UNIVERSIDADE DE SAO PAULO
ESCOLA POLITECNICA
PROGRAMA DE EDUCACAO CONTINUADA
POS-GRADUACAO LATO SENSU
MBA EM ENGENHARIA DE SOFTWARE

NICOLAS SILVA VIEIRA DE OLIVEIRA - N. USP 14634024

Observabilidade Em Sistemas Distribuidos: Salesforce e AWS

Sao Paulo
2024

NICOLAS SILVA VIEIRA DE OLIVEIRA

Observabilidade Em Sistemas Distribuidos: Salesforce e AWS

Monografia apresentada a Escola
Politécnica da Universidade de Sao Paulo
para obtencdo do titulo de Especialista

em Engenharia de Software.

Area de Concentracdo: Engenharia e

Computacao.

Orientador: Prof. Dr. Alexandre dos

Santos Mignon.

Sao Paulo
2024

AGRADECIMENTOS

Ao Dr. Alexandre Mignon, o qual tive o prazer de ser aluno e me possibilitou
tanto aprendizado, além de ter me orientado na construcido desse trabalho, de forma
clara e construtiva, os seus direcionamentos foram importantes para o resultado
final.

A minha amada esposa Ellen Gouveia, beletrista, que além de me ajudar
emocionalmente nos momentos em que estive a beira do precipicio, me ajudou nas
construgdes dos textos e revisodes.

Aos meus pais Arivaldo e Adriana, por me ajudarem a concluir a minha
graduagdo e me darem suporte financeiro e emocional para iniciar a minha vida
adulta e profissional, nunca conseguirei retribuir a altura todo o carinho e amor que
vocés tiveram por mim.

Aos meus amigos mais proximos, por me aturarem nos momentos em que
estive mais cansado. Nossas risadas foram alivios momentaneos necessarios para

que eu conseguisse terminar este trabalho.

RESUMO

O monitoramento de sistemas baseados em arquiteturas distribuidas em
provedores nuvem apresenta desafios aos desenvolvedores. Provedores como a
Salesforce, embora entreguem vantagens aos times de desenvolvimento - tais como
a abstracédo da gestdo do banco de dados e suporte ao desenvolvimento agil - nao
oferecem ferramentas nativas que possibilitem o monitoramento detalhado das
operagdes construidas em sua plataforma. Mesmo provedores como AWS, que
possuem formas robustas de monitoramento, exigem que sejam feitas intervengdes
nos codigos ou configuracdo de ferramentas terceiras, para que seja possivel obter
a visdao macro do processamento das operagdes, isso quando o sistema é
construido utilizando os conceitos de arquitetura distribuida. A fim de resolver estes
problemas, este trabalho propde uma estrutura para captura e analise de logs,
métricas e traces, em sistemas construidos utilizando Salesforce e AWS. A
abordagem apresentada permite monitorar os processos que ocorrem nesses
ambientes, e integrar os dados das transag¢des que ocorrem em sistemas distintos,
criando assim uma visdo macro do fluxo de processamento. Desta forma, os
resultados do trabalho foram a obtencao dos dados detalhados das execugdes das
operagdes na Salesforce para realizacdo de depuragdo e viabilizacdo de
monitoramento proativo, além da criacdo de uma visao unificada de transagdes que
ocorrem de forma distribuida, facilitando a identificacdo e resolugao de problemas, e

contribuindo para a eficiéncia e estabilidade operacional dos sistemas monitorados.

Palavras-chave: Monitoramento de sistemas; Salesforce; AWS; Arquitetura
distribuida.

ABSTRACT
Monitoring systems based on distributed architectures in cloud providers presents
significant challenges to developers. Providers such as Salesforce, while offering
advantages to development teams - such as database management abstraction and
support for agile development - do not provide native tools that enable detailed
monitoring of operations built on their platform. Even providers such as AWS, which
offer robust monitoring solutions, require intervention in the program code or other
tools configuration, in order to obtain a macro view of the operations process, when
the system is built using distributed architecture concepts. To solve these problems,
the present study proposes a structure to capture and analyze logs, metrics and
traces, in systems built with Salesforce e AWS. The showing approach enables the
monitoring of processes occurring in these environments and integration of
transaction data from different systems, thereby creating a macro view of the
process flow. Consequently, the results of this work include the capture of execution
data from Salesforce operations to facilitate debugging and enable proactive
monitoring, as well as the creation of a unified view of transactions occurring in a
distributed system. This unified view aids in problem identification and resolution,

contributing to the operational efficiency and stability of the monitored systems.

Keywords: System monitoring; Salesforce; AWS; Distributed architectures.

SUMARIO

1. INTRODUGAO.c.eeeeceeeeeeeeeeesereesesesessassseassseseasssessasssestsssessssseasaseseasssestsssessasssessassneasasens 1
T Problema. ——— 1
L2 O o)1= 11V o TS 2
1.3 JUSHIFICAtIVA. ... 3

2. CONCEITOS TEORICOS........ccouriueurererieeasesesessssssesssssssssesssssssesesasssssesssasssssenes 3
1228 1 T T SRR 3
2.2 SAIESTOMCE. ... et 4
G I Y o= PRSPPI 4
2.4 SEIVEIIESS. ...coiiiiiiiiie ettt e e e et a e e e e e e e s 5

3. INTERVENGAO EM UM APLICAGAO QUE JA ESTA SENDO UTILIZADA......... 5
3.1 ANAIISE da SItUAGAOD.eiiiiiiiiieee et e e e 7
3.2 Proposta de Solugéo, Instrumentagao da Salesforce..............cooovvevvivinnnnnnnn. 10
3.3 Implementagao da Proposta...........ccoovveiieeiiiiiiccceee e 17

4. PLANEJAMENTO E CONSTRUGCAO DE MONITORAMENTO NO

DESENVOLVIMENTO DE UMA APLICAGAO DISTRIBUIDA........cccoceeeerrrereeeennnne 19
v S I CT=T = Tor= o N o (o T I - To = PRSP 20

C T 030\ o I 1 17 Y o 20 29

(ST 23V T U Lo o] =5 30

REFERENCIAS........coceetetetetrtseieseeessssssessssssesssssssssssssssesssssssssnsssssenssssssnsessssssnsssnas 31

APENDICE A - CODIGO DESEMPENHO NEBULA LOGGER SEM SAVE LOG................ 32

APENDICE B - CODIGO DESEMPENHO NEBULA LOGGER COM SAVE LOG EVENT

= 32

APENDICE C - CODIGO DESEMPENHO NEBULA LOGGER COM SAVE LOG
L L = 33

1. INTRODUGAO

A Salesforce e a AWS sdo provedores de nuvem que sdo utilizados em
conjunto ou separadamente para construir solugbes diversas a inumeras areas de
negocio e oferecem beneficios as empresas, como a abstracdo do gerenciamento
de componentes tecnoldgicos da infraestrutura, agilidade para o desenvolvimento,
e, no caso da Salesforce, abstracdo do gerenciamento do banco de dados e
aproximacao da empresa ao cliente por meio do facil acesso ao dado do cliente. Por
isso, muitas empresas escolhem construir as solugdes para o seu negaocio utilizando
essas ferramentas.

Porém, o monitoramento dos processos construidos nessas ferramentas,

especialmente a Salesforce, tem diversos desafios.

1.1 Problema

Diferentemente do on-premises, em que comumente todas as aplicacdes
eram dispostas em um mesmo ambiente, na nuvem vemos uma transformacao para
uma arquitetura distribuida. Nesse cenario, para ser executada uma operacao de
negocio, normalmente diferentes servigos precisam se comunicar sem estar no
mesmo ambiente.

Além das aplicagbes estarem distribuidas, alguns dos provedores de nuvem,
como a Salesforce, ferramenta cloud para gestdo de relacionamento com o cliente,
nao oferecem de forma nativa ferramentas para monitorar as operagdes, ou as
ferramentas que estes oferecem nao sao satisfatorias para que seja possivel
monitorar as operacdes de forma eficaz, e, assim sendo, muitas das operacoes
construidas em Salesforce ficam sem monitoramento, o que acarreta em dificuldade
para manter as operagdes em produgao e impossibilita a sustentacdo dos sistemas
de forma proativa.

Devido a caracteristica de arquitetura distribuida, torna-se dificil monitorar as
operagbes mesmo quando as aplicagbes possuem logs e métricas.Quando ha um
cenario de erro, para encontrar o log exato da execugdo em que houve falha é
necessario identificar todos os ambientes que podem ter executado a operacao, até
encontrar o dado certo, o que torna o processo de depuracdo demorado.

Além disso, quando alguma operagdo ocorre em uma fungdo serverless
como, por exemplo, uma lambda function, o processo de monitoramento e

depuracédo torna-se ainda mais complicado. Segundo os autores (Baldini et al.,

2017) no artigo “Serverless Computing: Current Trends and Open Problems”, em

traducao livre:
“Monitorar e depurar aplicacdes serverless sera muito mais
desafiador, ja que ndo ha acesso direto ao servidor para ver o
que aconteceu de errado. Ao invés disso, plataformas
serverless precisam reunir todos os dados da execug¢ao do
coédigo e disponibilizar a posteriori. De forma semelhante,
depurar € muito diferente se ao invés de ter um artefato (como
um micro servigo ou uma tradicional aplicagdo monolitica) os
desenvolvedores precisam lidar com uma série de pecas

menores de codigo.”

1.2 Objetivo

O objetivo geral deste trabalho € mostrar uma estrutura para que seja feito o
monitoramento em sistemas que estdo construidos em nuvem, mais
especificamente, Salesforce e AWS.

Ao definir aqui o conceito de monitoramento enquanto captura de logs,
métricas e traces, pretende-se alcancar os seguintes objetivos especificos:
demonstragao de estrutura para realizar o monitoramento nos ambientes Salesforce
e AWS e criacdo de visdo macro de monitoramento das operagdes em uma
arquitetura distribuida.

Para isso, sao apresentados dados dois exemplos. O primeiro visa apenas
exemplificar como a Salesforce pode ser instrumentada para possibilitar o
monitoramento das operagdes, com captura de logs e métricas. Nesse cenario, 0
sistema apresenta problemas de execucdo em uma das operagdes, a qual sera o
foco, e, devido a falta de monitoramento, ndo é possivel identificar o erro e corrigi-lo
na causa raiz.

Ja o segundo exemplo ilustra como realizar a construgdo do monitoramento
de um sistema distribuido, utilizando Salesforce e alguns servicos da AWS. Dessa

forma, habilitando que seja feito um monitoramento proativo das operagoes.

1.3 Justificativa

Monitorar os sistemas é uma tarefa muito importante para garantir a
estabilidade e desempenho, ja que um monitoramento eficaz possibilita a resposta
rapida a incidentes e problemas que foram relatados (Kleppmann, 2017).

Além disso, um bom monitoramento permite que as equipes de Tl consigam
identificar pontos de melhoria olhando as métricas de desempenho, por exemplo:
tempo de resposta, numero de requisicdes processadas e uso dos recursos
computacionais. Assim, é possivel identificar gargalos potenciais e corrigi-los antes
de se tornarem um problema.

Em sistemas distribuidos, o monitoramento € ainda mais importante, por
conta da caracteristica da arquitetura, em que os servicos funcionam de forma
independente. Com isso, um erro em um componente pode afetar diversos outros
componentes, gerando assim um erro em cascata, e a falta de monitoramento torna
a situagcao muito mais complexa de ser resolvida (Newman, 2019).

Por isso, a observabilidade dos sistemas - pratica que envolve
monitoramento detalhado, com coleta de métricas em tempo real, trace dos fluxos e
logs das aplicagdes - tem sido recomendada como boa pratica a se empregar por
instituicdes como a AWS para fornecer aos desenvolvedores e equipes de operagao
insumo suficiente sobre o comportamento dos sistemas e suas operacdes, e,
assim, facilitar a identificacdo de anomalias (AWS, 2024). Sem tal pratica, a

resolugao dos problemas pode se tornar algo complexo e demorado.

2. CONCEITOS TEORICOS

Para entender de forma aprofundada a tematica focalizada neste trabalho, é
importante saber alguns conceitos que o contextualizam. A seguir, sao
apresentadas de forma breve algumas explicagbes de conceitos-chave para a

compreensao e melhor fluidez da leitura.

2.1 Cloud

“Cloud Computing", ou computagdo em nuvem, em portugués, € o modelo em
que o fornecimento dos recursos de computacdo acontece sob demanda, como
armazenamento, processamento e redes, isto através da internet. Por meio disso,

0s usuarios podem acessar e utilizar servicos de infraestrutura, plataformas e

software de forma flexivel e escalavel, excluindo a necessidade do gerenciamento
das partes fisicas envolvidas nesses servigos (Mell e Grance, 2011).

Ha trés categorias principais de computagdo em nuvem: laaS, PaaS e SaaS.

Sao denominadas laaS (Infraestrutura como Servigo), quando sao fornecidos
0S recursos basicos de computagdo, como maquinas virtuais e armazenamento.

Ja as PaaS (Plataforma como Servigo), sdo ambientes para o
desenvolvimento dos aplicativos, e a fornecedora do ambiente faz a gestdo dos
recursos basicos de computagao.

Por fim, nas SaaS (Software como Servigo), a fornecedora prové o software

ja para uso, permitindo apenas parametrizagdes do mesmo.

2.2 Salesforce

A Salesforce € um CRM - Gestdo de Relacionamento com o Cliente -
baseado em nuvem, inicialmente projetada para ajudar empresas no gerenciamento
de vendas, marketing e atendimento ao cliente, mas que ja se expandiu para outras
aplicagdes, como analise de dados e processos de workflow.

Ainda que seja denominada como SaaS, a plataforma possui diversas
tecnologias proprietarias de desenvolvimento, que permitem que o0s
desenvolvedores criem aplicativos dentro de sua infraestrutura.

Dividida em méddulos, cada um especificado para uma solugao, a Salesforce

possui clouds de Sales, Service, Marketing, Data, Industries, etc.

2.3 Apex

Apex é uma linguagem de programacgao proprietaria da Salesforce e se
assemelha muito a sintaxe do Java. Com essa linguagem de programagao, é
possivel desenvolver a camada de backend para processamento das regras de
negocio. Assim como a maioria das linguagens de backend, ha suporte para
exposicdo e API, possibilitando chamadas através de outros servidores ou
aplicativos, mas também ha suporte para que sejam feitas chamadas por meio de
outras tecnologias da Salesforce de forma nativa, como: VisualForce, Aura e LWC.

Essa linguagem é fortemente tipada e orientada a objetos, e seu foco esta
principalmente em operagdes que envolvem o modelo de dados da Salesforce.

Permite que os desenvolvedores criem classes de logica que interagem diretamente

com os dados armazenados na Salesforce sem a necessidade de uma segunda
camada de implementacgao para acesso aos dados (SALESFORCED, 2024).

Dentre as suas caracteristicas, nota-se o fato de sua execugao ser
controlada, havendo limites de governanga para a execugao do codigo. Tais limites
tém o objetivo de evitar o consumo excessivo do sistema, o que prejudica as demais

operagdes na Salesforce.

2.4 Serverless

Esse termo, que vem ganhando forca dentro do universo de computacéo,
refere-se ao modelo de computagdo em nuvem em que o provedor gerencia a
alocacdo dos recursos computacionais para a execucdo da operagao de forma
automatica. Dessa forma, os desenvolvedores nao precisam se preocupar com a
configuracdo dos servidores, apenas com a construcao dos aplicativos (Baldini et
al., 2017).

Apesar do nome serverless em tradugéo livre para o portugués significar
“sem servidor”, os servidores ainda estao presentes para a execugao dos codigos.
Porém, como dito, os servidores s&do totalmente gerenciados pelo provedor e
abstraidos para o desenvolvedor, possibilitando um desenvolvimento mais agil, além
de permitir que o desenvolvedor foque apenas na parte da légica do negdcio.

Além disso, normalmente o custo da utilizacdo das funcbes serverless é
comumente calculado pela quantidade de requisigdes realizadas e o tempo de
execucao, o que pode tornar-se mais barato do que manter uma maquina virtual
sempre disponivel consumindo recursos que muitas vezes nao estdo sendo

requeridos a todo momento.

3. INTERVENGAO EM UM APLICAGAO QUE JA ESTA SENDO UTILIZADA

A falta de monitoramento nas execugdes sistémicas, como ja comentado
anteriormente, pode tornar dificil identificar problemas e resolver incidentes
produtivos. Sendo assim, em situagdes que um provedor cloud nao fornece de
forma nativa ferramentas para realizar o monitoramento, deve-se procurar outras
maneiras para a realizagéo de tal tarefa. Este € o caso da Salesforce.

A fim de auxiliar na compreensido da situacido focalizada neste trabalho, o

problema sera apresentado por meio de um exemplo pratico.

A empresa ficticia “Seguros Para A Minha A Vida” comercializa diversos tipos
de seguros em diferentes vertentes.

Para algumas das coberturas comercializadas pela empresa foi tomada a
decisdao de que a solicitagcdo para a utilizagdo do seguro ndo sera tratada pela
seguradora, e, sim, por uma empresa parceira especializada. Nessas situagdes, o
cliente - ao entrar no site da empresa e escolher reportar a necessidade de utilizar o
seguro - & direcionado para o portal da empresa parceira e 14 informara o ocorrido.

Neste tipo de cenario, em que a solicitagcdo € inteiramente tratada pela
empresa parceira, € necessario que o caso aberto também esteja nas bases da
empresa “Seguros Para A Minha Vida”, para que seja possivel realizar controles de
utilizacdo das apdlices comercializadas e também a prestacdo de contas com a
empresa parceira.

Para cumprir essa necessidade de negdcio, foi desenvolvida uma API para o
recebimento dos casos que sdo abertos na empresa especializada. Como mostra a
figura 1, essa API foi construida na Salesforce, ambiente em que também esta
construido o sistema aviso de ocorréncia para utilizagdo do seguro. Os dados
recebidos nesse fluxo sdo armazenados nos objetos da Salesforce, porém, ha a
necessidade de serem enviados para a base oficial da empresa “Seguros Para A
Minha Vida”. O envio dos dados é realizado por meio de um servico disposto fora da

Salesforce.

Figura 1 - Fluxo de abertura de ocorréncia integrado com empresa parceira

Salesforce ©On Premises

| i empresa | | . Consulta de
parceira OcorrenciaAPl Apolices Base
Apolices

Cliente

m Ocorrencia Legado Base

Ocorrencias

Fonte: Produgao do proprio autor (2024).

Apos a implantacado desse fluxo, o time financeiro da “Seguros Para A Minha
Vida” comecou a reportar ao time responsavel pela API o fato de que nem todas as
solicitacbes cobradas pela empresa parceira estavam presentes na base de dados,
e, apos algumas investigacdes, foi descoberto que algumas das solicitagdes
reportadas pela empresa parceira ndo sao processadas corretamente pela API. Ja
que esta foi construida sem tratar o requisito nao funcional de observabilidade, o
time responsavel ndao tem informacdes a respeito da execugcao da APIl, como por
exemplo: quantas vezes a API foi chamada, quantas execugdes foram processadas
com sucesso e quantas execugdes foram processadas com erro. Além disso,
também ndo ha logs de depuragdo para a identificagdo e solugdo dos erros que
ocorrem nessa APIl. Sendo assim, € necessario fazer uma intervengéo nesse fluxo
para a obtencao desses dados, com o intuito de melhorar a observabilidade dessa
API.

3.1 Analise da Situacao

Partindo do pressuposto de que se sabe que a API de ocorréncias ndo tem o
funcionamento esperado, e também que ndo ha dados das execugdes para analise
dos erros da operacdo, € necessario entender em quais pontos deve ser feita a
intervencao, além de entender quais a¢des a operagao esta executando, para assim
compreender como instrumentar corretamente a API, visando a captura dos logs e

métricas.

Figura 2 - Diagrama de sequéncia de obteng&o de segurado

sd Obter Segurado J
:SeguradoBO :SeguradoModel :OnPremSeguradolntegration
— oblerSequrado() : X
opt consultarSegurado() I
[Se necessario buscar P _Dados segurade
dado atualizado da base
oficial] :
P Dedos sequrado, | ;

Fonte: Producgao do proprio autor (2024).

Figura 3 - Diagrama de sequéncia de registro de ocorréncia

sd Registrar Ocorréncia)

:OcorrenciaBO

:GeocodeUtil :Mapalntegration

:OcorrenciaModel

:OnPremOcorrencialntegration

: validaEndereco()

consultarEndereco()

Dados enderego

-

Dados endereco

salvarOcorrencia()

'
RS A N ——
'
l
'
l

+ Numero protocolo ocomrencia

sincronizarQOcorrencial()

L

Fonte: Produgao do proprio autor (2024).

Figura 4 - Diagrama de sequéncia de abertura de ocorréncia

i O :OcorrenciaService Q Q

Empresa Parceira :OcorrenciaController ! :Segurado :Ocorrencia

Informar ocorréncia : registrarOcorrencial)

" Obter Segurado
segurado

ref

Registrar Ocorréncia
Numero protocolo ocorrencia

MNumero protocolo
ocorrencia

MNumero protocolo
ocarrencia

Fonte: Produc&o do proprio autor (2024).

A figura 4, ilustra o diagrama de sequéncia do fluxo dessa API que esta com
mal funcionamento, assim como as suas demais partes demonstradas nas figuras 3
e 2. Estas demonstram o funcionamento da operagao realizada pela API que recebe
as ocorréncias pela empresa parceira. Nestas imagens, é possivel ver a
comunicagao dentro do sistema, e ter uma visdo mais clara dos pontos que devem
ser monitorados.

Para citar um exemplo, é possivel identificar alguns pontos mais propicios a
erros: o ponto de integragédo para consulta de um segurado na base on premises, a
consulta do endereco e a sincronizacdo entre Salesforce e on premises. Neste
sentido, autores, como Martin Kleppmann, abordam a fragilidade de sistemas
distribuidos, ressaltando que pelo fato de a comunicacéo ser realizada através da
rede, como por exemplo por meio de um http, o resultado dessa comunicacgao €
imprevisivel para o requisitante, que esta suscetivel a uma série de erros
(Kleppmann, 2017). Sendo assim, € um ponto valido para se realizar a devida

tratativa de erros e o monitoramento.

10

Outro ponto que pode-se observar € o momento de salvar os dados na
Salesforce. O banco de dados € abstraido para o desenvolvedor, representado
como objetos, e ha diversas possiveis validagdes que os proprios objetos podem
fazer no momento de persisténcia dos dados. Por exemplo: um campo picklist, que
se assemelha a um enum no Java, pode ter seus valores pré definidos e apenas
aceita-los, emitindo um erro caso a aplicagao tente criar um registro com um valor
que nao esta definido. Também pode ser um campo de valores pré definidos, mas
que aceita outros valores livres. Nesse caso, aceitando a criagao do registro. Devido
a essa caracteristica da Salesforce, outro ponto fragil da aplicagdo que pode gerar
erros e que ganhamos ao monitorar é a camada de persisténcia.

Pontos de transformagdo de dados comumente podem gerar excegdes,
principalmente se nao foram aplicadas técnicas de desenvolvimento que previnem
erros, a exemplo do null pointer. Isto posto, apesar de os diagramas nao
representarem ao certo os pontos que possuem transformacdes de dados, estes, no
geral, também sdo pontos em que vale a pena existir uma tratativa de erros para
captura das execugdes e salvamento dos logs, tornando mais facil realizar a
sustentagao para identificar os pontos de melhoria.

Por fim, a Salesforce possui diversos limites de execugéo para codigos Apex,
como limite de consumo de memodria por execucdo, tempo limite de execugao,
quantidade de consultas ao banco, quantidade de callouts, tempo limite para retorno
de um callout, entre outros. Exceder algum limite de execugao gera a interrupg¢ao do
processamento. Portanto este pode ser um dos motivos do mau funcionamento
dessa API, e deve ser monitorado como os demais pontos.

Apos elencar os pontos que devem conter monitoramento, pdde-se passar
para uma analise focada em de qual maneira realizar esse monitoramento. Para
isso, foi necessario entender como realizar a instrumentacdo da Salesforce para

captura dos dados de execucéo.

3.2 Proposta de Solugao, Instrumentacao da Salesforce

A Salesforce prové de forma nativa a captura dos dados de execugao das
operagbes no Apex. Porém, analisando a documentagdo do Debug Log, nos
deparamos com diversas limitagdes que dificultam o monitoramento das transacdes
(SALESFORCED, 2024).

11

Para a utilizagdo do Debug Log, é necessario fazer a configuracao diaria para
captura de dados de execugdo de um determinado usuario, o0 que nao limita a
captura de dados da API, visto que esta roda em contexto do usuario que o cliente
servidor se autenticou, mas demanda que diariamente uma pessoa do time ative a
ferramenta para rastrear as execugbes do usuario chamando a API
(SALESFORCED, 2024).

Além disso, ha um limite de geracédo de 1 GB de dados em um intervalo de
15 minutos, que, caso atingido, faz com que toda a geracédo de logs de toda a
organizacao seja desativada. Para o exemplo que estamos utilizando, considerando
que a abertura de ocorréncias que sao tratadas pela empresa “Seguros Para a
Minha Vida” é feita na mesma organizagdo em que a API esta sendo executada,
caso os dois fluxos estejam sendo monitorados, devido a quantidade de usuarios
utilizando o sistema ao mesmo tempo e o volume de dados de execugao gerados ao
mesmo tempo, o limite de 1 GB em 15 minutos torna-se um impeditivo para a
utilizacao da ferramenta nativa da Salesforce para a geragéo de logs.

Ainda que todas as operagdes sendo executadas na org ndo gerassem um
volume maior de 1 GB no intervalo de 15 minutos, ha ainda um limite de 1 GB de
geragcédo de logs no total, independentemente do intervalo de tempo para atingir
esse volume de dados. Por sua vez, atingir esse segundo limite ndo desabilita os
logs que ja foram ligados, porém, impede a configuragao para gerar logs em outros
pontos do sistema. Diferentemente do que ocorre em outras aplicagdes e
servidores, o rotacionamento dos logs na Salesforce acontece com um intervalo de
24 horas. Por fim, outro ponto que podemos identificar enquanto limitagdo da
ferramenta provida pela Salesforce € a forma de captura e visualizagao dos dados
que foram gerados.

Como mostra as figuras 5 e 6, todos os logs ficam agrupados sem diferenciar
a transacdo que o gerou e nao existe uma forma de filtrar a informacao por classe
ou fluxo. Além do mais, para realizar a busca de um log especifico na ferramenta
disponibilizada pela Salesforce, € necessario abrir um por um e procurar o trecho
desejado para entender o que ocorreu na execugdo. No cenario de geragao de
muitos dados, procurar uma informacao especifica nessa ferramenta se assemelha

a encontrar uma agulha no palheiro.

12

Figura 5 - Tela Debug Logs da Salesforce

empathetic-badger-fmvij-dev-ed.trailblaze lightning.force.com/i

Setup Home ObjectManager v

Q QuickFind SETUP
Debug Logs I

Setup Home

Service Setup Assstant
ervice Setup Assistant View: (A1) Cresetew view

Commerce Setup Assistant | I = !
Hyperforce Assistant Action Name + LogType RequestedBy StartDate Expiraion Date Debug Level Name
Delete | Ed | Fiters Vieita Nicolas USER_DEBUG Nicols Vieira 0322024 1934 03122024 2359 SFDC DevConsole
Release Updates Delete |t Fiters Vi, Nicolas DEVELOPER_L0G " 031220241933 030122024 1938 " on
Lightning Experience Transition 4
Assistant Previous Page | NextPage
Salesforce Mobile App Debug Logs Daletz Al
Lightning Usage user RequestType Apptcation operation stats Ouraion ms) Log size yies) startTime
optimizer View| Downioad | Delete Nicolas Veira Api Unknown senvcesidatahe2 Oooinglexecuie Ananymovs! Success & es12 1203 193623
View | Dounioad | Dekte Nicolas Viera o Unknown Ienvicesidata62 OnoolingiexecuteAnonymous/ Success 39 9531 1203 193621
Sales Cloud Everywhere View | Downioad | Delete Nicolas Ve api Unknown Isevicesidata62 OnoolingiexecuteAnonymous! Success B 39540 1203193619
View | Downioad | Delete Nicolas Veira pi Unknown ervicesidatae2 OnoolingiexecuteAnonymous! Success w0 052 1203 1936:18
ADMINISTRATION View | Downioad | Dekte Niolas Viera pi Unknown Ievicesidata62 OnoolingiexecuteAnonymous/ Success 39 39530 1203 193617
5 Users View| Downioad | Delete Nicolas Ve api Unknown senvcesicatae2. OooinglexecueAnonymous! Success s 39527 1203193615
View | Dounload | Delee Nisolas Viera Api Unknown senicesidatahe2 OooinglexccuieAnanymous! Success o 39529 1203 1936:14
> e View | Download | Delete Nicolas Vieira i Unknown Iservicesidatalv62 OooiinglexccuteAnonymous/ Success 85 39527 1203 19:36:13
> Email View | Downioad | Delete Nicolas Ve Ao Unknown Isenvicesidata62 OnoolingiexecuteAnonymous! Success 7 3953 12003 19.36:11
View | Downioad | Delete Nicolas Veira o Unknown Iervicesidata62 OnoolingiexecuteAnonymous! Success n 39530 1203 1936:10
PLATFORM TOOLS View | Dounioad | Dekte Nicolas Viera a0 Unknown Ievicesidata62 OnoolingiexecuteAnonymous/ Success 51 9502 1203 19:3608
View | Download | Delete Nieolas Vieira api Unknown Isenvicesidata62 OnoolingiexecuieAnonymous! Success B 3953 1203 193607
> Apps View | Downioad | Delete Nicolas Vieira o Unknown Iervicesidatae2 OnoolingiexecuteAnonymous/ Success 50 39529 1203 193605
> Feature Settings View | Dounioad | Dekte Nicolas Viera 2 Unknown evicesidata62 OnoolingiexecuteAnonymous/ Success s 39525 1203 193603
View | Download | Delete Nicolas Ve api Unknown senvcesicatahe2 Oooinglexecue Anonymous! Success ez 3952 1203 193602
> Shack View | Downioad | Detete Nicolas Vieira o Unknown Isenvicesidata62 OnoolingiexecuteAnonymous/ Success s 39530 1203 193601
> Workflow Services View | Dounioad | Dekte Nicolas Viera Api Unknown Ienvicesidata62 OnoolingiexecuteAnonymous/ Success s 2953 1203 193600
View | Downioad | Delete Nicolas Veia s Unknown senvcesidataNe2 Oooinglexecue Anonymous! Success @ 39520 1203 193558
> Heroku View | Douiosa | Delete Niolas Veka Api Unknown senicesidatae2 OooinglexccueAnanymous! Success 50 30544 1203 193557
> MuleSoft View | Dounioad | Delte Nicolas Viera Api Unknown ervicesidata62 OnoolingiexecuteAnonymous/ Success 7 953 1203 193556
> Einstein

Detete Al
©Obincte and Fields —

© orancer | -

Fonte: Produgao do proprio autor (2024).

Figura 6 - Tela de visualizag&o de log da Salesforce

empathetic-badger-f9muij-dev-ed.trailblaze lightning force.com/lightning D, address=9%2Fp%2Fsetup

Y Search Setup N@a?as

Home Object Manager
Q Quick?

Setup Home

Service Setup Assistant

User Micolas Vieira Date 0311212024 19:36:23 BRT
Commerce Setup Assistant

sts Success Application Unknown
Hyperforce Assistant ReavestType Api Operation services/dataiv62 OfoolinglexecuteAnonymous/
Relesse Updates Duration (ms) 62 Log Size Goytes) 39512

Log

Lightning Experience Transition ssvsTay, INFOWAVE, R0

Assistant

Salesforce Mobile App Anonymous:)
15756:23.0° (333808) [0SER
Lightning Usage 1556:2370 (354€20) [EXECTTION, STARTE:

- x 3.coml (@T-03:00) Brasilis Standard Time (hmeri

/5a0_Paulo) |@T-03:00

Optimizer
Sales Cloud Everywhere
ADMINISTRATION

()
> users vees:s

ATE (1115
Satomae] 1] 1vi200
> oata ta1
i3
> Email i
1651 [ayces s
1TEvesis
PLATFORM TOOLS .
i isyes s
ieTarca > 200
> Apps 7

Byves:4
> Feature Settings T (41 x99
> Slack

> Workflow Services.

> Heroku
> Mulesoft 4
Zocaz | (31 yea
i e (1007911) [TSER_DESTG| (3] 1DEBTG I Tasce > 58
> Einstein b (1011476) | STATEMENT EXECUTE| (4]
i (1012622) [EER_ ALLOTATE| 141 IByces:4

[1556:2370 (1015€05) IVARTABLE_ASSIGRAENT| (4] %157 >

peg—— . B

Fonte: Produgao do proprio autor (2024).

Podemos concluir, entdo, que a ferramenta padrdo da Salesforce nao atende
a situacdo que precisamos resolver, e por isso houve a necessidade de buscar

outras ferramentas que fazem o trabalho de geragédo e organizagdo dos dados de

13

execucao. Dentre alguns frameworks desenvolvidos pela comunidade, um dos mais
utilizados, e que também foi o escolhido para esse trabalho, € o Nebula Logger.

O Nebula Logger é um framework construido pela comunidade de
desenvolvedores da Salesforce, e € uma solugao de observabilidade que pode ser
instalada na org sem necessidade de pacotes externos além da estrutura do proprio
framework (Nebula Logger, 2024).

Quando realizada a instalacdo do Nebula Framework, sdo criadas classes,
metadados, objetos e eventos de plataforma, para a realizagdo das capturas dos
dados, salvamento e personalizagao da ferramenta.

Esse framework permite salvar os dados de execucgao de diferentes formas:
emitindo eventos, chamando servicos sincronos, adicionando um processo na fila
de execugao assincrona e executando DML nos objetos de forma sincrona. Cada
meétodo disponivel para realizar o salvamento dos dados tem suas proprias
caracteristicas e podem afetar de jeitos diferentes a execugdo do programa.

Ao analisar especificamente de qual maneira o método para salvar as
informagdes pode impactar o tempo de execugao da aplicagdo, podemos concluir o
seguinte: uma operacao que apenas recebe a requisi¢ao e retorna a string 1, opera
com tempo medio de 225,5 milisegundos. Adicionando nessa operagao o Nebula
Framework e salvando os logs e métricas no modelo padrédo da ferramenta, a
operacao passa a ter tempo médio de execugdo de 674,84 milisegundos, ja
alterando a forma de salvamento para queueable, este exemplo passou a executar
com o tempo meédio de 381,06 milisegundos. Logo, é correto afirmar que, ao olhar
especificamente o tempo de execugdao, o melhor método a se usar € o queueable,
em que ha acréscimo no tempo de execucdo, mas ainda consideravelmente menor

do que o método comparativo.’

' Utilizando um ambiente da Salesforce criado para fins educativos através da plataforma

https://trailhead.salesforce.com/, foi criado uma APl como descrito no corpo do texto, os cddigos

utilizados estao disponiveis nos apéndices A, B e C. O teste foi conduzido utilizando a ferramenta
Jmeter. Foram utilizadas 5 threads com ramp-up period de 1 segundo. Cada thread realizou 20
requisicbes em cada teste, totalizando 100 requisigdes. Foram executados os testes sem a utilizagao
do Nebula Logger, com a utilizagdo em modo de salvamento por emissao de evento e por queueable.
Os dados produzidos pelo teste estéo disponiveis no link

https://docs.google.com/spreadsheets/d/13hq2QoRZa13whC2x-YjdbpCIxQZL 5SuDIMZpBSeQVhKO0/ed
it?7qid=182322353#qid=182322353.

https://trailhead.salesforce.com/
https://docs.google.com/spreadsheets/d/13hq2QoRZa13whC2x-YjdbpClxQZL5uDlMZpBSeQVhK0/edit?gid=182322353#gid=182322353
https://docs.google.com/spreadsheets/d/13hq2QoRZa13whC2x-YjdbpClxQZL5uDlMZpBSeQVhK0/edit?gid=182322353#gid=182322353

14

Uma funcionalidade importante do framework é o processo de exclusao dos
dados, que é totalmente personalizavel para atender a quantidade de tempo que o
dado precisa permanecer disponivel. Para tal, é fornecido um batch agendavel, que
exclui todos os registros em que o campo indicador no objeto de log for menor ou
igual a data de execugao.

Ao definir que o Nebula sera utilizado para a captura de logs, ainda ha um
problema a ser resolvido. Essa ferramenta, ao salvar os logs, consome
armazenamento da Salesforce que é destinado aos dados transacionais de negécio.

Sabe-se que o0 armazenamento de dados na Salesforce €& caro,
principalmente se comparado a outras ferramentas cloud. Segundo o site da
Salesforce (SALESFORCEa, 2024), toda organizagao dos tipos: Contact Manager,
Group, Essentials, Professional, Enterprise, Performance e Unlimited, sdao criadas
com 10 GB disponivel para armazenamento de dados, e a cada licenca de usuario
contratada, sdo adicionados mais 200 MB para utilizagdo na organizagao.

Para adicdo apenas do espago de armazenamento € necessario negociar
junto a Salesforce, sendo que o prego deste nao é disponibilizado amplamente pela
Salesforce na internet. Porém, sabendo que a forma aconselhada pela plataforma
para alocar mais storage € por meio de contratagdo de novas licengas, € correto
afirmar que, utilizando como exemplo uma conta Enterprise, a cada 200 MB
adicionais, o custo sera de $150 ddlares estadunidenses, sendo esse o prego por
licenga para uma org Service Cloud.

Utilizando como comparacédo outras ferramentas de logs fornecidas por
outras clouds, como Amazon CloudWatch, uma solugdo em que o custo por GB de
armazenamento € equivalente a $750 ddlares estadunidenses é inviavel. A nivel
comparativo, 1 GB de dados armazenados no CloudWatch na regido ca-central-1 é
o equivalente a $0,03 ddlares estadunidenses.

Deste modo, por mais que a utilizagdo do Nebula Framework seja util para a
captura dos dados de execugao e geragdo de métricas, os dados produzidos nao
podem ficar armazenados por longos periodos dentro da Salesforce, sendo
necessario transferi-los para outra ferramenta com custo mais barato.

O Nebula Logger, ja citado anteriormente, possui uma forma de persisténcia
assincrona, nesta, além do salvamento dos dados ser feito nos objetos dentro da

Salesforce, também é emitido um evento no Platform Events.

15

A ferramenta de eventos nativa da Salesforce permite que seja feita uma
conexao com contas da AWS para a propagacgao de eventos emitidos do Platform
Events para um eventbus - roteador de eventos entre um transmissor e um receptor
- dentro da ferramenta Amazon Eventbridge. Esse caminho é configurado através
de um Event Relay, uma funcionalidade da Salesforce que se subscreve ao bus da
Salesforce e propaga o evento capturado para outro eventbus, conforme

configurado, como mostra a figura 7.

Figura 7 - Fluxo de comunicagao entre Platform Events e AWS EventBridge

Platform

Tools Flow LWC Uls Apex

Sales Service Mulesoft Commerce Marketing Lambda 5Q5

@000 0

Salesforce Event Bus AWS EventBridge

4

External o S\ (55
Systems @ W y

Fonte: SALESFORCEa (2024).

Por mais que seja possivel a criagdo de uma regra dentro do eventbus para o
envio do evento direto para o Amazon CloudWatch - destino dos dados que estao
transitando no evento - neste cenario utilizaremos uma lambda para fazer a tratativa
do dado que esta transitando para fazer a transformagdo da estrutura salva na
Salesforce para uma estrutura de dados mais aderente ao padrdo da Amazon
CloudWatch, visando ser mais facil a geracdo de métricas e visualizagdo dessas
informagdes. Assim, o caminho dos logs de execugédo da API Ocorréncias, até ser

armazenado no CloudWatch, ficou como mostrado na figura 8.

16

Figura 8 - Fluxo transi¢do Salesforce logs para AWS CloudWatch

API| Ocorrencia Platform Events

v

Save - Salesforce Event
NebullaLogger Bus
‘ sObjects] Cloud Watch

Batch Exclusao -
c NebullaLogger

Fonte: Produgéo do proprio autor (2024).

O

A partir da definicdo de como os dados serao capturados, para onde iréo e
como sera feito o processo de transporte, passou-se para o processo de analise de
quais dados deveriam ser capturados. A ferramenta de log que aqui foi utilizada,
tem a capacidade de obter diversos dados de performance da execug¢dao de uma
transacdo, mas aqui o foco estda em apenas alguns dos dados que mais podem
demonstrar mais significativamente como estdo as execugdes desta API, estes

dados estéo dispostos na tabela 1.

Tabela 1 - Informacdes da execugao capturadas para monitoramento

Nome Logico Informacao Contida

LimitsHeapSizeUsed ¢ | Utilizacdo de memoaria

LoggedByUsername__c | Usuario executor

Mensagem impressa através de um log info ou

Message ¢
— error

LimitsSoqlQueryRowsUs

ed_c Quantidade de querys utilizadas

17

LimitsQueuableJobsUse | Quantidade de trabalhos adicionados a fila de
d c execugao

LimitsFutureCallsUsed

c Quantidade de postagens para execugodes futuras

Quantidade de processamento utilizado na

LimitsCpuTimeUsed__ ¢ ~
execucao

Quantidade de chamadas externas realizadas

LimitsCalloutsUsed ¢ através de http

StackTrace ¢ Rastro do erro

Timestamp__c Horario da postagem do log
OriginLocation__c¢ Classe que emitiu o log

APICallResult ¢ Resultado da operagao que foi executada
APICallType__c API que foi executada

Fonte: Producéo do proprio autor (2024).

3.3 Implementagao da Proposta

Para implementar a solugdo proposta acima, foram necessarias algumas
alteragdes nos codigos do Nebula Framework e também configuracbes da
ferramenta.

A fim de transitar todos os dados da transagao em um evento unico, foi criado
um platform event de nome Log__e, que encapsula tanto o objeto Log__c como
todos os objetos LogEntry ¢ relacionados ao objeto Log_ ¢ em questédo. Esse
evento esta sendo emitido apds a criagao dos objetos, ja estando, assim, os objetos
relacionados.

Também foram incluidos dois campos novos dentro do objeto Log_ c:
APICallType__c e APICallResult__c, em que o primeiro tem por objetivo mapear
qual a chamada que foi feita, enquanto o segundo mapeia o resultado da operacgao,
tornando possivel que sejam gerados relatérios e graficos de acompanhamento
para verificar a saude da API que esta sendo monitorada.

ApOs essas personalizacbes terem sido feitas, foram realizadas as
modificagdes dentro da API, com a implementacao de tratativas de erro onde estas
nao estavam presentes.

Por exemplo: na classe OnPremOcorrencialntegration = método

sincronizarOcorrencia, que tem como responsabilidade sincronizar a ocorréncia

18

recebida na Salesforce com a base oficial da empresa, era feita apenas a requisi¢cao
sem ocorrer uma tratativa do resultado da requisicdo, como mostra a figura 9, para
que seja possivel monitorar essa parte do fluxo a tratativa foi feita por meio da
verificacdo do status de retorno da requisicdo e langando um erro caso fosse

diferente do status de sucesso, que no caso seria 201, como mostra a figura 10.

Figura 9 - Classe de integracdo da ocorréncia entre sistemas sem tratativa de

erro para monitoramento

OnPremOcorrencialntegration !
OnPremOcorrencialntegration() {}

sincronizarOcorrencia(

setEndpoint

setMethod

setTimeout

setHeader

setBody serialize(
send

Fonte: Producéao do proprio autor (2024).

Figura 10 - Classe de integragcao da ocorréncia entre sistemas com tratativa de erro

para monitoramento

OnPremOcorrencialntegration {
onPremOcorrenciaIntegration() {}

sincronizarOcorrencia(

setEndpoint

setMethod

setTimeout(10880

setHeader

setBody serialize(
send

getStatusCode() 281

Fonte: Producao do proprio autor (2024).

Tal processo foi feito em todos os pontos de integragdo do sistema,
considerando as integracdes de busca do segurado e busca de endereco.
Nao foi necessario incluir o langcamento de excecbes em partes como a

transacdo com o banco de dados, pois, caso tenha algum erro no momento da

19

execucao, um erro ja sera langado na pilha de execucdo. Todo erro langado na
execucao de registrar a ocorréncia é tratado pelo chamador, sendo esta a classe
OcorrenciaController método doPost, o ponto de entrada na API. Neste ponto, foram
incluidas as tratativas necessarias para salvar os logs com todos os dados
necessarios.

Foi incluido um log info registrando o inicio do processo e este € necessario
para os cenarios de sucesso também enviarem os dados capturados, visto que a
ferramenta apenas faz a criagado dos objetos Log ¢ e LogEntry ¢ caso exista na
lista de logs algum registro dos tipos habilitados na organizacgao.

Utilizando da capacidade de customizagdo do framework, foi utilizado o
método setField da classe Logger, para salvar o valor “/ocorrencia/doPost” no
campo LogEntryEvent _e.APICallType c, e no campo
LogEntryEvent _e.APICallResult__c resultado da operagao, “SUCCESS” ou “FAIL”,
significando respectivamente, sucesso ou falha da requisigéo.

Por fim, quando capturada uma excecdo de execugao, € salvo o log error,
setando a mensagem e o stack trace do erro, informagdes que sao necessarias para
a analise dos problemas.

Configurada a integracdo entre Salesforce e AWS, os dados, a partir do
momento em que sdo salvos, sao capturados no evento que foi criado para esse
fluxo e passam pela tratativa da lambda implementada, a qual salva as informagdes
no CloudWatch. Como os dados estdao no CloudWatch, tornou-se possivel realizar
analises e construir alertas utilizando as ferramentas.

Por fim, o batch foi configurado na Salesforce para a exclusdo dos dados, a

fim de n&o consumir storage, como explicado anteriormente.

4. PLANEJAMENTO E CONSTRUCAO DE MONITORAMENTO NO
DESENVOLVIMENTO DE UMA APLICAGCAO DISTRIBUIDA

A partir do momento que se sabe como realizar a instrumentacdo da
Salesforce para a obtencao dos dados de execugao das operacgdes, pode-se voltar
o foco para a evolugado desse cenario.

Nos cenarios em que a Salesforce faz parte do processamento da operacéo,
mas o sistema esta distribuido em outros ambientes, ainda ha o problema de todos
os logs e métricas estarem segregados, e também persiste a complexidade de

entender onde exatamente ocorreu o erro.

20

Para entender melhor a situagao, o problema sera novamente exemplificado
em um contexto pratico.

Em um fluxo especifico da empresa “Seguros Para a Minha Vida”, na
abertura de uma ocorréncia de roubo de celular, o sistema recebe as informacdes
imputadas pelo usuario, e precisa notificar uma segunda aplicagdo que realiza o
bloqueio do celular antes de gerar o numero da ocorréncia, que € gerado
automaticamente ao serem salvas as informacodes. Apos salvar as informagdes com
sucesso, € emitido um evento para notificar os sistemas interessados na operagao
que ocorreu, €, por fim, o numero do protocolo é devolvido para o segurado em tela.

Um dos sistemas interessados no processamento ocorrido € o sistema de
reserva, que faz os célculos de quanto sera gasto para cobrir o cliente na ocorréncia
informada, e entdo faz a separagado desse valor em uma conta corrente especifica
da empresa, atendendo as questdes legais impostas pelos 6rgaos reguladores,
como a Susep.

Considerando que esse fluxo estd em momento de ideagao, ha a questao de
como realizar o monitoramento de forma a conseguir identificar, quando necessario,
onde foi o ponto de falha. Nesse cenario, pode-se utilizar o conceito de trace.

No inicio deste trabalho o conceito de monitoramento foi definido enquanto
captura de logs, métricas e trace, e nesse segundo exemplo o foco sera a geragao

do trace.

4.1 Geragao do Trace

Utilizando a definicdo dada pela Open Telemetry, trace, ou rastros, se
traduzido para o portugués, é “o caminho de uma solicitacdo através do seu
aplicativo” (Open Telemetry, 2024). Dessa forma, pode-se entender por onde a
requisicdo passou, e analisar em caso de falha o lugar exato em que esta ocorreu,
além de possibilitar que sejam feitas analises mais aprofundadas para entender
problemas de desempenho.

Para a situagcdo mencionada ha pouco, como mostra a figura 11, o site que o
segurado acessa para informar a ocorréncia foi construido na Salesforce, também o
processamento dessa ocorréncia acontece na Salesforce, ja o servico de bloqueio

de celular e o controle da reserva estao dentro da AWS.

21

Figura 11 - Fluxo de abertura de ocorréncia de celular

Aplicagdes Externas

Salesforce AWS

Bloqueio Celular

Ocorréncia Celular |< —————

site de ocorréncia
Segurado

Controle Reserva

Fonte: Produgao do préprio autor

A Amazon fornece o X-Ray de forma nativa nas suas ferramentas serverless
para fazer captura do trace dos fluxos que la estdo sendo executados. Entretanto,
apenas o uso do X-Ray néao é suficiente nesse cenario. Devido ao fato de que a
operacao ¢ iniciada na Salesforce, para ter a visao clara de tudo o que foi executado
o ideal é o trace mostrar que a execuc¢ao foi iniciada pela Salesforce no processo de
“Ocorréncia Celular”, passou pelo “Bloqueio Celular” e por fim o “Controle Reserva”
capturou o evento para realizar o seu processamento, como mostra a imagem
acima.

Ha algumas plataformas que auxiliam os desenvolvedores, realizando o
agrupamento das informagbes de execucdo que sdo geradas em ambientes
distintos. Para realizar esse trabalho foi utilizada a New Relic, uma plataforma
especializada em observabilidade (NEW RELIC, 2024).

Nesta plataforma, ha uma ferramenta de monitoramento dos aplicativos
chamada APM, que, em resumo, serve para realizar um monitoramento unificado de
todos os aplicativos e microsservigcos. Dentro dessa ferramenta, uma das
funcionalidades é exatamente o trace, que, segundo a documentacgao da plataforma,
fornece o rastro de uma unica transacao, atendendo exatamente ao objetivo aqui
definido (NEW RELIC, 2024). Para o uso dessa funcionalidade, € necessario que o

ambiente que executa a operagao envie a execugao para a New Relic, seguindo as

22

opcdes disponibilizadas pela ferramenta, como a instrumentacéo através do Open
Telemetry, ou através de uma chamada http seguindo uma API disponibilizada pela
New Relic. Adiante sera demonstrado como foram utilizadas as duas formas para o
envio da informacgao.

Seguindo o modelo definido pela Open Telemetry, o vinculo das execugbes
funciona através de hashs identificadores. O trace id, um hash hexadecimal de 32
bits, identifica uma transacdo enquanto um todo, ou seja, a cada ocorréncia
informada, deve ser gerado um trace id que representa aquela operagcado que esta
sendo realizada.

Para identificar a aplicagdo que esta executando a operacao, € utilizado o
span id um, hash hexadecimal de 16 bits. Ou seja, nesse exemplo, a Salesforce
deve gerar o hash da execugao, assim como a aplicagao que executa o processo de
bloqueio de celular gera o seu proprio hash e também a “Controle Reserva”.

Ha ainda o parent span, que € utilizado para ordenar qual aplicagao chamou
qual durante o processamento da operacdo. Por exemplo, nesta situagcdo, a
Salesforce chama o processo de bloqueio de celular. Entédo, é correto dizer que o
processo de bloqueio de celular foi originado pela Salesforce, sendo um span filho
do span gerado na Salesforce.

Ao analisar a figura 12, tem-se uma visdo mais aprofundada das tecnologias
que estao sendo utilizadas para a execugao desse fluxo, e, assim, sabendo quais
sdo as tecnologias utilizadas, foi possivel definir como esses cédigos serao

instrumentados para realizar o envio dos dados para a New Relic.

23

Figura 12 - Desenho de arquitetura do fluxo de abertura de ocorréncia de celular

API Externa

Salesforce AWS

API Gateway bloquearCelularFunction

Platorm Events O
= B

eventbridge pipe

eventbridge bus

Salesforce Event
Bus

transformadorDeEvento
controlarReservaFunction

Legenda

_—

Comunicacao entre componentes de forma sincrona

Comunicacgao entre componentes de forma assincrona

Fonte: Produc&o do proprio autor (2024).

E importante salientar que independentemente de como cada aplicagdo fosse
instrumentada, a responsabilidade de gerar o trace id, o valor que identifica toda a
transacao, ficaria a cargo da execucgao da Salesforce, ou seja, no cédigo Apex, dado
o fato de que o inicio do processamento se da nessa parte do fluxo. Essa
informagéo € passada para os demais processamentos seguindo o padrao definido
pela W3C, em que sdo concatenadas as seguintes informagdes: verséo, trace id,
span id e trace flag, este ultimo tem a finalidade de indicar que o trace deve estar
ativo e ou inativo. Dessa forma, € possivel que a aplicagdo que esta recebendo essa
informagéo, continue agregando dados no mesmo trace que ja foi iniciado na
Salesforce.

A partir do momento que o trace id e o span id foram concatenados seguindo

a logica descrita acima, resultando em algo similar ao seguinte exemplo:

24

00-4bf92f3577b34daba3ce929d0e0e4736-00f067aalba902b7-01, a informacao
pode ser transmitida através de um header chamado traceparent. Bibliotecas de
instrumentacdo como a do Open Telemetry sdo capazes de interceptar essa
informacgado que esta sendo transmitida neste header e realizar a configuracédo para
continuar o rastreio no mesmo trace id, bem como vincular o novo span criado com
o que foi passado para a aplicagao.

Para a instrumentagédo das lambdas que foram construidas utilizando Python,
foram utilizadas justamente as bibliotecas disponibilizadas para lambdas Python da
Open Telemetry, que com poucas configuragdes € possivel tornar a instrumentagao
do codigo transparente para o desenvolvedor, sem que seja necessario fazer uma
linha de codigo para realizar a criagado do span e ao fim do processo fazer o envio
do dado para a New Relic. Vale notar que, para o funcionamento desta biblioteca, é
necessario que o X-Ray esteja configurado na lambda.

Como a chamada da Salesforce para a lambda bloquearCelularFunction
ocorre através de uma chamada http, basta encapsular o trace id e span id dentro
do header traceparent, onde o APl Gateway da AWS recepciona essa requisicao, e
nesse cenario trabalha como um proxy, apenas transmitindo header e body para a
lambda realizar o seu processamento, como mostra a figura 12.

Ja no cenario da comunicacao através do evento, foram necessarias mais
algumas configuragdes. Como ja comentado anteriormente, é possivel fazer uma
integracao entre Salesforce e AWS através de eventos, cenario descrito no primeiro
exemplo desse trabalho, mas, na postagem do evento no Platform Events da
Salesforce ndao é possivel colocar a informacao do trace id e span id de forma a
realizar a instrumentacdo como feita na lambda bloquearCelularFunction.

Para esse cenario, a solugdo desenvolvida foi a transmissdo do valor
encapsulado em um json junto com as outras informacdes que estdo sendo
transmitidas no evento. Com a informagdo dentro da mensagem do evento, ao
passar pela lambda de transformacdo chamada pelo pipe, essa informacdo e os
demais dados do evento sdo formatados para serem transmitidos para o bus de
forma correta.

Por fim, sobra a Salesforce. Ndo ha uma ferramenta nativa da Salesforce
para fazer a telemetria dos dados, e a biblioteca Nebula Logger ndo possui suporte

para a telemetria das informagdes no padrdo da Open Telemetry como esta sendo

25

utilizado nas lambdas. Por esse motivo, foi necessario realizar a personalizagcado da
biblioteca.

Comecando pela geracao dos trace id e span id, foi desenvolvido o cédigo da
figura 13. A Salesforce ndo tem de forma nativa a geragao de codigos randédmicos
dentro do Apex, e, por isso, ha a necessidade de tal codigo. A sua logica consiste
em gerar de forma aleatéria um hash hexadecimal do tamanho ao qual foi
transmitido para o método, dessa forma, € possivel gerar um hash hexadecimal de
32 bits para o trace id e 16 bits para o span id.

Dentro da légica de execucéo, a funcdo getRandominteger da classe Crypto
tem a responsabilidade de gerar um numero inteiro randémico. Ja o método abs da
classe Math tem a funcao de retornar o numero absoluto do nimero randémico que
foi gerado, evitando a chance de erro de execugao pelo numero gerado ser
negativo. Por fim, o método mod da classe Math retorna a sobra de divisdo do
numero gerado por 16, sendo os possiveis valores 0 a 15 e esse valor é utilizado
para escolher de forma randémica alguns dos possiveis caracteres hexadecimal. O
loop é executado na quantidade de vezes necessarias para gerar o hash do

tamanho que foi requerido.

26

Figura 13 - Alteragao na classe Logger, inclusdo de métodos para geracao de

identificadores de trace e span

p > main > ¢ > ® |og s
Logger |
callStatusApi() {

getStatusCode() 400) {

getStatus()

).setExceptionDetails(

generateTraceld() {
generateRandomHe

generateSpanId() {
generateRandomHex (16

generateRandomHex (

mod (abs(getRandomInteger())
substring(1)

Fonte: Producgao do proprio autor (2024).

Esse cddigo foi colocado estrategicamente dentro da classe Logger que
pertence ao framework do Nebula, atribuindo assim a responsabilidade de geragao
das duas informag¢des necessarias, o trace id e span id, a classe gerenciadora do
monitoramento da Salesforce. A partir do momento em que esse objeto é utilizado, é
realizada a criagdo de ambas as informagdes. Foram construidos dois métodos para
obter as informagdes do trace id e span id, a fim de ser possivel obter os valores

para construgao do header traceparent, como mostra a figura 14.

27

Figura 14 - Alteracao da classe Logger, inclusdo de métodos para captura dos

identificadores do trace e span

* |ogger.cls X

force-app > main > default cls

Logger |

getOrganizationApiVersion() {

getTransactionId() {

getTraceId() {

getSpanId() {

Fonte: Producao do proprio autor (2024).

O envio das informagdes para a plataforma de observabilidade ocorre apenas
no processamento do método savelLog da classe Logger. Novamente aqui neste
trabalho foi utilizado o modo de salvamento queueable, que adiciona um processo
na fila de execugdes da Salesforce. Quando o processo é executado, o salvamento
das informagdes ocorre de forma diferente se comparada ao que foi demonstrado
no primeiro exemplo. Foi criada uma classe para ser realizado o salvamento dos
dados de forma personalizada para o fluxo aqui em questdo, e nessa classe é
chamada a API do New Relic para o envio do trace para a plataforma.

Ha um detalhe importante que € necessario ressaltar: por mais que o span
pai seja gerado na Salesforce, o span filho, que nesse caso é o que foi gerado no
processamento da lambda que realiza a légica para bloquear o celular, € enviado
primeiro para a plataforma de observabilidade. Isso acontece porque a biblioteca
que instrumenta a lambda para captura das informacdes e extragdo para o

repositério faz o processo de envio logo apds a finalizagao da execugao da lambda.

28

Como o processo de chamada para essa lambda é sincrono, € o envio da
Salesforce ocorre apenas no final do processamento, é correto dizer que sempre
chegara primeiro o span da lambda. Porém, a ferramenta garante que mesmo
chegando em ordens separadas, caso os spans cheguem dentro do intervalo de
tempo estipulado pela ferramenta, sempre serdo organizados de forma a mostrar a
informagao correta, isto €, todos ligados a uma unica transagao e organizados de
pai para filho.

Para que fosse feito o envio do trace da Salesforce para o New Relic, como
comentado anteriormente, foi utilizado uma API disponibilizada pela New Relic.
Dentre as informacdes que s&o necessarias passar para essa API, destacam-se o
trace id, span id, servigo, host, timestamp. Também é possivel enviar alguns dados
de métricas, como, por exemplo, a duragédo da execugao do fluxo, dado que é obtido
pelo Nebula Logger.

Segundo documentacdo da New Relic (Docs New Relic, 2024), ao ser
recepcionada com sucesso a requisicdo do envio das informagdes - o que é
indicado por retorno do status 202 Accepted e o campo requestld - o trace enviado é
processado de forma assincrona. Caso haja erro no processamento, este é
colocado em uma fila de erros, a qual é possivel realizar consultas para verificar o
motivo do erro da postagem do trace. Também €& possivel configurar alertas na
ferramenta, para quando houver erros de postagem seja possivel notificar a equipe
responsavel. Dessa forma, torna-se mais facil sustentar a configuracao que foi
realizada para captura de trace.

Apo6s a configuracédo de todas as camadas presentes na figura 12, obteve-se
o resultado demonstrado na figura 15, em que uma transacédo pode ser exibida,

mostrando cada aplicagaéo que a transagao passou.

29

Figura 15 - Tela de visualizagao de trace na plataforma New Relic

0: [[6] 30Bace34cacssirassonszsescansact) | spans: 4 D

ors © | @ 3enties v | O

Trace duration Backend duration
71.59s 71.59s

X

lambda_function.lambda_handler

.
~ Expand all ~ Collapse all 1 et ize. , 2024 9:42pm

Fonte: Produc&o do proprio autor (2024).

Na imagem, é possivel observar também que ha outras informagbes a
respeito da execucdo, como detalhes do ambiente que foi executado, tempo total
para a execucgao, entre algumas outras métricas. Desta forma, pode-se fazer
analises para identificar possiveis gargalos e trata-los antes de tornarem-se

problemas.

5. CONCLUSAO

Durante este trabalho, foram abordados os desafios que os desenvolvedores
tém para realizar o monitoramento em sistemas distribuidos em nuvem, destacando
a complexidade introduzida por arquiteturas modernas em plataformas como a
Salesforce, que, como exemplificado, ndo possuem formas satisfatérias para
atender a esse requisito funcional.

A auséncia de monitoramento eficaz, como demonstrado no primeiro
exemplo, leva a dificuldade de entender e resolver os problemas existentes em uma
aplicacao, e, para isso, foi necessario realizar a implementagao de uma ferramenta
focada em monitoramento para a plataforma em questao.

Além dessa implementagcdo, também foi necessario pensar em uma
arquitetura que disponibilizasse o dado para analise feita pelo desenvolvedor, sem
ocupar espacgo destinado para os dados transacionais, e, assim, nao impactar

outras partes dos sistemas.

30

Por fim, foi abordado um exemplo que demonstra como pode ser obtido uma
visdo macro da execugdo da transacao, e, desta forma, permitir que o
desenvolvedor entenda cada aplicacdo que faz parte da transagao.

A proposta desenvolvida neste documento abordou, que mesmo em
situacdes complexas e sem suporte nativo da plataforma, é possivel realizar a
captura de logs, métricas e traces, viabilizando a observabilidade das operacdes
sistémicas e contribuindo para o aumento da confiabilidade e desempenho dos

sistemas em nuvem.

6. EVOLUGOES

Este trabalho n&o abordou de forma profunda a instrumentacéo da Salesforce
seguindo os padrdes definidos pela Open Telemetry para rastreio das execucgdes
sistémicas. Nao foi o foco demonstrar como realizar, por exemplo, o trace de um
omniscript que realiza uma chamada remote em um cddigo Apex. Isto posto, ndo
esta coberto por esse trabalho o rastreio das execucbes da Salesforce com
comunicagao interna pelos seus diferentes modulos. Com isso, existe a
recomendacao de evoluir o trabalho nessa diregao.

A partir do momento em que esse trabalho demonstrou como obter os dados
de execucdo, € possivel realizar analises mais complexas para identificacdo de
possiveis problemas. Com a crescente de inteligéncias artificiais, seria interessante
evoluir o presente trabalho ao abordar o tema da realizagdo do monitoramento com

o auxilio de inteligéncias artificiais.

31

REFERENCIAS?

AWS. Operational excellence: prepare. Disponivel em:

https://docs.aws.amazon.com/en_us/wellarchitected/2022-03-31/framework/oe-prep
are.html. Acesso em: 19 nov. 2024.

BALDINI, I.; et al. Serverless computing: current trends and open
problems. Disponivel em: https://arxiv.org/abs/1706.03178. Acesso em: 20 nov.
2024.

KLEPPMANN, M. Designing Data-Intensive Applications: The Big Ideas
Behind Reliable, Scalable, and Maintainable Systems. O'Reilly Media, 2017.

MELL, P.; GRANCE, T. The NIST definition of cloud computing. National
Institute ~ of Standards and Technology, @ 2011. Disponivel em:

https://nvipubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf.

Acesso em: 20 nov. 2024.

NEBULA LOGGER. Documentagao oficial. Disponivel em:
https://qgithub.com/jongpie/NebulaLogger. Acesso em: 27 nov. 2024.

NEW RELIC. Documentagao oficial. Disponivel em:

https://docs.newrelic.com/pt/. Acesso em: 20 nov. 2024.

NEWMAN, S. Building Microservices: Designing Fine-Grained Systems.
O'Reilly Media, 2019. Capitulo 8: Monitoring.

OPEN TELEMETRY. Documentagao oficial. Disponivel em:
https://opentelemetry.io/pt/. Acesso em: 19 nov. 2024.

SALESFORCEa. Central de ajuda. Disponivel em:
https://help.salesforce.com/. Acesso em: 19 nov. 2024.

SALESFORCED. Developer documentation. Disponivel em:

https://developer.salesforce.com. Acesso em: 18 nov. 2024.

2 De acordo com a Associagao Brasileira de Normas Técnicas (ABNT NBR 10520).

https://docs.aws.amazon.com/en_us/wellarchitected/2022-03-31/framework/oe-prepare.html
https://docs.aws.amazon.com/en_us/wellarchitected/2022-03-31/framework/oe-prepare.html
https://docs.aws.amazon.com/en_us/wellarchitected/2022-03-31/framework/oe-prepare.html
https://arxiv.org/abs/1706.03178
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://github.com/jongpie/NebulaLogger
https://docs.newrelic.com/pt/
https://docs.newrelic.com/pt/
https://opentelemetry.io/pt/
https://opentelemetry.io/pt/
https://help.salesforce.com/
https://help.salesforce.com/
https://developer.salesforce.com
https://developer.salesforce.com

32

APENDICE A - CODIGO DESEMPENHO NEBULA LOGGER SEM SAVE LOG
@RestResource(urlMapping='/ocorrencia/*')
global without sharing class OcorrenciaController {

private static RestResponse restResponse;

private static RestRequest restRequest;

@HttpGet

global static String checkStatus() {

return '1";

APENDICE B - CODIGO DESEMPENHO NEBULA LOGGER COM SAVE LOG
EVENT BUS

@RestResource(urlMapping='/ocorrencia/*')
global without sharing class OcorrenciaController {
private static RestResponse restResponse;
private static RestRequest restRequest;
@HttpGet
global static String checkStatus() {
Logger.info('TESTE');
Logger.savelLog();

return '1";

33

APENDICE C - CODIGO DESEMPENHO NEBULA LOGGER COM SAVE LOG
QUEUEABLE

@RestResource(urlMapping='/ocorrencia/*')
global without sharing class OcorrenciaController {
private static RestResponse restResponse;
private static RestRequest restRequest;
@HttpGet
global static String checkStatus() {
Logger.info('TESTE');
Logger.savelLog(Logger.SaveMethod. QUEUEABLE);

return '1";

