da rede

GLIA-Net. . . . . . o

Métrica DSC (coeficiente de similaridade de Sorensen-Dice) obtida no

banco de dados de treinamento do desafio ADAM ao longo do treina-

mento da rede GLIA-Net. . . . . . . . . . . ..

Métrica HD95 (distancia de Hausdorff considerando o percentil 95)
obtida no banco de dados de treinamento do desafio ADAM ao longo

do treinamento da rede GLIA-Net. . . . . . . . . . . ... ... ....

Meétrica precisao por voxel obtida no banco de dados de treinamento

do desafio ADAM ao longo do treinamento da rede GLIA-Net. . . . . .

Meétrica sensibilidade por voxel obtida no banco de dados de treina-

mento do desafio ADAM ao longo do treinamento da rede GLIA-Net. .

Meétrica precisao por exame obtida no banco de dados de treinamento

do desafio ADAM ao longo do treinamento da rede GLIA-Net. . . . . .

Meétrica sensibilidade por exame obtida no banco de dados de treina-

mento do desafio ADAM ao longo do treinamento da rede GLIA-Net. .

Métricas de segmentacao do modelo GLIA-Net no passo 370001 para
diferentes valores de limiar de segmentagao calculadas no banco de
dados de validacao do desafio ADAM dando um peso maior aos voxels

centrais na composicao da méscara de segmentacao a partir dos patches

daimagem. . . . . . . ...

Métricas de detecgao do modelo GLIA-Net no passo 370001 para dife-
rentes valores de limiar de segmentagao calculadas no banco de dados
de validagao do desafio ADAM dando um peso maior aos voxels cen-

trais na composi¢ao da mascara de segmentacao a partir dos patches

daimagem. . . . . .. L

Métricas de segmentacao do modelo GLIA-Net no passo 370001 para
diferentes valores de limiar de segmentagao calculadas no banco de
dados de validagao do desafio ADAM dando um peso igual para todos

os voxels na composicao da mascara de segmentacao a partir dos patches

daimagem. . . . . . . ..

Meétricas de deteccao do modelo GLIA-Net no passo 370001 para dife-
rentes valores de limiar de segmentacgao calculadas no banco de dados
de validagao do desafio ADAM dando um peso constante para todos os

voxels na composi¢ao da mascara de segmentacao a partir dos patches

daimagem. . . . . .. ..



Figura 49 — Imagem de TOF angio-RM do exame 10063F do banco de dados de
validagao do desafio ADAM anotada e segmentada pelo modelo GLIA-
Net treinado usando a saida net e o limiar de segmentagao 0,624. . . . 86
Figura 50 — Imagem de TOF angio-RM do exame 10063F do banco de dados de
validagao do desafio ADAM anotada e segmentada pelo modelo GLIA-

Net treinado usando a saida global localizer logits. . . . . . . . . . . .. 87



Ot = W N

N O

Lista de quadros

Fonte das arquiteturas de classificacao de aneurismas intracranianos do

estadodaarte . . . . .. ...
Fonte das solugbes ranqueadas no desafio ADAM . . . . ... ... ... ..
Matriz de confusao com duas classes. . . . . . . .. ... ...
Exemplo de matriz de confusao com duas classes desbalanceadas. . . . . .
Resumo sobre a interpretagao bésica de métricas de deteccao e de segmen-

TaCA0. . . . e
Legenda da méscara de segmentacao do desafio ADAM . . . .. ... ...
Composigao do banco de dados de treino. . . . . . . . .. ... ...

Composi¢ao do banco de dados de validagao. . . . . . . . ... ... .. ..



Tabela 1 —

Tabela 2 —
Tabela 3 —

Tabela 4 —

Tabela 5 —

Tabela 6 —

Tabela 7 —

Tabela 8 —

Tabela 9 —

Tabela 10 —

Tabela 11 —

Tabela 12 —

Lista de tabelas

Comparacao das arquiteturas de classificacao de aneurismas intracra-
nianos do estadoda arte . . . . .. . ... L
Classificacao das equipes no desafio ADAM . . .. ... ... .....
Performance das redes neurais na tarefa de segmentacao de aneurismas
cerebrais em imagens de ATC no banco de dados de teste. . . . . . ..
Resultados do treinamento de uma rede de segmentacao do tipo 3D U-
Net treinando apenas os decoders e treinando a rede inteira nos bancos
de dados Liver-CT e CP-younger fetus. . . . . . . .. . ... .. ...
Performance de uma rede de segmentagao de figado do tipo 3D U-
Net em banco de dados de teste de imagens TC anotadas partindo de
parametros aleatoriamente inicializados (R.I) e partindo de parametros
de um modelo pré-treinado nos bancos de dados de imagens de RM
anotadas. . . ... ..
Estatisticas de localizacao e de tamanho dos 125 aneurismas nao trata-
dos nem rompidos do banco de dados disponibilizado aos participantes
do desafio ADAM. . . . . . ...
Estatisticas referentes ao espacamento dos 113 pares de imagens dis-
poniveis para treinamento e validacao no desafio ADAM. . . . . .. ..
Estatisticas referentes ao tamanho dos 113 pares de imagens disponiveis
para treinamento e validacao no desafio ADAM. . . . . . ... ... ..
Volume em voxels de cada classe nos 113 anotagoes com espacamento
original disponiveis para treinamento e validacdo no desafio ADAM. . .
Estatisticas referentes & intensidade dos voxels de valor minimo, me-
diano e maximo das 113 imagens de TOF angio-RM disponiveis para
treinamento e validagdo no desafio ADAM. . . . . . .. ... ... ...
Métricas do melhor resultado da solugao GLIA-Net no banco de dados
de validacao do desafio ADAM ao longo do treinamento. . . . . .. ..
Meétricas do modelo GLIA-Net no passo 370001 no banco de dados
de validacao do desafio ADAM considerando a varredura completa da
imagem dos exames e um peso maior aos voxels centrais na compo-
sicao da mascara de segmentagao a partir dos patches da imagem e

escolhendo o limiar de segmentacao que maximiza a métrica DSC.

80



Tabela 13 — Métricas do modelo GLIA-Net no passo 370001 no banco de dados
de validacao do desafio ADAM considerando a varredura completa da
imagem dos exames e um peso constante para todos os voxels na com-
posicao da méscara de segmentacgao a partir dos patches da imagem e

escolhendo o limiar de segmentacao que maximiza a métrica DSC. . . 83



angio-RM
ATC
AUC
DSA
DSC

FLAIR

FN
FP
GPU

HD95

HU
IC
IRM
PRC
RM

ROC

TOF
TN
TP
VS
2D

3D

Lista de abreviaturas e siglas

Angiografia por messonancia magnética

Angiografia por tomografia computadorizada

Area under curve — Area abaixo da curva ROC

Digital subtraction angiography — angiografia por subtracao digital
Coeficiente de similaridade de Sorensen-Dice

Fluid-Atenuated Inversion Recovery —recuperagao por inversao de fluido

atenuado

Falso-negativo

Falso-positivo

Graphical Processing Unit — Unidade de Processamento Gréafico.

Distancia de Hausdorff considerando o percentil 95 no lugar do maximo

das distancias

Unidade Housenfield

Intervalo de confianca

Imagem por ressonancia magnética
Precision-Recall curve — Curva precisao-revocacao
Ressonancia magnética

Receiver Operator Characteristic — Caracteristica de Operagao do Re-

ceptor

Time of Fly — Tempo de voo
Verdadeiro-negativo
Verdadeiro-positivo
Similaridade volumétrica
Bidimensional

Tridimensional



2.1
2.1.1
2.2
221
2211
22111
221.1.2
221.2
22121
22122
22123
22124
22125
2.2.2
2221
22211
2.3

3.1
3.2
3.2.1
3.2.2
3.3
331

4.1
41.1
4.1.2
4.2

Sumario

INTRODUCAO . .. ... . . . . i 14
REVISAO BIBLIOGRAFICA . . . . .. . .. . . . ... 16
Diagnéstico de aneurismas cerebrais . . . . . . . ... ... ... 16
Imagens de suporte . . . . . . . ... 17
Detectores automaticos de aneurismas . . . . . . . .. ... .. ... 18
Métricas . . . . . . . . 21
Métricas de deteccdo . . . . . . . . . . L 21
Quantidade de falso-positivos (FP) . . . . . . . . . . . ..o oL 22
Sensibilidade . . . . . . .. L L 22
Métricas de segmentacdo . . . . . . . . . L L. ..o 22
Coeficiente de similaridade de Sorensen-Dice . . . . . . . . . . . . . .. .. ... 23
Distancia de Hausdorff . . . . . . . . . . . . . . ... 23
Similaridade volumétrica . . . . . . . . . . L L 24
AUC (ROC) . o oo o e e, 25
Precisdo média (PRC) . . . . . . . . . . .. 26
Arquiteturas de aprendizado profundo para segmentagdo . . . . . . . . .. 28
GLIA-Net . . . . . . o e e 31
Fungdodecusto . . . . . . . . . L e 41
Transferéncia de aprendizado . . . . . ... ... ... ... .. ... 42
MATERIAIS E METODOS . . . . . . . . vt 47
Analise de dados do desafio ADAM . . . . . .. ... . ... .. ... 48
Treinamento do modelo GLIA-Net no banco de dados ADAM . . . 59
Transferéncia de aprendizado . . . . . . . . .. .. ... .. ... .. .. 59
Protocolo de treinamento . . . . . . . . . ... 60
Segmentacao de exames de TOF angio-RM . . . . .. ... . ... 63
Determinacdo do limiar de segmentacdo . . . . . . . . . . ... ... ... 65
RESULTADOS EDISCUSSAO . . . . . ... . ... ... ..... 66
Treinamento de GLIA-Net no banco de dados ADAM . . . . . . .. 66
Funcdodecusto . . . . . . . . . . ... ... 66
Métricas . . . . . . . . L 70
Segmentacao de exames de TOF angio-RM . . . . . .. ... ... 80

CONCLUSAO . . . . . 88



REFERENCIAS



14

1 Introducido

Aneurismas cerebrais sao dilatacoes patoldgicas na parede de artérias cerebrais.
Estas regioes estao propensas a ruptura, podendo provocar hemorragias subaracnoideas
(ZHAO et al., 2018). A incidéncia de hemorragias subaracnoideas globalmente é de 7,9
por 100.000 pessoas (6,9 - 9,0, IC 95%) (ETMINAN et al., 2019), sendo que 85% destas
sdo causadas pela ruptura de aneurismas cerebrais (van Gijn; KERR; RINKEL, 2007).
Quanto a taxa de fatalidade de hemorragias subaracnoides, ela é relativamente alta mun-
dialmente, variando de 8,3 a 66,7% (NIEUWKAMP et al., 2009).

O diagnoéstico da patologia é geralmente realizado por meio da angiografia por
ressonancia magnética "time-of-flight" (TOF angio-RM), da angiografia por tomografia
computadorizada (ATC) ou da angiografia por subtracao digital (DSA), sendo apenas a
primeira uma técnica nao invasiva sem a inje¢ao de fluidos ionizantes e sem o emprego
de radiagao ionizante (SETTECASE; RAYZ, 2021). Com o aumento da quantidade de
imagens geradas por exame, os radiologistas possuem um tempo cada vez menor para
a avaliacao de cada imagem. A quantidade exorbitante de imagens a serem analisadas
durante longas jornadas de 8 h podem provocar fatiga e deterioracao da qualidade das
avaliagoes (MAURER et al., 2021) (MCDONALD et al., 2015).

Estudo recente revela que algoritmos de aprendizado profundo ja podem aumentar
a sensibilidade de radiologistas na detec¢ao de aneurismas cerebrais, todavia o algoritmo
usado apresenta uma sensibilidade (90%) inferior a dos médicos que participaram do
exame (95% e 94%), uma taxa de falsos positivos elevada (6,1) e uma comparacao dos

tempos de diagnostico nao foi apresentada (FARON et al., 2020).

Assim, o desenvolvimento de abordagens de detecgao autométicas e semi-automaticas
pode ter um impacto importante na melhoria da deteccao de aneurismas intracranianos e
no aumento da quantidade de exames realizados caso o tempo computacional de deteccao

seja inferior ao do humano.

Quanto aos tratamentos convencionais, estes consistem em métodos cirargicos ou
endovasculares que visam isolar o aneurisma da circulagdo do vaso sanguineo (ZHAO et
al., 2018). Nestes tratamentos, a visualiza¢ao 3D do segmento que apresenta a patologia

pode auxiliar no entendimento da patologia e na aplicacao do tratamento.

Estudos anteriores ja implementaram arquiteturas de aprendizado profundo na
classificacao e segmentacao de aneurismas cerebrais, todavia muitos utilizam bases de
dados confidenciais de aneurismas e exames representados por voxels (UEDA et al., 2019)
(ALLENBY et al., 2020), enquanto no caso do banco de dados (YANG et al., 2020) utiliza-

se segmentos de vasos sanguineos representados em nuvens de pontos, uma representagao
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que apesar de mais eficiente exige um procedimento de restituicao nao automaético e

trabalhoso.

Recentemente, foi publicado um desafio de deteccao e segmentacao de aneurismas
cerebrais, chamado ADAM - Aneurysm Detection And segMentation Challenge, que dis-
poe de dados de acesso sob inscricao e permite a comparagao de algoritmos de maneira
mais fidedigna, usando as mesmas métricas e a mesma base de dados de teste (TIMMINS
et al., 2020).

A maioria das solucoes bem classificadas neste desafio empregam a seguinte estra-
tégia: dividir a imagem em multiplos elementos menores e segmentar separadamente cada
elemento por meio de uma variacdo do modelo 3D U-Net (CICEK et al., 2016). Ainda
que bons resultados sejam atingidos por meio desta abordagem, como consta na Tabela 2,
as informagoes globais sobre o posicionamento do suposto aneurisma na cabeca nao sao

utilizadas na tarefa, o que poderia melhorar os resultados de segmentacao.

Neste contexto, o modelo GLIA-Net (BO et al., 2021) parece promissor por integrar
informagoes locais e globais em uma tnica solu¢ao. O modelo foi treinado em uma base
de dados de exames de angiografia por tomografia computadorizada (ATC) com 1363
aneurismas e 1186 casos, testado em trés bases externas com pelo menos 50 aneurismas
cada e ainda testado em um experimento clinico com radiologistas e residentes. Em todas
estas tarefas, GLIA-Net mostrou resultados promissores, ultrapassando a performance de
modelos como uma versao 3D do classico U-Net (RONNEBERGER; FISCHER; BROX,
2015) e o antigo estado da arte em segmentagdo de aneurismas HEADXNet (PARK et
al., 2019). Além de mostrar no experimento clinico o seu potencial para reduzir o tempo

de diagnostico e aprimorar a sua qualidade.

Assim, neste trabalho almeja-se implementar uma arquitetura de aprendizado pro-
fundo GLIA-Net capaz de segmentar exames de TOF angio-RM representados em voxels

representando regioes normais e regioes com aneurismas cerebrais.

As principais contribui¢oes deste trabalho sao a adaptacao do projeto GLIA-Net
para a segmentacao de aneurismas cerebrais em exames de TOF angio-RM, o treinamento
deste modelo no desafio ADAM, o que permite a comparacao dos resultados com outras
solugoes, e a proposicao de uma composicao das mascaras de segmentagao de cada bloco
da imagem com pesos que destaquem a regiao central do bloco, o que mitiga artefatos e

problemas na segmentacao devido a aneurismas entre blocos.



16

2 Revisdo bibliografica

A revisao bibliogréfica foi dividida em trés partes: a primeira retrata o processo
de diagnostico de aneurismas cerebrais, a segunda discorre sobre o estado da arte dos
algoritmos de deteccao e segmentacao da patologia e a terceira aborda a transferéncia de

aprendizado no contexto de aprendizado profundo.

2.1 Diagndstico de aneurismas cerebrais

A captura de imagens da vasculatura cerebral é geralmente realizada por meio de
trés técnicas de captura de imagem: a angiografia por ressonancia magnética (angio-RM),
a angiografia por tomografia computadorizada (ATC) e a angiografia por subtracao digital

(DSA) (SETTECASE; RAYZ, 2021).

DSA é o padrao ouro usado na captura de imagens neurovasculares, sendo usado
para diagnoéstico de patologias, planejamento cirirgico e em intervencoes intravasculares
guiadas por imagens. O método consiste na aplicagao de um contraste radiopaco ionizado
no vaso de interesse por meio de um cateter e na captura de sequéncias de imagens de
raio X, que mostram o fluxo do material injetado pela vasculatura (SETTECASE; RAYZ,
2021).

ATC ¢é uma modalidade de angiografia que consiste na aplicagao de contraste io-
nizado intravenoso e na captura de sequéncias de imagens da vasculatura de interesse.
Esta técnica utiliza as propriedades de atenuacao de raio X dos tecidos e do contraste
de forma semelhante & DSA, todavia por meios menos invasivos (SETTECASE; RAYZ,
2021). Estudos sobre a capacidade do ATC em detectar aneurismas cerebrais nao rom-
pidos comparado ao DSA revelam valores de sensibilidade entre 90% e 100% valores de
especificidade entre 87,8% e 100% (HOWARD et al., 2019).

Na imagem de tomografia computadorizada, os valores da unidade da imagem sao
representados na escala Hounsfield (HU), que expressa o coeficiente de atenuacao da onda
eletromagnética de raio X do material em relacao ao da dgua na temperatura ambiente,

da seguinte maneira:

HUmaterial = Himaterial — 11150 (21)

HH>0

onde ; é o coeficiente de atenuagao da onda de raio X do material i e H,O ¢é a agua.
O coeficiente de atenuacao de um material depende apenas da composi¢ao do material,

da temperatura e da voltagem do tubo do equipamento de raio X. Assim, intervalos de
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HU em uma imagem de tomografia computadorizada podem ser associados a um tecido
material especifico (DANCE et al., 2014).

A angiografia por ressonancia magnética Time of flight (TOF angio-RM) é a téc-
nica de captura de imagem sem uso de contraste mais utilizada no diagnoéstico de aneu-
rismas cerebrais nao rompidos e consiste na aplicacao de um campo magnético sobre a
regiao de interesse e na captura de sequéncias de imagens da vasculatura de uma regiao
(KAKA; ZHANG; KHAN, 2021). Neste exame de imagem, a emissao de sucessivos pulsos
de frequéncias de radio saturam a magnetizacao do spin de estruturas estacionarias supri-
mindo o sinal destas regioes, enquanto o sangue em movimento, que nao exibe o mesmo
grau de saturacdo de spin, apresenta um sinal intenso (KUO et al., 2019). A grande
vantagem desta técnica é a auséncia de injecao de fluidos ionizados e de raio x, sendo uma
técnica nao invasiva. O estudo (SAILER et al., 2014) com 772 aneurismas indica que a
TOF angio-RM possui uma sensibilidade de 95% (95% IC 89-98%) e uma especificidade
de 89% (95% IC 80-95%).

Estes valores de sensibilidade de ATC e angio-RM dependem do tamanho do aneu-
risma, sendo que aneurismas menores que 3 mm sao mais dificeis de se detectar (HOWARD

et al., 2019).

2.1.1 Imagens de suporte

Além das imagens de angiografia que destacam a estrutura vascular, imagens adi-
cionais contendo informagoes sobre a anatomia de uma regiao podem ser relevantes para o
diagnostico semi-automéatico ou automatico, como é o caso do desafio ADAM (TIMMINS
et al., 2020). Nele, além de imagens de angiografia por ressonancia magnética do tipo
Time of flight, imagens 3D do tipo ponderadas em T1, em T2 ou FLAIR também sao

disponiveis.

As imagens por ressonancia magnética ponderadas em T1 e em T2 sao imagens
geradas de tal forma que a intensidade de seus voxels estao relacionados principalmente
com a propriedade T1 ou T2 dos tecidos examinados, onde T'1 é o tempo de relaxamento
longitudinal do spin e T2 é o tempo de relaxamento transversal do spin (MAIER et al.,
2018).

A sequéncia FLAIR (Fluid-Atenuated Inversion Recovery) de ressonincia magné-
tica ¢ uma imagem de ressonancia magnética ponderada em T2 que reduz drasticamente
o sinal do fluido cerebrospinal (HAJNAL et al., 1992).



Capitulo 2. Revisio bibliogrifica 18

2.2 Detectores automaticos de aneurismas

Como resultado da captura de imagens durante o diagnostico, produz-se uma
representacao volumétrica de trés dimensoes em voxels da vasculatura cerebral. Assim,
a maioria dos artigos encontrados (SICHTERMANN et al., 2019) (ALLENBY et al.,
2020) (LIU et al., 2021) (KAKA; ZHANG; KHAN, 2021) (UEDA et al., 2019) aplicam
métodos de aprendizado estatistico ou alguma ferramenta manualmente desenvolvida para

a deteccao de aneurismas cerebrais usando a representacao original dos exames em voxels.

A Tabela 1 mostra o estado da arte em detecgao de aneurismas cerebrais. Todavia,
a comparagao ¢ complicada ja que cada artigo utiliza um banco de dados distinto e
a sensibilidade dos métodos de captura de imagem e dos algoritmos de deteccao sao

impactados pelo tamanho dos aneurismas do banco de dados.

Tabela 1 — Comparagao das arquiteturas de classificagao de aneurismas intracranianos do
estado da arte

Modelo Representacao SE (%) ESP (%) FP F1  AUC (%)

PointCNN Nuvem 85,81 98,95 - 0,9044 -
PointNet++ Nuvem 88,51 98,52 - 0,9029 -
SO-NET Nuvem 83,94 98,88 - 0,8950 -
SpiderCNN Nuvem 87,90 97,28 - 0,8722 -
DGCNN Nuvem 83,40 97,93 - 0,8594 -
PointNet Nuvem 69,50 93,74 - 0,6916 -
GLIA-Net Voxel 96,2 38,9 4 - 98.2
ResNet-18 Voxel 78,0 - 2 - -
3D-Dense-UNet Voxel 98,6 - 1,49 - -
Manual* Voxel 81 86 0,2 - -
DeepMedic Voxel 90 - 6 - 82

Nota: SE, ESP e FP representam, respectivamente, sensibilidade, especificidade, falso-positivos por
exame. A fonte das arquiteturas utilizadas consta no Quadro 1.

Nota: Manual se refere a um algoritmo desenvolvido sem um processo de aprendizado no qual os dados
atualizam os pardmetros de um modelo automaticamente visando minimizar um erro.

Nota: A representagao anotada como nuvem se refere a representagao de nuvem de pontos.

A comparacgao entre métodos de deteccao que utilizam diretamente as sequéncias
de imagens representadas em voxels e os resultados obtidos a partir de banco de dados re-
presentado por nuvens de pontos (intrA) apresenta varios desafios. As métricas utilizadas
em ambos sao distintas e a o processo de conversao da sequéncia de imagens capturadas
por meio de angio-RM representadas por voxels para uma nuvem de pontos exige uma
restauragao manual dos dados (YANG et al., 2020). Assim, os algoritmos implementados
no banco de dados de nuvens de pontos nao podem ser implementados de forma comple-
tamente automatica e a avaliacao do tempo de deteccao do sistema depende da velocidade

dos médicos em restaurar os modelos CAD gerados.
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Quadro 1: Fonte das arquiteturas de classificacao de aneurismas intracranianos do estado
da arte

Modelo Fonte
PointCNN (LI et al., 2018) (YANG et al., 2020)
PointNet++ (QI et al., 2017) (YANG et al., 2020)
SO-NET (LI, CHEN; LEE, 2018) (YANG ot al., 2020)
SpiderCNN (XU et al., 2018) (YANG et al., 2020)
DGCNN (WANG et al., 2018) (YANG et al., 2020)
PointNet (QI et al., 2016) (YANG et al., 2020)
GLIA-Net (BO et al., 2021)
ResNet-18 (UEDA et al., 2019)
3D-Dense-UNet (LIU et al., 2021)
Manual (ALLENBY et al., 2020)
DeepMedic (SICHTERMANN et al., 2019) (KAMNITSAS et al., 2017)

Assim, bancos de dados de sequéncias de imagens provenientes de exames de angio-
RM, ATC ou DSA sao mais interessantes do que bancos de dados convertidos em nuvens
de pontos. Nesse sentido, o banco de dados de deteccao e segmentacao de aneurismas a
partir sequéncias de imagens de TOF angio-RM, chamado ADAM (Aneurysm Detection
And segMentation) (TIMMINS et al., 2020), se apresenta com muita relevancia.

ADAM é nao s6 um banco de dados como também um desafio de deteccao e
segmentagao de aneurismas. No presente momento, o ranqueamento das equipes em

ambas as tarefas esta exposto na Tabela 2.

Um problema geral para a comparacao da performance é que as métricas sensi-
bilidade, especificidade, taxa de falsos-positivos e F1l-score dependem do limiar escolhido
para determinar se um segmento contém aneurismas ou nao. A variacao deste limiar re-
sulta em um aumento da sensibilidade aliado a um aumento da taxa de falsos-positivos ou
na diminuigao de ambos, caracterizando a curva ROC (curva Caracteristica de Operagao
do Receptor). Logo, a comparagao ideal usaria uma métrica que engloba toda os pontos
desta curva. A métrica AUC (Area abaixo da curva ROC) desempenha este exato papel,

todavia poucos artigos revelam o seu valor.

O desafio ADAM possui vantagens tanto no aspecto da dependéncia de dados
quanto na variabilidade das métricas. O compartilhamento de um banco de dados de
teste tnico e secreto permite a comparacao dos algoritmos mais fiel por ser independente
dos dos dados e uma avaliagao automatica baseada em diversas métricas estabelecidas
permite ponderar os diferentes erros possiveis de uma solucao. Contudo, todas as métricas
do desafio dependem do limiar de classificacao, e portanto, este deve ser bem escolhido

para obter uma boa performance nas tarefas.
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Tabela 2 — Classificacao das equipes no desafio ADAM
Equipe Modelo 1 2 FP/caso RT DSC HD95 VS
abc 3D U-Net E5 1 1 0,40 0,68 0,43 16.78 0,59
Joker nnU-Net, 3D U-Net E4 3 3 0,16 0,63 0,40 8,67 048
JunMa nnU-net, 3D U-Net E5 4 2 0,18 0,61 0,41 8,96 0,50
mibaumgartner Retina U-Net E5 2 - 0,13 0,67 - - -
Kubiac U-Net, QuickNAT E18 5 5 0,36 0,60 0,28 18,13 0,39
Unil _chuv 3D U-Net 7 4 1,18 0,59 0,32 2292 0,56
xlim AneurysmNet 6 7 4,03 0,70 0,21 36,82 0,39
quanl2 ADAM - 10 5 1,28 0,51 0,32 20,30 0,45
Interneural NN (EfficientNet-B1) 8 6 0,88 0,49 0,17 2398 0,36
Zelosmediacorp 3D version of U-Net E4 9 8 0,05 0,21 0,09 9,79 0,13
joana CNN 8 - 9,37 0,63 - - -
Stronger 3D U-Net, 3D CNN E3 10 9 0,45 0,20 0,071 2442 0,21
Unil _chuv 3D U-Net 1 - 1,45 0,20 - - -
joana CNN 12 - 1,02 0,15 - - -
Trinet - 9 10 31,80 0,76 0,11 62,35 0,53
IBBM Btrfly 13 10 0,01 0,02 0,00 1277 0,01
TUM IBBM U-Net 14 11 22,62 0,43 0,07 65,02 0,31
DeepMedic DeepMedic 16 14 1188 0,85 0,07 7141 0,34

Nota:

Nota:

Nota:

Nota:

Fonte: (UTRECHT, 2020)

As colunas 1 e 2 contém a posicao de cada equipe nas tarefas 1 e 2 do desafio, sendo a tarefa 1 a
detecgao de aneurismas e a tarefa 2 a segmentacdo de aneurismas.

FP/caso, RT, DSC, HD95 e VS correspondem as seguintes métricas falso-positivos por caso,
sensibilidade, coeficiente de similaridade de Sorensen-Dice, distancia de Hausdorff adaptada para
o percentil 95 em mm e similaridade volumétrica.

Quanto maior o valor de RT, DSC e VS melhor é a performance da solugao, enquanto quanto
menor ¢ o valor de FP /caso e HD95 melhor a performance da solugao.

En indica que a predigao final consiste no voto majoritario de n modelos treinados de forma
separada, usando ensemble methods.

Nota: A citagdo dos modelos utilizados consta no Quadro 2.

Quadro 2: Fonte das solugoes ranqueadas no desafio ADAM

Model Fonte
U-Net (RONNEBERGER; FISCHER; BROX, 2015
3D U-Net (CICEK et al., 2016)
nnU-net (ISENSEE et al., 2019)
Retina U-Net (JAEGER et al., 2018)
QuickNAT (ROY et al., 2018)
AneurysmNet -
NN (EfficientNet-B1) (TAN; LE, 2019)
CNN (NAKAO et al., 2018)
Btrfly (SHIMIZU et al., 2020)
DeepMedic (KAMNITSAS et al., 2017) (SICHTERMANN et al., 2019)




Capitulo 2. Revisio bibliogrifica 21

2.2.1 Meétricas

Métricas em aprendizado estatistico supervisionado sao fungoes responsaveis por
quantificar a performance de um algoritmo em relacao a uma tarefa anotada. As métricas
a seguir sao utilizadas para a avaliacao de algoritmos no banco de dados ADAM. A sua
descricao esta baseada no artigo (TAHA; HANBURY, 2015) citado pelo website do desa-
fio ADAM <http://adam.isi.uu.nl/evaluation/> e pela analise do repositério do mesmo
desafio <https://github.com/hjkuijf/ADAMchallenge>. As métricas seguintes sao apli-
cadas em cada exame/dado. A obtengao de métricas correspondentes a uma base de

dados completa é feita pela média de uma métrica para todas os dados.

No caso do desafio ADAM. classificagoes positivas corresponde & presenca de aneu-

rismas nao tratados nem rompidos e negativas a sua auséncia.

Além das métricas utilizadas para a comparacao de algoritmos no desafio ADAM,
outras métricas sao uteis para acompanhar a performance de uma rede neural profunda

em treinamento.

Um conceito importante em tarefas de classificacao é a matriz de confusao, que
contabiliza a quantidade de acertos e erros em func¢ao das classes envolvidas. No caso da
classificagao com duas classes, chama-se uma classe de positiva e a outra de negativa e a

matriz de confusao toma a forma do Quadro 3:

Quadro 3: Matriz de confusao com duas classes.

Real
Positivo | Negativo
Predicio Positivo TP FP
Negativo FN TN

Nota: TP (ntmero de verdadeiro-positivos): quantidade de casos da classe positiva classificada correta-
mente.

Nota: FP (ntmero de falso-positivos): quantidade de casos da classe negativa classificada incorretamente
como positiva.

Nota: FN (namero de falso-negativos): quantidade de casos da classe positiva classificada incorretamente
como negativa.

Nota: TN (ntamero de verdadeiro-negativos): quantidade de casos da classe negativa classificada correta-
mente.

2.2.1.1 Meétricas de deteccio

Em imagens médicas, a tarefa de deteccao consiste em encontrar a posicao do
objeto procurado em uma imagens 2D ou 3D. Para quantificar a qualidade da localizagao
de um objeto para um algoritmo é necessério comparar o resultado com a posicao real.

Para considerar uma localizagao correta nao é necessario que a localizacao prevista seja


http://adam.isi.uu.nl/evaluation/
https://github.com/hjkuijf/ADAMchallenge
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idéntica & anotada, apenas que a distancia entre as posigoes seja menor que o raio do

objeto detectado.

As métricas a seguir sao responsaveis por quantificar a qualidade da localizagao

de algoritmos.

2.2.1.1.1 Quantidade de falso-positivos (FP)

FP corresponde ao ntimero de falso-positivos, ou seja, o ntimero de regioes sem

aneurismas nao rompidos nem tratados mas detectadas como tal.

Esta métrica vale no minimo 0 e nao possui méximo real. Quanto menor o seu

valor, melhor a performance do algoritmo.

2.2.1.1.2 Sensibilidade
A sensibilidade é dada por:

TP

Sensibilidade = FN——i—TP

onde T'P e I'P sao, respectivamente, o numero de verdadeiro-positivos e o niimero
de falso-positivos, ou seja, a sensibilidade é a razao entre o ntimero de casos aneurismas

detectados corretamente e o niimero de aneurismas anotados.

Esta métrica pertence ao intervalo [0, 1] e quanto mais a sensibilidade esta proxima

de 1, mais aneurismas sao detectados corretamente e melhor a performance do algoritmo.

A sensibilidade e a quantidade de falso-positivos sao métricas complementares no
sentido que elas avaliam erros distintos e que juntos agregam todos os erros de deteccao
possiveis. Enquanto a quantidade de falso-positivos quantifica o nimero de aneurismas
detectados erroneamente, a sensibilidade quantifica o nimero de aneurismas nao detec-
tados. Assim, a avaliagdo de um algoritmo de detecgao deve ser feita com ambas as

métricas.

2.2.1.2 Meétricas de segmentacdo

Em imagens médicas, a tarefa de segmentagao consiste em classificar cada pixel (no

caso de imagens 2D) ou cada voxel (no caso de imagens 3D) em determinadas categorias.

A descrigao de métricas desta se¢ao compartilham as anotagoes S}, S;, |A|, TP,
FN e FP. 5; e S, sdo, respectivamente, o conjunto de voxels classificados como ¢ por um
algoritmo e o conjunto de voxels anotados como i. Se A for um conjunto, |A| significa a
cardinalidade de um conjunto A — e como trabalhamos com conjuntos finitos a cardinali-

dade de A é o nimero de elementos de A — e se A for um namero real, |A| é o seu modulo.



Capitulo 2. Revisio bibliogrifica 23

TP, FFN e F P representam, respectivamente, o nimero de voxels verdadeiro-positivos, o

numero de voxels falso-negativos e niimero de voxels falso-positivos.

As métricas a seguir sao responsaveis por quantificar a qualidade da segmentagao

de algoritmos.

2.2.1.2.1 Coeficiente de similaridade de Sorensen-Dice

Segundo (TAHA; HANBURY, 2015), o coeficiente de similaridade de Sorensen-
Dice é a métrica mais utilizada na validagao de segmentacoes de volumes na area biomé-

dica e é dado por:

1St N S;| 2T P

DSC =2 =
|SH + S} 2TP+ FN + FP

Esta métrica pertence ao intervalo [0, 1] e quanto mais DSC' esta proximo de 1,

menor o erro de segmentacao e melhor a performance do algoritmo.

Como DSC mensura os erros falso-positivos e falso-positivos de forma conjunta
comparando apenas com os verdadeiro-positivos, esta métrica é robusta para tarefas com
dados desbalanceados, onde geralmente os verdadeiro-negativos sao muito mais numerosos

que os verdadeiro-positivos.

No artigo (TAHA; HANBURY, 2015), o coeficiente de similaridade de Sorensen-
Dice é apresentado como uma métrica que avalia a interseccao entre a predigao positiva
e a anotacao positiva em relacao aos erros. Argumenta-se que esta métrica é ideal para
mensurar a interseccao e que caso estas regioes sejam muito pequenas, interseccoes vazias

sao comuns e a métrica é pouco representativa.

2.2.1.2.2 Distancia de Hausdorff

Segundo (TAHA; HANBURY, 2015), a distancia de Hausdorff é dada por:

HD(A, B) = maz(h(A, B), h(B, A))

com
h(A, B) = maxmind(a,b)
acA beB
com d(A, B) sendo uma métrica.

No desafio, é utilizado uma modificagao desta métrica. A distancia de Hausdorff

modificada consiste em substituir a fungao h(A, B) acima por:
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hos(A, B) = percentil_%aeAl;niEr;l d(a,b)
=

onde percentil 95 extrai o 95° percentil de um conjunto. Esta modificacao per-
mite a desconsideracao de distancias anémalas muito elevadas entre pontos de ambos os

conjuntos.

No desafio, a métrica empregada é a distancia Euclidiana, ou seja, dados que a, b

sao vetores compostos por n elementos a; e b;, temos:

Além disso, no desafio os conjuntos A e B sao as bordas dos aneurismas nao

rompidos nem tratados.

Esta métrica, sendo uma distancia, possui valor minimo nulo e nao possui valor
méximo real. Assim, quanto menor a distancia de Hausdorff, melhor as bordas segmen-
tadas correspondem as bordas dos aneurismas anotados e melhor é a performance do

algoritmo de segmentacao.

No artigo (TAHA; HANBURY, 2015), a distancia de Hausdorff é considerada uma
métrica de distancia. Argumenta-se que por ser uma métrica que considera a distancia
espacial, a distancia de Hausdorff é ideal para a avaliacao dos contornos previsto em
relacao ao anotado. KEsta métrica é ideal também para bancos de dados com regioes
anotadas positivas muito pequenas, pois ainda que a interseccao entre os volumes previsto

e anotado seja nula, é possivel estimar a distancia entre estes volumes.

2.2.1.2.3 Similaridade volumétrica

Segundo (TAHA; HANBURY, 2015), a similaridade volumétrica ¢ dada por:

1531 = 151 |F'P — FN]|

VS=1- =1-
|SE| 4 1S} 2P+ FN + FP

Esta métrica pertence ao intervalo [0, 1]. No cenério de segmentagao ideal, em
que FP = FN =0, temos que V.S = 1. Assim, intuitivamente quanto maior a similari-
dade volumétrica, mais os voxels sao classificados corretamente e melhor a performance
do algoritmo de segmentagao. Note que ainda é possivel obter uma similaridade volu-
métrica alta caso os numeros de falso-positivos e falso-negativos forem correlacionados,
em particular, é possivel obter uma similaridade volumétrica igual a 1 mesmo com uma
segmentacao com T'P = 0, basta que FFN = F'P, e portanto, esta métrica nao deve ser

usada de maneira isolada.
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No artigo (TAHA; HANBURY, 2015), a similaridade volumétrica é uma métrica de
interseccao. Da mesma forma que o coeficiente de similaridade de Sorense-Dice nao é reco-
mendado para regioes de segmentacao positivas muito pequenas em relagao as negativas,
a similaridade volumétrica nao é recomendada também. Esta métrica nao é recomendada
também para a avaliacao do alinhamento das regioes positivas anotadas e prevista, pois
os falso-positivos podem cancelar com os falso-negativos, indicando erroneamente uma
similaridade muito alta. Assim, a VS é ideal para a avaliacao de interseccoes no qual o

alinhamento nao é muito importante.

2.2.1.2.4 AUC (ROC)

A curva ROC ou curva Caracteristica do Operador do Receptor ( Receiver Operator
Characteristic) é a curva dada pela especificidade e a sensibilidade de um algoritmo de
classificacao em um banco de dados para uma gama de limiares. No eixo da abcissa temos

a taxa de falso-positivos (FPR) e no eixo da ordenada temos a taxa de verdadeiro-positivos
(TPR) (FAWCETT, 2006).

A taxa de falso-positivos é dada por:

PP

FPR= ——— =
R=FN+Fp

1 — Especi ficidade
A taxa de verdadeiro-positivos é dada por:

TP

= TP+ FN = Sensibilidade

TPR

As taxas FPR e TPR pertencem ao intervalo [0, 1] e sdo complementares ja que a
FPR contabiliza o erro dos falso-positivos, enquanto a TPR contabiliza o erro dos falso-
negativos. A performance do algoritmo é melhor para valores maiores de TPR e menores
de FPR.

Assim, a Curva ROC ideal consiste em duas retas: a primeira vai do ponto (FPR =
0,TPR = 0), no qual o limiar ¢ tao alto que todos os voxels sdo classificados como
negativos, até o ponto (FPR = 0,TPR = 1), no qual todos os voxels sao classificados
corretamente ; e a segunda vai do ponto (FPR = 0,TPR = 1) até o ponto (FPR =
1,TPR = 1), no qual o limiar é tdo baixo que todos os voxels sdo considerados como

positivos.

Como explicado em (FAWCETT, 2006), um algoritmo que classifica uma instan-
cia aleatoriamente, ou seja, independentemente das caracteristicas da instancia, possui
valores esperados de TPR e FPR iguais, ja que podemos interpretar TPR como a pro-
babilidade do algoritmo classificar uma instancia positiva como positiva e FPR como a

probabilidade do algoritmo classificar uma instancia negativa como positiva. Assim, a



Capitulo 2. Revisio bibliogrifica 26

linha diagonal TPR = FPR de (0,0) a (1,1) ¢ a linha bésica do comportamento esperado

de um classificador aleatorio.

A métrica AUC ¢é a area abaixo da curva (area under curve) e é util para mensurar
os erros falso-positivos e falso-negativos de forma independente do limiar do algoritmo. No
cenario ideal, AUC = 1, enquanto espera-se AUC = 0,5 no cenario em que o classificador

¢é aleatorio.

Esta métrica pertence ao intervalo [0,1] e quanto maior o seu valor melhor a

performance do classificador.

2.2.1.2.5 Precisdo média (PRC)

Apesar da curva ROC ser muito interessante por ponderar ambos os erros de clas-
sificacao para todos os valores de limiar, esta curva nao é muito representativa, podendo
ser extremamente otimista no cenério de dados desbalanceados. Uma alternativa mais

informativa ¢ a curva Precision-Recall (PRC) (SAITO; REHMSMEIER, 2015).

A curva PRC também é capaz de ponderar os erros falso-positivos e falso-negativos
para todos os valores de limiar e possui a precisao (precision) como abcissa e a revocagao

(recall) como ordenada.

A precisao é dada por:

TP

Precisao = Z—P—{——W

A revocagao, também chamada de TPR ou de sensibilidade, é dada por:

TP

Revocacao = TPIFN

Ambas as métricas pertencem ao intervalo [0, 1] e quanto maior os seus valores,
melhor a performance do algoritmo. A precisao e a revocagao sao complementares, ja que a

precisao considera os erros falso-positivos e a revocagao considera os erros falso-negativos.

Assim, a curva PRC ideal consiste na reta que comeca em aproximadamente
(recall = 0, precision = 1), no qual o limiar estd muito alto e um namero infimo de voxels
sao detectados corretamente como positivos, e termina em (recall = 1, precision = 1), no

qual todos os voxels sao corretamente classificados.

No cenério em que o classificar é aleatorio, ou seja, classifica as instancias inde-
pendentemente de suas caracteristicas, espera-se uma linha, chamada de base, dada por
precision = P/(P+ N) onde P ¢ o nimero de classes positivas ¢ N é o nimero de classes

negativas do banco de dados. Logo, espera-se que AP = P/(P+ N) para um classificador
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aleatorio. Nota-se que apenas para bancos de dados com classes balanceadas espera-se
obter AP = 0,5 com um classificador aleatério (SAITO; REHMSMEIER, 2015).

A métrica AP, ou precisao média (average precision), é a precisao média da curva
PRC, que corresponde & area abaixo da curva PRC ja que a abcissa revocagao varia de 0
a 1. Esta métrica também pertence ao intervalo [0, 1] e quanto maior o seu valor, melhor

a performance do algoritmo.

No cenéario de dados desbalanceados, como é o caso da tarefa de segmentacao de
aneurismas cerebrais, a métrica AP é mais representativa que a métrica AUC. Isso ocorre,
pois a curva PRC pondera os erros falso-negativos e falso-positivos utilizando apenas estes
erros e o numero de verdadeiro-positivos, que é a classe menos numerosa geralmente, jé
a curva ROC pondera os erros falso-negativos e falso-positivos utilizando tanto o niimero
de verdadeiro-positivos quanto o numero de verdadeiro-negativos e como a classe negativa
geralmente é muito mais numerosa que a positiva a métrica considera os erros de maneira

desigual, permitindo um alto valor de AUC com uma performance relativamente baixa.

No artigo (SAITO; REHMSMEIER, 2015), Saito explica que a curva ROC inde-
pende da proporg¢ao do ntimero de casos das classes positiva e negativa. Assim, no caso
de dados desbalanceados apesar da curva ROC poder apresentar precisao baixa em certas
regioes, a taxa FPR continua baixa na mesma regiao e a curva ROC nao se altera. En-
quanto isso, a curva PRC se adapta de acordo com a proporc¢ao do niimero de casos das

classes positiva e negativa, acompanhando a mudanga na performance dos classificadores.

O exemplo do Quadro 4 ilustra um cenério de dados desbalanceados em que um
ponto da curva ROC nao é representativo da performance do algoritmo, enquanto a curva

PCR é mais informativa.

Quadro 4: Exemplo de matriz de confusao com duas classes desbalanceadas.

Real
Positivo | Negativo
Predicio Positivo 500 1600
Negativo 500 8400

Fonte: Adaptado de (SAITO; REHMSMEIER, 2015).

500
R =reca 500 + 500 0,5%
1600
FPR=—————=20,06
1600 + 8400 , 06%
500
precision = ——— = 0, 02%

500 + 1600
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Uma taxa FPR abaixo de 1% induz um aparente baixo ntmero de erros falso-
positivos. Todavia, quando comparado o nimero de falso-positivos com o ntmero de
verdadeiro-positivos, nota-se que este erro é bem expressivo. A baixa precisao captura

esta informagao sobre o erro de falso-positivos.

Para uma simples e rapida interpretagao dos resultados, as métricas explicadas

nesta secao estao resumidas no Quadro 5.

Quadro 5: Resumo sobre a interpretagao basica de métricas de deteccao e de segmentacao.

Meétrica Minimo Maximo Melhor

Falso-positivos (FP) 0 negativos (N) l
Falso-negativos (FN) 0 positivos (P) i}
Verdadeiro-positivos (TP) 0 positivos (P) 0
Verdadeiro-negativos (TIN) 0 negativos (N) 0
Sensibilidade = recall 0 1 T

Precisao 0 1 T

AUC (Area abaixo da curva ROC) 0 1 0

AP (precisao média da curva PRC) 0 1 0

Coeficiente de Sorensen-Dice (DSC) 0 1 0

Distancia de Hausdorff considerando 0 i !
apenas 95% das menores distancias (HD95)

Similaridade volumétrica (VS) 0 1 0

Fonte: Autor.

Nota: Na coluna Melhor, | representa que uma reducao na métrica indica uma melhor performance da
solugdo, enquanto T representa que um aumento na meétrica indica uma melhor performance da
solucao.

2.2.2 Arquiteturas de aprendizado profundo para segmentacdo

Em razao das vantagens proporcionadas pelo desafio ADAM e a representacao
em voxels ja mencionada na secao 2.2, foca-se apenas em arquiteturas de aprendizado

profundo em que os dados sao representados em voxels.

Os modelos ranqueados no desafio ADAM (Tabela 2) revelam que U-Net e suas
variagoes sao a arquitetura predominante e de excelente performance. A arquitetura

original do modelo U-Net consta na Figura 1.

A ideia principal por tras deste modelo é uma rede completamente convolucional
("fully convolutional network") em que por um caminho a rede extrai informacgoes do
contexto em uma resolu¢ao cada vez menor e com o auxilio de conexoes de maior resolucao,

a resolucao da informagao extraida é aumentada até a resolucao da imagem de entrada
(RONNEBERGER; FISCHER; BROX, 2015).

Este modelo processa imagens bidimensionais (RONNEBERGER; FISCHER; BROX,

2015). Assim, a sua versdo para imagens tridimensionais foi desenvolvida, sendo chamada,
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Figura 1 — Arquitetura U-Net.
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Fonte: (RONNEBERGER; FISCHER; BROX, 2015).

de 3D U-Net (CICEK et al., 2016). Como mostrado na Figura 2, a ideia central por tras

do model U-Net remanesce, porém as operagoes passam a atuar em 3 dimensoes no lugar
de 2.

Figura 2 — Arquitetura 3D U-Net.
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Fonte: (CICEK et al., 2016)

A partir da Tabela 2, nota-se que usar uma rede neural do tipo 3D U-Net nao
garante os melhores no desafio. As equipes Stronger e Unil Chuv usaram esta rede, porém

obtiveram performances inferiores a outras redes neurais. O artigo (ISENSEE et al.,
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2019) justifica esta discrepancia. Nele, argumenta-se que o desenvolvimento de solugoes
especializadas de segmentacao semantica é nao trivial e dependente de propriedades do
banco de dados alvo e do hardware disponivel. Os autores desenvolveram uma plataforma
de acesso aberto chamada nnU-Net ("nenhuma rede nova") para tratar da adaptagao dos
hiperparametros do modelo para o treinamento da rede, como batch size, patch size,
a topologia da rede 3D U-Net e o pré-processamento, a partir de uma série de regras
heuristicas. No mesmo artigo, foi documentado que a implementacao nnU-Net foi aplicada
em 10 desafios biomédicos internacionais de segmentagao, englobando 19 bancos de dados
diferentes, 49 tarefas de segmentacao diferentes envolvendo uma variedade de orgaos e as
modalidades IRM, ATC e microscopia eletronica e das 49 tarefas a implementacao nnU-
Net estabeleceu um novo estado da arte em 29. Em particular, os trabalhos das equipes
Unil _chuv (NOTO et al., 2020a) e Stronger (NOTO et al., 2020b) usaram a rede 3D U-
Net com patches de tamanho, respectivamente, 32 x 32 x 32 e 64 x 64 x 32, enquanto os
trabalhos das equipes ABC (ABC, 2020), JunMa (MA, 2020) e Joker (YANG, 2020), que
obtiveram os melhores resultados do desafio, usaram a rede 3D U-Net com os respectivos
tamanhos de patch 128 x 128 x 128, 256 x 224 x 56 e 225 x 192 x 56. E possivel que

tamanhos de patch mais elevados sejam responsaveis pela diferenca de performance.

Nota-se também que as equipes mais bem classificadas utilizaram alguma forma
de ensemble methods, métodos conjuntos. Nestes métodos, varios modelos sao treinados
independentemente e a previsao final da solugao ¢é calculada a partir do balango da previsao

dos modelos treinados.

A equipe com as melhores avaliacoes nas tarefas de deteccao e segmentacao é a
equipe ABC. Os resultados foram obtidos usando a rede profunda 3D U-Net (CICEK et
al., 2016), patch size igual a 128 x 128 x 128, uma fungao de custo dada pela combinagao
linear das fungoes de custo de Dice e de entropia cruzada binaria e um otimizador Adam
(KINGMA; BA, 2015). O resultado é a obtido usando um método conjunto com cinco
modelos. Uma vasta quantidade de operagoes aleatorias de aumento de dados artificial foi
utilizada no treinamento da rede, incluindo mudanga de escala, rotacao, espelhamento,
mudanga no contraste e a aplicacao dos ruidos aditivos Gaussiano e de Poisson. Nao sao

providos mais detalhes sobre o pré-processamento de dados (ABC, 2020).

Entre as equipes mais bem ranqueadas esta a equipe JunMa, que utilizou a im-
plementacao nnU-Net. Considerando uma entrada apenas de imagens TOF angio-RM,
a ferramenta nnU-Net inferiu os seguintes hiperparametros: patch size igual a 256 x 224
x 56, batch size igual a 2, rede 3D U-Net com cinco blocos convolucionais no caminho
de diminui¢ao da resolugao e no caminho do aumento da resolugao cada um com uma
convolugao 3D com kernels cibicos de lado 3 seguidos por uma normalizacao por ins-
tancia e por uma funcao de ativagdo Leaky ReLU (Equagao 2.2) (XU et al., 2015). O

pré-processamento é constituido pela exclusao de voxels pretos, considerados como plano
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de fundo, normalizagao Z e as seguintes operacoes aleatérias para aumento de dados:
rotacao, mudanca de escala, espelhamento e transformacao gamma. A otimizacao da
rede neural é feita pelo algoritmo do gradiente descendente estocastico. O resultado final
¢é calculado usando um meétodo conjunto com cinco redes. Na sua breve descri¢cao, nao

hé& mais detalhes sobre a implementacao destas operacoes de aumento de dados nem do

ensemble methods. (MA, 2020).

A equipe Joker, terceira colocada em segmentagao e em detec¢ao, também imple-
mentou uma rede 3D U-Net usando a implementacao nnU-Net. O pré-processamento de
dados consiste no redimensionamento das imagens de tal forma que todas possuam o es-
pacamento mediano do banco de dados, na saturacao dos valores da imagem nos percentis
0,5% (minimo) e 99,5% (méaximo) e na normalizagdo Z da imagem saturada. A etapa
de aumento de dados é formada pelas operagoes aleatorias: transformacao afina (rotagao,
translagao e deformacao eléstica), espelhamento e aumento por corre¢do gamma, que na
mudanca das intensidades por meio de um expoente aleatério comum a imagem. No
modelo, a normalizac¢ao por batch (Batch Normalization) é substituida pela normalizagao
por grupo e a func¢do de ativagdo ReLU (Equacdo 2.4) é substituida pela Leaky ReLU
(Equagao 2.2) e func@o de custo usada é a Dice ranking loss, visando reduzir o erro de
patologias menores. No treinamento, utilizou-se um patch size igual a 192 x 224 x 56 e
um batch size igual a 6 (YANG, 2020). O resultado final é o voto majoritario de quatro
modelos treinados independentemente e com consideragoes distintas: variou-se as imagens
de entrada (ou apenas TOF angio-RM ou ambas as imagens) e variou-se a classificagao
dos aneurismas tratados ou rompidos (ou como aneurismas nao tratados nem rompidos

ou como regides normais).

Com base nas descricoes dos trabalhos anteriores e na Tabela 2, miltiplas redes
neurais profundas 3D U-Net agrupadas usando métodos conjuntos é a solu¢ao predomi-
nante entre as solu¢oes que obtiveram os melhores resultados no desafio ADAM. Todavia,
os detalhes da sua microarquitetura, bem como o otimizador, o patch size, o batch size e
as operacoes para o aumento de dados variam entre as equipes participantes do desafio.
Como as solugoes ranqueadas possuem multiplas diferengas quando comparadas duas a

duas, nao é possivel inferir as melhores configuragoes de forma independente.

2.2.2.1 GLIA-Net

GLIA-Net é um modelo de aprendizado profundo de segmentacao desenvolvido
para a segmentacao de imagens 3D de ATC. O artigo (BO et al., 2021) relata que a
rede GLIA-Net foi treinada em um banco de dados com 1186 imagens tridimensionais
de ATC abragendo 1363 aneurismas cerebrais e testado em um banco de dados com 152
imagens abrangendo 126 aneurismas cerebrais. Para comparar os resultados, as redes
de segmentagao seméntica HeadXNet (PARK et al., 2019) e uma versao 3D da rede U-



Capitulo 2. Revisio bibliogrifica 32

Net (RONNEBERGER; FISCHER; BROX, 2015) foram treinadas e testadas de maneira
andloga nos mesmos bancos de dados. Os resultados destes modelos no banco de dados
de teste sao mostrados na Tabela 3 e indicam que o modelo GLIA-Net apresenta a me-
lhor performance. No mesmo artigo, um estudo clinico é apresentado, mostrando que o
modelo pode reduzir o tempo e melhorar o diagnéstico de aneurismas cerebrais por um

neurologista.

Tabela 3 — Performance das redes neurais na tarefa de segmentacao de aneurismas cere-
brais em imagens de ATC no banco de dados de teste.

Modelo P SV DSC HD95 AUC AP ST FP/exame
U-Net 14,0 71,3 232 19,6 98,8 175 73,3 30,8
HeadXNet 16.2 55,6 23,2 15,9 98,2 250 549 15,9
GLIA-Net 48,8 72,9 57,9 9,07 982 61,9 82,1 4,38

Fonte: Adaptado de (BO et al., 2021).

Nota: P, SV, DSC, HD95, AUC, AP, ST e¢ FP/exame representam, respectivamente, precisao,
sensibilidade por voxel, coeficiente de similaridade de Sorensen-Dice, a distdncia de Hausdorff
adaptado para 95% dos pares de voxels de aneurismas anotados e previstos, area sobre a curva
ROC, precisao média da curva PRC, sensibilidade por aglomerado de voxels conectados e falso-
positivos por exame.

Nota: As métricas ST e FP /exame sao mensuradas por aglomerados de voxels vizinhos classificados
como aneurismas, enquanto as outras métricas sao mensuradas por voxels.

Nota: Todas as métricas sdo dadas em porcentagem exceto HD95 dada em milimetros e FP /exame.

Nota: Apesar da rede do tipo U-Net ter obtido a métrica AUC superior as outras redes, o valor 98, 8%
esta dentro do intervalo de confianga de 95 % da performance das redes GLIA-Net e HEADXNet.

Como aneurismas cerebrais sao relativamente pequenos (da ordem de alguns mili-
metros) em relagao a cabega, que é mensurada na ordem de decimetros, exames de imagem
tridimensionais para o diagnoéstico da patologia geram imagens com uma quantidade de
voxels exorbitante (no caso do desafio ADAM, na ordem de 107 e 10%), no qual uma razao

infima representa a anomalia.

Por esta razao, é desafiador criar solugoes baseadas em arquiteturas 3D U-Net com
entrada igual a uma imagem tridimensional inteira do exame com resolugao original. Em
geral, divide-se a imagem do exame em blocos (patches) na forma de paralelepipedos e
a mascara de segmentacao da imagem do exame completo é a composi¢ao das méscaras
de segmentacao geradas pela rede neuronal para cada um desses blocos. O problema
desta solugao é que apenas as informacoes locais dos blocos do exame de imagem sao

consideradas.

Uma possivel alternativa seria a reducao de dimensao da imagem tridimensional
original para que esta possa ser utilizada como entrada da rede neuronal. Todavia, apesar

de neste caso a rede aprender informagoes globais da imagem para segmentacao perde-
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se resolucao e, portanto, as informagoes locais. Como aneurismas sao extremamente

pequenos em relacao ao tamanho da imagem completa, a perda é consideravel.

Neste cenério, aparece a solugdo Global Localization-based 1A (GLIA-Net), que
teve como objetivo conciliar a extracao de informacoes locais e globais da imagem. A
solucao é capaz de extrair informagoes de localizagdo de um elemento na imagem da
cabeca como um todo ao mesmo tempo que extrai informacoes locais de elementos com a
mesma resolucao que a imagem original. A macro arquitetura da solugao é apresentada

na Figura 3.

A solugao GLIA-Net utiliza a estratégia de dividir a imagem 3D em uma série de
blocos (patches) menores sobrepostos cujo tamanho é suficientemente pequeno para que
as operacoes possam ser implementadas na memoria limitada da Unidade de Processa-
mento Gréfico (Graphical Processing Unit — GPU), o que permite desfrutar de um elevado
grau de paralelismo, e por conseguinte, uma alta velocidade de execucao. A segmentacao
semantica da imagem 3D completa consiste na composicao da segmentagao seméantica de
cada bloco individual. Assim, para cada bloco, o modelo GLIA-Net recebe como entrada
o bloco (local inputs), a posigdo do bloco na imagem completa (patch location bbox) e a
imagem completa com dimensao reduzida (global inputs) e produz como saida uma maés-
cara classificando os voxels em aneurismas ou em regioes normais (net) e uma estimativa,
da probabilidade do bloco apresentar um aneurisma usando apenas global inputs (global

localizer logits).

A macro arquitetura da rede GLIA-Net é composta por dois componentes prin-
cipais: a rede de localizagao global (global localization network), responsavel por extrair
informagoes globais da distribui¢do de aneurismas cerebrais na imagem global, e a rede
de segmentagao local (local segmentation network), responsavel por segmentar a imagem
semanticamente. Ainda que esta diferenciacao seja importante conceitualmente, os dois
componentes nao sao isolados. A informagao intermediéria da global localization network
chamada de global localizer feature é transmitida a multiplos niveis da local segmentation
network por meio dos componentes adaptadores do posicionamento global (Global Posi-
tioning Adaptor — GPA) e pela multiplicagao elemento a elemento das informagoes locais

em cada nivel, como mostrado na Figura 3.

A rede local segmentation network é basicamente uma versao da rede 3D U-Net
com quatro encoders (EB) e trés decoders (DB) com a modifica¢do ja mencionada nas
conexdes diretas (skip connections) por meio dos modulos GPAs. Sua entrada é o bloco
local da imagem (local inputs) e a sua saida é a méscara de segmentagao correspondente
ao bloco de entrada (net). Esta rede isolada, sem os modulos GPAs, e com normalizagao
por batch (IOFFE; SZEGEDY, 2015) no lugar de normalizagdo por grupo (WU; HE,
2018) ¢ a versao 3D da rede U-Net utilizada nos testes do artigo (BO et al., 2021).

A rede global positioning network é composta por dois componentes: o localizador
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global (global localizer), que recebe como entrada a imagem global reduzida dimensio-
nalmente (global inputs) e a localizagdo do bloco local na imagem global (patch location
bbox) e produz como saida o mapa de caracteristicas de localizac¢ao global do bloco (global
localizer feature), e o localizador (localizer loss), que recebe como entrada a saida do glo-
bal localizer e produz como saida as probabilidades do bloco local apresentar aneurismas

(global localizer logits).

Conforme a Figura 4, o global localizer é constituido por quatro etapas principais
em série: o gerador de caracteristicas (feature generator), a indexacao (indexing), o po-
sicionamento adaptativo de regides de interesse (roi adaptive positioning) e o gerador de

localizagao (localizer generator).

Figura 4 — Global localizer da rede GLIA-Net.

roi R global
lobal 3x96X96X96 feature A F - .
g = indexing adaptive ez ez 128x6x6x8 localizer
inpu generator generator feature

pooling

patch
location
bbox

global localizer / RoiPoolingGlobalPositioning

Fonte: Adaptado de (BO et al., 2021).

Nota: O ntmero em cima das linhas corresponde ao niimero de canais do feature map representado pela
linha.

Nota: +4 indica que a operacao divide a profundidade, a altura e a largura do feature map por 4. 6
abaixo da operacao indica que esta iguala a profundidade, a altura e a largura do feature map a 6.

O feature generator, exibido na Figura 5, é constituido por cinco blocos de encoders
em série e produz um mapa de caracteristicas da imagem global inteira. As dimensoes
largura, altura e profundidade deste mapa sao iguais as respectivas dimensoes da imagem

global reduzida dimensionalmente (global inputs) divididas por quatro.

Figura 5 — Feature generator da rede GLIA-Net.

3X96X96X96 512 512x24x24x24 .
:_:::;3?; X9BXI6X! EB1 32 Epz K EB3 128 EB4 256 EB5 X24X24X: @
+2 +2

feature generator |

Fonte: Adaptado de (BO et al., 2021).

Nota: O ntimero em cima das linhas corresponde ao niimero de canais do feature map representado pela
linha.

Nota: =2 indica que a operacao divide a profundidade, a altura e a largura do feature map por 2.

O mapa de caracteristicas globais gerado pelo feature generator possui informagoes

da imagem inteira. A operagao de indexagao é responsavel por utilizar a posi¢ao do bloco
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na imagem completa (patch location bbox) para extrair justamente a regiao do mapa de

caracteristicas globais referente a regiao do bloco em questao.

A operagao de posicionamento adaptativo da regiao de interesse (roi adaptive po-
sitioning) aplica a operagdo do PyTorch AdaptativeMaxPool3d, que seleciona valores
maximos do mapa de caracteristicas da regiao de interesse gerado pela operacgao de inde-
xacao de tal forma a gerar um novo mapa de caracteristicas da regiao referente ao bloco

com altura, largura e profundidade iguais a 6.

O componente localizer generator recebe o mapa de caracteristicas produzido pela
camada roi adaptive pooling e gera um novo mapa de caracteristicas globais da regiao
de interesse (o bloco), chamado de global localizer feature, que é utilizado pela rede de
segmentacao local (local segmentation network) por conter informagdes provenientes da
imagem completa. Esta operacao é realizada por dois blocos de encoders, como apresen-

tado na Figura 6.

Figura 6 — Localizer generator da rede GLIA-Net.

512x6x6x6 51 256 128 128x6x6X6 glwal
EB1 EB2 XoXEX localizer
feature

localizer generator |

Fonte: Adaptado de (BO et al., 2021).

Nota: O numero em cima das linhas corresponde ao nimero de canais do feature map representado pela
linha.

A partir do global localizer feature, o localizador (localizer loss) estima a probabi-
lidade do bloco de interesse apresentar um aneurisma ou nao, chamada de global localizer
logit. Assim, a rede global localization network produz uma estimativa da probabilidade
de um bloco da imagem apresentar aneurismas utilizando apenas a imagem inteira e re-
duzida dimensionalmente e a posicao no bloco na imagem completa. O localizer loss é
exibido na Figura 7 e ¢ formado pelas operagoes em série: convolugao 3D com kernels
cabicos de lado 3, normalizagao por grupo (WU; HE, 2018), a fungao de ativagao Leaky
ReLU (Equagcao 2.2) (XU et al., 2015), AdaptativeMaxPool3d com a saida em cubos de
lado 1 e convolugao 3D com kernels ctbicos de lado 1 e a fungao sigmoide (Equagao 2.3),
que ¢é utilizada para gerar numeros entre 0 e 1 a partir de uma entrada real, o que pode

ser entendido como uma probabilidade.

T sex >0
f R=>R, f(z)= (2.2)
0,01z caso contrario

1 ~ ewp(x)

[ R—=10,1], f(z) = 1+ exp(—z) 1+ exp(z)




Capitulo 2. Revisio bibliogrifica 37

Figura 7 — Localizer loss da rede GLIA-Net.

global 128XEXEXE Adaptative global
" ea 2 2x1x1x1 .

localizer 128 0 81 & S &4 3 Lo 0 localizer

feature Poo logits

1
localizer loss / GlobalPositioningLoss

Fonte: Adaptado de (BO et al., 2021).

Nota: O ntimero em cima das linhas corresponde ao nimero de canais do feature map representado pela
linha.

Nota: 1 abaixo da operacao indica que esta iguala a profundidade, a altura e a largura do feature map a
1.

Os global positioning adaptors possuem a estrutura mostrada na Figura 8. Basica-
mente um GPA é composto por uma operacao de convolucao 3D com kernels cubicos de
lado 1 e a fungao de ativagao sigmoide (Equacao 2.3). A operagao AdaptiveMaxPool3d é
empregada quando as dimensoes altura, largura e profundidade do feature map de entrada
e da saida do GPA sao diferentes.

Figura 8 — Global positioning adaptor da rede GLIA-Net.

global Adaptative
localizer )} oX*&xX8 Conv(1) Avg Sigmoid (CxDxHxWjou

feature Pool

(D,H,W)out

GlobalPositioningAdaptor (GPA)

Fonte: Adaptado de (BO et al., 2021).

Nota: O ntmero em cima das linhas corresponde ao niimero de canais do feature map representado pela
linha.

Nota: (D, H, W), abaixo da operagao indica que esta iguala as dimensoes do feature map profundidade
a D, a altura a H e a largura a W.

Nota: O contorno pontilhado indica que a operagao s6 é empregada quando a mudanga de tamanho de
pelo menos uma das dimensoes profundidade, altura e largura é necesséria.

O bloco encoder utilizado por diversos componentes da rede GLIA-Net é consti-
tuido por uma operagao MaxPooling3d quando for necessario reduzir com kernel ctbico
de lado e passo iguais a 2 — uma operacao que consiste em interpretar o feature map de
entrada como cubos de lado 2 justapostos e selecionar o valor méaximo de cada cubo — a
dimensao do feature map por 2 e um bloco ResNet. Este componente é apresentado na

Figura 9.

J& o bloco decoder é utilizado apenas na rede local segmentation network e é

constituido por uma operacao de convolucao transposta 3D com kernels ctubicos de lado



Capitulo 2. Revisio bibliogrifica 38

Figura 9 — Encode block da rede GLIA-Net.

(CxDXHXW)in cin Max cin ResNet Cout (CxDxHxW)out,
Pool Block

=2
Encode Block (EB)

Fonte: Adaptado de (BO et al., 2021).

Nota: O ntimero em cima das linhas corresponde ao niamero de canais do feature map representado pela
linha.

Nota: +2 indica que a operacao divide a profundidade, a altura e a largura do feature map por 2.
Nota: O contorno pontilhado indica que a operagao s6 é empregada quando a mudanga de tamanho de

pelo menos uma das dimensoes profundidade, altura e largura é necesséria.

3 dobrando as dimensodes altura, largura e profundidade da entrada de menor tamanho,
a concatenacao na dimensao dos canais do resultado da convolucao transposta com a
skip connection, a normaliza¢ao por grupo (Group Normalization) (WU; HE, 2018), a
fungao de ativagao Leaky ReLU (Equagao 2.2) (XU et al., 2015) e um bloco ResNet. Este

componente é apresentado na Figura 10.

Figura 10 — Decode block da rede GLIA-Net.

Cat
(CxDxHxW)in1 Conv | 2T (C1+4C2)in (C1+C2)in (CxDxHxWjout output
Transpose(3)
skip (CXDXHxW)in2 Cin2
connection Decode Block (DB)

Fonte: Adaptado de (BO et al., 2021).

Nota: O ntimero em cima das linhas corresponde ao niimero de canais do feature map representado pela
linha.

Nota: & com Cat acima representa a operagao de concatenacao de tensores na dimensao dos canais.

Como abordado nos componentes antecessores, a microarquitetura principal utili-
zada pela rede GLIA-Net é o bloco ResNet. Os Blocos Residuais (Residual Blocks) foram
desenvolvidos inicialmente como os blocos fundamentais da rede ResNet implementada
para a tarefa de classificacao de imagens. A ideia central por tras do Bloco Residual é
formular a fungdo que deseja-se que a rede aprenda H(x) como F(z)+ z, sendo F(x) o
residuo de interesse. Esta formulagao, segundo resultados experimentais, permite facilitar

a otimizacao da rede neural em relagao a formulagao direta (HE et al., 2015).

Em particular, o Bloco Residual gargalo (bottleneck building block), também pro-
posto no mesmo artigo, é utilizado em GLIA-Net. Nele, emprega-se para aproximar uma

funcao F(x) trés convolugdes em série seguidas por uma fungao de ativagao Rectified Li-
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near Unit, ou ReLU (Equagao 2.4). A segunda convoluc¢do possui kernels quadrados de
lado 3, sendo a tunica operagao do bloco que é aplicada no voxel em questao em seus
vizinhos imediatos. A primeira e a tltima convolugao possuem kernels quadrados de lado
1, e portanto, operam apenas na dimensao dos canais. A primeira reduz o nimero de
canais do feature map para que a convolugao com kernels de lado 3 nao seja tao custosa
computacionalmente e a terceira restaura o nimero de canais do feature map de entrada
(HE et al., 2015).

r sex >0
f R — Rzo, f(ZL‘) = (24)

0 caso contrario

Como esté exibido na Figura 11, a implementacao do bottleneck building block na
rede GLIA-Net ¢é ligeiramente diferente. Todas as operagoes de convolugao utilizadas no
bloco possuem kernels ciibicos no lugar de quadrados, as convolugoes obrigatérias sao
seguidas de uma normalizagao por grupo (Group Normalization) (WU; HE, 2018) e as
fungoes de ativacao ReLU sa@o substituidas por Leaky ReLU (Equagao 2.2) (XU et al.,
2015). Além disso, caso o nimero de canais dos tensores de entrada e de saida do bloco
sejam distintos, emprega-se uma operagao de convoluc¢ao com kernels de tamanho unitério

na entrada do bloco para iguala-los.

Figura 11 — ResNet block da rede GLIA-Net.

Conv(3)

Conv({1) Conv(1)

Cout

. [CxDxHxW)in | Cin (CXDXHXW)out .

Conv(1)

ResNet Block

Fonte: Adaptado de (BO et al., 2021).

Nota: O ntmero em cima das linhas corresponde ao niimero de canais do feature map representado pela
linha.

Nota: @ representa a operagao de soma de tensores termo a termo.

Nota: O contorno pontilhado indica que a operagao s6 é empregada quando o nimero de canais dos
tensores de entrada e de saida sao distintos.

Segundo (WU; HE, 2018), a normalizagdo por grupo usada na rede GLIA-Net
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consiste na seguinte operagao:

T —p
g

T =

(2.5)

onde 1 e o sao, respectivamente, a média e o desvio padrao da entrada z. Esta
operacao é definida para x sendo um conjunto de canais abrangendo a largura, a altura e
a profundidade de um mapa de caracteristicas (feature map) de uma rede neural. A saida
final da normalizagao por grupo (y) é calculada da seguinte forma a fim de evitar perdas

de representatividade por causa da normalizacao:

y=v&+p (2.6)

onde 7 e [ sao parametros de escala e deslocamento aprendidos no treinamento.

Como esta normalizagao opera independentemente do batch, as estatisticas u e
o podem ser estimadas da mesma forma no treinamento e na inferéncia e o tamanho
do batch pode ser dissociado & quantidade de memoéria exigida para executar o modelo.
Ainda sim, resultados apontam que a performance de redes neurais com esta normalizagao
é independente ao namero de batch (WU; HE, 2018).

Finalmente, a Figura 12 apresenta o bloco output conv, que gera a mascara de
segmentagao do bloco de interesse. Este bloco é simplesmente formado por uma operagao
de convolugao com kernels cibicos de lado igual a 3 seguida por uma fungao de ativagao
softmax (Equagao 2.7), que torna todos os valores da méscara de segmentagao entre 0 e
1, sendo que a soma dos canais de um mesmo voxel resulta sempre em 1. Dessa forma, a
mascara de segmentacao contém uma estimativa da probabilidade de cada voxel do bloco

de interesse ser classificado como aneurisma ou nao.

Figura 12 — Output conv da rede GLIA-Net.

64x96x96x96 84 2 2 2x98X96x96
Conv(3) Softmax

output conv

Fonte: Adaptado de (BO et al., 2021).

Nota: O ntmero em cima das linhas corresponde ao niimero de canais do feature map representado pela
linha.

P LNION, £ RY = 0.1V, fla,) = — 25P@) 2.7
S ULNIN FSBY 01, fln) = ol 1)

onde N é o numero de elementos de um vetor x e x; é o i-ésimo termo do vetor x.
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Como ja foi explicado, a segmentagao semantica de uma imagem 3D inteira con-
siste na composigao da segmentacao semantica de cada bloco individual e que para cada
bloco, o modelo GLIA-Net recebe como entrada o bloco, a posicao do bloco na imagem
completa e a imagem completa com dimensao reduzida e produz como saida uma mas-
cara classificando os voxels em aneurismas ou em regioes normais e uma estimativa da
probabilidade do bloco apresentar um aneurisma. A mascara de segmentacao seméantica
é formada pela uniao das méscaras semanticas de probabilidade de cada bloco, utilizando
a média aritmética para determinar o valor regioes sobrepostas. Para obter uma classe

exata e fixa para cada voxel, utiliza-se um limiar igual a 0,5.

Um processo analogo pode ser aplicado aos global localizer logits, tomando uma
méascara de segmentacao de cada bloco no qual cada voxel é igual a probabilidade do
bloco apresentar aneurismas usando apenas informacoes globais (global localizer logits).
A composigao desta mascara de segmentagao para imagem completa representa a pro-
babilidade de cada regiao da imagem apresentar um aneurisma considerando apenas a

imagem completa de dimensao reduzida como entrada (global inputs).

2.2.2.1.1 Funcio de custo

Para guiar a rede neural GLIA-Net para que esta assuma valores de tal forma
que a solucao desempenhe melhor na tarefa desejada, segmentagao de aneurismas, com o

passar do treinamento é necessario de uma fungao de custo.

Como ja foi explicado, a rede GLIA-Net classifica voxels e blocos em duas classes:
aneurisma ou normal. Assim, todos os componentes da fungao de custo sao para a tarefa
de classificagdo ou segmentagao binaria. O artigo (BO et al., 2021) detalha que a funcao

de custo total (Lrya) € descrita pela seguinte equagao:

Lrotal = Waiobal LGiobal + Wiocal L Local (2.8)
onde Waiobal € Wrocar Sa0 pesos ponderadores e Lo € Lpocal sao as funcgoes de
custo global e local, respectivamente.

Em particular, para a saida da rede global localization network, que é um par de
niumeros reais, a func¢ao de custo global (Lgiepa) € aplicada como softmax cross-entropy

loss, descrita por:

Leiopsr = —zInz2 — (1 — 2)In (1 — 2) (2.9)

onde z ¢ o valor (0 ou 1) da classe real do bloco (patch) e Z é a predigao da classe

dada pelo modelo. Z é calculado pela aplicagao da funcao softmaz (Equagao 2.7) sobre



Capitulo 2. Revisio bibliogrifica 42

os global localizer logits, resultando na probabilidade do bloco apresentar um aneurisma
Zounao 11— 2Z.
Enquanto para a rede local segmentation network, a fungao de custo local (Lriopar)

¢ uma func@o de custo exponencial logaritmica (exponental logarithmic loss), expressa

por:

LLocal - WDiceLDice + WCrossLC"ross (210)

onde Wpice € Weross 520 pesos ponderadores, Lpice € Loross sa0 fungoes de custo de

dice (dice loss) e de entropia cruzada (cross-entropy loss), respectivamente.

A funcao de custo de dice visa minimizar a diferenca de forma da méscara de

segmentacao predita e a anotada e é descrita pelo seguinte valor esperado:

(2.11)

2 ~ YDice
Lo —E <_ In M)

y+y+e

onde E(x) ¢ a funcdo que calcula a média de do valor x iterando sobre todos
os voxels do bloco (patch) que esta sendo segmentado, y e § sdo, respectivamente, a
classe anotada e a probabilidade de representar um aneurisma de cada voxel, Vp;ce ¢ um
parametro que controla a nao-linearidade da fungao de custo de dice e € é uma constante

para suavizar a funcao.

Para finalizar, a funcdo de custo de entropia cruzada (Lcyess) € descrita por:

Levoss = E(wp(—yIng — (1 —y) In (1 — g))“cres) (2.12)

onde E(x) ¢ a fungao que calcula a média de do valor * iterando sobre todos
os voxels do bloco (patch) que estéd sendo segmentado, y e § sdo, respectivamente, a
classe anotada e a probabilidade de representar um aneurisma de cada voxel, Voyoss € UM
parametro que controla a nao-linearidade da funcao de custo de entropia cruzada e w,
é um peso ponderador que desconta o valor de voxels proximos a borda do aneurisma e
mantém o valor de pixels internos e externos a aneurismas. Este desconto é importante,
pois ha uma alta variabilidade de anotagoes entre especialistas (SUINESTAPUTRA et al.,
2015).

2.3 Transferéncia de aprendizado

Seguindo o artigo (PAN; YANG, 2010), esta segao define os conceitos de dominio
(domain) e tarefa (taks), que sao utilizados para apresentar o conceito de transferéncia

por aprendizado (transfer learning).
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O dominio consiste de dois componentes: um espaco de caracteristicas y e uma
distribui¢@o de probabilidades marginais P(X), onde X = zy,xs, ..., , € x. Assim pode-
se definir um dominio como D = {x, P(X)}.

Para um dominio especifico D = {x, P(X)}, uma tarefa consiste de dois com-
ponentes: um espago de anotagdes v e uma fungao preditiva objetiva f(.), que nao é
conhecida mas pode ser aprendida por meio de dados de treinamento, formados por pa-
res {x;,y;} onde x; € X e y; € v. Dessa forma, uma tarefa pode ser descrita por
7 ={v, f(.)}. Para um novo z, a fungao f(.) pode ser utilizada para prever a sua anota-
¢ao correspondente, tentando aproximar a anotagao y associada a x com f(z). A partir

de uma perspectiva probabilistica, f(x) pode ser escrito como P(y|z).

No cenario de segmentacao de aneurismas, o espaco de caracteristicas y ¢ o con-
junto de imagens dos exames (RM, ATC ou DSA), X é um conjunto de imagens (RM,
ATC ou DSA) de um tnico exame, x; é cada voxel dos exames, o espago de anotagdes
v é o conjunto de méscaras de segmentacao que anotam se um voxel dos exames corres-
ponde a um aneurisma ou a uma regiao normal e a fun¢do f(z) ¢ a func¢do que realiza a

segmentacao dos exames em aneurismas e em regioes normais.

No contexto de transferéncia de aprendizado, utiliza-se o dominio Dg e a ta-
refa 7¢ fontes e o dominio Dy e a tarefa 7 alvos. Assim, para o dominio fonte, te-
mos: Ds = {(zs1,Ys1), -, (Tsng, Ysng)} com xg € xs sendo uma instancia de da-
dos fonte e ys; € vg a sua anotacao correspondente; e para o dominio alvo, temos:
Dr = {(x11,911), -, (TTnps Yrny) } com xp; € xr sendo uma instancia de dados alvo e
yr; € vUr a sua anotagao correspondente. ng e np sao, respectivamente, o ntimero de

instancias da fonte e o nimero de instancias alvo, no qual geralmente 0 < ny << ng.

Com base nas defini¢oes de dominio e tarefa, pode-se definir transferéncia de apren-

dizado:

Dado um dominio fonte Dg, uma tarefa fonte T, um dominio alvo Dt e uma tarefa
alvo T, a transferéncia de aprendizado visa melhorar o aprendizado da func¢ao preditiva

alvo fr(.) em D7 usando o conhecimento em Dg e Ts, onde Dg # Dy ou Tg # Tr.

Voltando ao cenario de segmentagao de aneurismas, particularmente se apenas a
modalidade dos exames é alterada, o que caracterizaria em uma diferenca entre os espacos

de caracteristicas fonte e alvo, temos Dg # Dr e Tg = Tr.

Segundo (TAN et al., 2018), a transferéncia de aprendizado profundo (deep
transfer learning) pode ser definida como um caso particular de transferéncia de apren-

dizado:

Dado uma tarefa de transferéncia de aprendizado definida por (Ds, Ts, Dy, Tr,
fr(.)), define-se um tarefa de transferéncia de aprendizado profundo o caso particular no

qual fr(.) é uma fungao nao-linear descrita por uma rede neural profunda.
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Este artigo também propoe a classificacao da transferéncia de aprendizado pro-
fundo em quatro categorias: baseada em instancias (instance-based deep transfer lear-
ning), baseada em mapeamento (mapping-based deep transfer learning), baseada em ad-
versarios (adversarial-based deep transfer learning) e baseada em rede (network-based deep

transfer learning).

Na transferéncia de aprendizado profundo baseada em instancias, ins-
tancias parciais do dominio fonte sao utilizadas no conjunto de dados de treinamento do

dominio alvo, utilizando um peso particular.

Na transferéncia de aprendizado profundo baseada em mapeamento, os
dados dos dominios fonte e alvo sao mapeados em um novo espaco de dados. Este novo

dominio é utilizado na rede neural profunda.

Por ultimo, a transferéncia de aprendizado profunda baseada em adversa-
rios se refere ao uso de instancias adversarias devidamente escolhidas de modo a encontrar

representacoes aplicaveis tanto no dominio fonte como no dominio alvo.

A transferéncia de aprendizado profunda baseada em rede se refere ao
reuso parcial de uma rede neural pré-treinada no dominio fonte, incluindo a sua estrutura
e a conexao entre seus parametros, como uma parte integral da rede neural profunda
utilizada no dominio alvo. Nesta abordagem, trata-se as primeiras camadas da rede
neural como extratores gerais e versateis de caracteristicas e as tltimas camadas como

estimadores particulares de uma tarefa especifica em um dominio especifico.

No contexto particular das redes de segmentacao semantica que seguem a estrutura
bésica do modelo 3D U-Net, o artigo (KARIMI; WARFIELD; GHOLIPOUR, 2020) apre-
senta indicios de que os parametros das camadas mais proximas a saida da rede neural sao
os mais alterados no treinamento da rede. Os autores compararam o treinamento de uma
mesma rede neural partindo de dois cenarios: de parametros inicializados aleatoriamente
e de parametros pré-treinados em outras tarefas de segmentagao, variando idade do paci-
ente e 6rgao segmentado. Como métrica, foi usada uma média ponderada da correlagao
entre os parametros de cada camada das duas redes neurais treinadas por meio da Anélise
por Correlagao Canonica (ACC) (BACH; JORDAN, 2005). Os resultados indicam que os
parametros dos encoders aleatoriamente inicializados e pré-treinados mudam menos e sao
mais semelhantes que os parametros aleatoriamente inicializados e pré-treinados dos deco-
ders. A explicacao proposta para este fendmeno é que os decoders sao as ultimas camadas
e, portanto, pequenas mudancas nas camadas precedentes impactam na entrada desses
componentes. Os autores interpretam que os encoders extraem mapas de caracteristicas
genéricas, enquanto os decoders extraem informacgoes particulares para a tarefa especifica

do treinamento fino.

A partir desta interpretacao, questionou-se a necessidade de treinar os encoders em
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uma rede do tipo 3D U-Net para segmentagao. Para investigar esta questao, os autores
de (KARIMI; WARFIELD; GHOLIPOUR, 2020) realizaram o treinamento de uma rede
de segmentacao do tipo 3D U-Net inicializada com valores aleatorios de duas formas
distintas: (1) congelando os parametros dos encoders e treinando apenas os decoders e (2)
treinando a rede inteira. Com o congelamento, o tempo de otimizagao dos parametros da
rede caiu em 40% e a queda de performance foi marginal. O experimento foi realizado em

duas tarefas de segmentacao de imagens médicas e os resultados constam na Tabela 4.

Tabela 4 — Resultados do treinamento de uma rede de segmentagao do tipo 3D U-Net
treinando apenas os decoders e treinando a rede inteira nos bancos de dados
Liver-CT e CP-younger fetus.

Banco de dados Congelamento dos encoders DSC

Liver-CT Nao 0,967
Liver-CT Sim 0,940
CP-younger fetus Nao 0,896
CP-younger fetus Sim 0,884

Fonte: Adaptado de (KARIMI; WARFIELD; GHOLIPOUR, 2020).

Nota: DSC representa o coeficiente de similaridade de Sorensen-Dice.

Assim, mostram que o treinamento apenas dos decoders da rede permite um au-

mento na velocidade de treinamento do modelo sem perdas considerdveis na performance.

O artigo também estuda o efeito da transferéncia de aprendizado no treinamento
da rede de segmentacao semantica no cenario de mudanga de modalidade, de ressonéancia
magnética para tomografia computadorizada (ambas anatdomicas), de mudanga de idade,
de mudanca de tarefa e de mudanca no protocolo de aquisicao. No caso particular de
mudanga de modalidade, a transferéncia de aprendizado gera um aumento marginal na

performance, conforme a Tabela 5, e uma redugao de consideravel no tempo de conver-

géncia do algoritmo (KARIMI; WARFIELD; GHOLIPOUR, 2020).
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Tabela 5 — Performance de uma rede de segmentacao de figado do tipo 3D U-Net em
banco de dados de teste de imagens TC anotadas partindo de parametros
aleatoriamente inicializados (R.I) e partindo de pardmetros de um modelo
pré-treinado nos bancos de dados de imagens de RM anotadas.

Quantidade de dados de treino Inicializacao DSC HD95 [mm]|

15 R.IL 0,97 +0,01 5,07+ 1,94
15 R.IL 0,97 40,01 4,754 1,81
6 T.L. 0,05+0,01 5,47 £ 2,00
6 T.L. 0,96+ 0,01 5,254 2,09

Fonte: Adaptado de (KARIMI; WARFIELD; GHOLIPOUR, 2020).

Nota: DSC representa o coeficiente de similaridade de Sorensen-Dice e HD95 representa a distancia de
Hausdorff considerando o percentil 95 das menores distancias.

Nota: Os bancos de dados empregados sao disponibilizados no desafio CHAOS (KAVUR et al., 2021).
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3 Materiais e Métodos

Para desenvolver a solucao para a tarefa de segmentacao de imagens médicas em
aneurismas e regioes saudaveis, este trabalho usa o banco de dados aberto do desafio
ADAM (TIMMINS et al., 2020). Este banco de dados aberto contém 113 exames de
ressonancia magnética da cabeca anotados e ¢ destinado ao desenvolvimento de solugoes

de deteccao e segmentacao de aneurismas pelos participantes.

Cada exame contém uma imagem 3D de TOF angio-RM e uma imagem 3D su-
plementar de angio-RM, podendo ser ponderada em T1, em T2 ou ser do tipo FLAIR.
Esta disponivel também a versao da imagem 3D suplementar alinhada com a imagem
3D de TOF angio-RM de tal forma que os eixos x, y e z representem, respectivamente,
as direcoes direita-esquerda, frente-tras e baixo-cima. Os parametros da operacao de ali-
nhamento bem como os parametros de captura de imagem sao fornecidos. Quanto as
anotagoes, uma mascara 3D classificando cada voxel da imagem de TOF angio-RM e um

arquivo texto contendo as posi¢oes e o tamanho em mm do aneurisma sao fornecidos,

Utiliza-se uma abordagem de aprendizado profundo para realizar a segmentacao
automatica de aneurismas destes exames de ressonancia magnética. Visando acelerar o
treinamento, este é executado na plataforma Google Colab, que dispoe de GPUs gratuitas
K80 e pagas T4 e P100. O servico Google Colab Pro foi assinado para se beneficiar de
GPUs com maior capacidade de processamento e mais memoria RAM e do disco. Em
particular, a GPU P100 de 16 GB de RAM foi empregada na execugao da rede neural.

A plataforma Colab disponibiliza a GPU P100 da Nvidia, 25,46 GB de memoria
RAM e 147,15 GB de memoria do disco rigido, sendo que o sistema ja ocupa 38,99
GB. Assim, o ambiente fornece espago no disco rigido suficiente para salvar o banco de
dados aberto ADAM, que ocupam 30 GB quando compactado e menos de 60 GB quando

descompactado.

De acordo com revisao bibliografica, a arquitetura GLIA-Net é a mais promis-
sora para a segmentacao de aneurismas intracranianos, superando outras arquiteturas do
estado da arte e mostrando o seu potencial para melhorar a qualidade e agilizar a de-
tecgao de aneurismas em diagnodstico clinico. A implementacao original, disponivel em
<https://github.com/MeteorsHub /GLIA-Net >, foi implementada na linguagem de pro-
gramagao Python e usa a biblioteca de aprendizado profundo PyTorch. O trabalho esta
atribuido a licenga de acesso aberto CC BY-NC-ND.

Como o projeto original de GLIA-Net aplica a segmentagao de imagens de ATC
e 0 nosso objetivo e é segmentar imagens a partir de imagens de angio-RM, é necessério

adaptar o projeto original para esta nova modalidade. Assim, o proprietario do projeto


https://github.com/MeteorsHub/GLIA-Net
https://creativecommons.org/licenses/by-nc-nd/4.0/
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GLIA-Net foi contactado e este permitiu a extensao do projeto a partir de um fork,
disponivel em <https://github.com/gabrielriqu3ti/GLIA-Net>.

3.1 Analise de dados do desafio ADAM

Para adaptar a solugao GLIA-Net, desenvolvida para segmentar imagens de exames
de ATC, para segmentar imagens de exames de TOF angio-RM, é necesséario compreender
o pré-processamento da entrada e os dados fornecidos pelos bancos de dados de ressonéancia

magnética e de tomografia computadorizada.

O banco de dados disponibilizado pelo desafio ADAM, contém 113 dados que

seguem a seguinte estrutura de arquivos:

dado

| orig
reg_struct_to_TOF.txt
ScanParams_struct.txt
ScanParams_TOF.txt
struct.nii.gz
struct_aligned.nii.gz
TOF.nii.gz

| _pre
struct.nii.gz
struct_aligned.nii.gz
TOF.nii.gz

| aneurysms.nii.gz

| location.txt

Na pasta orig temos os arquivos de exames de imagem 3D originais e as informa-
¢oes para gerar os arquivos pré-processados, enquanto na pasta pre temos os exames de
imagem 3D pré-processados. Todas os arquivos com extensao .nii.gz estao no formato

de dados comprimido e padronizado NIfTI, especifico para imagens de neurociéncia.

TOF.nii.gz é um arquivo que contém uma imagem 3D de um exame de TOF
angio-RM. Para todos os dados, este arquivo assume o mesmo alinhamento, conforme a

Figura 13.

struct.nii.gz e struct_aligned.nii.gz sao arquivos que contém uma imagem
3D de um exame de IRM, podendo este ser de uma das trés modalidades: ponderada
em T1, ponderada em T2 ou FLAIR, variando de dado para dado. Note que estas
modalidades sao exames anatdmicos e nao exames de angiografia, e portanto, nao sao
usados para ressaltar a estrutura vascular cerebral, mas sim para diferenciar os tecidos

da cabega. O arquivo struct_aligned.nii.gz difere do arquivo struct.nii.gz por


https://github.com/gabrielriqu3ti/GLIA-Net
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Figura 13 — Seg¢oes de imagem 3D do exame TOF angio-RM do dado 10072F do desafio
ADAM

TOF MRA 10072F segdo x=59

TOF MRA 10072F secéo z=248
0 1.0
100 0.8
200 0.6
>

300 0.4
400 0.2

500
0.0

0 50 100
X

Nota: O circulo vermelho artificialmente sobreposto & imagem localiza o aneurisma nao tratado nem
rompido e a posi¢ao do seu centro foi obtida por meio do arquivo de localizagao do mesmo dado.

TOF MRA 10072F secéo y=243

Fonte: Autor.

Nota: Os valores da imagem foram normalizados linearmente de tal forma que os valores minimo e méximo
da imagem original passam a valer 0 e 1 na imagem normalizada.

apresentar o mesmo alinhamento e a mesma escala que a imagem 3D do exame TOF

angio-RM, conforme a Figura 14.

Esta transformacao afina esta documentada no arquivo reg_struct_to_TOF.txt
e provoca artefatos na imagem 3D gerada, como regioes nulas devido ao limite da imagem

original e & perda de foco devido & mudanca de escala, como pode-se observar na Figura 14.

A configuracao basica de um equipamento de ressonancia magnética exige trés
parametros: a intensidade do campo magnético, o tempo de repeticao e o tempo de
eco. Estas quatro informacoes estao armazenadas nos arquivos ScanParams_TOF.txt
para imagens de exames de TOF angio-RM e ScanParams_struct.txt para imagens de

exames de ressonancia magnética do tipo T1, T2 ou FLAIR.
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Figura 14 — Sec¢oes de imagem 3D do exame FLAIR do dado 10072F do desafio ADAM

Estrutura alinhada com TOF MRA 10072F secdo x=59

Estrutura alinhada com TOF MRA 10072F segdo z=248
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200 0.6

0.4
0.2
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X

Nota: O circulo vermelho artificialmente sobreposto a imagem localiza o aneurisma nédo tratado nem
rompido e a posi¢ao do seu centro foi obtida por meio do arquivo de localizagao do mesmo dado.

Estrutura alinhada com TOF MRA 10072F secéo y=243

Fonte: Autor.

Nota: Os valores da imagem foram normalizados linearmente de tal forma que os valores minimo e méximo
da imagem original passam a valer 0 e 1 na imagem normalizada.

Como as imagens dos arquivos que comegam por struct podem ser de trés moda-
lidades distintas, é importante estudé-las para avaliar se podemos utiliza-las indiscrimi-
nadamente na solugao, se alguma adaptacao especifica para cada modalidade é necessaria

ou se é melhor descartar esta informagao.

As Figuras 14, 15 e 16 contém segOes com aneurisma cerebral de exames das
trés modalidades FLAIR, T1 e T2 respectivamente. Nas trés modalidades, o aneurisma
aparece como uma regiao de baixa intensidade e os diferentes tecidos da cabega apresentam
mais detalhes e menos ruido quando comparado & imagem do exame de TOF angio-
RM (Figura 13), o que sugere que de fato estas trés imagens possam ser tratadas de
forma indistinta e que possam fornecer informacoes relevantes da anatomia da cabeca
para a segmentacgao de aneurismas. Todavia, os tecidos apresentam intensidades relativas

diferentes em cada modalidade e uso destas imagens no treinamento pode introduzir
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correlagoes artificiais entre as modalidades da imagem e as anotagoes. Para exemplificar
o problema, apenas um dos 113 pares de exames de imagem é composto por imagens
ponderadas em T1, e portanto, caso as imagens dos arquivos struct_aligned.nii.gz
sejam usadas como entrada do sistema, a rede neural teria apenas um exemplo de imagem
de ressonancia magnética ponderada em T'1 com anotagao para aprender a lidar com uma

entrada desta modalidade.

Figura 15 — Secoes de imagem 3D do exame de IRM ponderado em T1 do dado 10067B
do desafio ADAM

T1 alinhado com TOF MRA 10067B secao x=66

T1 alinhado com TOF MRA 10067B segao z=170
1.0

0
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200 0.6
> ™

300 0.4

400
02

500
0 50 100 0.0

X

Nota: O circulo vermelho artificialmente sobreposto & imagem localiza o aneurisma nao tratado nem
rompido e a posi¢ao do seu centro foi obtida por meio do arquivo de localizagao do mesmo dado.

T1 alinhado com TOF MRA 10067B secao y=194

Fonte: Autor.

Nota: Os valores da imagem foram normalizados linearmente de tal forma que os valores minimo e méaximo
da imagem original passam a valer 0 e 1 na imagem normalizada.

aneurysms.nii.gz é um arquivo que contém uma imagem 3D que representa a
anotagao de segmentagao da imagem do exame TOF angio-RM, ou seja, cada voxel desta
imagem contém um valor qualitativo que indica se o voxel representa uma regiao de um
aneurisma ou nao, conforme mostrado na Figura 17. Esta imagem também é chamada

de méscara de segmentacao e a informagao qualitativa da méscara consta no Quadro 6.
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Figura 16 — Seg¢oes de imagem 3D do exame de IRM ponderado em T2 do dado 10033 do
desafio ADAM

T2 alinhado com TOF MRA 10033 segé&o x=40 T2 alinhado com TOF MRA 10033 seg&o z=293
0

1.0
100
200
300

400

500

T2 alinhado com TOF MRA 10033 segao y=223

Fonte: Autor.

IN

Nota: O circulo vermelho artificialmente sobreposto a imagem localiza o aneurisma nao tratado nem
rompido e a posicao do seu centro foi obtida por meio do arquivo de localizagao do mesmo dado.

Nota: Os valores da imagem foram normalizados linearmente de tal forma que os valores minimo e méximo
da imagem original passam a valer 0 e 1 na imagem normalizada.

Quadro 6: Legenda da méscara de segmentacao do desafio ADAM

Valor | Descricao
0 Normal
1 Aneurisma nao rompido nem tratado
2 Aneurisma tratado ou rompido

Fonte: Adaptado de (TIMMINS et al., 2020)

location.txt é um arquivo de texto que contém a posicao em pixels do centro de
todos os aneurismas nao tratados nem rompidos nos exames de imagem e o raio tal que

todos os pontos do aneurisma estao dentro da esfera com este raio e o centro anotado.

As informagoes do arquivo location.txt nao podem ser utilizadas diretamente

pelo modelo GLIA-Net. Entretanto, estes arquivo revelam informagoes referentes ao ta-
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Figura 17 — Se¢oes de mascara 3D do dado 10072F do desafio ADAM. Consulte o Qua-
dro 6 para entender o mapa de cores.

Mascara de aneurysma do exame 10072F segdo x=59

Méscara de aneurysma do exame 10072F secao z=248
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manho e & localizagao dos aneurismas ja obtidas do banco de dados ADAM, que podem

Méscara de aneurysma do exame 10072F secdo y=243

Fonte: Autor.

ser usados para sintetizar informagoes sobre o banco de dados completo. Utilizando estes
arquivos e normalizando a informacao de posi¢ao contida neles para que ela fique entre
0 e 1 de acordo com o tamanho da imagem, expoem-se a distribuicao e o tamanho dos
aneurismas nao tratados nem rompidos no banco de dados nas Figuras 18, 19 e 20 e na
Tabela 6.

A partir destas figuras, pode-se notar que os aneurismas nao sao uniformemente
distribuidos na cabeca e ha regides da cabeca que concentram esta patologia. Logo, a ex-
ploragao da localizacao de cada bloco da imagem pela rede GLIA-Net pode eliminar falso-
positivos em regioes pouco provaveis de aparecerem aneurismas e eliminar falso-negativos
em regioes que a patologia se concentra, melhorando a performance da segmentacao em

relacao ao uso exclusivo de blocos locais, como é feito em redes neurais analogas a U-Net.

A Tabela 6 e o histograma do raio da Figura 21 revelam que, exceto o aneurisma
andmalo de 15 mm de raio, os aneurismas nao tratados nem rompidos possuem raios na
mesma ordem de grandeza e que o eixo y (frente-tras) é o que mais concentra aneurismas

j& que este possui o menor desvio-padrao. E importante que os aneurismas possuam
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Figura 18 — Projecao da localizagao de todos os aneurismas nao tratados nem rompidos
do banco de dados ADAM. Os eixos x e y correspondem, respectivamente,
aos eixos da direita & esquerda do paciente e de frente para tras do paciente.
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Tabela 6 — Estatisticas de localizacao e de tamanho dos 125 aneurismas nao tratados
nem rompidos do banco de dados disponibilizado aos participantes do desafio

ADAM.

Estatisticas X y z Raio (mm)
Meédia 0,471 0,417 0,489 1,07

Desvio-padrao 0,140 0,070 0,109 2,20
Minimo 0,133 0,172 0,145 0,70
25% 0,380 0,387 0,424 2,27
50% 0,457 0,420 0,492 3,96
75% 0,550 0,445 0,561 5,45
Maximo 0,889 0,703 0,700 15,92

Fonte: Autor.

Nota: x, y e z correspondem & posi¢ao dos aneurismas nos respectivos eixos direita-esquerda, frente-trés
e baixo-cima. O raio é corresponde ao raio da menor esfera centrada no baricentro do aneurisma

que engloba todos os seus voxels.

tamanhos semelhantes, pois aneurismas maiores sao tratados com um peso maior ja que

a funcao de custo local atua no nivel dos voxels.

Ainda que os aneurismas possuam tamanhos em milimetros na mesma ordem de

grandeza, é possivel que eles apresentem tamanhos em ordens de grandezas diferentes

se 0 espacamento dos voxels for diferente. Observando a Tabela 7, pode-se notar que o

espagamento dos voxels nao é constante ao longo do banco de dados e o espacamento
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Figura 19 — Projecao da localizagao de todos os aneurismas nao tratados nem rompidos
do banco de dados ADAM. Os eixos x e z correspondem, respectivamente,
aos eixos da direita a esquerda do paciente e de baixo para cima do paciente.
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Fonte: Autor.

em cada dimensao de uma imagem pode ser mais do que o dobro do espacamento de
outra imagem, comparando os espacamentos minimo e maximo em cada dimensao. Uma
medida de mitigacao possivel para este problema é a fixagao do espagamento a um valor

representativo do banco de dados, como a mediana do espagamento em cada dimensao.

Tabela 7 — Estatisticas referentes ao espacamento dos 113 pares de imagens disponiveis
para treinamento e validagao no desafio ADAM.

Estatisticas  Largura Altura Profundidade
Meédia 0,352362 0,352362 0,544688
Desvio-padrao 0,056936 0,056936 0,092424
Minimo 0,195312 0,195312 0,400000
25% 0,312500 0,312500 0,499999
50% 0,357143 0,357143 0,500000
75% 0,390625  0,390625 0,550000
Maximo 0,585938 0,585938 1,000000

Fonte: Autor.

A fixacao do espacamento das imagens do banco de dados é realizada através da
mudanga no tamanho das imagens. Para viabilizar a operagao, ¢ necessario que estas ima-
gens tenham um tamanho suficientemente pequeno para o processamento computacional.
As estatisticas referentes ao tamanho das imagens médicas sao mostradas na Tabela 8,
todas as imagens foram capazes de serem processadas pelos recursos computacionais dis-

poniveis.
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Figura 20 — Projecao da localizagao de todos os aneurismas nao tratados nem rompidos
do banco de dados ADAM. Os eixos y e z correspondem, respectivamente,
aos eixos de frente para tras do paciente e de baixo para cima do paciente.
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Fonte: Autor.

Tabela 8 — Estatisticas referentes ao tamanho dos 113 pares de imagens disponiveis para
treinamento e validagao no desafio ADAM.

Estatisticas = Largura Altura Profundidade

Média 556.9 556.9 131,9
Desvio-padrao 141,0 141,0 21,2
Minimo 256 256 64
25% 512 512 138

50% 512 512 140

75% 560 560 140
Maximo 1024 1024 180

Fonte: Autor.

O banco de dados ADAM disponibiliza também a marcacao de regides de aneu-
rismas tratados ou rompidos, como apresentado no Quadro 6 e permite o questionamento
de como tratar esta nova classe. Ha trés opcgoes: adaptar a solucao para trés classes
independentes, tratar os voxels desta classe como voxels de aneurismas nao tratados nem
rompidos ou trata-los como uma regiao normal da imagem. Para avaliar a melhor opcao,
calculou-se o volume em voxels de cada regiao sem mudar o espacamento e o seu per-
centual, que constam na Tabela 9. Pela tabela, o volume de regioes normais é ordens de
grandeza maior que o volume de regioes com aneurismas tratados ou rompidos e que este
¢é ordens de grandeza maior que o volume de regioes com aneurismas nao tratados nem

rompidos. Logo, a classe 2 nao pode ser tratada da mesma forma que a classe que deseja-
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Figura 21 — Histograma da localizagao e do tamanho dos 125 aneurismas nao tratados

nem rompidos do banco de dados disponibilizado aos participantes do desafio
ADAM.
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Fonte: Autor.

se segmentar no desafio (1) pela diferenga na quantidade de ambas as classes, a adaptagao
do projeto GLIA-Net para a segmentagao de trés classes é uma tarefa trabalhosa e que
levanta questionamentos sobre o balanceamento das trés classes. Portanto, a solucao mais
simples e que parece minimizar os efeitos desta terceira classe no treinamento da solucao

¢é renomear os voxels anotados com 2, de 2 para 0.

No projeto original GLIA-Net, as imagens de angiografia por tomografia compu-
tadorizada passavam por uma etapa de normalizagao antes de serem usadas pela rede
neural. A normalizagao consistia no mapeamento de um intervalo de valores em unidades
Hounsfield para um intervalo entre 0 e 1. As intensidades de 0 a 100 eram mapeadas
no primeiro canal, as intensidades de 100 a 200 eram mapeadas no segundo canal e as

intensidades de 200 a 800 eram mapeadas no terceiro canal. Este mapeamento é possivel
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Tabela 9 — Volume em voxels de cada classe nos 113 anotagoes com espacamento original
disponiveis para treinamento e validagao no desafio ADAM.

Classe 0 1 2
Volume total 5135773829 59743 3394588
Volume relativo (%)  99,93279  0,00116 0,06605

Fonte: Autor.

Nota: O significado das classes é explicado no Quadro 6.

para uma imagem de ATC, pois a intensidade dos voxels desta modalidade estéa associada
ao material que o voxel representa, a temperatura da regiao e a voltagem do equipamento
de raio X, como apresentado na revisao bibliografica. Enquanto para uma imagem de an-
giografia por ressonancia magnética do tipo TOF, a intensidade dos voxels nao depende
s6 do material, da temperatura e da configuracao do equipamento, o movimento interfere

no resultado, vide revisao bibliografica.

Tabela 10 — Estatisticas referentes a intensidade dos voxels de valor minimo, mediano e
méximo das 113 imagens de TOF angio-RM disponiveis para treinamento e
validacao no desafio ADAM.

Estatisticas Voxel minimo Voxel mediano Voxel maximo

Média 0,0 118,3 1647.6
Desvio-padrao 0,0 138,4 1259,8
Minimo 0,0 3,0 128.8
25% 0,0 14,1 301,6

50% 0,0 66,4 1905,7

75% 0,0 155,7 2612,2
Maximo 0,0 620,7 6119,1

Fonte: Autor.

Observando a Tabela 10, nota-se que exceto que as imagens de TOF angio-RM
possuem sempre valor minimo igual a zero, mas os valores méaximo e mediano nao tém
um limite bem definido. As imagens desta modalidade variam a ponto da mediana de
uma imagem ser mais intensa do que o maximo de outra imagem. Como os aneurismas
nao tratados nem rompidos possuem um volume com ordens de grandeza menores que
o tamanho da imagem, estas variagoes de valores méximos e medianos nao relacionadas
aos aneurismas nos exames, por isso ¢ de interesse reduzir estas variagoes de modo a
evitar correlacoes nao representativas. Como apresentado na revisao bibliografica, as
solugoes mais bem classificadas empregam uma normalizagao Z, que consiste em subtrair
da imagem a sua média e dividir esta diferenga pelo desvio-padrao da imagem. Este

trabalho também usa esta normalizacao.
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3.2 Treinamento do modelo GLIA-Net no banco de dados ADAM

3.2.1 Transferéncia de aprendizado

Como apresentado na revisao do estado da arte, a transferéncia de aprendizado

pode agilizar a convergéncia da performance de um modelo durante o treinamento.

No trabalho original, a rede neural profunda GLIA-Net foi treinada para segmentar
aneurismas em imagens de angiografia por tomografia computadorizada. Enquanto neste
trabalho, deseja-se treinar a mesma a rede GLIA-Net para segmentar aneurismas em

imagens de ressonancia magnética.

Assim, podemos formular uma transferéncia de dados onde temos um dominio
fonte formado por imagens de ATC e suas anotagoes, um dominio alvo formado por ima-
gens de RM e suas anotagoes e uma tarefa composta pelo espago de anotagoes classificando
voxels em aneurismas ou em regioes normais e pela funcao que realiza a segmentacao se-
mantica de uma imagem tomografica da cabega em regidoes com aneurismas e normais.

Desta forma, temos tarefas fonte e alvo idénticas e dominios fonte e alvo distintos.

A rede neural GLIA-Net emprega fungoes de ativagao nao lineares, como sigmoide
(Equagao 2.3), softmax (Equagao 2.7) e Leaky ReLU (Equacao 2.2), e apresenta um com-
portamento nao linear, por conseguinte a transferéncia de aprendizado é uma transferéncia

de aprendizado profundo.

Das quatro possibilidades de aplicacao da transferéncia de aprendizado profundo
descritas na literatura, opta-se neste trabalho por empregar a transferéncia de aprendizado
profundo baseada em rede. No projeto GLIA-Net original, estda disponivel uma rede ja
treinada no banco de dados de exames de ATC disponivel através do link <https://github.
com/MeteorsHub /GLIA-Net /releases/download /v1.0/checkpoint-0245700.pt>.

Por conta das normalizagoes diferentes aplicadas as imagens de ATC e TOF angio-
RM, as entradas global inputs e local inputs no caso de cada modalidade possuem um
nimero diferente de canais. Isto implica que o niimero de parametros dos primeiros filtros
convolucionais possuem um nimero de parametros diferentes. Por esta razao, todos os
parametros da nova rede neural, exceto aqueles cuja entrada é a entrada da rede, sao
inicializados com os parametros correspondentes da rede neural treinada com imagens
de ATC para segmentar imagens de TOF angio-RM. De forma mais explicita, apenas as
duas primeiras convolucgoes tridimensionais com kernels de tamanho unitério do primeiro
encoder do componente feature generator e do primeiro encoder da rede local segmentation

network nao recebem os parametros do modelo ja treinado.


https://github.com/MeteorsHub/GLIA-Net/releases/download/v1.0/checkpoint-0245700.pt
https://github.com/MeteorsHub/GLIA-Net/releases/download/v1.0/checkpoint-0245700.pt
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3.2.2 Protocolo de treinamento

O desenvolvimento de uma solugao de aprendizado supervisionado exige geral-
mente trés banco de dados: de treino, de validagao e de teste. O banco de dados de treino
é usado para adaptar os parametros da solucao de forma a minimizar uma funcao de custo
que deve estar associada & performance do algoritmo. J& o banco de dados de validacao é
usado para avaliar ao longo do treinamento se os resultados obtidos sao reproduzidos em
dados diferentes dos empregados no treinamento. Finalmente, o banco de dados de teste
é empregado para verificar a performance do algoritmo para dados diferentes dos usados

no treinamento da rede.

Neste contexto, a adaptacao do modelo GLIA-Net para a tarefa de segmentar
aneurismas cerebrais em imagens de TOF angio-RM emprega trés bancos de dados sem
intersecgao: os bancos de dados de treino, de validagao e de teste. O banco de dados
de treino é composto por 90 imagens de TOF angio-RM anotadas e selecionadas ale-
atoriamente do banco de dados disponibilizado do desafio ADAM. O banco de dados
de validagao é composto pelas 23 imagens de TOF angio-RM anotadas que nao foram
selecionadas do banco de dados disponibilizado do desafio ADAM para o treinamento.
O banco de dados de teste do desafio é composto por 140 imagens de TOF angio-RM
anotadas do banco de dados secreto de teste do desafio ADAM. Apesar do desafio dis-
ponibilizar o banco de dados secreto para uma comparacao de resultados mais confiavel,
neste trabalho, assumi-se o banco de dados de validagao como banco de dados de teste.
Em particular, a composicao dos bancos de dados disponibilizados aos participantes é

mostrada nos Quadros 7 e 8.

Quadro 7: Composic¢ao do banco de dados de treino.

10001.nii.gz

10002.nii.gz

10004 .nii.gz

10006.nii.gz

10007 .nii.gz

10008.nii.gz

10009.nii.gz

10011.nil.gz

10013.nii.gz

10014.nii.gz

10015.nii.gz

10016.nii.gz

10017 .nii.gz

10018.nii.gz

10019.nii.gz

10020.nii.gz

10023.nii.gz

10024 .nii.gz

10025.nii.gz

10026.nii.gz

10027 .nii.gz

10028.nii.gz

10030.nii.gz

10031.nii.gz

10032.nii.gz

10033.nii.gz

10034 .nii.gz

10036.nii.gz

10037 .nii.gz

10038.nii.gz

10039.nii.gz

10041 nii.gz

10042.nii.gz

10043.nii.gz

10044F .nii.gz

10045B nii.gz

10045F .nii.gz

10046B .nii.gz

10046F .nii.gz

10047B.nii.gz

10047F .nii.gz

10048B .nii.gz

10048F .nii.gz

10049B .nii.gz

10049F .nii.gz

10050B .nii.gz

10050F .nii.gz

10051B.nii.gz

10051F .nii.gz

10052B.nii.gz

10053B.nii.gz

10053F .nii.gz

10054B .nii.gz

10054F .nii.gz

10055B.nii.gz

10055F .nii.gz

10056B.nii.gz

10056F .nii.gz

10057B.nii.gz

10057F nil.gz

10058B.nii.gz

10059B.nii.gz

10059F .nii.gz

10060B.nii.gz

10060F .nii.gz

10061B.nii.gz

10061F .nii.gz

10062F .nii.gz

10063B.nii.gz

10064B.nii.gz

10064F .nii.gz

100658 .nii.gz

10065F .nii.gz

10067B.nii.gz

10067F nii.gz

10068B .nii.gz

10068F .nii.gz

10069B .nii.gz

10070F .nii.gz

10072B.nii.gz

10072F .nii.gz

10073B .nii.gz

10073F .nii.gz

10074B nii.gz

10075B.nii.gz

10076B.nii.gz

10076F .nii.gz

10077B nii.gz

10078B.nii.gz

10078F .nii.gz
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Quadro 8: Composi¢ao do banco de dados de validagao.

10003.nii.gz

10005.nii.gz

10010.nii.gz

10012.nii.gz

10021 nii.gz

10022.nil.gz

10029.nii.gz

10035.nii.gz

10040.nii.gz

10044B nii.gz

10052F .nii.gz

10058F .nii.gz

10062B.nii.gz

10063F .nii.gz

10066B.nii.gz

10066F .nii.gz

10069F .nii.gz

10070B.nii.gz

10071B.nii.gz

10071F .nii.gz

10074F .nii.gz

10075F .nii.gz

10077F .nii.gz

O treinamento da rede GLIA-Net é realizado ao longo de épocas. A cada época,
a rede recebe a entrada de cada imagem do banco de dados de treinamento, calcula uma
saida, calcula a funcao de custo em funcao desta saida e, por meio de um algoritmo
de retro-propagacao, os parametros da rede neural sao atualizados de forma a tentar
reduzir a funcdo de custo. A funcao de custo empregada no treinamento é apresentada
na subsegao 2.2.2.1.1 e os pesos de cada nao termo nao foram modificados em relagao ao
trabalho anterior, onde wgiobat = 0, 1, Wrocar = 1,0, Wpice = 0,2, Weross = 0,8, Ypice = 0,3

€ YCross = 07 3.

Quanto ao algoritmo de retro-propagacao, utiliza-se o otimizador Adam (KINGMA;
BA, 2015) com uma taxa de aprendizado inicial igual a 0,000058398, a taxa de aprendi-
zado final usada no treinamento do modelo pré-treinado para modalidade ATC. A taxa
de aprendizado é reduzida em 5% a cada 10000 passos de treinamento da rede, onde um
passo de treinamento corresponde a uma etapa de adaptacao dos parametros da rede
neural por meio do algoritmo de retro-propagacao, da mesma forma que o trabalho ori-
ginal GLIA-Net desenvolvido para a modalidade ATC. Esta atualizacao dos parametros
da rede ocorre apoés o modelo ser aplicado a trés blocos (patches) de imagens, ou seja, o
tamanho do lote (batch size) é igual a trés, andlogo ao trabalho GLIA-Net original para
a modalidade ATC.

A atualizacao dos parametros do modelo nao é aplicada a todas as camadas da
rede neural, atualiza-se apenas os componentes global localizer, localizer loss, global posi-
tioning adaptors, output conv e os decoders da rede local segmentation network, ou seja,
apenas os encoders da rede local segmentation network estao fixos. Na literatura, estas
camadas cujos parametros estao fixados, mas poderiam ser adaptados ao longo do treina-
mento sao consideradas de camadas congeladas (frozen layers). Este método de treinar o
modelo foi baseado no artigo (KARIMI; WARFIELD; GHOLIPOUR, 2020), mencionado
na se¢ao 2.3, em que mostra-se que o congelamento dos encoders e o treinamento apenas
dos decoders de uma rede do tipo 3D U-Net pode obter resultados equiparédveis ao treino

da rede completa.

Como ja mencionado na subsegao 2.2.2.1, o modelo GLIA-Net é aplicado a cada
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bloco (patch) da imagem. No treinamento e na validagao, para cada imagem completa do
banco de dados o nimero de blocos selecionados para treinar/validar o modelo é igual a
duas vezes a razao entre o tamanho da imagem completa e o tamanho do bloco (patch).
Para lidar com o desbalanceamento de dados exposto na Tabela 9, metade destes blocos é
selecionada com aneurismas. Caso nao haja aneurismas intracranianos no exame, apenas
metade dos blocos ¢ selecionada e nenhuma imposicao é imposta para a selecao das regioes.
Este treinamento em patches com balanceamento de dados ja era feito no projeto GLIA-
Net aplicado a imagens de ATC (BO et al., 2021), porém os patches sem aneurismas
eram restritos aqueles cuja média é maior do que 0,05, ou seja, regioes pretas do plano de
fundo de imagens da modalidade ATC. No treinamento desenvolvido neste trabalho para

a modalidade TOF angio-RM, esta restricao nao é imposta.

A selecao dos blocos é aleatoria, porém na etapa de validagao a semente do gerador
de nimeros aleatorios é fixada para garantir que a avaliacao do algoritmo em cada época
seja aplicada nas mesmas entradas. O tamanho dos blocos é fixado em 96 x 96 x 96, o
mesmo do projeto GLIA-Net para a modalidade ATC e para que um bloco seja considerado
com aneurisma, seu centro deve estar a uma distancia maxima de 28 voxels em cada

direcao do centro de um aneurisma.

O pré-processamento dos dados é composto pelas etapas sequenciais: mudanca
de espacamento, selecao de patches, aumento de dados e normalizacao. A mudanca de
espagamento ¢ realizada conforme explicado na segao 3.1, todas as imagens sao redimensi-
onadas de forma a apresentarem o espacamento mediano 0,357143 x 0,357143 x 0,500000
mm? (Tabela 7 linha 50%). Para cada exame duas imagens devem ser redimensionadas:
a imagem de entrada de TOF angio-RM e a anotagao desta imagem. Para as imagens de
entrada da rede, que sao continuas no espago, usa-se a interpolagao polinomial do tipo
spline cubica visando preservar a forma da imagem original, enquanto para as anotagoes
associadas, que sao imagens binérias, usa-se a interpolagao de vizinhos mais proximos,
que preserva os valores da anotacao. Com o novo tamanho apds o dimensionamento,
todas as imagens sao pequenas o suficiente para serem armazenadas na memoria RAM
e processadas pela GPU empregada. Contudo, a profundidade de algumas imagens é
inferior a 96 voxels — a profundidade do patch. Visando solucionar este problema, estas
imagens sao completadas artificialmente com o valor de um dos voxels da ponta que faz

contato com a regiao estendida.

A etapa de aumento artificial de dados (data augmentation) consiste em aplicar
transformacoes aos dados de treino que nao afetam as anotagoes ou que as afetam de
maneira conhecida e buscando a simular uma quantidade maior de dados distintos. Em
particular, aplica-se as seguintes transformacgoes: ruido Gaussiano aditivo com meédia e
desvio-padrao iguais a, respectivamente, 0 e 1, correcao gamma aleatéria da imagem ele-

vando os valores dos pixels a um expoente normalmente distribuido com média igual a 1
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e desvio-padrao igual a 0,1, espelhamento aleatério da imagem nos trés planos normais
aos eixos de indexacao da imagem e permutacao dos eixos da imagem. As duas primei-
ras transformacoes aumentam a diversidade da intensidade dos voxels entre cada época,
enquanto as duas ultimas transformagoes aumentam a variedade de poses do paciente na
imagem, e portanto, do aneurisma na imagem. A normalizacao aplicada & entrada é a

normalizagao Z, ja discutida na secao 3.1.

Como discutido na segao 3.1, a classe 2 é ordens de grandeza mais numerosa que
a classe 1, que gostariamos de detectar, e ordens de grandeza inferior & classe 0 e que a
representacao dos voxels da classe 2 como 0 deve ser a estratégia que melhor mitiga a
influéncia desta classe no treinamento do modelo. Por esta razao, o modelo s6 considera

duas classes: 0 e 1, sendo os voxels da classe 2 anotados como membros da classe 0.

Concernindo as métricas de avaliacao do modelo na tarefa, sao considerados dois

cenarios: avaliagao por patches e avaliagao por exames.

No cenario de avaliacao por patches, a avaliacao da mascara de segmentagao é
realizada selecionando apenas patches especificos da imagem de forma a mitigar artifici-
almente o desbalanceamento das classes. Esta avaliagao ocorre durante o treinamento da
rede no banco de dados de treino e no banco de dados de validacao e as métricas usadas
sao as mesmas empregadas no trabalho original GLIA-Net (BO et al., 2021): precisao
média (AP), AUC (ROC), coeficiente de similaridade de Sorensen-Dice (DSC), precisao,
sensibilidade (recall), distancia de Hausdorff modificada para considerar o percentil 95 das
menores distancias (HD95) no nivel dos voxels e precisao por alvo e sensibilidade por alvo
no nivel dos conjuntos conectados de voxels anotados como aneurismas. Assim como em
no trabalho original GLIA-Net aplicado na modalidade ATC, as métricas de performance
do algoritmo em uma época é calculada em funcao do ntumero de , verdadeiro-positivo,
verdadeiro-negativos, falso-positivos e falso-negativos total considerando todos os patches

empregados no treinamento ou na validagao.

3.3 Segmentacdo de exames de TOF angio-RM

Na avaliagao por exames, as imagens completas sao segmentadas e comparadas as
respectivas anotagoes. Esta avaliagao é mais fiel & aplicagao concebida da solugao GLIA-
Net, pois os patches sao selecionados de forma a cobrir todas as regides do exame e o
balanceamento das classes é preservado. Esta avaliacao ocorre durante a inferéncia de
exames que se deseja detectar/segmentar aneurismas em imagens e as métricas usadas no
desafio ADAM sao empregadas, incluindo o coeficiente de similaridade de Sorensen-Dice
(DSC), a distancia de Hausdorff modificada para considerar o percentil 95 das menores
distancias (HD95), a similaridade volumétrica (VS) no nivel dos voxels e a sensibilidade e o

namero de falso-positivos (FP) no nivel dos conjuntos conectados de voxels anotados como
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aneurismas. A implementacao destas métricas é baseada nos exemplos ja desenvolvidos no
repositorio de avaliagdo do desafio ADAM, disponivel em <https://github.com /hjkuijf/
ADAMchallenge> (KUILJF, 2020). Diferentemente da avaliacdo por patches, as métricas
do algoritmo em um banco de dados sao as médias das métricas calculadas em cada exame

individualmente do banco de dados em questao.

O processo de inferéncia das regides com aneurismas dos exames de TOF angio-
RM funciona da seguinte maneira: redimensiona-se as imagens originais completas de
forma que estas apresentem o espagamento 0,357143 x 0,357143 x 0,500000 — o mesmo
usado no treinamento da rede —, seleciona-se os patches dos exames de imagem cobrindo
a imagem inteira, aplica-se a rede neural GLIA-Net a cada patch gerando uma méscara
de segmentagao para cada patch, compoem-se um mascara de segmentacao da imagem
completa a partir das méascaras geradas a partir de cada patch e redimensiona-se esta
mascara de segmentacao da imagem completa resituindo o espacamento da imagem de
TOF angio-RM original.

Na etapa de selecao dos patches, patches de tamanho 96 x 96 x 96 sao sobrepostos
de tal forma que dois patches lado a lado possuam 48 superficies 96 x 96 de voxels, ou
seja, dois patches lado a lado possuem metade dos seus voxels compartilhados entre si.
Se um patch nao estid na borda da imagem completa, em cada direcao este patch esta
sobreposto a dois outros patches compartilhando 48 superficies 96 x 96 de cada lado, e
portanto, todos os seus voxels sao compartilhados com outros patches. Assim, apenas os

cubos 48 x 48 x 48 dos cantos da imagem sao representados por apenas um patch.

Considerando que cada patch passa pela rede neural gerando uma maéscara de
segmentacao na mesma posi¢ao. levanta-se a questao de como unificar a informagao de
todos os patches sobrepostos. No projeto original GLIA-Net voltado para a modalidade
ATC, a unificacao das mascaras dos patches sobrepostos é realizada pela média aritmética
simples, a intensidade final de um voxel é a média aritmética simples da intensidade de
todas as mascaras que ocupam aquele voxel. Entretanto, esta solucao é problemética no
sentido que os patches possuem o mesmo peso na geracao da intensidade de um voxel
independentemente da posicao do voxel nos patches. Lembrando que no treinamento a
selecao dos patches é realizada buscando minizar o desbalanceamento das classes e que
para um patch ser considerado com aneurisma este deve conter um centro de aneurisma
a uma distancia menor ou igual a 28 voxels em cada dire¢ao, conclui-se que aneurismas
cujo centro esta na borda de espessura 20 voxels de um patch nao foram representados
no treinamento da rede neural, e logo a performance do algoritmo nao ¢ garantida pelo

processo de treinamento.

Neste trabalho, propoe-se o uso de um tensor de pesos linear para realizar a média

ponderada dos patches, onde o peso de um voxel é a distancia de Manhattan (Equagao 3.1)


https://github.com/hjkuijf/ADAMchallenge
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deste voxel em relagao ao voxel do canto mais proximo do patch acrescentado de um.

=N
dp,q) = |lp—alls =D Ipi — ail (3.1)
=1

onde p e ¢ sao dois pontos de IV coordenadas e p; e ¢; sao suas i-ésimas coordenadas.
Para um patch de tamanho 96 x 96 x 96, este os pesos deste tensor aumentam linearmente
do canto para o centro do patch, sendo os valores minimo e maximo do tensor iguais a 1

nos cantos e 142 nos voxels centrais.

3.3.1 Determinacdo do limiar de segmentacdo

Todas as métricas usadas para avaliacao de um algoritmo de segmentacao e de
deteccao no desafio ADAM, coeficiente de similaridade de Sorensen-Dice, distancia de
Hausdorff considerando o percentil 95 das menores distancias, coeficiente de similaridade
volumétrica, sensibilidade e quantidade de falso-positivos por caso, variam com o limiar de
segmentagao. Assim, é necesséario fixar um limiar de segmentacao para avaliar o modelo

em um banco de dados.

Dentre as métricas usadas, apenas o coeficiente de similaridade de Sorensen-Dice, a
distancia de Hausdorff modificada e o coeficiente de similaridade volumétrica consideram
tanto os erros falso-positivos quanto os erros falso-negativos. Logo, é possivel otimizar o
modelo usando apenas uma dessas métricas. Como ja explicado na subsecao 2.2.1.2.3, uma
similaridade volumétrica melhor possivel, igual a 1, nao implica necessariamente em uma
segmentacao boa. Por esta razao, esta métrica nao é usada para a determinagao do limiar.
Restam apenas duas métricas: a distancia de Hausdorff modificada e o coeficiente de
similaridade de Sorensen-Dice. Neste trabalho, o coeficiente de Sorensen-Dice é empregado

para a determinacao do limiar de segmentagao.

Para isso, itera-se no banco de dados de validagao varrendo a imagem completa
sem distorcer o balanceamento de classes e variando o limiar de segmentagao. Sao esco-
lhidos 100 limiares com passo constante 1/101 entre 0 e 1. Para cada limiar e para cada
exame, uma mascara de segmentacao binéaria é gerada a partir da méascara de segmenta-
¢ao prevista pelo modelo GLIA-Net contendo a probabilidade de cada voxel pertencer as
classes 0 (normal) e 1 (aneurisma néo tratado nem rompido). Em seguida, esta mascara
binaria é comparada com a méscara de segmentacao anotada e as métricas coeficiente de
Sorensen-Dice, distancia de Hausdorff modificada, similaridade volumétrica, sensibilidade
e quantidade de falso-positivos por caso sao calculadas. Para cada limiar, este processo é
realizado em todas as instancias do banco de dados de validacao e as métricas para cada
limiar sao as médias aritmética de cada métrica calculada para cada exame. O limiar de
segmentagao escolhido é aquele que maximiza a média do coeficiente de Sorensen-Dice em

todas as imagens do banco de dados de validagao.
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4 Resultados e Discussio

4.1 Treinamento de GLIA-Net no banco de dados ADAM

41.1 Func3o de custo

A funcao de custo da rede GLIA-Net no banco de dados de validacao consta nas
Figuras 22, 23 e 24, enquanto a funcao de custo da rede GLIA-Net no banco de dados de

treinamento consta nas Figuras 25, 26 e 27.

Figura 22 — Funcao de custo total no banco de dados de validacao do desafio ADAM ao
longo do treinamento da rede GLIA-Net.

eval_loss_epoch_wise/total_loss
tag: eval_loss_epoch_wise/total_loss

250k 260k 270k 280k 290k 300k 310k 320k 330k 340k 350k 360k 370k

Fonte: Autor.



Capitulo 4. Resultados e Discussdo 67

Figura 23 — Funcao de custo local no banco de dados de validagao do desafio ADAM ao
longo do treinamento da rede GLIA-Net.

eval_loss_epoch_wise/local_loss
tag: eval_loss_epoch_wise/local_loss

0.157
0.157

0.156

0.155

0.155

0.154

250k 260k 270k 280k 290k 300k 310k 320k 330k 340k 350k 360k 370k

Fonte: Autor.

Figura 24 — Funcao de custo global no banco de dados de validagao do desafio ADAM ao
longo do treinamento da rede GLIA-Net.

eval_loss_epoch_wise/global_loss
tag: eval_loss_epoch_wise/global_loss

0.044
0.042
0.04 +
0.038
0.036
0.034 -
0.032
003

0.028

0.026 -

250k 260k 270k 280k 290k 300k 310k 320k 330k 340k 350k 360k 370k

Fonte: Autor.
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Figura 25 — Funcao de custo total no banco de dados de treinamento do desafio ADAM
ao longo do treinamento da rede GLIA-Net.

train_loss_epoch_wise/total_loss
tag: train_loss_epoch_wise/total_loss

0.205

0.195

0.185

018

250k 260k 270k 280k 290k 300k 310k 320k 330k 340k 350k 360k 370k

Fonte: Autor.

Figura 26 — Fungao de custo local no banco de dados de treinamento do desafio ADAM
ao longo do treinamento da rede GLIA-Net.

train_loss_epoch_wise/local_loss
tag: train_loss_epoch_wise/local_loss
0.161
0.16
0.159
0.158
0157
0.156
0155
0.154
0.153
0.152

0.151

250k 260k 270k 280k 290k 300k 310k 320k 330k 340k 350k 360k 370k

Fonte: Autor.
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Figura 27 — Funcao de custo global no banco de dados de treinamento do desafio ADAM
ao longo do treinamento da rede GLIA-Net.

train_loss_epoch_wise/global_loss
tag: train_loss_epoch_wise/global_loss

0.046
0.044
0.042

0.04
0.038
0.036
0.034

0.032

0028
0026
0024

0.022
250k 260k 270k 280k 290k 300k 310k 320k 330k 340k 350k 360k 370k

Fonte: Autor.

Com base nas Figuras 25 e 22, nota-se que a funcao de custo total do modelo
GLIA-Net reduziu ao longo do treinamento tanto no banco de dados de treino como de
validacao, mas nos ultimos 30 passos de treinamento a funcao de custo total diminui ape-
nas no banco de dados de treino. Este cenario indica que ocorreu overfitting nos tltimos
passos de treinamento, ou seja, que o treinamento otimizou os parametros do modelo
visando aumentar o seu desempenho no banco de dados de treino usando caracteristicas
particulares dos dados de treinamento, que nao sao generalizdveis para outros bancos de

dados da mesma tarefa, como o banco de dados de validagao.

Analisando as Figuras 24, 23, 27 e 26, que contém os componentes local e global da
funcao de custo, nota-se que apenas a funcao de custo global sofre overfitting. A funcao de
custo local continua a diminuir no banco de dados de validacao ao longo do treinamento.
Relembrando que a funcao de custo global é calculada a partir da saida global localizer
logits da rede neural, enquanto a fungao de custo local é calculada a partir da saida net da
rede neural e que a méscara de segmentacao e as métricas de segmentacao e de deteccao
sao calculadas usando a saida net da rede neural, nao podemos afirmar que a continuacao
do treinamento da rede GLIA-Net induza o modelo aprender caracteristicas especificas
do banco de dados de treino e nao generalizdveis no banco de dados de validagao, mas
sim que a continuacao do treinamento pode induzir a uma melhora na performance do
algoritmo em ambos os bancos de dados. Ainda sim, overfitting na funcao de custo global
pode em épocas futuras atrapalhar a performance do modelo nas tarefas de segmentacao
e de deteccao ja que os parametros da camada global localizer sao afetados por ambas

componentes da funcao de custo total.

Uma alternativa para mitigar o problema de overfitting da rede global localiza-
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tion network & adicionar e intensificar os processos de aumento articial de dados (data
augmentation). Em particular, como esta rede utiliza apenas a imagem completa dimensi-
onalmente reduzida (global inputs) e a posi¢ao do patch nesta imagem (patch location box),
a adicao de uma rotacao com um angulo aleatério pode reduzir a correlacao particular de

orientacao do banco de dados de treino.

Figura 28 — Taxa de aprendizado ao longo do treinamento do modelo GLIA-Net no desafio
ADAM.
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Fonte: Autor.

E perceptivel nas Figuras de 22 a 25 uma alta variabilidade nas curvas de funcao
de custo ao longo do treinamento. Uma possivel justificativa para este fendmeno é o
emprego de uma taxa de aprendizado inadequada. O treinamento do modelo GLIA-
Net no artigo (BO et al., 2021) comegou com uma taxa de aprendizado igual a 2 1074,
enquanto a taxa de aprendizado inicial no treinamento de imagens de TOF angio-RM
comecou em 5,8398 10~°. E possivel que uma reducdo da taxa de aprendizado deste
nivel seja inadequada mesmo usando transferéncia de aprendizado. Testes exploratorios

adicionais sao necessarios para verificar esta hipotese.

4.1.2 Meétricas

As métricas da rede GLIA-Net no banco de dados de validagao constam nas Figuras
29, 30, 31, 32, 33, 34, 35 e 36, enquanto as métricas da rede GLIA-Net no banco de dados
de treinamento consta nas Figuras 37, 38, 39, 40, 41, 42, 43 e 44.
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Figura 29 — Métrica AP (precisdo média) obtida no banco de dados de validagao do desafio
ADAM ao longo do treinamento da rede GLIA-Net.
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Fonte: Autor.

Figura 30 — Métrica AUC (4rea embaixo da curva ROC) obtida no banco de dados de
validagao do desafio ADAM ao longo do treinamento da rede GLIA-Net.
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Fonte: Autor.
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Figura 31 — Métrica DSC (coeficiente de similaridade de Sorensen-Dice) obtida no banco
de dados de validagao do desafio ADAM ao longo do treinamento da rede
GLIA-Net.

eval_metric_epoch_wise/dsc
tag: eval_metric_epoch_wise/dsc

04|
035
03

025

250k 260k 270k 280k 290k 300k 3710k 320k 330k 340k 350k 360k 370k
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Figura 32 — Métrica HD95 (distancia de Hausdorff considerando o percentil 95) obtida no
banco de dados de validacao do desafio ADAM ao longo do treinamento da
rede GLIA-Net.
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Figura 33 — Métrica precisao por voxel obtida no banco de dados de validagao do desafio
ADAM ao longo do treinamento da rede GLIA-Net.
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Figura 34 — Métrica sensibilidade por voxel obtida no banco de dados de validacao do
desafio ADAM ao longo do treinamento da rede GLIA-Net.
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Figura 35 — Métrica precisao por exame obtida no banco de dados de validagao do desafio
ADAM ao longo do treinamento da rede GLIA-Net.
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Figura 36 — Métrica sensibilidade por exame obtida no banco de dados de validagao do
desafio ADAM ao longo do treinamento da rede GLIA-Net.
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Figura 37 — Métrica AP (precisdo média) obtida no banco de dados de treinamento do
desafio ADAM ao longo do treinamento da rede GLIA-Net.
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Figura 38 — Métrica AUC (4rea embaixo da curva ROC) obtida no banco de dados de
treinamento do desafio ADAM ao longo do treinamento da rede GLIA-Net.
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Figura 39 — Métrica DSC (coeficiente de similaridade de Sorensen-Dice) obtida no banco
de dados de treinamento do desafio ADAM ao longo do treinamento da rede
GLIA-Net.
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Figura 40 — Métrica HD95 (distancia de Hausdorff considerando o percentil 95) obtida no
banco de dados de treinamento do desafio ADAM ao longo do treinamento
da rede GLIA-Net.
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Figura 41 — Métrica precisao por voxel obtida no banco de dados de treinamento do de-
safio ADAM ao longo do treinamento da rede GLIA-Net.
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Figura 42 — Métrica sensibilidade por voxel obtida no banco de dados de treinamento do
desafio ADAM ao longo do treinamento da rede GLIA-Net.
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Figura 43 — Métrica precisao por exame obtida no banco de dados de treinamento do
desafio ADAM ao longo do treinamento da rede GLIA-Net.
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Figura 44 — Métrica sensibilidade por exame obtida no banco de dados de treinamento
do desafio ADAM ao longo do treinamento da rede GLIA-Net.
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Como ja mencionado na subsegao 2.2.1, a métrica precisdo média (AP) ¢ a mais
representativa da performance do algoritmo, pois considera os erros falso-positivos e falso-
negativos comparando com a classe menos numerosa (a positiva ou 1) e nao depende do
limiar de segmentacdo. A mesma subsecao explica que o valor esperado de AP para
uma classificador no qual a previsao nao depende da entrada vale a quantidade de voxels

positivos (aneurismas nao tratados nem rompidos) dividida pela quantidade total de vo-
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xels no banco de dados. Abaixo esta precisao média é calculada para o banco de dados
disponibilizado no desafio ADAM:

59743
5135773829 + 59743 + 3394588

APpuse ApAM = =1,162 107° (4.1)

Logo, analisando as Figuras 29 e 37, que expressam a evolugao da métrica AP
ao longo do treinamento, observa-se que o desempenho do algoritmo é aparentemente
ordens de grandeza superior que o desempenho esperado de um algoritmo de classificacao
aleatorio. Um fator que dificulta esta comparacao é que o calculo feito na Equagao 4.1 con-
sidera as imagens inteiras sem mudanga de espagamento nem rebalanceamento de dados,
enquanto a métrica AP das Figuras 29 e 37 consideram o banco de dados selecionando
prioritariamente patches com aneurismas e exames redimensionados para padronizar o
espagamento. Ainda sim, a quantidade maxima de patches observada em um exame re-
dimensionado foi de 363 com sobreposicao, entao estas diferencas de pré-processamento
sozinhas nao sao capazes de explicar a diferenca de performance entre o algoritmo treinado
e um algoritmo aleatorio, implicando que o modelo treinado apresenta um desempenho

melhor que um algoritmo aleatorio.

Analogamente podemos comparar a performance do modelo GLIA-Net treinado
com um classificador aleatoério usando a métrica AUC. Nas Figuras 30 e 38, que exibem
a evolugao da métrica AUC ao longo do treinamento nos bancos de dados de treino e de
teste, esta métrica é consistentemente superior a 0,95 nas tltimos passos de treinamento,
enquanto o AUC esperado de um classificador independente das entradas vale 0,5. Assim,
a performance do modelo é aparentemente superior a um classificador aleatério segundo a
métrica AUC. Nota-se que esta pouco varia ao longo do treinamento e estéd na maior parte
do treinamento préxima do seu melhor valor possivel (1), enquanto as outras métricas
variam relativamente bastante e estao mais longe do seu melhor valor. Estes resultados
confirmam a falta de expressividade da métrica AUC para bancos de dados com classes

desbalanceadas, explicada na subsecao 2.2.1.

Analisando as métricas anteriores AP e AUC, independentes do limiar de segmen-
tagao, nota-se que ambas melhoram ao longo do treinamento como previsto pela analise
da funcao de custo local. Usando como critério exclusivamente a métrica AP, o modelo
GLIA-Net performa melhor no banco de dados de validagao do desafio ADAM ao longo
do treinamento no final da tltima época do treinamento no passo de treinamento 370001.

As métricas obtidas no banco de dados de validagao estao mostradas na Tabela 11.
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Tabela 11 — Métricas do melhor resultado da solu¢ao GLIA-Net no banco de dados de
validacao do desafio ADAM ao longo do treinamento.

AP AUC DSC HDY95 mm| PV RV PT RT
0,3670 10,9962 0,4243 9,7767 0,3322 0,5869 0,2934 0,5723

Nota: AP, AUC, DSC, HD95, PV, RV, PT e RT representam, respectivamente, a precisao média na
curva precisao-revocagao, area abaixo da curva ROC, o coeficiente de similaridade de Sorensen-Dice,
distancia de Hausdorff adaptada para 95% das distancias, precisao no nivel dos voxels, sensibilidade
no nivel dos voxels, precisao no nivel dos conglomerados de voxels conexos e sensibilidade no nivel
dos conglomerados de voxels conexos.

Nota: O melhor resultado é o resultado do modelo GLIA-Net na época em que a métrica AP calculada
no banco de dados de validagao é a mais elevada durante todo treinamento.

4.2 Segmentacdo de exames de TOF angio-RM

Os resultados apresentados na segao 4.1 foram obtidos durante o treinamento, e
portanto, os patches foram selecionados de forma a mitigar o desbalanceamento de classes.
E necessario analisar os resultados em imagens completas ja que na pratica clinica os dados
estao desbalanceados. Nesta subsecao todos os resultados sao calculados sem modificar o

balanceamento dos dados e percorrendo com patches todas as partes das imagens.

Seguindo os passos descritos na se¢ao 3.3, as métricas de segmentacao e de detecgao
em func¢ao do limiar de segmentacao sao mostradas nas Figuras 45 e 46. Maximizando a
métrica DSC (coeficiente de similaridade de Sorensen-Dice), obtemos um limiar igual a
0,624 e as métricas da Tabela 12.

Tabela 12 — Métricas do modelo GLIA-Net no passo 370001 no banco de dados de vali-
dacao do desafio ADAM considerando a varredura completa da imagem dos
exames e um peso maior aos voxels centrais na composicao da maéascara de
segmentacao a partir dos patches da imagem e escolhendo o limiar de seg-
mentacao que maximiza a métrica DSC.

Limiar FP/exame RT DSC HD95 [mm| VS
0,624 82 0447 0,110  47.006 0,406

Nota: DSC, HD95, VS, RT e FP/exame representam, respectivamente, o coeficiente de similaridade
de Sorensen-Dice, distancia de Hausdorfl adaptada para 95% das distancias, a similaridade volu-
métrica, sensibilidade no nivel dos conglomerados de voxels conexos e numero de falso-positivos
por exame no nivel dos conglomerados de voxels conexos.

Observe que os resultados apresentados na Tabela 12 sao equiparaveis aos resul-
tados dos ultimos colocados no desafio ADAM (Tabela 2) e s@o inferiores aos resultados
do modelo GLIA-Net treinado em imagens de ATC (Tabela 3). As razoes para estas
diferengas sao que o modelo ainda esta treinando, performances elevadas exigem nao s6

redes neurais do estado da arte como também da adaptacao do configuragdes dos hiper-
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parametros do modelo e do fluxo de dados ao banco de dados especifico da tarefa, como
descrito em (ISENSEE et al., 2019) e na subsegao 2.2.2. Além disso, a presenga de aneu-
rismas cerebrais tratados ou rompidos considerados como regidoes normais pode aumentar
a dificuldade do desafio em relacao ao treinamento da rede na modalidade ATC. Outra
possibilidade é que o congelamento das camadas dos encoders e a inicializacao aleato-
ria do primeiro encoder tenha adicionado um ruido na rede reduzido a capacidade de

aprendizado do modelo.

Figura 45 — Métricas de segmentacao do modelo GLIA-Net no passo 370001 para dife-
rentes valores de limiar de segmentagao calculadas no banco de dados de
validacao do desafio ADAM dando um peso maior aos voxels centrais na
composi¢ao da méscara de segmentagao a partir dos patches da imagem.
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Fonte: Autor.

Nota: DSC, HD95 e VS representam, respectivamente, o coeficiente de similaridade de Sorensen-Dice,
distancia de Hausdorfl adaptada para 95% das distancias e a similaridade volumétrica.



Capitulo 4. Resultados e Discussdo 82

Figura 46 — Métricas de deteccao do modelo GLIA-Net no passo 370001 para diferentes
valores de limiar de segmentagao calculadas no banco de dados de validacao
do desafio ADAM dando um peso maior aos voxels centrais na composi¢ao
da mascara de segmentacao a partir dos patches da imagem.

Métricas por alvo —— Sensibilidade
1.0 —e— #FP/caso
0.9 - - 120
" - 100
0.7 4
D 0.6 fosseed 1 - 80
S 2
= ©
5 0.5 . %
c o
@ L
$ 0.4 4
- 40
0.3 1 1
0.2 1 o
0.1
seel 0
0.0 T T T T T T . .

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Limiar

Fonte: Autor.

Nota: FP /caso representa o numero de falso-positivos por exame no nivel dos conglomerados de voxels
€onexos.

Na Tabela 13 e nas Figuras 47 e 48, um processo analogo a geracao da Tabela 12
e as Figuras 45 e 46 é realizado. A tunica diferenca é que nas primeiras imagens e e
na primeira tabela apresentada a composicao da mascara de segmentacao considera um
tensor de pesos para os patches que varia linearmente com a posicao do voxel no patch e
que se concentra no centro do patch enquanto nas imagens posteriores e na tabela posterior
a composicao da méscara de segmentacao considera um tensor de pesos uniforme, como
no projeto GLIA-Net original (BO et al., 2021).
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Tabela 13 — Métricas do modelo GLIA-Net no passo 370001 no banco de dados de vali-
dacao do desafio ADAM considerando a varredura completa da imagem dos
exames e um peso constante para todos os voxels na composicao da méscara
de segmentacao a partir dos patches da imagem e escolhendo o limiar de
segmentacao que maximiza a métrica DSC.

Limiar DSC HD95 mm| VS RT FP/exame
0,366 0,098 60,906 0,390 0,605 19,7

Nota: DSC, HD95, VS, RT e FP/exame representam, respectivamente, o coeficiente de similaridade
de Sorensen-Dice, distancia de Hausdorff adaptada para 95% das distancias, a similaridade volu-
métrica, sensibilidade no nivel dos conglomerados de voxels conexos e numero de falso-positivos
por exame no nivel dos conglomerados de voxels conexos.

Figura 47 — Métricas de segmentagao do modelo GLIA-Net no passo 370001 para dife-
rentes valores de limiar de segmentacao calculadas no banco de dados de
validagao do desafio ADAM dando um peso igual para todos os voxels na
composi¢ao da méascara de segmentacgao a partir dos patches da imagem.
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Fonte: Autor.

Nota: DSC, HD95 e VS representam, respectivamente, o coeficiente de similaridade de Sorensen-Dice,
distancia de Hausdorff adaptada para 95% das distancias e a similaridade volumétrica.

Comparando as Tabelas 12 e 13, nota-se que o emprego de uma interpolacao com
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pesos variando linearmente da méscara de segmentacao dos patches permite a obten-
¢ao de um coeficiente de similaridade de Sorensen-Dice maximo superior aos resultados
com uma interpolagao com pesos uniformes. A Figura 45 aponta uma certa regularidade
deste fendmeno, pois entre os limiares 0,37 e 0,62 a métrica DSC para pesos variando
linearmente é consistentemente superior ao maior maior desta métrica para pesos unifor-
memente distribuidos. Além disso, todas as métricas usadas no desafio exceto a métrica
sensibilidade por alvo (RT) para o limiar que maximiza a métrica DSC sdo superiores

para pesos variando linearmente quando comparados a pesos uniformemente distribuidos.

Figura 48 — Métricas de detecgao do modelo GLIA-Net no passo 370001 para diferentes
valores de limiar de segmentacao calculadas no banco de dados de validacao do
desafio ADAM dando um peso constante para todos os voxels na composi¢ao
da mascara de segmentacao a partir dos patches da imagem.
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Fonte: Autor.

Nota: FP /caso representa o nimero de falso-positivos por exame no nivel dos conglomerados de voxels
CONexos.

Ao comparar as Figuras 46 e 48, é perceptivel que o uso de um tensor de pesos dis-
tribuidos linearmente eleva o niimero de conjuntos de voxels vizinhos conectados previstos
como aneurismas nao tratados nem rompidos quando comparado a um tensor homogéneo

nos mesmo valores de limiar de segmentacgao, pois tanto a sensibilidade quanto a quan-
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tidade de falso-positivos sao elevadas com a variacao linear dos pesos para os mesmos

limiares.

Nota-se também que os limiares que maximizam a métrica DSC apresentam uma
diferenga superior a 0,2. Uma possivel justificativa para o limiar maior do 0,5 para tensor
linearmente variavel é que o modelo foi treinado com uma propor¢ao de casos positivos
(aneurismas) em relagao a casos negativos (normais) superior a propor¢ao real dos exames,
logo o modelo é exageradamente confiante nas previsoes dos aneurismas e um limiar de
segmentacao mais alto filtra indica uma reducao na confianca do modelo na classificagao
de aneurismas. J& para o tensor homogéneo, uma justificativa é que para todos voxels
que nao pertencem aos patches da borda da imagem, que sao a maioria, oito patches
sao ponderados igualmente para obter a previsao total do voxel. Lembrando que no
treinamento o centro dos aneurismas esta a uma distancia maxima de 28 voxels do centro
do patch em cada direcao, o voxel em questao deve cair a uma distancia acima desta
distancia de 28 voxels do centro do patch, e portanto, estes patches possuem um viés
de reduzir a probabilidade do voxel ser classificado como um aneurisma, logo o modelo é
pouco confiante em classificar voxels como aneurismas e o limiar de segmentacao escolhido

¢ menor que 0,5 para compensar este viés.

Nas Figuras 49 e 50, estao exibidos um exame de TOF angio-RM do banco de
dados de validagao com a anotacao do aneurisma nao tratado nem rompido em vermelho
e as mascaras de segmentacao previstas pelo algoritmo. Observe que hd um aneurisma
cerebral corretamente detectado na Figura 49 e uma outra regiao que o algoritmo previu
erroneamente como aneurismas. Além disso, nota-se que a segmentacao nao é perfeita e
que o aneurisma ¢é mais cauteloso que o necessario, pois deixa alguns voxels do aneurisma
previsto como falso-negativos no nivel dos voxels. Na Figura 50, este método de gerar
mascaras de segmentacao nao é capaz de prever com detalhes a regiao do aneurisma,
pois s6 recebe como entrada a imagem global reduzida dimensionalmente global inputs.
Todavia, isto permite compreender a atuacgao da rede global localizer network de maneira
distinta da rede local segmentation network. Note que a regiao destacada com maior
probabilidade de apresentar aneurismas na Figura 50 segue uma distribuicao semelhante
a da Figura 20, o que levanta o questionamento se as méscaras de segmentacao geradas
pela rede global localizer network sao individualizadas ou se capturam a distribuicao do

banco de dados como um todo.
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Figura 49 — Imagem de TOF angio-RM do exame 10063F do banco de dados de validagao
do desafio ADAM anotada e segmentada pelo modelo GLIA-Net treinado
usando a saida net e o limiar de segmentacao 0,624.
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Fonte: Autor.

Nota: As regides verdes sao falso-positivos, as regioes vermelhas sao falso-negativos, as regioes amarelas
sao verdadeiro-positivos e as regioes incolores sao verdadeiro-negativos.
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Figura 50 — Imagem de TOF angio-RM do exame 10063F do banco de dados de validacao
do desafio ADAM anotada e segmentada pelo modelo GLIA-Net treinado
usando a saida global localizer logits.
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Fonte: Autor.

Nota: As regides verdes sao falso-positivos, as regides vermelhas sao falso-negativos e as regides amarelas
sao verdadeiro-positivos. regides incolores sao verdadeiro-negativos.
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5 Conclusio

Neste trabalho, o projeto GLIA-Net desenvolvido para segmentar aneurismas ce-
rebrais na modalidade ATC foi adaptado para realizar a mesma tarefa na modalidade
TOF angio-RM. Este modelo foi treinado em um banco de dados com 113 images e 124
aneurismas craniais nao tratados nem rompidos e os resultados apontam que a perfor-
mance do algoritmo ainda estd melhorando, porém a performance ja é equiparavel aos

algoritmos com as piores notas no desafio.

A proposta de uma nova forma de compor a méascara de segmentacao mostrou
ser capaz de melhorar a performance geral do modelo em todas as métricas exceto na
sensibilidade por vizinhanga de voxels conectados e classificados como aneurismas nao

tratados nem rompidos.

Os resultados de segmentacao do modelo treinado em imagens completas de TOF
angio-RM foram realizados em um banco de dados de validagao com 23 imagens. A escolha
do passo de treinamento do modelo treinado e do limiar de segmentacao foram baseadas
em resultados neste banco de dados. Para aumentar a robustez e permitir a comparacao
deste modelo com outras solugoes do desafio, deve-se testar a solugao GLIA-Net adaptada

para imagens de ressonancia magnética no banco de dados secreto do desafio ADAM.

Como sugestoes para projetos futuros, recomenda-se continuar o treinamento do
modelo GLIA-Net nas mesmas configuragoes deste trabalho até atingir a estabilizacao
das métricas no banco de dados de treinamento e obter overfitting para a funcao de custo
local e para a fungao de custo global. Visando mitigar o overfitting da rede global localizer
network, deve-se adicionar novas transformacoes aleatorias a etapa de aumento de dados,
como mudanca de espagamento e rotacao. Durante o treinamento do modelo GLIA-Net
neste trabalho todas os encoders da rede local segmentation network foram congelados,
seria interessante treinar o modelo com estas camadas descongeladas e avaliar se ha um
diferenga de performance. A implementagao nnU-Net foi capaz de adaptar o fluxo de
dados e os hiperparametros da rede U-Net de modo a atingir o estado da arte em diversas
tarefas, logo deve-se estudar a metodologia usada nesta solucao e adapta-la para a rede
GLIA-Net. Por ultimo, para aumentar a robustez do modelo sugere-se separar o banco de
dados disponibilizado em cinco grupos e realizar um treinamento por validacao cruzada.
Ao final do treinamento dos cinco modelos, deve-se implementar um algoritmo de votagao

majoritaria no nivel dos voxels.
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