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RESUMO

RIASCOS, J. Controle de Drones com Modelo Baseado em Quatérnios. 2024. 67 p.
Monografia (Trabalho de Conclusão de Curso) - Escola de Engenharia de São Carlos,
Universidade de São Paulo, São Carlos, 2024.

Este trabalho apresenta uma investigação sobre a influência dos quatérnios no controle de
drones, um tema de crescente interesse devido à expansão do uso dessa tecnologia em diversos
campos. Para realizar as simulações, foi utilizado o software MATLAB, com o objetivo de estudar
o comportamento de cada controlador e realizar sua comparação. O documento é dividido
em 6 seções principais: a primeira contextualiza o problema e os objetivos buscados nesta
investigação. A segunda seção contém a explicação de cada modelo do drone, tanto pelo método
de Euler-Lagrange quanto por Quatérnios, além de uma análise sobre por que o segundo pode
ser considerado superior ao primeiro. Esta seção inclui uma breve introdução aos quatérnios
e suas propriedades algébricas. Na terceira seção, é apresentado o projeto dos controladores
aplicados a cada modelo, sendo o LQR para Euler-Lagrange e um controlador simples por
realimentação de estado para Quatérnios. A principal razão é testar a hipótese de que um
controlador sem otimização para um modelo por Quatérnios pode ser equivalente ou até melhor
que um controlador otimizado para um modelo de Euler-Lagrange. Sob a hipótese de que os
quatérnios são a causa disso, a pesquisa pretende demonstrar que o controle do drone depende
mais da natureza do seu modelo do que do projeto do controlador em si. Os controladores
são simulados através da discretização da dinâmica no tempo, e cada controlador é testado
sob os mesmos parâmetros, permitindo uma comparação equivalente entre ambos os enfoques.
Nas últimas três seções, são apresentados os resultados e conclusões obtidos, assim como
a comparação entre as simulações para cada caso, junto com as razões de por que ocorrem
determinados fenômenos, como singularidades, erros e as características de cada controlador. x
Além disso, são sugeridas linhas de trabalho futuro derivadas dos resultados obtidos ao longo da
investigação.
Palavras-chave: Quatérnios. Drone. Euler-Lagrange. MatLab. LQR. Lyapunov.





ABSTRACT

RIASCOS, J. Drone Control with Quaternion-Based Model. 2024. 67 p. Monograph
(Conclusion Course Paper) - Escola de Engenharia de São Carlos, Universidade de São Paulo,
São Carlos, 2024.

This thesis presents a study on the influence of quaternions in drone control, a topic of increasing
interest due to the growing use of this technology in various fields. MATLAB software was
used to perform the simulations, enabling the study of each controller’s behavior and their
comparison. The document is divided into six main sections: the first contextualizes the problem
and the objectives pursued in this research. The second section provides an explanation of each
drone model, both Euler-Lagrange and Quaternion-based, and an analysis of why the latter can
be considered superior to the former. It includes a brief introduction to quaternions and their
algebraic properties. The third section presents the controller design applied to each model, with
LQR for Euler-Lagrange and a simple state-feedback controller for Quaternions. The primary
purpose is to test the hypothesis that an unoptimized controller for a Quaternion-based model can
be equivalent to, or even better than, an optimized controller for an Euler-Lagrange model. Under
the assumption that quaternions are the reason for this, the research aims to demonstrate that drone
control relies more on the nature of the model than on the controller design itself. The controllers
are simulated by discretizing the dynamics over time and applying each controller under the
same parameters, which allows for an equivalent comparison between both approaches. The last
three sections present the results and conclusions, along with a comparison between simulations
for each case, explaining phenomena such as singularities, errors, and the characteristics of each
controller. Additionally, future research directions are suggested based on the findings obtained
during the study.

Keywords: Quaternions. Drone. Euler-Lagrange. MatLab. LQR. Luyapunov.
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1 INTRODUÇÃO

1.1 Aeronaves Não Tripuladas

Atualmente, os UAVs, sigla em inglês para Unmanned Aerial Vehicles (Veículos Aéreos
Não Tripulados), tornaram-se uma tecnologia cada vez mais utilizada, graças à sua versatilidade
e baixo custo, tanto em aplicações civis (Agricultura, Entretenimento, Recreação ou Transporte)
quanto militares (Segurança, Armamentista). Como consequência, "a crescente demanda por voos
autônomos com quadricópteros em diversas aplicações levou à introdução de novas estratégias
de controle" [3, p. 1]. Daí a importância de estudar essa tecnologia, desde seu design até sua
aplicação, para não apenas torná-los mais seguros, mas também mais precisos.

Os UAVs pertencem a uma classe específica de aeronaves multirotor, aquelas mais
pesadas que o ar.4 No presente ano, são classificados de acordo com seu nível de autonomia como
RPA (Remotely Piloted Aircraft), conforme o Regulamento Aeronáutico do Brasil (RBAC 91).5

De uma perspectiva mais rigorosa, eles se encontram em uma categoria distinta dos aeromodelos,
daí a seriedade na regulamentação dessa tecnologia, sendo o cumprimento de procedimentos
operacionais outro aspecto a ser considerado no momento do design dos controladores dos UAVs.

Ao longo deste documento, por motivos práticos e convenções de linguagem, os UAVs
serão referidos simplesmente como “Drones”.

Esta pesquisa aprofunda-se nos parâmetros que compõem um controlador para drones,
explorando tanto a influência do design adequado do controlador quanto a importância de contar
com um modelo matemático preciso do sistema, que por si só apresenta alta complexidade. Para
isso, foi realizada a simulação de dois tipos de controladores, cada um baseado em um modelo
matemático diferente.

Esclarecendo que a natureza do sistema não depende do modelo matemático formulado,
busca-se apresentar o fato de que as propriedades que para um modelo são desacopladas, para o
outro já não o são, o que torna esse novo enfoque interessante.

O primeiro controlador é projetado mediante o método LQR (Controle Ótimo Linear-
Quadrático), cujo objetivo principal é minimizar uma função de custo quadrática, por meio da
solução da Equação Algébrica de Ricatti, resultando em um (KLQR).

O segundo controlador baseia-se em uma retroalimentação de estado por Quatérnios. O
ganho (KQuatérnios) é calculado a partir do critério de Lyapunov. É importante notar que ambos
os sistemas possuem uma arquitetura “scaled reference”, a qual é ilustrada na 1.

Nos concentraremos então em como selecionamos (K), mas não na sua implementação.
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1.2 Formulação do Problema

O design de algoritmos de controle e navegação em Drones tem sido amplamente
estudado, elaborando diferentes abordagens que combinam algoritmos complexos e métodos de
controle cada vez mais sofisticados. Isso se deve ao fato de que um Drone é um sistema dinâmico,
instável, complexo, não linear e subatuado6; geralmente, a quantidade de entradas é menor que
os graus de liberdade do sistema. Além disso, os drones estão sujeitos a efeitos aerodinâmicos
que são complexos de modelar, entre eles "A dinâmica dos motores e suas interações com as
forças de arrasto sobre as hélices",7 ou a influência de perturbações do ar (i.e. Blade-Flapping),
e outros fatores que, por sua complexidade, costumam ser ignorados no controlador, afetando
propriedades importantes do Drone.

Entre as abordagens propostas, estão controladores a partir da análise do sistema apenas
em 2 dimensões ou desprezando os efeitos giroscópicos.4 Foram projetados controladores
robustos buscando melhorar o desempenho otimizando a eficácia.8 Também foram utilizados
enfoques onde são aplicados filtros de Kalman ou esquemas que aplicam várias teorias de
controle.9 Outros autores optaram por incluir observadores ou algoritmos de controle adaptativo
para obter melhores resultados.10 Uma das abordagens não convencionais foi utilizar redes
neurais para melhorar a estabilidade "contra parâmetros importantes desconhecidos no modelo
do sistema, bem como perturbações do vento".11

Infere-se assim que reduzir a complexidade do controlador permitiria maiores e melhores
intervalos de operação do Drone, conseguindo assim focar com maior detalhe naqueles aspectos
complexos que também devem ser considerados no design dessa tecnologia.

1.3 Objetivos

1.3.1 Objetivo Geral

Comparar um controlador de Drone baseado em um modelo de quatérnios com um
baseado na formulação de Euler-Lagrange, utilizando MATLAB.

1.3.2 Objetivos Específicos

• Objetivo 1: Compreender os fundamentos de cada modelo, bem como suas características
intrínsecas.

• Objetivo 2: Projetar um controlador específico para cada modelo.

• Objetivo 3: Simular a resposta de cada um dos modelos para determinada trajetória de
voo.

• Objetivo 4: Comparar os modelos e as respostas dos controladores.
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1.4 Metodologia

A estrutura em que o texto está escrito corresponde a cada um dos passos realizados na
pesquisa, na seguinte ordem:

• Modelos Matemáticos: Foram desenvolvidos modelos matemáticos para representar o
comportamento dinâmico do Drone, utilizando tanto a formulação baseada em Quatérnios

quanto a formulação de Euler-Lagrange. Esses modelos foram fundamentais para o design
dos controladores.

• Controladores: Foram projetados controladores para cada modelo, aproveitando as carac-
terísticas específicas dos mesmos. Avaliando ambas as estratégias de controle, a partir dos
parâmetros que devem ser considerados para cada modelo.

• Simulação: Foram realizadas simulações utilizando MATLAB, para avaliar a resposta de
cada controlador diante de uma determinada trajetória de voo. Essas simulações permitiram
analisar o comportamento dos modelos em condições controladas e obter dados para sua
comparação.

• Resultados e Comparação: Foi realizado uma análise dos resultados obtidos das simu-
lações, comparando o desempenho dos controladores projetados e sua relação com os
modelos. Discutindo-se as vantagens e desvantagens de cada abordagem, destacando as
características que fazem com que o controlador baseado em quatérnios seja superior às
abordagens convencionais.
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2 MODELOS MATEMÁTICOS

Figura 1 – Arquitetura do sistema de controle utilizado para ambos modelos (Referência Escalo-
nada)

Os modelos que foram aplicados na maioria dos enfoques de controladores clássicos
dependem de rotações sequenciais dos Ângulos de Euler 12 7 . Consistem na rotação do corpo
rígido em relação a um sistema inercial de coordenadas fixo (solidário à Terra), Figura 2.

A diferença entre um modelo por Euler-Lagrange13 e um por Quatérnios está na sua
capacidade de definir rotações de forma mais simples e compacta14 15 . O modelo dinâmico
resultante para ambos os casos é um sistema subatuado.

Todos os sistemas de referência aqui apresentados seguem a regra da mão direita e os
ângulos são representados em radianos. As funções trigonométricas Sen(α) e Cos(α) serão
representadas como Sα e Cα, respectivamente.

2.1 Momentos e Forças em um Rotor

A partir da combinação da Teoria do Elemento de Pá Figura 3 e da Teoria do Disco
Atuador, é possível modelar as forças e torques exercidos pelas hélices do Drone, considerando
que a força de empuxo resultante é aplicada apenas no eixo eaz do referencial propio ao Drone e
sobre seu centro de massa, desconsiderando outros efeitos aerodinâmicos como o blade flapping
ou o desalinhamento dos motores.
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Figura 2 – Ângulos de Euler. Imagem de Lionel Brits sob licença CC BY 3.0.1

Figura 3 – Teoria do Elemento de Pá. Imagem de Marino sob licença CC BY-SA 4.0.2
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O método decompõe a pá em pequenos elementos transversais (Perfis Aerodinâmicos),
determina as forças sobre cada elemento e, em seguida, a força gerada pela pá é obtida integrando
ao longo dela. O Drone estudado possui 4 rotores com 2 pás por hélice. Assim, obtêm-se as
equações16 17:

Ti = CTρAhr
2
iω

2
i (2.1)

τi = CQρAhr
3
iω

2
i (2.2)

Assim, para um dado rotor i; Ti representa o empuxo gerado, τi o torque produzido, ri o
raio da hélice, e ωi sua velocidade angular. Os coeficientes de empuxo e de torque são CT e CQ,
respectivamente. A densidade do ar é representada por ρ, e a área da hélice é simbolizada por
Ah.

Considerando, primeiro, que algumas variáveis nas equações 2.1 e 2.2 são constantes,
e segundo, que o Drone é simétrico, chegamos aos componentes das forças e torques totais
produzidos pelos rotores do Drone:

T⃗ =


Txêx
Tyêy
Tz êz

 =


0
0

c̄T
∑4
i=1 ω

2
i

 , τ⃗ =


τx

τy

τz

 =


c̄T
∑2
i=1 di SΦi ω

2
i (−δi,1 − δi,2 + δi,3 + δi,4)

c̄T
∑4
i=1 di CΦi ω

2
i (−δi,1 + δi,2 + δi,3 − δi,4)

c̄Q
∑4
i=1 ω

2
i σi


(2.3)

Os torques dependem da distância em que são aplicados di (Braço do Drone), com sua
direção σi ∈ {−1,+1},7 sendo Φi o menor ângulo entre o braço de suporte do rotor e o eixo eax
do referencial próprio ao Drone, Figura 4.

O delta de Kronecker δi,j é igual a 1 quando i = j e 0 caso contrário.

2.2 Modelo Dinâmico Euler-Lagrange

Este modelo é baseado na análise do Drone como um corpo sólido cujas forças ∈ R3. As
coordenadas do veículo, XDrone = (r⃗, η⃗) ∈ R6, podem ser representadas considerando o vetor
posição r⃗ = (x, y, z) ∈ R3, do centro de massa do Drone, em relação ao referencial inercial I , e
o vetor η⃗ = (ϕ, θ, ψ) ∈ R3, que representa a atitude do Drone (Roll, Pitch, Yaw). Definimos o
Lagrangiano como:

L(XDrone, ẊDrone) = TTrs + TRot − U (2.4)

Sabemos que a energia cinética translacional do Drone é TTrs = 1
2 m

˙⃗rT ˙⃗r, a energia
cinética rotacional TRot = 1

2 Ω⃗T I Ω⃗ e sua energia potencial é U = −mg⃗ · r⃗. O Drone possui uma
massa m, um vetor de gravidade g⃗ = [0 0 − g]T , uma matriz inercial I e um vetor de velocidade
angular Ω⃗ = [ωx, ωy, ωz]T .
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Figura 4 – Forças e Torques produzidos pelos rotores do Drone

Figura 5 – Modelo do Drone pelo seu Lagrangiano com o referencial inercial I

Substituindo Ω⃗ = Wη
˙⃗η, obtemos TRot = 1

2
˙⃗ηT I ˙⃗η. Podemos observar que a matriz inercial

dependerá da rotação do Drone, com isso obtemos uma matriz inercial em função dos ângulos
de Euler, calculada como I = W T

η I Wη
18 , equivalente à forma como é feita por Walle,19 mas

realizando a primeira rotação em ϕ.
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Wη =


−Sθ 0 1
CθSϕ Cϕ 0
CθCϕ −Sϕ 0

 , I =


Ixx 0 0
0 Iyy 0
0 0 Izz

 (2.5)

Considerando que a força de empuxo T⃗ é aplicada apenas no eixo eaz , ela pode ser
mapeada a partir do referencial inercial I T⃗A = IRA T⃗ , por meio de uma matriz de rotação
pelos ângulos de Euler IRA ∈ SO(3) :

IRA(ϕ, θ, ψ) =


CψCθ −SψCθ Sθ

SψCϕ + CψSθSϕ CψCϕ − SψSθSϕ −CθSϕ
SψSϕ − CψSθCϕ CψSϕ + SψSθCϕ CθCϕ

 (2.6)

Com isso, o modelo matemático da dinâmica do Drone pode ser obtido a partir da
equação 2.7:

d

dt

∂L

∂ẊDrone

− ∂L

∂XDrone

=
I T⃗A

τ⃗

 (2.7)

Obtendo,

mr̈ −mg⃗ = IT⃗A, r̈ = IT⃗A m−1 − g (2.8)

Iη̈ +
(
İ − 1

2
∂

∂η

(
η̇⊤I

))
η̇ = τ⃗ , Iη̈ = τ⃗ − C(η, η̇)η̇ (2.9)

Sendo C(η, η̇) =
(
İ − 1

2
∂
∂η

(
η̇⊤I

))
o efeito Coriollis (em relação ao referencial inercial

I), produzido pela rotação do Drone enquanto ele está em movimento. A expansão da equação
2.9 está no Anexo A, utilizando o mesmo procedimento seguido por [6, p. 21] . Aqui se considera
um dos efeitos giroscópicos que fazem parte da natureza do Drone.

2.3 Modelo Dinâmico Quatérnios

2.3.1 Versor

Os quatérnios são uma extensão dos números reais, localizados em um espaço Hiper-

complexo ∈ H, introduzidos por William Rowan Hamilton em 1843. Diremos que são uma
representação mais compacta de rotações, em comparação com os ângulos de Euler. Por estarem
matematicamente relacionados ao grupo SO(3), permitem representar rotações a partir de 4
números, ao invés de 9 como quando se utilizam matrizes por ângulos de Euler. Como o espaço
tridimensional está incluído no espaço H dos Quatérnios, os vetores podem ser representados
como Quatérnios com sua parte escalar igual a zero.
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Figura 6 – Rotação de um vetor λ⃗

Os Quatérnios são compostos por uma parte real escalar (q0, q1, q2, q3) ∈ R e uma parte
imaginária (̂i, ĵ, k̂) ∈ I,

q = q0 + q1î + q2ĵ + q3k̂ = q0 + q⃗, q⃗ =
[
q1 q2 q3

]T
(2.10)

As regras que eles seguem são 2.11,

î2 = ĵ2 = k̂2 = îĵk̂ = −1 (2.11)

Tenhamos em mente que uma representação gráfica da rotação de quatérnios é difícil
de exemplificar. Em um sentido abstrato, podemos dizer que uma rotação é denotada pelo
vetor λ⃗. Este vetor, Figura 6, possui magnitude λ = ∥λ⃗∥ em radianos, atuando sobre um eixo
vetorial-unitário ĥ = λ⃗/∥λ⃗∥, cujo eixo de rotação é λ⃗ = λĥ.

λ⃗ =
[
λx λy λz

]T
Por meio da Identidade de Euler, sabe-se que uma rotação de λ radianos em um plano
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é dada pela equação 2.12. Em 1840, Olinde Rodrigues realizou a expansão dessa identidade,
parametrizando as rotações tridimensionais em função de quatérnios, obtendo a identidade 2.13.

eîλ = cosλ+ î sin λ (2.12)

qv = eλĥ/2 = cos(λ/2) + ĥ sin(λ/2) (2.13)

A magnitude de |qv| = 1, ou seja, o quatérnio unitário. Normalizar o quatérnio permite
simplificar suas operações. Sabendo como o quatérnio realiza a rotação, podemos localizar seu
eixo de rotação, despejando λ⃗.

λ⃗ = 2 ln q

ln q =

[0 0 0]T si ∥q⃗∥ = 0
q⃗

∥q⃗∥ arccos q0 si ∥q⃗∥ ≠ 0

(2.14)

Com isso, podemos posicionar um vetor em qualquer localização do espaço ∈ H.

Para realizar os cálculos, devemos ter em mente que a álgebra dos quatérnios segue
regras específicas, as quais são apresentadas no Anexo B.

2.3.2 Dinâmica por Quatérnios

O modelo por QuatérniosI é obtido a partir das considerações do modelo anterior (simé-
trico, sem blade-flapping, com empuxo apenas no eixo eaz), e considerando o drone como um
corpo rígido em movimento, em seu sistema de referência próprio A, em relação a um referêncial
inercial I . Com isso, pelas equações de movimento de Newton, sua dinâmica é escrita por20 21 22

, representada na Figura 7:

x =


r⃗
˙⃗r
q
Ω⃗

 , ẋ =


˙⃗r
¨⃗r
q̇
˙⃗Ω

 =



˙⃗r
m−1 q ◦ T⃗ ◦ q∗ + g⃗

1
2q ◦ Ω⃗

I−1
(
τ⃗ − Ω⃗ × IΩ⃗

)

 (2.15)

O vetor r⃗ indica a posição do drone, ˙⃗r sua velocidade e q um versor denotando sua
orientação, todas em relação a I.

Por fim, Ω⃗ é sua velocidade angular, I a matriz de inércia e τ⃗ o torque total (2.3), no
sistema de referência A.

A força T⃗ , neste caso, é aplicada perpendicular ao plano do drone, o qual está girando pelo
quatérnio q. Assim, podemos representá-la, como mostrado acima, a partir do que é apresentado
em Anexo B.
I A multiplicação de quatérnios será denotada por ◦
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Figura 7 – Modelo do Drone por Quatérnios com um referencial inercial I

O quatérnio q → qv = eλĥ/2 implica a menor rotação possível de I ⇒ A.

2.4 Comparação de Modelos

Agora se sabe que a dinâmica do drone por Euler-Lagrange pode ser descrita pelas
equações 2.8 e 2.9, as quais determinam sua translação e rotação, respectivamente. Neste caso,
cada uma delas representa uma variável separada, ou seja, não há nada que as relacione ou as
conecte. Aqui, surge outra das vantagens ao utilizar o enfoque por quatérnios: ao atuar como
conexões, eles se tornam uma excelente opção.

Para o caso do modelo dinâmico por Quatérnios, a translação e a rotação são modeladas
pelo "mesmo conjunto de equações", equação 2.15. Aqui, as equações são compactadas porque
a posição do drone depende apenas da força aplicada nele, e como esta depende do efeito de
uma orientação, determinada por um quatérnio q, então, precisamos controlar apenas a força
gerada pelos motores, ou seja, a velocidade desses motores.

E então, nossa lei de controle será uma "simples"multiplicação por quatérnios, de modo
que este quatérnio q sirva como correção para se aproximar de qv.

2.4.1 Propriedade Intrínseca Principal

Pode parecer óbvio, mas a rotação é intrínseca ao drone, o que torna possível sua
localização, e é o que define sua dinâmica. Daí derivam seus efeitos giroscópicos, e é por isso
que seu controle é tão complexo. Para cada modelo, o principal objetivo é encontrar uma rotação
da força no eixo z para levar o drone de um estado a outro. Faço essa anotação porque é isso que
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torna o modelo por quatérnios mais eficiente. O quatérnio serve como uma representação mais
elegante das propriedades intrínsecas do drone.

Aqui entram em consideração efeitos como os momentos de inércia e os efeitos giroscópi-
cos, que são próprios do drone. A isso adicionamos, como propriedade extrínseca, a componente
do efeito Coriolis, que surge da necessidade de um sistema de referência inercial, tornando o
processo de determinar sua atitude complicado.

E se olharmos de uma forma abstrata, podemos pensar no drone como uma partícula
tridimensional que se move e gira sobre um plano tetradimensionalII, ou seja, estamos apenas
nos reposicionando em um espaço vetorial, que segue regras especiais.

Observando as equações 2.8, 2.9 e 2.15, podemos ver que temos um total de 12 graus
de liberdade: os vetores de posição, velocidade, ângulo e velocidade angular, cada um com
3 componentes. Para controlar o sistema, temos apenas 4 entradas: uma força e os torques
exercidos pelos motores sobre o drone.

2.4.2 Rotações

A vantagem de usar quatérnios é que eles não são sequenciais. Se observarmos as
equações 2.8 e 2.9, veremos que elas dependem de rotações produzidas por multiplicações de
matrizes de cossenos direcionais, que podem ser decompostas por meio de um mapeamento
inverso21 . A escolha de IRA não é arbitrária; essa é uma rotação conhecida como Ângulos

de Cardano, por Gerolamo Cardano, um matemático italiano do Renascimento; Ângulos de

Tait-Bryan, por Peter Guthrie Tait, matemático escocês do século XIX; ou simplesmente ângulos
de Euler, pelo matemático e físico suíço Leonhard Euler. Trata-se de uma sequência de rotações
que possui certas vantagens frente ao gimbal lock, um dos maiores limitantes ao usar esse tipo
de rotação. Sabe-se que nenhuma das rotações de Euler pode escapar desse fenômeno.

Ao usar quatérnios, temos a vantagem de nos desvincularmos do uso de ângulos. Incluí-
los no modelo implica uma resposta contínua e natural do sistema, removendo restrições físicas
e ampliando os limites do que o controlador pode fazer.

Por isso, melhora consideravelmente a adaptabilidade do sistema a diversas condições
ou mudanças repentinas, sem a necessidade de uma grande complexidade.

2.4.3 Matemática e Computação

Embora não pareça, usar quatérnios é mais simples, pois as rotações são representadas
por uma única identidade, ao contrário das decomposições por ângulos de Euler, o que reduz o
cálculo. Pode ser que sua representação não seja intuitiva, mas sabe-se que é a melhor forma
para realizar rotações no espaço.

II Os vetores são realmente equivalentes a um quatérnio com parte real zero
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O custo computacional é mais baixo, pois, sendo matematicamente equivalentes aos
ângulos de Euler, não alteramos as propriedades do sistema nem o comportamento do mesmo, e
também não é necessário considerar correções. Apenas para comparação, para a multiplicação
de duas matrizes 3 × 3, são realizadas um total de 45 operações, enquanto os quatérnios exigem
metade disso para se multiplicarem.
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3 CONTROLADORES

3.1 Trajetória

Com µ ∈ [0, t], conseguimos discretizar o espaço, obtendo a trajetória desejada r⃗d =
(x, y, z), com raio final ν e tempo final t, conforme mostrado na Figura 8.

Para aplicar essa trajetória usando quatérnios, diremos que uma força desejada aponta
para o centro da espiral, Figura 9.

Tray(t) =



x = x0 + µ · ν · cos(ω̄ · 2πµ
t

)/t x0 = 0.1

y = y0 + µ · ν · sin(ω̄ · 2πµ
t

)/t y0 = 0.1

z = (z0 + 1
2gι

2) · h
1+g/2 z0 = 2, ι = µ/t

ω̄ = 5 ν = 8

g = 9.81 m/s2 h = 15

(3.1)

Figura 8 – Trajetória projetada para LQR

3.2 Linear Quadratic Regulator

Essa teoria baseia-se em operar a dinâmica de um sistema com o menor custo possível,
utilizando uma função de custo que encontra o KLQR ótimo para que os recursos «aplicados ao
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Figura 9 – Trajetória projetada para Quatérnios

sistema» sejam consumidos na menor quantidade possível. Em seguida, o resultado é elevado
ao quadrado para evitar valores negativos no cálculo. O projeto de controladores por LQR é um
método bastante eficiente, que permite reduzir o erro em regime permanente23 .

A função de custo é apresentada em 3.2, sendo Q o componente que penaliza o desem-
penho e R aquele que penaliza o esforço do atuador (energia).

J =
∫ ∞

0

(
xTQx + uTRu

)
dt (3.2)

Integrar de 0 até ∞ significa que o controlador busca minimizar o erro durante toda a
operação do sistema, forçando-o a convergir para o equilíbrio e a minimizar qualquer desvio ao
longo do tempo. Com um horizonte infinito, a solução da ARE torna-se constante e estacionária,
o que significa que não há necessidade de recalcular KLQR a cada instante, como ocorre no
controle ótimo de horizonte finito. Isso resulta em um controlador de realimentação de estado
constante.

3.2.1 Equação Algébrica de Riccati

A equação apresentada em 3.3 é obtida ao incluir uma matriz simétrica P = PT . Ao
reorganizar e completar o quadrado em 3.2, obtemos, para um modelo linear, a respectiva AREI:

I ARE, pela sigla em inglês



3.2 Linear Quadratic Regulator 41

ẋ = Ax+ Bu
y = Cx+ Du

,
ATP + PA − PBR−1BTP + Q = 0

u = −R−1BTP x
(3.3)

3.2.2 Controlador

O controlador, então, utiliza uma realimentação com KLQR = R−1BTP, onde P é
encontrada ao resolver a ARE.

Agora, observamos que é difícil linearizar a equação 2.9 para ser usada no método LQR,
por isso considera-se I como uma matriz diagonal constante:

η̈ = I−1 (τ⃗ − C(η, η̇)η̇) (3.4)

Observamos que, ao resolver as equações de translação e rotação, temos 6 possíveis
entradas u⃗ para um vetor de estado ẌDrone:

r̈1 = Sθm
−1U1,

r̈2 = −CθSϕm−1U1,

r̈3 = CθC
−1
ϕ U1 − g,

η̈1 = −I−1
xx [ (ψ̇c11 + θ̇c12 + ϕ̇c13) + U2 ],

η̈2 = −I−1
yy [ (ψ̇c12 + θ̇c22 + ϕ̇c23) + U3 ],

η̈3 = −I−1
zz [ (ψ̇c13 + θ̇c32 + ϕ̇c33) + U4 ].

(3.5)

Aqui surge um ponto importante: apenas η̈ corresponde a 3 das 4 entradas disponíveis
em um Drone, ou seja, com nossas entradas controlamos, em sua maior parte, a rotação do
Drone.

Assim, temos uma matriz [XDrone, ẊDrone].

Escrevendo o sistema no espaço de estados, definimos que 03 é uma matriz quadrada de
zeros e Id3

II é a matriz identidade, ambas de dimensão 3×3.

x = [r ṙ η η̇]T , u⃗ = [U1, U2 U3 U4]T =
[

IT⃗A − g⃗, τ⃗
]T

Para linearizar o modelo, considera-se que os ângulos são pequenos (entre iterações), de
modo que (Sα = α) e (Cα = 1)24 . Com isso, é possível discretizar a equação.

Nossas equações no espaço de estados, com G = −I−1C(η, η̇), são:

II Não confundir com a matriz de inércia, I .
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A =


03 Id3 03 03

03 03 03 03

03 03 03 Id3

03 03 03 G

 , B =


03 03

Id3 03

03 03

03 I−1

 , C =
Id3 03 03 03

03 03 Id3 03

 , D = 0 (3.6)

Resta agora a lei de controle, que é implementada criando um erro entre o estado atual e
um estado de referência. Assim, nosso sistema em malha fechada é:

ẋ = Ax+ B (−KLQR(x− xref)) (3.7)

O erro, (x−xref), leva o sistema a um erro de estado estável por meio de uma compensação
em relação à referência. Como já temos uma trajetória definida, encontraremos uma velocidade
angular e os ângulos desejados por:

˙⃗ηd = r⃗d × ˙⃗rd
|rd|

(3.8)

cos(ηd) = r⃗d · ˙⃗rd
|rd||ṙd|

(3.9)

ηd = cos−1
(

r⃗d · ˙⃗rd
|rd||ṙd|

)
(3.10)

Calcula-se ηd para obter um ângulo de referência ao calcular os efeitos de Coriolis para
cada iteração. Assim, definimos que nosso estado de referência xref = xd, para a trajetória
desejada rd, será:

xd = [ ˙⃗rd , ˙⃗ηd], u = −KLQR[ ˙⃗r − ˙⃗rd, ˙⃗η − ˙⃗ηd]

Com isso, definimos completamente nossas entradas, de modo que ˙⃗r → ˙⃗rd e ˙⃗η → ˙⃗ηd.

3.3 Quatérnios

Para explicar o design do controlador por quatérnios, o desacoplaremos em duas partes:
translacional e rotacional. No entanto, cabe esclarecer, como mencionado anteriormente, que a
dinâmica do Drone está compactada, ao contrário do modelo por Euler-Lagrange. O design do
controlador segue um procedimento semelhante ao realizado em.6

Para simplificar, diremos que I T⃗A = q ◦ T⃗ ◦ q∗, e separaremos a equação 2.15 em sua
componente translacional e rotacional, respectivamente:
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ẋTrs =
 ˙⃗r

¨⃗r

 =

 ˙⃗r
m−1 I T⃗A + g⃗

 , ẋRot =
q̇

˙⃗Ω

 =
 1

2q ◦ Ω⃗
I−1

(
τ⃗ − Ω⃗ × IΩ⃗

)
 (3.11)

3.3.1 Translacional

O design do controlador translacional baseia-se em fazer a posição do Drone (r⃗) e a
posição desejada (r⃗d) convergirem para zero. O objetivo é projetar uma força I T⃗A, de modo que
xTrs, ẋTrs ⇒ 0, rastreando o erro da posição do Drone.

r⃗e = r⃗ − r⃗d ˙⃗re
¨⃗re

 =

 ˙⃗re
m−1 I T⃗A + g⃗

 , (3.12)

3.3.2 Rotacional

Para o caso do controlador rotacional, sabemos que seu controle dependerá de τ⃗ . Aqui,
o objetivo é aplicar um quatérnio q tal que a atitude do Drone converja para o versor qv =
1 + [0 0 0]T , enquanto a orientação do eixo λ⃗ e sua velocidade angular convergem para 0.

Assim como antes, rastreamos a posição do Drone por um quatérnio de erro qe, em
relação a um quatérnio desejado qd.

qe = q∗
d ◦ q (3.13)

Seguindo 3.13, a conclusão é então que q → q∗
d, para que qe → qv.

q̇e
˙⃗Ωe

 =
 1

2qe ◦ Ω⃗e

I−1
(
τ⃗ − Ω⃗e × IΩ⃗e

)
 (3.14)

3.3.3 Controlador

A trajetória desejada para o quatérnio é calculada a partir da consideração de uma força
desejada T⃗d, ao longo da trajetória, que aponta para o centro da mesma. Então, normalizando os
vetores T⃗d e T⃗ , obtemos n⃗d e n⃗z, respectivamente, onde n⃗d × n⃗z determina o eixo Λ⃗d e a rotação
com o menor ângulo possível λd entre T⃗d e T⃗ :

n⃗d × n⃗z = Λ⃗d Sλd (3.15)

n⃗d ◦ n⃗∗
z = −n⃗d · n⃗∗

z + n⃗d × n⃗∗
z = n⃗z · n⃗d + n⃗z × n⃗d (3.16)
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qd = e
ln(n⃗d◦n⃗∗

z)
2 ◦ e

[0 0 ψd]T

2 , (3.17)

O controlador por realimentação de estado, projetado para este caso, segue a lei de
Lyapunov, que estabelece que, se existir uma função V (x)III, contínua, diferenciável e positiva
definida, cuja derivada em relação ao tempo V̇ (x)IV é negativa definida, então a origem do
sistema é um ponto de equilíbrio estável pelo critério de Lyapunov.

Criterio de Lyapunov: V (x) = 1
2 x(t)2

V (x) > 0, ∀x ̸= 0,

V̇ (x) < 0, ∀x ̸= 0.

Escrevendo os sub-sistemas pelas equações no espaço de estados:

 ˙⃗re
¨⃗re

 =
03 Id3

03 03

r⃗e
˙⃗re

+
 03

Id3

 (T⃗dm−1 + g⃗
)

(3.18)

 ˙⃗
λe
¨⃗
λe

 =
03 Id3

03 03

λ⃗e˙⃗
λe

+
 03

I−1

(τ⃗d − ˙⃗
λe × I

˙⃗
λe

)
(3.19)

Assim, as equações positivas definidas são formuladas:

VTrs = 1
2

r⃗e
˙⃗re

 ·

r⃗e
˙⃗re

 , VRot = 1
2

λ⃗e˙⃗
λe

 ·

λ⃗e˙⃗
λe

 . (3.20)

Suas derivadas são:

V̇Trs =
r⃗e

˙⃗re

 ·

03 Id3

03 03

r⃗e
˙⃗re

+
 03

Id3m
−1

 (T⃗d + g⃗m
) ,

V̇Rot =
λ⃗e˙⃗
λe

 ·

03 Id3

03 03

 λ⃗e˙⃗
λe

+
 03

I−1

(τ⃗ − ˙⃗
λe × I

˙⃗
λe

)
(3.21)

As entradas serão propostas da mesma forma que antes, onde o erro é multiplicado por
uma ganância K.

T⃗d = − [Kp,Trs Kd,Trs]
r⃗e

˙⃗re

−mg⃗ (3.22)

Kp,Trs = diag(κx, κy, κz), Kd,Trs = diag(κ̄x, κ̄y, κ̄z)
III Se V (x) → 0 quando x → 0, então o sistema é assintoticamente estável.
IV Isso implica que o sistema tende a se aproximar do ponto de equilíbrio.
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As entradas levam a que o critério de Lyapunov seja cumprido.

τ⃗ = − [Kp,Rot Kd,Rot]
λ⃗e˙⃗
λe

+ ˙⃗
λe × I

˙⃗
λe (3.23)

Kp,Rot = diag(ϵx, ϵy, ϵz), Kd,Rot = diag(ϵ̄x, ϵ̄y, ϵ̄z)

Substituindo 3.23 e 3.22 em 3.21, obtemos as matrizes que determinam os KQuatérnios

do sistema:

eig
03 Id3

03 03

+
 03

Id3m
−1

 [Kp,Trs Kd,Trs]
 ,

eig
03 Id3

03 03

+
 03

I−1

 [Kp,Rot Kd,Rot]
 ,

(3.24)

Então, para estabilizar cada subsistema assintoticamente, as ganâncias K devem ser
escolhidas de forma que as partes reais de 3.24 sejam negativas definidas.

Para realizar o acompanhamento do erro nos quatérnios, a fim de determinar qual
quatérnio deve ser aplicado para corrigir esse erro, calculamos:

λ⃗e = 2ln(qe), qe = q∗
d ◦ q, ˙⃗

λe = Ω⃗ − 2 d
dt
ln(qd) (3.25)

3.4 Comparação de Controladores

3.4.1 Principais Diferenças

Note-se então que um controlador clássico requer uma grande quantidade de cálculos
devido aos erros, que vêm da natureza sequencial das rotações. Por exemplo, para o cálculo de
um estado para outro, operam-se, neste caso, matrizes ∈ R12, além de ser necessário calcular
primeiro um eixo para então realizar a rotação.

Agora, sabendo que temos apenas 4 entradas de controle, a discussão é qual das posições
r̈ usar. Isso dependerá do que se busca realizar. A dinâmica do Drone só permitirá um grau de
liberdade em relação à posição. Por isso, são utilizados diferentes métodos de controle para levar
o Drone de um estado a outro, sendo necessário sacrificar 2 das possíveis entradas. O problema
reside na complexidade da dinâmica do Drone, induzida por operações entre ângulos, ao utilizar
Matrizes de Rotação sequenciais.
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3.4.2 Singularidades

Uma vantagem dos quatérnios é eliminar as singularidades devido aos ângulos de Euler.
Para a rotação utilizada IRA(ϕ, θ, ψ), se o pitch chega a θ → π/2, então Cθ = 0, situação na
qual o mapeamento inverso de IRA → η⃗ não está definido. O processo de mapear os ângulos
correspondentes a partir de uma matriz de rotação é importante porque requer saber a velocidade
angular dos motores, para fazer girar o Drone.

Outra desvantagem dos ângulos de Euler é que eles perdem precisão ao integrar mudanças
incrementais da atitude ao longo do tempo, mesmo sendo estas mudanças pequenas.21

3.4.3 Simplicidade

Observa-se que usar quatérnios remove as 3 atitudes , equação 3.5, e reduz os cálculos
necessários para chegar de um estado a outro. A razão é que já não é necessário calcular um
estado, revisar seu erro e depois mapear de volta o ângulo para aplicar uma entrada proporcional
a esse erro. O que nos ajuda a simplificar os cálculos em quatérnios é que temos como referência
um versor, assim nos preocupamos apenas em definir um eixo de rotação. A ideia, neste caso, é
calcular um q que nos aproxime o máximo possível de qv, quatérnio projetado paralelo a um
desejado.
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4 SIMULAÇÃO

Para a validação dos modelos, foram realizadas simulações utilizando MATLAB, com
um tempo de simulação t = 400. Os cálculos são realizados de forma iterativa, discretizando a
resposta no tempo. As posições e velocidades de referência são computadas antes do cálculo da
resposta de cada controlador. Diremos que um valor presente é representado por •, futuro com +

e passado com −.

Esclarecemos que as derivadas foram calculadas utilizando diferenças finitas centrais,
e aplicando diferenças progressivas e regressivas nas extremidades, com isso melhoramos a
precisão do cálculo. A sequência que segue o algoritmo aplicado na simulação é:

1. Inicialização:

• Definimos as constantes físicas que nos permitirão calcular as condições iniciais, a
partir dos dados da tabela 1.

• Definimos a matriz de inércia I com seus valores nos eixos Ixx, Iyy, Izz.

2. Trajetória:

• Definimos a trajetória e calculamos os vetores associados.

• Calculamos a velocidade por diferenças finitas, r⃗d = (r⃗d+ − r⃗d
−)/2dt.

• Calculamos o ângulo entre o vetor posição e o vetor velocidade em cada ponto, 3.10,
a diferença entre esses ângulos determina o nosso ângulo de roll desejado ψd.

• Calculamos a velocidade angular do Drone Ω⃗, equação 3.8.

3. Definição das Matrizes do Sistema no Espaço de Estados:

• Colocamos as matrizes A, B, C, e D do sistema no espaço de estadosI, e suas
respectivas ganâncias K.

• Criamos o sistema sys como um sistema discreto com tempo de amostragem dt, II.

4. Simulação do Sistema:

• Calculamos os erros, para saber as correções que devem ser aplicadas.

• Simulamos o estado seguinte y+, para t•, com a entrada U•x• usando lsim no
intervalo de tempo atual (∆t = 0.1 segundos).

• Armazenamos o estado x+ e a saída y+ atualizados para calcular o próximo estado.
I Para os quatérnios devem ser acopladas 3.18 e 3.19, operando a dinâmica como um único sistema
II Cuja função no MATLAB é sys = ss(A,B,C,D,dt)
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• O processo é repetido até o fim da trajetória.

x(t+ ∆t) = Ax(t) − B K u(t) (4.1)

Para ambos controladores, o processo de simulação foi o mesmo, a diferença está no fato
de que, para o controlador por quatérnios, a cada iteração deve-se mapear de volta o quatérnio q
que corrige nosso erro, equação 3.25. Então, tendo:

(q∗
d)•

−1 e
λ⃗e
2 = q+

Assim, podemos rotacionar q+ ◦ T⃗• ◦ q+∗ III . A derivada do logaritmo do quatérnio
desejado foi calculada da seguinte forma:

d

dt
ln(qd) = ln(qd)+ − ln(qd)−/2 dt

As constantes físicas utilizadas foram tomadas como proposição de um drone que possui
essas características, e os valores de inércia pertencem ao projeto de um drone quadrado.

Constante Valor Unidade Ganho
g 9.81 m/s2 Kp,Trs = diag(10)
m 1 kg Kd,Trs = diag(2)
ωInit 1200 rev/s Kp,Rot = diag(30)
CT 6.6e− 2 Kd,Rot = diag(5)

CT/CQ 11.36
Ixx 0.2 kg·m2

Geométricos
da= 0.1 m

Iyy 0.2 kg·m2

Izz 0.4 kg·m2

ρ 1.225 kg/m3 Φi =
√

2
2

rb 2.2e-2 m
a Distância dos Braços
b Raio da Hélice

Tabela 1 – Constantes Físicas

III Ter cuidado, os quatérnios devem seguir uma ordem de pré-multiplicação, pois não comutam no
produto
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5 RESULTADOS E COMPARAÇÃO

Estes foram os resultados obtidos na simulação, e são apresentadas as respostas de cada
controlador. Os gráficos mostrados exibem os erros de cada entrada.

Vale ressaltar que cores iguais denotam a mesma variável, independentemente do contro-
lador ao qual se refere.

5.0.1 Resposta Força

A resposta à força é apresentada apenas como a exercida em z, uma vez que é a força de
maior interesse neste estudo. Para os torques τ , consideramos suas componentes, assim definindo
nossas 4 entradas.

a b

Figura 10 – Resposta de Força de (a) LQR y (b) Quatérnios

A Figura 10 permite evidenciar o comportamento da força em z de cada controlador.
As forças na Figura (a) correspondem à força exercida pela gravidade (Tg), à força que o drone
exerce durante a trajetória (T ) e ao erro dessa força (Te), respectivamente.

As forças na Figura (b) representam, respectivamente, a força desejada (Td ), a força
aplicada pelo drone durante a trajetória (T ) e o erro entre essas forças (Te).

Para o caso da força em quatérnios, observamos que ela aumenta devido ao fato de que
essa força está direcionada para o centro da trajetória. Ou seja, o drone exerce uma força cada vez
maior para contrabalançar a força centrífuga, que depende do aumento do raio. O erro aumenta
de 2.9 newtons, ao começo, para 7.71 newtons ao atingir 400 segundos.
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a b

Figura 11 – Sobressinal de Força de (a) LQR y (b) Quatérnios

Na Figura 11 é apresentado um zoom das forças, para o LQR é possível observar que
ocorre um sobressinal, de 5 newtons, aos 40 segundos devido à mudança de trajetória (de
elevação para espiral). Para os quatérnios, o sobressinal ocorre no início da trajetória, e esse
sobressinal também é de 5 newtons.

Além disso, evidencia-se que o erro para o controlador LQR é praticamente 0 durante
quase toda a trajetória. Para ambas as figuras, a linha azul representa a força desejada, a linha
vermelha a força alcançada pelo drone, e a linha amarela representa o erro dessa força.

5.0.2 Resposta Torques

Por outro lado, é apresentado apenas o erro dos torques, e não seus componentes, pois é
suficiente para observar o quão bem o controlador consegue realizar as rotações enquanto gira.

Vamos revisar aqui dois aspectos: primeiro, para quatérnios, o torque em τz tem um
comportamento diferente (diagonal), e segundo, este possui sobressinal apenas no início do
trajeto, inferindo que este controlador permite uma melhor resposta a mudanças repentinas de
direção.

Nesta seção, são apresentados os erros dos torques de cada controlador à esquerda.
À direita, é exibido um aumento na região inicial da curva, correspondente aos primeiros 50
segundos, para analisar os sobresinais em cada caso. Vale lembrar que cada torque τx, τy, τz
corresponde aos torques aplicados aos movimentos de roll, pitch e yaw (ϕ, θ, ψ), respectivamente.

O sobre-sinal do torque no quatérnio aos 40 segundos é superior ao do controlador LQR.
Vejamos que o erro da componente em z da Figura 12 é nulo ao longo da trajetória, por outro
lado a Figura 13, tem uma componente diagonal, isto devido ao torque que está sendo produzido,
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Componentes Sobressinal

Figura 12 – Erro e Sobressinal de Torque LQR

Componentes Sobressinal

Figura 13 – Erro e Sobressinal de Torque Quatérnios

fazendo com que o drone tenha movimento de Yaw, obtemos que o seu erro é de 0.2 Nm no
início da trajetória, nulo aos 200 segundos e 0.3 Nm aos 400 segundos.

5.1 Acompanhamento de Trajetórias

Agora apresentamos as trajetórias seguidas por cada controlador, com isso podemos
evidenciar como é sua resposta às posições desejadas. Se os observarmos de uma vista lateral e
superior, poderemos facilmente evidenciar seu comportamento em relação a cada eixo.
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Figura 14 – Acompanhamento Trajetória LQR

Vista Superior Vista Lateral

Figura 15 – Vistas da resposta do Controlador LQR

5.1.1 Quatérnios

Para os erros de quatérnios, além de visualizar o erro de cada componente do quatérnio
desejado qd e do utilizado q, apresentados na Figura 18, também é possível observar que a soma
dos quatro componentes do quatérnio, em um mesmo instante de tempo, resulta em 1.
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Figura 16 – Acompanhamento Trajetória Quatérnios

Vista Superior Vista Lateral

Figura 17 – Vistas da resposta do Controlador Quatérnios

5.2 Comparação de Controladores

Observemos que a força em z do controlador LQR e de Quatérnios, Figura 10 (a) e (b),
respectivamente, são distintas. Isso ocorre porque a dinâmica do primeiro não permite mudanças
de força em z, implicando que o drone se move de um ponto a outro em hovering, ou seja, o
plano do drone está quase sempre paralelo ao solo, já que para este caso foram utilizados ângulos
pequenos para as rotações.
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q0 q1

q2 q3

Figura 18 – Resposta del quatérnio de rotação q

A dinâmica do segundo demonstra que o drone está acelerando, ao ter um ângulo
de pitch e roll em cada ponto. Isso exige uma força que permita resistir à força centrífuga
fictícia, provocada pela rotação. Tal força é proporcional ao raio, e como neste caso ela aumenta
linearmente, equação 3.1, sua força também aumentará.

Além disso, observa-se que o torque em ψ tem o mesmo efeito, mas isso ocorre porque o
drone também está girando sobre seu eixo.

O controlador por quatérnios possui uma precisão muito alta para seguir rotações, mas
falha no momento de se deslocar no espaço. Vendo a Figura 17, vemos que sua posição vertical
possui um erro maior no plano z, mas segue quase exatamente cada ponto enquanto gira. Por
outro lado, o controlado por LQR tem uma vantagem na posição, mas suas rotações tendem a se
afastar cada vez mais das desejadas.

Ainda assim, o controlador por Quatérnios parece se ajustar à trajetória após um tempo.
Visto de uma perspectiva lateral, depois dos 12 metros, o erro da posição diminui drasticamente,
podendo-se dizer que, aos 14 metros, o erro é zero.
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Vejamos mais uma coisa, a densidade de pontos, linha azul, para o controlador LQR
é menor do que para o controlador de Quatérnios. Ambos os controladores foram simulados
sob as mesmas condições, com deltas de tempo iguais e com o mesmo tempo final. Isso indica
continuidade, pois os erros provenientes dos ângulos de Euler têm seu efeito sobre este parâmetro.
É como se estivéssemos parados sobre um desses pontos, dando um passo sabendo que devemos
estar em uma posição desejada, mas percebendo que, um instante depois, estamos um pouco
mais à direita. Com a distância e os tempos constantes, só há uma razão para estarmos mais à
direita: o nosso ângulo antes de dar o passo não foi o correto.

Controladores convencionais se esforçam para corrigir aquele passo mal dado, e é por
isso que os quatérnios têm uma vantagem. A probabilidade de errar o passo usando quatérnios é
menor.

Por fim, quero que percebamos que ambos os controladores apresentam um erro crescente
em relação aos torques, devido ao fato de que, para essa trajetória específica, ela é uma sinal
rampa e a arquitetura do controlador é de erro estático de posição. Se fosse desejado reduzir o erro
dos torques, seria necessário projetar um controlador com uma arquitetura de retroalimentação
que reduza erros estáticos de velocidade25 .
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6 CONCLUSÕES

Os controladores aqui projetados são controladores do tipo 0, que apenas conseguem
seguir sinais cujo erro estacionário é de posição, ou seja, sinais de passo. Entende-se então que a
comparação dos controladores foi realizada sob as mesmas condições.

Conclui-se que um modelo por Quatérnios é muito mais simples, e seu controlador
associado permite respostas equivalentes ou, em alguns casos, melhores que um controlador
otimizado com base em um modelo convencional.

Comparando as respostas de cada controlador, podemos dizer que o controlador por Qua-
térnios possui uma maior precisão ao determinar rotações no drone, evitando descontinuidades,
não caindo em singularidades e reduzindo a quantidade de cálculos exigidos. Assim, esse tipo de
modelo e os controladores associados são melhores que os convencionais. Uma das principais
razões para isso é o fato de separar as rotações de Euler.

A natureza sequencial dos ângulos de Euler não permite mudanças repentinas de rotação
nem posições específicas; por exemplo, levar o drone perto de ângulos de roll perpendiculares ao
solo provoca erros no seu cálculo.

O modelo por quatérnios possui uma melhor resposta a perturbações, o que é evidenci-
ado pelos seus picos de sobressinal baixos. Outra vantagem é que os quatérnios exigem uma
capacidade computacional até 40% menor26 , o que é fundamental em sistemas que requerem
uma resposta rápida a mudanças no tempo, ou aqueles que estão realizando outros processos de
forma paralela.

Os drones são completamente autônomos, e essa nova abordagem permite aproveitar
recursos utilizados no cálculo de posições e velocidades, canalizando-os para outras questões.
Sob uma perspectiva operacional, isso poderia permitir a inclusão de redundâncias ou a criação
de algoritmos de segurança mais eficientes.

Conclui-se que a principal razão dessas vantagens é que os quatérnios possuem uma
elegância matemática e uma simplicidade que permite modelar dinâmicas complexas de forma
compacta. Além disso, são entidades cujo mapeamento é simples; ou seja, ir de um quatérnio
a um vetor e vice-versa é mais fácil, ao contrário de decompor matrizes ou calcular ângulos.
Devido à sua natureza, obtemos respostas contínuas e naturais do sistema, aumentamos os
intervalos de operação e melhoramos a resposta do drone a rotações.

Os quatérnios possuem uma interpolação mais suave entre as orientações realizadas, o
que faz com que a densidade de pontos seja mais uniforme ao longo da trajetória. Embora sua
resposta à translação seja mais lenta em comparação com o controlador LQR.

Um problema de usar quatérnios é que, ao trabalhar sob a condição de um versor, é



58 Capítulo 6 Conclusões

difícil projetar métodos de otimização porque estamos restritos a uma magnitude unitária. Outra
limitação é que, se quisermos realizar uma rotação completaI, não é possível fazê-lo de uma só

vez, como com os ângulos de Euler. Em videogames, por exemplo, esse problema é resolvido
rotacionando o quatérnio de 0 → α e depois de α → 2π.

6.1 Trabalhos Futuros

Como trabalhos futuros, seria interessante considerar as forças dos motores e a gravidade
de uma maneira mais realista, considerando suas componentes em x e y, e assim entender os
efeitos que isso tem na dinâmica do drone.

Utilizar métodos de controle otimizados aplicados a um modelo por quatérnios, ou seja,
combinar o modelo por quatérnios com arquiteturas mais complexas, permitiria observar sua
resposta a tipos de entradas mais complexas. Outro ponto interessante seria utilizar o modelo por
quatérnios em controladores que apliquem teorias de controle diferentes (LQR, PID, MC)27 28

, para encontrar o mais otimizado. O poder de generalizar o uso desses para ser aplicados em
outros sistemas que utilizam rotações.

Modelar o drone por seu Lagrangiano, utilizando rotações por quatérnios, algo que
poderia ser denominado Quatérnios-Lagrange, e assim determinar o drone por suas energias. O
enfoque para linearizar novamente o modelo seria optar por usar séries de Taylor para expandir
as equações dinâmicas.

Além disso, buscar separar o controlador por quatérnios de uma trajetória, para aplicar
algum método de interpolação otimizado, garantindo que a rotação seja a menor i.e., uma rotação
pode ser de α ou de 2π − α, com os quatérnios ocorre o mesmo, e é vital garantir que o segundo
caso não aconteça.

Realizar verificações experimentais em bancadas de teste, ou com modelos físicos, para
verificar a resposta do modelo sob condições reais. Considerar efeitos aerodinâmicos como
o blade flapping, o efeito de estela ou o arrasto induzido7 , junto com os efeitos por erros de
alinhamento dos motores, permitiria aumentar a precisão do drone. Também modelar efeitos
giroscópicos por quatérnios, devido ao fato de que a ordem de grandeza destes é considerável.

Seria interessante desacoplar os motores, modelar cada rotor separadamente, como
eixos que atuam sobre um objeto e acoplá-los novamente para obter uma dinâmica. Ou usar
controladores separados, que controlem cada motor e depois um controlador maior que sirva
como chef d’orchestre. Revisar uma teoria de controle, onde as condições se baseiem puramente
na multiplicação de quatérnios, talvez usando mapas de Diagramas de Voronói.

I Ou seja, uma rotação de 2π radianos
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ANEXO A – EFEITO CORIOLIS

A expansão da equação 2.7 para obter o efeito Coriolis C(η, η̇) é obtida reescrevendo a
equação 2.9 levando em consideração a regra da cadeia para uma variável independente A.1. Se
z = f(x, y) onde x = g(t) e y = h(t), a regra da cadeia é expressa como:

∂z

∂t
= ∂f

∂x

∂g

∂t
+ ∂f

∂y

∂h

∂t
(A.1)

Obtendo que a dinâmica de atitude é:

d

dt

Ω⃗T I
∂Ω⃗
∂η̇

− Ω⃗T I
∂Ω⃗
∂η

= τ, Ω⃗T I
∂Ω⃗
∂η̇

=
[
b1 b2 b3

]

b1 = Ixx(S2
θ ψ̇ − Sθϕ̇) + Iyy(C2

θS
2
ϕψ̇ + CθCϕSϕθ̇) + Izz(C2

θC
2
ϕψ̇ − CθCϕSϕθ̇)

b2 = Iyy(CθCϕSϕψ̇ + C2
ϕθ̇) − Izz(CθCϕSϕψ̇ + S2

ϕθ̇)
b3 = −Ixx(Sθψ̇ − ϕ̇)

ḃ1 = Ixx(2SθṠθψ̇ + S2
θ ψ̈ − Ṡθϕ̇− Sθϕ̈)+

Iyy(2CθĊθS2
ϕψ̇ + C2

θ ṠϕSϕψ̇ + C2
θS

2
ϕψ̈ + CϕSϕĊθθ̇ + CθCϕṠϕθ̇ + CθCϕSϕθ̈)+

Izz(2CθĊθC2
ϕψ̇ + C2

θ ĊϕCϕψ̇ + C2
θC

2
ϕψ̈ − ĊθCϕSϕθ̇ − CθĊϕSϕθ̇ − CθCϕṠϕθ̇ − CθCϕSϕθ̈)

ḃ2 = Iyy(CϕSϕĊθψ̇ + CθĊϕSϕψ̇ + CθCϕṠϕψ̇ + CθCϕSϕψ̈ + 2CϕĊϕθ̇ + C2
ϕθ̈)−

Izz(CϕSϕĊθψ̇ + CθĊϕSϕψ̇ + CθCϕṠϕψ̇ + CθCϕSϕψ̈ + 2SϕṠϕθ̇ + S2
ϕθ̈)

ḃ3 = −Ixx(Ṡθψ̇ + Sθψ̈ − ϕ̈)

Usando,

∂Ω
∂η

=


0 −ψCθ 0
0 −ψCϕ −ψ̇ + ψCθCϕ

0 −ψCθ − Cϕ −Cθ

 , ΩT I
∂Ω
∂η

=
[
h1 h2 h3

]

h1 = 0,

h2 = −ψ̇
[
Ixx(CθSθψ̇ − Cθϕ̇) + Iyy(−CθSθS2

ϕψ̇ − CϕSθSϕθ̇) + Izz(−CθC2
ϕSθψ̇ + CϕSθSϕθ̇)

]
h3 = (Iyy − Izz)(C2

θCϕSϕψ̇
2 + CθC

2
ϕψ̇θ̇ − CθS

2
ϕψ̇θ̇ − CϕSϕθ̇

2).

Obtendo assim as componentes do vetor torque, em função dos ângulos.


τϕ

τθ

τψ

 =


ḃ1 − h1

ḃ2 − h2

ḃ3 − h3


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Para a matriz inercial em função dos ângulos de Euler I, obtemos:

I(η) =


IxxS

2
θ + IyyS

2
ϕC

2
θ + IzzC

2
ϕC

2
θ IyySϕCϕCθ − IzzSϕCϕCθ −IxxSθ

IyySϕCϕCθ − IzzSϕCϕCθ IyyC
2
ϕ + IzzS

2
ϕ 0

−IxxSθ 0 Ixx


E para o efeito Coriolis o resultado é:

C(η̇, η) =


c11 c12 c13

c21 c22 c23

c31 c32 c33

 ,

c11 = 2IxxSθCθθ̇ − 2IyyS2
ϕSθCθθ̇ + 2IyySϕCϕC2

θ ϕ̇− 2IzzSϕCϕC2
θ ϕ̇− 2IzzSθC2

ϕCθθ̇

c12 = −IyyS2
ϕCθϕ̇− IyySϕSθCϕθ̇ + IyyC

2
ϕCθϕ̇+ IzzS

2
ϕCθϕ̇+ IzzSϕSθCϕθ̇ − IzzC

2
ϕCθϕ̇

c13 = −IxxCθθ̇

c21 = −(2SθCθψ̇−Cθϕ̇)Ixx−(SϕSθCϕθ̇−2SθC2
ϕCθψ̇)Izz−(−2S2

ϕSθCθψ̇−SϕSθCϕθ̇)Iyy−
IyyS

2
ϕCθϕ̇− IyySϕSθCϕθ̇ + IyyC

2
ϕCθϕ̇+ IzzS

2
ϕCθϕ̇+ IzzSϕSθCϕθ̇ − IzzC

2
ϕCθϕ̇

c22 = (Iyy − Izz)SϕSθCϕψ̇ − 2IyySϕCϕϕ̇+ 2IzzSϕCϕϕ̇

c23 = IxxCθψ̇

c31 = −((−S2
ϕθ̇ + 2SϕCϕCθψ̇ + C2

ϕθ̇)Iyy + (S2
ϕθ̇ − 2SϕCϕCθψ̇ − C2

ϕθ̇)Izz)Cθ − IxxCθθ̇

c32 = −(−S2
ϕCθψ̇ − 2SϕCϕθ̇ + C2

ϕCθψ̇)Iyy − (S2
ϕCθψ̇ + 2SϕCϕθ̇ − C2

ϕCθψ̇)Izz
c33 = 0
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ANEXO B – ÁLGEBRA DE QUATERNIONS

Este sistema numérico possui propriedades específicas no momento de ser operado,
cumprindo a condição 2.11, essas operações são fundamentais no momento do cálculo. Para uma
revisão mais detalhada sobre o assunto, pode-se consultar.29

Double Cover

Uma característica própria dos quaternions é que todo quaternion possui um oposto
negativo, ou seja, cada rotação em ∈ SO(3) possui dois quaternions que a representam. Portanto,
sua rotação é equivalente, apenas com uma rotação de 2π em relação a ĥ. Para dois quaternions:

q1 := cos(λ/2) + u⃗ sin(λ/2), (B.1)

q2 := cos((λ+ 2π)/2) + u⃗ sin((λ+ 2π)/2) (B.2)

q1 e q2 representam a mesma rotação, mas a segunda está sendo aplicada em ĥ, como
q1 = −q2.

Soma

Dado dois quaternions arbitrários, q e a, sua soma é definida como:

q + a := q0 + a0 + q⃗ + a⃗ (B.3)

Esta é comutativa, o que significa q + a = a + q. A subtração não possui as mesmas
propriedades, mas seu cálculo é realizado componente a componente, como na soma.

Produto

Esta é a definição mais importante, pois a partir dela é possível demonstrar as outras
operações. É uma operação não comutativa, ou seja, q ◦ a ̸= a ◦ q, sendo definida por:

q ◦ a := (q0a0 − q⃗ · a⃗) + (q0a⃗+ a0q⃗ + q⃗ × a⃗) (B.4)

É importante ressaltar que ela não é comutativa, ou seja, q ◦ a ̸= a ◦ q.
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Norma

A norma em quaterniones é a mais estudada em matemática, pois determina várias
propriedades no cálculo de quaterniones. Para um quaternión arbitrário, define-se sua norma
como:

∥q∥2 = q ◦ q∗ = q2
0 + q2

1 + q2
2 + q2

3,

q2 = 2q0q − ∥q∥2
(B.5)

Conjugado

A definição é determinada por:

q∗ := q0 − q⃗, (B.6)

(q ◦ r)∗ = r∗ ◦ q∗ (B.7)

O conjugado de um versor representa uma rotação inversa em relação ao mesmo eixo ĥ.

Inversa

Para um quaternión não nulo, verifica-se que sua inversa será seu conjugado multiplicado
pela inversa de sua norma.

q−1 := q∗

∥q∥
, (B.8)

q ◦ q−1 = q−1 ◦ q = 1 +
[
0 0 0

]T
(B.9)

Rotação de Vetor

Dado um vetor v⃗ ∈ R3, em um referencial A e sendo v⃗b ∈ R3 o mesmo vetor em relação
a um referencial B, a transformação v⃗ ⇒ v⃗b pode ser realizada da seguinte maneira:

v⃗b = q−1 ◦ v⃗ ◦ q = q∗ ◦ v⃗ ◦ q (B.10)

Aqui q é o quaternión que indica a rotação de v⃗b em relação a v⃗, propriedades do
quaternión.

Isso é feito dessa forma, pois assim é possível rotacionar o vetor em relação a um plano.
Para mais informações, consulte.14
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Derivada

Por regra da cadeia, podemos definir a derivada de um vetor posição ˙⃗rb em relação a A,
isolando obtemos:

˙⃗rb = q̇−1 ◦ r⃗ ◦ q + q−1 ◦ ˙⃗r ◦ q + q−1 ◦ r⃗ ◦ q̇ = q̇−1 ◦ q ◦ r⃗b + r⃗b ◦ q̇−1 ◦ q̇ (B.11)

Definimos q como um versor, então

q ◦ q−1 = 1

Cuja derivada
q̇−1 ◦ q = −q−1 ◦ q̇

Substituindo em B.11 obtemos:

˙⃗rb = r⃗b ◦ q−1 ◦ q̇ − q−1 ◦ q̇ ◦ r⃗b = 2(q−1 ◦ q̇) × r⃗b (B.12)

Sabendo que a velocidade transacional pode ser escrita como, ˙⃗rb = Ω⃗ × r⃗b, onde Ω⃗ é a
velocidade angular de r⃗b.

Ω⃗ × r⃗b = 2(q−1 ◦ q̇) × r⃗b (B.13)

A derivada de um quaternión unitário em função de Ω⃗, é então:

Ω⃗ = 2(q−1 ◦ q̇)

q̇ = 1
2q ◦ Ω⃗

(B.14)
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