UNIVERSIDADE DE SAO PAULO
ESCOLA DE ENGENHARIA DE SAO CARLOS

Adolfo Esteves Ribeiro

Eric Kenji Cordeiro

METODOLOGIA PARA DETECCAO DE CHATTER EM
TEMPO REAL ATRAVES DE UM MODELO DE
APRENDIZADO DE MAQUINA

Sao Carlos

2023






Adolfo Esteves Ribeiro
Eric Kenji Cordeiro

METODOLOGIA PARA DETECCAO DE CHATTER EM

TEMPO REAL ATRAVES DE UM MODELO DE
APRENDIZADO DE MAQUINA

Monografia apresentada ao Curso de
Engenharia Mecanica, da Escola de
Engenharia de Sao Carlos da Universidade
de Sao Paulo, como parte dos requisitos para
obtencao do titulo de Engenheiro Mecanico.

Orientadora: Profa. Dra. Maira Martins da
Silva

Sao Carlos
2023



AUTORIZO A REPRODUGAO E DIVULGAGAO TOTAL OU PARCIAL DESTE
TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRONICO,
PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalografica elaborada pela Biblioteca Prof. Dr. Sérgio Rodrigues
Fontes da EESC/USP

R484m

Ribeiro, Adolfo Esteves

Metodologia para detecgdo de chatter em tempo real
através de um modelo de aprendizado de maquina / Adolfo
Esteves Ribeiro, Eric Kenji Cordeiro; orientadora Maira
Martins da Silva. —-- Sdo Carlos, 2023.

Monografia (Graduacgdo em Engenharia Mecanica) -- Escola
de Engenharia de S&o Carlos da Universidade de S&o Paulo,
2023.

1. Chatter. 2. Machine learning. 3. Random-forest.
4. Python. 5. Matriz de confusdo. I. Cordeiro, Eric Kenji.
IT. Titulo.

Elaborado por Elena Luzia Palloni Gongalves — CRB 8/4464




FOLHA DE AVALIAGAO

Candidatos: Adolfo Esteves Ribeiro e Eric Kenji Cordeiro

Titulo: Metodologia para detec¢cao de chatter em tempo real através de um

modelo de aprendizado de maquina

Trabalho de Conclusao de Curso apresentado a

Escola de Engenharia de Sao Carlos da

Universidade de Sao Paulo

Curso de Engenharia Mecanica.

BANCA EXAMINADORA

Professora Dra. Maira Martins da Silva
(Orientadora)

Nota atribuida: 10,0 (dez )

Professor Dr. Alessandro Roger Rodrigues

Nota atribuida: 10,0 (deZ )

Thiago Liquita Savio

Nota atribuida: 10,0 (dez )

Maine- - do Ao

(assinatura)

(assinatura)

'rhiaﬂo L. Savio

(assinatt']'ra)

Média: 10,0 (dez )

Resultado: APROVADO

Este trabalho tem condigbes de ser hospedado no Portal Digital da Biblioteca da EESC

7 .
SIM ZT NAO [ Visto do orientador Wﬁm







Aos nossos pais e amigos, que nos deram forcas em cada etapa dessa jornada e fizeram

com que nossa formacao fosse possivel.






AGRADECIMENTOS

Agradecemos, primeiramente aos nossos pais e familiares que confiaram em nossos

potenciais e incentivaram nossos estudos desde as primeiras etapas de nossas vidas.

Aos nossos amigos dentro e fora da universidade, com os quais compartilhamos

momentos e experiéncias de vida.

E, por fim, aos professores que buscaram nos instruir da melhor maneira possivel,
de forma que nos torndssemos plenamente capazes de exercer a profissao. Em especial
a professora Dr. Maira Martins da Silva pela orientagao neste trabalho, pela amizade e

auxilio nesta monografia.






“A mente € como um paraquedas,
so funciona se estiver aberta.”

Frank Zappa






RESUMO

RIBEIRO, A. E.; CORDEIRO, E. K. METODOLOGIA PARA DETECCAO DE
CHATTER EM TEMPO REAL ATRAVES DE UM MODELO DE
APRENDIZADO DE MAQUINA. 2023. 58p. Monografia (Trabalho de Conclusao de
Curso) - Escola de Engenharia de Sdo Carlos, Universidade de Sdo Paulo, Sao Carlos,
2023.

Chatter é um fend6meno negativo que ocorre em processos de usinagem causado pelas vibra-
¢oOes auto-excitadas do sistema ferramenta-peca, provocando defeitos na peca e possiveis
danos a maquina. Em um contexto industrial, o envio dessas pecas para etapas posteriores
da linha de producao acarreta prejuizos significativos para as empresas, comprometendo
a qualidade do produto. Diante disso, este trabalho buscou desenvolver um método de
identificacao de chatter utilizando machine learning, visto sua capacidade preditiva através
da analise de dados em tempo real. Para isso, estudou-se um modelo supervisionado classifi-
catorio utilizando como base o algoritmo de random-forest, em que realizou-se o tratamento
dos dados, treinamento, refinamento e calibracao do classificador obtido, utilizando a
linguagem de programacao Python e bibliotecas auxiliares como pandas e scikit-learn.
Gerou-se a matriz de confusao e métricas do modelo, obtendo um valor de acurécia de 93%
e F-score de 95% e 87% para os rétulos de estdvel e chatter respectivamente, indicando

um bom classificador para identificacdo desse fenomeno.

Palavras-chave: Chatter. Machine learning. Random-forest. Python. Matriz de confusao.






ABSTRACT

RIBEIRO, A. E.; CORDEIRO, E. K. METHODOLOGY FOR REAL-TIME
CHATTER DETECTION THROUGH A MACHINE LEARNING MODEL.
2023. 58p. Monograph (Conclusion Course Paper) - Escola de Engenharia de Sao Carlos,
Universidade de Sao Paulo, Sao Carlos, 2023.

Chatter is a negative phenomenon that occurs in machining processes caused by self-excited
vibrations of the tool-workpiece system, leading to defects in the workpiece and potential
damage to the machine. In an industrial context, sending these parts to subsequent stages
of the production line results in significant losses for companies, compromising product
quality. That said, this study sought to develop a chatter identification method using
machine learning, given its predictive capability through real-time data analysis. To achieve
this, a supervised classification model was studied, based on random forest algorithm.
Data preprocessing, training, refinement, and calibration of the obtained classifier were
performed using the Python programming language and auxiliary libraries such as pandas
and scikit-learn. The confusion matrix and model metrics were generated, achieving an
accuracy value of 93% and F-score of 95% and 87% for the stable and chatter labels

respectively, indicating a good classifier for this phenomenon identification.

Keywords: Chatter. Machine learning. Random-forest. Python. Confusion matrix.
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1 INTRODUCAO

A engenharia mecénica é um dos ramos da engenharia que tem como objetivo
principal a aplicacdo de principios da fisica e da matematica para a anélise, fabricagao
e manutencao de sistemas mecanicos, estando presente ao longo da histéria da huma-

nidade como uma das areas mais importantes e influentes para o seu desenvolvimento

(HOLZMANN; DALLAMUTA, 2019).

Desde a revolugao industrial, época do surgimento das méaquinas a vapor e dos
motores a combustao, ela tem desempenhado um papel importante para impulsionar o
aumento da producao de forma geral, impactando no desenvolvimento econémico e social.
No século XXI, periodo marcado pela globalizacao e alto nivel de consumo em diversas
industrias, como a automotiva, aeroespacial, naval e petroquimica, um outro fator tem se

atrelado & busca pela alta taxa de producao: a garantia de qualidade do produto final.

O setor de usinagem, responsavel pela manufatura de pegas e produtos na industria,
pode ser considerado um dos mais impactados dentro das areas da engenharia mecéanica no
que se refere ao quesito de busca pela qualidade, visto que um produto é oriundo do estado
de suas partes iniciais, em que caso a fundacao apresente defeitos, muito provavelmente

seu resultado final também apresentara.

Um dos problemas mais recorrentes durante o processo de usinagem de metais é o
fendmeno chatter, que pode ser definido como vibragoes auto-excitadas causadas pelas
relagoes dinamicas da ferramenta com a peca, parametros de corte e do efeito regenerativo
da peca durante o corte. Suas consequéncias sao diversas: ruidos elevados, mau acabamento
da peca, danos a ferramenta e gastos de matéria-prima e energia e, por consequéncia,
financeiros (QUINTANA; CIURANA, 2011). A Figura 1 mostra os efeitos negativos do

chatter sobre uma peca de metal.

Tendo em vista esse cenario, muitos estudos tém sido feitos acerca desse fendmeno,
buscando entender suas causas e formas de evita-lo, a fim de obter um equilibrio entre uma
producao acelerada e alta qualidade. Com os grandes avancos tecnolégicos, a industria 4.0,
marcada pela automacao e digitalizacao das atividades industriais, promoveu a utilizacao
de auxilio computacional para monitoramento de diversas medidas durante o processo de
usinagem em uma cadeia produtiva, fazendo uso de sensores como acelerdmetros, emissores
acusticos e sensores piezoelétricos (KULJANIC; SORTINO; TOTIS, 2008).
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Figura 1 — Efeito chatter sobre a superficie metdlica em uma usinagem interna

RN

Fonte: Modificado de Venter et al. (2016)

Como resultado dessas implementacoes, vastas quantidades de dados podem ser
obtidas e utilizadas para processos de andlises convencionais, a fim de se obter informagoes
relevantes na identificacao de chatter. Contudo, em um cenario de producao auténoma, a
obtencao dos dados e andlise somente posterior, nao é suficiente para controlar o fluxo de
pecas defeituosas. Dessa forma, para uma analise em tempo real dos dados obtidos pelos

sensores, € possivel fazer uso da programagcao para auxiliar esse processo.

Nos ultimos anos, uma vertente da programacao focada na anélise de dados tem
se mostrado bastante presente nos campos de pesquisa: o aprendizado de maquinas, ou
machine learning. Essa vertente constitui um ramo da area de inteligéncia artificial que
corresponde a criacao de modelos preditivos baseados em algoritmos, capazes de classificar
determinado conjunto de dados baseado em informagoes prévias. Assim, fazendo uso dessa
ferramenta, juntamente com um processo de monitoramento e obtencao de dados em

tempo real, é possivel obter-se uma forma prética de identificacao de chatter.
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1.1 Objetivos

O presente trabalho busca desenvolver um modelo supervisionado de aprendizado
de maquinas, através da linguagem de programacao Python, utilizando um conjunto de
dados temporais, rotulados de acordo com a presenca ou nao de chatter. Para isso, estuda-se
um modelos comumente usados para problemas classificatérios, o random-forest, a fim
de avaliar seu desempenho através da analise de suas métricas, além de determinar os
melhores hiperpardmetros para tal. Assim, o modelo gerado pode ser capaz de receber como
dados de entrada as medidas dos sensores em um processo de usinagem real e identificar

se houve ou nao chatter na pega.

1.2 Estrutura do Trabalho

Este trabalho encontra-se organizado da seguinte maneira: na se¢do 2 consta a
revisao bibliografica do trabalho, contendo conceitos relacionados a chatter, machine
learning e apresentagao do modelo de random-forest. Na secao 3 consta a metodologia
utilizada, apresentando o conjunto de dados utilizado para o treinamento e teste do modelo,
os hiperparametros fornecidos e o particionamento dos dados temporais. Os resultados
do modelo sao apresentados e discutidos na secao 4, com graficos representando sua

performance. Por fim, a se¢ao 5 apresenta a conclusao do trabalho.
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2 REVISAO BIBLIOGRAFICA

2.1 Fendmeno Chatter

Chatter consiste nas vibracoes auto-excitadas do sistema ferramenta-peca e pode
ser divido em chatter primario e secundario. O primaério esta relacionado ao processo de
corte em si, ou seja, o cisalhamento da ferramenta com a peca, os efeitos termodinamicos
na formacao do cavaco e acoplamento de modos, sendo esse ultimo correspondente a uma
vibragdo na direcao da forca de corte, gerando uma vibracao na dire¢ao axial e vice-versa.
Ja o secundario é proveniente do efeito regenerativo da peca, causado pelas ondulagoes
formadas durante a etapa de corte e pode ser classificado como a principal fonte de chatter

(QUINTANA; CIURANA, 2011).

Esse chatter regenerativo é frequentemente observado por conta dos processos de
usinagem constantemente realizarem sobreposicoes de corte, em que, durante o corte, a
ferramenta deixa uma superficie ondulada no material e a cada passagem subsequente, um
novo perfil é gerado e a diferenca de fases entre elas altera a forga de corte e espessura do
cavaco, intensificando as vibragoes (ALAMMARI et al., 2015; QUINTANA; CIURANA,
2011). Esse efeito pode ser observado na Figura 2 em que a passagem da ferramenta resulta

em uma superficie ondulada.

Figura 2 — Ondulacoes de corte causadas pela usinagem

Ferramenta

Peca

Fonte: Elaborado pelos autores
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2.2 Machine Learning
2.2.1 Definicao

Machine learning (ML), ou aprendizado de maquinas, pode ser amplamente
definido como um algoritmo capaz de processar um conjunto de dados de entrada e, como
saida, entrega uma previsao de um determinado resultado de acordo com seu propésito.
Sua vantagem encontra-se no fato dele nao precisar ser explicitamente programado, ou seja,
os modelos sao construidos para se adaptarem automaticamente de acordo com os dados

recebidos, através do processo de repeticao, ficando mais préximo do resultado desejado

(NAQA; MURPHY, 2015).

Os modelos de machine learning tém sido particularmente tteis para resolugao de
problemas mais complexos em que o desenvolvimento direto de um cédigo de programacao
nao era trivial ou as variaveis do problema se alteravam de forma que o c6digo precisasse
sofrer constante mudancas, visto que, a partir de um conjunto de dados de treino, ele era
capaz de fornecer as respostas para novas entradas automaticamente. Alguns cenéarios em

que sao aplicados modelos de machine learning sao:

e Detecgao de fraude de crédito bancario

e Recomendacgao de produtos em sites de compras
» Reconhecimento de imagem e voz

o Analise de sentimentos

o Veiculos autéonomos

» Previsao de trafego

o Assistente virtual

e Deteccao de spams

o Traducao automatica

2.2.2 Tipos de Modelos

O funcionamento de um modelo esta diretamente relacionado com o conjunto de
dados disponiveis. Existem duas principais categorias de modelos de machine learning,
dependendo das informacoes presentes nos dados iniciais: supervisionados e nao super-
visionados. Para ambos, os dados sdo compostos por features, que correspondem as
informagoes de entrada para o modelo. Para o supervisionado, cada conjunto de features
dos dados de treino esta atrelado a um label ou rétulo, que indica o resultado que o

modelo deveria prever. Ja para o nao supervisionado, os dados de treino nao possuem esses
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rétulos e o modelo deve ser capaz de identificar o padrao e relacionamento dos dados e
categoriza-los. Vale citar que, para ambos os casos, uma vez que o modelo foi desenvolvido,

seu papel é ser capaz de prever o rétulo corretamente a partir de um novo conjunto de

dados de entrada (ZHOU, 2021).

Como exemplo, pode-se citar a criacdo de um modelo de identificacdo de spams,

dado dois conjuntos de dados de treino:
a) Um conjunto de e-mails classificados como spam e nao spam;
b) Outro conjunto de e-mails mas sem nenhuma classificacao;

Em ambos os cenarios, os e-mails sao constituidos de enderecos de e-mail do
remetente e destinatario, titulo, assunto e conteido. Essas informacoes representam as
features que serao utilizadas no modelo. Porém, o primeiro possui um rétulo (spam ou néo)
para cada conjunto de features (e-mail), indicando a utilizagdo de um modelo supervisionado.
Ja o segundo, apresenta apenas as features, sendo necessario que identifique de maneira

independente a categorizagao de spam, remetendo a um modelo nao supervisionado.

Dentre os modelos supervisionados, existem duas categorias: o de regressao e de
classificagao. O primeiro representa a previsao de valores continuos, como a probabilidade
de um e-mail ser spam. Ja o segundo, representa valores discretos, como o e-mail ser ou
nao spam. Para este trabalho, o estudo sera feito em cima de modelos classificatérios
supervisionados. O fluxograma apresentado na Figura 3 apresenta de forma simplificada a

divisao descrita anteriormente e o tipo de modelo a ser estudado.

Figura 3 — Fluxograma simplificado dos tipos de modelo

Modelo
Supervisionado
de Regressdo

Valor de Saida
Continuo

Modelo
Supervisionado

Dados
Rotulados

Valor de Saida
Discreto

Modelo
Supervisionado
de Classificacdo

Modelo Nao
Supervisionado

Dados Nao
Rotulados

Fonte: Elaborado pelos autores
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2.2.3 Conjunto de dados

Para desenvolver um modelo supervisionado classificatorio de machine learning, é
necessario entender alguns conceitos. De forma geral, dado um conjunto inicial de dados,
ele deve ser tratado a fim de diminuir possiveis ruidos que possam afetar o desenvolvimento
do modelo. Para isso, analises estatisticas como boxplot e estudo dos desvios-padroes
podem ser feitas a fim de encontrar e remover dados que possuem valores muito divergentes
dos demais, conhecidos como outliers. Além disso, padronizac¢oes da ordem de grandeza

dos valores também podem ser consideradas para diminuir a varidncia do modelo.

Apos o tratamento dos dados, realiza-se sua divisao em dois principais conjuntos:
os dados de treino, utilizados para de fato gerar o aprendizado do modelo, e os dados de
teste, utilizados para validar o modelo e medir sua capacidade de previsao. Isso é necessario
pois, dessa forma, o modelo consegue treinar sobre um determinado conjunto de dados
de forma iterativa e testar sua performance em outro conjunto nao visto anteriormente.
Assim, a partir dos resultados obtidos, refinamentos podem ser feitos, como por exemplo a
alteracao de pardmetros inseridos antes do treinamento que definem o modelo, os chamados
hiperparametros, e o modelo ser retreinado, a fim de melhorar o resultado final. Esse

fluxo de desenvolvimento pode ser observado na Figura 4.

Figura 4 — Fluxograma de treino e teste de um modelo

Treinar o0 modelo no conjunto
de treino

Ajustar
Hiperparametros

Avaliar o modelo no

conjunto de teste

Selecionar o modelo com
melhor performace

Fonte: Elaborado pelos autores
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Um ponto importante desse processo é realizar o ajuste no modelo de forma a nao
sofrer overfitting, ou sobreajuste, fendmeno em que ele performa muito bem sobre os dados
previamente observados, normalmente de treino, mas tem baixa performance sobre novos
dados, como de teste. Contudo, um modelo que sofre varios reajustes a fim de chegar mais
préoximo dos resultados de teste, pode estar sofrendo um overfitting para esse conjunto
de dados, resultando em uma baixa performance para futuros novos dados. Dessa forma,
uma terceira divisao pode ser feita a partir dos dados de teste, sendo esses o conjunto de

dados de validacgao.

Com essa nova reparticao, o fluxo de desenvolvimento do modelo se altera, como
apresentado na Figura 5. O conjunto de treino permanece o mesmo, contudo, para avaliar
a performance do modelo, utiliza-se o conjunto de validagao. Reajustes podem ser feitos,
levando ao retreino do modelo e nova avaliagdo em cima dos dados de validacao. Apds
atingir um resultado satisfatorio sobre eles, o modelo é aplicado sobre os dados de teste,
reparticao nunca antes observada, em que de fato podera se observar a capacidade de

generalizagdo do modelo (MALEKI et al., 2020).

Figura 5 — Fluxograma de treino, validacao e teste de um modelo

Treinar o modelo no conjunto
de treino

Ajustar
Hiperparametros

Validar o modelo no

conjunto de validagao

Selecionar o modelo com
melhor performace

Avaliar o modelo no conjunto
de teste

Fonte: Elaborado pelos autores
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2.2.4 Performance de um modelo

Existem diversas maneiras de se avaliar a performance de um modelo de machine
learning. Elas estao diretamente relacionadas ao tipo do modelo estudado (supervisionado
de regressao, supervisionado de classificagdo, nao supervisionado), em que cada um possui
seus proprios indicadores. Contudo, de forma geral, um modelo possui um bom desempenho
quanto menor for a diferenca do resultado previsto com o resultado real, ou seja, quanto

menor for sua perda. O refinamento de um modelo tem como objetivo diminuir essa perda.

Para um modelo supervisionado de classificagdo, um dos indicadores é a matriz
de confusao, que corresponde a uma tabela contendo a relacao entre os rotulos esperados

e os previstos pelo modelo. Ele possui quatro principais categorias:

« Verdadeiro Positivo ou True Positive (TP): Corresponde aos valores positivos
previstos corretamente pelo modelo. No caso de um modelo de previsao de spam
por exemplo, seria o conjunto de e-mails que eram de fato spams e o modelo os

classificou dessa forma.

« Verdadeiro Negativo ou True Negative (TN): Corresponde aos valores nega-
tivos previstos corretamente pelo modelo. No caso de um modelo de previsao de
spams por exemplo, seria o conjunto de e-mails que nao eram spams e o modelo os

classificou dessa forma.

« Falso Positivo ou False Positive (FP): Corresponde aos valores negativos
previstos erroneamente pelo modelo. No caso de um modelo de previsao de spam por
exemplo, seria o conjunto de e-mails que nao eram spams e o modelo os classificou

como spam.

« Falso Negativo ou False Negative (FN): Corresponde aos valores positivos
previstos erroneamente pelo modelo. No caso de um modelo de previsao de spam
por exemplo, seria o conjunto de e-mails que eram de fato spams e o modelo os

classificou como nao spam.

A Figura 6 apresenta um exemplo da matriz de confusao.

A partir dos resultados obtidos pela matriz de confusao, é possivel obter métricas
relevantes para andlise de performance do modelo. Uma delas é a Acuracia (ACC) de
um modelo, que representa a taxa geral de acerto do modelo, ou seja, a quantidade de

previsoes corretas pelo numero total de previsoes, como representado pela Equagao 2.1.

B TP+TN
TP+ FP+TN+FN

ACC (2.1)



35

Figura 6 — Exemplo de Matriz de Confusao

Valores Previstos

Positivo | Negativo
Valores | Positivo TP FN
Reais Negativo FP TN

Fonte: Elaborado pelos autores

Outra métrica é a Precisao (PRC), que corresponde aos valores classificados
corretamente como positivos sobre total de classificacdes positivas, como indicado na

Equagao 2.2.

TP

PRCZTP+FP

(2.2)

O Recall, também conhecida como Taxa de Positivos Verdadeiros ou True
Positive Rate (TPR), corresponde aos valores classificados corretamente como positivos

sobre total de positivos verdadeiros, como indicado na Equacao 2.3.

TP

TPR = ———
k TP+ FN

(2.3)

Nota-se que a relagao entre precisao e recall é conflituosa, visto que o aumento
de uma normalmente ocasiona o decréscimo da outra. Isso acontece pois, supondo que
o modelo seja ajustado para ter maior precisdo, isso significa que ele tendera a ser
mais rigoroso na quantidade de positivos classificados, aumentando a taxa de positivos
acertados por positivos previstos, contudo, isso pode levar a mais verdadeiros positivos
sendo erroneamente classificados, resultando em um aumento de falsos negativos e, por
consequéncia, diminui¢do do recall. A relagdo entre eles pode ser determinada através do

F-score, apresentada na Equacao 2.4.

PRC -TPR

Fscore e e ——
PRC+TPR

(2.4)

Para um modelo de classificacao binaria, é importante ressaltar que a determinacao
de um roétulo positivo ou negativo é dado através do calculo da probabilidade do rétulo
pertencer a uma dessas classes. O valor intermediario que determinara sua classificagao é
chamado de valor de corte ou threshold. Alterar esse valor pode afetar diretamente a

qualidade de um modelo.
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2.3 Random-Forest

O modelo de machine learning utilizado neste trabalho é o random-forest. Esse
modelo é comumente utilizado em problemas supervisionados de classificacao e possui como
base o algoritmo de arvore de decisao. Esse algoritmo assemelha-se a um fluxograma,
compostos por varios nos, ramos e folhas, em que sao executadas verificacbes acerca
de determinadas condi¢Oes, levando a diferentes caminhos. Um esquematico pode ser

encontrado na Figura 7.

Figura 7 — Modelo simplificado de arvore de decisao

Ramo

Folha Folha Folha

Fonte: Elaborado pelos autores

Os nos representam as features do modelo, sendo os ramos as condigoes baseadas
nas features e as folhas o valor do rétulo. Para o exemplo de identificagao de spams, pode se
considerar um né como a variavel "usudrio’ e, caso esteja na lista de contatos, se direciona
a um ramo, caso contrario se direciona a outro, levando a mais um né com outra variavel
até chegar em uma folha que indicara se é spam ou nao. A escolha dos nés é comumente

baseada no indice Gini ou na entropia.

A desvantagem de se utilizar apenas uma arvore de decisao é sua falta de capacidade
de generalizacao, visto que seus nds sao construido com base em todas as features do
modelo, o que responde bem aos dados de treino mas nao a dados novos. O random-forest
contorna esse problema através de sua randomizacao, em que, dado um conjunto de dados,
uma amostra é selecionada e dela apenas duas ou mais features sdo selecionadas para o
primeiro n6. Em sequéncia, outras duas ou mais, diferentes das previamente escolhidas,

sao selecionadas e esse processo se repete sucessivamente.

Além da randomizacao de features, o random-forest também cria diversas arvores
independentes entre si, com amostras diferentes, diminuindo consideravelmente as chances
de overfit do modelo. Essa estratégia é baseada no Bootstrapp Aggregation ou Bagging,

que consiste em avaliar o resultado a partir da previsao de um conjunto de modelos, ao
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invés de observar apenas o valor individual de cada. No caso de um modelo classificatorio,

o rétulo que mais aparece representa sua classificagao final.

Tanto a escolha do niimero de features por amostra, critério de selecao, profundidade
das arvores e quantidade de arvores sao hiperparametros do modelo de random-forest que

podem ser refinados a fim de se obter um melhor resultado.
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3 METODOLOGIA

3.1 Ambiente de Desenvolvimento

Para este trabalho, fez-se uso majoritariamente da linguagem de programacao
Python para o tratamento dos dados, desenvolvimento, treinamento e refinamento do
modelo de machine learning, apoiando-se em diversas bibliotecas auxiliares citadas ao
longo deste capitulo. O hardware utilizado foi concedido por um dos autores e possui as
seguintes especificagoes: Sistema Operacional Windows 10; placa mae MSI MAG B550
TOMAHAWK; memoéria RAM de 32GB DDR4; processador AMD Ryzen 7 5700X; e placa
de video NVIDIA GeForce RTX 3070 Ti 8GB.

3.2 Conjunto de Dados
3.2.1 Obtencao dos Dados

O desenvolvimento de um modelo de machine learning inicia-se através da andlise
do conjunto de dados que serd utilizado para treinar e testar o modelo de fato. Para este
trabalho, foi utilizado o conjunto extraido por Yesilli, Khasawneh e Otto (2019a, 2019b,
2019¢). Esses dados sdao oriundos de um processo de torneamento externo de uma pega
cilindrica de aluminio 6061, cujos valores foram captados por trés acelerbmetros, sendo
dois uniaxiais (um medindo as vibragoes no eixo x e outro no eixo y) e um triaxial. A

montagem desse processo de usinagem e medicao pode ser observado na Figura 8.

Figura 8 — Montagem do processo de usinagem e medicao de chatter

z-axis (back)

F accelerometer

ﬁ—*’*’g‘ﬂ ;,k

y-axis (bottom)
accelerometer

Fonte: Yesilli, Khasawneh e Otto (2019c¢)
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Para geracao dos dados, foram realizadas quatro diferentes configuragoes de fixagao
da ferramenta, alterando seu comprimento livre, como apresentado na Figura 9. Além
disso, o processo de torneamento foi feito sob diferentes combinagoes de velocidades e
profundidades de usinagem, variando entre 320 rpm, 425 rpm, 570 rpm e 1030 rpm, e 0,254

mm até 12,7 mm respectivamente.

Figura 9 — Variacao da fixagao da ferramenta

5.08 cm 6.35 cm 8.89 cm 11.43 em
(2 inch) (2.5 inch) (3.5 inch) (4.5 inch)
) 1 ) ]
N — [ — —

[ I

Fonte: Yesilli, Khasawneh e Otto (2019c¢)

Segundo Yesilli, Khasawneh e Otto (2019a), os dados obtidos originalmente foram
analisados e filtrados, obtendo como melhor resultado as medidas referentes ao eixo x
do acelerémetro triaxial. Acerca deles, foram criados quatro rétulos com base em suas

amplitudes no dominio do tempo e da frequéncia:

« Estavel (s): Baixa amplitude no dominio do tempo e da frequéncia.

e Chatter intermediario (i): Baixa amplitude no dominio do tempo e alta amplitude

no dominio da frequéncia.
e Chatter (c): Alta amplitude no dominio do tempo e da frequéncia.

» Desconhecido (u): todos os outros casos.

Para este trabalho, o desenvolvimento do modelo de machine learning foi realizado
sobre os arquivos contendo o conjunto de dados rotulado. Na Figura 10 é possivel ver
graficamente a relagdo da aceleragao pelo tempo e os trechos em que houve chatter para
uma operacao a 320 rpm, 50,8 mm de comprimento livre e 1,27 mm de profundidade de

usinagem.
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Figura 10 — Grafico rotulado contendo a medida do acelerémetro pelo tempo para uma
operacao a 320 rpm, 50,8 mm de comprimento livre e 1,27 mm de profundidade
de usinagem

0.084 —— Chatter
—— Intermediério
Estavel
Desconhecido

0.06

0.04 A

0.02 |

0.00 A

Aceleracdo [m/s?]

—0.02 A

—0.04

—0.06

2'0 3'0 4'0 5'0 6'0
Tempo [s]

Fonte: Elaborado pelos autores

3.2.2 Tratamento dos Dados

Obtido o conjunto de dados, realiza-se um tratamento a fim de diminuir os ruidos
presentes e melhorar a performance do modelo. Para isso, inicialmente buscou-se remover
os possiveis outliers dos dados, analisando apenas os valores de aceleragao que se encontram
dentro do intervalo de confianga de trés desvios-padroes (representando 99,73% dos dados),
como representado na Equacgao 3.1, sendo x o valor da aceleracao, T a média das aceleragoes
e o o valor do desvio padrao, calculado de acordo com a Equacao 3.2, com N sendo o

numero de amostras.

T—30<=2x<=7T+30 (3.1)

_ Zi]\il (v; — @)
7= ¢ TNST (32)

Além disso, removeu-se os dados rotulados como Desconhecido e agrupou-se os
rotulados como Chatter e Chatter intermedidrio em apenas Chatter. A leitura e tratamento

dos dados foi feita utilizando-se as bibliotecas scipy, numpy e pandas do Python.
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3.3 Divisao e Janelamento dos dados

Dada a natureza temporal dos dados, para a geracao das features do modelo realiza-
se o método de Janelas Deslizantes, ou Sliding Windows, que consiste em dividir
uma sequéncia de dados em janelas de tamanho fixo e mové-las ao longo da sequéncia com
um passo fixo. Sobre cada janela, retira-se o conjunto de features utilizados no modelo.

Esse processo encontra-se esquematizado na Figura 11.

Figura 11 — Método das janelas deslizantes

Step

Fonte: Modificado de Sestito et al. (2022)

Os parametros de janelamento adotados encontram-se na Tabela 1.

Tabela 1 — Parametros de janelamento dos dados

Parametro Valor

Tamanho da Janela 0,5 s

Passo 5 ms

Fonte: Elaborado pelos autores.

Antes da geracao das features, dividiu-se os dados temporais em uma proporgao
70%-30%, correspondentes aos dados de treino e de teste respectivamente, realizando
o janelamento em cada um dos conjuntos separadamente. Isso foi feito para evitar que
as features resultantes dos dados de teste tenham sido extraidas sobre dados de treino,

resultando em vazamento dos dados e, por consequéncia, enviesamento do modelo.
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3.4 Features do modelo

Realizado a divisao e janelamento dos dados, extraiu-se as features que seriam
utilizadas inicialmente para o desenvolvimento do modelo. Para isso, utilizou-se as carac-
teristicas das séries temporais canonicas (catch22), apresentado por Lubba et al. (2019),
que consistem nas 22 principais medidas estatisticas que melhor performaram sobre mais
de 147000 séries temporais, acrescidos da média e desvio-padrao. Essas features sao um
conjunto seleto da biblioteca de andlise altamente comparativa de séries temporais (hctsa),
mais especificamente a versao filtrada contendo 4791 features. Para auxiliar na aplicacao

do calculo desses valores, utilizou-se a biblioteca em Python disponibilizada, pycatch22.

Além das 24 features provenientes do catch22, adicionou-se mais trés elementos,
sendo eles a velocidade, comprimento livre e profundidade de usinagem, totalizando 27
features. Elas encontram-se descritas na Tabela 2. Apds a geracao das features, dividiu-se

os dados de teste em dados de validacao e teste, em uma proporcao de 50% para cada.

3.5 Definicao do modelo

Como apresentado no Capitulo 2, o modelo adotado foi o random-forest, devido a
sua boa aplicabilidade para casos supervisionados de classificagao, além de uma imple-
mentacao mais simplificada mas sem perder a eficacia. Para desenvolvé-lo, utilizou-se a
biblioteca scikit-learn em Python, que, além de possuir a fun¢ao do modelo em si (Ran-
domForestClassifier), apresenta ferramentas que auxiliam no refinamento, geragao dos

resultados e performance do modelo.

3.5.1 RFE

Antes de realizar o treinamento de fato do modelo, aplicou-se o método de Re-
cursive Feature Elimination (RFE), que consiste em avaliar as 27 features sobre um
modelo de random-forest com hiperparametros iniciais, aplicando um processo iterativo de
atribuicdo de pesos e ranqueamento para cada feature, retornando aquelas que possuem
maior significincia e contribui¢ao. Dessa forma, diminui-se redundéncias e atributos que
tornem mais complexo o modelo ou até mesmo impactem negativamente nos resultados. A
quantidade de features retornadas pode ser definida como pardmetro, contudo, devido a
quantidade moderada de features, realizou-se esse processo para todos os casos possiveis
(de 1 a 26 features).

Para cada quantidade de features, dados diversos valores de threshold diferentes,
calculou-se a precisao, recall e F-score e tomou-se os valores que maximizavam a métrica
de F-score, para cada iteracao do RFE. O conjunto que possuisse o maior F-score, seguido

da maior precisao, seria utilizado para o treinamento do modelo.
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Tabela 2 — Features iniciais do modelo

Feature

T Feature
Descricao

Descricao

DN_ Histogram-

Modo de distribuicao
com z-score (histograma

MD_ hrv_ -

Proporcao de diferencas
sucessivas superiores a
0.040 (MIETUS, 2002)

Periodo mais longo de
reducdes incrementais
sucessivas

Entropia de Shannon de
duas letras sucessivas
em simbolizacao
equiprovavel de 3 letras

classic_ pnn40
Mode_ 5
de 5 classes)
Modo de distribuica SB_-
DN_ Histogram- odo de li.rlt ueao BinaryStats_ -
Mode 10 com z-score (histograma difflongstretch0
- de 10 classes)
SB_- Periodo mais 1 d oB_-
BinaryStats_ - erfodo mais longo de MotifThree -
valores consecutivos .
mean_ - . d i quantile__hh
longstretchl actia da media
Intervalos de tempo FC_-
DN _- .
. entre eventos extremos LocalSimple -
OutlierInclude -

p_001_mdrmd

sucessivos acima da meanl_ tauresrat

Alteragao no
comprimento da
correlagdo apds

diferenciagao iterativa

DN -
OutlierInclude -
n 001 mdrmd

média
Intervalos de tempo C(?fEmbein—
entre eventos extremos Dist_tau_d_-

sucessivos abaixo da expfit_meandiff

média

Ajuste exponencial para

distancias sucessivas no

espaco de incorporacao
2-d

CO_flecac

Primeiro cruzamento
1/e da funcao de
autocorrelacdo

SC_ FluctAnal -
2 _dfa_50_1 2 -
logi_ prop_rl

CO_FirstMin_ -
ac

Primeiro minimo da

Proporcao de flutuacoes
de escala de tempo mais
lentas que escalam com
DFA (amostragem de
50%)

funcao de

autocorrelacao SC_FluctAnal -

SP  Summaries -
welch rect_ -
area_b 1

quinto mais baixo das
frequéncias no espectro
de poténcia de Fourier

2_ rsrangefit_ -
50_1_ logi_ -
prop_rl

Poténcia total no

SP_ Summaries -
welch_rect_ -

Centréide do espectro
de poténcia de Fourier

Proporcao de flutuacoes
de escala de tempo mais
lentas que se ajustam
com escala
redimensionada
linearmente

SB Transition-
Matrix_3ac_ -

Trago de covariancia da

matriz de transicao
entre simbolos no
alfabeto de 3 letras

Medida de

periodicidade de Wang,

Wirth e Wang (2007)

Média dos valores

Desvio-padrao

centroid sumdiagcov
FC_- Erro médio de uma —
LocalSimple_-  previsao média continua _PD—PenOdI'
mean3 stderr de 3 amostras cityWang_ th0_-
01
Estatistica de
CO_trev_1_- reversibilidade de DN_ Mean
num 3
tempo, ((ze124)° ) DN_ Spread_ Std
CO_- Informacao automitua
HistogramAMI_ - ¢ ’ vel
m=2,7=25
even 2 5

velocidade de rotagao
da méquina

IN AutoMutua-
IInfoStats 40 -
gaussian__fmmi

Primeiro minimo da
funcdo de informagao

stickout_ size

Comprimento livre da

ferramenta

automutua ap

Profundidade de
usinagem

Fonte: Modificado de Lubba et al. (2019).
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3.5.2 Treinamento e Refinamento do Modelo

Obtido as features com resultados mais significativos, realizou-se o treinamento
e validagao do modelo, aplicando o valor de threshold encontrado anteriormente e os
hiperparametros utilizados durante o RFE, a fim de manter a consisténcia do processo.
Apods a etapa de teste, analisou-se os resultados obtidos e realizou-se o refinamento do
modelo, através do processo iterativo de alteragdo do hiperparametros, como niimero
de features por amostra, critério de selecao, profundidade da arvore e quantidade de
estimadores, seguido da reaplicacdo do RFE gerando um novo conjunto de features,

treinamento do modelo e reavaliagdo dos resultados.

A Tabela 3 apresenta os 15 melhores resultados do RFE, com 16 features apre-
sentando o maior valor de F-score e precisdo em comparacao com as outras. A Tabela 4
apresenta quais foram as features utilizadas. Os hiperparametros do modelo podem ser

encontrados na Tabela 5.

Tabela 3 — Resultado do RFE para selecao de 1 a 26 features

n_ features threshold precision recall f_score

16 0,77 0,89 0,36 0,38
4 0,53 0,82 0,96 0,38
5 0,48 0,80 0,97 0,38
18 0,78 0,88 0,36 0,87
7 0,58 0,81 0,94 0,87
26 0,63 0,83 0,39 0,36
23 0,66 0,83 0,89 0,36
17 0,70 0,84 0,38 0,36
15 0,66 0,84 0,38 0,36
21 0,67 0,84 0,38 0,36
22 0,60 0,83 0,90 0,36
10 0,51 0,79 0,93 0,36
11 0,52 0,80 0,93 0,36
20 0,61 0,82 0,90 0,36
9 0,54 0,80 0,92 0,36

Fonte: Elaborado pelos autores.
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Tabela 4 — 16 features utilizadas no modelo final

Feature

Descricao

SB_ BinaryStats__mean_ longstretchl

Periodo mais longo de valores
consecutivos acima da média

CO_flecac

Primeiro cruzamento 1/e da fungao
de autocorrelacao

SP_ Summaries welch rect area 5 1

Poténcia total no quinto mais baixo
das frequéncias no espectro de
poténcia de Fourier

SP  Summaries welch rect centroid

Centroéide do espectro de poténcia
de Fourier

FC_LocalSimple mean3_ stderr

Erro médio de uma previsao média
continua de 3 amostras

CO__HistogramAMI_even_2 5

Informacao automutua, m = 2, 7 =

5

IN_ AutoMutuallnfoStats 40 _gaussian_ fmmi

Primeiro minimo da funcao de
informacao automutua

SB_ MotifThree_ quantile hh

Entropia de Shannon de duas letras
sucessivas em simbolizacao
equiprovavel de 3 letras

FC__LocalSimple__meanl_ tauresrat

Alteragdo no comprimento da
correlacdo apdés diferenciagao
iterativa

CO_Embed2_ Dist_tau_d_ expfit_ meandiff

Ajuste exponencial para distancias
sucessivas no espago de
incorporacgao 2-d

SC_FluctAnal 2 rsrangefit_ 50 1_logi -
prop_rl

Proporc¢ao de flutuagoes de escala
de tempo mais lentas que se
ajustam com escala redimensionada
linearmente

PD_ PeriodicityWang_th0_ 01

Medida de periodicidade de Wang,
Wirth e Wang (2007)

DN _ Mean

Média dos valores

DN_ Spread_ Std

Desvio-padrao

vel

Velocidade de rotagdo da maquina

ap

Profundidade de usinagem

Fonte: Elaborado pelos autores.
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Tabela 5 — Hiperparametros finais do

modelo de random-forest

Hiperparametro

Valor

N¢ de estimadores

100

Critério de selecao

Indice Gini

Profundidade Miéxima profundidade
Méaximo N© de features por arvore 4
N¢ minimo de amostras por folha 1
N minimo de amostras antes de ramificar 2

Fonte: Elaborado pelos autores.
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4 RESULTADOS E DISCUSSAO

Para avaliar o modelo treinado, gerou-se a matriz de confusdo em conjunto com

suas métricas, correspondendo aos valores de acuracia, precisao, recall e F-score. Seus

resultados podem ser observados na Figura 12 e Tabela 6.

Real

Estavel

Chatter

Figura 12 — Matriz de confusao do modelo treinado

14000
758 12000
10000
-8000
-6000
810 5268

-4000

-2000
Estével Chétter

Predicao

Fonte: Elaborado pelos autores

Tabela 6 — Métricas do modelo treinado

Ré6tulo Acuracia Precisao Recall F-score

Estéavel 93% 95% 95% 95%

Chatter 93% 87T% 7% 7%

Fonte: Elaborado pelos autores.

Analisando as métricas obtidas, é possivel observar que o modelo apresentou uma

alta taxa de acurdcia (93%) com alta precisao e recall para os dados classificados como

estaveis (95% e 95% respectivamente). Isso era esperado devido ao grande volume de dados

estaveis, permitindo melhor performance nos treinos e teste. Ja os valores de precisao

e recall para o rétulo de chatter, apesar de satisfatorios, estdo um pouco abaixo em
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comparacao com sua contraparte estavel, mesmo possuindo menos dados disponiveis para
treino e teste. Além disso, a probabilidade apresentada pelo modelo apenas treinado pode
nao representar na pratica o resultado real, devido a uma possivel tendéncia sistematica

de superestimar ou subestimar as probabilidades.

4.1 Calibracao do Modelo

Para evitar isso e melhorar os resultados do classificador, realiza-se a calibragao do
modelo através da funcao CalibratedClassifierC'V da biblioteca scikit-learn. A calibracao
adotada é a de Platt, cuja técnica ajusta um modelo adicional logistico as saidas do
classificador base. O modelo adicional é entao treinado para prever a probabilidade correta
das classes com base nas saidas originais. Um ponto importante é o fato dessa calibracgao
nao alterar os hiperparametros do modelo, visto que é uma técnica de pos-processamento.
Com o modelo treinado e calibrado, o inico valor alterado é o threshold, que passou de
0,77 para 0,72.

Figura 13 — Comparacao entre as curvas de calibracao

Curva de Calibracao
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Probabilidade prevista para a classe

Fonte: Elaborado pelos autores
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A Figura 13 apresenta as curvas referentes ao modelo nao-calibrado e calibrado
em comparacgao com a curva ideal, representada pela reta x = y. Nota-se que o modelo
treinado e calibrado encontra-se mais proximo da reta em comparagdo com o modelo
apenas treinado. Isso é confirmado pela métrica de Brier, representada na Equacgao 4.1,
que mede o desempenho da probabilidade prevista (f;) e o resultado real (0;) de ambos os

modelos, em que quanto menor o valor, melhor o resultado do modelo.

1 N

N Z(ft - Ot)2 (4-1)

t=1

MB =

Como pode ser observado na Tabela 7, sua métrica calibrada é menor que a nao
calibrada, indicando que houve melhoria na confiabilidade do classificador, ou seja, quando
for indicado uma probabilidade de 80% do dado ser chatter por exemplo, sua taxa de

acerto estd mais préxima desses 80%.

Tabela 7 — Comparacao da métrica de Brier entre os modelos

Modelo Meétrica de Brier
Nao Calibrado 0.0605
Calibrado 0.0554

Fonte: Elaborado pelos autores.

Com o modelo treinado e calibrado, obteve-se uma nova matriz de confusao e
conjunto de métricas, apresentadas na Tabela 8 e Figura 14, além da curva de precisao-

recall, representada pela Figura 15, indicando uma boa relagao entre essas duas métricas.

Tabela 8 — Métricas do modelo treinado e calibrado

Ré6tulo Acuracia Precisao Recall F-score
Estével 93% 95% 96% 96%
Chatter 93% 89% 85% 7%

Fonte: Elaborado pelos autores.

Analisando os resultados obtidos e comparando com as métricas anteriores, é
possivel notar que a acuracia do modelo se manteve no valor de 93%. Para a classe de
chatter, houve um aumento de 2,3% na precisao com um decréscimo dos mesmos 2,3%
para o recall, indicando uma manutencao na identificacao de chatter pelo modelo. Apesar
do aumento nao ser muito expressivo, vale citar que esses sao os resultados do modelo
calibrado, ou seja, os valores apresentados possuem maior confiabilidade em relacao as
métricas nao calibradas, sem perder eficicia, indicando um resultado final mais significativo

para o modelo.
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Figura 15 — Curva de precisao-recall do modelo treinado e calibrado
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Outro ponto relevante é que houve um decréscimo de quase 20% no ntimero de falso
positivos, ou seja, o modelo passa a acusar menos dados estaveis como chatter. Trazendo
para uma aplicagao real no contexto de industria 4.0, caso o modelo seja implementado
em uma esteira de producao auténoma que retira de linha as pecas acusadas com chatter,
esse resultado reflete em menos pecgas normais sendo descartadas erroneamente. Em
contrapartida, houve um acréscimo de 11% no niimero de falso negativos, que representa
uma perda absoluta menor em comparacao com o decréscimo de falso positivos. Contudo,
em uma situacao real em que nao houvesse um identificador de chatter e o nimero de
falsos negativos, ou seja, pecas contendo chatter, seria de 100%, o resultado final obtido

pelo modelo é satisfatorio.

4.2 Teste

Terminado o processo de ajuste utilizando o conjunto de validagao, é necessario
avaliar a performance em outra parcela de dados nao antes vistos pelo modelo, ou conhecidos
como OOB (Out-Of-Bag), de forma a obter uma perspectiva mais realista sobre suas
métricas, visto que os parametros e hiperparametros nao foram especialmente ajustados
para as particularidades do conjunto em especifico. Sendo assim, registrou-se o desempenho

no conjunto de teste e obteve-se a Tabela 9 e a Figura 16

Tabela 9 — Métricas do modelo para o conjunto de teste

Rétulo Acuracia Precisdao Recall F-score
Estével 93% 95% 95% 95%
Chatter 93% 86% 87% 87%

Fonte: Elaborado pelos autores.

Percebe-se que o resultado, principalmente quanto a precisao na identificagao do
chatter, é 3,4% menor em relacao ao observado na Tabela 8. Isso ¢é algo esperado, visto que
a calibragao e o calculo do threshold sao feitos tendo como base a amostra de validacao,
que é apenas uma representacao da populacao toda, assim como o conjunto de treino
também o é. Sendo assim, com diferentes conjuntos, presume-se que o desempenho do

modelo possua uma certa diferenca daquele visto nos conjuntos conhecidos.
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5 CONCLUSAO

Neste trabalho, desenvolveu-se um modelo de machine learning baseado no algo-
ritmo de random-forest, utilizando a linguagem de programacao Python, para identificagao
do fendmeno negativo chatter, a partir de um conjunto de dados rotulados, caracterizando

um modelo supervisionado classificatorio.

Durante seu desenvolvimento, houve passos importantes como o tratamento prévio
do conjunto de dados, a fim de eliminar os possiveis ruidos e amplificar a performance do
modelo final. Além disso, devido a natureza temporal dos dados, dividiu-se previamente em
conjunto de treino e teste e realizou-se o método de janelas deslizantes para obtencao das
features, evitando um overfitting dos dados nessa etapa. Em seguida utilizou-se do método
de RFE para obter as features mais relevantes para o modelo, evitando redundancia e
contribuindo para sua performance geral. Por fim, treinou-se o modelo e gerou a matriz
de confusao juntamente com as métricas utilizadas para anélise de performance, como

acuracia, precisao, recall e F-score.

Analisando os resultados obtidos apenas com o treinamento do modelo, pode-se
perceber que o modelo apresentou uma acurdcia significativa de 93% e uma alta combinacao
de precisao e recall para os dados estaveis de 95% para ambos. Contudo, para identificacio
de chatter sua precisao estava um pouco abaixo, com 87%. Com o intuito de melhorar
tanto a performance quanto principalmente a confiabilidade de previsao, realizou-se a
calibracao do modelo utilizando a técnica de Platt, em que obteve-se como saida um
modelo treinado e calibrado, sendo confirmada pela métrica de Brier, que passou de 0,0605
para 0,0554. Com o modelo treinado e calibrado, novas métricas foram geradas juntamente
com a matriz de confusao, resultando em um acréscimo na precisao de identificacido de
chatter para 89%, sem comprometer significativamente as métricas para identificacdo dos
dados estaveis e acuracia, além de garantir maior confiabilidade dos resultados. Além
disso, observou-se uma diminui¢ao de 20% na classificacao de falso positivos, que reflete
positivamente em um caso de aplicacao real em que deseja-se que o modelo nao acuse pegas
estaveis como contendo chatter, descartando-as erroneamente. Por fim, para amostras
OOB (Out-Of-Bag) no conjunto de treino, foram verificadas métricas finais de 86% de

precisao, 3,4% abaixo do processo de validagao, e a acuracia geral foi mantida em 93%.

Dessa forma, através dos resultados obtidos, conclui-se que o modelo de random-
forest possui boa performance para a identificacdo de chatter, apresentando resultados
satisfatérios dentro do contexto de machine learning. Como sugestao para estudos futuros,
pode-se citar a integragao do modelo obtido com uma linha de producao autonoma
nos moldes da industria 4.0, que alimenta o modelo com dados de sensores e retorna a

identificacao de pecas sofreram chatter, promovendo uma aplicagao pratica do trabalho.
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