
PEDRO HENRIQUE CARVALHO ARAUJO 

 

 

 

 

 

 

 

 

 

 

Aplicação do Método Kriging na Otimização de Portfólios de Matriz 
Energética 

 

 

 

 

 

 

 

 

 

 

São Paulo 

2015 

  



 
 

 

  



 

PEDRO HENRIQUE CARVALHO ARAUJO 

 

 

 

 

 

 

 

Aplicação do Método Kriging na Otimização de Portfólios de Matriz 
Energética 

 

 

Trabalho de Formatura apresentado à Escola 

Politécnica da Universidade de São Paulo 

para obtenção do Diploma de Engenheiro de 

Produção 

 

Orientadora: Profa. Dra. Celma de Oliveira 

Ribeiro 

 

 

 

 

São Paulo 

2015 

 
 
 



 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FICHA CATALOGRÁFICA 
  

 
 

Araujo, Pedro Henrique Carvalho 
     Aplicação do Método Kriging na Otimização de Portfólios de 
Matriz Energética / P.H. C. Araujo. – São Paulo, 2015. 106 p. 

 
     Trabalho de Formatura - Escola Politécnica da Universidade 
de São Paulo. Departamento de Engenharia de Produção. 
 
 
     1.Método Kriging 2.Otimização de Portfólios 3. Matriz 
Energética I.Universidade de São Paulo. Escola Politécnica. 
Departamento de Engenharia de Produção II.t. 
 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Àqueles que merecem meu respeito e admiração: vós sabeis 
  



 
 

 

  



 

Agradecimentos 
 
 Agradeço especialmente a todos aqueles que me auxiliaram no momento final, apesar 

das dificuldades exógenas que apareceram pelo caminho. Grande seria a luta se tais não 

estivessem ao meu lado.  

Mais especialmente aos esforços da profa. Celma pela idealização do projeto. Sem seu 

auxílio e conhecimento, com certeza o trabalho não teria chegado aos níveis que chegaram. 

Agradeço também ao colega de trabalho Marcelo, o qual desde a época de Iniciação 

Científica sempre agregou muito valor e conhecimento aos meus trabalhos. 

 Ademais, agradeço a todos que desde o início da jornada acadêmica fizeram parte 

desse fortuito caminho que foi a Escola Politécnica da Universidade de São Paulo. E mais 

especialmente os anos glórios de Politecnico di Milano, onde a sinergia entre conhecimento 

teórico e prático ganhou um novo significado. 

 Por fim, agradeço ao núcleo familiar, aos amigos e, em especial, à Mariana, os quais 

sempre proporcionaram discussões de grande nível, não somente em termos acadêmicos, mas 

em termos de afeto e sinceridade.  



 
 

 

 
  



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

“’Compre’ sonhos. O valor justo de um sonho, por mais impossível que pareça, é sempre 

infinitamente superior ao preço de alcançá-lo.” 

(Alexandre Póvoa)  



 
 

 

  



 

RESUMO 
 

  

O notável crescimento de discussões sobre matrizes energéticas nas últimas décadas e o 

reconhecimento da necessidade da adoção de fontes renováveis de energia levaram ao 

questionamento de qual seria a matriz energética ideal de um país, em termos de custos, 

benefícios e riscos para a população.  Assim, com o objetivo de auxiliar políticos e 

formuladores energéticos em suas decisões, esse trabalho se propôs a criar um método para se 

definir um portfólio ótimo de matriz energética de um país, o qual leve em consideração não 

somente os custos de geração de cada tecnologia, mas também os seus respectivos riscos. Para 

tal, foram considerados não apenas medidas de risco de desvio (e.g. variância), mas também 

medidas de cauda, como o Valor em Risco (VaR) e o Valor em Risco Condicional (CVaR), as 

quais capturam também na sua formulação eventos extremos, importantes na análise. 

Portanto, dados de sete tecnologias dos Estados Unidos foram analisados, simulações de 

Monte Carlo foram realizadas e, com o auxílio do Método Kriging, obteve-se, finalmente, a 

fronteira eficiente de Pareto e a composição dos portfólios ótimos para os anos de 2030, 2035 

e 2040. Os resultados, além de demonstrar que medidas de cauda realmente são mais 

adequadas nesse tipo de análise, apontaram também para uma maior alocação no futuro em 

energia renováveis, como a eólica e a biomassa, revelando, portanto, que tecnologias 

agressivas ao meio ambiente (e. g. carvão e gás) apresentarão papel secundário na matriz 

energética do país. 

 Palavras-chave: Método Kriging, Otimização de Portfólios, Matriz Energética  

  



 
 

 

 

  



 

ABSTRACT 

 

The remarkable growth of discussions about energy matrix in the last decades and the 

recognition of the necessity of the adoption of renewable energies led to the questioning of 

which would be the ideal energy matrix for a country, in terms of costs, benefits, and risks to 

the population. Hence, with the purpose of supporting politicians in hers decisions, this study 

proposed to create a method to define the optimal portfolio of energy matrix, which considers 

not only the generation costs of each technology, but also its risks. In order to do so, not just 

deviation risk measures (e.g. variance) were taken into consideration: tail measures were also 

used, as for example the Value at Risk (VaR) and the Conditional Value at Risk (CVaR), 

capturing as well extreme events, which are very important to the analysis. Therefore, data on 

seven technologies of the United States was analyzed, Monte Carlo simulations were carried 

out, and with the support of the Kriging Method, the Pareto efficient frontier and the 

compositions of the optimal portfolio were finally obtained for the years of 2030, 2035, and 

2040. The results, besides of assuring that tail risk measures are the most applicable in this 

kind of analysis, also pointed out a greater allocation in the future of renewable energies, such 

as wind and biomass technologies, revealing, hence, that environment aggressive technologies 

(e.g. coal and gas) should play a minimal role in future energy matrix. 

  Key words: Kriging Method, Portfolio Optimization, Energy Matrix  
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1 INTRODUÇÃO 
 

Uma importante questão que permeia as atividades de engenharia consiste em 

alocar recursos escassos em condições de incerteza. Do ponto de vista dos gestores 

pretende-se determinar alocações que garantam um retorno financeiro mínimo nos 

investimentos e que tenham algum grau de segurança. Assim, uma pergunta 

recorrente e importante nesse campo do conhecimento é como minimizar os riscos. 

O tema de minimização de riscos nunca foi tão discutido como após a crise 

financeira global de 2008. Isso, pois a falta de regulamentação e constante 

indisciplina em realizar práticas voltadas à mitigação de risco levaram os mercados 

financeiros dos principais países desenvolvidos (com impacto, claro, nos países 

emergentes) a entrarem em colapso. Isso pode ser facilmente notado através de uma 

rápida observação na performance de índices acionários, os quais revelam 

indiretamente a percepção de risco dos investidores e os resultados das principais 

companhias abertas de um país. A Figura 1 mostra a evolução, durante esse difícil 

período, de um dos principais índices acionários dos Estados Unidos, o S&P 500. 

Pode-se observar que durante o ano de 2008, o índice apresentou uma queda 

abrupta, revelando um menor apetite de risco por parte dos investidores, ou seja, uma 

grande indisposição em investir recursos em ações. Essa falta de interesse em alocar 

capital em empresas gera um grande dano social, já que no sistema capitalista em 

Fonte: elaborado pelo autor 

Figura 1: Evolução do Índice S&P500 
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que vivemos, são as companhias (além de, claro, o  Estado) de um país que movem a 

economia e, por conseguinte, geram bem estar social. 

Ainda no âmbito da minimização de riscos, um tema sempre muito discutido 

por todos e cada vez mais presente na literatura é a questão da minimização de riscos 

no processo de geração de energia. Ao tentar definir uma estrutura ótima para a 

matriz energética de um país, políticos e estrategistas devem levar em conta, não 

somente os custos incorridos na geração de energia, mas também os riscos 

envolvidos nessa operação. Um exemplo de risco na geração de energia é a flutuação 

do preço do combustível, já que dependendo do tipo de tecnologia empregada para a 

geração de energia, esse componente pode ser parte relevante da estrutura de custos.  

O petróleo, por exemplo, é utilizado como matéria prima em usinas 

termoelétricas. Esse insumo é comercializado nos mercados internacionais de 

commodities e apresenta uma alta volatilidade de preços, o que pode ser observado 

na Figura 2. Essa grande oscilação de preços pode fazer com que certa tecnologia 

não seja mais economicamente viável e, portanto, é um risco importante a ser levado 

em conta por formuladores no momento de tomar decisões em relação à matriz 

energética de um país. 

 

 

Fonte: elaborado pelo autor 

Figura 2: Evolução da Cotação do Barril de Petróleo 
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1.1 Objetivos 
 
Assim, políticos e formuladores da matriz energética de um país necessitam de uma 

ferramenta que os auxiliem na sua tomada de decisões, de modo a criar um portfólio 

de matriz energética que leve em consideração não somente os custos de geração de 

cada tecnologia, mas também os seus respectivos riscos. Esse é justamente o objetivo 

desse presente trabalho: utilizar um método de seleção de carteira de investimentos, 

algo amplamente divulgado no âmbito de finanças, com o propósito de otimizar a 

relação entre risco e retorno do portfólio de matriz energética de um país. 

Em relação à ferramenta a ser utilizada, propõe-se nesse trabalho, primeiramente, o 

uso de medidas de risco que capturem em sua formulação eventos extraordinários, já 

que esses, como demonstrado, são capazes de gerar grandes crises e depressões. 

Medidas de risco dessa natureza são conhecidas na literatura como medidas de risco 

de cauda ROCKAFELLAR e URYASEV (2000). Portanto, nesse trabalho, serão 

utilizados para medir o risco da carteira de matriz energética, além da Variância, que 

é considerada ma medida de desvio, duas medidas de cauda, o Valor em Risco (VaR) 

e o Valor em Risco Condicional (CVaR). 

Essas duas medidas de risco, apesar de capturarem com eficácia riscos extremos, 

apresentam um grande empecilho: exigem uma alta capacidade computacional. Para 

contornar esse problema, propõe-se o uso do Método Kriging (RIBEIRO e 

FERREIRA, 2004). Apesar de não ser tradicionalmente aplicado a problemas de 

seleção de carteiras, acredita-se que com o uso desse método seja possível, de 

maneira eficiente e eficaz, otimizar portfólios de matriz energética, os quais levem 

em consideração quaisquer medidas de risco, inclusive as de cauda. 

1.2 Estrutura do Trabalho 
 
O trabalho está dividido em cinco partes, como forma de desenvolver os conceitos 

necessários para posterior aplicação e análise do objetivo proposto.  

No primeiro capítulo é apresentado o tema. Justifica-se a importância do seu 

desenvolvimento e estudo, situando-o no contexto atual da economia e explicitando 

seus objetivos e sua estrutura.  

O segundo capítulo apresenta uma revisão bibliográfica relacionada aos conceitos 

necessários à compreensão deste trabalho, fundamentando e dando embasamento 
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teórico ao modelo que será proposto. Inicialmente é estabelecida uma base conceitual 

sobre gestão de portfólio, citando seu marco na literatura e descrevendo algumas 

definições importantes que caracterizam um portfólio. Em seguida discute-se a 

definição de risco e as três medidas principais que serão utilizadas nos modelos 

descritos posteriormente. Depois, são apresentados quatro modelos de seleção de 

portfólio na literatura, sendo que um deles é justamente o método Kriging, o método 

a ser utilizado nesse trabalho. Ainda nesse capítulo, por fim, é explicitado como 

esses métodos são utilizados no setor de energia. Vale lembrar que o Método Kriging 

ainda não foi utilizado na literatura para tal propósito, sendo, portanto, uma aplicação 

inovadora desse presente trabalho.  

O capítulo seguinte se refere à metodologia adotada nesse presente trabalho. Para 

isso, primeiro é definido o mercado a ser analisado, o setor de energia dos Estados 

Unidos. Após tal definição, é explicitada a medida de custo a ser adotado durante a 

metodologia, o LCOE (Levelized Cost of Energy, do inglês). Por fim, é demonstrado 

como os dados foram obtidos e posteriormente tratados através da simulação de 

Monte Carlo. 

No quarto capítulo são exibidos os resultados da aplicação do método proposto, o 

método Kriging. Tais resultados serão exibidos na forma de fronteira eficiente e 

composição ótima de portfólios, conceitos esses, detalhados durante a seção de 

revisão bibliográfica. 

Finalmente, no capitulo cinco são apresentadas as conclusões e futuras extensões do 

trabalho. Os apêndices e as referências bibliográficas encerram o documento. 

 

 

 

 

 

 
 
  



25 
 

  

2 REVISÃO BIBLIOGRÁFICA 

 
Neste capítulo serão apresentados itens fundamentais para o completo entendimento 

do presente trabalho. Primeiramente, será abordado o tema da gestão de portfólio, 

seus objetivos, principais características e uma análise preliminar da Teoria de 

Gestão de Carteiras de Investimentos. Em seguida, são apresentadas as diferentes 

definições de risco, conceito amplamente abordado durante todo o presente trabalho. 

Após, são apresentados os modelos de seleção de portfólio, os quais serão 

implementados posteriormente na temática da matriz energética, o qual é, alias o 

assunto abordado no próximo e último item da revisão bibliográfica. 

2.1 Gestão de Portfólio 
 
Cabe ao gestor de uma carteira de investimentos definir qual a melhor maneira de 

alocar capital de modo que o retorno desejado seja alcançado, levando em 

consideração o nível aceitado de risco, ou seja, qual patamar de risco o investidor 

está disposto a incorrer. Para tal, o gestor possui, basicamente, duas opções de 

investimento: 

1) Investimentos cujo retorno esperado é conhecido; 

2) Investimentos cujo retorno esperado é desconhecido e envolve 

incertezas. 

A primeira forma mencionada acima trata de investimentos na assim chamada renda-

fixa (fixed- income securities, do inglês), indicando que o ativo a ser adquirido 

remunera o investidor de forma fixa e pré-definida no ato do investimento, conforme 

normas contratuais pré-estabelecidas. Portanto, de modo geral, o gestor possui 

conhecimento tanto da alocação inicial dos recursos, quanto dos retornos futuros de 

seu investimento. Assim, pode-se dizer que as incertezas do investimento são 

minimizadas, remanescendo somente as incertezas relativas à probabilidade de calote 

por parte do emissor (essa, conhecida também como probabilidade de default) e de 

possíveis variações do benchmark (taxa de mercado à qual comumente os retornos de 

um investimento de renda fixa são atrelados, como por exemplo, a taxa DI). 

Exemplos incluem (LUENBERGER, 2008): 
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1) Depósitos bancários, tais quais Certificado de Depósito Bancário (CDB), 

Certificado de Depósito Interbancário (CDI), etc. 

2) Títulos Públicos e Privados, sejam de curto ou longo prazos. 

3) Créditos Imobiliários. 

4) Anuidades, como Fundos de Pensão, etc. 

Embora investimentos em renda fixa sejam vastamente utilizados em todo o mundo, 

não é escopo deste trabalho o aprofundamento do seu estudo, sendo sua menção e 

utilização meramente ilustrativas. 

A segunda forma de investimento acima mencionada inclui aqueles em que a 

quantidade inicial de capital investido é conhecida, porém com retornos futuros 

incertos, podendo ser considerados aleatórios, do ponto de vista estatístico. Assim, é 

possível tratar o preço de um determinado ativo, em diferentes momentos, como uma 

variável aleatória. 

Ambas formas de investimento definidas acima são avaliadas através dos retornos 

esperados sobre o investimento. Porém, apenas na segunda, os retornos são incertos 

devido às características da variável aleatória que os compõe, o preço, fazendo-se 

necessária a avaliação dos riscos associados ao investimento. 

Nesse âmbito, Harry Markowitz, em 1952, publicou um artigo denominado 

“Portfolio Selection”, momento esse tido por muitos como o nascimento da 

economia financeira moderna (RUBISTEIN, 2002). A teoria publicada pelo autor 

nesse tão aclamado artigo o levou a ganhar o Prêmio Nobel da Economia em 1990. 

Logo no primeiro parágrafo de tal artigo, MARKOWITZ (1952) afirma que o 

processo de investimento e seleção de ativos, consiste, na verdade, em duas partes: 

na primeira observam-se os ativos disponíveis e suas rentabilidades históricas, 

usando esses dados para fazer uma estimativa da rentabilidade futura; a segunda 

parte é a escolha desses e consequente composição do portfólio. 

O autor se utiliza, ao longo de sua obra, frequentemente do conceito de correlação. A 

correlação entre dois ativos é adimensional e varia entre -1 e +1 (COSTA NETO, 

2002); pode ser definida como:  
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Onde           são os desvios padrão e     é a covariância entre os retornos dos 

ativos. 

Markowitz é defensor da premissa de diversificação de investimentos. O autor 

demonstra que a diversificação de um investimento ,ou seja, a aplicação do capital 

inicial em mais de um ativo, gera composições melhores entre risco e retorno quando 

comparado a investimentos alocados em um único ativo (BREALEY-MEYERS, 

2003). 

        De acordo com o autor, ativos que possuem baixa covariância entre si acabam 

por gerar certa proteção ao portfólio, pois diminuem o seu risco. Do modo contrário, 

ativos que possuem alta correlação entre si, por tenderem a responder de forma 

semelhante aos estímulos do mercado, podem ser destruidores de valor, já que muitas 

vezes o mercado não se comporta da maneira desejada pelo investidor. 

 A Figura 3 mostra, graficamente, a principal ideia da teoria de Markowitz, a 

diversificação de investimentos. 

 
Figura 3: Efeito da diversificação na mitigação de riscos 

 
Fonte: adaptado de http://investimentosnapratica.com/risco-de-uma-carteira/ 

Pode-se perceber que conforme o número de ativos da carteira aumenta, o risco da 

mesma diminui, minimizando (eliminando, possivelmente) o Risco Específico; esse 

é definido como sendo o risco individual de um determinado ativo. Dessa forma, o 
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risco do portfólio acaba por tender ao Risco Sistêmico, o qual não pode ser 

eliminado com a diversificação. Esse último, por sua vez, é o risco relacionado ao 

mercado como um todo, sendo influenciado por aspectos políticos, sociais, 

macroeconômicos, entre outros. 

Outro fator que impacta diretamente na gestão de uma carteira de investimentos é o 

perfil de risco do investidor. Isso se da, pois nem todos os investidores estão 

dispostos a tolerar o mesmo nível de risco, o que faz com que o gestor de portfólio 

tenha que estar sempre atento a ponto. GIUDICI (2010) define, de acordo com seus 

perfis de risco, três tipos de investidores: 

1) Avesso ao risco: investidor que opta pelo investimento com o menor risco 

ao se deparar com dois investimentos com retornos similares, porém com riscos 

diferentes. Para esse tipo de investidor o mal-estar associado à perda de um 

determinado montante de rendimento é superior ao bem-estar proporcionado pelo 

ganho desse mesmo montante de rendimento 

 2) Indiferente ao risco: nesse caso, o investidor não possui preferência no 

momento em escolher entre um investimento com maior retorno e maior risco ou um 

investimento com menor retorno e menor risco. 

 3) Propenso ao risco: ao contrário do investidor avesso ao risco, esse prefere 

escolher um investimento com alto retorno e alto risco, ao invés de um investimento 

com baixo retorno e baixo risco. 

LUENBERGER (1998) sugeriu o conceito de Função Utilidade, a qual propõe uma 

maneira de ordenar os investimentos de acordo com o perfil de risco do investidor. A 

F apresenta um gráfico Retorno ( ) versus Risco ( ) onde são ilustradas as curvas 

correspondentes à Função Utilidade para os três diferentes perfis de risco acima 

citados. A curva    representa o comportamento de um investidor avesso ao risco, 

em que, para um incremento de risco Δσ, exige um aumento do retorno tal que 

       . A curva    ilustra o comportamento de um investidor indiferente ao risco 

o qual, para incremento de risco Δσ exige apenas que      . A curva    

representa o comportamento de um investidor propenso ao risco, que age 

contrariamente àquele descrito pela curva   . 
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Figura 3: Função Utilidade para três perfis de investidor diferentes 

 

Fonte: adaptado de GIUDICI, 2010 

Pôde-se perceber através dessa seção que o tema risco está muito presente no 

processo decisório na gestão de portfólio e, portanto, será discutido em detalhes 

na próxima seção, onde será apresentada uma perspectiva histórica das 

medidas de risco presentes na literatura, bem como suas definições, vantagens e 

limitações. 

 

2.2 Risco 
 
Ao longo da história, muitas situações indesejáveis do ponto de vista financeiro 

influenciaram a comunidade científica e econômica a estudar e aperfeiçoar 

ferramentas e métricas que visem garantir um investimento mais seguro, ou seja, 

diminuir o risco. São exemplos desses acontecimentos: a crise financeira de 1929, a 

crise do petróleo de 1973 e, mais recentemente, a crise do sub-prime de 2008. Todas, 

apesar de suas particularidades, tiveram consequências catastróficas para a economia 

global, denegrindo, portanto, o assim chamado nível de bem estar social da 

população.  

Como já dito, porém, ao mesmo tempo, essas crises financeiras globais tiveram 

efeitos positivos, pois motivaram estudos de controle de risco. Isso ocorreu ainda em 

maior peso após a década de setenta, período em que diversas mudanças ocorreram 
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no cenário global, como por exemplo, a extinção do regime fixo de taxa de câmbio e 

a implementação de sistemas de taxa de câmbio flutuante ao redor do globo. Além 

disso, a crescente globalização, a qual alterou os então vigentes parâmetros 

econômicos, tecnológicos e culturais da época, fez com que os países se tornassem 

mais dependentes uns dos outros. Por essas razões, os efeitos regionais de guerra, 

divergência entre inflações, mudanças políticas (como a queda do mundo socialista 

no início da década de noventa) e desastres naturais passaram a ser refletidos, em 

maior intensidade, em outras economias, inclusive de países localizados em 

continentes diferentes daquele que os originou. Essa tendência contribuiu ainda mais 

para aumentar a necessidade das instituições financeiras em minimizarem sua 

exposição aos efeitos externos, os quais não possuem controle, fazendo com que a 

mensuração e estudo de medidas de risco fossem ganhando cada vez mais relevância. 

O exemplo mais recente desse movimento foi o aperfeiçoamento dos Índices de 

Basileia após a crise financeira de 2008. Em 2010, um comitê composto pelas 

principais autoridades políticas e econômicas do planeta se reuniu em Basileia, na 

Suíça para criar regras mais rígidas a serem aplicadas nos mercados financeiros, mais 

especificamente, nos bancos. Esse evento de importância global mostrou o qual 

importante esse tema ainda é e, vale notar que até hoje o seu resultado (ou seja, 

novas regras para contenção do risco) não foi totalmente implementado, enfatizando, 

portanto, a relevância atual da problemática.  

Mas afinal, como definir risco? BARROSA (2015) afirma que risco, em sua forma 

geral, é o produto de um resultado indesejado, medido em valores monetários, por 

sua probabilidade de ocorrência. Sendo que a determinação deste evento indesejado e 

o conhecimento de sua probabilidade de ocorrência representam o foco da definição 

de diversas medidas de risco. 

Mais especificamente, JORION (1997) indica que risco pode ser definido como a 

variabilidade de resultados inesperados, tanto de preços de ações, quanto de taxas de 

câmbio, taxas de juros, etc. ARTZNER (1999) enfatiza que o risco está relacionado à 

variabilidade dos valores futuros (não só entre duas datas determinadas), das 

posições de um portfólio devido às mudanças de mercado e efeitos nas variáveis 
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aleatórias que compõem e caracterizam os investimentos. Portanto, pode-se 

confirmar que todas as operações estão expostas a riscos em maior ou menor grau. 

É interessante notar que JORION (1997), além de fornecer um conceito generalizado 

de risco, também enumera e classifica os diversos tipos de risco, apresentados na 

Tabela 1. 

Tabela 1 : Definições de risco segundo JORION (1997) 

Tipo de Risco Definição segundo JORION (1997) 

Risco Operacional Está ligado à probabilidade de perda resultante de falha ou ineficiência 

dos processos internos ou mesmo falha humana. 

Risco de Liquidez Relativo à capacidade das instituições de captação e disponibilização 

de recursos para obedecer ao fluxo de caixa e cobrir ativos sem 

liquidez. 

Risco de Mercado Relacionado à volatilidade dos preços dos ativos; pode ser direcional – 

quando relacionado à exposição do portfólio a determinados tipos de 

investimento - ou não direcional. 

Risco de Crédito Decorrente da possibilidade das contrapartes não honrarem seus 

compromissos de dívida. 

Para o bom funcionamento do mercado financeiro de um país, é de vital 

importância que os investidores tenham consciência dos riscos que estão 

tomando e também, tenham conhecimento de seus diversos tipos. Com isso, o 

investidor, na teoria, consegue tomar decisões corretas ao alocar capital nos 

diferentes segmentos do mercado financeiro, tornando o sistema como um todo 

mais eficiente. Assim sendo, os principais órgãos reguladores de mercados de 

capitais de um país se dispõe a fornecer a sua própria classificação de risco, 

visando um melhor entendimento por parte do investidor. No Brasil, é a 

Comissão de Valores Mobiliários (CVM) a responsável (entre outras atribuições) 

por “Assegurar o funcionamento eficiente e regular dos mercados de bolsa e de 

balcão”. Desse modo, um dos requisitos básicos para cumprir esse objetivo é  

Fonte: JORION, 1997 
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orientar o investidor no âmbito dos riscos incorridos e, a CVM o faz fornecendo 

a sua própria classificação de risco, a qual é exibida na Tabela 2. 

Tabela 2: Definições de risco segundo a CVM 

 

 

Apesar de nos últimos anos ter havido uma intensificação dos estudos sobre métricas 

de risco mais robustas, motivados pela crise financeira do subprime de2008, ao 

observar a literatura, fica claro que esse tema não é recente. O primeiro autor que se 

propôs a criar uma métrica de risco foi Bernoulli em 1738. O autor define a chamada 

Função de Utilidade, a qual pode ser definida como uma medida de satisfação 

relativa de um agente da economia (BERNOULLI, 1738). Essa medida foi utilizada 

Tipo de Risco Definição segundo a CVM 

Risco de Mercado Decorre das oscilações nos preços dos títulos que compõem uma carteira de 

ativos. Uma vez que esses ativos são contabilizados por seu valor de 

mercado, quanto maior a oscilação nos preços, maior a oscilação no valor 

das cotas (de um fundo, por exemplo) e também, mais difícil de estimar o 

valor de resgate ou de venda de cotas. 

Risco de Crédito Refere-se à certeza sobre a liquidação do titulo na data de vencimento. 

Quando um gestor de uma carteira adquire um titulo, esta emprestando para 

alguém ou aplicando sua quantia em determinado empreendimento e, 

certamente, correndo o risco de que o tomador dos recursos não honre a 

obrigação ou o empreendimento não renda o esperado. 

Risco de Liquidez Consiste na eventual dificuldade que o administrador da carteira possa 

encontrar para vender os ativos que compõem o portfólio, ficando 

impossibilitado de atender aos pedidos de resgate do investimento. No caso 

das cotas, o risco de liquidez decorre da dificuldade, no fundo fechado, do 

investidor encontrar um comprador para as suas cotas, forçando-o a vender 

por um valor mais baixo que o esperado, caso sua necessidade de recursos 

seja imediata. 

Tipo de Risco Definição segundo a CVM 

Risco de Mercado Decorre das oscilações nos preços dos títulos que compõem uma carteira de 

ativos. Uma vez que esses ativos são contabilizados por seu valor de 

mercado, quanto maior a oscilação nos preços, maior a oscilação no valor 

das cotas (de um fundo, por exemplo) e também, mais difícil de estimar o 

valor de resgate ou de venda de cotas. 

Risco de Crédito Refere-se à certeza sobre a liquidação do titulo na data de vencimento. 

Quando um gestor de uma carteira adquire um titulo, esta emprestando para 

alguém ou aplicando sua quantia em determinado empreendimento e, 

certamente, correndo o risco de que o tomador dos recursos não honre a 

obrigação ou o empreendimento não renda o esperado. 

Risco de Liquidez Consiste na eventual dificuldade que o administrador da carteira possa 

encontrar para vender os ativos que compõem o portfólio, ficando 

impossibilitado de atender aos pedidos de resgate do investimento. No caso 

das cotas, o risco de liquidez decorre da dificuldade, no fundo fechado, do 

investidor encontrar um comprador para as suas cotas, forçando-o a vender 

por um valor mais baixo que o esperado, caso sua necessidade de recursos 

seja imediata. 

Fonte: Comissão de Valores Mobiliários, 2014. 
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anos depois para caracterizar os diferentes perfis de investidor 

(LUENBERGER,1998), conforme já mencionado nesse trabalho. Segundo Bernoulli, 

a partir da análise de sua variação é possível explicar o comportamento desse tal 

agente, que por sua vez, resulta em opções tomadas pelo mesmo de modo a aumentar 

seu grau de satisfação. É, alias, uma medida frequentemente utilizada em Economia 

para investigar decisões de consumo de bens e serviços. Em termos econômicos, 

pode ser considerada uma medida revolucionaria, já que foi a primeira a quantificar, 

de fato, anseios e desejos dos agentes econômicos. Porém, a sua aplicação para medir 

riscos de investimento apresenta uma grade dificuldade: o seu grau de subjetividade. 

Isso, pois funções utilidades podem assumir forma quadrática, logarítmica, 

exponencial, potencial, etc., variando de acordo com as preferências do agente 

econômico. 

A dificuldade da subjetividade foi parcialmente superada na metade do século XX 

com, o já mencionado, Harry Markowitz. Em 1952, o autor criou a tão famosa Teoria 

Moderna de Carteiras de Investimento (do inglês: MPT – Modern Portfolio Theory). 

Em trabalho considerado um marco na área de Finanças e que serviu como ponto de 

partida para muitos outros estudos modernos de métricas de mensuração de risco, 

MARKOWITZ (1952) criou o modelo de Média- Variância (o qual será explicitado 

com mais profundidade mais a frente nesse trabalho) para avaliação de portfólios 

(outro modo se referir a carteiras) de investimento.  

Além de introduzir o conceito de variância (também conhecida como volatilidade), a 

qual possibilitou uma padronização e alinhamento conceitual da mensuração de 

risco, o autor também difundiu a ideia de que a covariância dos retornos de dois 

ativos  influencia no retorno geral da carteira. Ele demonstra que carteiras compostas 

por ativos de covariância negativa apresentam menor risco, a um dado nível de 

retorno, quando comparadas a carteiras que apresentem ativos de covariância 

positiva. 

Simultaneamente ao trabalho elaborado por Markowitz, ROY (1952) desenvolveu o 

Safety First Criterion, no qual o risco é mensurado como a probabilidade do retorno 

de uma dada carteira estar abaixo de um nível pré-determinado, considerado 

calamitoso. Esse trabalho é interessante por ser o primeiro a mencionar a mencionar 
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o conceitos de medidas de risco denominadas Below-Target Models, ou Modelos 

Abaixo da Meta, sendo uma introdução ao estudo do conceito de avaliação de caudas 

de distribuição dos retornos como forma de medir o risco (ROMAN, 2008).  

No modelo de Roy, 𝑅 é considerado o retorno de um dado investimento e 𝜏 o nível 

de retorno definido como desastroso. Assim, o Safety First Criterion é formalmente 

representado por: 

SFC = 𝑃 (𝑅 ≤ 𝜏) , 

sendo, portanto, considerado uma medida de probabilidade. Porém, sua aplicação se 

limitou a arbitrariedade da definição de qual seria o nível de retorno tido como 

referência. Assim, acabou por não ser amplamente utilizado na prática.  

Apesar do Safety First Criterion não ter tido o seu desenvolvimento pratico 

ampliado, ele introduziu novos conceitos que foram fundamentais para a criação de 

novas medidas de risco, principalmente no aspecto da observação de distribuições 

assimétricas de probabilidades de retornos, com ênfase em um dos lados da 

distribuição, aquele que representa uma perda para o investidor, chamado em inglês 

de downside risk. Então, dando continuidade ao tema, MARKOWITZ (1970) 

desenvolveu o modelo denominado Momentos Parciais (Partial Moments), em que a 

semi-variância é considerada medida de risco. 

A semi-variância amostral pode ser definida como (ANDRADE, 2006): 

𝜍𝑖= ∫𝑀𝑎𝑥[0,(𝐸(𝑅𝑖𝑡)−𝑅𝑡)]2𝑑𝑡 

 Em que: 

  𝜍𝑖 é a semi-variância do ativo 𝑖,  

  𝑅𝑖𝑡 é o retorno do ativo 𝑖 no instante 𝑡, 

  𝐸(𝑅𝑖) a esperança dos retornos do ativo 𝑖.  

 

Esta definição faz com que seja considerado apenas o lado indesejado da distribuição 

de probabilidade de retornos, como definido por Markowitz. 
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Simultaneamente, FISHBURN (1977) e BAWA (1978) aprofundavam a pesquisa 

através da criação do modelo (𝛼,𝜏), utilizando, dessa vez, o menor momento parcial 

(Lower Partial Moment) como métrica de risco, em um projeto que sintetiza e agrupa 

os conceitos das medidas de risco desenvolvidos anteriormente. 

Diferente dos dias atuais, durante as décadas de 1970 e 1980, não existiam métodos e 

ferramentas computacionais sofisticados para obter soluções de problemas de 

otimização quadrática (ou não lineares) de grande porte (PEROLD, 1984). Isso 

serviu como incentivo para acadêmicos desenvolverem métricas de risco lineares. 

Tendo isso em mente, KONNO e YAMAZAKI (1991) propuseram a utilização do 

primeiro momento absoluto da distribuição de retornos como métrica de risco 

(RIBEIRO, 2004), através de um modelo chamado Mean Absolute Deviation 

(MAD), aperfeiçoando o trabalho inovador de SHARPE (1971). A medida de risco é 

definida como: 

 

𝑀𝐴𝐷(𝑅𝑖)= 𝐸[|𝑅𝑖− |], 

 

o que torna o problema de otimização de carteiras de investimento um problema de 

programação linear, representando uma alternativa ao modelo da Média-Variância. 

Entretanto, a sua otimização também não é simples, já que ela é uma função absoluta 

e, portanto apresenta descontinuidades na sua derivada. Assim, tanto métodos 

analíticos como numéricos acabam por se tornar não práticos, dada a quantidade de 

restrições inerentes ao problema de otimização. 

Dando sequência ao desenvolvimento de medidas de risco que considerem eventos 

extremamente indesejáveis (como é o caso de uma crise financeira) causados na 

cauda de distribuição de probabilidade de perdas, o G-30 propôs, em 1994, uma 

medida de risco que tinha o objetivo de responder uma única pergunta: “Quão grande 

pode ser a perda em um dado horizonte de tempo e a uma dada probabilidade?” 

(ROMAN, 2008). Essa medida de risco é chama de Valor em Risco (Value at Risk - 

VaR), sendo definida como: 

𝑉𝑎𝑅𝛼(𝑅𝑖)= −𝑞𝛼(𝑅𝑖)=𝑞1−𝛼(𝑅𝑖) 

 Em que: 

  𝑅𝑖 é o retorno de um dado ativo 𝑖  



36 
 

 

  𝑞𝛼 é o percentil definido a um nível de confiança 𝛼 (G-30, 1994).  

 

O Valor em Risco, além de ser atualmente aplicado como ferramenta de gestão em 

modelos de decisão de composição ótima de portfólios, também é utilizado, ao redor 

de todo o planeta, como medida regulatória. Isso se deu, especialmente, após a 

notória primeira publicação do texto Risk Metrics: Technical Report, a serviço 

público pelo banco norte-americano JP Morgan, em 1994 (ROMAN, 2008).    

Mesmo sendo muito aplicado na prática em inúmeras instituições financeiras, o 

Valor em Risco (VaR), de acordo com critérios definidos por ARTZNER (1999), não 

é considerado uma métrica coerente de risco. Isso se deve, principalmente, ao fato de 

que ele não atende a seguinte propriedade: 

 

𝑉𝑎𝑅(𝑅1+𝑅2)≤𝑉𝑎𝑅(𝑅1)+𝑉𝑎𝑅(𝑅2)) 

 

Ou seja, ele não possui a propriedade de subaditividade, fazendo com que a 

diversificação não seja necessariamente premiada. Em outras palavras, não é possível 

garantir que o risco de uma carteira composta por dois ativos com risco 𝑉𝑎𝑅1 e 𝑉𝑎𝑅2, 

respectivamente, seja igual ou menor a 𝑉𝑎𝑅1+𝑉𝑎𝑅2. Ademais, o Valor em Risco 

(VaR), em sua forma não paramétrica, apresenta uma grande quantidade de mínimos 

locais, dificultando a sua otimização (QUARANTA e ZAFFARONI, 2008). Ainda 

assim, a vasta disseminação do Valor em Risco como medida de risco e sua 

facilidade de compreensão conceitual fazem com que esta medida seja selecionada 

para aprofundamento neste trabalho. 

Pelo Valor em Risco apresentar pontos controversos como medida de risco, propôs-

se em 2000 a criação de uma nova medida, chamada de Valor em Risco Condicional, 

do inglês, Conditional Value at Risk (CVAR). ROCKAFELLAR e URYASEV 

(2000) definiram o CVaR como sendo: 

 

𝐶𝑉𝑎𝑅(𝑅𝑖)=𝐸{(𝑅𝑖)|𝑅𝑖≤𝜈} 

 

  

Em que: 
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  𝑅𝑖 representa o retorno de um dado ativo 𝑖, 

  𝜈 representa o Valor em Risco (VaR) da distribuição de probabilidade 

dos                                                             retornos deste mesmo ativo. 

Em outras palavras, o CVaR é a média dos valores que excedem o Valor em Risco. 

Esta medida de risco, por sua vez, atende às propriedades definidas por ARTZNER 

(1999), sendo, portanto, coerente (LIM, 2011). Porém, por sua função ser 

representativa da modelagem da cauda de distribuição de probabilidade dos retornos, 

ela apresenta grande complexidade, tornando sua otimização difícil e nada trivial 

(RIBEIRO, 2004). 

 ROCKAFELLAR e URYASEV (2000) propuseram, além da medida de risco em si, 

também sofisticadas técnicas de otimização desta função. Portanto, por esse motivo e 

por ser alvo de pesquisas atuais por todo o globo, o CVaR, além da Variância e do 

VaR, também é selecionado para análise mais profunda neste trabalho. 

 A Figura 4 fornece uma perspectiva histórica das medidas de risco de 

investimentos financeiros disponíveis na literatura até os dias atuais, as quais foram 

descritas nessa etapa do trabalho. 

Figura 4: Perspectiva histórica de medidas de risco 

 

Fonte: adaptado de BARROSA, 2015 
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Do que já foi revelado nesse trabalho, é possível classificar as principais medidas de 

risco propostas na literatura em duas categorias: 

 1) Medidas de Desvio (do inglês, Deviation from Target) 

 2) Medidas de Cauda (Seriedade de Perda Potencial) 

Sendo que a primeira categoria pode ser subdividida em duas outras categorias: 

 1.1) Simétricas: consideram ambos os lados da distribuição de probabilidade 

dos retornos. 

1.2) Assimétricas: consideram apenas o lado das perdas da distribuição de 

probabilidade dos retornos. 

A Tabela 3 classifica cada uma das medidas de risco descritas durante essa seção de 

acordo com essa classificação. Sendo que as que se encontram em destaque são 

aquelas que serão descritas mais detalhadamente nas seções seguintes.  

Tabela 3: Categorização e classificação de medidas de risco 

 

  

Fonte: adaptado de BARROSA, 2015 
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2.2.1 Variância 

 
Proposta por MARKOWITZ (1952), a variância indica a média do desvio quadrático 

entre uma variável aleatória e a media da distribuição. No tema gestão de carteiras de 

investimento, é comum dizer que a variância mensura o grau de desvio entre os 

retornos atingidos e o retorno esperado dos ativos. 

Para uma variável aleatória, a variância é definida como: 

 𝑎 (𝑥)    (𝑥)  𝐸 (𝑥  𝑥̅)   

Em que:    

            𝐸(𝑥)  𝑉𝑎         𝑎𝑑  𝑑  𝑥 

De acordo com COSTA NETO (2002), dependendo da natureza da variável 

aleatória, ou seja, se ela é discreta ou contínua, calcula-se a variância da seguinte 

forma: 

   ∑(𝑥  𝐸(𝑥))   (𝑥) , para variáveis aleatórias discretas 

   ∫ (𝑥  𝐸(𝑥))   (𝑥)𝑑(𝑥)
 

  
 , para variáveis aleatórias contínuas 

Em que: 

 (𝑥)       𝑎 𝑖 𝑖𝑑𝑎𝑑  𝑑  𝑥 

 (𝑥)          𝑑   𝑖𝑑𝑎𝑑  𝑑      𝑎 𝑖 𝑖𝑑𝑎𝑑  𝑑  𝑥 

Essa medida estatística é amplamente utilizada para a mensuração do risco e, no caso 

específico de uma carteira composta por diferentes ativos pode também ser aplicada, 

mas neste caso, com o auxílio da matriz de covariância. Porém, a variância possui 

algumas restrições em relação ao seu uso e só pode ser utilizada em distribuições de 

probabilidade assimétricas (SZEGÖ, 2002). Assim, é possivel usar o modelo da 

variancia apenas para efetuar a ánalise de distribuições elípticas, como, por exemplo, 

as distribuições normais e t de Student, as quais não representam a maior parte das 

distribuições existentes.     



40 
 

 

Existem duas características principais da variância que dificultam sua utilização 

como medida de risco eficiente na gestão de portfólio: 

a. A variância não considera a diferença existente entre desvios negativos e 

positivos em relação ao retorno esperado, os quais possuem impactos opostos 

na rentabilidade dos investimentos e na percepção dos investidores, que dão 

prioridade àqueles ativos que apresentam retorno acima do valor esperado; 

b. Essa medida de risco também não analisa a cauda da distribuição de 

probabilidade (RIBEIRO e FERREIRA, 2004), o que pode representar 

grandes perdas em cenários de estresse, pois uma distribuição pode ter uma 

cauda menos pesada que outra e ser melhor para o investidor em cenários 

como o que ocorreu com a crise dos subprime que atingiu seu auge no final 

de 2008; 

Conforme tais falhas foram sendo evidenciadas, surgiram na literatura outros estudos 

a respeito de medidas de risco mais robustas que solucionassem os problemas 

apresentados pela variância. Assim, em 1994, surgiu o conceito de Valor em Risco 

(VaR) (SZEGÖ, 2002).  

2.2.2 Valor em Risco (VaR) 

 

É uma medida de risco utilizada por diversos agentes econômicos: órgãos 

reguladores, instituições financeiras, gestores de carteiras de investimento e bancos 

centrais (HULL, 1999). De acordo com esse autor, o Valor em Risco foi criado como 

uma tentativa de resumir, em um só número, o risco envolvido em uma determinada 

carteira de ativos financeiros. 

Essa métrica envolve a definição de nível de confiabilidade, horizonte de tempo e 

percentis.  O VaR pode ser definido como o valor que representa a maior perda que 

poderá ocorrer com α% de probabilidade em um determinado horizonte de tempo. 

Dependendo do setor que a empresa está inserida e da carteira de investimentos a ser 

analisada, o horizonte de tempo determinado para análise do VaR deverá variar. Para 

uma empresa que possui um alto giro de seus ativos, o horizonte de tempo deve ser 

curto, por exemplo, um mês. Já em companhias em que ao ativos possuem 
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negociação mais lenta, pode ser assumido um horizonte de tempo mais dilatado, 

como um ano (RIBEIRO e FERREIRA, 2004). 

De acordo com Quaranta e Zaffaroni (2008), considerando K uma variável aleatória 

e F sua função de distribuição,  ( )    𝑃      e    ( )          ( )    , 

para um valor fixo de confiabilidade (α), temos que: 

𝑉𝑎𝑅 ( )     (𝛼) 

 

A Figura 5 apresenta a definição gráfica do Valor em Risco. 

Figura 5: Representação gráfica do VaR 

 

Fonte: adaptado de BARROSA, 2015 

JORION (1997) demonstra dois métodos para calcular o Valor em Risco: 

1) Paramétrico: considera que o retorno do portfólio em questão apresenta 

distribuição normal, o que simplifica o seu cálculo. Chama-se dessa forma 

pois estima parâmetros ao invés de identificar os percentis; nele o VAR 

deriva diretamente do desvio padrão, usando um fator de multiplicação que 

depende do nível de confiança  

𝑉𝑎𝑅         

 Em que: 
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    é a média dos retornos 

    é o desvio padrão dos retornos 

     é o valor que representa o inverso da distribuição cumulativa 

normal 

2) Não paramétrico: também conhecido como método da série histórica, 

considera os N retornos da carteira ordenados, sendo que o VaR consiste no 

((1-α)-N) ésimo pior valor da série. Esse método assume como premissa que 

a rentabilidade futura está atrelada à passada. 

Além dos métodos proposto por Jorion, pode-se calcular essa medida por simulação 

Monte Carlo. Esse método utiliza a simulação Monte Carlo para construir, se 

baseando no histórico de rentabilidade de passado da carteira, uma gama de cenários 

para gerar uma previsão dos resultados futuros para cada um deles (RIBEIRO, 2004). 

BARROSA (2015) realizou, a título de exemplo, um estudo para demonstrar o 

comportamento do Valor em Risco (VaR), tanto o calculado pelo método 

paramétrico, quanto o calculado pelo método não paramétrico. O autor se utilizou de 

uma carteira composta por dois ativos, Itaú-Unibanco (ITUB4) e Petrobrás (PETR4), 

ambos negociados na BOVESPA e com amostra da série histórica entre 27 Maio 

2009 e 11 Maio 2012, totalizando 718 observações. Para facilitar a visualização da 

representação dos resultados, o autor toma 𝜆=𝑥1 e 𝑥2=1−𝜆, com 𝜆 representando a 

carteira, em abordagem similar a RIBEIRO (2004). O resultado de tal estudo é 

demonstrado na Error! Reference source not found.. 
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Figura 6: Exemplo de aplicação do VaR em uma carteira de ativos 

 

Fonte: adaptado de BARROSA, 2015 

 
Ao analisar a Error! Reference source not found., é possível perceber que a 

hipótese de normalidade dos retornos assumida na aplicação do método paramétrico 

não é necessariamente verdadeira, de forma que os estimadores obtidos através das 

amostras de séries históricas de retornos dos ativos, assumindo normalidade, 

apresentam erro. É nesse sentido que COSTA e BAIDYA (2001) verificaram 

empiricamente a não conformidade de diversos ativos brasileiros com a hipótese de 

simetria na distribuição de probabilidade dos retornos. A avaliação da superfície 

𝑉𝑎𝑅(𝒙) através do seu método mais amplo de cálculo, o não paramétrico, relaxa esta 

hipótese, porém sua otimização se torna significativamente mais complexa, 

principalmente devido à existência de diversos mínimos locais. 

Apesar de o VaR fornecer informações sobre a cauda da distribuição dos retornos, 

SEIGÖ (2002) apresenta diversos problemas relacionados ao uso da medida em 

questão. Dentre eles, podemos citar os principais: 

a. não mede as perdas que excedem o VaR, ou seja, essa medida não consegue 

passar informações sobre a dispersão da cauda da distribuição além do seu 

valor a um determinado nível de confiança; 

b. pode gerar  resultados conflitantes para diferentes níveis de confiança; 
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c. não é considerada uma medida de risco coerente. 

ARTZNER (1999) define as propriedades para uma medida de risco ser considerada 

coerente, são elas: 

a) Invariância sobre translações:  (𝑥  𝛼    )   (𝑥)  𝛼   𝛼   𝑅         

b) Subaditividade:  (𝑥  𝑥 )   (𝑥 )   (𝑥 )   𝑥    𝑥      

c) Homogeneidade positiva:  (𝜆𝑥)  𝜆 (𝑥)   𝜆      𝑥     

d) Monotonicidade:  ( )   (𝑥)     𝑥       𝑥 

O VaR não apresenta a propriedade da subaditividade, ou seja, não se pode garantir 

que o risco de um portfólio composto por dois ativos com 𝑉𝑎𝑅  e 𝑉𝑎𝑅  seja igual a 

𝑉𝑎𝑅  𝑉𝑎𝑅 , ou menor. O risco desse portfólio não pode ser previsto, e isso 

dificulta a sua otimização (QUARANTA e ZAFFARONI, 2008). 

2.2.3 Valor em Risco Condicional (CVaR) 

 

As medidas de risco apresentadas até agora não são convexas, ou seja, se aplicadas a 

distribuições não elípticas, fornecem resultados incoerentes. Além disso,  essas 

medidas não analisam a cauda da distribuição para cenários extremos. 

Com o objetivo de sanar esses problemas, a literatura tem dado na última década 

importância ao Condition Value-at-Risk (CVaR), uma medida de risco coerente que 

pode ser definida como a média dos valores que excedem o VaR, para um 

determinado nível de confiança. Em outras palavras, considerando que o pior cenário 

ocorreu, ele fornece o valor médio da cauda. Essa definição garante que o VaR nunca 

seja maior que o CVaR em valor absoluto (ROCKAFELLAR e URYASEV, 2000). 

Sendo x   X  𝑅 um vetor de decisão representando um portfólio e y   Y  𝑅  os 

valores futuros das rentabilidades dos ativos que compõe essa carteira,    (   ) a 

função de perdas do portfólio; o CVAR será dado por (QUARANTA e 

ZAFFARONI, 2008): 

 (𝑥  )  𝑃    (𝑥  )    

Em que: 
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   é o VaR do portfólio. 

A Figura 7 apresenta a definição gráfica do Valor em Risco Condicional. 

 

Observa-se que o Valor em Risco e o Valor em Risco Condicional medem 

propriedades diferentes da distribuição, pois o primeiro refere-se a percentil e o 

segundo à média da cauda (PFLUG, 2000). O CVaR apresenta consistência com o 

VaR apenas para distribuições normais (ou elípticas) (ROCKAFELLAR e 

URYASEV, 2002). 

  

Apesar de o CVaR depender da determinação do VaR, é possível definir 

simultaneamente essas duas medidas de risco através da seguinte função 

(ROCKAFELLAR e URYASEV, 2002): 

  (𝑥  )    
 

  𝛼
𝐸   (𝑥  )       

Em que: 

            𝑡      𝑥   𝑡   

 Fonte: adaptado de BARROSA, 2015 

Figura 7: Representação gráfica do CVaR 
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Assim, pode-se afirmar que o CVaR apresenta certas vantagens em relação ao VaR: 

 É uma medida coerente, obedecendo a todos os axiomas propostos por 

ARTZNER (1999); 

 Fornece informações sobre a cauda das distribuições, analisando cenários de 

estresse; 

 Pode ser expresso matematicamente por uma formulação que busca 

transformar o problema de composição de portfólio em um problema de 

programação linear, o qual será apresentado na seção a seguir. 

Novamente, BARROSA (2015), a titulo de ilustração, realiza estudo semelhante: 

considera o mesmo exemplo da seção anterior (i.e. uma carteira de dois ativos 

composta por Itaú-Unibanco (ITUB4) e Petrobrás (PETR4), ambos negociados na 

BOVESPA e com séries históricas entre 27 Maio 2009 e 11 Maio 2012, totalizando 

718 observações) para calcular o CVaR da carteira. Toma-se 𝜆=𝑥1 e 𝑥2=1−𝜆, com 𝜆 

representando a carteira. Os resultados estão apresentados na Figura 8. 

Figura 8: Exemplo de aplicação do CVaR em uma carteira de ativos 

 

Fonte: adaptado de BARROSA, 2015 

O autor (BARROSA, 2015) nota que o comportamento da curva apresentada na 

Figura 8, incluindo novamente a existência de diversos mínimos locais e 
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descontinuidades, dificulta substancialmente sua otimização através de métodos 

convencionais, fazendo com que sua aplicação prática em larga escala seja 

desfavorecida. 

Atualmente, não existe consenso na literatura acerca de qual é a medida de risco de 

investimentos financeiros mais adequada para aplicação pratica, já que o CVaR, 

apesar de coerente, não é de fácil aplicação (como demonstrado por Barrosa), 

demandando um grande esforço computacional. 

Assim, os acadêmicos concentram suas atenções em dois principais tópicos: 

1) Definição de novas medidas de risco, de modo a melhor caracterizar a 

distribuição de probabilidade dos retornos; 

2) Aprofundamento dos estudos de medidas de risco já existentes, com um 

foco maior tanto naquelas que são mais utilizadas em termos práticos, 

como a Variância e o Valor em Risco (VaR), quanto nas medidas 

coerentes e ainda consideradas inovadoras, como o Valor em Risco 

Condicional (CVaR). Isso, com objetivo de analisar seu comportamento 

e, finalmente, possibilitar sua utilização como função objetivo em 

processos decisórios.  

A Tabela 4 apresenta as três medidas de risco que são apresentadas na literatura e 

que serão utilizadas como objeto de aprofundamento deste trabalho. Nela, são 

demonstradas as categorias as quais pertencem, e suas limitações. 
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2.3 Modelos de Seleção de Portfólio 
 

A determinação da composição de um portfólio está diretamente ligada ao risco 

associado àquela carteira e ao retorno gerado. O objetivo de um gestor de portfólio é, 

para um determinado nível de risco, maximizar o retorno, ou analogamente, para um 

dado retorno, minimizar o risco. 

No entanto, essa não é uma questão trivial, pois os ativos financeiros estão expostos 

a diversos tipos de riscos, como riscos de mercado, de liquidez, de crédito ou 

operacional. Por exemplo, uma única ação está sujeita a riscos relacionados à 

imagem da empresa, à reputação de seus dirigentes além de riscos de mercado e de 

liquidez. Essa separação de acordo com a sua fonte geradora e consequente ação de 

diversos tipos de risco em um mesmo ativo torna sua mensuração não trivial e difícil. 

No caso da composição de carteiras, o problema é agravado pelas correlações 

existentes entre os diversos ativos que a compõe (MARKOWITZ, 1952). 

Seja 𝐴  um montante fixo disponível para alocação de investimentos, medido em 

valores monetários, e   uma quantidade de diferentes ativos financeiros pré-

Tabela 4: Coerência e limitações de medidas de risco 

Fonte: adaptado de BARROSA, 2015 
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selecionados, uma carteira (ou portfólio) de investimentos é definida como um ativo 

obtido através da alocação de 𝐴  a  . Ou seja: 

𝐴   𝑥 𝐴  

Com:  ∑ 𝑥 
 
      

O vetor 𝑥  𝑥  𝑥   𝑥  representa a alocação do montante 𝐴  em cada ativo 𝑖 que 

compõe a carteira, ou o peso de cada ativo na carteira, e, mais importante, representa 

as variáveis do problema de otimização para composição de carteiras de 

investimentos. 

O retorno de uma carteira de investimentos é calculado pela média ponderada dos 

retornos individuais de cada ativo que compõe a carteira, podendo ser facilmente 

expresso por: 

𝑅  
∑ 𝑅 𝑥 𝐴 

 
   

𝐴 
 ∑𝑅 𝑥 

 

   

 

Assim, o problema de gestão de carteiras de investimentos tem como objetivo 

minimizar uma certa função 𝑅𝑖 𝑐 (𝒙), a qual representa o risco da carteira em 

função de sua composição, sujeito a restrições acerca do retorno 𝑅  esperado e 

determinado pelo investidor. Para definição mais precisa do problema, são 

necessárias duas premissas elementares representativas do comportamento racional 

humano (LUENBERGER, 2008): 

(1) Não saciedade: o investidor prefere mais riqueza a menos riqueza; 

(2) Aversão a risco: dadas duas carteiras com mesmo retorno e diferentes 

riscos, o investidor opta pelo menor risco. Conceito esse diferente (mas não 

contraditório) daquele definido por GIUDICI (2010). 

Portanto, o problema de otimização de portfólios de investimentos, em sua forma 

geral, é definido como (BARROSA, 2015): 

 

Minimizar:  ( )  𝑅𝑖 𝑐 (𝑥) 
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  Sujeito a: 

∑𝐸(𝑅 )𝑥 

 

   

   

∑𝑥 

 

   

   

𝑥    𝑖        

A primeira restrição se refere à parametrização do modelo em relação ao retorno 

médio esperado da carteira, o qual necessariamente é maior ou igual ao valor mínimo 

estipulado pelo investidor,  . 

A segunda restrição garante que será investida exatamente a quantidade de recursos 

financeiros fixada e pré-definida pelo investidor, 𝐴0, uma vez que a soma dos pesos 

de todos os ativos que compõem a carteira é unitária. 

Por fim, a terceira restrição garante alocação não negativa dos recursos nos ativos 

que constituem a carteira. Ou seja, esta restrição garante que nenhum ativo tenha 

alocação inferior a zero, o que representaria uma venda a descoberto (short selling, 

do inglês). 

Apresentado o problema em sua forma geral, segue-se, nas próximas seções, com a 

sua aplicação específica das medidas de risco selecionadas para aprofundamento 

neste trabalho: a Variância (Modelo de Markowitz), o Valor em Risco (VaR), o 

Valor em Risco Condicional (CVaR) e, por fim, o modelo aqui proposto, o Método 

Kriging. 

 

2.3.1 Modelo de Markowitz 

 

Harry Markowitz, através de sua famosa publicação em 1952, chamada de Teoria 

Moderna da Gestão de Carteiras, procurou desenvolver uma métrica universal de 
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risco de mercado para um dado investimento. A medida de risco utilizada no modelo 

é a Variância, já detalhada nesse trabalho. 

Agora, seja Σ a matriz de covariância entre os ativos que compõem um determinado 

portfólio de investimentos, em que: 

∑     𝑐  (𝑅  𝑅 )        𝐸 (𝑅     )(𝑅  𝑅   )   , 

                Ou:    ∑    [
  

     

   
      

 
] , 

Representa uma matriz simétrica com as variâncias individuais das séries históricas 

de cada ativo que compõe a carteira na diagonal principal, e com as covariâncias 

entre esses ativos, dois a dois, para todo 𝑖   , tem-se que o risco deste portfólio de 

investimentos é: 

𝑅𝑖 𝑐  (𝑥)    
  𝑥 ∑  𝑥 , 

a qual é uma função quadrática que representa a variância da carteira em função da 

sua composição (MARKOWITZ, 1952). 

A partir dessa definição, surgiu originalmente o conceito de diversificação de 

Markowitz, um marco de sua época e permanece até hoje como sendo considerado 

um dogma entre os gestores de carteira. Esse conceito diz que a composição de uma 

carteira contendo ativos com covariância negativa pode apresentar uma melhor 

relação entre risco e retorno quando comparada ao investimento em um único ativo 

ou em ativos com correlação positiva (LUENBERGER, 2008). 

Assim sendo, o problema de composição de carteiras de investimentos utilizando a 

variância como medida de risco pode ser expresso da seguinte maneira: 

 

Minimizar: 𝑅𝑖 𝑐 ( )  𝑥 ∑  𝑥 
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Sujeito a: 

∑𝐸(𝑅 )𝑥 

 

   

   

∑𝑥 

 

   

   

𝑥    𝑖        

Sendo que as três restrições apresentadas são iguais àquelas descritas na seção 

anterior desse trabalho e a função objetivo, a qual representa o risco da carteira é a 

variância da mesma. 

Na prática, os parâmetros da função 𝑥 ∑  𝑥 são estimados através de um estudo 

amostral das séries históricas dos retornos de cada um dos ativos que compõem um 

determinado portfólio.  

BARROSA (2015) cria um exemplo para esclarecer os conceitos acima descritos. Na 

Figura 9, é possível ver a curva Retorno x Risco para uma simulação de carteira 

composta por três ativos, delimitando diferentes composições para cada um deles. 

Figura 9: Curva retorno x risco para uma carteira com três ativos 

 

 Fonte: adaptado de BARROSA, 2015 

Fica claro a partir do gráfico que a função Risco (x) assumida no exemplo (no caso, a 

Variância) é uma função quadrática. Valem notar também os três pontos limítrofes 
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do gráfico. Esses representam as três carteiras de ativos com peso um, ou seja, 

carteiras compostas por apenas um ativo, sendo que cada uma possui um ativo 

diferente. 

Considerando que um problema de otimização de portfólios de investimentos 

apresenta premissas de não saciedade, maximizando o retorno, e aversão ao risco, 

minimizando as potenciais perdas, as quais possuem objetivos conflitantes, fica 

claro, com o auxilio da Figura 9, que apenas uma pequena parcela dos diferentes 

portfólios com diferentes composições gerados satisfaria ambas as premissas. 

A região do gráfico que, justamente, é capaz de satisfazer as duas simultaneamente, é 

obtida através de algum método de otimização (e.g. o método de Kuhn-Tucker), 

minimizando assim a função 𝑅𝑖 𝑐 (𝒙)=𝒙′Σ𝒙 e parametrizando o retorno mínimo 

desejado pelo investidor através da restrição 𝑅  ≥ . Os resultados destes problemas 

de otimização assumindo diferentes valores de   estão apresentados na Figura 10. 

Essa curva é denominada Fronteira Eficiente de Markowitz, um famoso exemplo de 

Fronteira de Otimalidade de Paretto para objetivos conflitantes (PAPALAMBROS, 

2000). 

Figura 10: Exemplo de fronteira eficiente de Markowitz 

 

 Fonte: adaptado de BARROSA, 2015 

É importante perceber que quaisquer composições de carteira que não residam nessa 

curva apresentam, obrigatoriamente, uma relação Risco – Retorno inferior aos pontos 
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sobre a mesma. Ou seja, os pontos que foram gerados pela simulação apresentada na 

Figura 10 representam carteiras com um maior nível de risco para um dado retorno, 

ou menor retorno para um dado retorno, não sendo considerados, portanto, 

composições ótimas. 

Nesse ponto do trabalho é importante se utilizar dos conceitos de Função Utilidade e 

dos diferentes perfis de investidores em relação ao risco, conceitos esses previamente 

detalhados. Isso se da, pois é essa função que ordena os investimentos de acordo com 

o perfil de risco do investidor (LUENBERGER, 2008) e, portanto, é ela que, 

considerando a ideia básica que maiores riscos implicam em maiores retornos, e 

vice-versa, definirá qual ponto da curva da Fronteira Eficiente o investidor vai 

escolher.  

Por apresentar um problema de otimização de uma função quadrática, sujeita a 

restrições lineares, o modelo de Markowitz não é perfeito, já que se baseia na 

hipótese de simetria das distribuições de probabilidade dos retornos dos ativos que 

compõem a carteira. Além disso, esse modelo também conta com a fragilidade para 

representação de cenários de estresse (risco de cauda), o qual tentará ser contornado 

pelos modelos VaR e CVaR. 

 

 

2.3.2 Modelo VaR 

 
Dada a fragilidade do modelo Média – Variância em não considerar a análise da 

cauda de distribuição, ou seja, deixar de levar em consideração cenários de estresse 

(i.e. com perdas significativas, como por exemplo, perdas em momentos de crise 

financeira), faz-se necessárias a utilização de outras medidas de risco na resolução do 

problema de otimização de portfólios de investimentos. Esta foi, portanto, uma das 

motivações para o desenvolvimento do Valor em Risco (VaR) como medida de risco 

utilizada em modelos de otimização de portfólio. 

Esse modelo gera a mesma fronteira eficiente que o anterior quando a distribuição 

em questão é normal. A diferença aparece no caso de distribuições não normais e não 
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simétricas, que representam o comportamento de muitas variáveis aleatórias. Outra 

grande diferença entre esse modelo e o de Markowitz consiste no fato de que esse 

último considera os desvios da média, tanto os mais positivos quanto os mais 

negativos, da mesma forma, o que não condiz com o comportamento do investidor, 

que tem percepção diferente quanto aos lados da cauda. No modelo VaR, considera-

se apenas a cauda da distribuição que constitui perda para análise do risco. 

Similarmente ao caso do modelo de Markowitz, para resolver esse tipo de problema 

utilizando o Valor em Risco como medida de risco é comum realizar a amostragem 

de séries históricas de retornos como forma de obter estimadores dos principais 

parâmetros que caracterizam sua distribuição de probabilidade, e logo os parâmetros 

da função Valor em Risco. Analogamente ao método de cálculo paramétrico da 

variância para uma carteira, pode-se calcular o Valor em Risco de uma carteira em 

função de sua composição através da relação (JANABI, 2012): 

𝑉𝑎𝑅 (𝑥)  𝑉𝑎𝑅            

Onde 𝝂 representa o vetor dos VaR individuais de cada ativo, em função de seus 

pesos individuais, 𝒙, e 𝜞 representa a matriz de correlação entre os ativos que 

compõem a carteira, sendo: 

  [
     

   
     

] 

A matriz 𝜞 é simétrica com diagonal principal unitária, indicando a correlação entre 

a série histórica dos retornos do ativo 𝑖 com ele mesmo. Os outros valores da matriz 

de correlação representam o Coeficiente de Correlação de Pearson, obtido através da 

amostra dos retornos da série histórica entre cada ativo 𝑖 e  , dois a dois. 

Agora, no caso do cálculo do Valor em Risco pelo método não-paramétrico, ou seja, 

utilizando a série histórica dos retornos dos ativos que compõem a carteira, a 

metodologia é simples: substitui-se a ordenação dos Valores em Risco do ativo pela 

ordenação dos diferentes valores do VaR da carteira, e assim aplica-se a técnica 

conforme apresentada anteriormente. 
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Desse modo, o problema de composição ótima de portfólio de investimento 

considerando o Valor em Risco (VaR) como medida de risco pode ser escrito da 

seguinte maneira: 

   

Minimizar: 𝑅𝑖 𝑐  (𝑥)  𝑉𝑎𝑅 (𝑥)            

  Sujeito a: 

∑𝐸(𝑅 )𝑥 

 

   

   

∑𝑥 

 

   

   

𝑥    𝑖        

Novamente as restrições desse problema de otimização são as mesmas do modelo 

base, porém desta vez a função objetivo a ser minimizada é a função que calcula o 

Valor em Risco da carteira de investimentos. 

Contudo, como já observado, o Valor em Risco possui algumas limitações. Entre 

elas estão: não oferece informações sobre a dispersão da cauda da distribuição além 

do seu valor a um determinado nível de confiança; depende do nível de confiança a 

ser adotado; e não é considerada uma medida de risco coerente (ARTZNER, 1999). 

Com o objetivo de superar essas limitações, ROCKAFELLAR e URYASEV (2000) 

desenvolveram e aplicaram o Valor em Risco Condicional (CVaR) em problemas de 

otimização de portfólios de investimentos. 

2.3.3 Modelo CVaR 

 

As críticas ao modelo Média-Variância (modelo de Markowitz) somadas à busca por 

uma medida de risco coerente (tentando superar uma limitação do VaR) fizeram com 

que o modelo que será denominado de CVaR ganhasse destaque na literatura.Esse 

modelo é baseado no Valor em Risco Condicional da carteira e leva a resultados 
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mais confiáveis sobre o risco associado a um portfólio, já que considera o risco de 

cauda e, mais ainda, valores que ultrapassam o VaR.  

Como apresentado anteriormente, o cálculo do CVaR depende da determinação do 

VaR da carteira, o que pode ser complicado na prática. No entanto, 

ROCKAFELLAR E URYASEV (2000) propuseram uma abordagem mais simples 

para o CVAR, em que o VaR é calculado e ao mesmo tempo o CVaR é minimizado. 

Ainda segundo os mesmos autores, sendo  (   ) a função perda associada a um 

vetor de decisão X   𝑅  e a um vetor aleatório Y   𝑅 , para cada vetor X, a perda 

 (   ) é uma variável aleatória de distribuição em 𝑅 induzida pelo vetor Y, o qual 

possui densidade  ( ). 

O retorno de um portfólio é calculado através do somatório do produto entre o peso 

dos ativos e seus retornos individuais. A função perda é o negativo desse retorno 

 (   )    𝑥      𝑥          

e quando negativa, representa um ganho. 

Portanto, pode-se definir a média e a variância da função perda associado ao 

portfólio X em termos da média   e da matriz de covariância ∑ dos retornos: 

       

     ∑  

A probabilidade de que  (   ) não exceda um nível 𝑎  𝑉𝑎𝑅 é: 

 (   )  ∫  ( ) 𝑑 
 (   )  

 

Assume-se que  (    )  é não decrescente e contínua em relação ao VaR, para 

simplificar a formulação matemática que segue para o cálculo do CVaR. Essa função 

determina o comportamento da variável aleatória e é fundamental para determinação 

do risco. 
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A um nível de probabilidade α entre (0,1), em que α pode assumir valores como 

𝛼       ou 𝛼      , por exemplo, o VaR e o CVaR podem ser definidos como: 

  𝑉𝑎𝑅(  𝛼)           𝑅  (   )  𝛼  

  (   )  𝐶𝑉𝑎𝑅(   )    
 

(  𝛼)
∫   (   )      ( )𝑑 
    

 

Em que: 

  (   )       𝑡      𝑥   𝑡   

ROCKAFELLAR E URYASEV (2002) propuseram uma formulação matemática 

que transforma o problema do cálculo do CVaR em um problema de programação 

linear. O que o modelo propõe é uma maneira de discretizar a integral para facilitar 

uma aproximação do CVaR. Para isso, os autores sugerem o uso de amostras da 

distribuição de probabilidade de Y, de acordo com sua densidade  ( ), que gerem 

vários vetores           .  Além disso, associado à criação de cenários base, pode-

se aplicá-lo para analisar e otimizar o risco de um portfólio com um grande número 

de ativos, tanto financeiros quanto não financeiros, sem muitos recursos 

computacionais. Portanto, levando em consideração a quantidade de cenários 

gerados (𝑞) uma aproximação para a função   (   ), é dada por: 

  (   )  𝐶𝑉𝑎𝑅(   )    
 

𝑞(  𝛼)
∑  (    )     
 

   

 

Substituindo o termo   (    )      por variáveis auxiliares    que obedece 

restrições que garantem que seu valor também seja igual a   𝑥   𝑡 , transforma-se 

a resolução do modelo em um problema de programação linear. 

Pode ser descrito da seguinte forma: 

𝑀𝑖               ̃  (   )    
 

𝑞(  𝛼)
∑   
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  Sujeito a: 

𝑥     𝑎 𝑎         

∑ 𝑥 

 

   
   

      

            

                     𝑞   

Em que: 

 𝑞 é o número de cenários gerados 

   é o retorno mínimo admitido 

    são as variáveis auxiliares que substituem           

A primeira restrição refere-se à exigência de que a alocação dos recursos nos ativos 

seja positiva, ou seja, não são consideradas posições vendidas.  

A segunda garante que todo capital disponível será investido. 

A terceira restrição impõe que só serão considerados portfólios que tenham um 

retorno mínimo R. 

Por fim, a quarta e quinta restrições tratam da variável    que deve ser positiva, 

obedecendo a relação descrita na quarta restrição. 

A solução para o problema é a aproximação de   (  𝑎) por  ̃ (   ) e posterior 

minimização dessa, que é uma função convexa, linear e diferenciável em relação a X 

e ao VaR e pode ser minimizada com métodos usuais de programação linear, o que 

torna sua implementação atrativa.  

Apesar de não voltar atenção para o VaR diretamente, como o CVaR ≥ VaR, o 

portfólio que minimiza esse primeiro tende a ser uma boa solução para o problema 

de minimização do último.  
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A transformação para uma programação linear do problema de minimização do 

CVaR não depende de que Y tenha uma distribuição normal previamente conhecida, 

o que torna o modelo vantajoso frente ao de Markowitz. Além disso, também é 

considerado um modelo mais robusto que o modelo VaR, já que o CVaR analisa 

melhor a cauda da distribuição de probabilidade dos retornos e, adicionalmente, 

inclui o cálculo do próprio VaR implícito nele próprio.  

2.3.4 Modelo Proposto: Kriging 

O modelo apresentado acima, o modelo CVaR, apresenta uma desvantagem: a sua 

dificuldade para aplicação prática. Isso acontece, pois para tornar o modelo em um 

problema de programação linear é necessária a inclusão de mais variáveis e 

restrições de acordo com o número de cenários, número esse que aumentam à 

medida que o tamanho da amostra gerada por simulação de Monte Carlo também 

cresce.  

O presente trabalho tem como objetivo propor um modelo de otimização que visa 

diminuir o número de variáveis e o trabalho computacional para obter a composição 

da carteira ótima. Esse método busca a criação de uma superfície aproximada da 

função a ser minimizada. 

Nos modelos apresentados nos itens anteriores utiliza-se o comportamento passado 

dos retornos dos ativos para representar o que acontecerá no futuro, considerando a 

matriz de covariância constante na geração e análise de cenários. Esse princípio 

também é utilizado nesse modelo, pois ele modela a cauda da distribuição, propondo 

uma aproximação da função da superfície, baseado nos dados históricos que servem 

de variável de entrada para a solução do problema. 

Sabe-se que, para aproximar uma função, deve-se fazer uma escolha apropriada dos 

pontos da malha, ou seja, dos pontos que irão representar os dados no espaço.  

Existem diversas técnicas para aproximar a função de interesse, mas nesse trabalho 

será proposto o uso do Modelo Kriging, também conhecido como ajuste DACE 

(Design and Analysis of Computer Experiments). Essa técnica teve origem no estudo 

de problemas oriundos da geologia e é conhecida como Kriging (RIBEIRO e 

FERREIRA, 2004), que é um método de regressão usado em geoestatística para 
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aproximar ou interpolar dados (YIN, J e NG, 2011), também conhecido como 

“Processo Gaussiano de Regressão”.  

Apesar desse método não ser tradicionalmente aplicado para problemas financeiros e 

inicialmente ter sido usado em problemas de concentração de minerais no solo, 

acredita-se que existem semelhanças nas duas aplicações que justificam o seu uso 

nesse trabalho. No caso da composição do solo há dificuldade de obtenção dos 

valores reais de composição em toda a região pesquisada. No problema do cálculo do 

CVaR, apesar de ser possível determinar seu valor para grande parte das 

configurações de carteira, o comportamento da função teórica dificulta sua 

otimização, sendo muitas vezes necessário um grande trabalho computacional de 

acordo com os modelos hoje existentes na literatura.  

O Modelo Kriging propõe o ajuste da superfície de resposta dos dados coletados 

avaliando a função objetivo e as restrições do problema em alguns pontos 

determinados. Essa superfície de resposta é usada para análise das relações entre as 

variáveis de entrada e saída do problema bem como para a estimação do seu ótimo 

(JONES, SCHONLAU e WELCH, 1998). 

Essa técnica tem sua função objetivo tratada como o resultado de um processo 

estocástico previamente definido, caracterizado por uma função de correlação entre 

os valores calculados em diferentes pares de pontos (JONES, SCHONLAU e 

WELCH, 1998). Costuma ser usada em casos em que o custo do cálculo da função 

objetivo é alto, não sendo esse, necessariamente, o caso do CVaR. 

Considerando o vetor         (         ) e o vetor                    , em 

que n representa o número de ativos que compõe a carteira e q o número de pontos 

observados na malha, o ajuste DACE fornece uma aproximação polinomial da 

função     (  ) interpolando-a nos pontos observados através da equação: 

 (  )      (  ) 

Onde  ( ) são os erros aleatórios, correlacionados, normalmente distribuídos, com 

média zero e variância constante,   . 
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A correlação entre  (  ) e  (  ), citada acima, depende da distância entre os pontos. 

Ela será maior quando    e    forem próximos, ou seja, tenderá a um quando a 

distância for pequena e a zero se esses pontos da malha forem muito distantes. A 

covariância entre os erros é da forma: 

   ( (  )  (  ))        

Em que     é a correlação entre dois erros (     (    )      (     )). 

Consideram-se as seguintes funções de correlação (LOPHAVEN, NIELSEN e 

SONDERGAARD, 2002): 

Tabela 5 : Funções correlação disponíveis na aplicação do Método Kriging 

Correlação Função 

Exponencial 𝑅(  𝑑 )      (    𝑑  ) 

Gaussiana 𝑅(  𝑑 )      (   𝑑 
 ) 

Linear 𝑅(  𝑑 )              𝑑  ) 

Esférica 𝑅(  𝑑 )               
   

    𝑖       𝑑  ) 

Spline 
𝑅(  𝑑 )  𝜍(  )  

      𝑑   

 

Fonte: elaborado pelo autor 
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O termo   (     ) refere-se à distância entre os pontos e não é baseado no modelo 

Euclidiano (√∑ (  
    

 
)
 

 
  ), como forma de tratar todos os pontos com o mesmo 

peso. 

A medida dessa distância entre os dois pontos é uma função de parâmetros    e   .  

 (     )  ∑      
    

 
    

 

   

 

Segundo JONES et al (1998), o parâmetro    mede a influência ou “atividade” da 

variável   , ou seja, se a variável é “ativa”, isso significa que mesmo valores 

pequenos de    
    

 
  podem influenciar em grandes diferenças nos valores das 

funções em    e   . Estatisticamente, quer dizer que mesmo valores pequenos de 

   
    

 
  devem implicar em uma menor correlação entre os pontos    e    quanto 

maior o valor de   .  

Ainda segundo o mesmo autor, o expoente    está relacionado à suavidade da função 

em relação aos pontos  . Valores de      correspondem a funções menos suaves e 

     a funções mais suaves. 

  



64 
 

 

Figura 11: Parâmetros aplicados no Método Kriging 

 

 Fonte: adaptado de QUEIPO, 2002 

Em uma abordagem similar a QUEIPO et al. (2002), adota-se      e      . E, 

portanto, o estimador não viesado de mínimos quadrados para  ̂(  ) é dado por 

(RIBEIRO e FERREIRA, 2004), (LOPHAVEN, NIELSEN e SONDERGAARD, 

2002). 

 ̂(  )  ∑  
   

 

   

(  )       (     ) 

Em que: 

   (      )          

  é o vetor de correlações entre erros em relação ao ponto    e os 

demais pontos da amostra 

Σ é a matriz de correlação entre os pontos da amostra 

y é o vetor dos valores observados para o CVaR 

F é a matriz com os valores das funções calculados nos pontos da 

amostra 

O primeiro passo para a aplicação do modelo proposto relaciona-se a obtenção de 

uma amostra apropriada para o experimento. Como o objetivo do trabalho é analisar 
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o problema de composição de portfólio, os pontos da malha representam a 

porcentagem de alocação do capital investido em cada ativo. Por isso, esses assumem 

valores tal que 𝑥         .  

A decisão do modo de geração dos pontos que serão utilizados para análise é 

importante como forma de aumentar a eficiência do método e reduzir a incerteza 

estatística desse. Pode-se citar três métodos principais para geração da amostra: 

1) Geração aleatória: os pontos gerados são normalmente distribuídos no 

intervalo      , tendo a sequência média zero e variância unitária; 

2) Geração determinística: cada face do hipercubo        é subdividida em 

um determinado número de intervalos que dão origem a outros cubos cujos 

vértices são o pontos da amostra (RIBEIRO e FERREIRA, 2004); 

3) Geração por hipercubo latino: garante que todas as porções do espaço 

estão sendo representadas. Primeiro determinam-se   intervalos não 

sobrepostos e com mesma probabilidade, depois é gerada uma amostra 

aleatória, uniformemente distribuída, em cada intervalo e em todas as 

dimensões para posterior seleção aleatória destes para compor o grupo de 

pontos para análise. 

LOPHAVEN, NIELSEN e SONDEGAARD (2002) apresentam três modelos de 

regressão que podem ser utilizados para aproximar a superfície de resposta do 

problema. No primeiro aproxima-se a superfície ao valor de uma constante através 

de um polinômio de grau zero, a segunda opção é aproximá-la por um polinômio de 

grau um, representando uma regressão linear, ou, por último, uma regressão 

quadrática, utilizando um polinômio de grau dois. A abordagem proposta nesse 

trabalho irá utilizar a regressão linear, de forma a diminuir a complexidade do 

problema e facilitar a sua representação gráfica, portanto: 

  (𝑥)               (𝑥)  𝑥         (𝑥)  𝑥  

Definida a metodologia de geração da amostra, de correlação e regressão que serão 

utilizadas, o modelo segue com os seguintes passos: 

a) Um conjunto de pontos         
 

 é gerado, de acordo com um dos métodos 

apresentados acima, obedecendo as seguintes restrições: 
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           𝑥 
    𝑖         

b) Para cada vetor    calcula-se        ; 

c) Para o conjunto de pontos    e   , determina-se a função aproximadora 

através do modelo Kriging, de acordo com o modelo de regressão e 

correlação escolhidos e também dos parâmetros       e   ; 

d) Gera-se um novo conjunto de pontos         
 

 obedecendo às mesmas 

restrições de forma a analisar o erro de estimação entre o valor dado pela 

função aproximada  ̂ e o valor do CVaR de cada carteira.  

De acordo com QUEIPO et al (2002), os benefícios de utilizar essa abordagem 

probabilística para modelar funções determinísticas consistem no fato de o modelo 

utilizar um estimador imparcial para a representação do problema e por fornecer o 

erro estimado da aproximação. 

2.4 Seleção de Portfólio no Setor de Energia 
 
Os fundamentos da Teoria Moderna da Gestão de Portfólio (i.e. uma carteira 

composta por ativos os quais possuam retornos negativamente correlacionados 

oferece uma melhor relação retorno – risco que uma carteira formada por apenas um 

ativo), introduzida por Harry Markowitz em 1952, também passaram a ser utilizados 

no setor de energia. 

Essa utilização da teoria de Markowitz em um campo totalmente diverso daquele do 

mercado financeiro não é recente: foi introduzida pela primeira vez por BAR-LEV e 

KATZ (1976). Porém, resultados mais concretos foram obtidos por AWERBUCH e 

BERGER (2003), AWERBUCH (2006) e KREY e ZWEIFEL (2006) e acabaram por 

virar referência na literatura. De acordo com tais autores, o objetivo do estudo é 

selecionar a composição ótima da matriz energética de um país (ou continente, no 

caso da Europa), formada por diferentes tecnologias de produção, como por 

exemplo, a produção de energia eólica, a gás, nuclear, entre outras. Nesse contexto, o 

custo unitário de produção energética [kWh/$] é considerado como o retorno do 

portfólio de energia e o desvio padrão deste retorno é tido como a medida de risco a 

ser mensurada. 
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LOSEKANN et al (2013) e DELARUE et al (2011) realizam uma abordagem 

simular: esses consideram como função objetiva do problema de otimização o custo 

unitário de produção energética [$/kWh] e, o desvio padrão de tal custo, expressado 

como porcentagem do custo médio, como o risco associado a cada tecnologia, sendo 

que cada uma simboliza um ativo. A forma geral do problema pode ser escrita da 

seguinte forma: 

Min   𝐶     (𝑥)   ∑ 𝑥   𝐶  
 
  

Subject to  (1)  𝑥 ∑𝑥     𝑅 

(2) ∑ 𝑥    
  

(3) 𝑥    𝑖        

A função objetivo CUSTO (x) representa o custo unitário total da produção 

energética em termos de vetor de decisão x, o qual representa a alocação em cada 

tecnologia na carteira de matriz energética. Notavelmente, o custo unitário total é 

expresso como a soma do custo unitário médio de cada tecnologia, simbolizado 

como UTCOi (unit total cost, do inglês) (DELARUE ET AL, 2011).  

A primeira restrição do problema representa o desvio padrão (medida de risco 

utilizada) da carteira em função de x (alocação em cada tecnologia), sendo que   s  

refere à matriz de covariância entre os calores históricos do custo unitário. Essa 

restrição é parametrizada em R, o qual é o maior risco aceitável da carteira. 

A segunda restrição garante a alocação total da oferta de energia provida pelas 

diferentes tecnologias estudadas. 

Por fim, a terceira restrição assegura que não exista alocação negativa na carteira, já 

que existe uma restrição física para tal. 

A fim de tornar o problema apresentado uma razoável representação da realidade, o  

UTCO (custo unitário total) é decomposto em diversos componentes (DELARUE et al, 

2011): 

  𝐶   ∑𝐶      𝑉         𝑀   𝑉 𝑀 
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Sendo que: 

𝐶    representa o custo do componente k da tecnologia i [$/kWh] 

  𝑉   representa o custo de investimento da tecnologia i [$/kWh] 

   representa o custo de combustível da tecnologia i [$/kWh] 

  𝑀   representa o custo fixo de Operação e Manutenção da tecnologia i [$/kWh] 

𝑉 𝑀  representa o custo variável de Operação e Manutenção da tecnologia i 

[$/kWh] 

LOSEKANN et al. (2013) apresenta em seu estudo um gráfico de dispersão 

relacionando o custo unitário médio de produção energética com o desvio padrão 

desse custo, expresso como porcentagem da médio do custo, para múltiplas 

tecnologias disponíveis no mercado brasileiro. Tais resultados são apresentados na 

Figura 12. 

Figura 12: Custo Médio e Risco (Desvio Padrão) para diferentes tecnologias 

 

 Fonte: adaptado de LOSEKANN, 2013 

É possível perceber que existe uma correlação negativa entre o custo unitário médio com o 

desvio padrão desse custo. Essa correlação é análoga à relação clássica entre risco versus 

retorno, a qual diz que quanto maior o risco incorrido pelo investidor, maior também é o 

retorno exigido pelo mesmo. No caso do setor de energia, porém, como o objetivo é 

minimizar a variável custo (e não maximizar o retorno), essa relação se inverte, ou seja, para 

um risco maior (desvio padrão, no caso) é exigido um custo de produção energética menor. 
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Ainda nesse âmbito, vale dizer que o conflito entre minimizar ambos o custo unitário médio 

de produção energética de uma carteira com múltiplas tecnologias e seu respectivo risco 

(desvio padrão, por exemplo) pode ser representado pela Fronteira Eficiente de Pareto para 

conflitos objetivos (PAPALAMBROS, 2000), exibido na Figura 13. 

Figura 13: Fronteira Eficiente de Pareto para objetivos conflitantes 

 

 Fonte: adaptado de PAPALAMBROS, 2000 

 

Alternativamente ao problema de otimização apresentado acima, é equivalente apresenta-lo 

de outra forma (BARROSA, 2015). Segundo o autor, é conveniente reescrever a função 

objetivo do problema como sendo função do risco da carteira de matriz energética, sujeito a 

uma restrição parametrizada que represente o maior custo unitário médio aceitável. Assim, o 

problema é formulado da seguinte maneira: 

Min   𝑅  𝐶  

Subject to  (1) ∑   𝐶  
 
  

 𝐶 

(2) ∑ 𝑥    
  

(3) 𝑥    𝑖        

Essa nova forma de representar o problema de otimização da matriz energética possibilita o 

uso de diferentes medidas de risco e, portanto, será implementado nesse presente trabalho, já 

que serão utilizados, além do desvio padrão, outras medidas de risco, como o Valor em 

Risco (VaR) e o Valor em Risco Condicional (CVaR). 
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3 METODOLOGIA 

Neste capítulo é apresentado, primeiramente, a motivação da escolha do setor de energia 

analisado nesse presente trabalho e suas principais características. Em seguida, é detalhada a 

medida de custo utilizada, o LCOE (Levelized Cost of Energy, do inglês). É apresentada 

também a base de dados escolhida para a aplicação do método proposto (Método Kriging). 

Finalmente, é demonstrado como simulações de Monte Carlo foram utilizadas de modo a 

auxiliar na preparação desses dados. 

3.1 Setor de Energia dos Estados Unidos 

3.1.1 Motivação 

 
A ideia original desse presente trabalho era analisar o mercado de energia do país de 

origem do autor, ou seja, o Brasil. Porém, algumas limitações e percalços surgiram 

durante a etapa de coleta de dados: 

1) Existe no Brasil uma grande falta de dados públicos referente aos custos de 

geração de energia. Vale dizer que o principal órgão regulador do setor de 

energia do país, a ANEEL (Agência Nacional de Energia Elétrica), não 

fornece dados das plantas geradoras de energia, já que a maior parte delas 

pertence à iniciativa privada, a qual não é obrigada por lei a disponibilizar 

tais dados. 

2) Ainda em relação às empresas privadas responsáveis pela administração de 

plantas geradoras de energia, sejam elas provenientes de concessões 

governamentais, ou até mesmo de propriedade das próprias empresas, 

procurou-se entrar em contato com as mesmas para obter dados, como, por 

exemplo, de custos de operação e manutenção, fator importante do custo total 

de uma planta geradora. Infelizmente, muitas delas optam por não divulgar 

tais dados, alegando que preferem manter sigilo em relação a tais números, o 

que dificulta enormemente a realização de uma pesquisa acadêmica. 

3) Políticas governamentais, tanto federais, quanto estaduais, de subsídios e 

incentivos são muito frequentes no Brasil. Um dos motivos pelo qual isso 

acontece é porque o Estado, por motivos políticos, tem o interesse de possuir 

forte influência no setor energético do país. O governo o faz, por exemplo, 

através de um controle de preços de combustíveis, o que, consequentemente, 
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impacta diretamente nos custos de uma planta geradora de energia. Esse 

intervencionismo estatal prejudica lógicas de mercado, ou seja, “leis” básicas 

da economia, como as da oferta e demanda são deixadas no segundo plano: 

empresas passam a priorizar ações que se beneficiem de incentivos 

governamentais. Isso tudo acaba por prejudicar a implementação do modelo 

proposto nesse presente trabalho, o Método Kriging, já que esse modelo não 

se baseia em ações governamentais arbitrárias e sim, se utiliza de lógicas de 

mercado, como a relação custo – retorno. A título de exemplo desse tipo de 

ação por parte do Estado, é possível verificar na F o custo variável médio de 

geração de energia de quatro usinas localizadas no estado do Rio de Janeiro. 

Apesar de possuírem exatamente a mesma tecnologia geradora, apresentam 

custos de geração muito diferentes. Isso pode ser explicado pelo fato que as 

usinas foram construídas em datas diversas e em cada data em que seu 

contrato foi assinado o governo possuía uma política de subsídios diferentes, 

causando evidentemente uma disparidade nos custos de geração. 

 

Figura 14: Custo variável das plantas geradoras Norte Fluminense em 2013 

 

Fonte: adaptado de www.aneel.gov.br 

Assim sendo, o presente trabalho tem como objetivo analisar o mercado de energia 

dos Estados Unidos. Isso, pois existe uma grande disponibilidade de dados desse 

mercado, principalmente por órgãos governamentais que consolidam informação, 

0

20

40

60

80

100

120

140

160

Norte Fluminense 1 Norte Fluminense 2 Norte Fluminense 3 Norte Fluminense 4

R$/MWh

Custo Variável das Plantas Geradoras em 2013



73 
 

  

como o Departamento de Energia dos Estados Unidos (DOE) e a Agência de 

Informação de Energia dos Estados Unidos (EIA). Além disso, esse mercado 

também possui como característica um forte liberalismo econômico, em que forças 

de mercado influenciam custos e preços de geração. Portanto, o modelo proposto 

nesse trabalho se torna válido e, consequentemente, uma potencial ferramenta no 

auxilio da formulação de políticas energéticas. 

3.1.2 Principais Características 

 
Os Estados Unidos são o segundo maior produtor e consumidor de energia do 

mundo, atrás apenas da China. O país consome aproximadamente 20% da produção 

mundial de energia do mundo e, notavelmente, possui papel relevante no setor 

energético global. Fica evidente a partir da Figura 15 que nos últimos séculos o 

consumo de energia per capita aumentou expressivamente. Porém, é importante 

perceber também que nas últimas décadas houve uma diminuição do consumo per 

capita, a qual pode ser explicada por tecnologias mais eficientes no quesito 

energético, um grande aumento da população e políticas ambientais em prol da 

diminuição do consumo de energia. 

Figura 15: Consumo de energia per capita nos Estados Unidos 

 

Fonte: adaptado de Electric Power Annual, 2015 

É possível verificar na Figura 16 que o setor responsável pelo maior consumo de 

energia do país é justamente o elétrico, o qual é, aliás, o setor a ser analisado nesse 

presente trabalho. 
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Figura 16: Participação de cada setor no consumo de energia nos Estados Unidos 

 

Fonte: adaptado de Electric Power Annual, 2015 

É importante também definir quais são as principais fontes geradoras de energia do 

setor elétrico dos Estados Unidos, o que é exibido na Figura 17. Percebe-se que 

aproximadamente metade da energia elétrica é proveniente de tecnologias que se 

utilizam do carvão como fonte geradora.  

Figura 17: Matriz energética dos Estados Unidos 

1 

 

Fonte: adaptado de Electric Power Annual, 2015 

Vale ressaltar também a maior importância de tecnologias renováveis: segundo a 

Agência de Informação de Energia dos Estados Unidos (EIA), em 2003 as fontes 

renováveis de energia representavam 6% da matriz energética do país e em 2015, por 

sua vez, respondem por 10% da produção total de energia elétrica do país. 
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Dado o aumento da importância das fontes renováveis no país, é importante também 

detalhar quais são as principais tecnologias renováveis utilizadas, o que pode ser 

verificado na Error! Reference source not found.. 

Figura 18: Participação das tecnologias renováveis nos Estados Unidos 

 

Fonte: adaptado de Electric Power Annual, 2015 

Destacam-se as tecnologias hidro, eólica e biomassa, as quais representam quase 

90% da produção total renovável do país. Pela sua relevância, essas três tecnologias, 

juntamente com a tecnologia solar (essa, cada vez mais presente em estudos 

acadêmicos), foram as tecnologias renováveis escolhidas para serem analisadas nesse 

presente trabalho. 

 

 

3.2 LCOE 
 
A medida de custo a ser utilizada nesse presente trabalho é o LCOE (Levelized Cost 

of Energy, do inglês). O LCOE é uma medida conveniente para comparar a 

competitividade geral de diferentes tecnologias de geração energética. Ele representa 

o custo por megawatt hora (em termos reais)  de construção e operação de 

uma planta geradora em um ciclo financeiro e um ciclo de operação previamente 

definidos. 
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Os principais parâmetros necessários para se calcular o LCOE são o custo de capital, 

custo de combustível, custos fixos e variáveis de  manutenção e operação, custo de 

financiamento, e uma assumida taxa de utilização da tecnologia geradora. Assim 

sendo, de maneira geral, é possível notar que: 

 𝐶 𝐸   (𝐶  𝑡  𝑑  𝐶𝑎 𝑖𝑡𝑎    𝑀    𝑀  𝐶     𝑡    )    
𝑅 

𝑀  
  

Antes de demonstrar a sua formulação geral, é importante primeiro definir o CRF 

(Capital Recovery Factor,do inglês), que é um fator utilizado para tornar anual o 

custo de capital, ou seja, os custos incorridos durante o investimento em capital fixo 

de uma planta. Esse, dependendo da tecnologia adotada, pode representar uma parte 

importante do custo total da geração energética. O CRF é calculado da seguinte 

forma: 

𝐶𝑅   
𝐷  (  𝐷) 

((  𝐷)   )
 

Em que: 

D é igual a taxa de desconto em que os fluxos de receita são descontados a 

Valor Presente. Essa taxa é diferente para cada tecnologia. 

N representa o tempo de atividade de uma planta geradora. 

Assim sendo, podemos agora definir a cálculo do LCOE: 

 𝐶 𝐸   
𝐶𝐶  𝐶𝑅  (    𝐷𝑃𝑉)

 𝐶  (   )
 

  𝑀 

 𝐶
   𝑀  𝐶     𝑡    

  𝐴    
𝑅 

𝑀  
  

Em que: 

CC representa o custo de capital para se construir uma planta geradora de 

energia. Em outras palavras, é o investimento em capital fixo necessário na 

construção de uma planta. 

I é o imposto (em %) aplicado pelo governo. 
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DPV representa o valor presente da depreciação da planta.  

FC representa o fator capacidade, o qual é definido como a proporção entre a 

produção efetiva da planta geradora e a capacidade total máxima neste 

mesmo período. 

O&Mf representa os custos fixos de operação e manutenção. 

O&Mv representa os custos variáveis de operação e manutenção. 

Combustível representa o custo incorrido com a aquisição de combustível. 

TA representa a taxa de aquecimento, ou seja, a eficiência da usina na 

conversão de combustível em energia elétrica. 

É importante salientar que o peso de cada parâmetro varia entre cada tecnologia. Por 

exemplo, no caso das gerações solar e eólica, o custo de combustível é igual a zero e 

os custos com operação e manutenção são relativamente pequenos. Ainda, nesses 

casos, o custo com capital é o que representa a maior parcela do LCOE, já que essas 

plantas requerem altos investimentos para serem concluídas.  Por sua vez, no caso de 

tecnologias como gás, isso se inverte: o fator que possui o maior peso do custo total é 

o combustível. 

3.3 Obtenção dos Dados 

3.3.1 Base de Dados Utilizada 

 
Os dados utilizados na análise desse trabalho foram coletados no  “Transparent 

Cost Database”, a qual é uma base de dados pública que reúne dados provenientes 

de diversas fontes, tanto acadêmicas, quanto de órgãos governamentais, como o 

Departamento de Energia dos Estados Unidos (DOE), a Agência de Informação de 

Energia dos Estados Unidos (EIA), a Agência de Proteção Ambiental dos Estados 

Unidos (EPA), entre outros. 

Os dados coletados são estimativas para o LCOE de diversas tecnologias nos Estados 

Unidos nos próximos vinte e cinco anos, ou seja, de 2016 a 2040. Nesse presente 

trabalho, serão analisadas as principais tecnologias utilizadas na geração de energia 
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no mercado dos Estados Unidos. São elas: solar, eólica, hidro, biomassa, nuclear, gás 

e carvão. A Tabela 6 apresenta o número de dados coletados para cada tecnologia. 

Tabela 6: Número de dados coletados para cada tecnologia 

Tecnologia Número de Dados Coletados 

Solar 692 

Eólica 795 

Hidro 114 

Biomassa 350 

Nuclear 131 

Gás 207 

Carvão 524 

Total 2813 

 

Com o intuito de comparar de modo correto as estimativas das diversas fontes 

apresentadas na base de dados, as quais foram realizadas em anos diversos, 

procurou-se ajusta-las ao valor atual da moeda dos Estados Unidos (país em que é 

realizado o estudo). Isso foi feito através do ajuste pela inflação incorrida nesse país 

desde a data em que foi realizada a estimativa até a data atual (i.e. 2015). Os valores 

das estimativas para o LCOE já ajustado pela inflação da tecnologia eólica são 

apresentados na Error! Reference source not found.. Por conveniência de exibição, 

as estimativas para o LCOE das outras seis tecnologias estudadas são apresentadas 

no Anexo A. 

  

Fonte: elaborado pelo autor 
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Figura 19: Estimativa do custo da tecnologia eólica até 2040 

 

Fonte: elaborado pelo autor 

Além dos valores totais do LCOE, foram extraídos também da base de dados os 

fatores que o compõe, ou seja, o custo capital, o custo com operação e manutenção e 

o custo de combustível. É possível observar na Figura 20 a composição do LCOE 

para cada tecnologia estudada. 

Figura 20: Composição do custo de cada tecnologia 

 

Fonte: elaborado pelo autor 

A Figura 20 comprova o que foi explicitado no capítulo anterior, já que é possível 

observar que, no caso das tecnologias eólica e solar, o parâmetro com maior peso no 

custo total é justamente o custo de capital. Já no caso de tecnologias como o gás e o 

carvão, pelo contrário, o fator de custo mais relevante é o combustível. Vale dizer 

também que a geração de energia a partir da biomassa é um caso especial, em que o 

maior peso de custo é o fator Operação e Manutenção. 
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3.3.2 Simulação de Monte Carlo 

 
É importante relembrar que na aplicação do método proposto, o Método Kriging, 

como dados de entrada do modelo, são necessários diferentes cenários para a 

variável escolhida (o LCOE, no caso). Isso faz com que o modelo seja mais preciso 

e, portanto, seja válido. Como os pontos obtidos a partir da base de dados não foram 

muitos (em média 16 pontos para cada ano), considerou-se importante gerar mais 

pontos para cada analisado. Assim sendo, a solução encontrada foi realizar 

simulações de Monte Carlo, de modo a gerar mais pontos baseados nas 

características dos já existentes. 

GLASSERMAN (2003) define o Método de Monte Carlo como sendo um método 

estatístico que se baseia em uma amostragem aleatória e utiliza-se de probabilidades 

heurísticas, com o objetivo de obter resultados numéricos. O autor define também 

uma classe particular desse tipo de método, chamada de Movimento Browniano. A 

ideia dessa classe de métodos é gerar caminhos aleatórios a partir de parâmetros 

estatísticos previamente conhecidos. Na sua forma mais simples, a partir de um dado 

ponto, gera-se um novo ponto com o auxílio de uma variável aleatória. A formulação 

genérica do Movimento Browniano é: 

 (𝑡   )   (𝑡 )  √𝑡    𝑡               𝑖          

Em que: 

X(t) representa o valor simulado no ponto t. 

   representa uma variável aleatória independente com distribuição normal 

padronizada, ou seja, média igual a 0 e desvio padrão igual a 1. 

No caso de uma amostra com média µ para cada ponto t e com desvio padrão σ para 

cada ponto t, o qual é o caso exato do presente trabalho (o ponto t representa o ano e 

a média e o desvio padrão do LCOE são calculados a partir da base de dados, para 

cada ano), pode-se formular (GLASSERMAN, 2003): 

 (𝑡   )   (𝑡 )   (𝑡 )(𝑡    𝑡 )   (𝑡 )√𝑡    𝑡              𝑖          
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A partir dessa equação e da simulação de Monte Carlo são gerados caminhos 

aleatórios para o LCOE entre 2016 e 2040 para cada uma das sete tecnologias 

estudadas. Foram obtidos mil cenários, sendo que cada cenário representa um 

caminho aleatório. A título de exemplo, são demonstrados na Figura 21 dez 

caminhos aleatórios para a tecnologia eólica. Por conveniência de exibição, as 

simulações de Monte Carlo para as outras seis tecnologias estudadas são 

apresentadas no Anexo B. 

Figura 21: Dez exemplos de simulação de Monte Carlo para a tecnologia eólica 

 

Fonte: elaborado pelo autor 

Vale dizer que nesse presente trabalho serão analisadas a composição da matriz 

energética e seu respectivo custo para três anos específicos: 2030, 2035 e 2040. O 

ano de 2030 foi escolhido como sendo o primeiro ano analisado, pois uma das 

motivações desse trabalho é criar um método que auxilie na tomada de decisões de 

políticas voltadas a otimização da matriz energética de um país e, para isso, seus 

formuladores precisam possuir uma visão de longo prazo a respeito do tema e 

também, claro, devem possuir um espaço de manobra para realizar eventuais projetos 

e planejamentos. Considera-se, portanto, quinze anos um intervalo de tempo justo 

para tais tomadas de decisão serem realizadas. 

Os resultados das simulações de Monte Carlo realizadas são resumidos na Figura 22 
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. 

Figura 22: LCOE médio e Risco (desvio padrão/LCOE médio) para os anos 2030, 2035 e 2040 

 

Fonte: elaborado pelo autor 

 

Além disso, a partir das simulações de Monte Carlo é possível obter também um 

gráfico de dispersão para cada ano relacionando o custo (LCOE) médio com o desvio 

padrão de cada tecnologia, o que fornece uma ideia geral da situação de cada ano. 

Esses gráficos são demonstrados na Figura 30. Vale notar que a tecnologia solar foi 

omitida, de modo a facilitar a compreensão do gráfico, já que seu custo é muito 

maior que o custo das demais tecnologias. 
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Figura 23: Gráficos de dispersão para seis das tecnologias analisadas nos anos de 2030, 2035 e 
2040 

 

Fonte: elaborado pelo autor 

A partir das Figuras 22 e 23, é possível perceber que a tecnologia geradora de 

energia que utiliza o gás como insumo é a que apresenta, em todos os anos, o menor 

custo (menor LCOE). Por outro lado, a tecnologia com maior custo (excluindo a 

solar) difere de ano pra ano, sendo em 2030 a eólica, em 2035 a biomassa e, 

finalmente, em 2040 novamente a eólica. Aliás, observando a Figura 22 fica claro 

que a tecnologia solar apresenta um custo muito maior que as demais. Uma 

conclusão preliminar desse fato é que esta tecnologia não será considerada no 

modelo, já que não apresenta uma boa relação risco versus retorno. 

É interessante notar que, como já dito em um capítulo anterior, o LCOE apresenta 

uma correlação negativa com o desvio padrão (risco). Por exemplo, a tecnologia gás 

apresenta sempre o menor custo total, porém é uma das tecnologias com maior risco 

(desvio padrão). O fato de não existir uma tecnologia dominante (i.e. com menor 

custo e menor risco) em relação às outras (excluindo a tecnologia solar), ou seja, não 

existir uma escolha óbvia, acaba por tornar o modelo proposto de grande utilidade no 

auxilio de tomada de decisões na formulação de políticas voltadas à otimização da 

matriz energética. 
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4 RESULTADOS 

Esse trabalho se propõe a aplicar uma nova metodologia para aproximar a solução do 

problema de composição ótima de portfólios de matriz energética de um país através 

(i) da simulação para obtenção de valores conhecidos de uma dada função Risco(x), 

e (ii) da interpolação destes dados conhecidos através do Método Kriging, para 

posterior otimização. 

Nesta seção, ilustra-se primeiramente a seleção da amostra e da função correlação a 

serem utilizadas durante as simulações. Em seguida, é realizada a aplicação proposta 

a um portfólio de matriz energética, composto por sete tecnologias (solar, eólica, 

nuclear, gás, carvão, biomassa e hidro), utilizando três medidas de risco como função 

objetivo do problema: (i) Variância ( ), (ii) Valor em Risco (VaR) e (iii) Valor em 

Risco Condicional (CVaR). 

4.1 Seleção da Amostra e da Função Correlação 
 

Foram descritos no item 2.3.4 três métodos principais para geração da amostra de 

pontos necessários para aplicação do experimento: aleatória, determinística e por 

hipercubo latino. Devido à semelhança dos dois últimos, será feira uma análise entre 

o ajuste fornecido por uma amostra aleatória e uma determinística. Essa análise visa 

determinar a influência da seleção de pontos do grid na eficiência da solução do 

Método Kriging. 

No caso da amostra aleatória, os pesos de cada uma das sete tecnologias são gerados 

de maneira aleatória, tal que     𝑥 
( )

   e ∑ 𝑥    
   . Já no caso da amostra 

determinística, os valores de 𝑥 
( )

 são obtidos de forma que estivessem igualmente 

espaçados no domínio da função, formando hipercubos de igual dimensão 

restringindo o domínio da função 𝑅𝑖 𝑐 (𝒙).  

A Figura 24 representa as duas técnicas de amostragem previamente descritas e 

utilizadas para simulação, relaxando-se a condição ∑ 𝑥    
    e aplicadas a dois 

ativos obtidos arbitrariamente, a fim de facilitar sua representação em   . 
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Figura 24: Exemplo de amostra aleatória e amostra determinística 

 

 Fonte: adaptado de BARROSA, 2015 

Outro parâmetro importante para a aplicação do Método Kriging é a quantidade de 

cenários utilizados no processo de simulação. No caso da amostra aleatória, o 

número de pontos é definido arbitrariamente. Na amostra determinística, por sua vez, 

o tamanho da amostra varia tanto com a quantidade de ativos (tecnologias no caso do 

presente trabalho), quanto com o espaçamento definido entre os pontos do grid de 

simulação. Assim, dados n ativos que compõem o portfólio, uma distância d entre os 

pontos simulados para um dado ativo, e definindo-se   𝑑  , o tamanho da 

amostra, respeitando a restrição ∑ 𝑥    
    determinística será dado por 

(BARROSA, 2015):  

𝑞  (
     

 
)  

(     ) 

  (   ) 
 

Com o intuito de se verificar qual será o tipo de amostra utilizado no trabalho, o 

modelo proposto foi aplicado para o ano de 2030 com diferentes tipos de amostra, 

tanto aleatório, quanto determinístico e seus respectivos Erros Quadráticos Médios 

(i.e. 𝑀 𝐸  
 

 
∑   (𝑥)   ̂( )  

 
   ; isso para as três medidas de risco a serem 

estudadas. Os resultados são exibidos na Tabela 7: Erro quadrátco médio para 

diferentes amostras no ano de 2030. Vale notar que no caso da amostra 

determinística, um espaçamento igual a 0,2 (i.e. d = 0,2) gera 669 pontos, um 
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espaçamento igual a 0,2 gera 3.003 pontos e, finalmente, um espaçamento igual a 

0,05 gera um total de 53.130 pontos. 

Tabela 7: Erro quadrátco médio para diferentes amostras no ano de 2030 

 

Percebe-se que o Método Kriging é sensível ao critério de seleção da amostra 

utilizada para o ajuste. A Tabela 7 mostra que quando aplicado a uma amostra de 

pontos aleatórios, o método apresenta erros maiores se comparados à sua aplicação a 

um conjunto de pontos equidistantes que têm o intuito de abranger todo o espaço da 

malha. Fica claro também que conforme o número de pontos simulados aumenta, o 

erro quadrático médio diminui.    

Nesse trabalho, portanto, será utilizada a amostra determinística com espaçamento 

igual a 0,1. Esse espaçamento foi escolhido, pois nota-se que o ganho de precisão 

com o espaçamento de 0,05 não é tão grande e, vale lembrar, que existe um trade-off 

entre o ganho de precisão e eficiência computacional, o que justifica a escolha do 

espaçamento de 0,1. 

Na etapa a anterior (i.e. escolha do tipo de amostra) foi utilizada a função de 

correlação Gaussiana para aplicar o Método Kriging. No entanto, dentre os métodos 

de correlação possíveis, apresentados por LOPHAVEN, NIELSEN E 

SONDEGAARD (2002) e citados no item 2.3.4, faz-se necessária uma análise de 

qual função de correlação melhor se ajusta aos dados obtidos. 

Para tal análise, se utiliza do mesmo método anterior, ou seja, aplica-se o modelo 

proposto para o ano de 2030 com amostra determinística (espaçamento de 0,1) com 

todos os tipos de funções de correlação existentes e calcula-se o Erro Quadrático 

Médio de cada simulação. Os resultados são exibidos na Tabela 8. 

669 pontos 3.003 pontos 53.130 pontos d=0,2 d=0,1 d=0,05

Desvio Padrão 8,4E-02 2,7E-02 3,1E-03 1,1E-02 7,8E-04 8,2E-05

VaR 4,3E-02 1,2E-02 8,6E-04 2,3E-03 5,3E-05 1,1E-05

CVaR 3,1E-02 9,2E-03 6,3E-04 4,9E-03 8,0E-05 7,8E-06

Amostra Aleatória Amostra Determinística

Erro Quadrático Médio (MSE) - 2030

Fonte: elaborado pelo autor 
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Tabela 8: Erro quadrático médio para diferentes funções correlação no ano de 2030 

 

Pode-se perceber na Tabela 8 que a simulação que apresentou o menor MSE para as 

três medidas de risco foi aquela que se utilizou da função de correlação Exponencial 

e, portanto, é considerada a mais adequada a ser aplicada nesse trabalho. 

4.2 Aplicação do Método Kriging 
 

No item anterior foi realizado um estudo para definir os melhores parâmetros de 

entrada para a aplicação do método em questão (i.e. seleção da amostra e da função 

correlação).  

Sabe-se que esse modelo que interpola os dados é função da amostra de pontos da 

malha que serão utilizados e respectivos valores de resposta (Risco(x)), do tipo de 

regressão e correlação escolhida e do valor de θ. Definimos os parâmetros de entrada 

tais que: 

 A amostra composta pela combinação das sete tecnologias foi gerada por um 

processo determinístico o qual divide o grid em k intervalos eqüidistantes, 

definindo o que é chamado de passo, ou seja, a distância d entre dois valores 

consecutivos para 𝑥 
( )

; 

 O método de regressão escolhido foi o linear, o qual utiliza um polinômio de 

grau um para aproximar a função; 

 O modelo de correlação escolhido foi o Exponencial, pois esse fornece uma 

melhor aproximação da função, baseado na análise do valor do Erro 

Quadrático Médio; 

 A definição do modelo de correlação implica na determinação do valor de   , 

que no caso da correlação exponencial equivale a 2;  

Função de Correlação Exponencial Gaussiana Linear Esférica Spline

Desvio Padrão 1,3E-04 7,8E-04 1,7E-03 3,3E-02 7,1E-04

VaR 5,9E-06 5,3E-05 7,2E-05 8,2E-03 1,1E-04

CVaR 1,1E-06 8,0E-05 2,6E-04 5,9E-03 9,6E-05

Erro Quadrático Médio (MSE) - 2030

Fonte: elaborado pelo autor 
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 Numa abordagem similar a QUEIPO (2002), será utilizado    . 

O próximo passo é aplicar o modelo proposto com os dados de entradas definidos 

acima para as três medidas de risco citadas anteriormente, a Variânca, o VaR e o 

CVaR. Vale notar que no caso da Variância, será realizado um controle do 

experimento, de modo a validar o método proposto. Isso será feito aplicando o 

Modelo de Markowitz, descrito no item 2.3.1, e comparando o resultado com aquele 

fornecido pelo Método Kriging. 

4.2.1 Variância 

 
Nesta e nas próximas duas seções (i.e. seções 4.2.2 e 4.2.3) os resultados obtidos 

através de simulação no software MATLAB serão exibidos na forma de fronteira 

eficiente (i.e. Fronteira de Otimalidade de Paretto) e como composição da matriz 

energética ótima para diferentes níveis de risco. 

Primeiro, o Método de Markowitz e o Método Kriging são aplicados com os mesmos 

dados de entrada para o ano de 2040, de modo a validar o método proposto. Vale 

lembrar que o Método de Markowitz utiliza como medida de risco a variância (aqui 

exibido na forma de desvio padrão). A Figura 25 exibe as duas fronteiras eficientes 

obtidas e a Figura 26 demonstra as composições do portfólio ótimo para o Método de 

Markowitz e o proposto, respectivamente. 

Figura 25: Fronteira eficiente no ano de 2040  para os Métodos Markowitz e Kriging 

 

Fonte: elaborado pelo autor 
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Figura 26: Composição do portfólio ótimo para o ano de 2040, segundo os Métodos Markowitz e Kriging, respectivamente 

  
Fonte: elaborado pelo autor 

Como pode ser observado, o modelo proposto se mostrou muito semelhante ao 

modelo original de Harry Markowitz, tanto na fronteira eficiente, quanto na 

composição de portfólio ótimo. Vale lembrar, nessa etapa do trabalho, que o Método 

Kriging é um método robusto, no sentido de que ele permite considerar diferentes 

medidas de risco e quando aplicado a medidas de risco de cauda, como é o caso do 

VaR e do CVaR, fornece uma eficiência computacional maior se comparado às 

técnicas tradicionais de seleção de portfólio (i.e. Modelo VaR e Modelo CVaR). 

Segue-se com a aplicação do Método Kriging para os anos de 2030 e 2035, sempre 

com os parâmetros de entrada descritos no início desta seção, se utilizando do desvio 

padrão como medida de risco e para um portfólio de matriz energética composto por 

sete tecnologias (solar, eólica, biomassa, nuclear, hidro, carvão e gás). 
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Fonte: elaborado pelo autor 

 

Como pode ser observado, os resultados para os três anos (i.e. 2030, 2035 e 2040) se 

mostraram semelhantes, porém não iguais, como era esperado, já que ao longo de 

dez anos é praticamente impossível que surjam tecnologias tão inovadoras a ponto de 

mudar totalmente a estrutura de custo de uma tecnologia. 

Em relação às semelhanças, nota-se nos gráficos relativos à fronteira eficiente que, 

como observado no item 2.4, o custo (i.e. LCOE) ótimo é correlacionado 

negativamente com o desvio padrão da carteira. Isso é explicado pelo fato de que é 

Figura 27: Fronteira eficiente e composição do portfólio ótimo para o ano de 2030, considerando o Desvio Padrão como 
medida de risco 

  

Fonte: elaborado pelo autor 

Figura 28: Fronteira eficiente e composição do portfólio ótimo para o ano de 2035, considerando o Desvio Padrão como medida de 

risco 
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exigido (pelo formulador de política monetária, no caso) um custo menor para um 

dado nível de risco mais acentuado. Agora, no caso dos gráficos das composições 

ótimas de portfólio, observa-se uma alocação total nas carteiras de alto risco na 

tecnologia gás. Isso se da, pois essa tecnologia apresenta um custo menor que as 

demais, porém com um risco (desvio padrão, no caso) maior, impedindo que haja 

grande alocação em uma certeira de baixo risco. Também, como previsto, a 

tecnologia solar não foi alocada em nenhum dos portfólios, já que não apresenta uma 

relação risco-retorno adequada (i.e. maior custo e maior risco).  

É importante notar que a teoria da diversificação de carteiras pode ser observada nos 

três anos em que foi realizada a simulação. Em outras palavras, a teoria de 

MARKOWITZ (1952) é valida para esse conjunto de dados: é possível minimizar o 

risco de uma carteira (minimizando o risco específico da mesma) através de uma 

diversificação de ativos.   

Agora, em relação às diferenças das simulações dos três anos analisados, pode ser 

visto que há uma maior alocação da tecnologia hidro em carteiras de baixo risco ao 

longo dos anos. Isso pode ser explicado pelo fato que essa tecnologia se manteve 

num patamar de risco baixo, apesar de um alto custo, diferentemente de outras 

tecnologias, como a eólica que possui um custo total elevado (altos custos de capital) 

e apresentou um aumento no seu risco ao longo dos anos. Outro argumento para 

explicar tal fato é que a tecnologia hidro apresenta maiores riscos durante a sua fase 

de construção (riscos esses, ambientais e trabalhistas), fazendo com que a mesma 

seja mais alocada em portfólios de períodos mais distantes temporalmente. Além 

disso, observa-se também um maior peso da tecnologia nuclear no portfólio, o que 

pode ser dado por: (i) menores custos com aquisição do minério de urânio e (ii) 

menores riscos ambientais e/ou regulatórios, diminuindo o risco de se gerar energia 

através dessa tecnologia. 
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4.2.2 Valor em Risco (VaR) 

 
Nessa etapa do trabalho, segue-se com a aplicação do Método Kriging com os 

mesmos dados de entrada utilizados na etapa anterior, mas agora utilizando o Valor 

em Risco (VaR) como medida de risco. Novamente, os resultados serão exibidos na 

forma de fronteira eficiente e composição de portfólio ótimo. 

Figura 29: Fronteira eficiente e composição do portfólio ótimo para o ano de 2030, considerando o VaR como medida de 

risco 

  
Fonte: elaborado pelo autor 

 
 
 

Figura 30: Fronteira eficiente e composição do portfólio ótimo para o ano de 2035, considerando o VaR como medida de risco 

  
Fonte: elaborado pelo autor 
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Figura 31: Fronteira eficiente e composição do portfólio ótimo para o ano de 2040, considerando o VaR como medida de risco 

 
 

Fonte: elaborado pelo autor 

É possível perceber que apesar da forma geral dos gráficos serem os mesmos, 

existem algumas diferenças entre a aplicação do método com o uso do Valor em 

Risco (VaR) e a Variância como medidas de risco. Primeiramente, vale destacar que 

o risco demonstrado na fronteira eficiente, para um dado custo (i.e. LCOE) é maior, 

já que o VaR é uma medida de cauda de risco e, captura, portanto, eventos 

esporádicos (mas não irrelevantes) e de rara ocorrência. Agora, no caso dos gráficos 

que demonstram as composições ótimas de portfólio, carteiras ideais de baixo risco 

do ano de 2030 apresentaram uma maior alocação em tecnologia eólica em 

detrimento da biomassa. Isso pode ser explicado pelo fato de que o VaR, por ser uma 

medida de risco, captura eventos esporádicos. Vale dizer que no uso da tecnologia de 

biomassa, greves e reivindicações de trabalhadores são relativamente comuns de 

ocorrerem, pois é necessário o uso de mão de obra intensiva. Além disso, questões 

ambientais também se realizam com maior frequência com o uso da biomassa, já que 

com a tecnologia eólica não é utilizado nenhum combustível. 

4.2.3 Valor em Risco Condicional (CVaR) 

 
Por fim, o Método Kriging é aplicado com o Valor em Risco Condicional (CVaR) 

sendo utilizado como medida de risco. Novamente, os mesmos parâmetros de 

entrada são utilizados. 
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Figura 32: Fronteira eficiente e composição do portfólio ótimo para o ano de 2030, considerando o CVaR como medida de 

risco 

  
Fonte: elaborado pelo autor 

 
Figura 33: Fronteira eficiente e composição do portfólio ótimo para o ano de 2035, considerando o VaR como medida de risco 

  
Fonte: elaborado pelo autor 

Figura 34: Fronteira eficiente e composição do portfólio ótimo para o ano de 2040, considerando o CVaR como medida de 

risco 

  
Fonte: elaborado pelo autor 
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É interessante notar que os resultados obtidos nessa etapa (i.e. uso do CVaR como 

medida de risco) são muito semelhantes com os obtidos quando o VaR foi utilizado, 

já que os dois são medidas de risco de cauda e, portanto, ambos capturam eventos 

esporádicos. Vale notar que no caso da fronteira eficiente, para um mesmo nível de 

custo (i.e. LCOE), o CVaR apresenta um risco maior que o VaR. Isso se da pelo fato 

que, por definição, o CVaR é a média dos valores que excedem o VaR, o que explica 

tal constatação. Finalmente, é importante salientar que as leves alterações nos 

gráficos das composições de carteiras ótimas (comparando as carteiras que utilizam o 

CVaR com aquelas que utilizam o VaR como medida de risco) são explicadas pelo 

fato que o CVaR captura eventos mais drásticos, os quais o VaR não consegue 

capturar. Nesse sentido, o CVaR se mostra eficiente, já que os formuladores de 

políticas energéticas devem levar em consideração tais eventos no momento de 

montar o portfólio de matriz energética de um país. 

4.2.4 Composição do Portfólio de Mínimo Risco 

 
Nesse item do trabalho são exibidas as carteiras ótimas de cada ano referentes ao 

mínimo risco passível de ser alcançado por tal carteira. Esse portfólio se mostra 

importante, pois, muitas vezes, é justamente ele que se pretende atingir ao se utilizar 

da diversificação de ativos.  

Figura 35: Composição da carteira de mínimo risco para o ano de 2030 

 

Fonte: elaborado pelo autor 

  

23% 29% 28% 

37% 
36% 36% 

20% 16% 17% 

13% 10% 10% 
7% 9% 9% 

Variância VaR CVaR
Eólica Hidro Biomassa Gás Nuclear Carvão Solar



97 
 

  

 

Figura 36: Composição da carteira de mínimo risco para o ano de 2035 

 

Fonte: elaborado pelo autor 

 
 

Figura 37: Composição da carteira de mínimo risco para o ano de 2040 

 

Fonte: elaborado pelo autor 

Novamente, constata-se que as carteiras possuem alocações similares, com leves 

alterações. Primeiro, é possível perceber que existe uma tendência ao longo dos anos, 

para as três medidas de risco utilizadas: uma maior alocação em tecnologia hidro em 

detrimento da tecnologia eólica. Como já explicado, essa tendência se deve ao fato 

de que é estimado que ocorra uma redução dos riscos associados à implementação da 

tecnologia hidro, já que os maiores riscos ocorrem no período inicial do projeto, 

podendo ser tanto ambientais, quanto trabalhistas. Segundo, uma diminuição da 

alocação em tecnologia que se utiliza do gás natural como fonte geradora de energia, 

28% 26% 25% 

44% 45% 45% 

13% 13% 12% 
5% 4% 3% 
10% 12% 13% 

Variância VaR CVaR
Eólica Hidro Biomassa Gás Nuclear Carvão Solar

29% 22% 20% 

48% 55% 58% 

19% 18% 20% 

Variância VaR CVaR
Eólica Hidro Biomassa Gás Nuclear Carvão Solar
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pois é estimado que o risco atrelado à essa tecnologia aumente. Por fim, vale 

salientar que as diferenças observáveis entre a carteira da variância e a do VaR e do 

CVaR existem, pois as duas últimas conseguem capturar efeitos adversos que 

impactam no custo de uma tecnologia geradora energética. 
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5 Conclusões 

Esse trabalho buscou utilizar um método de seleção de portfólio capaz de otimizar a 

relação entre risco e retorno do portfólio de matriz energética de um país. Foram 

escolhidas sete tecnologias de geração energética para compor a carteira, sendo que 

os dados analisados se referem aos Estados Unidos. 

Primeiramente apresentou-se a Teoria Moderna de Gestão de Carteiras, criada por 

Markowitz em 1952, que figura como a primeira formulação apresentada na 

literatura considerada eficiente para a maximização da função utilidade de um 

portfólio. A partir disso foi possível aprofundar a análise e apresentar outros 

modelos, que surgiram posteriormente e que utilizam outras medidas de risco, 

diferente da variância utilizada pelo modelo de Markowitz. 

O VaR e o CVaR surgiram na literatura como medidas de risco que suprem as 

deficiências indicadas para a variância, sendo o CVaR considerado uma medida de 

risco mais completa por ser coerente, de acordo com Artzner et al (1999), e também 

por analisar a cauda da distribuição de probabilidade (ROCKAFELLAR e 

URYASEV, 2002) . 

Portanto, foram estudados a Variância, o VaR e o CVaR como medidas de risco 

utilizadas para avaliar a relação risco e retorno nos problemas de otimização de 

matriz energética. No caso do VaR e do CVaR, ao explicitar seus modelos 

tradicionais, observou-se que é exigida uma alta complexidade para otimizá-los, 

decorrente do grande número de variáveis e restrições exigidas, o que acaba por 

torna-los pouco convenientes da ótica computacional. 

Para contornar essas dificuldades, foi proposta a aplicação do método Kriging, 

também conhecido como ajuste DACE, muito usado para resolução de problemas da 

engenharia (QUEIPO, et al., 2002). Esse método cria uma superfície de resposta 

suavizada a partir de amostra previamente definida. Isso faz com que o problema seja 

simplificado, sem perder a validade, o que acarreta na grande diminuição da 

necessidade de capacidade computacional para resolução do problema. 

Assim sendo, baseado em estimativas realizadas por órgãos públicos norte-

americanos, simulações de Monte Carlo foram geradas e o Método Kriging foi 
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aplicado através do uso do software Matlab para os anos de 2030, 2035, 2040, 

utilizando como medidas de risco a Variancia, o VaR e o CVaR. Em uma primeira 

análise dos resultados já se observa que a tecnologia solar não foi alocada em 

nenhum dos portfólios gerados, indicando que essa tecnologia ainda necessita de 

melhorias tecnológicas de forma a reduzir e estabilizar seus custos. 

Os resultados sugerem que exista, no futuro, uma maior concentração em energias 

renováveis, se comparado ao portfólio atual do país, principalmente as tecnologias 

hidro e eólica. Além disso, o modelo também sugere que a tecnologia que se utiliza 

da biomassa como fonte energética também apresentará uma maior participação na 

matriz energética do país, sendo que hoje ela representa apenas 1% do total. Assim, é 

considerável concluir que tecnologias agressivas ao meio ambiente (i.e. carvão e 

gás), apresentarão papel secundário na matriz energética do país. 

É importante salientar que o modelo utilizado no presente trabalho é uma 

representação simplificada da realidade, o qual pode ser mais robusto conforme 

novas restrições são adicionadas ao problema. Uma possível restrição adicional ao 

problema seria uma que considere políticas governamentais restritivas dadas certas 

questões ambientais, como no caso do uso em excesso de energia nuclear. Outra 

extensão futura para o problema aqui abordado seria estudar e analisar as 

distribuições de probabilidade do custo de cada tecnologia e incorpora-las no 

processo de simulação. 

Finalmente, mesmo havendo possíveis extensões, pode-se considerar que o objetivo 

inicialmente proposto no presente trabalho foi satisfeito: criou-se um modelo de 

otimização de portfólio de matriz energética que permitiu (i) considerar riscos de 

cauda, com o uso de medidas de risco como o VaR e o CVaR; (ii) aumentar a 

eficiência computacional da ferramenta, através da utilização do método proposto, o 

Método Kriging. 
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Anexo A 

  

  

  
 

Fonte: elaborado pelo autor 
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Anexo B 
 

  

  

  
 

Fonte: elaborado pelo autor 
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