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RESUMO

RIASCOS, J. Controle de Drones com Modelo Baseado em Quatérnios. 2024. 67 p.
Monografia (Trabalho de Conclusiao de Curso) - Escola de Engenharia de Sao Carlos,
Universidade de Sao Paulo, Sao Carlos, 2024.

Este trabalho apresenta uma investigacdo sobre a influéncia dos quatérnios no controle de
drones, um tema de crescente interesse devido a expansao do uso dessa tecnologia em diversos
campos. Para realizar as simulagdes, foi utilizado o software MATLAB, com o objetivo de estudar
o comportamento de cada controlador e realizar sua comparacdo. O documento € dividido
em 6 secOes principais: a primeira contextualiza o problema e os objetivos buscados nesta
investigacdo. A segunda sec@o contém a explicacdo de cada modelo do drone, tanto pelo método
de Euler-Lagrange quanto por Quatérnios, além de uma andlise sobre por que o segundo pode
ser considerado superior ao primeiro. Esta se¢do inclui uma breve introducao aos quatérnios
e suas propriedades algébricas. Na terceira sec¢ao, € apresentado o projeto dos controladores
aplicados a cada modelo, sendo o LQR para Euler-Lagrange e um controlador simples por
realimentacdo de estado para Quatérnios. A principal razdo € testar a hipdtese de que um
controlador sem otimizacdo para um modelo por Quatérnios pode ser equivalente ou até melhor
que um controlador otimizado para um modelo de Euler-Lagrange. Sob a hipétese de que os
quatérnios sao a causa disso, a pesquisa pretende demonstrar que o controle do drone depende
mais da natureza do seu modelo do que do projeto do controlador em si. Os controladores
sao simulados através da discretizacdo da dindmica no tempo, e cada controlador € testado
sob 0s mesmos parametros, permitindo uma comparagdo equivalente entre ambos os enfoques.
Nas ultimas trés secdes, sdo apresentados os resultados e conclusdes obtidos, assim como
a comparagdo entre as simulagdes para cada caso, junto com as razdes de por que ocorrem
determinados fendmenos, como singularidades, erros e as caracteristicas de cada controlador. x
Além disso, sdo sugeridas linhas de trabalho futuro derivadas dos resultados obtidos ao longo da
investigacao.

Palavras-chave: Quatérnios. Drone. Euler-Lagrange. MatLab. LQR. Lyapunov.






ABSTRACT

RIASCOS, J. Drone Control with Quaternion-Based Model. 2024. 67 p. Monograph
(Conclusion Course Paper) - Escola de Engenharia de Sao Carlos, Universidade de Sao Paulo,
Sao Carlos, 2024.

This thesis presents a study on the influence of quaternions in drone control, a topic of increasing
interest due to the growing use of this technology in various fields. MATLAB software was
used to perform the simulations, enabling the study of each controller’s behavior and their
comparison. The document is divided into six main sections: the first contextualizes the problem
and the objectives pursued in this research. The second section provides an explanation of each
drone model, both Euler-Lagrange and Quaternion-based, and an analysis of why the latter can
be considered superior to the former. It includes a brief introduction to quaternions and their
algebraic properties. The third section presents the controller design applied to each model, with
LQR for Euler-Lagrange and a simple state-feedback controller for Quaternions. The primary
purpose is to test the hypothesis that an unoptimized controller for a Quaternion-based model can
be equivalent to, or even better than, an optimized controller for an Euler-Lagrange model. Under
the assumption that quaternions are the reason for this, the research aims to demonstrate that drone
control relies more on the nature of the model than on the controller design itself. The controllers
are simulated by discretizing the dynamics over time and applying each controller under the
same parameters, which allows for an equivalent comparison between both approaches. The last
three sections present the results and conclusions, along with a comparison between simulations
for each case, explaining phenomena such as singularities, errors, and the characteristics of each
controller. Additionally, future research directions are suggested based on the findings obtained

during the study.

Keywords: Quaternions. Drone. Euler-Lagrange. MatLab. LQR. Luyapunov.
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1 INTRODUGAO

1.1 Aeronaves Nao Tripuladas

Atualmente, os UAVs, sigla em inglés para Unmanned Aerial Vehicles (Veiculos Aéreos
Nao Tripulados), tornaram-se uma tecnologia cada vez mais utilizada, gracas a sua versatilidade
e baixo custo, tanto em aplicacdes civis (Agricultura, Entretenimento, Recreaciao ou Transporte)
quanto militares (Seguranca, Armamentista). Como consequéncia, "a crescente demanda por voos
autdonomos com quadricOpteros em diversas aplicagdes levou a introdugdo de novas estratégias
de controle" [3, p. 1]. Dai a importancia de estudar essa tecnologia, desde seu design até sua

aplicacdo, para ndo apenas tornd-los mais seguros, mas também mais precisos.

Os UAVs pertencem a uma classe especifica de aeronaves multirotor, aquelas mais
pesadas que o ar.* No presente ano, sdo classificados de acordo com seu nivel de autonomia como
RPA (Remotely Piloted Aircraft), conforme o Regulamento Aerondutico do Brasil (RBAC 91).°
De uma perspectiva mais rigorosa, eles se encontram em uma categoria distinta dos aeromodelos,
daf a seriedade na regulamentagdo dessa tecnologia, sendo o cumprimento de procedimentos

operacionais outro aspecto a ser considerado no momento do design dos controladores dos UAVs.

Ao longo deste documento, por motivos praticos e convengdes de linguagem, os UAVs

serdo referidos simplesmente como “Drones”.

Esta pesquisa aprofunda-se nos parametros que compdem um controlador para drones,
explorando tanto a influéncia do design adequado do controlador quanto a importancia de contar
com um modelo matemaético preciso do sistema, que por si s6 apresenta alta complexidade. Para
isso, foi realizada a simulagdo de dois tipos de controladores, cada um baseado em um modelo

matematico diferente.

Esclarecendo que a natureza do sistema nio depende do modelo matemético formulado,
busca-se apresentar o fato de que as propriedades que para um modelo sdo desacopladas, para o

outro ja ndo o sdo, o que torna esse novo enfoque interessante.

O primeiro controlador é projetado mediante o método LQR (Controle Otimo Linear-
Quadratico), cujo objetivo principal € minimizar uma funcdo de custo quadratica, por meio da

solugdo da Equagdo Algébrica de Ricatti, resultando em um (K1gg).

O segundo controlador baseia-se em uma retroalimentacao de estado por Quatérnios. O
ganho (K guatérnios) € calculado a partir do critério de Lyapunov. E importante notar que ambos

0s sistemas possuem uma arquitetura ‘“scaled reference”, a qual € ilustrada na 1.

Nos concentraremos entdo em como selecionamos (/), mas ndo na sua implementagao.
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1.2 Formulacao do Problema

O design de algoritmos de controle e navegacdo em Drones tem sido amplamente
estudado, elaborando diferentes abordagens que combinam algoritmos complexos e métodos de
controle cada vez mais sofisticados. Isso se deve ao fato de que um Drone € um sistema dinadmico,
instdvel, complexo, ndo linear e subatuado®; geralmente, a quantidade de entradas é menor que
os graus de liberdade do sistema. Além disso, os drones estdo sujeitos a efeitos aerodinamicos
que sdao complexos de modelar, entre eles "A dindmica dos motores e suas interacdes com as
forgas de arrasto sobre as hélices",” ou a influéncia de perturbacdes do ar (i.e. Blade-Flapping),
e outros fatores que, por sua complexidade, costumam ser ignorados no controlador, afetando

propriedades importantes do Drone.

Entre as abordagens propostas, estdo controladores a partir da anélise do sistema apenas
em 2 dimensdes ou desprezando os efeitos giroscépicos.* Foram projetados controladores
robustos buscando melhorar o desempenho otimizando a efic4cia.® Também foram utilizados
enfoques onde sdo aplicados filtros de Kalman ou esquemas que aplicam vérias teorias de
controle.’ Outros autores optaram por incluir observadores ou algoritmos de controle adaptativo
para obter melhores resultados.!” Uma das abordagens ndo convencionais foi utilizar redes
neurais para melhorar a estabilidade "contra parametros importantes desconhecidos no modelo

do sistema, bem como perturbagdes do vento".!!

Infere-se assim que reduzir a complexidade do controlador permitiria maiores e melhores
intervalos de operacdo do Drone, conseguindo assim focar com maior detalhe naqueles aspectos
complexos que também devem ser considerados no design dessa tecnologia.

1.3 Objetivos

1.3.1 Objetivo Geral

Comparar um controlador de Drone baseado em um modelo de quatérnios com um

baseado na formulagdo de Euler-Lagrange, utilizando MATLAB.

1.3.2 Objetivos Especificos

Objetivo 1: Compreender os fundamentos de cada modelo, bem como suas caracteristicas

intrinsecas.

Objetivo 2: Projetar um controlador especifico para cada modelo.

Objetivo 3: Simular a resposta de cada um dos modelos para determinada trajetdria de

VOO.

Objetivo 4: Comparar os modelos e as respostas dos controladores.
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1.4 Metodologia

A estrutura em que o texto estd escrito corresponde a cada um dos passos realizados na

pesquisa, na seguinte ordem:

* Modelos Matematicos: Foram desenvolvidos modelos matematicos para representar o
comportamento dindmico do Drone, utilizando tanto a formulacdo baseada em Quatérnios
quanto a formulagdo de Euler-Lagrange. Esses modelos foram fundamentais para o design

dos controladores.

* Controladores: Foram projetados controladores para cada modelo, aproveitando as carac-
teristicas especificas dos mesmos. Avaliando ambas as estratégias de controle, a partir dos

parametros que devem ser considerados para cada modelo.

* Simulacao: Foram realizadas simula¢des utilizando MATLAB, para avaliar a resposta de
cada controlador diante de uma determinada trajetéria de voo. Essas simulacdes permitiram
analisar o comportamento dos modelos em condi¢des controladas e obter dados para sua

comparacgao.

* Resultados e Comparacao: Foi realizado uma anélise dos resultados obtidos das simu-
lagdes, comparando o desempenho dos controladores projetados e sua relagdo com os
modelos. Discutindo-se as vantagens e desvantagens de cada abordagem, destacando as
caracteristicas que fazem com que o controlador baseado em quatérnios seja superior as

abordagens convencionais.
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2 MODELOS MATEMATICOS

Scoled  Reference
+ X =Ax +Buw

Kf")Q_)'g:Cx’rD-« >

Figura 1 — Arquitetura do sistema de controle utilizado para ambos modelos (Referéncia Escalo-
nada)

Os modelos que foram aplicados na maioria dos enfoques de controladores cldssicos
dependem de rotacdes sequenciais dos Angulos de Euler ' 7 . Consistem na rota¢do do corpo
rigido em relag@o a um sistema inercial de coordenadas fixo (soliddrio a Terra), Figura 2.

A diferenca entre um modelo por Euler-Lagrange'® e um por Quatérnios estd na sua

14 15

capacidade de definir rotagdes de forma mais simples e compacta . O modelo dindmico

resultante para ambos os casos € um sistema subatuado.

Todos os sistemas de referéncia aqui apresentados seguem a regra da mao direita e os
angulos sdo representados em radianos. As fungdes trigonométricas Sen(a) e Cos(a) serdo

representadas como S, e C,, respectivamente.

2.1 Momentos e Forcas em um Rotor

A partir da combinac¢do da Teoria do Elemento de P4 Figura 3 e da Teoria do Disco
Atuador, € possivel modelar as forgas e torques exercidos pelas hélices do Drone, considerando
que a for¢a de empuxo resultante € aplicada apenas no eixo e do referencial propio ao Drone e
sobre seu centro de massa, desconsiderando outros efeitos aerodinamicos como o blade flapping

ou o desalinhamento dos motores.
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Figura 2 — Angulos de Euler. Imagem de Lionel Brits sob licenga CC BY 3.0.!

_dr

Figura 3 — Teoria do Elemento de P4. Imagem de Marino sob licenca CC BY-SA 4.0.2
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O método decompde a pa em pequenos elementos transversais (Perfis Aerodindmicos),
determina as forgas sobre cada elemento e, em seguida, a forca gerada pela pa € obtida integrando
ao longo dela. O Drone estudado possui 4 rotores com 2 pas por hélice. Assim, obt€ém-se as

equacdes'® 17

T; = CTPAhTiQC%Z 2.1)
7, = CopApriw? (2.2)

Assim, para um dado rotor ¢; 7} representa o empuxo gerado, 7; o torque produzido, 7; 0
raio da hélice, e w; sua velocidade angular. Os coeficientes de empuxo e de torque sdo Cr e Co,
respectivamente. A densidade do ar é representada por p, e a drea da hélice é simbolizada por
Ap.

Considerando, primeiro, que algumas varidveis nas equagdes 2.1 e 2.2 sdo constantes,
e segundo, que o Drone é simétrico, chegamos aos componentes das for¢as e torques totais

produzidos pelos rotores do Drone:

T, 0 T e Y2, di Sp, w} (=01 — Oio+ iz + 0ia)
T=|Te,| = 0 , 7= |1y = |er sy di Co, w7 (=61 + 6i2 + 655 — 6i4)
T.e. er S w? T, co i, wko
(2.3)

Os torques dependem da distancia em que sdo aplicados d; (Brago do Drone), com sua
dire¢do o; € {—1,+1},” sendo ®i o menor angulo entre o brago de suporte do rotor € o eixo %

do referencial proprio ao Drone, Figura 4.

O delta de Kronecker 9, ; € igual a 1 quando ¢ = j e 0 caso contrdrio.

2.2 Modelo Dinamico Euler-Lagrange

Este modelo é baseado na analise do Drone como um corpo sélido cujas for¢as € R3. As
coordenadas do veiculo, X p,one = (7, 7) € RS, podem ser representadas considerando o vetor
posi¢do 7 = (x,y, z) € R3, do centro de massa do Drone, em relagdo ao referencial inercial Z, e
o vetor 77 = (¢, 0,1) € R3, que representa a atitude do Drone (Roll, Pitch, Yaw). Definimos o

Lagrangiano como:

L(XDrone7 XDrone) - TT'r’S + TRot -U (24)
Sabemos que a energia cinética translacional do Drone é 17, = % m 7! T, a energia
cinética rotacional T, = % QT I Q e sua energia potencial é U = —mg - 7. O Drone possui uma

massa /m, um vetor de gravidade g = [0 0 — g]T, uma matriz inercial / e um vetor de velocidade
angular €} = [way Wy w2]
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Figura 4 — Forcas e Torques produzidos pelos rotores do Drone

C

Figura 5 — Modelo do Drone pelo seu Lagrangiano com o referencial inercial Z

Substituindo €2 = Wnﬁ, obtemos Try, = % 77T Hﬁ’. Podemos observar que a matriz inercial
dependera da rotacao do Drone, com isso obtemos uma matriz inercial em fun¢do dos dngulos
de Euler, calculada como I = Wg I W," , equivalente a forma como é feita por Walle,'” mas

realizando a primeira rotagdo em ¢.
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—Sy 0 1 I, O
WW: C@S¢ C¢ 0 5 [: 0 [yy 0 (25)
CyCy —Sy 0 0 0 L.

Considerando que a forca de empuxo T ¢ aplicada apenas no eixo e?, ela pode ser
mapeada a partir do referencial inercial ITA=TRAT, por meio de uma matriz de rotagdo
pelos angulos de Euler TR 4 € SO(3) :

CwCH —S¢C(9 S@
IR.A(¢7 0, d}) - S1/)O¢ + OwSQSd, C¢C¢ — SngS(b —CgS¢ (2.6)
SuSy — CySeCs CuSy+ 5550Cs  CoCi

Com isso, o modelo matematico da dindmica do Drone pode ser obtido a partir da

equagdo 2.7:
I —

d 0L B oL Ty 2.7

dt a)'(Drone aXDT(me B T .

Obtendo,
mi—mg =TTy, #="T,m'—g (2.8)
. . 10 /. R, .

Hn+<ﬂ—28n(n H>>77=7', Iy =7 —Cn,0)n 2.9
Sendo C'(n,n) = ( — %% (ﬁT]I)) o efeito Coriollis (em relacdo ao referencial inercial

7), produzido pela rotacdo do Drone enquanto ele estd em movimento. A expansao da equagao
2.9 estd no Anexo A, utilizando o mesmo procedimento seguido por [6, p. 21] . Aqui se considera

um dos efeitos giroscopicos que fazem parte da natureza do Drone.

2.3 Modelo Dinamico Quatérnios
2.3.1 Versor

Os quatérnios sdo uma extensdao dos nimeros reais, localizados em um espaco Hiper-
complexo € H, introduzidos por William Rowan Hamilton em 1843. Diremos que sdao uma
representacao mais compacta de rotagdes, em comparacao com os angulos de Euler. Por estarem
matematicamente relacionados ao grupo SO(3), permitem representar rotagdes a partir de 4
nimeros, ao invés de 9 como quando se utilizam matrizes por dngulos de Euler. Como o espago
tridimensional estd incluido no espago H dos Quatérnios, os vetores podem ser representados

como Quatérnios com sua parte escalar igual a zero.
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Figura 6 — Rotagdo de um vetor X

Os Quatérnios sdo compostos por uma parte real escalar (g, ¢1, ¢2, ¢3) € R e uma parte
imaginaria (2, ), k) € I,
4 A ~ - o T
Q=G +qt+@i+ak=q0w+q 7= {ql q2 QS} (2.10)
As regras que eles seguem sdo 2.11,

==k =0k=-1 (2.11)

Tenhamos em mente que uma representacdo grafica da rotacao de quatérnios € dificil
de exemplificar. Em um sentido abstrato, podemos dizer que uma rotacdo € denotada pelo
vetor \. Este vetor, Figura 6, possui magnitude A = ||| em radianos, atuando sobre um eixo

vetorial-unitdrio i = X/||X||, cujo eixo de rotacdo é X = Ah.

= oA A

Por meio da Identidade de Euler, sabe-se que uma rotacdo de ) radianos em um plano
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¢ dada pela equagdo 2.12. Em 1840, Olinde Rodrigues realizou a expansao dessa identidade,

parametrizando as rotagdes tridimensionais em fun¢do de quatérnios, obtendo a identidade 2.13.

e = cos \ +7sin (2.12)
qo = M2 = cos(A/2) + hsin(\/2) (2.13)

A magnitude de |q,| = 1, ou seja, o quatérnio unitdrio. Normalizar o quatérnio permite

simplificar suas operagdes. Sabendo como o quatérnio realiza a rotacdo, podemos localizar seu

eixo de rotagdo, despejando .

—

A=2Inq
000" si||q] =0 (2.14)

Ing=q¢"_
a7 Arccos go - si ]l # 0

Com isso, podemos posicionar um vetor em qualquer localiza¢dao do espaco € H.

Para realizar os célculos, devemos ter em mente que a dlgebra dos quatérnios segue

regras especificas, as quais sao apresentadas no Anexo B.

2.3.2 Dinamica por Quatérnios

O modelo por Quatérnios' é obtido a partir das consideracdes do modelo anterior (simé-
trico, sem blade-flapping, com empuxo apenas no €ixo €?), e considerando o drone como um
corpo rigido em movimento, em seu sistema de referéncia préprio A, em relagdo a um referéncial

inercial Z. Com isso, pelas equacdes de movimento de Newton, sua dindmica é escrita por?® 2! 22

, representada na Figura 7:

7 7 a
N = —1 ol * —
T m oToq" +
c= "1, =] |= desea Ty 2.15)
q q %qu
{2 Qp 1 (F-aGx19)

O vetor 7 indica a posi¢do do drone, 7 sua velocidade e q um versor denotando sua
orientacdo, todas em relagcdo a 7.

Por fim, () € sua velocidade angular, / a matriz de inércia e 7 o torque total (2.3), no
sistema de referéncia A.

A forca T neste caso, é aplicada perpendicular ao plano do drone, o qual esta girando pelo

quatérnio q. Assim, podemos representa-la, como mostrado acima, a partir do que € apresentado

em Anexo B.

I A multiplicacio de quatérnios serd denotada por o
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Cx

Cy

Figura 7 — Modelo do Drone por Quatérnios com um referencial inercial Z

O quatérnio q — q, = eAh/2 implica a menor rotagdo possivel de Z = A.

2.4 Comparacao de Modelos

Agora se sabe que a dindmica do drone por Euler-Lagrange pode ser descrita pelas
equagdes 2.8 e 2.9, as quais determinam sua translacdo e rotagdo, respectivamente. Neste caso,
cada uma delas representa uma varidvel separada, ou seja, ndo ha nada que as relacione ou as
conecte. Aqui, surge outra das vantagens ao utilizar o enfoque por quatérnios: ao atuar como

conexoes, eles se tornam uma excelente op¢ao.

Para o caso do modelo dinamico por Quatérnios, a translacdo e a rotacdo sao modeladas
pelo "mesmo conjunto de equacdes", equagao 2.15. Aqui, as equagdes sdo compactadas porque
a posicdo do drone depende apenas da forca aplicada nele, e como esta depende do efeito de
uma orientacdo, determinada por um quatérnio q, entdo, precisamos controlar apenas a forca

gerada pelos motores, ou seja, a velocidade desses motores.

E entdo, nossa lei de controle serd uma "simples"multiplicacdo por quatérnios, de modo

que este quatérnio q sirva como corre¢do para se aproximar de q,.

2.4.1 Propriedade Intrinseca Principal

Pode parecer 6bvio, mas a rotacdo € intrinseca ao drone, o que torna possivel sua
localizacdo, e € o que define sua dindmica. Dai derivam seus efeitos giroscopicos, e € por isso
que seu controle € tdo complexo. Para cada modelo, o principal objetivo € encontrar uma rotagao

da forca no eixo z para levar o drone de um estado a outro. Faco essa anotagc@o porque € isso que
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torna o modelo por quatérnios mais eficiente. O quatérnio serve como uma representacao mais

elegante das propriedades intrinsecas do drone.

Aqui entram em consideracio efeitos como os momentos de inércia e os efeitos giroscopi-
cos, que sdo proprios do drone. A isso adicionamos, como propriedade extrinseca, a componente
do efeito Coriolis, que surge da necessidade de um sistema de referéncia inercial, tornando o

processo de determinar sua atitude complicado.

E se olharmos de uma forma abstrata, podemos pensar no drone como uma particula
tridimensional que se move e gira sobre um plano tetradimensional®, ou seja, estamos apenas

nos reposicionando em um espago vetorial, que segue regras especiais.

Observando as equagdes 2.8, 2.9 e 2.15, podemos ver que temos um total de 12 graus
de liberdade: os vetores de posicao, velocidade, angulo e velocidade angular, cada um com
3 componentes. Para controlar o sistema, temos apenas 4 entradas: uma forca e os torques

exercidos pelos motores sobre o drone.

2.4.2 Rotacdes

A vantagem de usar quatérnios € que eles ndo sdo sequenciais. Se observarmos as
equagoes 2.8 € 2.9, veremos que elas dependem de rotagcdes produzidas por multiplicagdes de
matrizes de cossenos direcionais, que podem ser decompostas por meio de um mapeamento
inverso?' . A escolha de ZR 4 ndo é arbitraria; essa é uma rotagéio conhecida como Angulos
de Cardano, por Gerolamo Cardano, um matematico italiano do Renascimento; Angulos de
Tait-Bryan, por Peter Guthrie Tait, matematico escoc€s do século XIX; ou simplesmente dngulos
de Euler, pelo matematico e fisico suico Leonhard Euler. Trata-se de uma sequéncia de rotacdes
que possui certas vantagens frente ao gimbal lock, um dos maiores limitantes ao usar esse tipo

de rotacd@o. Sabe-se que nenhuma das rotacdes de Euler pode escapar desse fendmeno.

Ao usar quatérnios, temos a vantagem de nos desvincularmos do uso de angulos. Inclui-
los no modelo implica uma resposta continua e natural do sistema, removendo restri¢des fisicas

e ampliando os limites do que o controlador pode fazer.

Por isso, melhora consideravelmente a adaptabilidade do sistema a diversas condicdes

ou mudancas repentinas, sem a necessidade de uma grande complexidade.

2.4.3 Matemadtica e Computacao

Embora ndo pareca, usar quatérnios € mais simples, pois as rotagdes sao representadas
por uma Unica identidade, ao contrdrio das decomposi¢des por angulos de Euler, o que reduz o
célculo. Pode ser que sua representacdo nao seja intuitiva, mas sabe-se que € a melhor forma

para realizar rotacdes no espaco.

I Os vetores sdo realmente equivalentes a um quatérnio com parte real zero
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O custo computacional € mais baixo, pois, sendo matematicamente equivalentes aos
angulos de Euler, ndo alteramos as propriedades do sistema nem o comportamento do mesmo, €
também ndo € necessdrio considerar correcdes. Apenas para comparagdo, para a multiplicacao
de duas matrizes 3 x 3, sdo realizadas um total de 45 operacgdes, enquanto os quatérnios exigem

metade disso para se multiplicarem.
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3 CONTROLADORES

3.1 Trajetoria
Com p € [0, t], conseguimos discretizar o espago, obtendo a trajetdria desejada r; =
(x,y, z), com raio final v e tempo final ¢, conforme mostrado na Figura 8.

Para aplicar essa trajetéria usando quatérnios, diremos que uma for¢a desejada aponta

para o centro da espiral, Figura 9.

T =x0+p-v-cos(@- ZL)/t o =0.1
y=yo+p v sin(w- 24/t yo = 0.1
Tray(t) = {z = (2 + 2g¢%) - o7 20=2,1=p/t (3.1)
w=35 v=2=8
g = 9.81 m/s? h =15

Trajetoria Desejada

y [m] -10 -10 X [m]

Figura 8 — Trajetoria projetada para LQR

3.2 Linear Quadratic Regulator

Essa teoria baseia-se em operar a dindmica de um sistema com 0 menor custo possivel,

utilizando uma fung¢@o de custo que encontra o K;gr 6timo para que os recursos «aplicados ao



40 Capitulo 3 Controladores

Trajetoria Desejada

y [m] -10 -10 X [m]

Figura 9 — Trajetdria projetada para Quatérnios

sistema» sejam consumidos na menor quantidade possivel. Em seguida, o resultado é elevado
ao quadrado para evitar valores negativos no cdlculo. O projeto de controladores por LQR € um

método bastante eficiente, que permite reduzir o erro em regime permanente> .

A funcdo de custo é apresentada em 3.2, sendo Q o componente que penaliza o desem-

penho e R aquele que penaliza o esfor¢o do atuador (energia).

J= /0 " (x"Qx + u"Ru) di 3.2)

Integrar de 0 até oo significa que o controlador busca minimizar o erro durante toda a
operacao do sistema, forcando-o a convergir para o equilibrio e a minimizar qualquer desvio ao
longo do tempo. Com um horizonte infinito, a solu¢do da ARE torna-se constante e estaciondria,
o que significa que ndo hé necessidade de recalcular K op a cada instante, como ocorre no
controle 6timo de horizonte finito. Isso resulta em um controlador de realimentacao de estado

constante.

3.2.1 Equacido Algébrica de Riccati

A equagio apresentada em 3.3 € obtida ao incluir uma matriz simétrica P = PZ. Ao

reorganizar e completar o quadrado em 3.2, obtemos, para um modelo linear, a respectiva ARE":

I ARE, pela sigla em inglés
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i=Arz+Bu A'P+PA-PBR 'B'P+Q=0 33)
y = Cz +Du’ u=-R'B'Px '

3.2.2 Controlador

O controlador, entdo, utiliza uma realimentacdo com K gr = R 'B7P, onde P é

encontrada ao resolver a ARE.

Agora, observamos que € dificil linearizar a equacao 2.9 para ser usada no método LQR,

por isso considera-se I como uma matriz diagonal constante:

7=1"(7—C(n,n)n) (3.4)

Observamos que, ao resolver as equagdes de translacdo e rotacdo, temos 6 possiveis

entradas « para um vetor de estado X p,ope:

71 = Sem U,

7y = —CpSym UL,

3 = CoCy Uy — g,

= — L [ (en + e + deis) + U,
i = I, [ (Yers + Oca + deas) + Us |,
Tjs = —I'[ (thers + Ocsy + dess) + Uy .

(3.5)

Aqui surge um ponto importante: apenas 7) corresponde a 3 das 4 entradas disponiveis
em um Drone, ou seja, com nossas entradas controlamos, em sua maior parte, a rotagdo do

Drone.
Assim, temos uma matriz [ X p,ones X Dronel-

Escrevendo o sistema no espago de estados, definimos que 03 é uma matriz quadrada de

zeros e I 4" é a matriz identidade, ambas de dimensao 3y 3.

- T
wz['f'?’“n'rﬂT7 i = [Uy, Uy U3U4]T= {ITA—@ 7?}

Para linearizar o modelo, considera-se que os angulos sdo pequenos (entre iteragdes), de

modo que (S, = a) e (C, = 1)**. Com isso, é possivel discretizar a equagio.

Nossas equagdes no espago de estados, com G = —I1~1C(n,n), sio:

I Nzo confundir com a matriz de inércia, I.
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03 I, 03 O3 03 03

03 03 03 O I;., O I;,. 03 03 O
R B ds U3 C= d; 03 O 3 D=0 36

03 03 03 Ig 03 03 03 03 T4 O3

03 03 03 G 03 I

Resta agora a lei de controle, que € implementada criando um erro entre o estado atual e

um estado de referéncia. Assim, nosso sistema em malha fechada é:

T = Ax + B (—KLQR(ZE - Iref>> (37)

O erro, (z— ), leva o sistema a um erro de estado estdvel por meio de uma compensagdo
em relacdo a referéncia. Como j4 temos uma trajetéria definida, encontraremos uma velocidade

angular e os angulos desejados por:

g = 4 2T (3.8)
74|
cos(ny) = —4- T (3.9)
|7a| |74
ng = cos 1 [ L4 Td (3.10)
74| |74]

Calcula-se 7, para obter um angulo de referéncia ao calcular os efeitos de Coriolis para
cada iteragdo. Assim, definimos que nosso estado de referéncia x.f = x4, para a trajetoria

desejada r,4, sera:

Ta=[Fq, 4], u= —KLQR[? — P, 7] — 1)

Com isso, definimos completamente nossas entradas, de modo que ¥ — 7y e 17 — 7j4.

3.3 Quatérnios

Para explicar o design do controlador por quatérnios, o desacoplaremos em duas partes:
translacional e rotacional. No entanto, cabe esclarecer, como mencionado anteriormente, que a
dindmica do Drone estd compactada, ao contrario do modelo por Euler-Lagrange. O design do

controlador segue um procedimento semelhante ao realizado em.®

Para simplificar, diremos que 774 = q o T o q*, e separaremos a equacdo 2.15 em sua

componente translacional e rotacional, respectivamente:
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. N . 1
. 7 T . q 390
TTrs = |+ = 177 Sl LTRot = | & = 1 j — — (311)
P m A IT + G O I (T O x m)
3.3.1 Translacional

O design do controlador translacional baseia-se em fazer a posi¢do do Drone (7) e a
posicdo desejada (7;) convergirem para zero. O objetivo € projetar uma forca IfA, de modo que

Trrs, Trrs = 0, rastreando o erro da posi¢ao do Drone.

Te =T — T4
7. T
L= . : (3.12)
Te m~! ITA + j

3.3.2 Rotacional

Para o caso do controlador rotacional, sabemos que seu controle dependera de 7. Aqui,
0 objetivo € aplicar um quatérnio q tal que a atitude do Drone converja para o versor q, =

1+ [0 0 0]7, enquanto a orientagdo do eixo X e sua velocidade angular convergem para 0.

Assim como antes, rastreamos a posi¢cdo do Drone por um quatérnio de erro q., em

relacdo a um quatérnio desejado q.

q =qzoq (3.13)
Seguindo 3.13, a conclusdo € entdo que q — q;, para que ¢, — q,.
9.

—

Qe

lq. o,
- { 2% (3.14)

s (7 — G x 19

3.3.3 Controlador

A trajetoria desejada para o quatérnio € calculada a partir da consideracao de uma forca
desejada 7y, ao longo da trajetéria, que aponta para o centro da mesma. Entdo, normalizando os
vetores T, e T', obtemos 7i4 € 71, respectivamente, onde 77; X 71, determina o eixo A4 e a rotagdo

com o menor angulo possivel \; entre T; e 1"

g X 7, = Ny Sy, (3.15)

= ﬁz . ﬁd + ﬁz X ﬁd (316)
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In(7igoRi%) (00w 7"
2

q =€ 2 oe , (3.17)

O controlador por realimentagdo de estado, projetado para este caso, segue a lei de
Lyapunov, que estabelece que, se existir uma fungio V (x)"!!, continua, diferencidvel e positiva
definida, cuja derivada em relacdo ao tempo V(IK)IV € negativa definida, entdo a origem do

sistema € um ponto de equilibrio estavel pelo critério de Lyapunov.

V(x) >0, Vax#0,

Criterio de Lyapunov: V(x) = ~ z(t)? _
V(z) <0, Vz#0.

Escrevendo os sub-sistemas pelas equacdes no espaco de estados:

7'?8 o 03 Id3_
] |05 03]

x Tos 1.1 %] o L.
el Z (Vs daa) del 105 (?d ~ X x ])\e) (3.19)
/\e 03 03 _)\6 Iil

Assim, as equagdes positivas definidas sdo formuladas:

AR 1 [ X
Vres == |5 |+ |- ) ot — 5 |> |-

Suas derivadas sao:
: -Fe 03 1Ig4, 03 -
Vi rs — |5 | ° Ta+gm )
4 _’/_’J ( [03 03 Id3m_1 ( a9 )

. Xe 03 I Xe 0 N N
Veot = | o | - 8ok 5|+ 31 (F — Xe X [)m)
)\e 03 03 )\e I_

As entradas serdo propostas da mesma forma que antes, onde o erro € multiplicado por

0s (T}Wl 4 g) (3.18)

ds

Xe (3.20)
< .

_|_

—

Te

(3.21)

uma ganancia K.

— 7?6 .
Td = - [Kp,Trs Kd,Trs] [H] —mg (322)

Te

Ky rrs = diag(kg, Ky, k),  Karrs = diag(Ry, Ry, Kz)

I
v

Se V(z) — 0 quando = — 0, entdo o sistema & assintoticamente estdvel.
Isso implica que o sistema tende a se aproximar do ponto de equilibrio.
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As entradas levam a que o critério de Lyapunov seja cumprido.

e

F=—[Kppot Kinrol + X x I, (3.23)

> >l

e

Kp,Rot = diag(exa €y Ez)a Kd,Rot = diag(gxa gya Ez)

Substituindo 3.23 e 3.22 em 3.21, obtemos as matrizes que determinam 08 K Quat¢rnios

do sistema:

. 03 Id3 03
€1 + K TS K rs )
& _03 03 ] _Idgm_l [ - o ]
i i i (3.24)
. 03 Id 03
€1g 03 033 + ]71 [Kp,Rot Kd,Rot] 3

Entdo, para estabilizar cada subsistema assintoticamente, as ganancias K devem ser

escolhidas de forma que as partes reais de 3.24 sejam negativas definidas.

Para realizar o acompanhamento do erro nos quatérnios, a fim de determinar qual

quatérnio deve ser aplicado para corrigir esse erro, calculamos:

- o - d
Ae =2In(q,), q.=4qjoq, I=Q— 2£ln(qd) (3.25)

3.4 Comparacao de Controladores
3.4.1 Principais Diferencas

Note-se entdo que um controlador cldssico requer uma grande quantidade de cdlculos
devido aos erros, que vém da natureza sequencial das rotacdes. Por exemplo, para o cdlculo de
um estado para outro, operam-se, neste caso, matrizes € R'?, além de ser necessdrio calcular

primeiro um eixo para entdo realizar a rotacao.

Agora, sabendo que temos apenas 4 entradas de controle, a discussdo € qual das posi¢oes
7 usar. Isso dependera do que se busca realizar. A dindmica do Drone sé permitird um grau de
liberdade em relagdo a posicdo. Por isso, sdo utilizados diferentes métodos de controle para levar
o Drone de um estado a outro, sendo necessario sacrificar 2 das possiveis entradas. O problema
reside na complexidade da dindmica do Drone, induzida por operacdes entre angulos, ao utilizar

Matrizes de Rotac@o sequenciais.
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3.4.2 Singularidades

Uma vantagem dos quatérnios € eliminar as singularidades devido aos dngulos de Euler.
Para a rotagdo utilizada ZR 4(¢, 0, 1), se o pitch chega a § — 7/2, entdo Cy = 0, situagdo na
qual o mapeamento inverso de R 4 — 77 ndo esté definido. O processo de mapear os Angulos
correspondentes a partir de uma matriz de rotagdo € importante porque requer saber a velocidade
angular dos motores, para fazer girar o Drone.

Outra desvantagem dos angulos de Euler € que eles perdem precisdo ao integrar mudangas

incrementais da atitude ao longo do tempo, mesmo sendo estas mudancas pequenas.?!

3.4.3 Simplicidade

Observa-se que usar quatérnios remove as 3 atitudes , equacao 3.5, e reduz os cdlculos
necessarios para chegar de um estado a outro. A razio € que ja ndo € necessdrio calcular um
estado, revisar seu erro e depois mapear de volta o angulo para aplicar uma entrada proporcional
a esse erro. O que nos ajuda a simplificar os cédlculos em quatérnios é que temos como referéncia
um versor, assim nos preocupamos apenas em definir um eixo de rotacdo. A ideia, neste caso, €
calcular um ¢ que nos aproxime o maximo possivel de q,, quatérnio projetado paralelo a um

desejado.
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4 SIMULACAO

Para a validacdo dos modelos, foram realizadas simulacdes utilizando MATLAB, com
um tempo de simulagdo ¢ = 400. Os célculos sdo realizados de forma iterativa, discretizando a
resposta no tempo. As posi¢des e velocidades de referéncia sdo computadas antes do cédlculo da
resposta de cada controlador. Diremos que um valor presente € representado por ,, futuro com ™

e passado com .

Esclarecemos que as derivadas foram calculadas utilizando diferencas finitas centrais,
e aplicando diferengas progressivas e regressivas nas extremidades, com isso melhoramos a

precisdo do calculo. A sequéncia que segue o algoritmo aplicado na simulagdo é:

1. Inmicializacao:
* Definimos as constantes fisicas que nos permitirdo calcular as condi¢des iniciais, a
partir dos dados da tabela 1.

* Definimos a matriz de inércia I com seus valores nos €ixos [, I, I...
2. Trajetoria:

* Definimos a trajetdria e calculamos os vetores associados.
+ Calculamos a velocidade por diferencas finitas, 7 = (7" — 7, ) /2dL.

* Calculamos o angulo entre o vetor posi¢do e o vetor velocidade em cada ponto, 3.10,

a diferenca entre esses angulos determina o nosso angulo de roll desejado 1/,.

* Calculamos a velocidade angular do Drone Q, equacao 3.8.
3. Definicao das Matrizes do Sistema no Espaco de Estados:

» Colocamos as matrizes A, B, C, e D do sistema no espaco de estados', e suas

respectivas ganncias /.

¢ Criamos o sistema sys como um sistema discreto com tempo de amostragem dt, ™.
4. Simulacao do Sistema:

* Calculamos os erros, para saber as correcdes que devem ser aplicadas.

» Simulamos o estado seguinte y*, para t,, com a entrada U,x, usando 1sim no

intervalo de tempo atual (At = 0.1 segundos).

e Armazenamos o estado 't e a saida y* atualizados para calcular o préximo estado.

I
II

Para os quatérnios devem ser acopladas 3.18 e 3.19, operando a dindmica como um tnico sistema
Cuja funcdo no MATLAB € sys = ss(A,B,C,D,dt)
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* O processo € repetido até o fim da trajetoria.

z(t + At) = Az(t) — B K u(t) 4.1)

Para ambos controladores, o processo de simulacao foi 0 mesmo, a diferenca estd no fato
de que, para o controlador por quatérnios, a cada iteracdo deve-se mapear de volta o quatérnio q

que corrige nosso erro, equacao 3.25. Entdo, tendo:

1 e
2

(qp), e -

=q

+* 111

Assim, podemos rotacionar q* o T, o q . A derivada do logaritmo do quatérnio

desejado foi calculada da seguinte forma:

d

%ln<qd) = l”(‘ld)+ — In(q,)~ /2 dt

As constantes fisicas utilizadas foram tomadas como proposi¢do de um drone que possui

essas caracteristicas, e os valores de inércia pertencem ao projeto de um drone quadrado.

Constante  Valor Unidade Ganho

g 9.81 m/s* | K, 7., = diag(10)
m 1 kg Kd,Trs = dlag(2)
Winit 1200 rev/s K, pot = diag(30)
CT 6.6e — 2 Kd,Rot = dlag(5)

Cr/Co  11.36

Lz 0.2 kg~mz Geométricos
I, 0.2 kg-m F— 0.1m
I, 0.4 kg-m? '

p 1225 keg/m? O, = V2

® 2.2e-2 m

 Distancia dos Bracos
® Raio da Hélice

Tabela 1 — Constantes Fisicas

I Ter cuidado, os quatérnios devem seguir uma ordem de pré-multiplicacio, pois nio comutam no

produto
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5 RESULTADOS E COMPARACAO

Estes foram os resultados obtidos na simulagdo, e sdo apresentadas as respostas de cada
controlador. Os gréificos mostrados exibem os erros de cada entrada.

Vale ressaltar que cores iguais denotam a mesma varidvel, independentemente do contro-

lador ao qual se refere.

5.0.1 Resposta Forca

A resposta a forca € apresentada apenas como a exercida em z, uma vez que € a forca de
maior interesse neste estudo. Para os torques 7, consideramos suas componentes, assim definindo
nossas 4 entradas.

20 Forca em z LQR 30 Forc¢a em z Quatérnios
—T,
15 ——T
T
L el
— 5 —
& &
g 0 g
2 £
= s
1 | |
-10 |
-15+ -5
20 L L L ) _10\ L L 1 s
0 100 200 300 400 0 100 200 300 400
Tempo [s] Tempo [s]
a b

Figura 10 — Resposta de Forca de (a) LQR y (b) Quatérnios

A Figura 10 permite evidenciar o comportamento da for¢ca em 2z de cada controlador.
As forcas na Figura (a) correspondem a forga exercida pela gravidade (7}), a for¢a que o drone

exerce durante a trajetoria (') e ao erro dessa forca (), respectivamente.

As forcas na Figura (b) representam, respectivamente, a forca desejada (7}; ), a forca

aplicada pelo drone durante a trajetéria (7') e o erro entre essas forcas (7).

Para o caso da forca em quatérnios, observamos que ela aumenta devido ao fato de que
essa forca estd direcionada para o centro da trajetoria. Ou seja, o drone exerce uma forga cada vez
maior para contrabalancar a forca centrifuga, que depende do aumento do raio. O erro aumenta

de 2.9 newtons, ao comego, para 7.71 newtons ao atingir 400 segundos.
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Figura 11 — Sobressinal de Forca de (a) LQR y (b) Quatérnios

Na Figura 11 € apresentado um zoom das forcas, para o LQR € possivel observar que
ocorre um sobressinal, de 5 newtons, aos 40 segundos devido a mudanca de trajetoria (de
elevagdo para espiral). Para os quatérnios, o sobressinal ocorre no inicio da trajetdria, e esse

sobressinal também € de 5 newtons.

Além disso, evidencia-se que o erro para o controlador LQR ¢& praticamente 0 durante
quase toda a trajetOria. Para ambas as figuras, a linha azul representa a forca desejada, a linha

vermelha a for¢a alcangada pelo drone, e a linha amarela representa o erro dessa forca.

5.0.2 Resposta Torques

Por outro lado, € apresentado apenas o erro dos torques, € ndo seus componentes, pois é

suficiente para observar o qudao bem o controlador consegue realizar as rotagdes enquanto gira.

Vamos revisar aqui dois aspectos: primeiro, para quatérnios, o torque em 7, tem um
comportamento diferente (diagonal), e segundo, este possui sobressinal apenas no inicio do
trajeto, inferindo que este controlador permite uma melhor resposta a mudangas repentinas de

direcdo.

Nesta secdo, sao apresentados os erros dos torques de cada controlador a esquerda.
A direita, é exibido um aumento na regifo inicial da curva, correspondente aos primeiros 50
segundos, para analisar os sobresinais em cada caso. Vale lembrar que cada torque 7, 7, 7.

corresponde aos torques aplicados aos movimentos de roll, pitch e yaw (¢, 0, 1), respectivamente.

O sobre-sinal do torque no quatérnio aos 40 segundos € superior ao do controlador LQR.
Vejamos que o erro da componente em 2 da Figura 12 € nulo ao longo da trajetdria, por outro

lado a Figura 13, tem uma componente diagonal, isto devido ao torque que estd sendo produzido,
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Figura 13 — Erro e Sobressinal de Torque Quatérnios

fazendo com que o drone tenha movimento de Yaw, obtemos que o seu erro € de 0.2 Nm no

inicio da trajetdria, nulo aos 200 segundos e 0.3 Nm aos 400 segundos.

5.1 Acompanhamento de Trajetorias

Agora apresentamos as trajetorias seguidas por cada controlador, com isso podemos

evidenciar como € sua resposta as posi¢des desejadas. Se os observarmos de uma vista lateral e

superior, poderemos facilmente evidenciar seu comportamento em relacdo a cada eixo.
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Figura 15 — Vistas da resposta do Controlador LQR

5.1.1 Quatérnios

Para os erros de quatérnios, além de visualizar o erro de cada componente do quatérnio
desejado q, e do utilizado q, apresentados na Figura 18, também € possivel observar que a soma

dos quatro componentes do quatérnio, em um mesmo instante de tempo, resulta em 1.
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Controlador Quatérnios
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Figura 17 — Vistas da resposta do Controlador Quatérnios

5.2 Comparacao de Controladores

Observemos que a for¢a em z do controlador LQR e de Quatérnios, Figura 10 (a) e (b),

respectivamente, sdo distintas. [sso ocorre porque a dindmica do primeiro nao permite mudangas

de forca em z, implicando que o drone se move de um ponto a outro em hovering, ou seja, 0

plano do drone estd quase sempre paralelo ao solo, ja que para este caso foram utilizados dngulos

pequenos para as rotagoes.
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Figura 18 — Resposta del quatérnio de rotagcdo q

A dinamica do segundo demonstra que o drone estd acelerando, ao ter um angulo
de pitch e roll em cada ponto. Isso exige uma forca que permita resistir a forca centrifuga
ficticia, provocada pela rotagdo. Tal forca € proporcional ao raio, € como neste caso ela aumenta
linearmente, equacgao 3.1, sua for¢ca também aumentara.

Além disso, observa-se que o torque em 1) tem o mesmo efeito, mas isso ocorre porque o
drone também esté girando sobre seu eixo.

O controlador por quatérnios possui uma precisao muito alta para seguir rotagcdes, mas
falha no momento de se deslocar no espaco. Vendo a Figura 17, vemos que sua posi¢ao vertical
possui um erro maior no plano z, mas segue quase exatamente cada ponto enquanto gira. Por

outro lado, o controlado por LQR tem uma vantagem na posi¢do, mas suas rotagdes tendem a se
afastar cada vez mais das desejadas.

Ainda assim, o controlador por Quatérnios parece se ajustar a trajetoria apos um tempo.

Visto de uma perspectiva lateral, depois dos 12 metros, o erro da posi¢ao diminui drasticamente,
podendo-se dizer que, aos 14 metros, o erro € zero.
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Vejamos mais uma coisa, a densidade de pontos, linha azul, para o controlador LQR
¢ menor do que para o controlador de Quatérnios. Ambos os controladores foram simulados
sob as mesmas condic¢des, com deltas de tempo iguais e com o mesmo tempo final. Isso indica
continuidade, pois os erros provenientes dos angulos de Euler tém seu efeito sobre este parametro.
E como se estivéssemos parados sobre um desses pontos, dando um passo sabendo que devemos
estar em uma posicdo desejada, mas percebendo que, um instante depois, estamos um pouco
mais a direita. Com a distancia e os tempos constantes, sé ha uma razao para estarmos mais a

direita: o nosso angulo antes de dar o passo ndo foi o correto.

Controladores convencionais se esforcam para corrigir aquele passo mal dado, e € por
isso que os quatérnios t€m uma vantagem. A probabilidade de errar o passo usando quatérnios é

menor.

Por fim, quero que percebamos que ambos os controladores apresentam um erro crescente
em relacdo aos torques, devido ao fato de que, para essa trajetdria especifica, ela € uma sinal
rampa e a arquitetura do controlador € de erro estatico de posicao. Se fosse desejado reduzir o erro
dos torques, seria necessario projetar um controlador com uma arquitetura de retroalimentacao

que reduza erros estaticos de velocidade® .
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6 CONCLUSOES

Os controladores aqui projetados sao controladores do tipo 0, que apenas conseguem
seguir sinais cujo erro estaciondrio é de posicao, ou seja, sinais de passo. Entende-se entdo que a

comparacao dos controladores foi realizada sob as mesmas condicdes.

Conclui-se que um modelo por Quatérnios € muito mais simples, e seu controlador
associado permite respostas equivalentes ou, em alguns casos, melhores que um controlador

otimizado com base em um modelo convencional.

Comparando as respostas de cada controlador, podemos dizer que o controlador por Qua-
térnios possui uma maior precisdo ao determinar rotagdes no drone, evitando descontinuidades,
nao caindo em singularidades e reduzindo a quantidade de célculos exigidos. Assim, esse tipo de
modelo e os controladores associados sdo melhores que os convencionais. Uma das principais

razodes para isso € o fato de separar as rotacdes de Euler.

A natureza sequencial dos angulos de Euler ndo permite mudancgas repentinas de rotacao
nem posigdes especificas; por exemplo, levar o drone perto de angulos de roll perpendiculares ao

solo provoca erros no seu célculo.

O modelo por quatérnios possui uma melhor resposta a perturbagdes, o que € evidenci-
ado pelos seus picos de sobressinal baixos. Outra vantagem é que os quatérnios exigem uma
capacidade computacional até 40% menor®® , o que é fundamental em sistemas que requerem
uma resposta rdpida a mudancgas no tempo, ou aqueles que estdo realizando outros processos de

forma paralela.

Os drones sao completamente autdonomos, € essa nova abordagem permite aproveitar
recursos utilizados no cédlculo de posi¢des e velocidades, canalizando-os para outras questoes.
Sob uma perspectiva operacional, isso poderia permitir a inclusdo de redundancias ou a criacao

de algoritmos de seguranca mais eficientes.

Conclui-se que a principal razdo dessas vantagens € que os quatérnios possuem uma
elegancia matemdtica e uma simplicidade que permite modelar dindmicas complexas de forma
compacta. Além disso, sdo entidades cujo mapeamento € simples; ou seja, ir de um quatérnio
a um vetor e vice-versa € mais facil, ao contrario de decompor matrizes ou calcular angulos.
Devido a sua natureza, obtemos respostas continuas e naturais do sistema, aumentamos os

intervalos de operacdo e melhoramos a resposta do drone a rotacoes.

Os quatérnios possuem uma interpolacao mais suave entre as orientacdes realizadas, o
que faz com que a densidade de pontos seja mais uniforme ao longo da trajetéria. Embora sua

resposta a translacdo seja mais lenta em comparagao com o controlador LQR.

Um problema de usar quatérnios € que, ao trabalhar sob a condi¢do de um versor, €
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dificil projetar métodos de otimizacdo porque estamos restritos a uma magnitude unitaria. Outra
limitagdio € que, se quisermos realizar uma rota¢do completa’, ndo é possivel fazé-lo de uma sé
vez, como com os angulos de Euler. Em videogames, por exemplo, esse problema é resolvido

rotacionando o quatérnio de 0 — « e depois de o« — 2.

6.1 Trabalhos Futuros

Como trabalhos futuros, seria interessante considerar as for¢as dos motores e a gravidade
de uma maneira mais realista, considerando suas componentes em x € y, € assim entender 0s

efeitos que isso tem na dindmica do drone.

Utilizar métodos de controle otimizados aplicados a um modelo por quatérnios, ou seja,
combinar o modelo por quatérnios com arquiteturas mais complexas, permitiria observar sua
resposta a tipos de entradas mais complexas. Outro ponto interessante seria utilizar o modelo por
quatérnios em controladores que apliquem teorias de controle diferentes (LQR, PID, MC)?’ 28
, para encontrar o mais otimizado. O poder de generalizar o uso desses para ser aplicados em

outros sistemas que utilizam rotagdes.

Modelar o drone por seu Lagrangiano, utilizando rotagdes por quatérnios, algo que
poderia ser denominado Quatérnios-Lagrange, e assim determinar o drone por suas energias. O
enfoque para linearizar novamente o modelo seria optar por usar séries de Taylor para expandir

as equagoes dinamicas.

Além disso, buscar separar o controlador por quatérnios de uma trajetoria, para aplicar
algum método de interpolacdo otimizado, garantindo que a rotacdo seja a menor i.e., uma rotagcao
pode ser de o ou de 2 — «, com os quatérnios ocorre 0 mesmo, e € vital garantir que o segundo

€aso nao aconteca.

Realizar verificagdes experimentais em bancadas de teste, ou com modelos fisicos, para
verificar a resposta do modelo sob condi¢des reais. Considerar efeitos aerodindmicos como
o blade flapping, o efeito de estela ou o arrasto induzido’ , junto com os efeitos por erros de
alinhamento dos motores, permitiria aumentar a precisdo do drone. Também modelar efeitos

giroscOpicos por quatérnios, devido ao fato de que a ordem de grandeza destes € consideravel.

Seria interessante desacoplar os motores, modelar cada rotor separadamente, como
eixos que atuam sobre um objeto e acopld-los novamente para obter uma dinamica. Ou usar
controladores separados, que controlem cada motor e depois um controlador maior que sirva
como chef d’orchestre. Revisar uma teoria de controle, onde as condi¢des se baseiem puramente

na multiplicacdo de quatérnios, talvez usando mapas de Diagramas de Vorondi.

I Ou seja, uma rotacdo de 27 radianos
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ANEXO A - EFEITO CORIOLIS

A expansio da equagdo 2.7 para obter o efeito Coriolis C'(n, 17) é obtida reescrevendo a
equacdo 2.9 levando em consideragdo a regra da cadeia para uma varidvel independente A.1. Se

z = f(x,y) onde z = g(t) e y = h(t), a regra da cadeia é expressa como:

0= _0fdg _Of Oh

ot Ox ot Oy ot A1)

Obtendo que a dindmica de atitude é:

T o) =T 89 =7 GQ
i i _
t(Q 1 77) Q1 - =T, Q1 77 [bl bz 63}

b = Im(Szw Segb) + ]yy(CzSﬁw + C@C¢S¢9) + ]ZZ(C2C£¢ C@C¢S¢9)
by = Iyy(CbC’ngqﬂD + 029) ZZ(CQC¢S¢¢ + Sd> )
b3 = —fm(59¢ ¢)

by = IL(289Sp%) + S5tb — Spp — Spop)+
Ly (2CoCoSE + C35,S,505 + CESE + CyS,Cob + CuCyS,l + CaC,S,0)+
L-(2CyCoC20 + C3C,Coh + CRC2D — CoCySyf) — CoCaSyf) — CoCiySyf) — CoCy S,y
by = 1y (CoSyChth + CoClySts + CoCysyth + CoCoSil + 205Gl + C20)—
 LCySsCth + CaCluSath + CoCaSgth + CoCySyth + 28,848 + S20)
b3 = _Ixm(sﬁqu) + Sﬂqu) ¢)

Usando,
0 —¢C 0
o0 o0
oy =0 —pC, —¢+¢@G¢>9”5; hi he hsl
0 —¢Cy—C, —Cy

hy = =t [Lia(CoSoth — Cod) + I,y (—CoSpSith — CSpSsh) + Lo(—CoClSpth + CySpS,0) |
hy = (Iy — L.)(C5CsSs0” + CoCop0 — CuSiap0 — CyS467).

Obtendo assim as componentes do vetor torque, em fun¢ao dos angulos.

) bl—hl
To | — Z)Q—hg
T¢ bg—hg
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Capitulo A Efeito Coriolis

C11
C12
C13

C21

C22
Ca3
C31
C32

C33

Para a matriz inercial em funcdo dos angulos de Euler I, obtemos:

ImSg -+ ]nyﬁCg + IZZC(?)C? Iny¢C¢Cg — ]zZS¢O¢Cg —1,..5
I(n) = | 1,,S4CsCp — I..54CyCl 1,,C3 + 1.5 0

E para o efeito Coriolis o resultado é:

11 C12 (13
0(7%77): Co1 C22 Ca23|

C31 C32 C33

= 21,,89Col) — 21,5359 Cy) + 21,,,S3CCap — 21..85CyC3d — 21..S5C3Col)
= —1,,S2Cd — 1,y SyS9Cs + 1,,C3Co + I..S3Cy + I..S389Cy) — I..C2Cy¢

= —1,,Cy0

= —(254Coth—Cy9) La = (S50 C0 —254C3Ce1) L. — (—25359Coth — Sy SyCy) Ly —
1,,S2Co¢p — 1,,S5SeCf + 1,,C3C + 1..52Cyd + 1..85S9C6 — 1..C3Cyp

= (I — I1..)S4SeCyth — 21,,S5Cs6 + 21I..S,C

= I, Coth

= —((—520 + 28,C4Cotp + C20) 1, + (S20 — 2S5CCoth — C20)1..)Cy — I,,Col
= —(=S2Cyth — 25,C40 + C2Co) 1, — (S2Co) + 255C46 — C2Ce0) I

=0
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ANEXO B - ALGEBRA DE QUATERNIONS

Este sistema numérico possui propriedades especificas no momento de ser operado,
cumprindo a condi¢do 2.11, essas operacgdes sdao fundamentais no momento do cdlculo. Para uma

revisdo mais detalhada sobre o assunto, pode-se consultar.?

Double Cover

Uma caracteristica propria dos quaternions € que todo quaternion possui um Oposto
negativo, ou seja, cada rotagdo em € SO(3) possui dois quaternions que a representam. Portanto,

sua rotacdo € equivalente, apenas com uma rotag¢do de 27 em relacdo a h. Para dois quaternions:

q1 = cos(A/2) + udsin(A/2), (B.1)
Qo := cos((A + 2m)/2) + @sin((A + 27)/2) (B.2)

q1 € qq representam a mesma rota¢do, mas a segunda estd sendo aplicada em h, como

q1 = —q2.

Soma

Dado dois quaternions arbitrarios, q € a, sua soma ¢ definida como:

qta:=q+a+q+a (B.3)

Esta é comutativa, o que significa q + a = a + q. A subtracao ndo possui as mesmas

propriedades, mas seu célculo € realizado componente a componente, como na soma.

Produto

Esta é a definicdo mais importante, pois a partir dela € possivel demonstrar as outras

operagdes. E uma operacdo ndo comutativa, ou seja, q o a # a o q, sendo definida por:

goa:= (qao— - @)+ (qd + aod+ ¢ X @) (B.4)

E importante ressaltar que ela ndo é comutativa, ou seja, q ca # a o q.
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Norma

A norma em quaterniones € a mais estudada em matematica, pois determina vérias

propriedades no cdlculo de quaterniones. Para um quaternion arbitrario, define-se sua norma

comao:
lall® =acq” =g +q + ¢ + g3,
(B.5)
q® = 2¢oq — |Iq|I*
Conjugado
A defini¢do é determinada por:

qQ"=q — (B.6)
(qor)"=r"oq" (B.7)

O conjugado de um versor representa uma rotacao inversa em relacdo ao mesmo eixo h.

Inversa

Para um quaternién ndo nulo, verifica-se que sua inversa serd seu conjugado multiplicado

pela inversa de sua norma.

q = (B.8)

1 1 T
gqeq ' =qleq=1+[0 0 0] (B.9)

Rotacao de Vetor

Dado um vetor ¢ € R?, em um referencial A e sendo 7, € R? 0 mesmo vetor em relacio

a um referencial B, a transformagdo v = vj, pode ser realizada da seguinte maneira:

ﬁb:qfloﬁoq:q*oﬁoq (B.10)
Aqui q € o quaternién que indica a rotacdo de v}, em relagdo a v, propriedades do
quaternion.

Isso é feito dessa forma, pois assim € possivel rotacionar o vetor em relagdo a um plano.

Para mais informacdes, consulte.'*
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Derivada

Por regra da cadeia, podemos definir a derivada de um vetor posicdo 7, em relagao a A,

isolando obtemos:

fi=dloroqtalofoqtaloroq=q"oqon+Rod oq

Definimos q como um versor, entao

Cuja derivada

Substituindo em B.11 obtemos:

— —

FH=70q 'oqg—q loqoi,=2(q 'oq) x 7

(B.11)

(B.12)

Sabendo que a velocidade transacional pode ser escrita como, 7, = ) x 73, onde ) € a

velocidade angular de 77,

Qxi=2q oq)x7
A derivada de um quaternién unitdrio em fun¢ao de 0, é entdo:

A=2(qtoq)

—

q—;qu

(B.13)

(B.14)
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