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RESUMO

RIBEIRO, A. E.; CORDEIRO, E. K. METODOLOGIA PARA DETECÇÃO DE
CHATTER EM TEMPO REAL ATRAVÉS DE UM MODELO DE
APRENDIZADO DE MÁQUINA. 2023. 58p. Monografia (Trabalho de Conclusão de
Curso) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos,
2023.

Chatter é um fenômeno negativo que ocorre em processos de usinagem causado pelas vibra-
ções auto-excitadas do sistema ferramenta-peça, provocando defeitos na peça e possíveis
danos à máquina. Em um contexto industrial, o envio dessas peças para etapas posteriores
da linha de produção acarreta prejuízos significativos para as empresas, comprometendo
a qualidade do produto. Diante disso, este trabalho buscou desenvolver um método de
identificação de chatter utilizando machine learning, visto sua capacidade preditiva através
da análise de dados em tempo real. Para isso, estudou-se um modelo supervisionado classifi-
catório utilizando como base o algoritmo de random-forest, em que realizou-se o tratamento
dos dados, treinamento, refinamento e calibração do classificador obtido, utilizando a
linguagem de programação Python e bibliotecas auxiliares como pandas e scikit-learn.
Gerou-se a matriz de confusão e métricas do modelo, obtendo um valor de acurácia de 93%
e F-score de 95% e 87% para os rótulos de estável e chatter respectivamente, indicando
um bom classificador para identificação desse fenômeno.

Palavras-chave: Chatter. Machine learning. Random-forest. Python. Matriz de confusão.





ABSTRACT

RIBEIRO, A. E.; CORDEIRO, E. K. METHODOLOGY FOR REAL-TIME
CHATTER DETECTION THROUGH A MACHINE LEARNING MODEL.
2023. 58p. Monograph (Conclusion Course Paper) - Escola de Engenharia de São Carlos,
Universidade de São Paulo, São Carlos, 2023.

Chatter is a negative phenomenon that occurs in machining processes caused by self-excited
vibrations of the tool-workpiece system, leading to defects in the workpiece and potential
damage to the machine. In an industrial context, sending these parts to subsequent stages
of the production line results in significant losses for companies, compromising product
quality. That said, this study sought to develop a chatter identification method using
machine learning, given its predictive capability through real-time data analysis. To achieve
this, a supervised classification model was studied, based on random forest algorithm.
Data preprocessing, training, refinement, and calibration of the obtained classifier were
performed using the Python programming language and auxiliary libraries such as pandas
and scikit-learn. The confusion matrix and model metrics were generated, achieving an
accuracy value of 93% and F-score of 95% and 87% for the stable and chatter labels
respectively, indicating a good classifier for this phenomenon identification.

Keywords: Chatter. Machine learning. Random-forest. Python. Confusion matrix.
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1 INTRODUÇÃO

A engenharia mecânica é um dos ramos da engenharia que tem como objetivo
principal a aplicação de princípios da física e da matemática para a análise, fabricação
e manutenção de sistemas mecânicos, estando presente ao longo da história da huma-
nidade como uma das áreas mais importantes e influentes para o seu desenvolvimento
(HOLZMANN; DALLAMUTA, 2019).

Desde a revolução industrial, época do surgimento das máquinas a vapor e dos
motores a combustão, ela tem desempenhado um papel importante para impulsionar o
aumento da produção de forma geral, impactando no desenvolvimento econômico e social.
No século XXI, período marcado pela globalização e alto nível de consumo em diversas
indústrias, como a automotiva, aeroespacial, naval e petroquímica, um outro fator tem se
atrelado à busca pela alta taxa de produção: a garantia de qualidade do produto final.

O setor de usinagem, responsável pela manufatura de peças e produtos na indústria,
pode ser considerado um dos mais impactados dentro das áreas da engenharia mecânica no
que se refere ao quesito de busca pela qualidade, visto que um produto é oriundo do estado
de suas partes iniciais, em que caso a fundação apresente defeitos, muito provavelmente
seu resultado final também apresentará.

Um dos problemas mais recorrentes durante o processo de usinagem de metais é o
fenômeno chatter, que pode ser definido como vibrações auto-excitadas causadas pelas
relações dinâmicas da ferramenta com a peça, parâmetros de corte e do efeito regenerativo
da peça durante o corte. Suas consequências são diversas: ruídos elevados, mau acabamento
da peça, danos à ferramenta e gastos de matéria-prima e energia e, por consequência,
financeiros (QUINTANA; CIURANA, 2011). A Figura 1 mostra os efeitos negativos do
chatter sobre uma peça de metal.

Tendo em vista esse cenário, muitos estudos têm sido feitos acerca desse fenômeno,
buscando entender suas causas e formas de evitá-lo, a fim de obter um equilíbrio entre uma
produção acelerada e alta qualidade. Com os grandes avanços tecnológicos, a indústria 4.0,
marcada pela automação e digitalização das atividades industriais, promoveu a utilização
de auxílio computacional para monitoramento de diversas medidas durante o processo de
usinagem em uma cadeia produtiva, fazendo uso de sensores como acelerômetros, emissores
acústicos e sensores piezoelétricos (KULJANIC; SORTINO; TOTIS, 2008).
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Figura 1 – Efeito chatter sobre a superfície metálica em uma usinagem interna

Fonte: Modificado de Venter et al. (2016)

Como resultado dessas implementações, vastas quantidades de dados podem ser
obtidas e utilizadas para processos de análises convencionais, a fim de se obter informações
relevantes na identificação de chatter. Contudo, em um cenário de produção autônoma, a
obtenção dos dados e análise somente posterior, não é suficiente para controlar o fluxo de
peças defeituosas. Dessa forma, para uma análise em tempo real dos dados obtidos pelos
sensores, é possível fazer uso da programação para auxiliar esse processo.

Nos últimos anos, uma vertente da programação focada na análise de dados tem
se mostrado bastante presente nos campos de pesquisa: o aprendizado de máquinas, ou
machine learning. Essa vertente constitui um ramo da área de inteligência artificial que
corresponde à criação de modelos preditivos baseados em algoritmos, capazes de classificar
determinado conjunto de dados baseado em informações prévias. Assim, fazendo uso dessa
ferramenta, juntamente com um processo de monitoramento e obtenção de dados em
tempo real, é possível obter-se uma forma prática de identificação de chatter.
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1.1 Objetivos

O presente trabalho busca desenvolver um modelo supervisionado de aprendizado
de máquinas, através da linguagem de programação Python, utilizando um conjunto de
dados temporais, rotulados de acordo com a presença ou não de chatter. Para isso, estuda-se
um modelos comumente usados para problemas classificatórios, o random-forest, a fim
de avaliar seu desempenho através da análise de suas métricas, além de determinar os
melhores hiperparâmetros para tal. Assim, o modelo gerado pode ser capaz de receber como
dados de entrada as medidas dos sensores em um processo de usinagem real e identificar
se houve ou não chatter na peça.

1.2 Estrutura do Trabalho

Este trabalho encontra-se organizado da seguinte maneira: na seção 2 consta a
revisão bibliográfica do trabalho, contendo conceitos relacionados a chatter, machine
learning e apresentação do modelo de random-forest. Na seção 3 consta a metodologia
utilizada, apresentando o conjunto de dados utilizado para o treinamento e teste do modelo,
os hiperparâmetros fornecidos e o particionamento dos dados temporais. Os resultados
do modelo são apresentados e discutidos na seção 4, com gráficos representando sua
performance. Por fim, a seção 5 apresenta a conclusão do trabalho.
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2 REVISÃO BIBLIOGRÁFICA

2.1 Fenômeno Chatter

Chatter consiste nas vibrações auto-excitadas do sistema ferramenta-peça e pode
ser divido em chatter primário e secundário. O primário está relacionado ao processo de
corte em si, ou seja, o cisalhamento da ferramenta com a peça, os efeitos termodinâmicos
na formação do cavaco e acoplamento de modos, sendo esse último correspondente a uma
vibração na direção da força de corte, gerando uma vibração na direção axial e vice-versa.
Já o secundário é proveniente do efeito regenerativo da peça, causado pelas ondulações
formadas durante a etapa de corte e pode ser classificado como a principal fonte de chatter
(QUINTANA; CIURANA, 2011).

Esse chatter regenerativo é frequentemente observado por conta dos processos de
usinagem constantemente realizarem sobreposições de corte, em que, durante o corte, a
ferramenta deixa uma superfície ondulada no material e a cada passagem subsequente, um
novo perfil é gerado e a diferença de fases entre elas altera a força de corte e espessura do
cavaco, intensificando as vibrações (ALAMMARI et al., 2015; QUINTANA; CIURANA,
2011). Esse efeito pode ser observado na Figura 2 em que a passagem da ferramenta resulta
em uma superfície ondulada.

Figura 2 – Ondulações de corte causadas pela usinagem

x

Y
Ferramenta

Peça

Fonte: Elaborado pelos autores
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2.2 Machine Learning

2.2.1 Definição

Machine learning (ML), ou aprendizado de máquinas, pode ser amplamente
definido como um algoritmo capaz de processar um conjunto de dados de entrada e, como
saída, entrega uma previsão de um determinado resultado de acordo com seu propósito.
Sua vantagem encontra-se no fato dele não precisar ser explicitamente programado, ou seja,
os modelos são construídos para se adaptarem automaticamente de acordo com os dados
recebidos, através do processo de repetição, ficando mais próximo do resultado desejado
(NAQA; MURPHY, 2015).

Os modelos de machine learning têm sido particularmente úteis para resolução de
problemas mais complexos em que o desenvolvimento direto de um código de programação
não era trivial ou as variáveis do problema se alteravam de forma que o código precisasse
sofrer constante mudanças, visto que, a partir de um conjunto de dados de treino, ele era
capaz de fornecer as respostas para novas entradas automaticamente. Alguns cenários em
que são aplicados modelos de machine learning são:

• Detecção de fraude de crédito bancário

• Recomendação de produtos em sites de compras

• Reconhecimento de imagem e voz

• Análise de sentimentos

• Veículos autônomos

• Previsão de tráfego

• Assistente virtual

• Detecção de spams

• Tradução automática

2.2.2 Tipos de Modelos

O funcionamento de um modelo está diretamente relacionado com o conjunto de
dados disponíveis. Existem duas principais categorias de modelos de machine learning,
dependendo das informações presentes nos dados iniciais: supervisionados e não super-
visionados. Para ambos, os dados são compostos por features, que correspondem às
informações de entrada para o modelo. Para o supervisionado, cada conjunto de features
dos dados de treino está atrelado a um label ou rótulo, que indica o resultado que o
modelo deveria prever. Já para o não supervisionado, os dados de treino não possuem esses
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rótulos e o modelo deve ser capaz de identificar o padrão e relacionamento dos dados e
categorizá-los. Vale citar que, para ambos os casos, uma vez que o modelo foi desenvolvido,
seu papel é ser capaz de prever o rótulo corretamente a partir de um novo conjunto de
dados de entrada (ZHOU, 2021).

Como exemplo, pode-se citar a criação de um modelo de identificação de spams,
dado dois conjuntos de dados de treino:

a) Um conjunto de e-mails classificados como spam e não spam;

b) Outro conjunto de e-mails mas sem nenhuma classificação;

Em ambos os cenários, os e-mails são constituídos de endereços de e-mail do
remetente e destinatário, título, assunto e conteúdo. Essas informações representam as
features que serão utilizadas no modelo. Porém, o primeiro possui um rótulo (spam ou não)
para cada conjunto de features (e-mail), indicando a utilização de um modelo supervisionado.
Já o segundo, apresenta apenas as features, sendo necessário que identifique de maneira
independente a categorização de spam, remetendo a um modelo não supervisionado.

Dentre os modelos supervisionados, existem duas categorias: o de regressão e de
classificação. O primeiro representa a previsão de valores contínuos, como a probabilidade
de um e-mail ser spam. Já o segundo, representa valores discretos, como o e-mail ser ou
não spam. Para este trabalho, o estudo será feito em cima de modelos classificatórios
supervisionados. O fluxograma apresentado na Figura 3 apresenta de forma simplificada a
divisão descrita anteriormente e o tipo de modelo a ser estudado.

Figura 3 – Fluxograma simplificado dos tipos de modelo

Dados 
Rotulados

Modelo
Supervisionado

Valor de Saída 
Con�nuo

Valor de Saída
Discreto Modelo 

Supervisionado
de Classificação

Modelo
Supervisionado
de Regressão

Dados Não 
Rotulados

Modelo Não
Supervisionado

Fonte: Elaborado pelos autores
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2.2.3 Conjunto de dados

Para desenvolver um modelo supervisionado classificatório de machine learning, é
necessário entender alguns conceitos. De forma geral, dado um conjunto inicial de dados,
ele deve ser tratado a fim de diminuir possíveis ruídos que possam afetar o desenvolvimento
do modelo. Para isso, análises estatísticas como boxplot e estudo dos desvios-padrões
podem ser feitas a fim de encontrar e remover dados que possuem valores muito divergentes
dos demais, conhecidos como outliers. Além disso, padronizações da ordem de grandeza
dos valores também podem ser consideradas para diminuir a variância do modelo.

Após o tratamento dos dados, realiza-se sua divisão em dois principais conjuntos:
os dados de treino, utilizados para de fato gerar o aprendizado do modelo, e os dados de
teste, utilizados para validar o modelo e medir sua capacidade de previsão. Isso é necessário
pois, dessa forma, o modelo consegue treinar sobre um determinado conjunto de dados
de forma iterativa e testar sua performance em outro conjunto não visto anteriormente.
Assim, a partir dos resultados obtidos, refinamentos podem ser feitos, como por exemplo a
alteração de parâmetros inseridos antes do treinamento que definem o modelo, os chamados
hiperparâmetros, e o modelo ser retreinado, a fim de melhorar o resultado final. Esse
fluxo de desenvolvimento pode ser observado na Figura 4.

Figura 4 – Fluxograma de treino e teste de um modelo

Fonte: Elaborado pelos autores
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Um ponto importante desse processo é realizar o ajuste no modelo de forma a não
sofrer overfitting, ou sobreajuste, fenômeno em que ele performa muito bem sobre os dados
previamente observados, normalmente de treino, mas tem baixa performance sobre novos
dados, como de teste. Contudo, um modelo que sofre vários reajustes a fim de chegar mais
próximo dos resultados de teste, pode estar sofrendo um overfitting para esse conjunto
de dados, resultando em uma baixa performance para futuros novos dados. Dessa forma,
uma terceira divisão pode ser feita a partir dos dados de teste, sendo esses o conjunto de
dados de validação.

Com essa nova repartição, o fluxo de desenvolvimento do modelo se altera, como
apresentado na Figura 5. O conjunto de treino permanece o mesmo, contudo, para avaliar
a performance do modelo, utiliza-se o conjunto de validação. Reajustes podem ser feitos,
levando ao retreino do modelo e nova avaliação em cima dos dados de validação. Após
atingir um resultado satisfatório sobre eles, o modelo é aplicado sobre os dados de teste,
repartição nunca antes observada, em que de fato poderá se observar a capacidade de
generalização do modelo (MALEKI et al., 2020).

Figura 5 – Fluxograma de treino, validação e teste de um modelo

Fonte: Elaborado pelos autores
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2.2.4 Performance de um modelo

Existem diversas maneiras de se avaliar a performance de um modelo de machine
learning. Elas estão diretamente relacionadas ao tipo do modelo estudado (supervisionado
de regressão, supervisionado de classificação, não supervisionado), em que cada um possui
seus próprios indicadores. Contudo, de forma geral, um modelo possui um bom desempenho
quanto menor for a diferença do resultado previsto com o resultado real, ou seja, quanto
menor for sua perda. O refinamento de um modelo tem como objetivo diminuir essa perda.

Para um modelo supervisionado de classificação, um dos indicadores é a matriz
de confusão, que corresponde a uma tabela contendo a relação entre os rótulos esperados
e os previstos pelo modelo. Ele possui quatro principais categorias:

• Verdadeiro Positivo ou True Positive (TP): Corresponde aos valores positivos
previstos corretamente pelo modelo. No caso de um modelo de previsão de spam
por exemplo, seria o conjunto de e-mails que eram de fato spams e o modelo os
classificou dessa forma.

• Verdadeiro Negativo ou True Negative (TN): Corresponde aos valores nega-
tivos previstos corretamente pelo modelo. No caso de um modelo de previsão de
spams por exemplo, seria o conjunto de e-mails que não eram spams e o modelo os
classificou dessa forma.

• Falso Positivo ou False Positive (FP): Corresponde aos valores negativos
previstos erroneamente pelo modelo. No caso de um modelo de previsão de spam por
exemplo, seria o conjunto de e-mails que não eram spams e o modelo os classificou
como spam.

• Falso Negativo ou False Negative (FN): Corresponde aos valores positivos
previstos erroneamente pelo modelo. No caso de um modelo de previsão de spam
por exemplo, seria o conjunto de e-mails que eram de fato spams e o modelo os
classificou como não spam.

A Figura 6 apresenta um exemplo da matriz de confusão.

A partir dos resultados obtidos pela matriz de confusão, é possível obter métricas
relevantes para análise de performance do modelo. Uma delas é a Acurácia (ACC) de
um modelo, que representa a taxa geral de acerto do modelo, ou seja, a quantidade de
previsões corretas pelo número total de previsões, como representado pela Equação 2.1.

ACC = TP + TN

TP + FP + TN + FN
(2.1)



35

Figura 6 – Exemplo de Matriz de Confusão

Fonte: Elaborado pelos autores

Outra métrica é a Precisão (PRC), que corresponde aos valores classificados
corretamente como positivos sobre total de classificações positivas, como indicado na
Equação 2.2.

PRC = TP

TP + FP
(2.2)

O Recall, também conhecida como Taxa de Positivos Verdadeiros ou True
Positive Rate (TPR), corresponde aos valores classificados corretamente como positivos
sobre total de positivos verdadeiros, como indicado na Equação 2.3.

TPR = TP

TP + FN
(2.3)

Nota-se que a relação entre precisão e recall é conflituosa, visto que o aumento
de uma normalmente ocasiona o decréscimo da outra. Isso acontece pois, supondo que
o modelo seja ajustado para ter maior precisão, isso significa que ele tenderá a ser
mais rigoroso na quantidade de positivos classificados, aumentando a taxa de positivos
acertados por positivos previstos, contudo, isso pode levar a mais verdadeiros positivos
sendo erroneamente classificados, resultando em um aumento de falsos negativos e, por
consequência, diminuição do recall. A relação entre eles pode ser determinada através do
F-score, apresentada na Equação 2.4.

Fscore = 2 · PRC · TPR

PRC + TPR
(2.4)

Para um modelo de classificação binária, é importante ressaltar que a determinação
de um rótulo positivo ou negativo é dado através do cálculo da probabilidade do rótulo
pertencer a uma dessas classes. O valor intermediário que determinará sua classificação é
chamado de valor de corte ou threshold. Alterar esse valor pode afetar diretamente a
qualidade de um modelo.
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2.3 Random-Forest

O modelo de machine learning utilizado neste trabalho é o random-forest. Esse
modelo é comumente utilizado em problemas supervisionados de classificação e possui como
base o algoritmo de árvore de decisão. Esse algoritmo assemelha-se a um fluxograma,
compostos por vários nós, ramos e folhas, em que são executadas verificações acerca
de determinadas condições, levando a diferentes caminhos. Um esquemático pode ser
encontrado na Figura 7.

Figura 7 – Modelo simplificado de árvore de decisão

Fonte: Elaborado pelos autores

Os nós representam as features do modelo, sendo os ramos as condições baseadas
nas features e as folhas o valor do rótulo. Para o exemplo de identificação de spams, pode se
considerar um nó como a variável "usuário" e, caso esteja na lista de contatos, se direciona
a um ramo, caso contrário se direciona a outro, levando a mais um nó com outra variável
até chegar em uma folha que indicará se é spam ou não. A escolha dos nós é comumente
baseada no índice Gini ou na entropia.

A desvantagem de se utilizar apenas uma árvore de decisão é sua falta de capacidade
de generalização, visto que seus nós são construído com base em todas as features do
modelo, o que responde bem aos dados de treino mas não a dados novos. O random-forest
contorna esse problema através de sua randomização, em que, dado um conjunto de dados,
uma amostra é selecionada e dela apenas duas ou mais features são selecionadas para o
primeiro nó. Em sequência, outras duas ou mais, diferentes das previamente escolhidas,
são selecionadas e esse processo se repete sucessivamente.

Além da randomização de features, o random-forest também cria diversas árvores
independentes entre si, com amostras diferentes, diminuindo consideravelmente as chances
de overfit do modelo. Essa estratégia é baseada no Bootstrapp Aggregation ou Bagging,
que consiste em avaliar o resultado a partir da previsão de um conjunto de modelos, ao



37

invés de observar apenas o valor individual de cada. No caso de um modelo classificatório,
o rótulo que mais aparece representa sua classificação final.

Tanto a escolha do número de features por amostra, critério de seleção, profundidade
das árvores e quantidade de árvores são hiperparâmetros do modelo de random-forest que
podem ser refinados a fim de se obter um melhor resultado.
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3 METODOLOGIA

3.1 Ambiente de Desenvolvimento

Para este trabalho, fez-se uso majoritariamente da linguagem de programação
Python para o tratamento dos dados, desenvolvimento, treinamento e refinamento do
modelo de machine learning, apoiando-se em diversas bibliotecas auxiliares citadas ao
longo deste capítulo. O hardware utilizado foi concedido por um dos autores e possui as
seguintes especificações: Sistema Operacional Windows 10; placa mãe MSI MAG B550
TOMAHAWK; memória RAM de 32GB DDR4; processador AMD Ryzen 7 5700X; e placa
de vídeo NVIDIA GeForce RTX 3070 Ti 8GB.

3.2 Conjunto de Dados

3.2.1 Obtenção dos Dados

O desenvolvimento de um modelo de machine learning inicia-se através da análise
do conjunto de dados que será utilizado para treinar e testar o modelo de fato. Para este
trabalho, foi utilizado o conjunto extraído por Yesilli, Khasawneh e Otto (2019a, 2019b,
2019c). Esses dados são oriundos de um processo de torneamento externo de uma peça
cilíndrica de alumínio 6061, cujos valores foram captados por três acelerômetros, sendo
dois uniaxiais (um medindo as vibrações no eixo x e outro no eixo y) e um triaxial. A
montagem desse processo de usinagem e medição pode ser observado na Figura 8.

Figura 8 – Montagem do processo de usinagem e medição de chatter

Fonte: Yesilli, Khasawneh e Otto (2019c)
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Para geração dos dados, foram realizadas quatro diferentes configurações de fixação
da ferramenta, alterando seu comprimento livre, como apresentado na Figura 9. Além
disso, o processo de torneamento foi feito sob diferentes combinações de velocidades e
profundidades de usinagem, variando entre 320 rpm, 425 rpm, 570 rpm e 1030 rpm, e 0,254
mm até 12,7 mm respectivamente.

Figura 9 – Variação da fixação da ferramenta

Fonte: Yesilli, Khasawneh e Otto (2019c)

Segundo Yesilli, Khasawneh e Otto (2019a), os dados obtidos originalmente foram
analisados e filtrados, obtendo como melhor resultado as medidas referentes ao eixo x
do acelerômetro triaxial. Acerca deles, foram criados quatro rótulos com base em suas
amplitudes no domínio do tempo e da frequência:

• Estável (s): Baixa amplitude no domínio do tempo e da frequência.

• Chatter intermediário (i): Baixa amplitude no domínio do tempo e alta amplitude
no domínio da frequência.

• Chatter (c): Alta amplitude no domínio do tempo e da frequência.

• Desconhecido (u): todos os outros casos.

Para este trabalho, o desenvolvimento do modelo de machine learning foi realizado
sobre os arquivos contendo o conjunto de dados rotulado. Na Figura 10 é possível ver
graficamente a relação da aceleração pelo tempo e os trechos em que houve chatter para
uma operação a 320 rpm, 50,8 mm de comprimento livre e 1,27 mm de profundidade de
usinagem.
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Figura 10 – Gráfico rotulado contendo a medida do acelerômetro pelo tempo para uma
operação a 320 rpm, 50,8 mm de comprimento livre e 1,27 mm de profundidade
de usinagem

Fonte: Elaborado pelos autores

3.2.2 Tratamento dos Dados

Obtido o conjunto de dados, realiza-se um tratamento a fim de diminuir os ruídos
presentes e melhorar a performance do modelo. Para isso, inicialmente buscou-se remover
os possíveis outliers dos dados, analisando apenas os valores de aceleração que se encontram
dentro do intervalo de confiança de três desvios-padrões (representando 99,73% dos dados),
como representado na Equação 3.1, sendo x o valor da aceleração, x a média das acelerações
e σ o valor do desvio padrão, calculado de acordo com a Equação 3.2, com N sendo o
número de amostras.

x − 3σ <= x <= x + 3σ (3.1)

σ =
√∑N

i=1(xi − x)2

N − 1 (3.2)

Além disso, removeu-se os dados rotulados como Desconhecido e agrupou-se os
rotulados como Chatter e Chatter intermediário em apenas Chatter. A leitura e tratamento
dos dados foi feita utilizando-se as bibliotecas scipy, numpy e pandas do Python.
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3.3 Divisão e Janelamento dos dados

Dada a natureza temporal dos dados, para a geração das features do modelo realiza-
se o método de Janelas Deslizantes, ou Sliding Windows, que consiste em dividir
uma sequência de dados em janelas de tamanho fixo e movê-las ao longo da sequência com
um passo fixo. Sobre cada janela, retira-se o conjunto de features utilizados no modelo.
Esse processo encontra-se esquematizado na Figura 11.

Figura 11 – Método das janelas deslizantes

Fonte: Modificado de Sestito et al. (2022)

Os parâmetros de janelamento adotados encontram-se na Tabela 1.

Tabela 1 – Parâmetros de janelamento dos dados

Parâmetro Valor
Tamanho da Janela 0,5 s

Passo 5 ms

Fonte: Elaborado pelos autores.

Antes da geração das features, dividiu-se os dados temporais em uma proporção
70%-30%, correspondentes aos dados de treino e de teste respectivamente, realizando
o janelamento em cada um dos conjuntos separadamente. Isso foi feito para evitar que
as features resultantes dos dados de teste tenham sido extraídas sobre dados de treino,
resultando em vazamento dos dados e, por consequência, enviesamento do modelo.
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3.4 Features do modelo

Realizado a divisão e janelamento dos dados, extraíu-se as features que seriam
utilizadas inicialmente para o desenvolvimento do modelo. Para isso, utilizou-se as carac-
terísticas das séries temporais canônicas (catch22 ), apresentado por Lubba et al. (2019),
que consistem nas 22 principais medidas estatísticas que melhor performaram sobre mais
de 147000 séries temporais, acrescidos da média e desvio-padrão. Essas features são um
conjunto seleto da biblioteca de análise altamente comparativa de séries temporais (hctsa),
mais especificamente a versão filtrada contendo 4791 features. Para auxiliar na aplicação
do cálculo desses valores, utilizou-se a biblioteca em Python disponibilizada, pycatch22.

Além das 24 features provenientes do catch22, adicionou-se mais três elementos,
sendo eles a velocidade, comprimento livre e profundidade de usinagem, totalizando 27
features. Elas encontram-se descritas na Tabela 2. Após a geração das features, dividiu-se
os dados de teste em dados de validação e teste, em uma proporção de 50% para cada.

3.5 Definição do modelo

Como apresentado no Capítulo 2, o modelo adotado foi o random-forest, devido a
sua boa aplicabilidade para casos supervisionados de classificação, além de uma imple-
mentação mais simplificada mas sem perder a eficácia. Para desenvolvê-lo, utilizou-se a
biblioteca scikit-learn em Python, que, além de possuir a função do modelo em si (Ran-
domForestClassifier), apresenta ferramentas que auxiliam no refinamento, geração dos
resultados e performance do modelo.

3.5.1 RFE

Antes de realizar o treinamento de fato do modelo, aplicou-se o método de Re-
cursive Feature Elimination (RFE), que consiste em avaliar as 27 features sobre um
modelo de random-forest com hiperparâmetros iniciais, aplicando um processo iterativo de
atribuição de pesos e ranqueamento para cada feature, retornando aquelas que possuem
maior significância e contribuição. Dessa forma, diminui-se redundâncias e atributos que
tornem mais complexo o modelo ou até mesmo impactem negativamente nos resultados. A
quantidade de features retornadas pode ser definida como parâmetro, contudo, devido à
quantidade moderada de features, realizou-se esse processo para todos os casos possíveis
(de 1 a 26 features).

Para cada quantidade de features, dados diversos valores de threshold diferentes,
calculou-se a precisão, recall e F-score e tomou-se os valores que maximizavam a métrica
de F-score, para cada iteração do RFE. O conjunto que possuísse o maior F-score, seguido
da maior precisão, seria utilizado para o treinamento do modelo.
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Tabela 2 – Features iniciais do modelo

Feature Descrição

DN_Histogram-
Mode_5

Modo de distribuição
com z-score (histograma

de 5 classes)

DN_Histogram-
Mode_10

Modo de distribuição
com z-score (histograma

de 10 classes)

SB_-
BinaryStats_-

mean_-
longstretch1

Período mais longo de
valores consecutivos

acima da média

DN_-
OutlierInclude_-
p_001_mdrmd

Intervalos de tempo
entre eventos extremos

sucessivos acima da
média

DN_-
OutlierInclude_-
n_001_mdrmd

Intervalos de tempo
entre eventos extremos
sucessivos abaixo da

média

CO_f1ecac
Primeiro cruzamento

1/e da função de
autocorrelação

CO_FirstMin_-
ac

Primeiro mínimo da
função de

autocorrelação

SP_Summaries_-
welch_rect_-

area_5_1

Potência total no
quinto mais baixo das

frequências no espectro
de potência de Fourier

SP_Summaries_-
welch_rect_-

centroid

Centróide do espectro
de potência de Fourier

FC_-
LocalSimple_-
mean3_stderr

Erro médio de uma
previsão média contínua

de 3 amostras

CO_trev_1_-
num

Estatística de
reversibilidade de

tempo, ⟨(xt+1xt)3⟩t

CO_-
HistogramAMI_-

even_2_5

Informação automútua,
m = 2, τ = 5

IN_AutoMutua-
lInfoStats_40_-
gaussian_fmmi

Primeiro mínimo da
função de informação

automútua

Feature Descrição

MD_hrv_-
classic_pnn40

Proporção de diferenças
sucessivas superiores a
0.04σ (MIETUS, 2002)

SB_-
BinaryStats_-

diff_longstretch0

Período mais longo de
reduções incrementais

sucessivas

SB_-
MotifThree_-
quantile_hh

Entropia de Shannon de
duas letras sucessivas

em simbolização
equiprovável de 3 letras

FC_-
LocalSimple_-

mean1_tauresrat

Alteração no
comprimento da
correlação após

diferenciação iterativa

CO_Embed2_-
Dist_tau_d_-

expfit_meandiff

Ajuste exponencial para
distâncias sucessivas no
espaço de incorporação

2-d

SC_FluctAnal_-
2_dfa_50_1_2_-

logi_prop_r1

Proporção de flutuações
de escala de tempo mais
lentas que escalam com
DFA (amostragem de

50%)

SC_FluctAnal_-
2_rsrangefit_-
50_1_logi_-

prop_r1

Proporção de flutuações
de escala de tempo mais
lentas que se ajustam

com escala
redimensionada

linearmente

SB_Transition-
Matrix_3ac_-
sumdiagcov

Traço de covariância da
matriz de transição
entre símbolos no

alfabeto de 3 letras

PD_Periodi-
cityWang_th0_-

01

Medida de
periodicidade de Wang,
Wirth e Wang (2007)

DN_Mean Média dos valores

DN_Spread_Std Desvio-padrão

vel velocidade de rotação
da máquina

stickout_size Comprimento livre da
ferramenta

ap Profundidade de
usinagem

Fonte: Modificado de Lubba et al. (2019).
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3.5.2 Treinamento e Refinamento do Modelo

Obtido as features com resultados mais significativos, realizou-se o treinamento
e validação do modelo, aplicando o valor de threshold encontrado anteriormente e os
hiperparâmetros utilizados durante o RFE, a fim de manter a consistência do processo.
Após a etapa de teste, analisou-se os resultados obtidos e realizou-se o refinamento do
modelo, através do processo iterativo de alteração do hiperparâmetros, como número
de features por amostra, critério de seleção, profundidade da árvore e quantidade de
estimadores, seguido da reaplicação do RFE gerando um novo conjunto de features,
treinamento do modelo e reavaliação dos resultados.

A Tabela 3 apresenta os 15 melhores resultados do RFE, com 16 features apre-
sentando o maior valor de F-score e precisão em comparação com as outras. A Tabela 4
apresenta quais foram as features utilizadas. Os hiperparâmetros do modelo podem ser
encontrados na Tabela 5.

Tabela 3 – Resultado do RFE para seleção de 1 a 26 features

n_features threshold precision recall f_score

16 0,77 0,89 0,86 0,88

4 0,53 0,82 0,96 0,88

5 0,48 0,80 0,97 0,88

18 0,78 0,88 0,86 0,87

7 0,58 0,81 0,94 0,87

26 0,63 0,83 0,89 0,86

23 0,66 0,83 0,89 0,86

17 0,70 0,84 0,88 0,86

15 0,66 0,84 0,88 0,86

21 0,67 0,84 0,88 0,86

22 0,60 0,83 0,90 0,86

10 0,51 0,79 0,93 0,86

11 0,52 0,80 0,93 0,86

20 0,61 0,82 0,90 0,86

9 0,54 0,80 0,92 0,86

Fonte: Elaborado pelos autores.
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Tabela 4 – 16 features utilizadas no modelo final

Feature Descrição

SB_BinaryStats_mean_longstretch1 Período mais longo de valores
consecutivos acima da média

CO_f1ecac Primeiro cruzamento 1/e da função
de autocorrelação

SP_Summaries_welch_rect_area_5_1
Potência total no quinto mais baixo

das frequências no espectro de
potência de Fourier

SP_Summaries_welch_rect_centroid Centróide do espectro de potência
de Fourier

FC_LocalSimple_mean3_stderr Erro médio de uma previsão média
contínua de 3 amostras

CO_HistogramAMI_even_2_5 Informação automútua, m = 2, τ =
5

IN_AutoMutualInfoStats_40_gaussian_fmmi Primeiro mínimo da função de
informação automútua

SB_MotifThree_quantile_hh
Entropia de Shannon de duas letras

sucessivas em simbolização
equiprovável de 3 letras

FC_LocalSimple_mean1_tauresrat
Alteração no comprimento da
correlação após diferenciação

iterativa

CO_Embed2_Dist_tau_d_expfit_meandiff
Ajuste exponencial para distâncias

sucessivas no espaço de
incorporação 2-d

SC_FluctAnal_2_rsrangefit_50_1_logi_-
prop_r1

Proporção de flutuações de escala
de tempo mais lentas que se

ajustam com escala redimensionada
linearmente

PD_PeriodicityWang_th0_01 Medida de periodicidade de Wang,
Wirth e Wang (2007)

DN_Mean Média dos valores

DN_Spread_Std Desvio-padrão

vel Velocidade de rotação da máquina

ap Profundidade de usinagem

Fonte: Elaborado pelos autores.
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Tabela 5 – Hiperparâmetros finais do modelo de random-forest

Hiperparâmetro Valor

Nº de estimadores 100

Critério de seleção Índice Gini

Profundidade Máxima profundidade

Máximo Nº de features por árvore 4

Nº mínimo de amostras por folha 1

Nº mínimo de amostras antes de ramificar 2

Fonte: Elaborado pelos autores.
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4 RESULTADOS E DISCUSSÃO

Para avaliar o modelo treinado, gerou-se a matriz de confusão em conjunto com
suas métricas, correspondendo aos valores de acurácia, precisão, recall e F-score. Seus
resultados podem ser observados na Figura 12 e Tabela 6.

Figura 12 – Matriz de confusão do modelo treinado

Fonte: Elaborado pelos autores

Tabela 6 – Métricas do modelo treinado

Rótulo Acurácia Precisão Recall F-score
Estável 93% 95% 95% 95%
Chatter 93% 87% 87% 87%

Fonte: Elaborado pelos autores.

Analisando as métricas obtidas, é possível observar que o modelo apresentou uma
alta taxa de acurácia (93%) com alta precisão e recall para os dados classificados como
estáveis (95% e 95% respectivamente). Isso era esperado devido ao grande volume de dados
estáveis, permitindo melhor performance nos treinos e teste. Já os valores de precisão
e recall para o rótulo de chatter, apesar de satisfatórios, estão um pouco abaixo em
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comparação com sua contraparte estável, mesmo possuindo menos dados disponíveis para
treino e teste. Além disso, a probabilidade apresentada pelo modelo apenas treinado pode
não representar na prática o resultado real, devido a uma possível tendência sistemática
de superestimar ou subestimar as probabilidades.

4.1 Calibração do Modelo

Para evitar isso e melhorar os resultados do classificador, realiza-se a calibração do
modelo através da função CalibratedClassifierCV da biblioteca scikit-learn. A calibração
adotada é a de Platt, cuja técnica ajusta um modelo adicional logístico às saídas do
classificador base. O modelo adicional é então treinado para prever a probabilidade correta
das classes com base nas saídas originais. Um ponto importante é o fato dessa calibração
não alterar os hiperparâmetros do modelo, visto que é uma técnica de pós-processamento.
Com o modelo treinado e calibrado, o único valor alterado é o threshold, que passou de
0,77 para 0,72.

Figura 13 – Comparação entre as curvas de calibração

Fonte: Elaborado pelos autores
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A Figura 13 apresenta as curvas referentes ao modelo não-calibrado e calibrado
em comparação com a curva ideal, representada pela reta x = y. Nota-se que o modelo
treinado e calibrado encontra-se mais próximo da reta em comparação com o modelo
apenas treinado. Isso é confirmado pela métrica de Brier, representada na Equação 4.1,
que mede o desempenho da probabilidade prevista (ft) e o resultado real (ot) de ambos os
modelos, em que quanto menor o valor, melhor o resultado do modelo.

MB = 1
N

N∑
t=1

(ft − ot)2 (4.1)

Como pode ser observado na Tabela 7, sua métrica calibrada é menor que a não
calibrada, indicando que houve melhoria na confiabilidade do classificador, ou seja, quando
for indicado uma probabilidade de 80% do dado ser chatter por exemplo, sua taxa de
acerto está mais próxima desses 80%.

Tabela 7 – Comparação da métrica de Brier entre os modelos

Modelo Métrica de Brier
Não Calibrado 0.0605

Calibrado 0.0554

Fonte: Elaborado pelos autores.

Com o modelo treinado e calibrado, obteve-se uma nova matriz de confusão e
conjunto de métricas, apresentadas na Tabela 8 e Figura 14, além da curva de precisão-
recall, representada pela Figura 15, indicando uma boa relação entre essas duas métricas.

Tabela 8 – Métricas do modelo treinado e calibrado

Rótulo Acurácia Precisão Recall F-score
Estável 93% 95% 96% 96%
Chatter 93% 89% 85% 87%

Fonte: Elaborado pelos autores.

Analisando os resultados obtidos e comparando com as métricas anteriores, é
possível notar que a acurácia do modelo se manteve no valor de 93%. Para a classe de
chatter, houve um aumento de 2,3% na precisão com um decréscimo dos mesmos 2,3%
para o recall, indicando uma manutenção na identificação de chatter pelo modelo. Apesar
do aumento não ser muito expressivo, vale citar que esses são os resultados do modelo
calibrado, ou seja, os valores apresentados possuem maior confiabilidade em relação às
métricas não calibradas, sem perder eficácia, indicando um resultado final mais significativo
para o modelo.
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Figura 14 – Matriz de confusão do modelo treinado e calibrado

Fonte: Elaborado pelos autores

Figura 15 – Curva de precisão-recall do modelo treinado e calibrado

Fonte: Elaborado pelos autores
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Outro ponto relevante é que houve um decréscimo de quase 20% no número de falso
positivos, ou seja, o modelo passa a acusar menos dados estáveis como chatter. Trazendo
para uma aplicação real no contexto de indústria 4.0, caso o modelo seja implementado
em uma esteira de produção autônoma que retira de linha as peças acusadas com chatter,
esse resultado reflete em menos peças normais sendo descartadas erroneamente. Em
contrapartida, houve um acréscimo de 11% no número de falso negativos, que representa
uma perda absoluta menor em comparação com o decréscimo de falso positivos. Contudo,
em uma situação real em que não houvesse um identificador de chatter e o número de
falsos negativos, ou seja, peças contendo chatter, seria de 100%, o resultado final obtido
pelo modelo é satisfatório.

4.2 Teste

Terminado o processo de ajuste utilizando o conjunto de validação, é necessário
avaliar a performance em outra parcela de dados não antes vistos pelo modelo, ou conhecidos
como OOB (Out-Of-Bag), de forma a obter uma perspectiva mais realista sobre suas
métricas, visto que os parâmetros e hiperparâmetros não foram especialmente ajustados
para as particularidades do conjunto em específico. Sendo assim, registrou-se o desempenho
no conjunto de teste e obteve-se a Tabela 9 e a Figura 16

Tabela 9 – Métricas do modelo para o conjunto de teste

Rótulo Acurácia Precisão Recall F-score
Estável 93% 95% 95% 95%
Chatter 93% 86% 87% 87%

Fonte: Elaborado pelos autores.

Percebe-se que o resultado, principalmente quanto à precisão na identificação do
chatter, é 3,4% menor em relação ao observado na Tabela 8. Isso é algo esperado, visto que
a calibração e o cálculo do threshold são feitos tendo como base a amostra de validação,
que é apenas uma representação da população toda, assim como o conjunto de treino
também o é. Sendo assim, com diferentes conjuntos, presume-se que o desempenho do
modelo possua uma certa diferença daquele visto nos conjuntos conhecidos.
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Figura 16 – Matriz de confusão para o conjunto de teste

Fonte: Elaborado pelos autores
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5 CONCLUSÃO

Neste trabalho, desenvolveu-se um modelo de machine learning baseado no algo-
ritmo de random-forest, utilizando a linguagem de programação Python, para identificação
do fenômeno negativo chatter, a partir de um conjunto de dados rotulados, caracterizando
um modelo supervisionado classificatório.

Durante seu desenvolvimento, houve passos importantes como o tratamento prévio
do conjunto de dados, a fim de eliminar os possíveis ruídos e amplificar a performance do
modelo final. Além disso, devido à natureza temporal dos dados, dividiu-se previamente em
conjunto de treino e teste e realizou-se o método de janelas deslizantes para obtenção das
features, evitando um overfitting dos dados nessa etapa. Em seguida utilizou-se do método
de RFE para obter as features mais relevantes para o modelo, evitando redundância e
contribuindo para sua performance geral. Por fim, treinou-se o modelo e gerou a matriz
de confusão juntamente com as métricas utilizadas para análise de performance, como
acurácia, precisão, recall e F-score.

Analisando os resultados obtidos apenas com o treinamento do modelo, pode-se
perceber que o modelo apresentou uma acurácia significativa de 93% e uma alta combinação
de precisão e recall para os dados estáveis de 95% para ambos. Contudo, para identificação
de chatter sua precisão estava um pouco abaixo, com 87%. Com o intuito de melhorar
tanto a performance quanto principalmente a confiabilidade de previsão, realizou-se a
calibração do modelo utilizando a técnica de Platt, em que obteve-se como saída um
modelo treinado e calibrado, sendo confirmada pela métrica de Brier, que passou de 0,0605
para 0,0554. Com o modelo treinado e calibrado, novas métricas foram geradas juntamente
com a matriz de confusão, resultando em um acréscimo na precisão de identificação de
chatter para 89%, sem comprometer significativamente as métricas para identificação dos
dados estáveis e acurácia, além de garantir maior confiabilidade dos resultados. Além
disso, observou-se uma diminuição de 20% na classificação de falso positivos, que reflete
positivamente em um caso de aplicação real em que deseja-se que o modelo não acuse peças
estáveis como contendo chatter, descartando-as erroneamente. Por fim, para amostras
OOB (Out-Of-Bag) no conjunto de treino, foram verificadas métricas finais de 86% de
precisão, 3,4% abaixo do processo de validação, e a acurácia geral foi mantida em 93%.

Dessa forma, através dos resultados obtidos, conclui-se que o modelo de random-
forest possui boa performance para a identificação de chatter, apresentando resultados
satisfatórios dentro do contexto de machine learning. Como sugestão para estudos futuros,
pode-se citar a integração do modelo obtido com uma linha de produção autônoma
nos moldes da indústria 4.0, que alimenta o modelo com dados de sensores e retorna a
identificação de peças sofreram chatter, promovendo uma aplicação prática do trabalho.
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