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RESUMO

O notavel crescimento de discussdes sobre matrizes energéticas nas ultimas décadas e o
reconhecimento da necessidade da adogdo de fontes renovéveis de energia levaram ao
questionamento de qual seria a matriz energética ideal de um pais, em termos de custos,
beneficios e riscos para a populacdo. Assim, com o objetivo de auxiliar politicos e
formuladores energéticos em suas decisdes, esse trabalho se propds a criar um método para se
definir um portfélio 6timo de matriz energética de um pais, o qual leve em consideracdo nao
somente o0s custos de geracdo de cada tecnologia, mas também os seus respectivos riscos. Para
tal, foram considerados ndao apenas medidas de risco de desvio (e.g. variancia), mas também
medidas de cauda, como o Valor em Risco (VaR) e o0 Valor em Risco Condicional (CVaR), as
quais capturam também na sua formulacdo eventos extremos, importantes na anélise.
Portanto, dados de sete tecnologias dos Estados Unidos foram analisados, simulacfes de
Monte Carlo foram realizadas e, com o auxilio do Método Kriging, obteve-se, finalmente, a
fronteira eficiente de Pareto e a composicao dos portfolios 6timos para os anos de 2030, 2035
e 2040. Os resultados, além de demonstrar que medidas de cauda realmente sdo mais
adequadas nesse tipo de analise, apontaram também para uma maior alocacdo no futuro em
energia renovaveis, como a eolica e a biomassa, revelando, portanto, que tecnologias
agressivas a0 meio ambiente (e. g. carvao e gas) apresentardo papel secundario na matriz
energética do pais.

Palavras-chave: Método Kriging, Otimizac¢do de Portfélios, Matriz Energética






ABSTRACT

The remarkable growth of discussions about energy matrix in the last decades and the
recognition of the necessity of the adoption of renewable energies led to the questioning of
which would be the ideal energy matrix for a country, in terms of costs, benefits, and risks to
the population. Hence, with the purpose of supporting politicians in hers decisions, this study
proposed to create a method to define the optimal portfolio of energy matrix, which considers
not only the generation costs of each technology, but also its risks. In order to do so, not just
deviation risk measures (e.g. variance) were taken into consideration: tail measures were also
used, as for example the Value at Risk (VaR) and the Conditional Value at Risk (CVaR),
capturing as well extreme events, which are very important to the analysis. Therefore, data on
seven technologies of the United States was analyzed, Monte Carlo simulations were carried
out, and with the support of the Kriging Method, the Pareto efficient frontier and the
compositions of the optimal portfolio were finally obtained for the years of 2030, 2035, and
2040. The results, besides of assuring that tail risk measures are the most applicable in this
kind of analysis, also pointed out a greater allocation in the future of renewable energies, such
as wind and biomass technologies, revealing, hence, that environment aggressive technologies
(e.g. coal and gas) should play a minimal role in future energy matrix.

Key words: Kriging Method, Portfolio Optimization, Energy Matrix
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1 INTRODUCAO

Uma importante questdo que permeia as atividades de engenharia consiste em
alocar recursos escassos em condicdes de incerteza. Do ponto de vista dos gestores
pretende-se determinar alocacfes que garantam um retorno financeiro minimo nos
investimentos e que tenham algum grau de seguranga. Assim, uma pergunta

recorrente e importante nesse campo do conhecimento é como minimizar os riscos.

O tema de minimizacdo de riscos nunca foi tdo discutido como apdés a crise
financeira global de 2008. lIsso, pois a falta de regulamentacdo e constante
indisciplina em realizar préticas voltadas & mitigagdo de risco levaram os mercados
financeiros dos principais paises desenvolvidos (com impacto, claro, nos paises
emergentes) a entrarem em colapso. Isso pode ser facilmente notado através de uma
rapida observacdo na performance de indices acionarios, 0s quais revelam
indiretamente a percepcdo de risco dos investidores e os resultados das principais
companhias abertas de um pais. A Figura 1 mostra a evolucdo, durante esse dificil

periodo, de um dos principais indices acionarios dos Estados Unidos, 0 S&P 500.

Figura 1: Evolugio do indice S&P500
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Fonte: elaborado pelo autor

Pode-se observar que durante o ano de 2008, o indice apresentou uma queda
abrupta, revelando um menor apetite de risco por parte dos investidores, ou seja, uma
grande indisposi¢cdo em investir recursos em acdes. Essa falta de interesse em alocar

capital em empresas gera um grande dano social, ja que no sistema capitalista em
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que vivemos, sdo as companhias (além de, claro, o Estado) de um pais que movem a

economia e, por conseguinte, geram bem estar social.

Ainda no ambito da minimizacdo de riscos, um tema sempre muito discutido
por todos e cada vez mais presente na literatura é a questdo da minimizacéo de riscos
no processo de geracdo de energia. Ao tentar definir uma estrutura étima para a
matriz energética de um pais, politicos e estrategistas devem levar em conta, ndo
somente 0s custos incorridos na geracdo de energia, mas também o0s riscos
envolvidos nessa operacdo. Um exemplo de risco na geracao de energia é a flutuacao
do preco do combustivel, ja que dependendo do tipo de tecnologia empregada para a

geragdo de energia, esse componente pode ser parte relevante da estrutura de custos.

O petroleo, por exemplo, é utilizado como matéria prima em usinas
termoelétricas. Esse insumo € comercializado nos mercados internacionais de
commodities e apresenta uma alta volatilidade de precos, o que pode ser observado
na Figura 2. Essa grande oscilagcdo de precos pode fazer com que certa tecnologia
ndo seja mais economicamente viavel e, portanto, é um risco importante a ser levado
em conta por formuladores no momento de tomar decisdes em relacdo a matriz

energética de um pais.
Figura 2: Evolucdo da Cotacio do Barril de Petrdleo
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1.1 Objetivos

Assim, politicos e formuladores da matriz energética de um pais necessitam de uma
ferramenta que os auxiliem na sua tomada de decis@es, de modo a criar um portfélio
de matriz energética que leve em consideracdo ndo somente 0s custos de geracdo de
cada tecnologia, mas também 0s seus respectivos riscos. Esse é justamente o objetivo
desse presente trabalho: utilizar um método de selecdo de carteira de investimentos,
algo amplamente divulgado no &mbito de financas, com o propdsito de otimizar a
relacdo entre risco e retorno do portfélio de matriz energética de um pais.

Em relacdo a ferramenta a ser utilizada, propde-se nesse trabalho, primeiramente, o
uso de medidas de risco que capturem em sua formulacdo eventos extraordinérios, ja
que esses, como demonstrado, sdo capazes de gerar grandes crises e depressoes.
Medidas de risco dessa natureza sdo conhecidas na literatura como medidas de risco
de cauda ROCKAFELLAR e URYASEV (2000). Portanto, nesse trabalho, serdo
utilizados para medir o risco da carteira de matriz energética, além da Variancia, que
é considerada ma medida de desvio, duas medidas de cauda, o Valor em Risco (VaR)
e 0 Valor em Risco Condicional (CVaR).

Essas duas medidas de risco, apesar de capturarem com eficacia riscos extremos,
apresentam um grande empecilho: exigem uma alta capacidade computacional. Para
contornar esse problema, propde-se o uso do Método Kriging (RIBEIRO e
FERREIRA, 2004). Apesar de ndo ser tradicionalmente aplicado a problemas de
selecdo de carteiras, acredita-se que com 0 uso desse método seja possivel, de
maneira eficiente e eficaz, otimizar portfolios de matriz energética, os quais levem

em consideracao quaisquer medidas de risco, inclusive as de cauda.

1.2 Estrutura do Trabalho

O trabalho esta dividido em cinco partes, como forma de desenvolver os conceitos
necessarios para posterior aplicacao e analise do objetivo proposto.

No primeiro capitulo é apresentado o tema. Justifica-se a importancia do seu
desenvolvimento e estudo, situando-o no contexto atual da economia e explicitando
seus objetivos e sua estrutura.

O segundo capitulo apresenta uma revisdo bibliografica relacionada aos conceitos

necessarios a compreensao deste trabalho, fundamentando e dando embasamento
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tedrico ao modelo que serd proposto. Inicialmente é estabelecida uma base conceitual
sobre gestdo de portfolio, citando seu marco na literatura e descrevendo algumas
definicbes importantes que caracterizam um portfolio. Em seguida discute-se a
definicdo de risco e as trés medidas principais que serdo utilizadas nos modelos
descritos posteriormente. Depois, sdo apresentados quatro modelos de selecdo de
portfélio na literatura, sendo que um deles é justamente o método Kriging, o0 méetodo
a ser utilizado nesse trabalho. Ainda nesse capitulo, por fim, é explicitado como
esses métodos sdo utilizados no setor de energia. Vale lembrar que o Método Kriging
ainda ndo foi utilizado na literatura para tal proposito, sendo, portanto, uma aplicacao
inovadora desse presente trabalho.

O capitulo seguinte se refere a metodologia adotada nesse presente trabalho. Para
isso, primeiro é definido o mercado a ser analisado, o setor de energia dos Estados
Unidos. Apés tal definicdo, é explicitada a medida de custo a ser adotado durante a
metodologia, 0 LCOE (Levelized Cost of Energy, do inglés). Por fim, é demonstrado
como os dados foram obtidos e posteriormente tratados através da simulacdo de
Monte Carlo.

No quarto capitulo sdo exibidos os resultados da aplicagdo do método proposto, o
método Kriging. Tais resultados serdo exibidos na forma de fronteira eficiente e
composicdo 6tima de portfolios, conceitos esses, detalhados durante a secdo de
revisao bibliogréfica.

Finalmente, no capitulo cinco sdo apresentadas as conclusdes e futuras extensdes do

trabalho. Os apéndices e as referéncias bibliograficas encerram o documento.



25

2 REVISAO BIBLIOGRAFICA

Neste capitulo serdo apresentados itens fundamentais para o completo entendimento
do presente trabalho. Primeiramente, sera abordado o tema da gestdo de portfolio,
seus objetivos, principais caracteristicas € uma analise preliminar da Teoria de
Gestao de Carteiras de Investimentos. Em seguida, sdo apresentadas as diferentes
defini¢des de risco, conceito amplamente abordado durante todo o presente trabalho.
Apos, sdo apresentados os modelos de selecio de portfolio, os quais serdao
implementados posteriormente na tematica da matriz energética, o qual ¢, alias o

assunto abordado no proximo e ultimo item da revisao bibliografica.

2.1 Gestao de Portfolio

Cabe ao gestor de uma carteira de investimentos definir qual a melhor maneira de
alocar capital de modo que o retorno desejado seja alcancado, levando em
consideracdo o nivel aceitado de risco, ou seja, qual patamar de risco o investidor
esta disposto a incorrer. Para tal, o gestor possui, basicamente, duas opg¢des de

investimento:

1) Investimentos cujo retorno esperado é conhecido;
2) Investimentos cujo retorno esperado € desconhecido e envolve
incertezas.

A primeira forma mencionada acima trata de investimentos na assim chamada renda-
fixa (fixed- income securities, do inglés), indicando que o ativo a ser adquirido
remunera o investidor de forma fixa e pré-definida no ato do investimento, conforme
normas contratuais pré-estabelecidas. Portanto, de modo geral, o gestor possui
conhecimento tanto da alocacdo inicial dos recursos, quanto dos retornos futuros de
seu investimento. Assim, pode-se dizer que as incertezas do investimento s&o
minimizadas, remanescendo somente as incertezas relativas a probabilidade de calote
por parte do emissor (essa, conhecida também como probabilidade de default) e de
possiveis variacdes do benchmark (taxa de mercado a qual comumente os retornos de
um investimento de renda fixa sdo atrelados, como por exemplo, a taxa DI).
Exemplos incluem (LUENBERGER, 2008):
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1) Depositos bancérios, tais quais Certificado de Depoésito Bancério (CDB),
Certificado de Depdsito Interbancario (CDI), etc.
2) Titulos Publicos e Privados, sejam de curto ou longo prazos.
3) Créditos Imobiliarios.
4) Anuidades, como Fundos de Pensdo, etc.
Embora investimentos em renda fixa sejam vastamente utilizados em todo o mundo,
ndo é escopo deste trabalho o aprofundamento do seu estudo, sendo sua mencao e

utilizacdo meramente ilustrativas.

A segunda forma de investimento acima mencionada inclui aqueles em que a
quantidade inicial de capital investido é conhecida, porém com retornos futuros
incertos, podendo ser considerados aleatérios, do ponto de vista estatistico. Assim, é
possivel tratar o preco de um determinado ativo, em diferentes momentos, como uma

variavel aleatéria.

Ambas formas de investimento definidas acima sdo avaliadas através dos retornos
esperados sobre o investimento. Porém, apenas na segunda, 0s retornos sdo incertos
devido as caracteristicas da variavel aleatéria que os compde, o preco, fazendo-se

necessaria a avaliacdo dos riscos associados ao investimento.

Nesse ambito, Harry Markowitz, em 1952, publicou um artigo denominado
“Portfolio Selection”, momento esse tido por muitos como o nascimento da
economia financeira moderna (RUBISTEIN, 2002). A teoria publicada pelo autor

nesse tdo aclamado artigo o levou a ganhar o Prémio Nobel da Economia em 1990.

Logo no primeiro paragrafo de tal artigo, MARKOWITZ (1952) afirma que o
processo de investimento e selecdo de ativos, consiste, na verdade, em duas partes:
na primeira observam-se os ativos disponiveis e suas rentabilidades historicas,
usando esses dados para fazer uma estimativa da rentabilidade futura; a segunda

parte é a escolha desses e consequente composi¢do do portfolio.

O autor se utiliza, ao longo de sua obra, frequentemente do conceito de correlacdo. A
correlacdo entre dois ativos é adimensional e varia entre -1 e +1 (COSTA NETO,
2002); pode ser definida como:
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- Y%
rij = ”
Oii * 0jj

Onde o;; e 0j; sdo os desvios padrdo e o;; € a covariancia entre os retornos dos

ativos.

Markowitz é defensor da premissa de diversificacdo de investimentos. O autor
demonstra que a diversificacdo de um investimento ,ou seja, a aplicacdo do capital
inicial em mais de um ativo, gera composi¢oes melhores entre risco e retorno quando
comparado a investimentos alocados em um Unico ativo (BREALEY-MEYERS,
2003).

De acordo com o autor, ativos que possuem baixa covariancia entre si acabam
por gerar certa protecdo ao portfolio, pois diminuem o seu risco. Do modo contrario,
ativos que possuem alta correlagdo entre si, por tenderem a responder de forma
semelhante aos estimulos do mercado, podem ser destruidores de valor, ja que muitas

vezes 0 mercado ndo se comporta da maneira desejada pelo investidor.

A Figura 3 mostra, graficamente, a principal ideia da teoria de Markowitz, a
diversificacdo de investimentos.

Figura 3: Efeito da diversificacao na mitigacao de riscos

Risco Especifico

Risco da Carteira

Risco Sistémico

N° de Ativos da Carteira

Fonte: adaptado de http://investimentosnapratica.com/risco-de-uma-carteira/

Pode-se perceber que conforme o nimero de ativos da carteira aumenta, o risco da
mesma diminui, minimizando (eliminando, possivelmente) o Risco Especifico; esse

¢ definido como sendo o risco individual de um determinado ativo. Dessa forma, o
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risco do portfélio acaba por tender ao Risco Sistémico, o qual ndo pode ser
eliminado com a diversificacdo. Esse ultimo, por sua vez, € o risco relacionado ao
mercado como um todo, sendo influenciado por aspectos politicos, sociais,

macroecondmicos, entre outros.

Outro fator que impacta diretamente na gestdo de uma carteira de investimentos é o
perfil de risco do investidor. Isso se da, pois nem todos os investidores estao
dispostos a tolerar o mesmo nivel de risco, o que faz com que o gestor de portfélio
tenha que estar sempre atento a ponto. GIUDICI (2010) define, de acordo com seus

perfis de risco, trés tipos de investidores:

1) Avesso ao risco: investidor que opta pelo investimento com o0 menor risco
ao se deparar com dois investimentos com retornos similares, porém com riscos
diferentes. Para esse tipo de investidor o mal-estar associado a perda de um
determinado montante de rendimento € superior ao bem-estar proporcionado pelo

ganho desse mesmo montante de rendimento

2) Indiferente ao risco: nesse caso, o investidor ndo possui preferéncia no
momento em escolher entre um investimento com maior retorno e maior risco ou um

investimento com menor retorno e menor risco.

3) Propenso ao risco: ao contrario do investidor avesso ao risco, esse prefere
escolher um investimento com alto retorno e alto risco, ao invés de um investimento

com baixo retorno e baixo risco.

LUENBERGER (1998) sugeriu o conceito de Funcdo Utilidade, a qual propde uma
maneira de ordenar os investimentos de acordo com o perfil de risco do investidor. A
F apresenta um grafico Retorno (i) versus Risco (o) onde sédo ilustradas as curvas
correspondentes a Funcdo Utilidade para os trés diferentes perfis de risco acima
citados. A curva p, representa 0 comportamento de um investidor avesso ao risco,
em que, para um incremento de risco Ao, exige um aumento do retorno tal que
Au > Ao. A curva p, ilustra 0 comportamento de um investidor indiferente ao risco
0 qual, para incremento de risco Ac exige apenas que Au = 4o . A curva p,
representa 0 comportamento de um investidor propenso ao risco, que age

contrariamente aquele descrito pela curva p,.
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Figura 3: Funcéo Utilidade para trés perfis de investidor diferentes

Fonte: adaptado de GIUDICI, 2010

Pode-se perceber através dessa secdao que o tema risco esta muito presente no
processo decisdrio na gestdo de portfélio e, portanto, sera discutido em detalhes
na préxima secdo, onde sera apresentada uma perspectiva histérica das
medidas de risco presentes na literatura, bem como suas defini¢cdes, vantagens e

limitacgoes.

2.2 Risco

Ao longo da histéria, muitas situacdes indesejaveis do ponto de vista financeiro
influenciaram a comunidade cientifica e econdmica a estudar e aperfeicoar
ferramentas e métricas que visem garantir um investimento mais seguro, ou seja,
diminuir o risco. Sdo exemplos desses acontecimentos: a crise financeira de 1929, a
crise do petroleo de 1973 e, mais recentemente, a crise do sub-prime de 2008. Todas,
apesar de suas particularidades, tiveram consequéncias catastroficas para a economia
global, denegrindo, portanto, o assim chamado nivel de bem estar social da

populagéo.

Como ja dito, porém, ao mesmo tempo, essas crises financeiras globais tiveram
efeitos positivos, pois motivaram estudos de controle de risco. 1sso ocorreu ainda em

maior peso apos a década de setenta, periodo em que diversas mudangas ocorreram
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no cenério global, como por exemplo, a extin¢do do regime fixo de taxa de cambio e
a implementacdo de sistemas de taxa de cambio flutuante ao redor do globo. Além
disso, a crescente globalizacdo, a qual alterou os entdo vigentes parametros
econdmicos, tecnoldgicos e culturais da época, fez com que 0s paises se tornassem
mais dependentes uns dos outros. Por essas razdes, os efeitos regionais de guerra,
divergéncia entre inflagdes, mudancas politicas (como a queda do mundo socialista
no inicio da década de noventa) e desastres naturais passaram a ser refletidos, em
maior intensidade, em outras economias, inclusive de paises localizados em
continentes diferentes daquele que os originou. Essa tendéncia contribuiu ainda mais
para aumentar a necessidade das instituicdes financeiras em minimizarem sua
exposicao aos efeitos externos, os quais nao possuem controle, fazendo com que a

mensuracado e estudo de medidas de risco fossem ganhando cada vez mais relevancia.

O exemplo mais recente desse movimento foi o aperfeicoamento dos Indices de
Basileia ap6s a crise financeira de 2008. Em 2010, um comité composto pelas
principais autoridades politicas e econdmicas do planeta se reuniu em Basileia, na
Suica para criar regras mais rigidas a serem aplicadas nos mercados financeiros, mais
especificamente, nos bancos. Esse evento de importancia global mostrou o qual
importante esse tema ainda € e, vale notar que até hoje o seu resultado (ou seja,
novas regras para contengédo do risco) nao foi totalmente implementado, enfatizando,

portanto, a relevancia atual da problematica.

Mas afinal, como definir risco? BARROSA (2015) afirma que risco, em sua forma
geral, € o produto de um resultado indesejado, medido em valores monetarios, por
sua probabilidade de ocorréncia. Sendo que a determinacdo deste evento indesejado e
0 conhecimento de sua probabilidade de ocorréncia representam o foco da definigédo

de diversas medidas de risco.

Mais especificamente, JORION (1997) indica que risco pode ser definido como a
variabilidade de resultados inesperados, tanto de pregos de agdes, quanto de taxas de
cambio, taxas de juros, etc. ARTZNER (1999) enfatiza que o risco esta relacionado a
variabilidade dos valores futuros (ndo s6 entre duas datas determinadas), das

posi¢des de um portfdlio devido as mudancas de mercado e efeitos nas variaveis
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aleatérias que complem e caracterizam os investimentos. Portanto, pode-se

confirmar que todas as operacdes estdo expostas a riscos em maior ou menor grau.

E interessante notar que JORION (1997), além de fornecer um conceito generalizado
de risco, também enumera e classifica os diversos tipos de risco, apresentados na
Tabela 1.

Tabela 1 : Defini¢des de risco segundo JORION (1997)

Tipo de Risco :

Risco Operacional Esta ligado a probabilidade de perda resultante de falha ou ineficiéncia
dos processos internos ou mesmo falha humana.

Risco de Liquidez Relativo a capacidade das instituicdes de captacdo e disponibilizacao
de recursos para obedecer ao fluxo de caixa e cobrir ativos sem
liquidez.

Risco de Mercado Relacionado a volatilidade dos precos dos ativos; pode ser direcional —

guando relacionado a exposic¢do do portfélio a determinados tipos de

investimento - ou ndo direcional.

Risco de Crédito Decorrente da possibilidade das contrapartes ndo honrarem seus

compromissos de divida.

Fonte: JORION, 1997

Para o bom funcionamento do mercado financeiro de um pais, é de vital
importancia que os investidores tenham consciéncia dos riscos que estdo
tomando e também, tenham conhecimento de seus diversos tipos. Com isso, o
investidor, na teoria, consegue tomar decisdes corretas ao alocar capital nos
diferentes segmentos do mercado financeiro, tornando o sistema como um todo
mais eficiente. Assim sendo, os principais 6rgdos reguladores de mercados de
capitais de um pais se dispde a fornecer a sua prépria classificacao de risco,
visando um melhor entendimento por parte do investidor. No Brasil, é a
Comissdo de Valores Mobiliarios (CVM) a responsavel (entre outras atribuicdes)
por “Assegurar o funcionamento eficiente e regular dos mercados de bolsa e de

balcao”. Desse modo, um dos requisitos basicos para cumprir esse objetivo é
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orientar o investidor no Ambito dos riscos incorridos e, a CVM o faz fornecendo

a sua prépria classificacao de risco, a qual é exibida na Tabela 2.

Tabela 2: Defini¢des de risco segundo a CVM

Tipo de Risco Defini¢céo segundo a CVM

Risco de Mercado Decorre das oscilagbes nos precos dos titulos que compdem uma carteira de
ativos. Uma vez que esses ativos sdo contabilizados por seu valor de
mercado, quanto maior a oscilagdo nos pregos, maior a oscilacdo no valor
das cotas (de um fundo, por exemplo) e também, mais dificil de estimar o
valor de resgate ou de venda de cotas.

Risco de Crédito Refere-se a certeza sobre a liquidagdo do titulo na data de vencimento.
Quando um gestor de uma carteira adquire um titulo, esta emprestando para
alguém ou aplicando sua quantia em determinado empreendimento e,
certamente, correndo o risco de que o tomador dos recursos ndo honre a
obrigagdo ou 0 empreendimento ndo renda o esperado.

Risco de Liquidez Consiste na eventual dificuldade que o administrador da carteira possa
encontrar para vender os ativos que compdem o portfélio, ficando
impossibilitado de atender aos pedidos de resgate do investimento. No caso
das cotas, o risco de liquidez decorre da dificuldade, no fundo fechado, do
investidor encontrar um comprador para as suas cotas, forcando-o a vender
por um valor mais baixo que o esperado, caso sua necessidade de recursos
seja imediata.

Fonte: Comissio de Valores Mobiliarios, 2014.

Apesar de nos ultimos anos ter havido uma intensificagdo dos estudos sobre métricas
de risco mais robustas, motivados pela crise financeira do subprime de2008, ao
observar a literatura, fica claro que esse tema ndo é recente. O primeiro autor que se
propds a criar uma métrica de risco foi Bernoulli em 1738. O autor define a chamada
Funcdo de Utilidade, a qual pode ser definida como uma medida de satisfacdo

relativa de um agente da economia (BERNOULLI, 1738). Essa medida foi utilizada
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anos depois para caracterizar os diferentes perfis de investidor
(LUENBERGER,1998), conforme ja mencionado nesse trabalho. Segundo Bernoulli,
a partir da analise de sua variacdo é possivel explicar o comportamento desse tal
agente, que por sua vez, resulta em opcdes tomadas pelo mesmo de modo a aumentar
seu grau de satisfacdo. E, alias, uma medida frequentemente utilizada em Economia
para investigar decisdes de consumo de bens e servicos. Em termos econémicos,
pode ser considerada uma medida revolucionaria, ja que foi a primeira a quantificar,
de fato, anseios e desejos dos agentes econdémicos. Porém, a sua aplica¢do para medir
riscos de investimento apresenta uma grade dificuldade: o seu grau de subjetividade.
Isso, pois funcBes utilidades podem assumir forma quadratica, logaritmica,
exponencial, potencial, etc., variando de acordo com as preferéncias do agente

econdmico.

A dificuldade da subjetividade foi parcialmente superada na metade do século XX
com, 0 ja mencionado, Harry Markowitz. Em 1952, o autor criou a tdo famosa Teoria
Moderna de Carteiras de Investimento (do inglés: MPT — Modern Portfolio Theory).
Em trabalho considerado um marco na area de Financas e que serviu como ponto de
partida para muitos outros estudos modernos de métricas de mensuracdo de risco,
MARKOWITZ (1952) criou 0 modelo de Média- Variancia (o qual seré explicitado
com mais profundidade mais a frente nesse trabalho) para avaliacdo de portfélios

(outro modo se referir a carteiras) de investimento.

Além de introduzir o conceito de variancia (também conhecida como volatilidade), a
qual possibilitou uma padronizagédo e alinhamento conceitual da mensuragdo de
risco, o autor também difundiu a ideia de que a covariancia dos retornos de dois
ativos influencia no retorno geral da carteira. Ele demonstra que carteiras compostas
por ativos de covariancia negativa apresentam menor risco, a um dado nivel de
retorno, quando comparadas a carteiras que apresentem ativos de covariancia

positiva.

Simultaneamente ao trabalho elaborado por Markowitz, ROY (1952) desenvolveu o
Safety First Criterion, no qual o risco € mensurado como a probabilidade do retorno
de uma dada carteira estar abaixo de um nivel pré-determinado, considerado

calamitoso. Esse trabalho € interessante por ser o primeiro a mencionar a mencionar
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0 conceitos de medidas de risco denominadas Below-Target Models, ou Modelos
Abaixo da Meta, sendo uma introducédo ao estudo do conceito de avaliacdo de caudas

de distribuicdo dos retornos como forma de medir o risco (ROMAN, 2008).

No modelo de Roy, R é considerado o retorno de um dado investimento e 7 o nivel
de retorno definido como desastroso. Assim, o Safety First Criterion é formalmente

representado por:
SFC=P(R<7),

sendo, portanto, considerado uma medida de probabilidade. Porém, sua aplicacdo se
limitou a arbitrariedade da definicdo de qual seria o nivel de retorno tido como

referéncia. Assim, acabou por ndo ser amplamente utilizado na pratica.

Apesar do Safety First Criterion ndo ter tido o seu desenvolvimento pratico
ampliado, ele introduziu novos conceitos que foram fundamentais para a cria¢do de
novas medidas de risco, principalmente no aspecto da observacdo de distribuigdes
assimétricas de probabilidades de retornos, com énfase em um dos lados da
distribuicdo, aquele que representa uma perda para o investidor, chamado em inglés
de downside risk. Entdo, dando continuidade ao tema, MARKOWITZ (1970)
desenvolveu 0 modelo denominado Momentos Parciais (Partial Moments), em que a

semi-variancia € considerada medida de risco.
A semi-variancia amostral pode ser definida como (ANDRADE, 2006):
¢i= IMax[0,(E(Rit)—Rt)]2dt
Em que:

¢i € a semi-variancia do ativo i,
Rit é o retorno do ativo i no instante ¢,

E(Ri) a esperancga dos retornos do ativo i.

Esta definicdo faz com que seja considerado apenas o lado indesejado da distribuicao

de probabilidade de retornos, como definido por Markowitz.
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Simultaneamente, FISHBURN (1977) e BAWA (1978) aprofundavam a pesquisa
através da criacdo do modelo (a,t), utilizando, dessa vez, o0 menor momento parcial
(Lower Partial Moment) como métrica de risco, em um projeto que sintetiza e agrupa
o0s conceitos das medidas de risco desenvolvidos anteriormente.

Diferente dos dias atuais, durante as décadas de 1970 e 1980, ndo existiam métodos e
ferramentas computacionais sofisticados para obter solucbes de problemas de
otimizacdo quadratica (ou ndo lineares) de grande porte (PEROLD, 1984). Isso
serviu como incentivo para académicos desenvolverem métricas de risco lineares.
Tendo isso em mente, KONNO e YAMAZAKI (1991) propuseram a utilizacdo do
primeiro momento absoluto da distribuicdo de retornos como métrica de risco
(RIBEIRO, 2004), através de um modelo chamado Mean Absolute Deviation
(MAD), aperfeicoando o trabalho inovador de SHARPE (1971). A medida de risco é

definida como:

MAD(Ri)= E[|Ri—u]],

0 que torna o problema de otimizacdo de carteiras de investimento um problema de
programacdo linear, representando uma alternativa ao modelo da Média-Variancia.
Entretanto, a sua otimizacdo também nao € simples, ja que ela é uma funcdo absoluta
e, portanto apresenta descontinuidades na sua derivada. Assim, tanto métodos
analiticos como numéricos acabam por se tornar nao praticos, dada a quantidade de
restricOes inerentes ao problema de otimizacao.

Dando sequéncia ao desenvolvimento de medidas de risco que considerem eventos
extremamente indesejaveis (como € o caso de uma crise financeira) causados na
cauda de distribuicdo de probabilidade de perdas, o G-30 propds, em 1994, uma
medida de risco que tinha o objetivo de responder uma unica pergunta: “Quéo grande
pode ser a perda em um dado horizonte de tempo e a uma dada probabilidade?”
(ROMAN, 2008). Essa medida de risco & chama de Valor em Risco (Value at Risk -
VaR), sendo definida como:

VaRa(Ri)= —qa(Ri)=q1-a(Ri)
Em que:

Ri € o retorno de um dado ativo i
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qa é o percentil definido a um nivel de confianca a (G-30, 1994).

O Valor em Risco, além de ser atualmente aplicado como ferramenta de gestdo em
modelos de decisdo de composi¢do 6tima de portfdlios, também € utilizado, ao redor
de todo o planeta, como medida regulatoria. Isso se deu, especialmente, ap6s a
notdria primeira publicacdo do texto Risk Metrics: Technical Report, a servico
publico pelo banco norte-americano JP Morgan, em 1994 (ROMAN, 2008).

Mesmo sendo muito aplicado na pratica em inumeras instituicdes financeiras, o
Valor em Risco (VaR), de acordo com critérios definidos por ARTZNER (1999), ndo
é considerado uma métrica coerente de risco. Isso se deve, principalmente, ao fato de

que ele ndo atende a seguinte propriedade:

VaR(R1+R2)<VaR(R1)+VaR(R2))

Ou seja, ele ndo possui a propriedade de subaditividade, fazendo com que a
diversificacdo ndo seja necessariamente premiada. Em outras palavras, ndo é possivel
garantir que o risco de uma carteira composta por dois ativos com risco VaR1e VaRz2,
respectivamente, seja igual ou menor a VaRi1+VaR2. Ademais, o Valor em Risco
(VaR), em sua forma ndo paramétrica, apresenta uma grande quantidade de minimos
locais, dificultando a sua otimizacdo (QUARANTA e ZAFFARONI, 2008). Ainda
assim, a vasta disseminacdo do Valor em Risco como medida de risco e sua
facilidade de compreensdo conceitual fazem com que esta medida seja selecionada
para aprofundamento neste trabalho.

Pelo Valor em Risco apresentar pontos controversos como medida de risco, prop06s-
se em 2000 a criacdo de uma nova medida, chamada de Valor em Risco Condicional,
do inglés, Conditional Value at Risk (CVAR). ROCKAFELLAR e URYASEV
(2000) definiram o CVaR como sendo:

CVaR(Ri)=E{(Ri)|Ri<v}

Em que:
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Rirepresenta o retorno de um dado ativo i,

v representa o Valor em Risco (VaR) da distribuicdo de probabilidade
dos retornos deste mesmo ativo.
Em outras palavras, 0 CVaR é a média dos valores que excedem o Valor em Risco.
Esta medida de risco, por sua vez, atende as propriedades definidas por ARTZNER
(1999), sendo, portanto, coerente (LIM, 2011). Porém, por sua funcdo ser
representativa da modelagem da cauda de distribuicdo de probabilidade dos retornos,
ela apresenta grande complexidade, tornando sua otimizacdo dificil e nada trivial
(RIBEIRO, 2004).
ROCKAFELLAR e URYASEV (2000) propuseram, além da medida de risco em si,
também sofisticadas técnicas de otimizacdo desta funcdo. Portanto, por esse motivo e
por ser alvo de pesquisas atuais por todo o globo, o CVaR, além da Variancia e do

VaR, também ¢é selecionado para analise mais profunda neste trabalho.

A Figura 4 fornece uma perspectiva historica das medidas de risco de
investimentos financeiros disponiveis na literatura até os dias atuais, as quais foram

descritas nessa etapa do trabalho.

Figura 4: Perspectiva histérica de medidas de risco
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Fonte: adaptado de BARROSA, 2015



38

Do que ja foi revelado nesse trabalho, é possivel classificar as principais medidas de

risco propostas na literatura em duas categorias:
1) Medidas de Desvio (do inglés, Deviation from Target)
2) Medidas de Cauda (Seriedade de Perda Potencial)
Sendo que a primeira categoria pode ser subdividida em duas outras categorias:

1.1) Simétricas: consideram ambos os lados da distribuicdo de probabilidade

dos retornos.

1.2) Assimétricas: consideram apenas o lado das perdas da distribuicdo de

probabilidade dos retornos.

A Tabela 3 classifica cada uma das medidas de risco descritas durante essa secao de
acordo com essa classificacdo. Sendo que as que se encontram em destaque Sao

aquelas que serdo descritas mais detalhadamente nas secdes seguintes.

Tabela 3: Categorizacio e classificacdo de medidas de risco

T T

Variancia

Simétricas
Deviation from Target MAD
(Desvio) o Central Semideviation
Assimetricas
Lower Partial Moments
o Safety First Criterion
Ta”"?”k Measures Consideragdo do pior Below Target Model
(Se“e‘j?dec‘e Perda cendrio com nivel de VaR
Potencial) confianca a CVaR

Fonte: adaptado de BARROSA, 2015
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2.2.1 Variancia

Proposta por MARKOWITZ (1952), a variancia indica a média do desvio quadréatico
entre uma variavel aleatdria e a media da distribuicdo. No tema gestdo de carteiras de
investimento, € comum dizer que a variancia mensura o grau de desvio entre 0s

retornos atingidos e o retorno esperado dos ativos.
Para uma variavel aleatéria, a variancia é definida como:
var(x) = 02(x) = E[(x — X)?]
Em que:

E(x) = Valor esperado de x

De acordo com COSTA NETO (2002), dependendo da natureza da variavel
aleatdria, ou seja, se ela é discreta ou continua, calcula-se a variancia da seguinte

forma:
g2 =Y (x — E(x))? X p(x) , para variaveis aleatorias discretas
0% = ffom(x — E(x))? x f(x)d(x) , para variaveis aleatorias continuas
Em que:
p(x) = probabilidade de x
f(x) = funcio densidade de probabilidade de x

Essa medida estatistica € amplamente utilizada para a mensuragdo do risco €, no caso
especifico de uma carteira composta por diferentes ativos pode também ser aplicada,
mas neste caso, com o auxilio da matriz de covariancia. Porém, a variancia possui
algumas restricdes em relacdo ao seu uso e s6 pode ser utilizada em distribuicdes de
probabilidade assimétricas (SZEGO, 2002). Assim, ¢ possivel usar o modelo da
variancia apenas para efetuar a analise de distribuigdes elipticas, como, por exemplo,
as distribuigdes normais e t de Student, as quais ndo representam a maior parte das

distribuicdes existentes.
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Existem duas caracteristicas principais da variancia que dificultam sua utilizago

como medida de risco eficiente na gestao de portfélio:

a. A variancia ndo considera a diferenga existente entre desvios negativos e
positivos em relacdo ao retorno esperado, 0s quais possuem impactos opostos
na rentabilidade dos investimentos e na percepc¢do dos investidores, que dao
prioridade aqueles ativos que apresentam retorno acima do valor esperado;

b. Essa medida de risco também ndo analisa a cauda da distribuicdo de
probabilidade (RIBEIRO e FERREIRA, 2004), o que pode representar
grandes perdas em cenérios de estresse, pois uma distribuicdo pode ter uma
cauda menos pesada que outra e ser melhor para o investidor em cenarios
como 0 que ocorreu com a crise dos subprime que atingiu seu auge no final
de 2008;

Conforme tais falhas foram sendo evidenciadas, surgiram na literatura outros estudos
a respeito de medidas de risco mais robustas que solucionassem 0s problemas
apresentados pela variancia. Assim, em 1994, surgiu o conceito de Valor em Risco
(VaR) (SZEGO, 2002).

2.2.2 Valor em Risco (VaR)

E uma medida de risco utilizada por diversos agentes econdmicos: Org&os
reguladores, instituicdes financeiras, gestores de carteiras de investimento e bancos
centrais (HULL, 1999). De acordo com esse autor, o Valor em Risco foi criado como
uma tentativa de resumir, em um s6 namero, o risco envolvido em uma determinada

carteira de ativos financeiros.

Essa métrica envolve a definigdo de nivel de confiabilidade, horizonte de tempo e
percentis. O VaR pode ser definido como o valor que representa a maior perda que

podera ocorrer com 0% de probabilidade em um determinado horizonte de tempo.

Dependendo do setor que a empresa esta inserida e da carteira de investimentos a ser
analisada, o horizonte de tempo determinado para analise do VaR devera variar. Para
uma empresa que possui um alto giro de seus ativos, o0 horizonte de tempo deve ser

curto, por exemplo, um més. J& em companhias em que ao ativos possuem
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negociagdo mais lenta, pode ser assumido um horizonte de tempo mais dilatado,
como um ano (RIBEIRO e FERREIRA, 2004).

De acordo com Quaranta e Zaffaroni (2008), considerando K uma variavel aleatoria
e F sua funcdo de distribuicdo, F(h) = P{K < h} e F~'(w) = min{h: F(h) = w},

para um valor fixo de confiabilidade (), temos que:

VaR,(K) = F~1(a)

A Figura 5 apresenta a definig¢do gréafica do Valor em Risco.

Figura 5: Representacio grafica do VaR

VAR
Perda maxima com
a% de confiabilidade

Fonte: adaptado de BARROSA, 2015

JORION (1997) demonstra dois métodos para calcular o Valor em Risco:

1) Paramétrico: considera que o retorno do portfélio em questdo apresenta
distribuicdo normal, o que simplifica o seu célculo. Chama-se dessa forma
pois estima parametros ao invés de identificar os percentis; nele 0 VAR
deriva diretamente do desvio padrédo, usando um fator de multiplicacdo que

depende do nivel de confianca

VaR=p—Z,*x0

Em que:
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u € a média dos retornos
o € 0 desvio padréo dos retornos
Z, € 0 valor que representa o inverso da distribuicdo cumulativa
normal
2) Ndo paramétrico: também conhecido como método da série histdrica,
considera os N retornos da carteira ordenados, sendo que o VaR consiste no
((1-a)-N) ésimo pior valor da série. Esse método assume como premissa que

a rentabilidade futura esta atrelada a passada.

Além dos métodos proposto por Jorion, pode-se calcular essa medida por simulacéo
Monte Carlo. Esse método utiliza a simulacdo Monte Carlo para construir, se
baseando no histdrico de rentabilidade de passado da carteira, uma gama de cenarios
para gerar uma previsdo dos resultados futuros para cada um deles (RIBEIRO, 2004).

BARROSA (2015) realizou, a titulo de exemplo, um estudo para demonstrar o
comportamento do Valor em Risco (VaR), tanto o calculado pelo método
paramétrico, quanto o calculado pelo método ndo paramétrico. O autor se utilizou de
uma carteira composta por dois ativos, Itad-Unibanco (ITUB4) e Petrobras (PETR4),
ambos negociados na BOVESPA e com amostra da série historica entre 27 Maio
2009 e 11 Maio 2012, totalizando 718 observacOes. Para facilitar a visualizacdo da
representacdo dos resultados, o autor toma A=x1 e x2=1-A, com A representando a
carteira, em abordagem similar a RIBEIRO (2004). O resultado de tal estudo é

demonstrado na Error! Reference source not found..
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Figura 6: Exemplo de aplicacdo do VaR em uma carteira de ativos

41
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VaR da Carteira versus A = x1
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Fonte: adaptado de BARROSA, 2015

Ao analisar a Error! Reference source not found., é possivel perceber que a
hipotese de normalidade dos retornos assumida na aplicagdo do método paramétrico
ndo é necessariamente verdadeira, de forma que os estimadores obtidos através das
amostras de séries historicas de retornos dos ativos, assumindo normalidade,
apresentam erro. E nesse sentido que COSTA e BAIDYA (2001) verificaram
empiricamente a ndo conformidade de diversos ativos brasileiros com a hipétese de
simetria na distribuicdo de probabilidade dos retornos. A avaliagdo da superficie
VaR(x) através do seu método mais amplo de célculo, o ndo paramétrico, relaxa esta
hipotese, porém sua otimizacdo se torna significativamente mais complexa,

principalmente devido a existéncia de diversos minimos locais.

Apesar de 0 VaR fornecer informacgdes sobre a cauda da distribui¢cdo dos retornos,
SEIGO (2002) apresenta diversos problemas relacionados ao uso da medida em
questdo. Dentre eles, podemos citar os principais:
a. ndo mede as perdas que excedem o VaR, ou seja, essa medida ndo consegue
passar informagdes sobre a dispersdo da cauda da distribuigdo além do seu
valor a um determinado nivel de confianga;

b. pode gerar resultados conflitantes para diferentes niveis de confianga;
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c. ndo é considerada uma medida de risco coerente.
ARTZNER (1999) define as propriedades para uma medida de risco ser considerada

coerente, sao elas:

a) Invariancia sobre translagdes: p(x + aer’) = p(x) —a,VaeR,VX€G

b) Subaditividade: p(x; + x3) = p(x1) + p(x3),Vx1ex, € G

c) Homogeneidade positiva: p(1x) = Ap(x),VA=>0,Vx€eG

d) Monotonicidade: p(y) < p(x),Vy,xe G,y < x
O VaR ndo apresenta a propriedade da subaditividade, ou seja, ndo se pode garantir
que o risco de um portfélio composto por dois ativos com VaR, e VaR, seja igual a
VaR, + VaR,, ou menor. O risco desse portfolio ndo pode ser previsto, e isso
dificulta a sua otimizacdo (QUARANTA e ZAFFARONI, 2008).

2.2.3 Valor em Risco Condicional (CVaR)

As medidas de risco apresentadas até agora ndo sao convexas, ou seja, se aplicadas a
distribuicBes ndo elipticas, fornecem resultados incoerentes. Além disso, essas

medidas ndo analisam a cauda da distribuicdo para cenarios extremos.

Com o objetivo de sanar esses problemas, a literatura tem dado na ultima década
importancia ao Condition Value-at-Risk (CVaR), uma medida de risco coerente que
pode ser definida como a média dos valores que excedem o VaR, para um
determinado nivel de confianga. Em outras palavras, considerando que o pior cenario
ocorreu, ele fornece o valor médio da cauda. Essa defini¢do garante que o VaR nunca
seja maior que o CVaR em valor absoluto (ROCKAFELLAR e URYASEV, 2000).

Sendo x € X < RNum vetor de decisdo representando um portfélioe y e Y —« RN os
valores futuros das rentabilidades dos ativos que compde essa carteira, z = f(X,Y) a
funcdo de perdas do portfdlio; o CVAR serd dado por (QUARANTA e
ZAFFARONI, 2008):

Hx,a) = P{y|f(x,y) < a}

Em que:
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a é 0 VaR do portfolio.
A Figura 7 apresenta a defini¢do gréfica do Valor em Risco Condicional.

Figura 7: Representacao grafica do CVaR

Fonte: adaptado de BARROSA, 2015

Observa-se que o Valor em Risco e o Valor em Risco Condicional medem
propriedades diferentes da distribuicdo, pois o primeiro refere-se a percentil e o
segundo a média da cauda (PFLUG, 2000). O CVaR apresenta consisténcia com o
VaR apenas para distribuicbes normais (ou elipticas) (ROCKAFELLAR e
URYASEV, 2002).

Apesar de o CVaR depender da determinacdo do VaR, é possivel definir
simultaneamente essas duas medidas de risco através da seguinte funcéo
(ROCKAFELLAR e URYASEV, 2002):

Fu(xa) = a+ =B/ (xy) ~al*}

Em que:

[t]* = max{0,t}.
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Assim, pode-se afirmar que o CVaR apresenta certas vantagens em relagcéo ao VaR:

e E uma medida coerente, obedecendo a todos 0s axiomas propostos por
ARTZNER (1999);

e Fornece informacdes sobre a cauda das distribuicdes, analisando cenarios de
estresse;

e Pode ser expresso matematicamente por uma formulacdo que busca
transformar o problema de composi¢cdo de portfélio em um problema de
programacao linear, o qual sera apresentado na secéo a seguir.

Novamente, BARROSA (2015), a titulo de ilustracdo, realiza estudo semelhante:
considera 0 mesmo exemplo da secdo anterior (i.e. uma carteira de dois ativos
composta por Itad-Unibanco (ITUB4) e Petrobras (PETR4), ambos negociados na
BOVESPA e com séries histdricas entre 27 Maio 2009 e 11 Maio 2012, totalizando
718 observacdes) para calcular o CVaR da carteira. Toma-se A=x1 e x2=1-4, com A

representando a carteira. Os resultados estdo apresentados na Figura 8.

Figura 8: Exemplo de aplicacdo do CVaR em uma carteira de ativos

%3 CVaR da Carteira versus A = w1l
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35

Fonte: adaptado de BARROSA, 2015

O autor (BARROSA, 2015) nota que 0 comportamento da curva apresentada na

Figura 8, incluindo novamente a existéncia de diversos minimos locais e
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descontinuidades, dificulta substancialmente sua otimizacdo através de metodos
convencionais, fazendo com que sua aplicacdo pratica em larga escala seja

desfavorecida.

Atualmente, ndo existe consenso na literatura acerca de qual é a medida de risco de
investimentos financeiros mais adequada para aplicacdo pratica, jA& que o CVaR,
apesar de coerente, ndo é de facil aplicacdo (como demonstrado por Barrosa),

demandando um grande esforgo computacional.
Assim, os académicos concentram suas aten¢es em dois principais topicos:

1) Definicdo de novas medidas de risco, de modo a melhor caracterizar a
distribuicdo de probabilidade dos retornos;

2) Aprofundamento dos estudos de medidas de risco ja existentes, com um
foco maior tanto naquelas que sdo mais utilizadas em termos préaticos,
como a Variancia e 0o Valor em Risco (VaR), quanto nas medidas
coerentes e ainda consideradas inovadoras, como o Valor em Risco
Condicional (CVaR). Isso, com objetivo de analisar seu comportamento
e, finalmente, possibilitar sua utilizacio como funcdo objetivo em
processos decisorios.

A Tabela 4 apresenta as trés medidas de risco que sdo apresentadas na literatura e
que serdo utilizadas como objeto de aprofundamento deste trabalho. Nela, séo

demonstradas as categorias as quais pertencem, e suas limitagdes.
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Tabela 4: Coeréncia e limitacées de medidas de risco

Medida de Risco Categoria Coeréncia™ Limitagdes

- Aplicagdo a Distnbuigdes Simétnicas de Probabilidade;
- Ndo diferenciacdo enfre retornos negativos (ndo
Variancia {crz] Deswvio Sim dessjaveis) e positivos (desejaveis);

- Desconsideragdo da Cauda de Distnbuicdo (fragiidade
para cenanos de estresse - i.e. perdas significativas).

- Nio oferecimento de infformacfes acerca de perdas que
Nio excedam o percentil (VaR) definido a um dado nivel de

(Subaditividade) |confianca;

-MNdo Coeréncia.

Valor em Risco (VaR) Cauda

Valor em Risco Condicional

(CVaR) Cauda Sim - Dificuldade de aplicacio pratica.

* Segundo critérios definidos por ARTZER (1999).

Fonte: adaptado de BARROSA, 2015

2.3 Modelos de Selecédo de Portfdlio

A determinacdo da composicdo de um portfélio estd diretamente ligada ao risco
associado aquela carteira e ao retorno gerado. O objetivo de um gestor de portfélio é€,
para um determinado nivel de risco, maximizar o retorno, ou analogamente, para um

dado retorno, minimizar o risco.

No entanto, essa ndo é uma questao trivial, pois os ativos financeiros estdo expostos
a diversos tipos de riscos, como riscos de mercado, de liquidez, de crédito ou
operacional. Por exemplo, uma Unica agdo esta sujeita a riscos relacionados a
imagem da empresa, a reputacdo de seus dirigentes além de riscos de mercado e de
liquidez. Essa separacdo de acordo com a sua fonte geradora e consequente acao de
diversos tipos de risco em um mesmo ativo torna sua mensuracdo nao trivial e dificil.
No caso da composicdo de carteiras, o problema é agravado pelas correlaces

existentes entre os diversos ativos que a compde (MARKOWITZ, 1952).

Seja A, um montante fixo disponivel para alocagdo de investimentos, medido em

valores monetarios, € n uma quantidade de diferentes ativos financeiros pré-
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selecionados, uma carteira (ou portfélio) de investimentos é definida como um ativo

obtido através da alocacdo de A, a n. Ou seja:
Aoi = x40
Com: tixi=1

O vetor x = x4 x, ... X, representa a alocacdo do montante A, em cada ativo i que
compde a carteira, ou 0 peso de cada ativo na carteira, €, mais importante, representa
as variaveis do problema de otimizacdo para composicdo de carteiras de

investimentos.

O retorno de uma carteira de investimentos € calculado pela média ponderada dos
retornos individuais de cada ativo que compde a carteira, podendo ser facilmente

€Xpresso por:
n
n Rix;A
R, = 21_1Az ifo _ ZRixi
0 i=1

Assim, o problema de gestdo de carteiras de investimentos tem como objetivo
minimizar uma certa funcdo Risco(x), a qual representa o risco da carteira em
funcdo de sua composicdo, sujeito a restricbes acerca do retorno R, esperado e
determinado pelo investidor. Para definicdo mais precisa do problema, sdo
necessarias duas premissas elementares representativas do comportamento racional
humano (LUENBERGER, 2008):

(1) Néo saciedade: o investidor prefere mais riqueza a menos riqueza;

(2) Averséo a risco: dadas duas carteiras com mesmo retorno e diferentes
riscos, o investidor opta pelo menor risco. Conceito esse diferente (mas nao
contraditério) daquele definido por GIUDICI (2010).

Portanto, o problema de otimizagdo de portfélios de investimentos, em sua forma
geral, é definido como (BARROSA, 2015):

Minimizar: f(X) = Risco(x)
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Sujeito a:

n
Z E(R)x; = G
i=1

A primeira restricdo se refere a parametrizacdo do modelo em relagdo ao retorno
médio esperado da carteira, o qual necessariamente ¢ maior ou igual ao valor minimo

estipulado pelo investidor, G.

A segunda restricdo garante que sera investida exatamente a quantidade de recursos
financeiros fixada e pré-definida pelo investidor, A0, uma vez que a soma dos pesos

de todos o0s ativos que compdem a carteira é unitaria.

Por fim, a terceira restricdo garante alocacdo ndo negativa dos recursos nos ativos
que constituem a carteira. Ou seja, esta restricdo garante que nenhum ativo tenha
alocacdo inferior a zero, 0 que representaria uma venda a descoberto (short selling,

do inglés).

Apresentado o problema em sua forma geral, segue-se, nas proximas se¢des, com a
sua aplicacdo especifica das medidas de risco selecionadas para aprofundamento
neste trabalho: a Variancia (Modelo de Markowitz), o Valor em Risco (VaR), o
Valor em Risco Condicional (CVaR) e, por fim, o modelo aqui proposto, 0 Método
Kriging.

2.3.1 Modelo de Markowitz

Harry Markowitz, através de sua famosa publicacdo em 1952, chamada de Teoria

Moderna da Gestdo de Carteiras, procurou desenvolver uma meétrica universal de
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risco de mercado para um dado investimento. A medida de risco utilizada no modelo

¢ a Variancia, ja detalhada nesse trabalho.

Agora, seja X a matriz de covariancia entre os ativos que compdem um determinado

portfélio de investimentos, em que:

Yij = cov(Ry, R;) = orirj = E[(R; — ur) (R — Rugj)] .

Ou: y = :
2

2

0'1 cee O'ln

. ) |
Op1 *° Op

Representa uma matriz simeétrica com as variancias individuais das séries histdricas
de cada ativo que compde a carteira na diagonal principal, e com as covariancias
entre esses ativos, dois a dois, para todo i # j, tem-se que o risco deste portfolio de

investimentos é:
Risco (x) =2 =x'Y x,

a qual é uma func¢do quadréatica que representa a variancia da carteira em funcao da
sua composi¢cdo (MARKOWITZ, 1952).

A partir dessa definicdo, surgiu originalmente o conceito de diversificacdo de
Markowitz, um marco de sua época e permanece até hoje como sendo considerado
um dogma entre os gestores de carteira. Esse conceito diz que a composi¢do de uma
carteira contendo ativos com covariancia negativa pode apresentar uma melhor
relacdo entre risco e retorno quando comparada ao investimento em um unico ativo

ou em ativos com correlagéo positiva (LUENBERGER, 2008).

Assim sendo, o problema de composicdo de carteiras de investimentos utilizando a

variancia como medida de risco pode ser expresso da seguinte maneira:

Minimizar: Risco(X) = x'Y, x
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Sujeito a:

x;,=20i=1,..,n

Sendo que as trés restricbes apresentadas sdo iguais aquelas descritas na secdo
anterior desse trabalho e a funcdo objetivo, a qual representa o risco da carteira € a

variancia da mesma.

Na pratica, os parametros da fungdo x' ) x sdo estimados através de um estudo
amostral das séries historicas dos retornos de cada um dos ativos que compdem um

determinado portfélio.

BARROSA (2015) cria um exemplo para esclarecer os conceitos acima descritos. Na
Figura 9, é possivel ver a curva Retorno x Risco para uma simulacdo de carteira

composta por trés ativos, delimitando diferentes composi¢des para cada um deles.
Figura 9: Curva retorno x risco para uma carteira com trés ativos

Retorno vs Risco (Desvio Padrdo) para Carteira com 3 Ativos
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0.5 0.7 0.9 11 1.3 1.5 1.7 1.9 2.1
Risco (Desvio Padrdo da Cartreira)

Fonte: adaptado de BARROSA, 2015

Fica claro a partir do grafico que a funcdo Risco (x) assumida no exemplo (no caso, a

Variéncia) é uma funcdo quadrética. Valem notar também os trés pontos limitrofes



53

do grafico. Esses representam as trés carteiras de ativos com peso um, ou seja,
carteiras compostas por apenas um ativo, sendo que cada uma possui um ativo

diferente.

Considerando que um problema de otimizacdo de portfélios de investimentos
apresenta premissas de nao saciedade, maximizando o retorno, e aversdo ao risco,
minimizando as potenciais perdas, as quais possuem objetivos conflitantes, fica
claro, com o auxilio da Figura 9, que apenas uma pequena parcela dos diferentes

portfélios com diferentes composi¢des gerados satisfaria ambas as premissas.

A regido do grafico que, justamente, é capaz de satisfazer as duas simultaneamente, é
obtida através de algum método de otimizacdo (e.g. 0 método de Kuhn-Tucker),
minimizando assim a funcdo Risco(x)=x'Xx e parametrizando o retorno minimo
desejado pelo investidor através da restricdo R, >G. Os resultados destes problemas
de otimizacdo assumindo diferentes valores de G estdo apresentados na Figura 10.
Essa curva é denominada Fronteira Eficiente de Markowitz, um famoso exemplo de
Fronteira de Otimalidade de Paretto para objetivos conflitantes (PAPALAMBROS,
2000).

Figura 10: Exemplo de fronteira eficiente de Markowitz

Retorno vs Risco (Desvio Padrdo) - Fronteira Eficiente de Markowitz
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Fonte: adaptado de BARROSA, 2015

E importante perceber que quaisquer composicdes de carteira que nao residam nessa

curva apresentam, obrigatoriamente, uma relagdo Risco — Retorno inferior aos pontos
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sobre a mesma. Ou seja, 0s pontos que foram gerados pela simulagdo apresentada na
Figura 10 representam carteiras com um maior nivel de risco para um dado retorno,
ou menor retorno para um dado retorno, ndo sendo considerados, portanto,

composicdes Otimas.

Nesse ponto do trabalho é importante se utilizar dos conceitos de Funcdo Utilidade e
dos diferentes perfis de investidores em relacdo ao risco, conceitos esses previamente
detalhados. Isso se da, pois é essa fun¢do que ordena os investimentos de acordo com
o perfil de risco do investidor (LUENBERGER, 2008) e, portanto, € ela que,
considerando a ideia basica que maiores riscos implicam em maiores retornos, e
vice-versa, definira qual ponto da curva da Fronteira Eficiente o investidor vai

escolher.

Por apresentar um problema de otimizacdo de uma funcdo quadrética, sujeita a
restricbes lineares, 0 modelo de Markowitz ndo é perfeito, ja que se baseia na
hipotese de simetria das distribuicdes de probabilidade dos retornos dos ativos que
compdem a carteira. Além disso, esse modelo também conta com a fragilidade para
representacdo de cenarios de estresse (risco de cauda), o qual tentara ser contornado

pelos modelos VaR e CVaR.

2.3.2 Modelo VaR

Dada a fragilidade do modelo Média — Variancia em ndo considerar a analise da
cauda de distribuicdo, ou seja, deixar de levar em consideracdo cenarios de estresse
(i.e. com perdas significativas, como por exemplo, perdas em momentos de crise
financeira), faz-se necessarias a utilizacdo de outras medidas de risco na resolucéo do
problema de otimizacéo de portfélios de investimentos. Esta foi, portanto, uma das
motivacdes para o desenvolvimento do Valor em Risco (VaR) como medida de risco

utilizada em modelos de otimizacéo de portfolio.

Esse modelo gera a mesma fronteira eficiente que o anterior quando a distribuicdo

em questdo é normal. A diferenca aparece no caso de distribui¢cfes ndo normais e nao
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simétricas, que representam o comportamento de muitas varidveis aleatorias. Outra
grande diferenca entre esse modelo e o de Markowitz consiste no fato de que esse
ultimo considera os desvios da média, tanto os mais positivos quanto 0s mais
negativos, da mesma forma, o que ndo condiz com o comportamento do investidor,
que tem percepcéo diferente quanto aos lados da cauda. No modelo VaR, considera-

se apenas a cauda da distribuicdo que constitui perda para analise do risco.

Similarmente ao caso do modelo de Markowitz, para resolver esse tipo de problema
utilizando o Valor em Risco como medida de risco € comum realizar a amostragem
de séries historicas de retornos como forma de obter estimadores dos principais
parametros que caracterizam sua distribuicdo de probabilidade, e logo os pardmetros
da funcdo Valor em Risco. Analogamente ao método de célculo paramétrico da
variancia para uma carteira, pode-se calcular o Valor em Risco de uma carteira em

funcdo de sua composicao através da relacdo (JANABI, 2012):
VaR (x) = VaR, = [vITv]/?

Onde v representa o vetor dos VaR individuais de cada ativo, em funcdo de seus
pesos individuais, x, e I' representa a matriz de correlacdo entre 0s ativos que
compdem a carteira, sendo:
1 pu

r=(: =~
pu 1
A matriz I é simétrica com diagonal principal unitaria, indicando a correlacdo entre
a série historica dos retornos do ativo i com ele mesmo. Os outros valores da matriz
de correlacdo representam o Coeficiente de Correlacdo de Pearson, obtido através da

amostra dos retornos da série historica entre cada ativo i e j, dois a dois.

Agora, no caso do calculo do Valor em Risco pelo método ndo-paramétrico, ou seja,
utilizando a série historica dos retornos dos ativos que compbem a carteira, a
metodologia é simples: substitui-se a ordenacéo dos Valores em Risco do ativo pela
ordenacdo dos diferentes valores do VaR da carteira, e assim aplica-se a técnica

conforme apresentada anteriormente.
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Desse modo, o problema de composicdo 6tima de portfolio de investimento
considerando o Valor em Risco (VaR) como medida de risco pode ser escrito da

seguinte maneira:

Minimizar: Risco (x) = VaR (x) = [vITv]'/?

Sujeito a:

n
z E(R)x; = G
i=1

Novamente as restricbes desse problema de otimizacdo sdo as mesmas do modelo
base, porém desta vez a funcdo objetivo a ser minimizada é a funcdo que calcula o

Valor em Risco da carteira de investimentos.

Contudo, como ja observado, o Valor em Risco possui algumas limitacGes. Entre
elas estdo: ndo oferece informacdes sobre a dispersdo da cauda da distribuicdo além
do seu valor a um determinado nivel de confianca; depende do nivel de confianca a
ser adotado; e ndo é considerada uma medida de risco coerente (ARTZNER, 1999).
Com o objetivo de superar essas limitacbes, ROCKAFELLAR e URYASEV (2000)
desenvolveram e aplicaram o Valor em Risco Condicional (CVaR) em problemas de

otimizagdo de portfolios de investimentos.

2.3.3 Modelo CVaR

As criticas ao modelo Média-Variancia (modelo de Markowitz) somadas a busca por
uma medida de risco coerente (tentando superar uma limitacdo do VaR) fizeram com
gue o modelo que sera denominado de CVaR ganhasse destaque na literatura.Esse
modelo é baseado no Valor em Risco Condicional da carteira e leva a resultados



57

mais confiaveis sobre o risco associado a um portfélio, j& que considera o risco de

cauda e, mais ainda, valores que ultrapassam o VaR.

Como apresentado anteriormente, o célculo do CVaR depende da determinacdo do
VaR da carteira, 0 que pode ser complicado na pratica. No entanto,
ROCKAFELLAR E URYASEV (2000) propuseram uma abordagem mais simples

para 0 CVAR, em que 0 VaR ¢ calculado e a0 mesmo tempo 0 CVaR é minimizado.

Ainda segundo os mesmos autores, sendo f(X,Y) a fungdo perda associada a um
vetor de decisdo X € R™ e a um vetor aleatério Y € R™, para cada vetor X, a perda
f(X,Y) é uma variavel aleatéria de distribuicdo em R induzida pelo vetor Y, o qual

possui densidade p(Y).

O retorno de um portfolio ¢é calculado atraves do somatério do produto entre o peso

dos ativos e seus retornos individuais. A funcdo perda é o negativo desse retorno
fXY) = =[xy + -+ xq0m] = -XTY
e quando negativa, representa um ganho.

Portanto, pode-se definir a média e a variancia da funcdo perda associado ao

portfolio X em termos da média m e da matriz de covariancia ) dos retornos:
u=-X"m
o2 =XTyX

A probabilidade de que f(X,Y) ndo exceda um nivel a = VaR é:

H(X,a) = f p(Y) dy
f(X,Y)<a
Assume-se que ¥(X,a) é ndo decrescente e continua em relacdo ao VaR, para
simplificar a formulagdo matematica que segue para o calculo do CVaR. Essa funcgéo
determina o comportamento da variavel aleatdria e é fundamental para determinacéo

do risco.
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A um nivel de probabilidade a entre (0,1), em que o pode assumir valores como

a = 0.90 ou @ = 0.99, por exemplo, 0 VaR e o0 CVaR podem ser definidos como:

a=VaR(X,a) =min{faeR: ¥(X,a) = a}

F,(X,a) = CVaR(X,a) =a+

Tl en—alpmay

Em que:
[fX,Y) —a]* = [t]" = max{0,t}.

ROCKAFELLAR E URYASEV (2002) propuseram uma formulacdo matematica
que transforma o problema do célculo do CVaR em um problema de programacéo
linear. O que o modelo propde é uma maneira de discretizar a integral para facilitar
uma aproximacdo do CVaR. Para isso, 0s autores sugerem o uso de amostras da
distribuicdo de probabilidade de Y, de acordo com sua densidade p(Y), que gerem
varios vetores y;,y,, ..., ¥q- Além disso, associado a criacdo de cenarios base, pode-
se aplica-lo para analisar e otimizar o risco de um portfélio com um grande nimero
de ativos, tanto financeiros quanto ndo financeiros, sem muitos recursos
computacionais. Portanto, levando em consideracdo a quantidade de cenarios

gerados (q) uma aproximacdo para a funcéo F, (X,a), é dada por:
q
F(Xa) = CVaR(ta) = a+ s Z [F(X,Y,) —a]*
k

Substituindo o termo [f(X,Y,) —a]™ por variaveis auxiliares p, que obedece
restricfes que garantem que seu valor também seja igual a max{0, t}, transforma-se

a resolucéo do modelo em um problema de programacéo linear.

Pode ser descrito da seguinte forma:

q

- 1
Mi E, (X,a) = +—Z
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Sujeito a:

Xj 2 Oparaj=1,..,n

n
j=1

X'y >¢G
W + XY, +a=>0
W =0, ke{l,2,..,q}

Em que:
q € 0 numero de cenérios gerados
G € o retorno minimo admitido

w,, SA0 as variaveis auxiliares que substituem [X7Y, —a]*

A primeira restricdo refere-se a exigéncia de que a alocacdo dos recursos nos ativos

seja positiva, ou seja, ndo sao consideradas posic¢des vendidas.
A segunda garante que todo capital disponivel seré investido.

A terceira restricdo impde que sO serdo considerados portfélios que tenham um

retorno minimo R.

Por fim, a quarta e quinta restricdes tratam da variavel y, que deve ser positiva,

obedecendo a relacdo descrita na quarta restricao.

A solucio para o problema é a aproximacdo de F,(X,a) por F,(X,a) e posterior
minimizacao dessa, que é uma fungdo convexa, linear e diferencidvel em relacdo a X
e ao VaR e pode ser minimizada com métodos usuais de programacéo linear, o que

torna sua implementagé&o atrativa.

Apesar de ndo voltar atengdo para o VaR diretamente, como o CVaR > VaR, o
portfélio que minimiza esse primeiro tende a ser uma boa solugdo para o problema

de minimizagdo do ultimo.
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A transformagdo para uma programacgdo linear do problema de minimizagdo do
CVaR ndo depende de que Y tenha uma distribuicdo normal previamente conhecida,
0 que torna o modelo vantajoso frente ao de Markowitz. Além disso, também ¢é
considerado um modelo mais robusto que o modelo VaR, j& que o CVaR analisa
melhor a cauda da distribuicdo de probabilidade dos retornos e, adicionalmente,

inclui o célculo do proprio VaR implicito nele préprio.

2.3.4 Modelo Proposto: Kriging

O modelo apresentado acima, o0 modelo CVaR, apresenta uma desvantagem: a sua
dificuldade para aplicacdo pratica. Isso acontece, pois para tornar o modelo em um
problema de programacdo linear é necessaria a inclusdo de mais varidveis e
restricbes de acordo com o numero de cenarios, nUmero esse gque aumentam a
medida que o tamanho da amostra gerada por simulacdo de Monte Carlo também

cresce.

O presente trabalho tem como objetivo propor um modelo de otimizagdo que visa
diminuir o nimero de variaveis e o trabalho computacional para obter a composi¢édo
da carteira Otima. Esse método busca a criagdo de uma superficie aproximada da

fungéo a ser minimizada.

Nos modelos apresentados nos itens anteriores utiliza-se 0 comportamento passado
dos retornos dos ativos para representar o que acontecera no futuro, considerando a
matriz de covariancia constante na geracdo e analise de cenarios. Esse principio
também ¢é utilizado nesse modelo, pois ele modela a cauda da distribuicéo, propondo
uma aproximacdo da funcéo da superficie, baseado nos dados histdricos que servem

de variavel de entrada para a solugéo do problema.

Sabe-se que, para aproximar uma funcdo, deve-se fazer uma escolha apropriada dos
pontos da malha, ou seja, dos pontos que irdo representar os dados no espaco.
Existem diversas técnicas para aproximar a fungédo de interesse, mas nesse trabalho
sera proposto o uso do Modelo Kriging, também conhecido como ajuste DACE
(Design and Analysis of Computer Experiments). Essa técnica teve origem no estudo
de problemas oriundos da geologia e é conhecida como Kriging (RIBEIRO e

FERREIRA, 2004), que é um método de regressdo usado em geoestatistica para
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aproximar ou interpolar dados (YIN, J e NG, 2011), também conhecido como

“Processo Gaussiano de Regressao”.

Apesar desse método nao ser tradicionalmente aplicado para problemas financeiros e
inicialmente ter sido usado em problemas de concentracdo de minerais no solo,
acredita-se que existem semelhancas nas duas aplicacdes que justificam o seu uso
nesse trabalho. No caso da composicdo do solo ha dificuldade de obtencdo dos
valores reais de composicao em toda a regido pesquisada. No problema do célculo do
CVaR, apesar de ser possivel determinar seu valor para grande parte das
configuragBes de carteira, o comportamento da funcdo tedrica dificulta sua
otimizacgdo, sendo muitas vezes necessario um grande trabalho computacional de

acordo com os modelos hoje existentes na literatura.

O Modelo Kriging propfe o ajuste da superficie de resposta dos dados coletados
avaliando a funcdo objetivo e as restricbes do problema em alguns pontos
determinados. Essa superficie de resposta é usada para analise das relagdes entre as
variaveis de entrada e saida do problema bem como para a estima¢do do seu 6timo
(JONES, SCHONLAU e WELCH, 1998).

Essa técnica tem sua funcdo objetivo tratada como o resultado de um processo
estocastico previamente definido, caracterizado por uma funcdo de correlacéo entre
os valores calculados em diferentes pares de pontos (JONES, SCHONLAU e
WELCH, 1998). Costuma ser usada em casos em que o custo do célculo da funcéo

objetivo € alto, ndo sendo esse, necessariamente, o0 caso do CVaR.

Considerando o vetor X' e R" (i=1,2,..,n) e 0 vetor Y = {y%,y?, ...,y9} e R9, em
que n representa 0 nimero de ativos que compde a carteira € 4 0 numero de pontos
observados na malha, o ajuste DACE fornece uma aproximagdo polinomial da

funcdo y' = f(X") interpolando-a nos pontos observados através da equagao:
y(X') = p+eX)

Onde e(X) sdo os erros aleatérios, correlacionados, normalmente distribuidos, com

média zero e variancia constante, o?.
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A correlacio entre e(X)) e e(X)), citada acima, depende da distancia entre os pontos.
Ela serd maior quando X' e X/ forem préximos, ou seja, tenderd a um quando a
distancia for pequena e a zero se esses pontos da malha forem muito distantes. A

covariancia entre os erros é da forma:
cov (e(Xi), e(Xj)) = 0%
Em que Z;; é a correlagdo entre dois erros (Z;; = R(6, dp,) = corr(X), X))).

Consideram-se as seguintes funcdes de correlacio (LOPHAVEN, NIELSEN e
SONDERGAARD, 2002):

Tabela 5 : Funcgdes correlacido disponiveis na aplicacao do Método Kriging

Correlacado Funcao

Exponencial R(6,dy) = exp(—6yldyxl)

Gaussiana R(6,dp) = exp(—=6,d,?)
Linear R(6,d;) = max{0,1 — 6,|d,])
Esférica R(6,dy) =1 — 1,58, + 0,5&,%,

& = min{1, 6,dyl)

R(6,dp) = ¢($p),

ép = 9h|dh|

Spline

Fonte: elaborado pelo autor
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O termo d(X', X)) refere-se a distancia entre os pontos e ndo é baseado no modelo

. s 2
Euclidiano (\/Zr{(x;1 - XL) ), como forma de tratar todos os pontos com 0 mesmo

peso.

A medida dessa distancia entre os dois pontos € uma funcao de parametros 6y, e py,.

n
d(Xi, X]) = z 9h|X{1 - X{l Ph
h=1

Segundo JONES et al (1998), o parametro 6;, mede a influéncia ou “atividade” da
variavel x;, ou seja, se a variavel é “ativa”, isso significa que mesmo valores
pequenos de |x —x{l| podem influenciar em grandes diferencas nos valores das
funcbes em X' e XJ. Estatisticamente, quer dizer que mesmo valores pequenos de
xl — xL| devem implicar em uma menor correlacdo entre os pontos X' e X/ quanto

maior o valor de 6y,.

Ainda segundo 0 mesmo autor, o expoente py, esta relacionado a suavidade da fungédo
em relacdo aos pontos h. Valores de py, = 1 correspondem a fun¢Ges menos suaves e

pn = 2 a fungdes mais suaves.
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Figura 11: Parametros aplicados no Método Kriging
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Fonte: adaptado de QUEIPO, 2002

Em uma abordagem similar a QUEIPO et al. (2002), adota-se 8, = 1 e p;, = 2. E,
portanto, o estimador ndo viesado de minimos quadrados para f(X*) é dado por

(RIBEIRO e FERREIRA, 2004), (LOPHAVEN, NIELSEN e SONDERGAARD,
2002).

FOY = B (X + 157y = FY)
j=1

J
Em que:

B =(FTx'F)1FTx 1y

r € 0 vetor de correlagBes entre erros em relagdo ao ponto X* e 0s
demais pontos da amostra

¥ ¢ a matriz de correlacao entre os pontos da amostra

y € 0 vetor dos valores observados para 0 CVaR

F é a matriz com os valores das fungdes calculados nos pontos da

amostra

O primeiro passo para a aplicacdo do modelo proposto relaciona-se a obtencdo de

uma amostra apropriada para o experimento. Como o objetivo do trabalho é analisar
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0 problema de composicdo de portfolio, os pontos da malha representam a
porcentagem de alocacdo do capital investido em cada ativo. Por isso, esses assumem

valores tal que x; € [0,1].

A decisdo do modo de geracdo dos pontos que serdo utilizados para andlise €
importante como forma de aumentar a eficiéncia do método e reduzir a incerteza

estatistica desse. Pode-se citar trés métodos principais para geragdo da amostra:

1) Geracdo aleatéria: os pontos gerados sdo normalmente distribuidos no
intervalo [0; 1], tendo a sequéncia média zero e variancia unitaria;

2) Geracdo deterministica: cada face do hipercubo [0; 1]™ é subdividida em
um determinado numero de intervalos que ddo origem a outros cubos cujos
vértices sdo o pontos da amostra (RIBEIRO e FERREIRA, 2004);

3) Geracdo por hipercubo latino: garante que todas as porcGes do espaco
estdo sendo representadas. Primeiro determinam-se m intervalos néo
sobrepostos e com mesma probabilidade, depois é gerada uma amostra
aleatdria, uniformemente distribuida, em cada intervalo e em todas as
dimensdes para posterior selecdo aleatoria destes para compor o grupo de
pontos para analise.

LOPHAVEN, NIELSEN e SONDEGAARD (2002) apresentam trés modelos de
regressdo que podem ser utilizados para aproximar a superficie de resposta do
problema. No primeiro aproxima-se a superficie ao valor de uma constante atraves
de um polindmio de grau zero, a segunda op¢ao é aproxima-la por um polinémio de
grau um, representando uma regressao linear, ou, por ultimo, uma regressdo
quadratica, utilizando um polinémio de grau dois. A abordagem proposta nesse
trabalho ird utilizar a regressdo linear, de forma a diminuir a complexidade do

problema e facilitar a sua representacdo gréfica, portanto:

fl(x) = 1' fZ(x) = X150, fn+1(x) =Xn

Definida a metodologia de geracdo da amostra, de correlacdo e regressdo que seréo

utilizadas, o modelo segue com 0s seguintes passos:

a) Um conjunto de pontos {X'} L, é gerado, de acordo com um dos métodos

apresentados acima, obedecendo as seguintes restri¢des:
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X'eRfe 0<x/ <1, i=1.,n

b) Para cada vetor X* calcula-se y* = CVaR;

c) Para o conjunto de pontos X' e y*, determina-se a fungio aproximadora
através do modelo Kriging, de acordo com o modelo de regressdo e
correlagdo escolhidos e também dos parametros 6, p;, € o2;

d) Gera-se um novo conjunto de pontos {X'} 7, obedecendo as mesmas
restricdes de forma a analisar o erro de estimacdo entre o valor dado pela

funcéo aproximada f e o valor do CVaR de cada carteira.
De acordo com QUEIPO et al (2002), os beneficios de utilizar essa abordagem
probabilistica para modelar fun¢bes deterministicas consistem no fato de o modelo
utilizar um estimador imparcial para a representacdo do problema e por fornecer o

erro estimado da aproximacao.

2.4 Selecido de Portfolio no Setor de Energia

Os fundamentos da Teoria Moderna da Gestdo de Portfolio (i.e. uma carteira
composta por ativos 0s quais possuam retornos negativamente correlacionados
oferece uma melhor relacédo retorno — risco que uma carteira formada por apenas um
ativo), introduzida por Harry Markowitz em 1952, também passaram a ser utilizados

no setor de energia.

Essa utilizacdo da teoria de Markowitz em um campo totalmente diverso daquele do
mercado financeiro ndo é recente: foi introduzida pela primeira vez por BAR-LEV e
KATZ (1976). Porém, resultados mais concretos foram obtidos por AWERBUCH e
BERGER (2003), AWERBUCH (2006) e KREY e ZWEIFEL (2006) e acabaram por
virar referéncia na literatura. De acordo com tais autores, o objetivo do estudo €
selecionar a composicdo 6tima da matriz energética de um pais (ou continente, no
caso da Europa), formada por diferentes tecnologias de producdo, como por
exemplo, a producéo de energia eolica, a gas, nuclear, entre outras. Nesse contexto, o
custo unitario de producdo energética [KWh/$] é considerado como o retorno do
portfélio de energia e o desvio padréo deste retorno é tido como a medida de risco a

ser mensurada.
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LOSEKANN et al (2013) e DELARUE et al (2011) realizam uma abordagem
simular: esses consideram como funcédo objetiva do problema de otimizacdo o custo
unitario de producéo energeética [$/kWh] e, o desvio padréo de tal custo, expressado
como porcentagem do custo médio, como o risco associado a cada tecnologia, sendo
que cada uma simboliza um ativo. A forma geral do problema pode ser escrita da

seguinte forma:
Min CUSTO (x) = X1 x;UTCO;
Subjectto (1) [x! ¥ x]Y?2 <R
(2)X1x =1
) x,=20,i=1,..,n

A funcdo objetivo CUSTO (x) representa o custo unitario total da producédo
energética em termos de vetor de decisdo X, o qual representa a alocacdo em cada
tecnologia na carteira de matriz energética. Notavelmente, o custo unitario total é
expresso como a soma do custo unitario médio de cada tecnologia, simbolizado
como UTCOi (unit total cost, do inglés) (DELARUE ET AL, 2011).

A primeira restricdo do problema representa o desvio padrdo (medida de risco
utilizada) da carteira em funcéo de x (alocacdo em cada tecnologia), sendo que T se

refere a matriz de covaridncia entre os calores historicos do custo unitario. Essa

restricdo é parametrizada em R, o qual é o maior risco aceitavel da carteira.

A segunda restricio garante a alocacdo total da oferta de energia provida pelas

diferentes tecnologias estudadas.

Por fim, a terceira restricdo assegura que nio exista alocacdo negativa na carteira, ja

que existe uma restricao fisica para tal.

A fim de tornar o problema apresentado uma razoavel representacdo da realidade, o
UTCO (custo unitario total) é decomposto em diversos componentes (DELARUE et al,

2011):

UTCO; = Z Cix = INVe; + FU; + FOMe; + VOM;
k
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Sendo que:

C; x representa o custo do componente k da tecnologia i [$/kWh]

INVe; representa o custo de investimento da tecnologia i [$/kWh]

FU,representa o custo de combustivel da tecnologia i [$/kWh]

FOMe; representa o custo fixo de Operacdo e Manutencdo da tecnologia i [$/kWh]

VOM,; representa o custo variavel de Operacdo e Manutencdo da tecnologia i
[$/kwh]

LOSEKANN et al. (2013) apresenta em seu estudo um grafico de dispersdo
relacionando o custo unitario médio de producdo energética com o desvio padréo
desse custo, expresso como porcentagem da médio do custo, para mdultiplas
tecnologias disponiveis no mercado brasileiro. Tais resultados sdo apresentados na

Figura 12.
Figura 12: Custo Médio e Risco (Desvio Padrio) para diferentes tecnologias
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Fonte: adaptado de LOSEKANN, 2013

E possivel perceber que existe uma correlagdo negativa entre o custo unitario médio com o
desvio padrdo desse custo. Essa correlacdo é andloga a relacdo classica entre risco versus
retorno, a qual diz que quanto maior o risco incorrido pelo investidor, maior também é o
retorno exigido pelo mesmo. No caso do setor de energia, porém, como 0 objetivo é
minimizar a variavel custo (e ndo maximizar o retorno), essa relagdo se inverte, ou seja, para

um risco maior (desvio padrdo, no caso) € exigido um custo de producdo energética menor.
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Ainda nesse ambito, vale dizer que o conflito entre minimizar ambos o custo unitario médio
de producdo energética de uma carteira com multiplas tecnologias e seu respectivo risco
(desvio padréo, por exemplo) pode ser representado pela Fronteira Eficiente de Pareto para
conflitos objetivos (PAPALAMBROS, 2000), exibido na Figura 13.

Figura 13: Fronteira Eficiente de Pareto para objetivos conflitantes
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Fonte: adaptado de PAPALAMBROS, 2000

Alternativamente ao problema de otimizacdo apresentado acima, é equivalente apresenta-lo
de outra forma (BARROSA, 2015). Segundo o autor, é conveniente reescrever a funcao
objetivo do problema como sendo funcgdo do risco da carteira de matriz energética, sujeito a
uma restricdo parametrizada que represente 0 maior custo unitario médio aceitavel. Assim, o
problema é formulado da seguinte maneira:

Min RISCO

Subject to (1) X1UTCO; =C
(2 X1x =1
) x,=20,i=1,..,n

Essa nova forma de representar o problema de otimizagdo da matriz energética possibilita o
uso de diferentes medidas de risco e, portanto, serd implementado nesse presente trabalho, ja
que serdo utilizados, além do desvio padrdo, outras medidas de risco, como o Valor em
Risco (VaR) e 0 Valor em Risco Condicional (CVaR).



70



71

3 METODOLOGIA

Neste capitulo é apresentado, primeiramente, a motivacdo da escolha do setor de energia
analisado nesse presente trabalho e suas principais caracteristicas. Em seguida, é detalhada a
medida de custo utilizada, 0 LCOE (Levelized Cost of Energy, do inglés). E apresentada
também a base de dados escolhida para a aplicagdo do método proposto (Método Kriging).
Finalmente, é demonstrado como simulacdes de Monte Carlo foram utilizadas de modo a

auxiliar na preparagdo desses dados.

3.1 Setor de Energia dos Estados Unidos

3.1.1 Motivacao

A ideia original desse presente trabalho era analisar o mercado de energia do pais de
origem do autor, ou seja, o Brasil. Porém, algumas limitacdes e percal¢os surgiram

durante a etapa de coleta de dados:

1) Existe no Brasil uma grande falta de dados publicos referente aos custos de
geracdo de energia. Vale dizer que o principal érgdo regulador do setor de
energia do pais, a ANEEL (Agéncia Nacional de Energia Elétrica), ndo
fornece dados das plantas geradoras de energia, j& que a maior parte delas
pertence a iniciativa privada, a qual ndo é obrigada por lei a disponibilizar
tais dados.

2) Ainda em relacdo as empresas privadas responsaveis pela administracdo de
plantas geradoras de energia, sejam elas provenientes de concessoes
governamentais, ou até mesmo de propriedade das proprias empresas,
procurou-se entrar em contato com as mesmas para obter dados, como, por
exemplo, de custos de operacdo e manutencdo, fator importante do custo total
de uma planta geradora. Infelizmente, muitas delas optam por ndo divulgar
tais dados, alegando que preferem manter sigilo em relacdo a tais nimeros, o
que dificulta enormemente a realizacdo de uma pesquisa académica.

3) Politicas governamentais, tanto federais, quanto estaduais, de subsidios e
incentivos sdo muito frequentes no Brasil. Um dos motivos pelo qual isso
acontece é porque o Estado, por motivos politicos, tem o interesse de possuir
forte influéncia no setor energético do pais. O governo o faz, por exemplo,

através de um controle de precos de combustiveis, 0 que, consequentemente,
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impacta diretamente nos custos de uma planta geradora de energia. Esse
intervencionismo estatal prejudica ldgicas de mercado, ou seja, “leis” basicas
da economia, como as da oferta e demanda sdo deixadas no segundo plano:
empresas passam a priorizar agdes que se beneficiem de incentivos
governamentais. 1sso tudo acaba por prejudicar a implementagdo do modelo
proposto nesse presente trabalho, o Método Kriging, ja que esse modelo nao
se baseia em ac¢des governamentais arbitrarias e sim, se utiliza de l6gicas de
mercado, como a relacdo custo — retorno. A titulo de exemplo desse tipo de
acao por parte do Estado, é possivel verificar na F o custo varidvel médio de
geracdo de energia de quatro usinas localizadas no estado do Rio de Janeiro.
Apesar de possuirem exatamente a mesma tecnologia geradora, apresentam
custos de geracdo muito diferentes. 1sso pode ser explicado pelo fato que as
usinas foram construidas em datas diversas e em cada data em que seu
contrato foi assinado o governo possuia uma politica de subsidios diferentes,
causando evidentemente uma disparidade nos custos de geracéo.

Figura 14: Custo variavel das plantas geradoras Norte Fluminense em 2013

Custo Variavel das Plantas Geradoras em 2013
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Fonte: adaptado de www.aneel.gov.br

Assim sendo, o presente trabalho tem como objetivo analisar o0 mercado de energia
dos Estados Unidos. Isso, pois existe uma grande disponibilidade de dados desse

mercado, principalmente por 6rgdos governamentais que consolidam informacao,
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como o Departamento de Energia dos Estados Unidos (DOE) e a Agéncia de
Informacdo de Energia dos Estados Unidos (EIA). Além disso, esse mercado
também possui como caracteristica um forte liberalismo econdmico, em que forgas
de mercado influenciam custos e precos de geragdo. Portanto, 0 modelo proposto
nesse trabalho se torna valido e, consequentemente, uma potencial ferramenta no

auxilio da formulacéo de politicas energéticas.

3.1.2 Principais Caracteristicas

Os Estados Unidos sdo o segundo maior produtor e consumidor de energia do
mundo, atras apenas da China. O pais consome aproximadamente 20% da producéo
mundial de energia do mundo e, notavelmente, possui papel relevante no setor
energético global. Fica evidente a partir da Figura 15 que nos Ultimos séculos o
consumo de energia per capita aumentou expressivamente. Porém, é importante
perceber também que nas Gltimas décadas houve uma diminuicdo do consumo per
capita, a qual pode ser explicada por tecnologias mais eficientes no quesito
energético, um grande aumento da populacdo e politicas ambientais em prol da

diminuigdo do consumo de energia.

Figura 15: Consumo de energia per capita nos Estados Unidos
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Fonte: adaptado de Electric Power Annual, 2015
E possivel verificar na Figura 16 que o setor responsavel pelo maior consumo de
energia do pais é justamente o elétrico, o qual &, alias, o setor a ser analisado nesse

presente trabalho.
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Figura 16: Participacao de cada setor no consumo de energia nos Estados Unidos
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Fonte: adaptado de Electric Power Annual, 2015

E importante também definir quais sdo as principais fontes geradoras de energia do
setor elétrico dos Estados Unidos, o que é exibido na Figura 17. Percebe-se que
aproximadamente metade da energia elétrica € proveniente de tecnologias que se

utilizam do carvao como fonte geradora.
Figura 17: Matriz energética dos Estados Unidos
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Fonte: adaptado de Electric Power Annual, 2015

Vale ressaltar também a maior importancia de tecnologias renovaveis: segundo a
Agéncia de Informacdo de Energia dos Estados Unidos (EIA), em 2003 as fontes
renovaveis de energia representavam 6% da matriz energética do pais e em 2015, por

sua vez, respondem por 10% da producdo total de energia elétrica do pais.
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Dado o aumento da importancia das fontes renovaveis no pais, é importante também
detalhar quais sdo as principais tecnologias renovaveis utilizadas, o que pode ser

verificado na Error! Reference source not found..

Figura 18: Participacio das tecnologias renovaveis nos Estados Unidos
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Fonte: adaptado de Electric Power Annual, 2015

Destacam-se as tecnologias hidro, eblica e biomassa, as quais representam quase
90% da producdo total renovavel do pais. Pela sua relevancia, essas trés tecnologias,
juntamente com a tecnologia solar (essa, cada vez mais presente em estudos
académicos), foram as tecnologias renovaveis escolhidas para serem analisadas nesse

presente trabalho.

3.2 LCOE

A medida de custo a ser utilizada nesse presente trabalho é o LCOE (Levelized Cost
of Energy, do inglés). O LCOE é uma medida conveniente para comparar a
competitividade geral de diferentes tecnologias de geracao energética. Ele representa
0 custo por megawatt hora (em termos reais) de construgdo e operacdo de
uma planta geradora em um ciclo financeiro e um ciclo de operacdo previamente

definidos.
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Os principais parametros necessarios para se calcular o LCOE s&o o custo de capital,
custo de combustivel, custos fixos e varidveis de manutencdo e operacao, custo de
financiamento, e uma assumida taxa de utilizacdo da tecnologia geradora. Assim

sendo, de maneira geral, é possivel notar que:

R$
LCOE = f(Custo de Capital, 0&Mf, 0&Mv, Combustivel) [W]

Antes de demonstrar a sua formulacéo geral, é importante primeiro definir o CRF
(Capital Recovery Factor,do inglés), que é um fator utilizado para tornar anual o
custo de capital, ou seja, 0s custos incorridos durante o investimento em capital fixo
de uma planta. Esse, dependendo da tecnologia adotada, pode representar uma parte
importante do custo total da geracdo energética. O CRF é calculado da seguinte

forma:

D *(1+ D)V

CRE = (L+D)N — 1)

Em que:

D é igual a taxa de desconto em que os fluxos de receita sdo descontados a

Valor Presente. Essa taxa é diferente para cada tecnologia.
N representa o tempo de atividade de uma planta geradora.
Assim sendo, podemos agora definir a calculo do LCOE:

CC+CRF x (1 —1DPV) O&Mf

LCOE = FCr(1=1) + e + 0&Mv + Combustivel
R$
TA |——
*TA L]
Em que:

CC representa o custo de capital para se construir uma planta geradora de
energia. Em outras palavras, é o investimento em capital fixo necessario na

construcdo de uma planta.

| € o imposto (em %) aplicado pelo governo.
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DPV representa o valor presente da depreciacéo da planta.

FC representa o fator capacidade, o qual é definido como a proporcéao entre a
producdo efetiva da planta geradora e a capacidade total maxima neste

mesmo periodo.

O&MTf representa os custos fixos de operacao e manutencao.

O&Mv representa 0s custos variaveis de operacao e manutencao.
Combustivel representa o custo incorrido com a aquisi¢do de combustivel.

TA representa a taxa de aquecimento, ou seja, a eficiéncia da usina na

conversdo de combustivel em energia elétrica.

E importante salientar que o peso de cada parametro varia entre cada tecnologia. Por
exemplo, no caso das geracdes solar e eolica, o custo de combustivel é igual a zero e
0s custos com operagdo e manutencdo sdo relativamente pequenos. Ainda, nesses
casos, 0 custo com capital é o que representa a maior parcela do LCOE, ja que essas
plantas requerem altos investimentos para serem concluidas. Por sua vez, no caso de
tecnologias como gas, isso se inverte: o fator que possui 0 maior peso do custo total é

0 combustivel.

3.3 Obtencao dos Dados

3.3.1 Base de Dados Utilizada

Os dados utilizados na anélise desse trabalho foram coletados no  “Transparent
Cost Database”, a qual ¢ uma base de dados publica que retne dados provenientes
de diversas fontes, tanto académicas, quanto de Orgdos governamentais, como 0
Departamento de Energia dos Estados Unidos (DOE), a Agéncia de Informagdo de
Energia dos Estados Unidos (EIA), a Agéncia de Protecdo Ambiental dos Estados
Unidos (EPA), entre outros.

Os dados coletados sdo estimativas para o LCOE de diversas tecnologias nos Estados
Unidos nos préximos vinte e cinco anos, ou seja, de 2016 a 2040. Nesse presente

trabalho, serdo analisadas as principais tecnologias utilizadas na geracdo de energia
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no mercado dos Estados Unidos. S&o elas: solar, edlica, hidro, biomassa, nuclear, gas

e carvdo. A Tabela 6 apresenta o0 nimero de dados coletados para cada tecnologia.

Tabela 6: Numero de dados coletados para cada tecnologia

Tecnologia _ Numero de Dados Coletados

Solar 692
Edlica 795
Hidro 114
Biomassa 350
Nuclear 131
Gas 207
Carvéo 524
Total 2813

Fonte: elaborado pelo autor

Com o intuito de comparar de modo correto as estimativas das diversas fontes
apresentadas na base de dados, as quais foram realizadas em anos diversos,
procurou-se ajusta-las ao valor atual da moeda dos Estados Unidos (pais em que é
realizado o estudo). Isso foi feito atraves do ajuste pela inflagdo incorrida nesse pais
desde a data em que foi realizada a estimativa até a data atual (i.e. 2015). Os valores
das estimativas para o LCOE ja ajustado pela inflacdo da tecnologia edlica séo
apresentados na Error! Reference source not found.. Por conveniéncia de exibig&o,
as estimativas para o LCOE das outras seis tecnologias estudadas sdo apresentadas
no Anexo A.
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Figura 19: Estimativa do custo da tecnologia edlica até 2040
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Fonte: elaborado pelo autor

dos valores totais do LCOE, foram extraidos também da base de dados os

fatores que o compde, ou seja, o custo capital, 0 custo com operacdo e manutencéo e

o custo de combustivel. E possivel observar na Figura 20 a composicio do LCOE

para cada tecnologia estudada.
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Figura 20: Composic¢io do custo de cada tecnologia
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Fonte: elaborado pelo autor

A Figura 20 comprova o que foi explicitado no capitulo anterior, ja que é possivel

observar que, no caso das tecnologias edlica e solar, 0 parametro com maior peso no

custo total é justamente o custo de capital. J& no caso de tecnologias como 0 gés e 0

carvdo, pelo contrario, o fator de custo mais relevante é o combustivel. Vale dizer

também que a geracdo de energia a partir da biomassa € um caso especial, em que 0

maior peso de custo é o fator Operacdo e Manutencao.
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3.3.2 Simulac¢ao de Monte Carlo

E importante relembrar que na aplicacdo do método proposto, 0 Método Kriging,
como dados de entrada do modelo, sdo necessarios diferentes cenarios para a
variavel escolhida (o LCOE, no caso). Isso faz com que o modelo seja mais preciso
e, portanto, seja valido. Como os pontos obtidos a partir da base de dados ndo foram
muitos (em média 16 pontos para cada ano), considerou-se importante gerar mais
pontos para cada analisado. Assim sendo, a solucdo encontrada foi realizar
simulacbes de Monte Carlo, de modo a gerar mais pontos baseados nas

caracteristicas dos ja existentes.

GLASSERMAN (2003) define o Método de Monte Carlo como sendo um método
estatistico que se baseia em uma amostragem aleatéria e utiliza-se de probabilidades
heuristicas, com o objetivo de obter resultados numéricos. O autor define também
uma classe particular desse tipo de método, chamada de Movimento Browniano. A
ideia dessa classe de métodos é gerar caminhos aleatérios a partir de parametros
estatisticos previamente conhecidos. Na sua forma mais simples, a partir de um dado
ponto, gera-se um novo ponto com o auxilio de uma variavel aleatdria. A formulagéo

genérica do Movimento Browniano é:

X(tiy1) =Xt) +Jtizgi +tiZiyy , i=0,...,n—1
Em que:
X(t) representa o valor simulado no ponto t.

Z; representa uma variavel aleatoria independente com distribuicdo normal

padronizada, ou seja, média igual a O e desvio padrdo igual a 1.

No caso de uma amostra com média p para cada ponto t e com desvio padrdo ¢ para
cada ponto t, 0 qual é o caso exato do presente trabalho (o ponto t representa o ano e
a média e o desvio padrdo do LCOE séo calculados a partir da base de dados, para
cada ano), pode-se formular (GLASSERMAN, 2003):

X(tip1) = X (&) + u(t) iy — t) + 0(t)\Jtig1 +tiZipy , 1=0,..,n—1
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A partir dessa equacdo e da simulacdo de Monte Carlo sdo gerados caminhos
aleatdrios para o LCOE entre 2016 e 2040 para cada uma das sete tecnologias
estudadas. Foram obtidos mil cenarios, sendo que cada cenario representa um
caminho aleatdrio. A titulo de exemplo, sdo demonstrados na Figura 21 dez
caminhos aleatérios para a tecnologia edlica. Por conveniéncia de exibigdo, as
simulacbes de Monte Carlo para as outras seis tecnologias estudadas sao

apresentadas no Anexo B.

Figura 21: Dez exemplos de simulacdo de Monte Carlo para a tecnologia edlica
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Fonte: elaborado pelo autor

Vale dizer que nesse presente trabalho serdo analisadas a composi¢cdo da matriz
energética e seu respectivo custo para trés anos especificos: 2030, 2035 e 2040. O
ano de 2030 foi escolhido como sendo o primeiro ano analisado, pois uma das
motivacgdes desse trabalho é criar um método que auxilie na tomada de decisdes de
politicas voltadas a otimizacdo da matriz energética de um pais e, para isso, seus
formuladores precisam possuir uma visdo de longo prazo a respeito do tema e
também, claro, devem possuir um espago de manobra para realizar eventuais projetos
e planejamentos. Considera-se, portanto, quinze anos um intervalo de tempo justo

para tais tomadas de decisdo serem realizadas.

Os resultados das simulagdes de Monte Carlo realizadas sdo resumidos na Figura 22
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Figura 22: LCOE médio e Risco (desvio padriao/LCOE médio) para os anos 2030, 2035 e 2040
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Fonte: elaborado pelo autor

Além disso, a partir das simulacdes de Monte Carlo é possivel obter também um
gréafico de dispersdo para cada ano relacionando o custo (LCOE) médio com o desvio
padrdo de cada tecnologia, o que fornece uma ideia geral da situacdo de cada ano.
Esses graficos sdao demonstrados na Figura 30. Vale notar que a tecnologia solar foi
omitida, de modo a facilitar a compreensdo do grafico, ja que seu custo € muito

maior que o custo das demais tecnologias.
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Figura 23: Graficos de dispersio para seis das tecnologias analisadas nos anos de 2030, 2035 e

2040
uss/Mwh 2030 Uss/MWh
/! 2 2035
85 Edlica 85
B # Biomassa 4 Biomassa
73 = 75 ) . Carvio
LCOE Hidro X Carvao LCOE Hidro E,l._
Glica
&3 ¥ Muclear 83 . Nuclear
- Gés > Gas
45 45
5% 10% 15% 20% 25% 30% 35% 5% 15% 25% 35% 45%
Desvio Padrao fLCOE Desvio Padrao f LCOE
USS/MWh 2040
85
85 .
Hidro -
Carvie & Biomassa
75 oy
LCOE
65 n { Muclear
Edlica
55
Gas
45
5% 15% 25% 35% 45%

Desvio Padrdo fLCOE

Fonte: elaborado pelo autor

A partir das Figuras 22 e 23, é possivel perceber que a tecnologia geradora de
energia que utiliza o gas como insumo € a que apresenta, em todos 0s anos, 0 menor
custo (menor LCOE). Por outro lado, a tecnologia com maior custo (excluindo a
solar) difere de ano pra ano, sendo em 2030 a eolica, em 2035 a biomassa e,
finalmente, em 2040 novamente a edlica. Alias, observando a Figura 22 fica claro
que a tecnologia solar apresenta um custo muito maior que as demais. Uma
conclusdo preliminar desse fato é que esta tecnologia ndo sera considerada no

modelo, ja que ndo apresenta uma boa relagéo risco versus retorno.

E interessante notar que, como ja dito em um capitulo anterior, o LCOE apresenta
uma correlacdo negativa com o desvio padréo (risco). Por exemplo, a tecnologia gas
apresenta sempre 0 menor custo total, porem é uma das tecnologias com maior risco
(desvio padréo). O fato de ndo existir uma tecnologia dominante (i.e. com menor
custo e menor risco) em relacdo as outras (excluindo a tecnologia solar), ou seja, ndo
existir uma escolha 6bvia, acaba por tornar o modelo proposto de grande utilidade no
auxilio de tomada de decisdes na formulacdo de politicas voltadas a otimizagédo da

matriz energética.
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4 RESULTADOS

Esse trabalho se propde a aplicar uma nova metodologia para aproximar a solucéo do
problema de composicdo 6tima de portfélios de matriz energética de um pais através
(i) da simulacéo para obtencdo de valores conhecidos de uma dada funcdo Risco(x),
e (ii) da interpolacdo destes dados conhecidos através do Método Kriging, para

posterior otimizagéo.

Nesta secéo, ilustra-se primeiramente a selecdo da amostra e da fungéo correlagéo a
serem utilizadas durante as simulagdes. Em seguida, é realizada a aplicacdo proposta
a um portfolio de matriz energética, composto por sete tecnologias (solar, eolica,
nuclear, gas, carvdo, biomassa e hidro), utilizando trés medidas de risco como funcéo
objetivo do problema: (i) Variancia (JE), (ii) Valor em Risco (VaR) e (iii) Valor em
Risco Condicional (CVaR).

4.1 Selecao da Amostra e da Func¢ao Correlacio

Foram descritos no item 2.3.4 trés métodos principais para geracdo da amostra de
pontos necessarios para aplicacdo do experimento: aleatoria, deterministica e por
hipercubo latino. Devido & semelhanga dos dois Gltimos, seré feira uma anélise entre
0 ajuste fornecido por uma amostra aleatdria e uma deterministica. Essa analise visa
determinar a influéncia da selecdo de pontos do grid na eficiéncia da solucdo do

Método Kriging.

No caso da amostra aleatoria, os pesos de cada uma das sete tecnologias sdo gerados

de maneira aleatoria, tal que 0 < x].(l) <1eY/ _,x;=1.Ja no caso da amostra

deterministica, os valores de xj(‘) sdo obtidos de forma que estivessem igualmente

espacados no dominio da fungdo, formando hipercubos de igual dimensao

restringindo o dominio da funcdo Risco(x).

A Figura 24 representa as duas técnicas de amostragem previamente descritas e
utilizadas para simulagdo, relaxando-se a condigdo Y./_; x; = 1 e aplicadas a dois

ativos obtidos arbitrariamente, a fim de facilitar sua representagio em R2.
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Figura 24: Exemplo de amostra aleatdria e amostra deterministica
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Fonte: adaptado de BARROSA, 2015

Outro pardmetro importante para a aplicacdo do Método Kriging é a quantidade de
cenarios utilizados no processo de simulagdo. No caso da amostra aleatoria, 0
namero de pontos é definido arbitrariamente. Na amostra deterministica, por sua vez,
o0 tamanho da amostra varia tanto com a quantidade de ativos (tecnologias no caso do
presente trabalho), quanto com o espacamento definido entre os pontos do grid de
simulacdo. Assim, dados n ativos que compdem o portfélio, uma distancia d entre 0s
pontos simulados para um dado ativo, e definindo-se k =d~!, o tamanho da
amostra, respeitando a restricdo Y- x; =1 deterministica ser4& dado por
(BARROSA, 2015):

_(k+n—-1\ (k+n-1)!
q‘( k )_ Kl (n—1)!

Com o intuito de se verificar qual serd o tipo de amostra utilizado no trabalho, o
modelo proposto foi aplicado para o ano de 2030 com diferentes tipos de amostra,

tanto aleatdrio, quanto deterministico e seus respectivos Erros Quadraticos Médios
(ie. MSE =$Z§’=1[f(x) — f(x)]?; isso para as trés medidas de risco a serem
estudadas. Os resultados séo exibidos na Tabela 7: Erro quadratco médio para

diferentes amostras no ano de 2030. Vale notar que no caso da amostra

deterministica, um espacamento igual a 0,2 (i.e. d = 0,2) gera 669 pontos, um
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espacamento igual a 0,2 gera 3.003 pontos e, finalmente, um espagamento igual a

0,05 gera um total de 53.130 pontos.

Tabela 7: Erro quadratco médio para diferentes amostras no ano de 2030

Erro Quadratico Médio (MSE) - 2030

Amostra Aleatéria Amostra Deterministica
669 pontos 3.003 pontos 53.130 pontos d=0,2 d=0,1 d=0,05
Desvio Padrao 8,4E-02 2,7E-02 3,1E-03 1,1E-02 7,8E-04 8,2E-05
VaR 4,3E-02 1,2E-02 8,6E-04 2,3E-03 5,3E-05 1,1E-05
CVaR 3,1E-02 9,2E-03 6,3E-04 4,9E-03 8,0E-05 7,8E-06

Fonte: elaborado pelo autor

Percebe-se que o Método Kriging é sensivel ao critério de selecdo da amostra
utilizada para o ajuste. A Tabela 7 mostra que quando aplicado a uma amostra de
pontos aleatdrios, 0 método apresenta erros maiores se comparados a sua aplicacao a
um conjunto de pontos equidistantes que tém o intuito de abranger todo o espaco da
malha. Fica claro também que conforme o nimero de pontos simulados aumenta, o

erro quadratico médio diminui.

Nesse trabalho, portanto, sera utilizada a amostra deterministica com espacamento
igual a 0,1. Esse espacamento foi escolhido, pois nota-se que o ganho de preciséo
com o espacamento de 0,05 ndo é tdo grande e, vale lembrar, que existe um trade-off
entre 0 ganho de precisao e eficiéncia computacional, o que justifica a escolha do

espacamento de 0,1.

Na etapa a anterior (i.e. escolha do tipo de amostra) foi utilizada a funcdo de
correlacdo Gaussiana para aplicar o Método Kriging. No entanto, dentre 0os métodos
de correlagdo possiveis, apresentados por LOPHAVEN, NIELSEN E
SONDEGAARD (2002) e citados no item 2.3.4, faz-se necessaria uma analise de
qual funcdo de correlagdo melhor se ajusta aos dados obtidos.

Para tal analise, se utiliza do mesmo método anterior, ou seja, aplica-se 0 modelo
proposto para o ano de 2030 com amostra deterministica (espagamento de 0,1) com
todos os tipos de funcbes de correlacdo existentes e calcula-se o Erro Quadratico

Médio de cada simulagéo. Os resultados sdo exibidos na Tabela 8.
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Tabela 8: Erro quadratico médio para diferentes funcées correlacio no ano de 2030

Erro Quadratico Médio (MSE) - 2030

Funcdo de Correlagdo Exponencial Gaussiana Linear Esférica Spline
Desvio Padrao 1,3E-04 7,8E-04 1,7E-03 3,3E-02 7,1E-04
VaR 5,9E-06 5,3E-05 7,2E-05 8,2E-03 1,1E-04
CVaR 1,1E-06 8,0E-05 2,6E-04 5,9E-03 9,6E-05

Fonte: elaborado pelo autor

Pode-se perceber na Tabela 8 que a simulagdo que apresentou 0 menor MSE para as
trés medidas de risco foi aquela que se utilizou da funcéo de correlacdo Exponencial
e, portanto, é considerada a mais adequada a ser aplicada nesse trabalho.

4.2 Aplicacao do Método Kriging

No item anterior foi realizado um estudo para definir os melhores parametros de
entrada para a aplicacdo do método em questdo (i.e. selecdo da amostra e da funcéo

correlacéo).

Sabe-se que esse modelo que interpola os dados é funcdo da amostra de pontos da
malha que serdo utilizados e respectivos valores de resposta (Risco(x)), do tipo de
regressao e correlagdo escolhida e do valor de 0. Definimos os parametros de entrada

tais que:

e A amostra composta pela combinacéo das sete tecnologias foi gerada por um
processo deterministico o qual divide o grid em k intervalos equidistantes,
definindo o que é chamado de passo, ou seja, a distancia d entre dois valores

consecutivos para x,;

e O metodo de regressédo escolhido foi o linear, o qual utiliza um polindmio de
grau um para aproximar a funcao;

e O modelo de correlagéo escolhido foi o Exponencial, pois esse fornece uma
melhor aproximagdo da funcdo, baseado na andlise do valor do Erro
Quadratico Médio;

e A definigdo do modelo de correlacdo implica na determinacdo do valor de py,

que no caso da correlacdo exponencial equivale a 2;
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e Numa abordagem similar a QUEIPO (2002), sera utilizado 8 = 1.

O proximo passo € aplicar o modelo proposto com os dados de entradas definidos
acima para as trés medidas de risco citadas anteriormente, a Varianca, o VaR e 0
CVaR. Vale notar que no caso da Variancia, sera realizado um controle do
experimento, de modo a validar o método proposto. Isso sera feito aplicando o
Modelo de Markowitz, descrito no item 2.3.1, e comparando o resultado com aquele

fornecido pelo Método Kriging.

4.2.1 Variancia

Nesta e nas proximas duas secdes (i.e. secdes 4.2.2 e 4.2.3) os resultados obtidos
através de simulacdo no software MATLAB serdo exibidos na forma de fronteira
eficiente (i.e. Fronteira de Otimalidade de Paretto) e como composi¢do da matriz

energeética 6tima para diferentes niveis de risco.

Primeiro, o0 Método de Markowitz e o Método Kriging sdo aplicados com 0s mesmos
dados de entrada para o ano de 2040, de modo a validar o método proposto. Vale
lembrar que o Método de Markowitz utiliza como medida de risco a variancia (aqui
exibido na forma de desvio padrdo). A Figura 25 exibe as duas fronteiras eficientes
obtidas e a Figura 26 demonstra as composic¢des do portfolio 6timo para o0 Método de

Markowitz e o proposto, respectivamente.

Figura 25: Fronteira eficiente no ano de 2040 para os Métodos Markowitz e Kriging
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Fonte: elaborado pelo autor
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Figura 26: Composi¢éo do portfélio 6timo para o ano de 2040, segundo os Métodos Markowitz e Kriging, respectivamente

Composicio do Portfdlio Otimo Composigdodo Portfdlio Otimo

Alocagao (%)

16 18 2 2

Risco - Desvio Padrao/LCOE Médio (%) Risco - Desvio Padrdo/LCOE Médio (%)

Fonte: elaborado pelo autor

Como pode ser observado, o modelo proposto se mostrou muito semelhante ao
modelo original de Harry Markowitz, tanto na fronteira eficiente, quanto na
composicdo de portfolio 6timo. Vale lembrar, nessa etapa do trabalho, que o Método
Kriging é um método robusto, no sentido de que ele permite considerar diferentes
medidas de risco e quando aplicado a medidas de risco de cauda, como € o caso do
VaR e do CVaR, fornece uma eficiéncia computacional maior se comparado as

técnicas tradicionais de selecdo de portfdlio (i.e. Modelo VaR e Modelo CVaR).

Segue-se com a aplicacdo do Método Kriging para os anos de 2030 e 2035, sempre
com os parametros de entrada descritos no inicio desta secdo, se utilizando do desvio
padrdo como medida de risco e para um portfélio de matriz energética composto por

sete tecnologias (solar, edlica, biomassa, nuclear, hidro, carvao e gas).
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Figura 27: Fronteira eficiente e composicdo do portfélio 6timo para o ano de 2030, considerando o Desvio Padriao como
medida de risco

Fronteira Eficiente Composicdo do Portfélio Otimo

100
| | I

L
T
Alocagao (%)

LCOE (USS/MWh)
8
T

P | 1 I

14 16 8 2 2 2% %

Risco - Desvio Padrio/LCOE Médio (%) ' " Risco- Desvio Padrio/LCOEMédio (%)
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Figura 28: Fronteira eficiente e composicao do portfélio 6timo para o ano de 2035, considerando o Desvio Padrdo como medida de

risco
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Fonte: elaborado pelo autor

Como pode ser observado, os resultados para os trés anos (i.e. 2030, 2035 e 2040) se
mostraram semelhantes, porém ndo iguais, como era esperado, ja que ao longo de
dez anos é praticamente impossivel que surjam tecnologias tdo inovadoras a ponto de

mudar totalmente a estrutura de custo de uma tecnologia.

Em relacdo as semelhancas, nota-se nos graficos relativos a fronteira eficiente que,
como observado no item 2.4, o custo (i.e. LCOE) détimo é correlacionado

negativamente com o desvio padrdo da carteira. Isso € explicado pelo fato de que é
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exigido (pelo formulador de politica monetéria, no caso) um custo menor para um
dado nivel de risco mais acentuado. Agora, no caso dos graficos das composicdes
Otimas de portfélio, observa-se uma alocacdo total nas carteiras de alto risco na
tecnologia gas. 1sso se da, pois essa tecnologia apresenta um custo menor que as
demais, porém com um risco (desvio padrdo, no caso) maior, impedindo que haja
grande alocacdo em uma certeira de baixo risco. Também, como previsto, a
tecnologia solar ndo foi alocada em nenhum dos portfélios, ja que ndo apresenta uma

relacdo risco-retorno adequada (i.e. maior custo e maior risco).

E importante notar que a teoria da diversificacdo de carteiras pode ser observada nos
trés anos em que foi realizada a simulacdo. Em outras palavras, a teoria de
MARKOWITZ (1952) é valida para esse conjunto de dados: é possivel minimizar o
risco de uma carteira (minimizando o risco especifico da mesma) através de uma

diversificacdo de ativos.

Agora, em relacdo as diferencas das simulacGes dos trés anos analisados, pode ser
visto que ha uma maior alocacdo da tecnologia hidro em carteiras de baixo risco ao
longo dos anos. Isso pode ser explicado pelo fato que essa tecnologia se manteve
num patamar de risco baixo, apesar de um alto custo, diferentemente de outras
tecnologias, como a eolica que possui um custo total elevado (altos custos de capital)
e apresentou um aumento no seu risco ao longo dos anos. Outro argumento para
explicar tal fato é que a tecnologia hidro apresenta maiores riscos durante a sua fase
de construcdo (riscos esses, ambientais e trabalhistas), fazendo com que a mesma
seja mais alocada em portfdlios de periodos mais distantes temporalmente. Além
disso, observa-se também um maior peso da tecnologia nuclear no portfélio, o que
pode ser dado por: (i) menores custos com aquisicdo do minério de uranio e (ii)
menores riscos ambientais e/ou regulatorios, diminuindo o risco de se gerar energia

através dessa tecnologia.
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4.2.2 Valor em Risco (VaR)

Nessa etapa do trabalho, segue-se com a aplicagdo do Método Kriging com 0s
mesmos dados de entrada utilizados na etapa anterior, mas agora utilizando o Valor
em Risco (VaR) como medida de risco. Novamente, os resultados serdo exibidos na

forma de fronteira eficiente e composicao de portfélio étimo.

Figura 29: Fronteira eficiente e composi¢do do portfolio 6timo para o ano de 2030, considerando o VaR como medida de

risco
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Figura 30: Fronteira eficiente e composi¢éo do portfolio 6timo para o ano de 2035, considerando o VaR como medida de risco
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Figura 31: Fronteira eficiente e composicao do portfélio 6timo para o ano de 2040, considerando o VaR como medida de risco
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Fonte: elaborado pelo autor

E possivel perceber que apesar da forma geral dos graficos serem os mesmos,
existem algumas diferencas entre a aplicacdo do método com o uso do Valor em
Risco (VaR) e a Variancia como medidas de risco. Primeiramente, vale destacar que
o risco demonstrado na fronteira eficiente, para um dado custo (i.e. LCOE) é maior,
ja que o VaR é uma medida de cauda de risco e, captura, portanto, eventos
esporadicos (mas nao irrelevantes) e de rara ocorréncia. Agora, no caso dos graficos
gue demonstram as composicOes 6timas de portfdlio, carteiras ideais de baixo risco
do ano de 2030 apresentaram uma maior alocacdo em tecnologia eolica em
detrimento da biomassa. 1sso pode ser explicado pelo fato de que o VaR, por ser uma
medida de risco, captura eventos esporadicos. Vale dizer que no uso da tecnologia de
biomassa, greves e reivindicacdes de trabalhadores sdo relativamente comuns de
ocorrerem, pois é necessario o uso de mao de obra intensiva. Além disso, questes
ambientais também se realizam com maior frequéncia com o uso da biomassa, ja que

com a tecnologia e6lica ndo é utilizado nenhum combustivel.

4.2.3 Valor em Risco Condicional (CVaR)

Por fim, o Método Kriging é aplicado com o Valor em Risco Condicional (CVaR)
sendo utilizado como medida de risco. Novamente, 0s mesmos parametros de

entrada sdo utilizados.
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gura 32: Fronteira eficiente e composicdo do portfélio 6timo para o ano de 2030, considerando o CVaR como medida de
risco
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Figura 33: Fronteira eficiente e composi¢do do portfolio 6timo para o ano de 2035, considerando o VaR como medida de risco
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Figura 34: Fronteira eficiente e composicao do portfélio 6timo para o ano de 2040, considerando o CVaR como medida de
risco
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E interessante notar que os resultados obtidos nessa etapa (i.e. uso do CVaR como
medida de risco) sdo muito semelhantes com os obtidos quando o VaR foi utilizado,
ja que os dois sd@o medidas de risco de cauda e, portanto, ambos capturam eventos
esporédicos. Vale notar que no caso da fronteira eficiente, para um mesmo nivel de
custo (i.e. LCOE), o CVaR apresenta um risco maior que o VaR. Isso se da pelo fato
que, por definicdo, o CVaR é a média dos valores que excedem o VaR, o que explica
tal constatacdo. Finalmente, é importante salientar que as leves alteracbes nos
gréaficos das composicdes de carteiras 6timas (comparando as carteiras que utilizam o
CVaR com aquelas que utilizam o VaR como medida de risco) sdo explicadas pelo
fato que o CVaR captura eventos mais drasticos, os quais 0 VaR ndo consegue
capturar. Nesse sentido, o CVaR se mostra eficiente, j& que os formuladores de
politicas energéticas devem levar em consideracdo tais eventos no momento de

montar o portfolio de matriz energética de um pais.

4.2.4 Composi¢ao do Portfolio de Minimo Risco

Nesse item do trabalho sdo exibidas as carteiras 6timas de cada ano referentes ao
minimo risco passivel de ser alcancado por tal carteira. Esse portfélio se mostra
importante, pois, muitas vezes, € justamente ele que se pretende atingir ao se utilizar

da diversificacdo de ativos.

Figura 35: Composicio da carteira de minimo risco para o ano de 2030
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Fonte: elaborado pelo autor
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Figura 36: Composicio da carteira de minimo risco para o ano de 2035
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Fonte: elaborado pelo autor

Figura 37: Composicio da carteira de minimo risco para o ano de 2040
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Fonte: elaborado pelo autor

Novamente, constata-se que as carteiras possuem alocacfes similares, com leves
alteracOes. Primeiro, é possivel perceber que existe uma tendéncia ao longo dos anos,
para as trés medidas de risco utilizadas: uma maior alocagcdo em tecnologia hidro em
detrimento da tecnologia eolica. Como ja explicado, essa tendéncia se deve ao fato
de que é estimado que ocorra uma reducao dos riscos associados a implementacédo da
tecnologia hidro, j& que os maiores riscos ocorrem no periodo inicial do projeto,
podendo ser tanto ambientais, quanto trabalhistas. Segundo, uma diminuicdo da

alocacdo em tecnologia que se utiliza do gas natural como fonte geradora de energia,
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pois é estimado que o risco atrelado & essa tecnologia aumente. Por fim, vale
salientar que as diferencas observaveis entre a carteira da variancia e a do VaR e do
CVaR existem, pois as duas Ultimas conseguem capturar efeitos adversos que

impactam no custo de uma tecnologia geradora energética.
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5 Conclusodes

Esse trabalho buscou utilizar um método de selecéo de portfélio capaz de otimizar a
relacdo entre risco e retorno do portfolio de matriz energéetica de um pais. Foram
escolhidas sete tecnologias de geragdo energética para compor a carteira, sendo que

os dados analisados se referem aos Estados Unidos.

Primeiramente apresentou-se a Teoria Moderna de Gestdo de Carteiras, criada por
Markowitz em 1952, que figura como a primeira formulacdo apresentada na
literatura considerada eficiente para a maximizagdo da funcdo utilidade de um
portfélio. A partir disso foi possivel aprofundar a analise e apresentar outros
modelos, que surgiram posteriormente e que utilizam outras medidas de risco,

diferente da variancia utilizada pelo modelo de Markowitz.

O VaR e o CVaR surgiram na literatura como medidas de risco que suprem as
deficiéncias indicadas para a variancia, sendo o CVaR considerado uma medida de
risco mais completa por ser coerente, de acordo com Artzner et al (1999), e também
por analisar a cauda da distribuicdo de probabilidade (ROCKAFELLAR e
URYASEV, 2002) .

Portanto, foram estudados a Variéncia, 0 VaR e o CVaR como medidas de risco
utilizadas para avaliar a relagdo risco e retorno nos problemas de otimizacdo de
matriz energética. No caso do VaR e do CVaR, ao explicitar seus modelos
tradicionais, observou-se que € exigida uma alta complexidade para otimiza-los,
decorrente do grande numero de varidveis e restricdes exigidas, o que acaba por

torna-los pouco convenientes da Otica computacional.

Para contornar essas dificuldades, foi proposta a aplicacdo do método Kriging,
também conhecido como ajuste DACE, muito usado para resolucéo de problemas da
engenharia (QUEIPO, et al., 2002). Esse método cria uma superficie de resposta
suavizada a partir de amostra previamente definida. Isso faz com que o problema seja
simplificado, sem perder a validade, o que acarreta na grande diminui¢do da

necessidade de capacidade computacional para resolucdo do problema.

Assim sendo, baseado em estimativas realizadas por Orgdos publicos norte-

americanos, simulacdes de Monte Carlo foram geradas e o Método Kriging foi
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aplicado atraves do uso do software Matlab para os anos de 2030, 2035, 2040,
utilizando como medidas de risco a Variancia, 0 VaR e o CVaR. Em uma primeira
analise dos resultados ja se observa que a tecnologia solar ndo foi alocada em
nenhum dos portfolios gerados, indicando que essa tecnologia ainda necessita de

melhorias tecnoldgicas de forma a reduzir e estabilizar seus custos.

Os resultados sugerem que exista, no futuro, uma maior concentragdo em energias
renovaveis, se comparado ao portfélio atual do pais, principalmente as tecnologias
hidro e e6lica. Além disso, 0 modelo também sugere que a tecnologia que se utiliza
da biomassa como fonte energética também apresentard uma maior participacdo na
matriz energética do pais, sendo que hoje ela representa apenas 1% do total. Assim, é
consideravel concluir que tecnologias agressivas ao meio ambiente (i.e. carvao e

gas), apresentardo papel secundario na matriz energética do pais.

E importante salientar que o modelo utilizado no presente trabalho é uma
representacdo simplificada da realidade, o qual pode ser mais robusto conforme
novas restricbes sao adicionadas ao problema. Uma possivel restricdo adicional ao
problema seria uma que considere politicas governamentais restritivas dadas certas
questdes ambientais, como no caso do uso em excesso de energia nuclear. Outra
extensdo futura para o problema aqui abordado seria estudar e analisar as
distribuicbes de probabilidade do custo de cada tecnologia e incorpora-las no

processo de simulagdo.

Finalmente, mesmo havendo possiveis extensdes, pode-se considerar que o objetivo
inicialmente proposto no presente trabalho foi satisfeito: criou-se um modelo de
otimizagdo de portfolio de matriz energética que permitiu (i) considerar riscos de
cauda, com o uso de medidas de risco como o0 VaR e o CVaR; (ii) aumentar a
eficiéncia computacional da ferramenta, atraves da utilizacdo do método proposto, o

Método Kriging.
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Anexo B
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