
UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA

PROGRAMA DE EDUCAÇÃO CONTINUADA

PÓS-GRADUAÇÃO LATO SENSU

MBA EM ENGENHARIA DE SOFTWARE

NÍCOLAS SILVA VIEIRA DE OLIVEIRA - N. USP 14634024

Observabilidade Em Sistemas Distribuídos: Salesforce e AWS

São Paulo

2024

NÍCOLAS SILVA VIEIRA DE OLIVEIRA

Observabilidade Em Sistemas Distribuídos: Salesforce e AWS

Monografia apresentada à Escola

Politécnica da Universidade de São Paulo

para obtenção do título de Especialista

em Engenharia de Software.

Área de Concentração: Engenharia e

Computação.

Orientador: Prof. Dr. Alexandre dos

Santos Mignon.

São Paulo

2024

AGRADECIMENTOS
Ao Dr. Alexandre Mignon, o qual tive o prazer de ser aluno e me possibilitou

tanto aprendizado, além de ter me orientado na construção desse trabalho, de forma

clara e construtiva, os seus direcionamentos foram importantes para o resultado

final.

À minha amada esposa Ellen Gouveia, beletrista, que além de me ajudar

emocionalmente nos momentos em que estive à beira do precipício, me ajudou nas

construções dos textos e revisões.

Aos meus pais Arivaldo e Adriana, por me ajudarem a concluir a minha

graduação e me darem suporte financeiro e emocional para iniciar a minha vida

adulta e profissional, nunca conseguirei retribuir à altura todo o carinho e amor que

vocês tiveram por mim.

Aos meus amigos mais próximos, por me aturarem nos momentos em que

estive mais cansado. Nossas risadas foram alívios momentâneos necessários para

que eu conseguisse terminar este trabalho.

RESUMO
O monitoramento de sistemas baseados em arquiteturas distribuídas em

provedores nuvem apresenta desafios aos desenvolvedores. Provedores como a

Salesforce, embora entreguem vantagens aos times de desenvolvimento - tais como

a abstração da gestão do banco de dados e suporte ao desenvolvimento ágil - não

oferecem ferramentas nativas que possibilitem o monitoramento detalhado das

operações construídas em sua plataforma. Mesmo provedores como AWS, que

possuem formas robustas de monitoramento, exigem que sejam feitas intervenções

nos códigos ou configuração de ferramentas terceiras, para que seja possível obter

a visão macro do processamento das operações, isso quando o sistema é

construído utilizando os conceitos de arquitetura distribuída. A fim de resolver estes

problemas, este trabalho propõe uma estrutura para captura e análise de logs,

métricas e traces, em sistemas construídos utilizando Salesforce e AWS. A

abordagem apresentada permite monitorar os processos que ocorrem nesses

ambientes, e integrar os dados das transações que ocorrem em sistemas distintos,

criando assim uma visão macro do fluxo de processamento. Desta forma, os

resultados do trabalho foram a obtenção dos dados detalhados das execuções das

operações na Salesforce para realização de depuração e viabilização de

monitoramento proativo, além da criação de uma visão unificada de transações que

ocorrem de forma distribuída, facilitando a identificação e resolução de problemas, e

contribuindo para a eficiência e estabilidade operacional dos sistemas monitorados.

Palavras-chave: Monitoramento de sistemas; Salesforce; AWS; Arquitetura

distribuída.

ABSTRACT
Monitoring systems based on distributed architectures in cloud providers presents

significant challenges to developers. Providers such as Salesforce, while offering

advantages to development teams - such as database management abstraction and

support for agile development - do not provide native tools that enable detailed

monitoring of operations built on their platform. Even providers such as AWS, which

offer robust monitoring solutions, require intervention in the program code or other

tools configuration, in order to obtain a macro view of the operations process, when

the system is built using distributed architecture concepts. To solve these problems,

the present study proposes a structure to capture and analyze logs, metrics and

traces, in systems built with Salesforce e AWS. The showing approach enables the

monitoring of processes occurring in these environments and integration of

transaction data from different systems, thereby creating a macro view of the

process flow. Consequently, the results of this work include the capture of execution

data from Salesforce operations to facilitate debugging and enable proactive

monitoring, as well as the creation of a unified view of transactions occurring in a

distributed system. This unified view aids in problem identification and resolution,

contributing to the operational efficiency and stability of the monitored systems.

Keywords: System monitoring; Salesforce; AWS; Distributed architectures.

SUMÁRIO

1. INTRODUÇÃO...1

1.1 Problema.. 1

1.2 Objetivo.. 2

1.3 Justificativa...3

2. CONCEITOS TEÓRICOS..3

2.1 Cloud.. 3

2.2 Salesforce.. 4

2.3 Apex... 4

2.4 Serverless.. 5

3. INTERVENÇÃO EM UM APLICAÇÃO QUE JÁ ESTÁ SENDO UTILIZADA.........5

3.1 Análise da Situação..7

3.2 Proposta de Solução, Instrumentação da Salesforce.................................... 10

3.3 Implementação da Proposta.. 17

4. PLANEJAMENTO E CONSTRUÇÃO DE MONITORAMENTO NO
DESENVOLVIMENTO DE UMA APLICAÇÃO DISTRIBUÍDA................................. 19

4.1 Geração do Trace...20

5. CONCLUSÃO..29

6. EVOLUÇÕES.. 30

REFERÊNCIAS... 31

APÊNDICE A - CÓDIGO DESEMPENHO NEBULA LOGGER SEM SAVE LOG................32

APÊNDICE B - CÓDIGO DESEMPENHO NEBULA LOGGER COM SAVE LOG EVENT
BUS..32

APÊNDICE C - CÓDIGO DESEMPENHO NEBULA LOGGER COM SAVE LOG
QUEUEABLE...33

1

1. INTRODUÇÃO
A Salesforce e a AWS são provedores de nuvem que são utilizados em

conjunto ou separadamente para construir soluções diversas à inúmeras áreas de

negócio e oferecem benefícios às empresas, como a abstração do gerenciamento

de componentes tecnológicos da infraestrutura, agilidade para o desenvolvimento,

e, no caso da Salesforce, abstração do gerenciamento do banco de dados e

aproximação da empresa ao cliente por meio do fácil acesso ao dado do cliente. Por

isso, muitas empresas escolhem construir as soluções para o seu negócio utilizando

essas ferramentas.

Porém, o monitoramento dos processos construídos nessas ferramentas,

especialmente a Salesforce, tem diversos desafios.

1.1 Problema
Diferentemente do on-premises, em que comumente todas as aplicações

eram dispostas em um mesmo ambiente, na nuvem vemos uma transformação para

uma arquitetura distribuída. Nesse cenário, para ser executada uma operação de

negócio, normalmente diferentes serviços precisam se comunicar sem estar no

mesmo ambiente.

Além das aplicações estarem distribuídas, alguns dos provedores de nuvem,

como a Salesforce, ferramenta cloud para gestão de relacionamento com o cliente,

não oferecem de forma nativa ferramentas para monitorar as operações, ou as

ferramentas que estes oferecem não são satisfatórias para que seja possível

monitorar as operações de forma eficaz, e, assim sendo, muitas das operações

construídas em Salesforce ficam sem monitoramento, o que acarreta em dificuldade

para manter as operações em produção e impossibilita a sustentação dos sistemas

de forma proativa.

Devido a característica de arquitetura distribuída, torna-se difícil monitorar as

operações mesmo quando as aplicações possuem logs e métricas.Quando há um

cenário de erro, para encontrar o log exato da execução em que houve falha é

necessário identificar todos os ambientes que podem ter executado a operação, até

encontrar o dado certo, o que torna o processo de depuração demorado.

Além disso, quando alguma operação ocorre em uma função serverless

como, por exemplo, uma lambda function, o processo de monitoramento e

depuração torna-se ainda mais complicado. Segundo os autores (Baldini et al.,

2

2017) no artigo “Serverless Computing: Current Trends and Open Problems”, em

tradução livre:

“Monitorar e depurar aplicações serverless será muito mais

desafiador, já que não há acesso direto ao servidor para ver o

que aconteceu de errado. Ao invés disso, plataformas

serverless precisam reunir todos os dados da execução do

código e disponibilizar a posteriori. De forma semelhante,

depurar é muito diferente se ao invés de ter um artefato (como

um micro serviço ou uma tradicional aplicação monolítica) os

desenvolvedores precisam lidar com uma série de peças

menores de código.”

1.2 Objetivo
O objetivo geral deste trabalho é mostrar uma estrutura para que seja feito o

monitoramento em sistemas que estão construídos em nuvem, mais

especificamente, Salesforce e AWS.

Ao definir aqui o conceito de monitoramento enquanto captura de logs,

métricas e traces, pretende-se alcançar os seguintes objetivos específicos:

demonstração de estrutura para realizar o monitoramento nos ambientes Salesforce

e AWS e criação de visão macro de monitoramento das operações em uma

arquitetura distribuída.

Para isso, são apresentados dados dois exemplos. O primeiro visa apenas

exemplificar como a Salesforce pode ser instrumentada para possibilitar o

monitoramento das operações, com captura de logs e métricas. Nesse cenário, o

sistema apresenta problemas de execução em uma das operações, a qual será o

foco, e, devido à falta de monitoramento, não é possível identificar o erro e corrigi-lo

na causa raiz.

Já o segundo exemplo ilustra como realizar a construção do monitoramento

de um sistema distribuído, utilizando Salesforce e alguns serviços da AWS. Dessa

forma, habilitando que seja feito um monitoramento proativo das operações.

3

1.3 Justificativa
Monitorar os sistemas é uma tarefa muito importante para garantir a

estabilidade e desempenho, já que um monitoramento eficaz possibilita a resposta

rápida a incidentes e problemas que foram relatados (Kleppmann, 2017).

Além disso, um bom monitoramento permite que as equipes de TI consigam

identificar pontos de melhoria olhando as métricas de desempenho, por exemplo:

tempo de resposta, número de requisições processadas e uso dos recursos

computacionais. Assim, é possível identificar gargalos potenciais e corrigi-los antes

de se tornarem um problema.

Em sistemas distribuídos, o monitoramento é ainda mais importante, por

conta da característica da arquitetura, em que os serviços funcionam de forma

independente. Com isso, um erro em um componente pode afetar diversos outros

componentes, gerando assim um erro em cascata, e a falta de monitoramento torna

a situação muito mais complexa de ser resolvida (Newman, 2019).

Por isso, a observabilidade dos sistemas - prática que envolve

monitoramento detalhado, com coleta de métricas em tempo real, trace dos fluxos e

logs das aplicações - tem sido recomendada como boa prática a se empregar por

instituições como a AWS para fornecer aos desenvolvedores e equipes de operação

insumo suficiente sobre o comportamento dos sistemas e suas operações, e,

assim, facilitar a identificação de anomalias (AWS, 2024). Sem tal prática, a

resolução dos problemas pode se tornar algo complexo e demorado.

2. CONCEITOS TEÓRICOS
Para entender de forma aprofundada a temática focalizada neste trabalho, é

importante saber alguns conceitos que o contextualizam. A seguir, são

apresentadas de forma breve algumas explicações de conceitos-chave para a

compreensão e melhor fluidez da leitura.

2.1 Cloud
“Cloud Computing", ou computação em nuvem, em português, é o modelo em

que o fornecimento dos recursos de computação acontece sob demanda, como

armazenamento, processamento e redes, isto através da internet. Por meio disso,

os usuários podem acessar e utilizar serviços de infraestrutura, plataformas e

4

software de forma flexível e escalável, excluindo a necessidade do gerenciamento

das partes físicas envolvidas nesses serviços (Mell e Grance, 2011).

Há três categorias principais de computação em nuvem: IaaS, PaaS e SaaS.

São denominadas IaaS (Infraestrutura como Serviço), quando são fornecidos

os recursos básicos de computação, como máquinas virtuais e armazenamento.

Já as PaaS (Plataforma como Serviço), são ambientes para o

desenvolvimento dos aplicativos, e a fornecedora do ambiente faz a gestão dos

recursos básicos de computação.

Por fim, nas SaaS (Software como Serviço), a fornecedora provê o software

já para uso, permitindo apenas parametrizações do mesmo.

2.2 Salesforce
A Salesforce é um CRM - Gestão de Relacionamento com o Cliente -

baseado em nuvem, inicialmente projetada para ajudar empresas no gerenciamento

de vendas, marketing e atendimento ao cliente, mas que já se expandiu para outras

aplicações, como análise de dados e processos de workflow.

Ainda que seja denominada como SaaS, a plataforma possui diversas

tecnologias proprietárias de desenvolvimento, que permitem que os

desenvolvedores criem aplicativos dentro de sua infraestrutura.

Dividida em módulos, cada um especificado para uma solução, a Salesforce

possui clouds de Sales, Service, Marketing, Data, Industries, etc.

2.3 Apex
Apex é uma linguagem de programação proprietária da Salesforce e se

assemelha muito à sintaxe do Java. Com essa linguagem de programação, é

possível desenvolver a camada de backend para processamento das regras de

negócio. Assim como a maioria das linguagens de backend, há suporte para

exposição e API, possibilitando chamadas através de outros servidores ou

aplicativos, mas também há suporte para que sejam feitas chamadas por meio de

outras tecnologias da Salesforce de forma nativa, como: VisualForce, Aura e LWC.

Essa linguagem é fortemente tipada e orientada a objetos, e seu foco está

principalmente em operações que envolvem o modelo de dados da Salesforce.

Permite que os desenvolvedores criem classes de lógica que interagem diretamente

5

com os dados armazenados na Salesforce sem a necessidade de uma segunda

camada de implementação para acesso aos dados (SALESFORCEb, 2024).

Dentre as suas características, nota-se o fato de sua execução ser

controlada, havendo limites de governança para a execução do código. Tais limites

têm o objetivo de evitar o consumo excessivo do sistema, o que prejudica as demais

operações na Salesforce.

2.4 Serverless
Esse termo, que vem ganhando força dentro do universo de computação,

refere-se ao modelo de computação em nuvem em que o provedor gerencia a

alocação dos recursos computacionais para a execução da operação de forma

automática. Dessa forma, os desenvolvedores não precisam se preocupar com a

configuração dos servidores, apenas com a construção dos aplicativos (Baldini et

al., 2017).

Apesar do nome serverless em tradução livre para o português significar

“sem servidor”, os servidores ainda estão presentes para a execução dos códigos.

Porém, como dito, os servidores são totalmente gerenciados pelo provedor e

abstraídos para o desenvolvedor, possibilitando um desenvolvimento mais ágil, além

de permitir que o desenvolvedor foque apenas na parte da lógica do negócio.

Além disso, normalmente o custo da utilização das funções serverless é

comumente calculado pela quantidade de requisições realizadas e o tempo de

execução, o que pode tornar-se mais barato do que manter uma máquina virtual

sempre disponível consumindo recursos que muitas vezes não estão sendo

requeridos a todo momento.

3. INTERVENÇÃO EM UM APLICAÇÃO QUE JÁ ESTÁ SENDO UTILIZADA
A falta de monitoramento nas execuções sistêmicas, como já comentado

anteriormente, pode tornar difícil identificar problemas e resolver incidentes

produtivos. Sendo assim, em situações que um provedor cloud não fornece de

forma nativa ferramentas para realizar o monitoramento, deve-se procurar outras

maneiras para a realização de tal tarefa. Este é o caso da Salesforce.

A fim de auxiliar na compreensão da situação focalizada neste trabalho, o

problema será apresentado por meio de um exemplo prático.

6

A empresa fictícia “Seguros Para A Minha A Vida” comercializa diversos tipos

de seguros em diferentes vertentes.

Para algumas das coberturas comercializadas pela empresa foi tomada a

decisão de que a solicitação para a utilização do seguro não será tratada pela

seguradora, e, sim, por uma empresa parceira especializada. Nessas situações, o

cliente - ao entrar no site da empresa e escolher reportar a necessidade de utilizar o

seguro - é direcionado para o portal da empresa parceira e lá informará o ocorrido.

Neste tipo de cenário, em que a solicitação é inteiramente tratada pela

empresa parceira, é necessário que o caso aberto também esteja nas bases da

empresa “Seguros Para A Minha Vida”, para que seja possível realizar controles de

utilização das apólices comercializadas e também a prestação de contas com a

empresa parceira.

Para cumprir essa necessidade de negócio, foi desenvolvida uma API para o

recebimento dos casos que são abertos na empresa especializada. Como mostra a

figura 1, essa API foi construída na Salesforce, ambiente em que também está

construído o sistema aviso de ocorrência para utilização do seguro. Os dados

recebidos nesse fluxo são armazenados nos objetos da Salesforce, porém, há a

necessidade de serem enviados para a base oficial da empresa “Seguros Para A

Minha Vida”. O envio dos dados é realizado por meio de um serviço disposto fora da

Salesforce.

Figura 1 - Fluxo de abertura de ocorrência integrado com empresa parceira

Fonte: Produção do próprio autor (2024).

7

Após a implantação desse fluxo, o time financeiro da “Seguros Para A Minha

Vida” começou a reportar ao time responsável pela API o fato de que nem todas as

solicitações cobradas pela empresa parceira estavam presentes na base de dados,

e, após algumas investigações, foi descoberto que algumas das solicitações

reportadas pela empresa parceira não são processadas corretamente pela API. Já

que esta foi construída sem tratar o requisito não funcional de observabilidade, o

time responsável não tem informações a respeito da execução da API, como por

exemplo: quantas vezes a API foi chamada, quantas execuções foram processadas

com sucesso e quantas execuções foram processadas com erro. Além disso,

também não há logs de depuração para a identificação e solução dos erros que

ocorrem nessa API. Sendo assim, é necessário fazer uma intervenção nesse fluxo

para a obtenção desses dados, com o intuito de melhorar a observabilidade dessa

API.

3.1 Análise da Situação
Partindo do pressuposto de que se sabe que a API de ocorrências não tem o

funcionamento esperado, e também que não há dados das execuções para análise

dos erros da operação, é necessário entender em quais pontos deve ser feita a

intervenção, além de entender quais ações a operação está executando, para assim

compreender como instrumentar corretamente a API, visando a captura dos logs e

métricas.

8

Figura 2 - Diagrama de sequência de obtenção de segurado

Fonte: Produção do próprio autor (2024).

Figura 3 - Diagrama de sequência de registro de ocorrência

Fonte: Produção do próprio autor (2024).

9

Figura 4 - Diagrama de sequência de abertura de ocorrência

Fonte: Produção do próprio autor (2024).

A figura 4, ilustra o diagrama de sequência do fluxo dessa API que está com

mal funcionamento, assim como as suas demais partes demonstradas nas figuras 3

e 2. Estas demonstram o funcionamento da operação realizada pela API que recebe

as ocorrências pela empresa parceira. Nestas imagens, é possível ver a

comunicação dentro do sistema, e ter uma visão mais clara dos pontos que devem

ser monitorados.

Para citar um exemplo, é possível identificar alguns pontos mais propícios a

erros: o ponto de integração para consulta de um segurado na base on premises, a

consulta do endereço e a sincronização entre Salesforce e on premises. Neste

sentido, autores, como Martin Kleppmann, abordam a fragilidade de sistemas

distribuídos, ressaltando que pelo fato de a comunicação ser realizada através da

rede, como por exemplo por meio de um http, o resultado dessa comunicação é

imprevisível para o requisitante, que está suscetível a uma série de erros

(Kleppmann, 2017). Sendo assim, é um ponto válido para se realizar a devida

tratativa de erros e o monitoramento.

10

Outro ponto que pode-se observar é o momento de salvar os dados na

Salesforce. O banco de dados é abstraído para o desenvolvedor, representado

como objetos, e há diversas possíveis validações que os próprios objetos podem

fazer no momento de persistência dos dados. Por exemplo: um campo picklist, que

se assemelha a um enum no Java, pode ter seus valores pré definidos e apenas

aceitá-los, emitindo um erro caso a aplicação tente criar um registro com um valor

que não está definido. Também pode ser um campo de valores pré definidos, mas

que aceita outros valores livres. Nesse caso, aceitando a criação do registro. Devido

a essa característica da Salesforce, outro ponto frágil da aplicação que pode gerar

erros e que ganhamos ao monitorar é a camada de persistência.

Pontos de transformação de dados comumente podem gerar exceções,

principalmente se não foram aplicadas técnicas de desenvolvimento que previnem

erros, a exemplo do null pointer. Isto posto, apesar de os diagramas não

representarem ao certo os pontos que possuem transformações de dados, estes, no

geral, também são pontos em que vale a pena existir uma tratativa de erros para

captura das execuções e salvamento dos logs, tornando mais fácil realizar a

sustentação para identificar os pontos de melhoria.

Por fim, a Salesforce possui diversos limites de execução para códigos Apex,

como limite de consumo de memória por execução, tempo limite de execução,

quantidade de consultas ao banco, quantidade de callouts, tempo limite para retorno

de um callout, entre outros. Exceder algum limite de execução gera a interrupção do

processamento. Portanto este pode ser um dos motivos do mau funcionamento

dessa API, e deve ser monitorado como os demais pontos.

Após elencar os pontos que devem conter monitoramento, pôde-se passar

para uma análise focada em de qual maneira realizar esse monitoramento. Para

isso, foi necessário entender como realizar a instrumentação da Salesforce para

captura dos dados de execução.

3.2 Proposta de Solução, Instrumentação da Salesforce
A Salesforce provê de forma nativa a captura dos dados de execução das

operações no Apex. Porém, analisando a documentação do Debug Log, nos

deparamos com diversas limitações que dificultam o monitoramento das transações

(SALESFORCEb, 2024).

11

Para a utilização do Debug Log, é necessário fazer a configuração diária para

captura de dados de execução de um determinado usuário, o que não limita a

captura de dados da API, visto que esta roda em contexto do usuário que o cliente

servidor se autenticou, mas demanda que diariamente uma pessoa do time ative a

ferramenta para rastrear as execuções do usuário chamando a API

(SALESFORCEb, 2024).

Além disso, há um limite de geração de 1 GB de dados em um intervalo de

15 minutos, que, caso atingido, faz com que toda a geração de logs de toda a

organização seja desativada. Para o exemplo que estamos utilizando, considerando

que a abertura de ocorrências que são tratadas pela empresa “Seguros Para a

Minha Vida” é feita na mesma organização em que a API está sendo executada,

caso os dois fluxos estejam sendo monitorados, devido a quantidade de usuários

utilizando o sistema ao mesmo tempo e o volume de dados de execução gerados ao

mesmo tempo, o limite de 1 GB em 15 minutos torna-se um impeditivo para a

utilização da ferramenta nativa da Salesforce para a geração de logs.

Ainda que todas as operações sendo executadas na org não gerassem um

volume maior de 1 GB no intervalo de 15 minutos, há ainda um limite de 1 GB de

geração de logs no total, independentemente do intervalo de tempo para atingir

esse volume de dados. Por sua vez, atingir esse segundo limite não desabilita os

logs que já foram ligados, porém, impede a configuração para gerar logs em outros

pontos do sistema. Diferentemente do que ocorre em outras aplicações e

servidores, o rotacionamento dos logs na Salesforce acontece com um intervalo de

24 horas. Por fim, outro ponto que podemos identificar enquanto limitação da

ferramenta provida pela Salesforce é a forma de captura e visualização dos dados

que foram gerados.

Como mostra as figuras 5 e 6, todos os logs ficam agrupados sem diferenciar

a transação que o gerou e não existe uma forma de filtrar a informação por classe

ou fluxo. Além do mais, para realizar a busca de um log específico na ferramenta

disponibilizada pela Salesforce, é necessário abrir um por um e procurar o trecho

desejado para entender o que ocorreu na execução. No cenário de geração de

muitos dados, procurar uma informação específica nessa ferramenta se assemelha

a encontrar uma agulha no palheiro.

12

Figura 5 - Tela Debug Logs da Salesforce

Fonte: Produção do próprio autor (2024).

Figura 6 - Tela de visualização de log da Salesforce

Fonte: Produção do próprio autor (2024).

Podemos concluir, então, que a ferramenta padrão da Salesforce não atende

à situação que precisamos resolver, e por isso houve a necessidade de buscar

outras ferramentas que fazem o trabalho de geração e organização dos dados de

13

execução. Dentre alguns frameworks desenvolvidos pela comunidade, um dos mais

utilizados, e que também foi o escolhido para esse trabalho, é o Nebula Logger.

O Nebula Logger é um framework construído pela comunidade de

desenvolvedores da Salesforce, e é uma solução de observabilidade que pode ser

instalada na org sem necessidade de pacotes externos além da estrutura do próprio

framework (Nebula Logger, 2024).

Quando realizada a instalação do Nebula Framework, são criadas classes,

metadados, objetos e eventos de plataforma, para a realização das capturas dos

dados, salvamento e personalização da ferramenta.

Esse framework permite salvar os dados de execução de diferentes formas:

emitindo eventos, chamando serviços síncronos, adicionando um processo na fila

de execução assíncrona e executando DML nos objetos de forma síncrona. Cada

método disponível para realizar o salvamento dos dados tem suas próprias

características e podem afetar de jeitos diferentes a execução do programa.

Ao analisar especificamente de qual maneira o método para salvar as

informações pode impactar o tempo de execução da aplicação, podemos concluir o

seguinte: uma operação que apenas recebe a requisição e retorna a string 1, opera

com tempo médio de 225,5 milisegundos. Adicionando nessa operação o Nebula

Framework e salvando os logs e métricas no modelo padrão da ferramenta, a

operação passa a ter tempo médio de execução de 674,84 milisegundos, já

alterando a forma de salvamento para queueable, este exemplo passou a executar

com o tempo médio de 381,06 milisegundos. Logo, é correto afirmar que, ao olhar

especificamente o tempo de execução, o melhor método a se usar é o queueable,

em que há acréscimo no tempo de execução, mas ainda consideravelmente menor

do que o método comparativo.1

1 Utilizando um ambiente da Salesforce criado para fins educativos através da plataforma

https://trailhead.salesforce.com/, foi criado uma API como descrito no corpo do texto, os códigos

utilizados estão disponíveis nos apêndices A, B e C. O teste foi conduzido utilizando a ferramenta

Jmeter. Foram utilizadas 5 threads com ramp-up period de 1 segundo. Cada thread realizou 20

requisições em cada teste, totalizando 100 requisições. Foram executados os testes sem a utilização

do Nebula Logger, com a utilização em modo de salvamento por emissão de evento e por queueable.

Os dados produzidos pelo teste estão disponíveis no link

https://docs.google.com/spreadsheets/d/13hq2QoRZa13whC2x-YjdbpClxQZL5uDlMZpBSeQVhK0/ed

it?gid=182322353#gid=182322353.

https://trailhead.salesforce.com/
https://docs.google.com/spreadsheets/d/13hq2QoRZa13whC2x-YjdbpClxQZL5uDlMZpBSeQVhK0/edit?gid=182322353#gid=182322353
https://docs.google.com/spreadsheets/d/13hq2QoRZa13whC2x-YjdbpClxQZL5uDlMZpBSeQVhK0/edit?gid=182322353#gid=182322353

14

Uma funcionalidade importante do framework é o processo de exclusão dos

dados, que é totalmente personalizável para atender a quantidade de tempo que o

dado precisa permanecer disponível. Para tal, é fornecido um batch agendável, que

exclui todos os registros em que o campo indicador no objeto de log for menor ou

igual a data de execução.

Ao definir que o Nebula será utilizado para a captura de logs, ainda há um

problema a ser resolvido. Essa ferramenta, ao salvar os logs, consome

armazenamento da Salesforce que é destinado aos dados transacionais de negócio.

Sabe-se que o armazenamento de dados na Salesforce é caro,

principalmente se comparado a outras ferramentas cloud. Segundo o site da

Salesforce (SALESFORCEa, 2024), toda organização dos tipos: Contact Manager,

Group, Essentials, Professional, Enterprise, Performance e Unlimited, são criadas

com 10 GB disponível para armazenamento de dados, e a cada licença de usuário

contratada, são adicionados mais 200 MB para utilização na organização.

Para adição apenas do espaço de armazenamento é necessário negociar

junto à Salesforce, sendo que o preço deste não é disponibilizado amplamente pela

Salesforce na internet. Porém, sabendo que a forma aconselhada pela plataforma

para alocar mais storage é por meio de contratação de novas licenças, é correto

afirmar que, utilizando como exemplo uma conta Enterprise, a cada 200 MB

adicionais, o custo será de $150 dólares estadunidenses, sendo esse o preço por

licença para uma org Service Cloud.

Utilizando como comparação outras ferramentas de logs fornecidas por

outras clouds, como Amazon CloudWatch, uma solução em que o custo por GB de

armazenamento é equivalente a $750 dólares estadunidenses é inviável. A nível

comparativo, 1 GB de dados armazenados no CloudWatch na região ca-central-1 é

o equivalente a $0,03 dólares estadunidenses.

Deste modo, por mais que a utilização do Nebula Framework seja útil para a

captura dos dados de execução e geração de métricas, os dados produzidos não

podem ficar armazenados por longos períodos dentro da Salesforce, sendo

necessário transferi-los para outra ferramenta com custo mais barato.

O Nebula Logger, já citado anteriormente, possui uma forma de persistência

assíncrona, nesta, além do salvamento dos dados ser feito nos objetos dentro da

Salesforce, também é emitido um evento no Platform Events.

15

A ferramenta de eventos nativa da Salesforce permite que seja feita uma

conexão com contas da AWS para a propagação de eventos emitidos do Platform

Events para um eventbus - roteador de eventos entre um transmissor e um receptor

- dentro da ferramenta Amazon Eventbridge. Esse caminho é configurado através

de um Event Relay, uma funcionalidade da Salesforce que se subscreve ao bus da

Salesforce e propaga o evento capturado para outro eventbus, conforme

configurado, como mostra a figura 7.

Figura 7 - Fluxo de comunicação entre Platform Events e AWS EventBridge

Fonte: SALESFORCEa (2024).

Por mais que seja possível a criação de uma regra dentro do eventbus para o

envio do evento direto para o Amazon CloudWatch - destino dos dados que estão

transitando no evento - neste cenário utilizaremos uma lambda para fazer a tratativa

do dado que está transitando para fazer a transformação da estrutura salva na

Salesforce para uma estrutura de dados mais aderente ao padrão da Amazon

CloudWatch, visando ser mais fácil a geração de métricas e visualização dessas

informações. Assim, o caminho dos logs de execução da API Ocorrências, até ser

armazenado no CloudWatch, ficou como mostrado na figura 8.

16

Figura 8 - Fluxo transição Salesforce logs para AWS CloudWatch

Fonte: Produção do próprio autor (2024).

A partir da definição de como os dados serão capturados, para onde irão e

como será feito o processo de transporte, passou-se para o processo de análise de

quais dados deveriam ser capturados. A ferramenta de log que aqui foi utilizada,

tem a capacidade de obter diversos dados de performance da execução de uma

transação, mas aqui o foco está em apenas alguns dos dados que mais podem

demonstrar mais significativamente como estão as execuções desta API, estes

dados estão dispostos na tabela 1.

Tabela 1 - Informações da execução capturadas para monitoramento

Nome Lógico Informação Contida

LimitsHeapSizeUsed__c Utilização de memória

LoggedByUsername__c Usuário executor

Message__c Mensagem impressa através de um log info ou
error

LimitsSoqlQueryRowsUs
ed__c Quantidade de querys utilizadas

17

LimitsQueuableJobsUse
d__c

Quantidade de trabalhos adicionados à fila de
execução

LimitsFutureCallsUsed__
c Quantidade de postagens para execuções futuras

LimitsCpuTimeUsed__c Quantidade de processamento utilizado na
execução

LimitsCalloutsUsed__c Quantidade de chamadas externas realizadas
através de http

StackTrace__c Rastro do erro

Timestamp__c Horário da postagem do log

OriginLocation__c Classe que emitiu o log

APICallResult__c Resultado da operação que foi executada

APICallType__c API que foi executada
Fonte: Produção do próprio autor (2024).

3.3 Implementação da Proposta
Para implementar a solução proposta acima, foram necessárias algumas

alterações nos códigos do Nebula Framework e também configurações da

ferramenta.

A fim de transitar todos os dados da transação em um evento único, foi criado

um platform event de nome Log__e, que encapsula tanto o objeto Log__c como

todos os objetos LogEntry__c relacionados ao objeto Log__c em questão. Esse

evento está sendo emitido após a criação dos objetos, já estando, assim, os objetos

relacionados.

Também foram incluídos dois campos novos dentro do objeto Log__c:

APICallType__c e APICallResult__c, em que o primeiro tem por objetivo mapear

qual a chamada que foi feita, enquanto o segundo mapeia o resultado da operação,

tornando possível que sejam gerados relatórios e gráficos de acompanhamento

para verificar a saúde da API que está sendo monitorada.

Após essas personalizações terem sido feitas, foram realizadas as

modificações dentro da API, com a implementação de tratativas de erro onde estas

não estavam presentes.

Por exemplo: na classe OnPremOcorrenciaIntegration método

sincronizarOcorrencia, que tem como responsabilidade sincronizar a ocorrência

18

recebida na Salesforce com a base oficial da empresa, era feita apenas a requisição

sem ocorrer uma tratativa do resultado da requisição, como mostra a figura 9, para

que seja possível monitorar essa parte do fluxo a tratativa foi feita por meio da

verificação do status de retorno da requisição e lançando um erro caso fosse

diferente do status de sucesso, que no caso seria 201, como mostra a figura 10.

Figura 9 - Classe de integração da ocorrência entre sistemas sem tratativa de

erro para monitoramento

Fonte: Produção do próprio autor (2024).

Figura 10 - Classe de integração da ocorrência entre sistemas com tratativa de erro

para monitoramento

Fonte: Produção do próprio autor (2024).

Tal processo foi feito em todos os pontos de integração do sistema,

considerando as integrações de busca do segurado e busca de endereço.

Não foi necessário incluir o lançamento de exceções em partes como a

transação com o banco de dados, pois, caso tenha algum erro no momento da

19

execução, um erro já será lançado na pilha de execução. Todo erro lançado na

execução de registrar a ocorrência é tratado pelo chamador, sendo esta a classe

OcorrenciaController método doPost, o ponto de entrada na API. Neste ponto, foram

incluídas as tratativas necessárias para salvar os logs com todos os dados

necessários.

Foi incluído um log info registrando o início do processo e este é necessário

para os cenários de sucesso também enviarem os dados capturados, visto que a

ferramenta apenas faz a criação dos objetos Log__c e LogEntry__c caso exista na

lista de logs algum registro dos tipos habilitados na organização.

Utilizando da capacidade de customização do framework, foi utilizado o

método setField da classe Logger, para salvar o valor “/ocorrencia/doPost” no

campo LogEntryEvent__e.APICallType__c, e no campo

LogEntryEvent__e.APICallResult__c resultado da operação, “SUCCESS” ou “FAIL”,

significando respectivamente, sucesso ou falha da requisição.

Por fim, quando capturada uma exceção de execução, é salvo o log error,

setando a mensagem e o stack trace do erro, informações que são necessárias para

a análise dos problemas.

Configurada a integração entre Salesforce e AWS, os dados, a partir do

momento em que são salvos, são capturados no evento que foi criado para esse

fluxo e passam pela tratativa da lambda implementada, a qual salva as informações

no CloudWatch. Como os dados estão no CloudWatch, tornou-se possível realizar

análises e construir alertas utilizando as ferramentas.

Por fim, o batch foi configurado na Salesforce para a exclusão dos dados, a

fim de não consumir storage, como explicado anteriormente.

4. PLANEJAMENTO E CONSTRUÇÃO DE MONITORAMENTO NO
DESENVOLVIMENTO DE UMA APLICAÇÃO DISTRIBUÍDA

A partir do momento que se sabe como realizar a instrumentação da

Salesforce para a obtenção dos dados de execução das operações, pode-se voltar

o foco para a evolução desse cenário.

Nos cenários em que a Salesforce faz parte do processamento da operação,

mas o sistema está distribuído em outros ambientes, ainda há o problema de todos

os logs e métricas estarem segregados, e também persiste a complexidade de

entender onde exatamente ocorreu o erro.

20

Para entender melhor a situação, o problema será novamente exemplificado

em um contexto prático.

Em um fluxo específico da empresa “Seguros Para a Minha Vida”, na

abertura de uma ocorrência de roubo de celular, o sistema recebe as informações

imputadas pelo usuário, e precisa notificar uma segunda aplicação que realiza o

bloqueio do celular antes de gerar o número da ocorrência, que é gerado

automaticamente ao serem salvas as informações. Após salvar as informações com

sucesso, é emitido um evento para notificar os sistemas interessados na operação

que ocorreu, e, por fim, o número do protocolo é devolvido para o segurado em tela.

Um dos sistemas interessados no processamento ocorrido é o sistema de

reserva, que faz os cálculos de quanto será gasto para cobrir o cliente na ocorrência

informada, e então faz a separação desse valor em uma conta corrente específica

da empresa, atendendo às questões legais impostas pelos órgãos reguladores,

como a Susep.

Considerando que esse fluxo está em momento de ideação, há a questão de

como realizar o monitoramento de forma a conseguir identificar, quando necessário,

onde foi o ponto de falha. Nesse cenário, pode-se utilizar o conceito de trace.

No início deste trabalho o conceito de monitoramento foi definido enquanto

captura de logs, métricas e trace, e nesse segundo exemplo o foco será a geração

do trace.

4.1 Geração do Trace
Utilizando a definição dada pela Open Telemetry, trace, ou rastros, se

traduzido para o português, é “o caminho de uma solicitação através do seu

aplicativo” (Open Telemetry, 2024). Dessa forma, pode-se entender por onde a

requisição passou, e analisar em caso de falha o lugar exato em que esta ocorreu,

além de possibilitar que sejam feitas análises mais aprofundadas para entender

problemas de desempenho.

Para a situação mencionada há pouco, como mostra a figura 11, o site que o

segurado acessa para informar a ocorrência foi construído na Salesforce, também o

processamento dessa ocorrência acontece na Salesforce, já o serviço de bloqueio

de celular e o controle da reserva estão dentro da AWS.

21

Figura 11 - Fluxo de abertura de ocorrência de celular

Fonte: Produção do próprio autor

A Amazon fornece o X-Ray de forma nativa nas suas ferramentas serverless

para fazer captura do trace dos fluxos que lá estão sendo executados. Entretanto,

apenas o uso do X-Ray não é suficiente nesse cenário. Devido ao fato de que a

operação é iniciada na Salesforce, para ter a visão clara de tudo o que foi executado

o ideal é o trace mostrar que a execução foi iniciada pela Salesforce no processo de

“Ocorrência Celular”, passou pelo “Bloqueio Celular” e por fim o “Controle Reserva”

capturou o evento para realizar o seu processamento, como mostra a imagem

acima.

Há algumas plataformas que auxiliam os desenvolvedores, realizando o

agrupamento das informações de execução que são geradas em ambientes

distintos. Para realizar esse trabalho foi utilizada a New Relic, uma plataforma

especializada em observabilidade (NEW RELIC, 2024).

Nesta plataforma, há uma ferramenta de monitoramento dos aplicativos

chamada APM, que, em resumo, serve para realizar um monitoramento unificado de

todos os aplicativos e microsserviços. Dentro dessa ferramenta, uma das

funcionalidades é exatamente o trace, que, segundo a documentação da plataforma,

fornece o rastro de uma única transação, atendendo exatamente ao objetivo aqui

definido (NEW RELIC, 2024). Para o uso dessa funcionalidade, é necessário que o

ambiente que executa a operação envie a execução para a New Relic, seguindo as

22

opções disponibilizadas pela ferramenta, como a instrumentação através do Open

Telemetry, ou através de uma chamada http seguindo uma API disponibilizada pela

New Relic. Adiante será demonstrado como foram utilizadas as duas formas para o

envio da informação.

Seguindo o modelo definido pela Open Telemetry, o vínculo das execuções

funciona através de hashs identificadores. O trace id, um hash hexadecimal de 32

bits, identifica uma transação enquanto um todo, ou seja, a cada ocorrência

informada, deve ser gerado um trace id que representa aquela operação que está

sendo realizada.

Para identificar a aplicação que está executando a operação, é utilizado o

span id um, hash hexadecimal de 16 bits. Ou seja, nesse exemplo, a Salesforce

deve gerar o hash da execução, assim como a aplicação que executa o processo de

bloqueio de celular gera o seu próprio hash e também a “Controle Reserva”.

Há ainda o parent span, que é utilizado para ordenar qual aplicação chamou

qual durante o processamento da operação. Por exemplo, nesta situação, a

Salesforce chama o processo de bloqueio de celular. Então, é correto dizer que o

processo de bloqueio de celular foi originado pela Salesforce, sendo um span filho

do span gerado na Salesforce.

Ao analisar a figura 12, tem-se uma visão mais aprofundada das tecnologias

que estão sendo utilizadas para a execução desse fluxo, e, assim, sabendo quais

são as tecnologias utilizadas, foi possível definir como esses códigos serão

instrumentados para realizar o envio dos dados para a New Relic.

23

Figura 12 - Desenho de arquitetura do fluxo de abertura de ocorrência de celular

Fonte: Produção do próprio autor (2024).

É importante salientar que independentemente de como cada aplicação fosse

instrumentada, a responsabilidade de gerar o trace id, o valor que identifica toda a

transação, ficaria a cargo da execução da Salesforce, ou seja, no código Apex, dado

o fato de que o início do processamento se dá nessa parte do fluxo. Essa

informação é passada para os demais processamentos seguindo o padrão definido

pela W3C, em que são concatenadas as seguintes informações: versão, trace id,

span id e trace flag, este último tem a finalidade de indicar que o trace deve estar

ativo e ou inativo. Dessa forma, é possível que a aplicação que está recebendo essa

informação, continue agregando dados no mesmo trace que já foi iniciado na

Salesforce.

A partir do momento que o trace id e o span id foram concatenados seguindo

a lógica descrita acima, resultando em algo similar ao seguinte exemplo:

24

00-4bf92f3577b34da6a3ce929d0e0e4736-00f067aa0ba902b7-01, a informação

pode ser transmitida através de um header chamado traceparent. Bibliotecas de

instrumentação como a do Open Telemetry são capazes de interceptar essa

informação que está sendo transmitida neste header e realizar a configuração para

continuar o rastreio no mesmo trace id, bem como vincular o novo span criado com

o que foi passado para a aplicação.

Para a instrumentação das lambdas que foram construídas utilizando Python,

foram utilizadas justamente as bibliotecas disponibilizadas para lambdas Python da

Open Telemetry, que com poucas configurações é possível tornar a instrumentação

do código transparente para o desenvolvedor, sem que seja necessário fazer uma

linha de código para realizar a criação do span e ao fim do processo fazer o envio

do dado para a New Relic. Vale notar que, para o funcionamento desta biblioteca, é

necessário que o X-Ray esteja configurado na lambda.

Como a chamada da Salesforce para a lambda bloquearCelularFunction

ocorre através de uma chamada http, basta encapsular o trace id e span id dentro

do header traceparent, onde o API Gateway da AWS recepciona essa requisição, e

nesse cenário trabalha como um proxy, apenas transmitindo header e body para a

lambda realizar o seu processamento, como mostra a figura 12.

Já no cenário da comunicação através do evento, foram necessárias mais

algumas configurações. Como já comentado anteriormente, é possível fazer uma

integração entre Salesforce e AWS através de eventos, cenário descrito no primeiro

exemplo desse trabalho, mas, na postagem do evento no Platform Events da

Salesforce não é possível colocar a informação do trace id e span id de forma a

realizar a instrumentação como feita na lambda bloquearCelularFunction.

Para esse cenário, a solução desenvolvida foi a transmissão do valor

encapsulado em um json junto com as outras informações que estão sendo

transmitidas no evento. Com a informação dentro da mensagem do evento, ao

passar pela lambda de transformação chamada pelo pipe, essa informação e os

demais dados do evento são formatados para serem transmitidos para o bus de

forma correta.

Por fim, sobra a Salesforce. Não há uma ferramenta nativa da Salesforce

para fazer a telemetria dos dados, e a biblioteca Nebula Logger não possui suporte

para a telemetria das informações no padrão da Open Telemetry como está sendo

25

utilizado nas lambdas. Por esse motivo, foi necessário realizar a personalização da

biblioteca.

Começando pela geração dos trace id e span id, foi desenvolvido o código da

figura 13. A Salesforce não tem de forma nativa a geração de códigos randômicos

dentro do Apex, e, por isso, há a necessidade de tal código. A sua lógica consiste

em gerar de forma aleatória um hash hexadecimal do tamanho ao qual foi

transmitido para o método, dessa forma, é possível gerar um hash hexadecimal de

32 bits para o trace id e 16 bits para o span id.

Dentro da lógica de execução, a função getRandomInteger da classe Crypto

tem a responsabilidade de gerar um número inteiro randômico. Já o método abs da

classe Math tem a função de retornar o número absoluto do número randômico que

foi gerado, evitando a chance de erro de execução pelo número gerado ser

negativo. Por fim, o método mod da classe Math retorna a sobra de divisão do

número gerado por 16, sendo os possíveis valores 0 a 15 e esse valor é utilizado

para escolher de forma randômica alguns dos possíveis caracteres hexadecimal. O

loop é executado na quantidade de vezes necessárias para gerar o hash do

tamanho que foi requerido.

26

Figura 13 - Alteração na classe Logger, inclusão de métodos para geração de

identificadores de trace e span

Fonte: Produção do próprio autor (2024).

Esse código foi colocado estrategicamente dentro da classe Logger que

pertence ao framework do Nebula, atribuindo assim a responsabilidade de geração

das duas informações necessárias, o trace id e span id, à classe gerenciadora do

monitoramento da Salesforce. A partir do momento em que esse objeto é utilizado, é

realizada a criação de ambas as informações. Foram construídos dois métodos para

obter as informações do trace id e span id, a fim de ser possível obter os valores

para construção do header traceparent, como mostra a figura 14.

27

Figura 14 - Alteração da classe Logger, inclusão de métodos para captura dos

identificadores do trace e span

Fonte: Produção do próprio autor (2024).

O envio das informações para a plataforma de observabilidade ocorre apenas

no processamento do método saveLog da classe Logger. Novamente aqui neste

trabalho foi utilizado o modo de salvamento queueable, que adiciona um processo

na fila de execuções da Salesforce. Quando o processo é executado, o salvamento

das informações ocorre de forma diferente se comparada ao que foi demonstrado

no primeiro exemplo. Foi criada uma classe para ser realizado o salvamento dos

dados de forma personalizada para o fluxo aqui em questão, e nessa classe é

chamada a API do New Relic para o envio do trace para a plataforma.

Há um detalhe importante que é necessário ressaltar: por mais que o span

pai seja gerado na Salesforce, o span filho, que nesse caso é o que foi gerado no

processamento da lambda que realiza a lógica para bloquear o celular, é enviado

primeiro para a plataforma de observabilidade. Isso acontece porque a biblioteca

que instrumenta a lambda para captura das informações e extração para o

repositório faz o processo de envio logo após a finalização da execução da lambda.

28

Como o processo de chamada para essa lambda é síncrono, e o envio da

Salesforce ocorre apenas no final do processamento, é correto dizer que sempre

chegará primeiro o span da lambda. Porém, a ferramenta garante que mesmo

chegando em ordens separadas, caso os spans cheguem dentro do intervalo de

tempo estipulado pela ferramenta, sempre serão organizados de forma a mostrar a

informação correta, isto é, todos ligados à uma única transação e organizados de

pai para filho.

Para que fosse feito o envio do trace da Salesforce para o New Relic, como

comentado anteriormente, foi utilizado uma API disponibilizada pela New Relic.

Dentre as informações que são necessárias passar para essa API, destacam-se o

trace id, span id, serviço, host, timestamp. Também é possível enviar alguns dados

de métricas, como, por exemplo, a duração da execução do fluxo, dado que é obtido

pelo Nebula Logger.

Segundo documentação da New Relic (Docs New Relic, 2024), ao ser

recepcionada com sucesso a requisição do envio das informações - o que é

indicado por retorno do status 202 Accepted e o campo requestId - o trace enviado é

processado de forma assíncrona. Caso haja erro no processamento, este é

colocado em uma fila de erros, a qual é possível realizar consultas para verificar o

motivo do erro da postagem do trace. Também é possível configurar alertas na

ferramenta, para quando houver erros de postagem seja possível notificar a equipe

responsável. Dessa forma, torna-se mais fácil sustentar a configuração que foi

realizada para captura de trace.

Após a configuração de todas as camadas presentes na figura 12, obteve-se

o resultado demonstrado na figura 15, em que uma transação pode ser exibida,

mostrando cada aplicação que a transação passou.

29

Figura 15 - Tela de visualização de trace na plataforma New Relic

Fonte: Produção do próprio autor (2024).

Na imagem, é possível observar também que há outras informações a

respeito da execução, como detalhes do ambiente que foi executado, tempo total

para a execução, entre algumas outras métricas. Desta forma, pode-se fazer

análises para identificar possíveis gargalos e tratá-los antes de tornarem-se

problemas.

5. CONCLUSÃO
Durante este trabalho, foram abordados os desafios que os desenvolvedores

têm para realizar o monitoramento em sistemas distribuídos em nuvem, destacando

a complexidade introduzida por arquiteturas modernas em plataformas como a

Salesforce, que, como exemplificado, não possuem formas satisfatórias para

atender a esse requisito funcional.

A ausência de monitoramento eficaz, como demonstrado no primeiro

exemplo, leva à dificuldade de entender e resolver os problemas existentes em uma

aplicação, e, para isso, foi necessário realizar a implementação de uma ferramenta

focada em monitoramento para a plataforma em questão.

Além dessa implementação, também foi necessário pensar em uma

arquitetura que disponibilizasse o dado para análise feita pelo desenvolvedor, sem

ocupar espaço destinado para os dados transacionais, e, assim, não impactar

outras partes dos sistemas.

30

Por fim, foi abordado um exemplo que demonstra como pode ser obtido uma

visão macro da execução da transação, e, desta forma, permitir que o

desenvolvedor entenda cada aplicação que faz parte da transação.

A proposta desenvolvida neste documento abordou, que mesmo em

situações complexas e sem suporte nativo da plataforma, é possível realizar a

captura de logs, métricas e traces, viabilizando a observabilidade das operações

sistêmicas e contribuindo para o aumento da confiabilidade e desempenho dos

sistemas em nuvem.

6. EVOLUÇÕES
Este trabalho não abordou de forma profunda a instrumentação da Salesforce

seguindo os padrões definidos pela Open Telemetry para rastreio das execuções

sistêmicas. Não foi o foco demonstrar como realizar, por exemplo, o trace de um

omniscript que realiza uma chamada remote em um código Apex. Isto posto, não

está coberto por esse trabalho o rastreio das execuções da Salesforce com

comunicação interna pelos seus diferentes módulos. Com isso, existe a

recomendação de evoluir o trabalho nessa direção.

A partir do momento em que esse trabalho demonstrou como obter os dados

de execução, é possível realizar análises mais complexas para identificação de

possíveis problemas. Com a crescente de inteligências artificiais, seria interessante

evoluir o presente trabalho ao abordar o tema da realização do monitoramento com

o auxílio de inteligências artificiais.

31

REFERÊNCIAS2

AWS. Operational excellence: prepare. Disponível em:

https://docs.aws.amazon.com/en_us/wellarchitected/2022-03-31/framework/oe-prep

are.html. Acesso em: 19 nov. 2024.

BALDINI, I.; et al. Serverless computing: current trends and open
problems. Disponível em: https://arxiv.org/abs/1706.03178. Acesso em: 20 nov.

2024.

KLEPPMANN, M. Designing Data-Intensive Applications: The Big Ideas
Behind Reliable, Scalable, and Maintainable Systems. O'Reilly Media, 2017.

MELL, P.; GRANCE, T. The NIST definition of cloud computing. National
Institute of Standards and Technology, 2011. Disponível em:

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf.

Acesso em: 20 nov. 2024.

NEBULA LOGGER. Documentação oficial. Disponível em:

https://github.com/jongpie/NebulaLogger. Acesso em: 27 nov. 2024.

NEW RELIC. Documentação oficial. Disponível em:

https://docs.newrelic.com/pt/. Acesso em: 20 nov. 2024.

NEWMAN, S. Building Microservices: Designing Fine-Grained Systems.
O'Reilly Media, 2019. Capítulo 8: Monitoring.

OPEN TELEMETRY. Documentação oficial. Disponível em:

https://opentelemetry.io/pt/. Acesso em: 19 nov. 2024.

SALESFORCEa. Central de ajuda. Disponível em:

https://help.salesforce.com/. Acesso em: 19 nov. 2024.

SALESFORCEb. Developer documentation. Disponível em:

https://developer.salesforce.com. Acesso em: 18 nov. 2024.

2 De acordo com a Associação Brasileira de Normas Técnicas (ABNT NBR 10520).

https://docs.aws.amazon.com/en_us/wellarchitected/2022-03-31/framework/oe-prepare.html
https://docs.aws.amazon.com/en_us/wellarchitected/2022-03-31/framework/oe-prepare.html
https://docs.aws.amazon.com/en_us/wellarchitected/2022-03-31/framework/oe-prepare.html
https://arxiv.org/abs/1706.03178
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://github.com/jongpie/NebulaLogger
https://docs.newrelic.com/pt/
https://docs.newrelic.com/pt/
https://opentelemetry.io/pt/
https://opentelemetry.io/pt/
https://help.salesforce.com/
https://help.salesforce.com/
https://developer.salesforce.com
https://developer.salesforce.com

32

APÊNDICE A - CÓDIGO DESEMPENHO NEBULA LOGGER SEM SAVE LOG

@RestResource(urlMapping='/ocorrencia/*')

global without sharing class OcorrenciaController {

private static RestResponse restResponse;

private static RestRequest restRequest;

@HttpGet

global static String checkStatus() {

return '1';

}

}

APÊNDICE B - CÓDIGO DESEMPENHO NEBULA LOGGER COM SAVE LOG
EVENT BUS

@RestResource(urlMapping='/ocorrencia/*')

global without sharing class OcorrenciaController {

private static RestResponse restResponse;

private static RestRequest restRequest;

@HttpGet

global static String checkStatus() {

Logger.info('TESTE');

Logger.saveLog();

return '1';

}

33

}

APÊNDICE C - CÓDIGO DESEMPENHO NEBULA LOGGER COM SAVE LOG
QUEUEABLE

@RestResource(urlMapping='/ocorrencia/*')

global without sharing class OcorrenciaController {

private static RestResponse restResponse;

private static RestRequest restRequest;

@HttpGet

global static String checkStatus() {

Logger.info('TESTE');

Logger.saveLog(Logger.SaveMethod.QUEUEABLE);

return '1';

}

}

