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Resumo
Este trabalho tem por objetivo a avaliação de segurança, no contexto de estabilidade
transitória, de três Sistemas Elétricos de Potência, o Sistema IEEE Nova Inglaterra de 39
barras, o Sistema Sul Brasileiro Reduzido de 33 barras e o Sistema Sul Sudeste e Mato-
Grosso Brasileiro Reduzido de 107 barras, através de uma técnica de filtragem, com base
em métodos diretos (PEBS e BCU), adequada para análises em tempo real. A ferramenta
utilizada para a filtragem de contingências, detecta a ocorrência de ilhamento no cenário
pós-distúrbio e emprega filtros baseados em métodos diretos para eliminar rapidamente,
nos primeiros estágios de filtragem, de uma lista de contingências plausíveis, àquelas
que são garantidamente estáveis e levar para simulação no domínio do tempo apenas
as incertas. Subsequentemente, compara-se o desempenho dos filtros com a metodologia
clássica de simulação no domínio do tempo e verificam-se os esforços computacionais
envolvidos. Para a execução das análises, uma versão modificada do programa desenvolvido
originalmente por Theodoro (2010) foi utilizada. Nele, realizaram-se alterações, em especial
nos métodos numéricos e nos parâmetros dos filtros, e otimizações, de forma a garantir
melhores resultados e desempenho.

Palavras-chave: Análise de segurança dinâmica, BCU, Estabilidade transitória, Métodos
diretos, PEBS, Sistemas elétricos de potência.





Abstract
This work has the main objective of studying dynamic security of three Electrical Power
Systems, the IEEE New England 39 bus System, a Reduced South Brazilian 33 bus System
and a Reduced South Southeast and "Mato-Grosso" Brazilian 107 bus System, in the
context of transitory stability analysis, using a filtering technique based on direct methods:
PEBS and BCU. The analysis verifies the existence of islanding in post-disturbance scenario.
After filtering, the possible unstable cases are simulated on time-domain determining
whether the system is stable or not. Finally this method is compared with the classic
time domain simulation in terms of results and computational efforts. To perform the
analysis, a modified version of the software developed by Theodoro (2010) was used. The
modifications were made, particularly in numerical methods and filter parameters, to
guarantee a better computational performance and results.

Keywords: Dynamic security analysis, BCU, Transient stability, Direct Methods, PEBS,
Electrical Power Systems.
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Introdução

Neste trabalho estuda-se o problema de análise de segurança dinâmica, no contexto
de estabilidade transitória, em Sistemas Elétricos de Potência via Métodos Diretos.
Análises de segurança são essenciais para garantir a operação segura de Sistemas Elétricos
de Potência (SEP’s). Um SEP é considerado seguro quando suporta, sem violações de
limites e perda de estabilidade, a ocorrência de uma lista de contingências plausíveis pré
definidas pelo operador do sistema.
Todavia, as incertezas de operação do sistema exigem que análises de segurança sejam
realizadas em tempo real. O desenvolvimento de ferramentas computacionais de análise
de segurança e, em particular, ferramentas de análise de segurança dinâmica, que sejam
adequadas à aplicação em tempo real é desafiador. Neste trabalho, foca-se no problema de
análise de segurança no contexto de estabilidade transitória.
A metodologia clássica para a análise de estabilidade transitória é fundamentada na
integração numérica do conjunto de equações diferencias que modelam o SEP. Mas com o
aumento da complexidade e tamanho dos sistemas, a integração numérica das equações
requer grande esforço computacional e é inadequada para a aplicação em tempo real.
Métodos Diretos, baseados na teoria de funções energia para a análise de estabilidade, são
computacionalmente mais rápidos e promissores para a análise de segurança dinâmica.
Verificou-se que a aplicação de métodos diretos levavam a resultados conservadores (CHI-
ANG; WU; VARAIYA, 1994). Esse fato levou os engenheiros a recorrerem a uma metodo-
logia híbrida que alia a confiabilidade e exatidão da metodologia clássica com a rapidez
dos métodos diretos. Nela, filtros baseados em métodos diretos classificam as contingências
como sendo estáveis ou incertas. As classificadas como incertas são submetidas à análise
pela metodologia clássica. A escolha dos filtros é realizada de maneira que aqueles mais
simples, e que por consequência exigem menor esforço computacional, sejam os primeiros
a realizarem a classificação. Apenas os casos indicados como problemáticos, contingência
incertas, são simulados no domínio do tempo. Dessa forma, a complexidade da análise é
reduzida, mas é garantida a robustez do resultado.
Neste trabalho os sistemas IEEE Nova Inglaterra de 39 barras (ATHAY; PODMORE;
VIRMANI, 1979), Sul Brasileiro Reduzido de 33 barras (ALVES, 2007) e Sul Sudeste e
Mato-Grosso Brasileiro Reduzido de 107 barras (ALVES, 2007) são analisados utilizando-se
em paralelo a metodologia clássica e a metodologia dos classificadores. Posteriormente
comparam-se os resultados obtidos em cada metodologia. Para a execução das análises,
realizaram-se mudanças nos métodos numéricos, nos parâmetros dos filtros classificadores
e otimizações gerais no programa originalmente desenvolvido por Theodoro (2010), de
forma a reduzir o esforço computacional e alcançar melhores resultados.
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Este trabalho está organizado como se segue:
No capítulo 1, os principais conceitos matemáticos de estabilidade utilizados neste trabalho
são revisados, além disso é apresentado, brevemente, a modelagem de Sistemas Elétricos de
Potência para estudos de estabilidade transitória e introduzido o primeiro método direto
para a análise de estabilidade transitória.
No capítulo 2, apresenta-se a formulação de Análise de Segurança sob a visão da metodo-
logia clássica e dos métodos diretos.
No capítulo 3, apresentam-se os resultados da aplicação dos classificadores nos sistemas
IEEE Nova Inglaterra de 39 barras (ATHAY; PODMORE; VIRMANI, 1979), Sul Brasileiro
Reduzido de 33 barras (ALVES, 2007) e Sul Sudeste e Mato-Grosso Brasileiro Reduzido de
107 barras (ALVES, 2007) e uma discussão é realizada sobre a eficiência da metodologia
sobre cada sistema. Posteriormente, são comparados o desempenho e exatidão da versão
modificada do programa com versão original.
No capítulo 4, conclui-se sobre os resultados apresentados.
No Apêndice A, investiga-se os métodos numéricos utilizados neste trabalho. Para isso,
são apresentadas suas demonstrações, suas qualidades, deficiências e seus algoritmos.
Finalmente, nos Apêndices B e C, para o leitor interessado, são apresentadas demonstrações
de alguns resultados apresentados no decorrer do trabalho.
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1 Revisão Bibliográfica

1.1 Estabilidade de Sistemas Autônomos
Antes de estudar as características de um sistema de potência, é necessário realizar

uma rápida introdução aos sistemas dinâmicos.

1.1.1 Definições

Considere o sistema autônomo descrito por

ẋ = f(x), (1.1)

no qual f : Rn → Rn é Lipschitziana1. Seja xe ∈ Rn um ponto de equilíbrio de (1.1). Dessa
forma f(xe) = 0.

Definição 1. O ponto de equilíbrio xe de (1.1) é estável se, para cada ε > 0, existe um
δ = δ(ε) tal que ‖x(t0)− xe‖ < δ ⇒ ‖x(t)− xe‖ < ε, para todo t ≥ t0.

A Figura 1 ilustra o conceito de estabilidade em duas dimensões.

Figura 1 – Estabilidade em 2D

Definição 2. O ponto de equilíbrio xe de (1.1) é instável se não é estável.

A Figura 2 apresenta o conceito de instabilidade em duas dimensões.
1 Uma função f : Rn → Rn é Lipschitziana em x ∈ Rn se há uma constante C, tal que ‖f(y)− f(x)‖ 6

C‖y − x‖,∀y ∈ Rn seja suficientemente próximo de x (ROWLAND; WEISSTEIN, 2016).



30 Capítulo 1. Revisão Bibliográfica

Figura 2 – Instabilidade em 2D

Definição 3. O ponto de equilíbrio xe de (1.1) é assintoticamente estável se é estável e δ
pode ser escolhido de forma que ‖x(t0)− xe‖ < δ ⇒ lim

t→+∞
‖x(t)− xe‖ = 0.

Na Figura 3, ilustra-se o conceito de estabilidade assintótica em duas dimensões.

Figura 3 – Estabilidade Assintótica em 2D

Definição 4. O ponto de equilíbrio xe pode ser exponencialmente estável se existem δ > 0,
ε > 0 e α > 0 de forma que ‖x(t0)‖ < δ ⇒ ‖x(t)‖ ≤ ε‖x(t0)‖e−α(t−t0), para todo t ≥ t0

Na Figura 4, apresenta-se o conceito de estabilidade exponencial em uma dimensão.
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ε

−ε

εe−α(t−t0)

−εe−α(t−t0)

t0 t

x(t)

Figura 4 – Estabilidade Exponencial em 1D

Definição 5. Seja φ(t, x) a solução de (1.1) que se inicia no estado x em t = t0.
Supondo que x0 é um ponto de equilíbrio hiperbólico2 de (1.1), então a variedade estável
de x0 é o conjunto

W s(x0) = {x ∈ Rn| lim
t→∞

φ(t0, x) = x0}. (1.2)

Definição 6. Seja φ(t, x) a solução de (1.1) que se inicia no estado x em t = t0.
Supondo que x0 é um ponto de equilíbrio hiperbólico de (1.1), então a variedade instável
de x0 é o conjunto

W u(x0) = {x ∈ Rn| lim
t→−∞

φ(t0, x) = x0}. (1.3)

1.1.2 Teorema de Estabilidade de Lyapunov

Os métodos diretos tem como base a fundamentação teórica criada por Lyapunov
(1892).

Teorema 1. Seja xe = 0 um ponto de equilíbrio de (1.1) e D ∈ Rn um conjunto aberto
contendo xe = 0. Seja V (x) : D → R uma função continuamente diferenciável, de forma
que:

V (0) = 0 e V (x) > 0, em D − {0} (1.4)

V̇ (x) =
n∑
i=1

∂V

∂xi
fi(x) (1.5)

V̇ (x) 6 0 em D (1.6)
2 Um ponto de equilíbrio é dito hiperbólico se a matriz Jacobiana, avaliada naquele ponto, não possui

autovalores no eixo imaginário (KHALIL; GRIZZLE, 2002).
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Então, xe = 0 é estável. Ainda mais, se

V̇ (x) < 0 em D − {0} (1.7)

Então, xe = 0 é assintoticamente estável.

A demonstração do Teorema 1 está apresentada no Apêndice B.

1.1.3 Região de Estabilidade

Supõe-se que xe é um ponto de equilíbrio assintoticamente estável de (1.1), então
existe uma região A(xe) contendo xe de tal forma que toda a trajetória iniciada nessa
região converge para o ponto de equilíbrio estável xe a medida que o tempo tende para
infinito. A região A(xe) é denotada como a região de estabilidade de xe.
Formalmente, A(xe) é definida como se segue:

Definição 7. Seja φ(t, x) a solução de (1.1) que se inicia no estado x em t = 0. A região
de estabilidade de um ponto de equilíbrio assintoticamente estável xe é o conjunto de
estados x0 tais que lim

t→+∞
φ(t, x0) = xe. Compactamente:

A(xe) := {x0 ∈ Rn : lim
t→+∞

φ(t, x0) = xe} (1.8)

A fronteira da região de estabilidade A(xe) é denotada por ∂A(xe).

1.1.4 Caracterização da Região de Estabilidade

Definida a região de estabilidade, é de interesse, agora, sua caracterização.
Com esse intuito, é necessário a definição de função energia para o sistema:

Definição 8. A função V (x) : Rn → R é uma função energia para (1.1) se satisfaz as
seguintes condições (CHIANG; WU; VARAIYA, 1994):

1. V̇ (x(t)) 6 0;

2. O conjunto {t ∈ R : V̇ (x(t)) = 0} tem medida nula em R, para toda trajetória não
trivial x(t);

3. Se V(x(t)) é limitada para t > t0, então x(t) é limitada para t > t0.

O seguinte teorema (CHIANG; WU; VARAIYA, 1994), descreve o comportamento
das trajetórias do sistema na fronteira da região de estabilidade.
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Teorema 2. Se existe uma função energia para o sistema 1.1, então toda trajetória na
fronteira da região de estabilidade, converge para um dos pontos de equilíbrio na fronteira
quando o tempo tende ao infinito.

O Teorema 2 indica que toda trajetória na fronteira da região de estabilidade
apresenta apenas um tipo de comportamento: converge para um ponto de equilíbrio
quando o tempo tende para o infinito. Logo não existem comportamentos oscilantes,
nem trajetórias caóticas ou ilimitadas. Esse teorema também oferece uma maneira de
caracterizar a fronteira da região de estabilidade. Na verdade, pelo Teorema 2, pode-se
dizer que fronteira da região de estabilidade é, de fato, formada por pontos de equilíbrio
instáveis, xi, e pontos cuja trajetória converge para xi quando o tempo tende para o
infinito. Formalmente, é o mesmo que dizer que a fronteira da região de estabilidade é
formada pela união da variedades estáveis dos pontos xi.

Corolário 1. Se existe uma função energia para o sistema (1.1), então a fronteira da
região de estabilidade ∂A(xe) está contida no conjunto formado pela união da variedades
estáveis dos pontos de equilíbrio instáveis em ∂A(xe), ou seja,

∂A(xe) ⊆
⋃

xi∈∂A(xe)
W s(xi) (1.9)
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1.2 Modelagem de Sistemas Elétricos de Potência

1.2.1 Fluxo de Carga - Análise Estática

Nesta seção serão apresentados, ainda que brevemente, os principais conceitos da
modelagem estática de SEP. As equações que serão desenvolvidas apresentam extrema
importância no estudo dinâmico executado neste trabalho.
Considere uma linha de transmissão sem perdas como:

−

+

VB

−

+

VA

I
jX

Figura 5 – Linha de Transmissão

A potência complexa S[VA] é em geral dada por:

S = P + jQ = V I∗[VA] (1.10)

Em que I∗ é o complexo conjugado da corrente I. Então a potência injetada em VA

(Figura 5) é:
SA = PA + jQA = VAI

∗[VA] (1.11)

A corrente I é descrita pela seguintes relações:

I = VA − VB
jX

(1.12)

I∗ = V ∗A − V ∗B
−jX

(1.13)

Substituindo (1.13) em (1.11), chega-se em:

SA = VA(V ∗A − V ∗B)
−jX

(1.14)

Assumindo que VB = |VB| 0 e VA = |VA| δ, então:

VB = V ∗B e VA = VAe
jδ (1.15)
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Aplicando as relações encontradas (1.15) em (1.14), obtêm-se:

SA = |VA|
2 − |VA||VB|ejδ

−jX
(1.16)

Utilizando-se da relação de Euler3 em (1.16), encontra-se:

SA = |VA||VB|
X

sin δ + j
|VA|2 − |VA||VB| cos δ

X
(1.17)

Finalmente:

PA = |VA||VB| sin δ
X

[W] (1.18)

QA = |VA|
2 − |VA||VB| cos δ

X
[VAR] (1.19)

Utilizando o mesmo procedimento para o lado B:

PB = |VA||VB| sin δ
X

[W] (1.20)

QB = |VA||VB| cos δ − |VB|2
X

[VAR] (1.21)

Generalizando para um sistema de N Barras:

Ik =
N∑
n=1

YknVn (1.22)

S∗k = Pk − jQk (1.23)

Vn = |Vn| δn e Ykn = |Ykn| φkn (1.24)

Em que Vn é a tensão no barramento n e Ykn é a admitância do elemento k-n da matriz
de admitância o sistema. Substituindo (1.24) em (1.23) e (1.22), chega-se em:

Pk − jQk =
N∑
n=1
|VkVnYkn| φkn + δn − δk (1.25)

Dessa forma:
Pk =

N∑
n=1
|VkVnYkn| cos(φkn + δn − δk) (1.26)

Qk =
N∑
n=1
|VkVnYkn| sin(φkn + δn − δk) (1.27)

As equações (1.26) e (1.27) desenvolvidas acima, apresentam, assim o comportamento
estático de um Sistema Elétrico de Potência. Esse equacionamento é de grande valia para
o estudo de transitório dos SEP’s, pois é delas que se retira a informação das condições
iniciais do sistema dinâmico.
3 ejθ = cos θ + j sin θ
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1.2.2 Equação de Swing

Nesta seção será derivada a equação de swing, que é a relação matemática descre-
vendo como o rotor de uma máquina síncrona se moverá (swing) quando há um desbalanço
entre a potência mecânica injetada na máquina e a potência elétrica extraída dela.
Inicialmente, considera-se uma máquina síncrona como a apresentada na Figura 6.

Figura 6 – Máquina Síncrona

Esquematicamente os diferentes torques e potências de uma máquina podem ser ilustrados
como na Figura 7.

Figura 7 – Descrição esquemática das potências e torques em uma máquina síncrona
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Para efeito dessa análise, considera-se que a máquina da Figura 7 possa ser repre-
sentada como ilustrado na Figura 8.

Figura 8 – Máquina Síncrona Simplificada

Aplicando as Leis de Newton do movimento rotacional4 (SERWAY; JEWETT,
2013) no Gerador (Figura 8), encontram-se as seguintes equações:

θ = S

r
[rad] (1.28)

ω = dθ
dt [rad/s] (1.29)

α = dω
dt [rad/s2] (1.30)

O torque devido a uma força tangencial a uma distância r do eixo de rotação é descrito
como:

τ =
∫
rdF [N.m] (1.31)

A força dF, por sua vez, pode ser descrita como a força tangencial para uma partícula
de massa dm. Assim o torque infinitesimal dτ será a força tangencial multiplicada pela
distância r e o torque total τ será a soma de todas as componentes infinitesimais dτ . Dessa
forma:

dF = adm = αrdm [N] (1.32)

dτ = rdF = r2αdm [N.m] (1.33)
4 1) Na ausência da aplicação de um torque liquido resultante, a velocidade angular se mantêm constante;

2) τ = Jα e 3) Para cada torque aplicado, há um torque de reação com mesma magnitude e sentido
contrário.
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τ =
∫

dτ = α
∫
r2dm [N.m] (1.34)

O momento de inércia da máquina é descrito como se segue:

J = τ

α
[kg.m2]⇒ Jα = τ ⇒ J

d2θ

dt2 = τ (1.35)

Como apresentado pela equação (1.34), τ representa o torque total aplicado sobre o rotor.
Se dividido τ em duas componentes uma elétrica τe e uma mecânicaτm, obtêm-se:

τ = τm ± τe (1.36)

Por ser um Gerador, τe retarda o movimento, enquanto τm acelera-o. Pode-se, assim,
reescrever a equação (1.36):

τ = τm − τe (1.37)

Analisando-se as equações (1.28) e (1.34) é verificado que θ é medido em relação a um
referencial estacionário e, portanto, cresce continuamente mesmo em regime permanente.
Corrige-se isso com a definição de um ângulo mecânico δ referenciado a um eixo girante.

θ = tωs + σ + δ (1.38)

Em que ωs é velocidade síncrona de rotação e σ é o ângulo mecânico inicial do sistema.
Derivando-se a equação (1.38) em relação ao tempo duas vezes, obtêm-se:

dδ
dt = dθ

dt − ωs (1.39)

d2δ

dt2 = d2θ

dt2 (1.40)

É possível reescrever a expressão obtida em (1.39) com o auxílio de (1.29), da forma como
se segue:

dδ
dt = dθ

dt − ωs = ω − ωs (1.41)

Pode-se concluir, então, que a velocidade angular do rotor será igual à síncrona apenas
quando dδ

dt for igual à zero. Logo a derivada de δ em relação ao tempo é o erro na
velocidade.
Reescrevendo a equação (1.35) em termos de δ,τe e τm, encontra-se:

J
d2δ

dt2 = τm − τe (1.42)

Ou em termos de potência:

ω(J d2δ

dt2 ) = Pm − Pe (1.43)
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Em que Pe[W] e Pm[W] são as potências elétrica e mecânica que agem sob o rotor,
respectivamente.
Dividindo a equação (1.43) pela base S da máquina e rearranjando, o resultado é:

2
ω

(1
2ω

2J)
S

d2δ

dt2 = Pm − Pe
S

→ 2H
ω

d2δ

dt2 = P p.u.
m − P p.u.

e (1.44)

Em que H [s] é definida como a constante de inércia por unidade.
A equação (1.44) é a equação de swing. É possível reescrevê-la em termos do momento
angular, como apresentado a seguir (omite-se a notação de p.u.):

2H
ω

d2δ

dt2 = Pm − Pe →
2(1

2Mω)
ω

d2δ

dt2 = Pm − Pe →M
d2δ

dt2 = Pm − Pe (1.45)

É importante observar que foram feitas duas simplificações na análise realizada:

1. Em (1.45) foi assumido que M é constante, o que estritamente, na verdade, é uma
aproximação;

2. O termo de amortecimento proporcional à dδ
dt foi desconsiderado.

1.2.2.1 Modelo Elétrico da Máquina

Para a completude e claridade nas análises dos próximos capítulos, na Figura 9
mostra-se o modelo elétrico equivalente da máquina síncrona, onde Eg é a tensão do
gerador e X ′d é a reatância transitória da máquina.

Figura 9 – Modelo Elétrico equivalente da Máquina Síncrona

1.3 Formulação para Estudos de Estabilidade Transitória
Nesta seção será apresentada a formulação, baseada no equacionamento desenvolvido

na seção 1.2, utilizada no estudo de estabilidade transitória de SEP.
Algumas suposições são adotadas a fim de simplificar a análise. São elas:

• Rede:
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– Supõe-se que o sistema de transmissão do SEP esteja em regime permanente
senoidal.

• Carga:

– Admite-se que as cargas conectadas no sistema são impedâncias constantes,
calculadas a partir do regime permanente pré-falta.

• Gerador síncrono:

– Representa-se a máquina por uma fonte de tensão de magnitude constante em
série com uma reatância (Reatância transitória de eixo direto);

– O ângulo de fase da tensão coincide com o ângulo elétrico do rotor em relação
à referência síncrona girante;

– As potências mecânicas se mantém constantes durante o período da análise.

No problema de estabilidade transitória é necessário estudar o sistema em 3 momentos:
pré-falta (prf ), em falta (f ) e pós-falta (pf ). Denota-se por tempo de abertura, tab, o
tempo necessário para atuação do sistema de proteção. Dessa forma o problema se torna o
seguinte:

Mδ̈m +Dδ̇m = Pm − Pe


Pe = P prf

e se t ≤ 0

Pe = P f
e se 0 ≤ t ≤ tab

Pe = P pf
e se tab ≤ t

(1.46)

Essa mudança ocorre devido a uma variação na topologia do SEP durante o período em
falta e pós-falta. É preciso esclarecer que as contingências estudadas nesse trabalho são
curto-circuitos trifásicos permanentes e francos à terra. Além disso o sistema de proteção
do SEP atua de forma a isolar o defeito.
Assim, seja um SEP formado por N barras. Então a 1a Lei de Kirchhoff para o sistema é
escrita como se segue:

I = YbusV (1.47)

em que

Ybus =


Y11 Y12 · · · Y1N

Y21 Y22 · · · Y2N

· · · · · · · · · · · ·
YN1 YN2 · · · YNN

 (1.48)

Compactamente as admitâncias são calculadas segundo o equacionamento descrito em (1.49) (NA-
SAR, 1990).

Yij =


N∑
k=1
k 6=i

yik se i = j

−yij se i 6= j

(1.49)
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no qual Yij é o elemento i − j da matriz de admitância e yij é admitância entre os
barramentos i−j. Pelas suposições adotadas na formulação, todas as cargas são admitâncias
passivas. Essa representação não é suficiente para o estudo de estabilidade, é necessário
aumentar a rede com a inserção de um novo barramento interno entre o gerador e o
barramento real. A Figura 10 abaixo ilustra essa situação.

Figura 10 – Diferença de Representação entre o problema de Fluxo de Potência e de
Estabilidade

Assim é preciso aumentar em 1 a dimensão da matriz Ybus para cada gerador conectado ao
sistema. Então para cada barramento interno i conectado à um barramento k, modifica-se
a matriz Ybus da seguinte forma:

• Adiciona-se uma nova coluna e linha para o barramento i com Yii = −j
X ′di

e elementos

não diagonais iguais a zero exceto Yik = Yki = j

X ′di

;

• Adiciona-se j

X ′di

em Ykk: Ykk = Ykk + j

X ′di

.

O último passo é, então, adicionar as admitâncias das cargas na matriz Ybus. Para isso
utiliza-se a suposição de que as cargas possuem impedâncias constantes na análise:

YLk
= PLk

+ jQLk

|VLk
|2

, k = 1, ..., N (1.50)

Finalmente, adicionam-se as admitâncias calculadas em (1.50) nos elementos Ykk e a matriz
resultante é a matriz estendida para o SEP.
Então a injeção de correntes ocorrem apenas nos ng nós internos de geração. Em todos
outros nós a corrente é nula. Portanto ,é possível, particionar o vetor de corrente em:

I =


Ing

−
0

 (1.51)

Em que Ing representa o vetor de corrente corresponde aos ng nós internos de geração.
Reescrevendo a equação (1.47) são obtidos os seguintes resultados:Ing

0

 =
D E

F G

Eng

Vext

 (1.52)
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Yred = D− EG−1F (1.53)

Ing = YredEng (1.54)

Em que Eng ,Vext e Yred, representam, respectivamente, o vetor das forças eletromotrizes
dos geradores, o vetor de tensões das barras externas e a matriz de admitância reduzida.
Deve-se notar que em (1.53) todas as barras foram eliminadas, exceto as ng barras de
geração.
As tensões internas de cada máquina são dadas por:

Eg = V + I(jX ′d) = V +
(
P − jQ
V ∗

jX ′d

)
= V + QX ′d

V ∗
+ jPX ′d

V ∗

=
√(

V + QX ′d
V ∗

)2
+
(
PX ′d
V ∗

)2
arctan

(
PX′d

|V |2+QX′
d

)
(1.55)

Onde V é a tensão do barramento em que a máquina está conectada.
A potência elétrica dos geradores é calculada por:

Pk =
ng∑
j=1
|EkEjYkj| cos(θkj + δj − δk) (1.56)

Onde Ek é a força eletromotriz do gerador k, Ej é a força eletromotriz do gerador k e Ykj
é a admitância k − j da matriz de admitância reduzida (1.54) para o sistema.
Obtida a expressão para Pk é possível prosseguir com a resolução de (1.46) para as diversas
máquinas do SEP. Ressalta-se que para as diferentes etapas da análise a matriz Yred é
modificada, pela ocorrência e correção da falta.

1.3.1 Função Energia para Sistemas Elétricos de Potência

Considera-se, uma máquina síncrona conectada à um barramento infinito, como
ilustrado na Figura 11.

Figura 11 – Máquina Conectada a um barramento infinito
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Tal sistema pode ser modelado pelo conjunto de equações diferenciais (1.45):

δ̇ = ω (1.57)

ω̇ = Pm −
|Eg||E∞|
X ′d +Xl

sin(δ − δ∞) (1.58)

A função energia para (1.58) (ALBERTO; BRETAS, 2000) será dada pela expressão a
seguir:

V (δ, ω) = 1
2Mω2 − Pm(δ − δe)−

|Eg||E∞|
X ′d +Xl

(cos(δ)− cos(δe)) (1.59)

A função energia (1.59) pode ser dividida em duas componentes, uma potencial e uma
cinética:

Vp(δ, ω) = 1
2Mω2 (1.60)

VK(δ, ω) = −Pm(δ − δe)−
|Eg||E∞|
X ′d +Xl

(cos(δ)− cos(δe)) (1.61)

Em que Vp(·) é a energia potencial do SEP e VK(·) é a energia cinética.

1.3.2 Sistemas Multimáquinas

Neste trabalho o sistema multi-máquinas é referenciado ao centro de ângulo das
máquinas (COA - do inglês center of angle) como se segue:

MT =
ng∑
i=1

Mi (1.62a)

θ = δi − δ0, δ0 = 1
MT

ng∑
i=1

Miδi (1.62b)

ω̂ = ω − ω0, ω0 = 1
MT

ng∑
i=1

Miωi (1.62c)

Uma função energia numérica para o sistema obtida de (ALBERTO; BRETAS, 2000) é:

V (θ, ω̂) = VK(θ, ω̂) + Vp(θ, ω̂) =
ng∑
i=1

Miω̂i
2

2 +
 ng−1∑

i=1

ng∑
j=1+i

|Ei||Ej|Bij|[cos(θi − θj)−

cos(θsi − θej)] +
ng−1∑
i=1

ng∑
j=1+i

|Ei||Ej|Gij|
θi + θj − θei − θej
θi + θj − θei + θej

[sin(θi − θj)− sin(θei − θej)]


(1.63)

Em que Bij é a parte imaginária de Yij , Gij é a parte real de Yij , Vp(·) é a energia potencial
do SEP e VK(·) é a energia cinética.
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1.4 Critério das Áreas Iguais

O critério das áreas iguais (SKILLING; YAMAKAWA, 1940) é o primeiro método
que surgiu para resolver o problema de análise de estabilidade transitória via métodos
diretos. Como será visto, a análise de estabilidade transitória é realizada, sem a solução
explícita das equações diferencias do SEP.

1.4.1 Princípios

Considere uma máquina conectada em um barramento infinito. A equação do swing
da máquina é descrita pela equação (1.45). Multiplicando ambos os lados de (1.45) por
dδ

dt
resulta em

dδ

dt
M
d2δ

dt2
= dδ

dt
(Pm − Pe) = dδ

dt
(Pa), (1.64)

onde Pa é a diferença entre a potência mecânica e a potência elétrica.
Logo

M

2
d

dt

[(
dδ

dt

)2
]

= Pa
dδ

dt
. (1.65)

Multiplicando ambos os lados de (1.65) por dt, obtêm-se

M

2 d
[(
dδ

dt

)2]
= Padδ. (1.66)

Integrando a equação entre o equilíbrio pré-falta δprf até um ângulo δ qualquer, encontra-se
a seguinte expressão:

M

2

(
dδ

dt

)2
=
∫ δ

δprf

Padδ (1.67)

Todavia, pela equação 1.40, a expressão acima pode ser reescrita como se segue:

M

2 (ω − ωs)2 =
∫ δ

δprf

Padδ (1.68)

Logo

ω − ωs =
√

2
M

∫ δ

δ0
Padδ (1.69)

Na equação acima, (ω − ωs) é a velocidade relativa da máquina em relação ao barramento
infinito. Se o sistema é estável para o primeiro swing, então essa velocidade tem que
retornar a zero. Logo a condição de estabilidade para o sistema é que exista um ângulo δm
de forma que ∫ δm

δprf

Padδ = 0. (1.70)
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Reformula-se a equação (1.70), de forma que durante o período em falta o rotor é acelerado
até δ = δc e no período pós-falta é desacelerado quando δc 6 δ 6 δm. Logo

Aa =
∫ δc

δprf

(Pm − P f
e )dδ (1.71)

Ad =
∫ δm

δc

(P pf
e − Pm)dδ (1.72)

Os índices (·)a e (·)d denotam a área acelerante e desacelerante, respectivamente. O ângulo
δc é escolhido de forma conveniente como o ângulo quando a falta é corrigida. O critério
de estabilidade pode ser formulado então como se segue: O sistema é estável se existe um
ângulo δm de forma que as áreas Aa e Ad sejam iguais, isto é, Aa = Ad. A Figura 12 ilustra
os conceitos apresentados acima.
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Critério das Áreas Iguais

Figura 12 – Critério das Áreas Iguais

1.4.2 Análise Qualitativa dos Resultados

Obtido o critério das áreas iguais, é de interesse realizar uma análise qualitativa
dos resultados. Para isso considera-se a situação ilustrada na Figura 11.
A potência elétrica pode ser escrita, segundo (1.56), como se segue:

Pe = EgE∞
X ′d +Xl

sin(δ) (1.73)

Logo, a potência elétrica máxima é

Pemax = EgE∞
X ′d +Xl

. (1.74)

A potência mecânica será igual é dada como se segue:

Pmi
= Pemax sin(δprf ) (1.75)
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Reescrevendo a equação (1.45) em termos de Pemax e Pmi
, encontra-se a seguinte expressão:

M
d2δ

dt2 = Pmi
− Pemax sin(δ) (1.76)

Os pontos de equilíbrio de (1.76) serão, então, dados por:

0 = Pmi
− Pemax sin(δ)→ Pmi

= Pemax sin(δ)→ δ = arcsin
(
Pmi

Pemax

)
(1.77)

Como durante a análise do SEP, devido a mudanças na topologia da rede, a Pemax varia, é
de interesse encontrar os pontos de equilíbrio para as três condições possíveis entre Pmi

e Pemax , ou seja, Pmi
< Pemax , Pmi

= Pemax ou Pmi
> Pemax . Dessa forma, para as três

condições as seguintes conclusões podem ser feitas:

1. Se Pmi
< Pemax , há dois pontos de equilíbrio: δe e π − δe para 0 6 δe 6 π;

2. Se Pmi
= Pemax , há um ponto de equilíbrio: δe = π

2 para 0 6 δe 6 π;

3. Se Pmi
> Pemax , não há nenhum ponto de equilíbrio.

Dessa forma, se visualizada a definição de δm, verifica-se que neste ponto o sistema não
desacelera nem acelera, ou seja, dδ

dt
= 0. Então, δm é, de fato, um ponto de equilíbrio do

sistema pós-falta.
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2 Análise de Segurança em Sistemas Elétri-
cos de Potência

2.1 Método Clássico
O método clássico para a análise de segurança em SEP’s é a resolução explícita do

conjunto de equações que modelam o sistema, apresentado na seção 1.3, e determinar se
após a correção da falta, o sistema alcança uma condição estacionária estável.
As respostas encontradas para a análise via o método clássico são ilustradas nas Figuras 13
e 14

Figura 13 – Ângulo dos geradores vs Tempo (Caso Estável)
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Figura 14 – Ângulo dos geradores vs Tempo (Caso Instável)
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Maiores detalhes podem ser encontrados em Kundur, Balu e Lauby (1994).

2.2 Métodos Diretos

2.2.1 Exemplo Motivador

O exemplo apresentado a seguir, mostra a motivação dos métodos diretos e compara-
os com a método clássico da simulação das equações diferencias. A Figura 15 ilustra a ideia
básica por trás do uso dos métodos diretos. Uma bolinha de gude, inicialmente no fundo
da rampa, recebe um impulso no sentido de subir a rampa. Dependendo da magnitude
do impulso, a bolinha ou irá passar por cima da rampa, o que nesse caso se traduz como
instabilidade, ou a bolinha subirá apenas uma parte da rampa e ficará oscilando, ou seja,
será estável. Dadas as condições do problema (massa, magnitude do impulso, etc.), para
se determinar o resultado do distúrbio na posição de repouso, dois métodos podem ser
utilizados:

1. Conhecidas as condições iniciais, resolve-se no domínio do tempo as equações que
regem a dinâmica da bolinha e observa-se a posição da bolinha para se determinar
quão alto a bolinha alcançou. Esse método é análogo ao método clássico comentado
na seção anterior.

2. Calcula-se a energia injetada na bolinha pelo impulso, e compara-se ela com a energia
necessária para subir a rampa. Neste método, não há a necessidade de se observar a
posição da bolinha enquanto ela sobe a rampa. Métodos com essa característica são
conhecidos como métodos diretos.

Figura 15 – Bolinha de gude em uma rampa

2.2.2 Algoritmo Conceitual para Métodos Diretos em Sistema Elétricos de
Potência

Uma contingência é dita transitoriamente estável, se após a eliminação do defeito,
o sistema alcança uma condição estacionária aceitável, ou seja, um ponto de equilíbrio
assintoticamente estável no período pós-falta (CHIANG; WU; VARAIYA, 1994).
Essencialmente, a análise de segurança, no contexto de estabilidade transitória, determina
se durante o período em falta, a trajetória do sistema permanece dentro da região de
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estabilidade do ponto de equilíbrio assintoticamente estável.
Todavia, a caracterização precisa da fronteira da região de estabilidade, ∂A(xe), é compu-
tacionalmente inviável. Ao invés disso, aproxima-se a fronteira da região de estabilidade
como uma curva de nível de uma função energia V(x) para o Sistema Elétrico de Potência.
Dessa forma, o problema de determinar toda a fronteira da região de estabilidade ∂A(xe)
do ponto de equilíbrio assintoticamente estável pós-falta,é transformado no problema de
determinar uma energia crítica para o sistema, denotada por Vcrit, cuja curva de nível
aproxima a parte relevante da região de estabilidade, A(xe).
Dessa forma, supondo que V(x) seja a função energia para o sistema pós-falta e xf (t) seja
a trajetória do sistema em falta, o procedimento para análise de estabilidade transitória
via métodos diretos, pode ser descrito pelo seguinte algoritmo:

Algoritmo Conceitual para análise de estabilidade transitória via métodos
diretos

1. Determine Vcrit;

2. Calcule o valor da função energia V (·) no tempo de correção da falta, tab;

Vf = V (xf (tab)) (2.1)

3. Se Vf < Vcrit, então o sistema pós-falta é estável. Senão, ele é instável.

Verifica-se que o elemento chave para a aplicação dos passos do algoritmo conceitual
é encontrar o valor de Vcrit. Diversos métodos, existem, para encontrar Vcrit. Entre eles, os
métodos BCU e PEBS.

2.2.3 Metodologia PEBS

O método PEBS, do inglês Potential Energy Boundary Surface, foi proposto
por Kakimoto, Ohsawa e Hayashi (1978) e estendido por Athay, Podmore e Virmani
(1979).
A fronteira formada com os pontos extremos de energia potencial é conhecida como PEBS,
ela pode ser vista como a fronteira da bacia energética ao redor do ponto de equilíbrio
assintoticamente estável localizado na parte inferior da bacia. A Figura 16 apresenta o
gráfico da energia potencial em relação ao ângulo δ para uma máquina conectada em um
barramento infinito.
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Figura 16 – Energia Potencial vs Ângulo

O ponto no qual o sistema em falta cruza o PEBS é conhecido na literatura (ATHAY;
PODMORE; VIRMANI, 1979) como exit point.
O método PEBS pode ser resumido nos seguintes passos como apresentado em (CHIANG;
WU; VARAIYA, 1988):

1. Determina-se o ponto onde a trajetória do sistema em falta cruza o PEBS, encon-
trando o primeiro máximo de energia potencial ao longo desta trajetória. Seja δ∗

este ponto;

2. Assume-se que Vcrit = Vp(δ∗);

3. Se V (xf (tab)) < Vcrit então o sistema pós-falta é estável. Senão ele é instável.

O método PEBS é simples e rápido, entretanto pode fornecer resultados não conservadores
de estabilidade.
Ao leitor interessado, em Chiang, Wu e Varaiya (1988), encontra-se a formulação matemá-
tica rigorosa do método PEBS.

2.2.4 Método do Ponto de Equilíbrio de Controle

O método do ponto de equilíbrio de controle, surgiu na literatura propondo o uso de
um ponto de equilíbrio instável de controle, c.u.e.p., localizado na fronteira de estabilidade
do ponto de equilíbrio assintoticamente estável pós-falta (∂A(xs)), o qual é energeticamente
mais próximo do ponto no qual a solução abandona a região de estabilidade (CHIANG;
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WU; VARAIYA, 1994). Este método, diferentemente do PEBS, sempre fornece resultados
conservadores.
O método BCU é um método para o cálculo do ponto de equilíbrio instável de controle.
Para encontrar o ponto de equilíbrio de controle, o método BCU utiliza da relação entre o
sistema original (1.46) e o sistema gradiente reduzido, apresentada a seguir: δ̇ = ω

Mω̇ = −∂Vp(δ)
∂δ
−Dω = Pm − Pe −Dω

⇒ Sistema Original (2.2)

δ̇ = −∂Vp(δ)
∂δ

= Pm − Pe = f(δ)⇒ Sistema Gradiente Reduzido (2.3)

Os passos dos método BCU são como se segue (CHIANG; WU; VARAIYA, 1994):

1. A partir da trajetória do sistema em falta, determina-se a trajetória projetado do
sistema gradiente reduzido, de forma a detectar o exit point (δ∗), no qual a trajetória
projetada cruza a ∂A(xe) do sistema gradiente reduzido;

2. Utiliza-se o ponto δ∗ como condição inicial e integra-se o sistema pós-falta reduzido
até ser encontrado o primeiro mínimo local de ∑ng

i=1 ‖fi(δ)‖. Seja este ponto δmgp,
denotado como m.g.p., do inglês minimum gradient point;

3. Resolve-se ∑ng

i=1 ‖fi(δ)‖ = 0 com a solução inicial sendo δmgp. Seja a solução o ponto
δcuep;

4. Assume-se que o c.u.e.p. do sistema em falta seja xc.u.e.p. = (δcuep, 0);

5. Assinala-se que Vcrit = Vp(xc.u.e.p.);

6. Se V (xf (tab)) < Vcrit então o sistema pós-falta é estável. Senão ele é instável.

A Figura 17 ilustra o método do ponto de equilíbrio de controle.

Figura 17 – Método BCU

Maiores resultados podem ser encontrados em Chiang, Wu e Varaiya (1994).
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2.2.4.1 Shadowing Method

O Shadowing Method proposto por Treinen, Vittal e Kliemann (1996) para solucio-
nar problemas na aplicação do Método BCU. Essencialmente é um método recursivo para
corrigir a trajetória dos sistema gradiente reduzido (2.3), durante a busca do ponto de
equilíbrio instável de controle. Nazareno (2003) apresenta o processo do Shadowing Method
da seguinte forma: Utiliza-se o fluxo do gradiente na vizinhança da variedade estável do
ponto de equilíbrio instável de controle, por um tempo pequeno, para se aproximar do
ponto de equilíbrio instável de controle. O resultado obtido é corrigido para um ponto
mais próximo da variedade estável e o procedimento é repetido. No final encontra-se uma
aproximação para o ponto de equilíbrio instável de controle.
O Shadowing Method segue os passos abaixo (NAZARENO, 2003):

1. Define-se i ∈ [1, 2, ..., N ], em que N é o número de iterações necessárias para se
encontrar o ponto de equilíbrio instável de controle;

2. Seja δri = φgs(δm(i−1), ti), com ti relativamente pequeno;

3. Forma-se um conjunto ray R(δri) = {δ : δ = (δri − δpf )α + δpf , α ∈ R e α 6 0};

4. Determina-se o ponto δmi ∈ R(δri) que satisfaz −dVp

dα
= ∂Vp

∂δ
dθ
dα

= −∂Vp

∂δ
(δmi) · (δmi −

δpf) = 0 ou, equivalentemente, −δ̇(δmi) · (δmi − δpf) = 0, no qual δ̇ é o sistema
gradiente reduzido (2.3).

onde:

• φgs(δm(i−1), ti) é a solução do sistema gradiente reduzido (2.3), com condição inicial
δm(i−1), ou seja, integra-se numericamente o sistema gradiente reduzido (2.3) por um
tempo ti, pequeno, e no final se obtém δri.

• A ultima etapa é, de fato, determinar o ponto no qual Vp possua um máximo
local no conjunto R(δ). Isso pode ser realizado com a utilização do Método de
Newton-Raphson com δri como chute inicial.

O processo é continuado até que um mínimo de ∑ng

i=1 ‖fi(δ)‖ seja encontrado ou se i > N .
A Figura 18 ilustra o método.
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Figura 18 – Shadowing Method

2.3 Metodologia Híbrida dos Classificadores baseados no método
BCU
A metodologia utilizada neste trabalho para a análise e filtragem de contingências

é uma metodologia híbrida que explora a exatidão da metodologia clássica com a veloci-
dade dos métodos diretos. Classificadores baseados no método BCU e muito parecidos
com aqueles propostos em Chiang et al. (1998) foram utilizados de maneira a eliminar
rapidamente, nos primeiros estágios de filtragem, de uma lista de contingências aquelas
que são estáveis e levar para a simulação no domínio do tempo apenas as contingências
incertas. Os 10 filtros classificadores estão listados a seguir:

2.3.1 Filtro Preliminar 1

Este filtro é responsável pela detecção de ilhamentos no SEP. Os casos detectados
por este filtro são considerados críticos e retirados da simulação.
O funcionamento deste filtro é como se segue (THEODORO; BENEDITO; ALBERTO,
2010)

1. Constrói-se a matriz incidência barra-ramo, conforme a definição a seguir:

Definição 9. A matriz incidência barra-ramo, denotada por Hbr, associada ao SEP
é dada por:

hij =

1 se o ramo j é incidente à barra i

0 c.c.
(2.4)



54 Capítulo 2. Análise de Segurança em Sistemas Elétricos de Potência

onde i=1,...,n e j=1,...k, sendo n e k o número de barras e ramos que compõe o SEP,
respectivamente, e hij o elemento i− j da matriz Hbr.

2. Obtêm-se a forma escalonada reduzida, HF
br de Hbr sobre o corpo de modulo-2 1;

3. Percorrem-se as linhas da matriz HF
br de modo a determinar as que possuem um

único elemento não nulo;

4. As colunas onde estão os elementos não nulos anteriores indicam os ramos cuja
eliminação causa ilhamento no SEP.

Ao leitor interessado a descrição detalhada do filtro está presente em Theodoro, Benedito
e Alberto (2010) e London, Alberto e Bretas (2007).

2.3.2 Filtro Preliminar 2

O segundo filtro é baseado na seguinte suposição: Dado um ponto de equilíbrio
assintoticamente estável pré-falta para o SEP, então, se existir o ponto de equilíbrio
assintoticamente estável do sistema pós-falta, os pontos estarão próximos.
Assim, utilizando-se do a.s.e.p. pré-falta como chute inicial, aplica-se o Método de Broy-
den (A.21) em conjunto com o Método de Newton-Raphson (A.14) no sistema pós-
falta (1.46). Caso uma solução for encontrada, então, a contingência prossegue no processo,
caso contrário, a contingência é retirada do processo e classificação e simulada no domínio
do tempo.

2.3.3 Filtro BCU 1

O filtro BCU 1 complementa o resultado apresentado pelo filtro anterior. Para isso
são necessárias as seguintes hipóteses:

1. Existe um ponto de equilíbrio assintoticamente estável no sistema pós-falta;

2. O a.s.e.p. pós-falta está suficientemente próximo do a.s.e.p. pré-falta, de forma um
método numérico consiga o identificar;

3. O a.s.e.p. pré-falta esta dentro da região de estabilidade do a.s.e.p. pós-falta.

Neste filtro dois parâmetros são utilizados:

• δdiferença: Maior distância angular entre os ângulos do a.s.e.p. pós-falta;

• Da.s.e.p.: Distância angular entre os a.s.e.p.pré e pós-falta.
1 Álgebra Booleana (BOOLE, 1854)
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Caso, na contingência analisada, esses parâmetros forem maiores que um limite pré
selecionado2, classifica-se a contingência como incerta.

2.3.4 Filtro BCU 2

O segundo filtro detecta casos estáveis durante a execução do primeiro passo do
Método BCU. Para isso são utilizados dois parâmetros:

• Texit: Tempo da simulação do sistema em falta;

• Vexit: Diferença de energia entre o a.s.e.p. pré-falta e do exit point.

O primeiro parâmetro é uma tentativa de estimar o tamanho da região de estabilidade.
O segundo parâmetro indica a a possibilidade da existência de instabilidade durante
os swings subsequentes ao primeiro, uma vez que se a energia potencial armazenada
durante o período em falta for muito grande, há possibilidade de instabilidade no swings
subsequentes.
Dessa forma as faltas que apresentarem um Texit maior do que o limite pré-selecionado
e um Vexit menor do que um limite pré-selecionado são classificados como estáveis, não
necessitando a realização dos passos seguintes.

2.3.5 Filtro BCU 3

Theodoro (2010) propõe esse filtro com a tentativa de distinguir a ocorrência de um
swing estável durante o período em falta, o que causaria a detecção errada do cruzamento
do PEBS no primeiro passo do Método BCU.
Este filtro utiliza apenas um parâmetro de classificação:

• Vp1: Diferença de energia entre o máximo de V p(δ), após o primeiro ciclo do Shadowing
Method e o exit point.

Caso a diferença seja maior que um limite pré-estabelecido e o intervalo de tempo para a
detecção do PEBS é maior que o tempo de abertura para a contingência, então o caso é
classificado como estável.
Caso um máximo de energia tenha sido detectado em um intervalo menor do que o tempo
de abertura, então prossegue-se com a simulação do SEP até o instante de correção. Se
entre os instantes não houve um segundo máximo, então classifica-se a contingência como
estável, senão define-se um nova estimativa para o exit point e aplica-se novamente o
Shadowing Method.
2 Os valores dos limites serão apresentados no final da apresentação de todos os filtros
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2.3.6 Filtro BCU 4

Este filtro identifica erros durante a execução do segundo passo do algoritmo BCU.
Com esse objetivo, define-se o seguinte parâmetro para a classificação:

• Vp2: Diferença de energia entre o exit point e o a.s.e.p. pré-falta.

Este parâmetro visa detectar se o exit point possui uma energia muito maior do que a
do a.s.e.p. pré-falta. Em inúmeros casos, se ocorrida tal situação o m.g.p., encontra-se
distante do c.u.e.p. do sistema gradiente reduzido (2.3).
Dessa forma, casos que apresentam um valor de Vp2 maior que o limite pré-estabelecido são
classificados como incertos, por apresentarem possível erro na detecção do m.g.p., sendo
simulados no domínio do tempo.

2.3.7 Filtro BCU 5

O quinto filtro é, ainda, baseado no segundo passo do Método BCU. Assim, detecta
erros na busca pelo m.g.p. durante a execução do Shadowing Method.
O filtro divide-se em 3 etapas:

1. A cada ciclo do Shadowing Method, o filtro verifica se o máximo de energia potencial
sobre o conjunto R(δi) foi identificado para um α ∈ (0, αmax), em que αmax é o limite
pré-selecionado para a distância a ser percorrida sobre o conjunto R(δi) durante a
busca pelo PEBS;

2. Verifica-se se uma aproximação do c.u.e.p. foi obtida durante Nshadow iterações, em
que Nshadow é o limite de ciclos, pré-selecionado, para a execução do Shadowing
Method;

3. Finalmente, verificas-se se o valor absoluto da diferença de energia entre o m.g.p.e
o exit point é maior que um limite pré-definido. Denota-se esse limite pré-definido
como βdif .

Se durante as 3 etapas algum dos limites não for respeitado, classifica-se a contingência
como incerta e envia-se o caso para ser simulado no domínio do tempo.

2.3.8 Filtro BCU 6

O sexto filtro visa evitar o cálculo do c.u.e.p. para o sistema gradiente reduzido (2.3)
nos casos estáveis. Este filtro atua no terceiro passo do Método BCU.
Este classificador utiliza 3 parâmetros para realizar a classificação das contingências:

• Vp3: Diferença de energia potencial entre o m.g.p. e o ponto de eliminação da falta;
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• Fmax: Valor da norma ‖fi(δ)‖;

• Vnorm: Margem de energia normalizada. Ela é definida como a diferença de energia
potencial entre o m.g.p. e o ponto de eliminação da falta, dividido pela energia
cinética obtida pelo sistema durante o período de falta.

O primeiro e o segundo parâmetro visam identificar se o m.g.p. está suficientemente
próximo ao c.u.e.p. do sistema gradiente reduzido (2.3), de modo que a energia do m.g.p.
pode ser considerada uma aproximação da energia do segundo. Dessa forma evita-se a
necessidade do cálculo do c.u.e.p., para isso é verificado se ‖f(δi)‖ é menor do que o valor
Fmax pré-selecionado e se a diferença de energia potencial entre o m.g.p. e o ponto de
eliminação da falta é menor do que um segundo valor pré-indicado.
O terceiro índice determina uma margem de energia máxima para casos onde o sistema pós-
falta se apresenta estável. Dessa forma se a diferença de energia entre o m.g.p., quando que
este pode ser considerado como uma aproximação para o c.u.e.p., e o ponto de eliminação
da falta é maior do que a energia cinética adquirida pelo SEP durante o período em falta,
multiplicada por um parâmetro pré-selecionado, então a contingência é classificada como
estável.

2.3.9 Filtro BCU 7

O antepenúltimo filtro identifica falhas durante o cálculo do c.u.e.p. do sistema
gradiente reduzido (2.3) na execução do terceiro passo do Método BCU. Dois parâmetros
são utilizados para a verificação de erros:

• Nc.u.e.p.:Número de iterações do método numérico para a obtenção do c.u.e.p. do
sistema gradiente reduzido (2.3);

• Dc.u.e.p.:Distância angular entre o m.g.p. e o c.u.e.p. calculado.

Desta maneira este filtro detecta os casos nos quais o método numérico divergiu.
As contingências apresentadas como problemáticas pelo filtro são classificadas como incertas
e simuladas no domínio do tempo.

2.3.10 Filtro BCU 8

O penúltimo filtro é o último passo do Método BCU. Assim verifica-se se a energia
total do SEP no instante da eliminação da falta é menor do que a energia do c.u.e.p.,
caso isso ocorra a contingência é classificada como estável. Caso contrário classifica-se
como incerta, devido ao caráter conservador do Método BCU (CHIANG; WU; VARAIYA,
1994).
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2.3.11 Simulação no domínio do tempo

No domínio do tempo, são simulados todos os casos identificados como incertos
pelos classificadores Preliminar 1, BCU 1, BCU 4, BCU 5, BCU 7 e BCU 8.
Assim, a Figura abaixo apresenta, em resumo, o funcionamento dos filtros.

Figura 19 – Fluxograma do Funcionamento dos Filtros

2.3.12 Valores dos Limites dos Filtros

Os valores dos limites apresentados na Tabela 1, a seguir, foram retirados de (THE-
ODORO, 2010) e modificados pelo autor.

Tabela 1 – Valores dos Limites dos Filtros

Limite Valor

δdif 105◦
Da.s.e.p. 45◦
Texit 1s
Vp1 0,5
αmax 3
Nshadow 160
βdif 0,02
Vp2 80
Vp3 80
Vexit 40
Vnorm 1,1
Fmax 0,1
Nc.u.e.p. 305
Dc.u.e.p. 5◦

As mudanças nos valores dos limites pelo autor são apresentadas e justificadas a seguir:
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1. δdif = 90◦ → 105◦: Após inúmeros testes, verificou-se que o valor proposto por The-
odoro (2010) era muito restritivo, fazendo com que o Filtro BCU 1 identificasse
problemas no cálculo do a.s.e.p. pós-falta, quando na verdade não havia nenhum.
Assim, contingências estáveis, que poderiam ser detectadas pelos filtros posteriores,
já eram enviadas para a simulação no domínio do tempo nas primeiras etapas de
filtragem, aumentando o esforço computacional necessário para a execução da meto-
dologia. O valor utilizado neste trabalho foi obtido empiricamente após inúmeras
simulações;

2. Da.s.e.p. = 30◦ → 45◦: Novamente, após a realização de vários testes, observou-se que
o valor proposto por Theodoro (2010) era muito restritivo, fazendo com que contin-
gências estáveis fossem detectadas como incertas pelo Filtro BCU 1, prejudicando
o processo de filtragem e aumentando o esforço computacional necessário para a
execução da metodologia. O valor utilizado neste trabalho foi obtido empiricamente
após várias simulações;

3. Nc.u.e.p. = 30 → 305: O valor desse limite foi modificado devido a alterações nos
métodos numéricos utilizados na metodologia híbrida dos classificadores baseados
no método BCU. As alterações realizadas neste trabalho serão apresentadas com
maiores detalhes na próxima seção.

É necessário ressaltar que o limite βdif não existia originalmente e foi introduzido neste
trabalho. Sua criação foi necessária, pois o Filtro BCU 5 inicialmente, ao invés de calcular
o valor absoluto da diferença de energia entre o m.g.p. e o exit point, apenas verificava,
se a energia no m.g.p. era menor que no exit point. Essa mudança foi realizada, pois
constatou-se a existência de contingências nas quais a diferença da energia entre o m.g.p.
e exit point estava próxima da precisão da máquina3 gerando assim, erros na verificação
inicialmente utilizada. O limite criado é, então, um patamar mínimo para a diferença. O
seu valor também foi obtido empiricamente, após inúmeras simulações.
É preciso observar que os valores dos outros limites foram mantidos pois, após a realizações
de vários testes e simulações, constatou-se que eles eram adequados.

2.4 Métodos Numéricos aplicados aos filtros classificadores BCU
Durante a execução deste trabalho, foi observado a existência de erros na identifi-

cação de casos estáveis e incertos pelos classificadores, associados há problemas numéricos.
Como consequência, o número de casos a serem simulados no domínio do tempo aumentava
e o tempo total de execução do programa também.
A causa para a existência de erros era devido ao fato dos classificadores empregarem
3 Precisão da máquina é menor número representável no computador.
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métodos numéricos mais usuais, como o Newton-Raphson (A.14), Gauss-Seidel (A.3)
e Runge-Kutta (A.35). Para contornar esse problema, foram adotadas, neste trabalho,
metodologias mais robustas. Adotou-se, também, a otimização de rotinas mais utilizadas
nos classificadores.

2.4.1 Solução de Sistemas não Lineares nos filtros classificadores BCU

Durante a execução do processo de classificação é necessária a solução de um sistema
de equações não linear em dois principais momentos, no cálculo do a.s.e.p. pós-falta e no
cálculo do c.u.e.p..
No primeiro momento, a seguinte abordagem é utilizada:

1. Utilizando-se o a.s.e.p. pré-falta como solução inicial, resolve-se o sistema pós-falta
via o Método de Broyden (A.21), com número máximo de NBroyden iterações;

2. Se o Método de Broyden (A.21) for convergente, a solução encontrada é utilizada
no Método de Newton-Raphson (A.14), com número máximo de NNewton iterações,
como solução inicial. Se o Método de Broyden (A.21) for divergente, então a solução
encontrada é desconsiderada e utiliza-se o a.s.e.p. pré-falta como solução inicial do
Método de Newton-Raphson (A.14), com número máximo de NNewton iterações;

3. Se o Método de Newton-Raphson (A.14) for convergente, admite-se a solução como
sendo o a.s.e.p. pós-falta. Se o Método de Newton-Raphson (A.14) for divergente, o
processo é iniciado novamente com o uso do flat-start4 ao invés do a.s.e.p. pré-falta;

4. Se o Método de Newton-Raphson (A.14) for convergente, admite-se a solução como
sendo o a.s.e.p. pós-falta. Senão, indica-se a não existência de um a.s.e.p. pós-falta.

Essa abordagem é mais vantajosa e robusta que a abordagem convencional. Nela, aproveita-
se o fato de que algumas soluções iniciais são convergentes para o Método de Broyden (A.21)
e divergentes para o Método de Newton-Raphson (A.14).É utilizada nessa abordagem,
também, a vantagem da velocidade do Método de Broyden (A.21), pois se ele for con-
vergente, a solução encontrada fornece uma boa aproximação para o Método de Newton-
Raphson (A.14), caso for divergente, pouco esforço computacional foi expendido em sua
execução. Finalmente, durante a execução deste trabalho, foi verificado, que para algumas
contingências estáveis, a utilização do a.s.e.p. pré-falta como solução inicial causava diver-
gência nos métodos numéricos, já a utilização do flat-start como solução inicial apresentava
bons resultados. Dessa forma, nessa abordagem, foi introduzido, como verificação adicional,
o teste do flat-start como solução inicial. A Figura 20 ilustra essa abordagem.
No segundo momento, uma abordagem similar à anterior é utilizada. Seus passos são
descritos como se segue:
4 Flat-start é o nome dado para a solução inicial que considera |V | = 1 e θ = 0 para todas as barras.
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Figura 20 – Abordagem para a resolução de um sistema não linear para o cálculo do a.s.e.p.
pós-falta

1. Utilizando-se o m.g.p. como solução inicial, resolve-se o sistema pós-falta via o
Método de Broyden (A.21), com número máximo de NBroyden iterações;

2. Se o Método de Broyden (A.21) for convergente, a solução encontrada é utilizada
no Método de Newton-Raphson (A.14), com número máximo de NNewton iterações,
como solução inicial. Se o Método de Broyden (A.21) for divergente, então a solução
encontrada é desconsiderada e utiliza-se o m.g.p como solução inicial do Método de
Newton-Raphson (A.14), com número máximo de NNewton iterações;

3. Se o Método de Newton-Raphson (A.14) for convergente, admite-se a solução como
sendo o a.s.e.p. pós-falta. Se o Método de Newton-Raphson (A.14) for divergente,
indica-se a existência de erros no cálculo do c.u.e.p..

A Figura 21 ilustra essa abordagem.

Figura 21 – Abordagem para a resolução de um sistema não linear para o cálculo do
c.u.e.p.
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Pelos mesmos motivos da abordagem anterior, essa abordagem é mais vantajosa e
robusta que a convencional.
Neste trabalho, adotou-se NNewton = 300 e NBroyden = 5.

2.4.2 Solução de Sistemas Lineares nos filtros classificadores BCU

O principal momento em que se é necessário resolver sistemas lineares é na etapa
na qual se encontra o vetor de correção durante a solução de sistemas não lineares.
A metodologia usual da solução utilizando o método de Gauss-Seidel (A.3) se prova, em
muitos casos, efetiva. Todavia, se o sistema linear for mal-condicionado, o método usual
falhará. Dessa forma, neste trabalho, foi adotada uma metodologia mais robusta para o
cálculo da solução. Seus passos estão descritos a seguir:

1. Resolve-se o sistema linear via o método de Gauss-Seidel (A.3). Se o método for
convergente, a resposta encontrada é adotada como a solução do sistema linear.
Senão a resposta obtida é desconsiderada;

2. Resolve-se o sistema linear via o método de Gauss-Seidel melhorado (A.7). Se o
método for convergente, a resposta encontrada é adotada como a solução do sistema
linear. Senão a resposta obtida é desconsiderada;

3. Resolve-se o sistema linear via o método dos Mínimos-Quadrados (A.10f). A resposta
encontrada é adotada como a solução do sistema linear.

Essa abordagem garante que sempre uma solução é encontrada para o sistema linear. Além
disso, no intuito de se minimizar o custo computacional, os métodos foram encadeados
de maneira que o primeiro é o que requer menos esforço computacional e o último é o
que mais requer. Dessa forma para um sistema bem-condicionado, gasta-se menos esforço
possível. A Figura 22 ilustra essa abordagem.

Figura 22 – Abordagem para a resolução de um sistema linear nos filtros classificadores
BCU
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2.4.3 Solução de Sistemas de Equações Diferenciais nos filtros classificadores
BCU

A solução de sistemas de equações diferencias é utilizada em quase todo o processo
de classificação. Neste trabalho, dois métodos foram utilizados para a solução, o método
de Runge-Kutta (A.35) e o método de Adams-Bashfort-Moulton (A.43). A escolha de qual
método fica a encargo do usuário. A Figura 23 ilustra o processo de seleção.

Figura 23 – Processo de seleção do método para a resolução de um sistema de equações
diferenciais nos filtros classificadores BCU
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3 Resultados

Neste trabalho são simulados e avaliados três Sistemas Elétricos de Potência:

• Sistema IEEE Nova Inglaterra de 39 barras (ATHAY; PODMORE; VIRMANI,
1979);

• Sistema Sul Brasileiro Reduzido de 33 barras (ALVES, 2007);

• Sistema Sul Sudeste e Mato-Grosso Brasileiro Reduzido de 107 barras (ALVES,
2007).

O primeiro SEP, proposto inicialmente por Athay, Podmore e Virmani (1979), representa o
sistema elétrico de potência reduzido da região da Nova Inglaterra nos Estados Unidos na
década de 601. Ele foi escolhido por apresentar um número intermediário de contingências
a serem analisadas, de maneira que se possa obter dados quantitativos e qualitativos
da aplicação dos classificadores. Em segundo lugar, esse SEP é largamente utilizado na
literatura para o teste de novas metodologias, dessa forma sua utilização possibilita uma
fácil comparação entre os resultados apresentados neste trabalho com o de outros.
O segundo SEP, proposto por Alves (2007), representa o Sistema Elétrico de Potência Sul
Brasileiro reduzido. Ele foi escolhido por apresentar a topologia da rede brasileira e ter
dados mais recentes que o SEP anterior. Dessa forma é possível verificar se a metodologia
híbrida dos classificadores é adequada no contexto nacional.
O último SEP, também retirado de Alves (2007), representa o sistema elétrico potência
reduzido das regiões Sul e Sudeste brasileiras. Ele foi escolhido por apresentar as carac-
terísticas da topologia nacional e por ser maior que os SEP’s anteriores-segundo a EPE
(2015)-2 é formado pelas regiões que representam cerca de 60% do consumo nacional de
energia elétrica.
Cada SEP será avaliado com o auxílio dos classificadores e em conjunto será realizada
a simulação no domínio do tempo. De posse desses dados, comparam-se os resultados
obtidos e verifica-se a velocidade e precisão da metodologia utilizada perante a metodologia
clássica.

1 A região da Nova Inglaterra é composta pelos estados de Connecticut, Maine, Massachusetts, New
Hampshire, Rhode Island e Vermont.

2 "A Empresa de Pesquisa Energética – EPE tem por finalidade prestar serviços na área de estudos e
pesquisas destinadas a subsidiar o planejamento do setor energético, tais como energia elétrica, petróleo
e gás natural e seus derivados, carvão mineral, fontes energéticas renováveis e eficiência energética,
dentre outras."art 2o da Lei 10.847 de 15 de março de 2004
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3.1 IEEE Nova Inglaterra de 39 barras
A Figura abaixo apresenta o diagrama unifilar do sistema IEEE Nova Inglaterra

de 39 barras.

Figura 24 – Diagrama Unifilar do Sistema Elétrico de Potência Nova Inglaterra

Inicialmente, para a obtenção dos dados iniciais do sistema é necessário a resolução do
Fluxo de Carga. Seu resultado é apresentado na Tabela 2 abaixo.

Tabela 2 – Fluxo de Carga para o Sistema IEEE Nova
Inglaterra

Barra Tensão (p.u.) Ângulo (graus)

30 1,048 -4,486
31 0,982 0,116
32 0,983 1,726
33 0,997 2,175
34 1,012 0,738
35 1,049 4,146
36 1,064 6,832
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Tabela 2 – Fluxo de Carga para o SEP Sistema IEEE
Nova Inglaterra (continuação)

Barra Tensão (p.u.) Ângulo (graus)

37 1,028 1,24
38 1,027 6,523
39 1,03 -11
1 1,048 -9,462
2 1,049 -6,904
3 1,031 -9,748
4 1,004 -10,542
5 1,005 -9,356
6 1,008 -8,654
7 0,997 -10,856
8 0,996 -11,362
9 1,028 -11,189
10 1,017 -6,27
11 1,013 -7,083
12 1 -7,099
13 1,014 -6,985
14 1,012 -8,654
15 1,016 -9,072
16 1,032 -7,669
17 1,034 -8,666
18 1,032 -9,506
19 1,05 -3,044
20 0,991 -4,455
21 1,032 -5,263
22 1,05 -0,816
23 1,045 -1,015
24 1,038 -7,549
25 1,058 -5,542
26 1,052 -6,798
27 1,038 -8,809
28 1,051 -3,29
29 1,05 -0,533

Adotou-se que todas as 92 contingências simples3 que poderiam ocorrer sob o
3 Considera-se que as contingências são curto-circuitos trifásicos francos e apenas uma linha é eliminada
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sistema foram consideradas como possíveis e analisadas. Foi considerado, também, um
tempo de abertura para o sistema de proteção do SEP de 100ms.
As Tabelas 3, 4 e 5 apresentam os resultados da análise do sistema da Figura 24, utilizando
a metodologia híbrida dos classificadores BCU.

Tabela 3 – Resultado dos Classificadores Indicadores de Ilhamento - IEEE Nova Inglaterra

Filtro Classificador Casos Filtrados

Preliminar 1 22

Tabela 4 – Resultado dos Classificadores Indicadores de Casos Estáveis - IEEE Nova
Inglaterra

Filtro Classificador Casos Filtrados

BCU 2 0
BCU 3 6
BCU 6 0
BCU 8 48

Tabela 5 – Resultado dos Classificadores Indicadores de Casos Incertos - IEEE Nova
Inglaterra

Filtro Classificador Casos Filtrados

Preliminar 2 0
BCU 1 0
BCU 4 0
BCU 5 6
BCU 7 4
BCU 8 6

Tabela 6 – Resultado dos Classificadores - IEEE Nova Inglaterra

Filtro Casos Casos Casos
Classificador Incertos Críticos Estáveis

Preliminar 1 0 0 0
BCU 1 0 0 0
BCU 4 0 0 0
BCU 5 6 0 6
BCU 7 4 2 2
BCU 8 6 4 2
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A Tabela 6 apresenta o resultado da simulação no domínio do tempo dos casos
detectados como incertos pelos classificadores.
A Figura 25 ilustra o processo de classificação, em que cada barra indica o número total
de contingências críticas e contingências estáveis apresentadas a cada filtro, durante o
processo de filtragem. É preciso ressaltar que os filtros funcionam de maneira sequencial, as
contingências classificadas como críticas e estáveis são eliminadas do processo de filtragem
e as classificadas como incertas são retiradas do processo de filtragem e são simuladas no
domínio do tempo. Dessa forma, a classificação de uma contingência estável como incerta,
durante os primeiros filtros é prejudicial ao processo de classificação, pois impossibilita
a detecção dos casos estáveis pelos filtros subsequentes e aumenta o número de casos a
serem simulados no domínio do tempo.
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Figura 25 – Processo de Classificação-IEEE Nova Inglaterra

Com os resultados obtidos, observa-se que ao filtro Preliminar 1, foram apresentadas 92
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contingências, das quais 28 eram críticas e 64 eram estáveis. Nesta etapa, foram detectados
22 ilhamentos, reduzindo o número de casos críticos apresentados ao filtros subsequentes
para 6. Deve-se ressaltar que uma inspeção visual rigorosa na topologia do SEP foi realizada
e indicou o resultado apresentado pelo filtro Preliminar 1 como sendo consistente.
Ao filtro Preliminar 2, foram apresentadas 70 contingências, das quais 6 eram críticas
e 64 estáveis. O filtro não identificou erros durante o cálculo do ponto de equilíbrio
assintoticamente estável pós-falta. Assim nenhuma contingência foi classificada como
incerta.
Para o filtro BCU 1, foram apresentadas 70 contingências, das quais 6 eram críticas e 64
estáveis. Nesta etapa, nenhuma contingência foi classificada como incerta.
Ao filtro BCU 2, foram apresentadas 70 contingências,das quais 6 eram críticas e 64
estáveis. Nesta etapa, nenhuma contingência foi classificada como incerta.
Para o filtro BCU 3, foram apresentadas 70 contingências, das quais 6 eram críticas e 64
estáveis. O filtro detectou 6 das 64 casos estáveis. Dessa forma, para o filtro em sequência
serão apresentadas 58 contingências estáveis.
Ao filtro BCU 4, foram apresentados 64 contingências, das quais 58 eram estáveis e 6 eram
críticas, mas nenhuma contingência crítica foi detectada.
Ao filtro BCU 5, foram apresentadas 64 contingências, das quais 58 eram estáveis e 6 eram
críticas. Nesta etapa, 6 contingências estáveis foram detectadas como incertas, dessa forma,
das 58 contingências estáveis apresentados ao filtro, apenas 52 continuaram no processo
de filtragem.
Para filtro BCU 6, foram apresentadas 58 contingências, das quais 52 eram estáveis e 6
eram críticas, mas nenhuma contingência estável foi detectada.
Ao filtro BCU 7, foram apresentadas 58 contingências, das quais 52 eram estáveis e 6 eram
críticas. Nesta etapa, 2 contingências estáveis foram detectadas como incertas, dessa forma,
das 52 contingências estáveis apresentadas ao filtro, apenas 50 continuaram no processo de
filtragem. Também, neste filtro, 2 contingências críticas foram detectadas como incertas e
retiradas do processo de classificação para serem simuladas no domínio do tempo.
Para o filtro BCU 8, foram apresentadas 54 contingências, das quais 50 eram estáveis e 4
eram críticas. Nesta etapa, o filtro identificou 48 das 50 contingências estáveis, classificou
4 contingências críticas como incertas e indicou 2 contingências estáveis como incertas.
No domínio do tempo, foram simulados todos os casos identificados como incertos pelos
classificadores Preliminar 1, BCU 1, BCU 4, BCU 5, BCU 7 e BCU 8.
É necessário observar que o processo de classificação reduziu o número de casos a serem
simulados no domínio do tempo em 74 casos, com a manutenção da exatidão.
Finalmente, verifica-se que o sistema apresenta 28 contingências críticas, das quais 22
provocam ilhamentos e 6 são instáveis, e 64 contingências estáveis.
A Tabela 7 apresenta os tempos exigidos para a execução de cada metodologia. O tempo
de processamento refere-se, novamente, à execução em um processador Intel Core i7 5500U
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Tabela 7 – Comparação do Esforço Computacional de cada Metodologia

Metodologia Tempo(s)

Classificadores BCU 4,631
Clássica 9,5508

com clock de 2,4 GHz. Como esperado, a utilização dos classificadores BCU apresentou
melhor desempenho, obtendo os mesmos resultados de avaliação de segurança com menor
tempo de processamento.
É importante evidenciar que para a análise clássica o filtro Preliminar 1, detecção de
ilhamentos, também foi aplicado, assim foi evitado a simulação desnecessária desses casos.
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3.2 Sistema Sul Brasileiro Reduzido de 33 barras
A Figura apresentada abaixo representa o diagrama unifililar do Sistema Sul

Brasileiro Reduzido de 33 barras. Segundo Alves (2007) este sistema foi elaborado a partir
de dados extraídos da malha de 500kV da região Sul do Brasil, em conjunto com um trecho
em 230kV. A base de dados utilizada para a construção dos sistemas é de 2005/2006.

Figura 26 – Diagrama Unifilar do Sistema Elétrico de Potência Sistema Sul Brasileiro
Reduzido(ALVES, 2007)

É necessário indicar que a topologia deste sistema apresenta diferenças significativas entre
o sistema anterior. As principais são descritas a seguir:

• O Sistema Sul Brasileiro apresenta mais linhas na sua rede, aumentando o número
de contingências a serem analisadas, apesar do número inferior de barramentos;

• O Sistema Sul Brasileiro apresenta linhas em paralelo.

Inicialmente, para a obtenção dos dados iniciais do sistema é necessário a resolução do
Fluxo de Carga. Seu resultado é apresentado na Tabela 8.
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Tabela 8 – Fluxo de Carga para o Sistema Sul Brasileiro
Reduzido

Barra Tensão (p.u.) Ângulo (graus)

800 1,049 0
808 1,045 11,005
810 1,045 4,655
904 1,045 -12,267
915 1,049 -9,063
919 1,02 14,546
925 1,045 7,391
814 0,989 -24,51
824 1,054 -7,201
839 1 2,049
840 0,994 -0,89
848 1,006 3,503
856 1,057 -1,896
895 0,995 -22,044
896 1,057 3,727
897 1,066 4,818
898 1,022 6,845
933 1,053 -7,588
934 0,996 -7,032
938 1,027 -27,131
939 0,99 -29,614
955 1,082 -16,801
959 0,995 -22,798
960 0,987 -25,672
964 1,073 -24,577
965 0,997 -26,887
976 1,051 -27,204
995 1,081 -14,389
1030 1,082 -15,33
1047 1,029 7,879
1060 1,067 -0,198
1210 0,996 -29,753
2458 1 1,732
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Adotou-se que todas as 100 contingências simples4 que poderiam ocorrer sob o
sistema foram consideradas como possíveis e analisadas. Foi considerado, também, um
tempo de abertura para o sistema de proteção do SEP de 100ms.
As Tabelas 9, 10 e 11 apresentam os resultados da análise do sistema da Figura 26,
utilizando a metodologia híbrida dos classificadores BCU.

Tabela 9 – Resultado dos Classificadores Indicadores de Ilhamento - Sistema Sul Brasileiro
Reduzido

Filtro Classificador Casos Filtrados

Preliminar 1 16

Tabela 10 – Resultado dos Classificadores Indicadores de Casos Estáveis - Sistema Sul
Brasileiro Reduzido

Filtro Classificador Casos Filtrados

BCU 2 0
BCU 3 0
BCU 6 0
BCU 8 55

Tabela 11 – Resultado dos Classificadores Indicadores de Casos Incertos - Sistema Sul
Brasileiro Reduzido

Filtro Classificador Casos Filtrados

Preliminar 2 8
BCU 1 0
BCU 4 0
BCU 5 0
BCU 7 0
BCU 8 15

A Tabela 12 apresenta o resultado da simulação no domínio do tempo dos casos detectados
como incertos pelos classificadores.

4 Considera-se que as contingências são curto-circuitos trifásicos francos e apenas uma linha é eliminada
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Tabela 12 – Resultado dos Classificadores - Sistema Sul Brasileiro Reduzido

Filtro Casos Casos Casos
Classificador Incertos Críticos Estáveis

Preliminar 1 8 8 0
BCU 1 0 0 0
BCU 4 6 6 0
BCU 5 6 0 6
BCU 7 4 2 2
BCU 8 15 7 8

A Figura 27 ilustra o processo de classificação, em que cada barra indica o número
total de contingências críticas e contingências estáveis apresentadas a cada filtro, durante
o processo de filtragem.
Com os resultados obtidos, observa-se que ao filtro Preliminar 1, foram apresentadas 100
contingências, das quais 37 eram críticas e 63 eram estáveis. Nesta etapa, foram detectados
16 ilhamentos, reduzindo o número de casos críticos apresentados ao filtros subsequentes
para 21. Uma inspeção visual rigorosa na topologia do SEP foi realizada e indicou o
resultado apresentado pelo filtro Preliminar 1 como sendo consistente.
Ao filtro Preliminar 2, foram apresentadas 84 contingências, das quais 21 eram críticas e 63
eram estáveis. O filtro identificou 8 contingências como incertas, das quais 8 eram críticas.
Para o filtro BCU 1, foram apresentadas 76 contingências, das quais 13 eram críticas e 63
eram estáveis. Nesta etapa, nenhuma contingência foi classificada como incerta.
Ao filtro BCU 2, foram apresentadas 76 contingências, das quais 13 eram críticas e 63
eram estáveis. Nesta etapa, nenhuma contingência foi classificada como incerta.
Ao filtro BCU 3, foram apresentadas 76 contingências, das quais 13 eram críticas e 63
eram estáveis. Nesta etapa, nenhuma contingência foi classificada como incerta.
Ao filtro BCU 4, foram apresentadas 76 contingências, das quais 13 eram críticas e 63
eram estáveis. O filtro identificou 6 contingências como incertas, das quais 6 eram críticas.
Ao filtro BCU 5, foram apresentadas 70 contingências, das quais 63 eram estáveis e 7 eram
críticas, mas nenhuma contingência foi detectada como incerta.
Ao filtro BCU 6, foram apresentadas 70 contingências, das quais 63 eram estáveis e 7 eram
críticas. Neste filtro, nenhuma contingência estável foi detectada.
Ao filtro BCU 7, foram apresentadas 70 contingências, das quais 63 eram estáveis e 7 eram
críticas, mas nenhuma contingência foi detectada como incerta.
Para o filtro BCU 8, foram apresentadas 70 contingências, das quais 63 eram estáveis e 7
eram críticas. Nesta etapa, o filtro identificou 55 das 63 contingências estáveis, classificou
7 contingências críticas como incertas e indicou 8 contingências estáveis como incertas.
No domínio do tempo, foram simulados todos os casos identificados como incertos pelos
classificadores Preliminar 1, BCU 1, BCU 4, BCU 5, BCU 7 e BCU 8.
É necessário observar que o processo de classificação reduziu o número de casos a serem
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Figura 27 – Processo de Classificação - Sistema Sul Brasileiro Reduzido

simulados no domínio do tempo em 71 casos, com a manutenção da exatidão.
Finalmente, verifica-se que o sistema apresenta 37 contingências críticas, das quais 16
provocam ilhamentos e 21 são instáveis, e 63 contingências estáveis.

Tabela 13 – Comparação do Esforço Computacional de cada Metodologia

Metodologia Tempo(s)

Classificadores BCU 2,846
Clássica 8,391

A Tabela 13 apresenta os tempos exigidos para a execução de cada metodologia. Novamente,
o tempo de processamento refere-se, novamente, à execução em um processador Intel Core
i7 5500U com clock de 2,4 GHz. Como esperado, a utilização dos classificadores BCU
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apresentou melhor desempenho, obtendo os mesmos resultados de avaliação de segurança
com menor tempo de processamento.
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3.3 Sistema Sul Sudeste e Mato-Grosso Brasileiro Reduzido de 107
barras
A Figura apresentada abaixo representa o diagrama unifililar do Sistema Sul Sudeste

e Mato-Grosso Brasileiro Reduzido de 107 barras.

Figura 28 – Diagrama Unifilar do Sistema Elétrico de Potência Sistema Sul Sudeste e
Mato-Grosso Brasileiro Reduzido(ALVES, 2007)

A condição inicial do sistema é obtida pela resolução do Fluxo de Carga, apresentado na
Tabela 14 abaixo.

Tabela 14 – Fluxo de Carga para o SEP Sistema Sul Su-
deste e Mato-Grosso Brasileiro Reduzido

Barra Tensão (p.u.) Ângulo (graus)

12 1 -24,219
16 1 -26,305
18 1,02 -24
20 1,01 -22,415
21 1 -59,294
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Tabela 14 – Fluxo de Carga para o SEP Sistema Sul
Sudeste e Mato-Grosso Brasileiro Reduzido
(continuação)

Barra Tensão (p.u.) Ângulo (graus)

22 1 -19,92
35 1 -26,985
48 1 -42,992
300 1,02 -18,974
301 1,01 -19,433
302 1,02 -18,302
303 1,02 -24,32
305 1 -22,18
500 1,02 -21,608
800 1,02 -6,706
808 1,02 4,422
810 1,02 -3,301
904 1,02 -14,742
915 1,02 -12,59
919 1 6,7
925 1,02 0,558
4523 1,01 -58,06
4596 1 -65,497
4804 1 -71,64
86 1,029 -42,992
100 1,054 -28,552
101 1,064 -36,432
102 1,054 -43,177
103 1,065 -43,482
104 1,054 -52,036
106 1,043 -52,921
120 1,037 -41,436
122 1,059 -41,921
123 1,029 -46,29
126 1,033 -43,731
131 1,024 -27,354
134 1,024 -26,461
136 1,025 -33,189
138 1,031 -44,336
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Tabela 14 – Fluxo de Carga para o SEP Sistema Sul
Sudeste e Mato-Grosso Brasileiro Reduzido
(continuação)

Barra Tensão (p.u.) Ângulo (graus)

140 1,016 -54,037
210 1,046 -27,588
213 1,044 -28,817
216 1,04 -27,878
217 1,046 -32,318
218 1,019 -40,175
219 1,023 -39,033
220 1,041 -31,941
225 1,053 -34,653
228 1,01 -40,748
231 1,056 -48,072
233 1,035 -36,287
234 1,022 -39,13
320 1,047 -24,076
325 1,044 -23,728
326 1,029 -25,973
360 1,045 -22,469
370 1,048 -25,454
396 1,03 -25,855
535 1,034 -26,066
536 1,022 -28,865
814 1,014 -37,763
824 1,019 -16,95
834 0,987 -28,646
839 0,981 -5,629
840 0,968 -8,731
848 0,978 -4,721
856 1,021 -10,252
895 1,027 -35,439
896 1,005 -3,399
897 1,017 -2,069
898 0,992 -1,19
933 1,019 -17,332
934 1,001 -17,532
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Tabela 14 – Fluxo de Carga para o SEP Sistema Sul
Sudeste e Mato-Grosso Brasileiro Reduzido
(continuação)

Barra Tensão (p.u.) Ângulo (graus)

938 1,02 -37,579
939 1,016 -40,106
955 1,043 -23,454
959 1,015 -35,134
960 0,988 -37,722
964 1,022 -30,979
965 1,017 -33,521
976 0,997 -33,74
995 1,039 -19,112
1015 1,007 -39,998
1030 1,04 -20,421
1047 0,997 -0,164
1060 1,025 -7,352
1210 0,977 -36,578
1503 1,054 -49,818
1504 1,019 -53,842
2458 0,983 -5,868
4501 1,062 -58,524
4521 1,051 -63,659
4522 1,055 -65,744
4530 1,055 -70,025
4532 1,055 -70,025
4533 1,023 -70,35
4542 1,035 -69,197
4552 1,019 -76,66
4562 1,026 -84,755
4572 1,023 -81,887
4582 1,033 -87,519
4592 1,023 -64,32
4623 1,04 -68,564
4703 1,011 -71,442
4805 1,031 -75,348
4807 1,033 -76,636
4862 1,056 -74,947
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Adotou-se que todos as 342 faltas simples que poderiam ocorrer sob o sistema
foram consideradas como possíveis e analisadas. Foi considerado, também, um tempo de
abertura para o sistema de proteção do SEP de 100ms.
As Tabelas 15, 16 e 17 apresentam os resultados da análise do sistema da Figura 28,
utilizando a metodologia híbrida dos classificadores BCU.

Tabela 15 – Resultado dos Classificadores Indicadores de Ilhamento - Sistema Sul Sudeste
e Mato-Grosso Brasileiro Reduzido

Filtro Classificador Casos Filtrados

Preliminar 1 72

Tabela 16 – Resultado dos Classificadores Indicadores de Casos Estáveis - Sistema Sul
Sudeste e Mato-Grosso Brasileiro Reduzido

Filtro Classificador Casos Filtrados

BCU 2 37
BCU 3 50
BCU 6 0
BCU 8 110

Tabela 17 – Resultado dos Classificadores Indicadores de Casos Incertos - Sistema Sul
Sudeste e Mato-Grosso Brasileiro Reduzido

Filtro Classificador Casos Filtrados

Preliminar 2 10
BCU 1 16
BCU 4 0
BCU 5 9
BCU 7 33
BCU 8 2
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Tabela 18 – Resultado dos Classificadores - Sistema Sul Sudeste e Mato-Grosso Brasileiro
Reduzido

Filtro Casos Casos Casos
Classificador Incertos Críticos Estáveis

Preliminar 1 10 10 0
BCU 1 16 15 1
BCU 4 0 0 0
BCU 5 9 0 9
BCU 7 33 0 33
BCU 8 2 0 2

A Tabela 18 apresenta o resultado da simulação no domínio do tempo dos casos
detectados como incertos pelos classificadores.
A Figura 29 ilustra o processo de classificação, em que cada barra indica o número total
de contingências críticas e contingências estáveis apresentadas a cada filtro, durante o
processo de filtragem.
Com os resultados obtidos, observa-se que ao filtro Preliminar 1, foram apresentadas
342 contingências, das quais 99 eram críticas e 243 eram estáveis. Nesta etapa, foram
detectados 72 ilhamentos, reduzindo o número de casos críticos apresentados ao filtros
subsequentes para 27. Deve-se ressaltar que uma inspeção visual rigorosa na topologia do
SEP foi realizada e indicou o resultado apresentado pelo filtro Preliminar 1 como sendo
consistente.
Ao filtro Preliminar 2, foram apresentados 270 casos, dos quais 27 eram críticos e 243
estáveis. O filtro identificou 10 casos como incertos, dos quais 10 eram críticos.
Para o filtro BCU 1, foram apresentados 260 casos, dos quais 17 eram críticos e 243 eram
estáveis. O filtro indicou 16 casos como incertos, das quais 15 eram críticos e 1 era estável.
Ao filtro BCU 2, foram apresentados 244 casos, dos quais 242 eram estáveis e 2 eram
críticos. 37 dos 242 casos estáveis foram identificados nesta etapa.
Para o filtro BCU 3, foram apresentados 207 casos, 205 eram estáveis e 2 eram críticos. O
filtro detectou 50 do 205 casos estáveis.
Ao filtro BCU 4, foram apresentados 157 casos, dos quais 155 eram estáveis e 2 eram
críticos, mas nenhum caso crítico foi detectado.
Ao filtro BCU 5, foram apresentados 157 casos, dos quais 155 eram estáveis e 2 eram
críticos. Nesta etapa 9 casos estáveis foram detectados como incertos, dessa forma, dos 155
casos estáveis apresentados ao filtro, apenas 146 continuaram no processo de filtragem.
Para filtro BCU 6, foram apresentados 148 casos, dos quais 146 eram estáveis e 2 eram
críticos, mas nenhum caso estável foi detectado
Ao filtro BCU 7, foram apresentados 148 casos, dos quais 146 eram estáveis e 2 eram
críticos. Nesta etapa 33 casos estáveis foram detectados como incertos, dessa forma, dos
146 casos estáveis apresentados ao filtro, apenas 113 continuaram no processo de filtragem.
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Figura 29 – Processo de Classificação - Sistema Sul Sudeste e Mato-Grosso Brasileiro
Reduzido

Para o filtro BCU 8, foram apresentados 115 casos, dos quais 113 eram estáveis e 2 eram
instáveis. Nesta etapa, o filtro identificou 110 dos 113 casos estáveis e classificou 2 casos
estáveis como incertos.
No domínio do tempo, foram simulados todos os casos identificados como incertos pelos
classificadores Preliminar 1, BCU 1, BCU 4, BCU 5, BCU 7 e BCU 8.
É necessário observar que o processo de classificação reduziu o número de casos a serem
simulados no domínio do tempo em 73 casos, com a manutenção da exatidão.
Finalmente, verifica-se que o sistema apresenta 99 contingências críticas, das quais 72
provocam ilhamentos e 27 são instáveis, e 243 contingências estáveis.
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Tabela 19 – Comparação do Esforço Computacional de cada Metodologia

Metodologia Tempo(s)

Classificadores BCU 88,801
Clássica 166,188

A Tabela 19 apresenta os tempos exigidos para a execução de cada metodologia.
Novamente, o tempo de processamento refere-se, novamente, à execução em um processador
Intel Core i7 5500U com clock de 2,4 GHz. Como esperado, a utilização dos classificadores
BCU apresentou melhor desempenho, obtendo os mesmos resultados de avaliação de
segurança com menor tempo de processamento.

3.4 Comparação de Desempenho e Exatidão
Nesta seção serão comparados o desempenho e a exatidão dos resultados do

programa modificado, utilizado neste trabalho, com o original desenvolvido por Theodoro
(2010).

3.4.1 Comparação para o Sistema IEEE Nova Inglaterra de 39 barras

A Tabela 20 apresenta os tempos exigidos para a execução da metodologia híbrida
dos classificadores BCU para o programa modificado e o original.

Tabela 20 – Comparação de Desempenho - Sistema IEEE Nova Inglaterra

Programa Tempo(s)

Modificado 4,631
Original 17,239

Verifica-se que o programa modificado apresenta desempenho superior ao original. A
razão para isso são as otimizações no código e a implementação de métodos numéricos
mais robustos e rápidos no programa original. Ressalta-se que as melhorias também
se estenderam para a metodologia clássica, pois o tempo exigido para a execução da
metodologia híbrida dos classificadores BCU no programa original (17,239 segundos)
é superior aos 9,5508 segundos necessários para se executar a metodologia clássica no
programa modificado (Tabela 7).
A Tabela 21 apresenta o número total de contingências críticas detectadas pela metodologia
híbrida dos classificadores BCU executada no programa modificado e no programa original.
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Tabela 21 – Comparação de Exatidão - Sistema IEEE Nova Inglaterra

Programa Casos Críticos

Modificado 28
Original 28

Assim, para o Sistema IEEE Nova Inglaterra de 39 barras, o programa original e o
modificado apresentaram os mesmos resultados.

3.4.2 Comparação para o Sistema Sul Brasileiro Reduzido de 33 barras

A Tabela 22 apresenta os tempos exigidos para a execução da metodologia híbrida
dos classificadores BCU para o programa modificado e o original.

Tabela 22 – Comparação de Desempenho - Sistema Sul Brasileiro Reduzido

Programa Tempo(s)

Modificado 2,846
Original 12,395

Verifica-se, novamente, que o programa modificado apresenta desempenho superior ao
original. É necessário ressaltar que as melhorias também se estenderam para a metodologia
clássica, pois o tempo exigido para a execução da metodologia híbrida dos classificadores
BCU no programa original (12,395 segundos) é superior aos 8,391 segundos necessários
para se executar a metodologia clássica no programa modificado (Tabela 13).
A Tabela 23 apresenta o número total de contingências críticas detectadas pela metodologia
híbrida dos classificadores BCU executada no programa modificado e no programa original.

Tabela 23 – Comparação de Exatidão - Sistema Sul Brasileiro Reduzido

Programa Casos Críticos

Modificado 37
Original 50

Assim, para o Sistema Sul Brasileiro Reduzido de 33 barras, o programa original classificou
13 contingências estáveis como críticas.

3.4.3 Comparação para o Sistema Sul Sudeste e Mato-Grosso Brasileiro
Reduzido de 107 barras

A Tabela 24 apresenta os tempos exigidos para a execução da metodologia híbrida
dos classificadores BCU para o programa modificado e o original.
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Tabela 24 – Comparação de Desempenho - Sistema Sul Sudeste e Mato-Grosso Brasileiro
Reduzido

Programa Tempo(s)

Modificado 88,801
Original 292,570

Verifica-se, novamente, que o programa modificado apresenta desempenho supe-
rior ao original. É necessário ressaltar que as melhorias também se estenderam para
a metodologia clássica, pois o tempo exigido para a execução da metodologia híbrida
dos classificadores BCU no programa original (292,570 segundos) é superior aos 166,188
segundos necessários para se executar a metodologia clássica no programa modificado.
A Tabela 25 apresenta o número total de contingências críticas detectadas pela metodologia
híbrida dos classificadores BCU executada no programa modificado e no programa original
(Tabela 19).

Tabela 25 – Comparação de Exatidão - Sistema Sul Sudeste e Mato-Grosso Brasileiro
Reduzido

Programa Casos Críticos

Modificado 99
Original 99

Assim, para o Sistema Sul Sudeste e Mato-Grosso Brasileiro Reduzido de 107 barras, os
programas apresentaram resultados iguais.
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4 Conclusão

Neste trabalho foi realizada a avaliação de segurança dinâmica de Sistemas Elétricos
de Potência, no contexto de estabilidade transitória, utilizando a metodologia híbrida
dos classificadores baseados no método BCU (métodos diretos) e a metodologia clássica
(simulação no domínio do tempo).
Verificou-se que a metodologia dos classificadores apresentou resultados equivalentes aos
obtidos pela metodologia clássica em menores tempos de execução.
Especificamente para o Sistema IEEE Nova Inglaterra de 39 barras, os filtros classificadores
filtraram cerca de 85% dos casos estáveis e detectaram todos os instáveis para o sistema.
Dessa forma, com a mesma precisão dos resultados, a avaliação de estabilidade transitória
via classificadores BCU foi executada em 50% do tempo requerido pela análise clássica.
Para o Sistema Sul Brasileiro Reduzido de 33 barras, os resultados apresentaram a mesma
qualidade. Os filtros classificadores filtraram 87% dos casos estáveis e o tempo necessário
para a avaliação de estabilidade transitória foi reduzido em 40%. Assim, ilustra-se a
robustez dos filtros perante a diferentes topologias e, em especial, a topologia da rede
Brasileira.
Também para o Sistema Sul Sudeste e Mato-Grosso Brasileiro Reduzido de 107 barras os
filtros apresentaram a mesma eficiência, filtrando 72% dos casos estáveis e reduzindo o
tempo necessário de execução em 50%. Verifica-se, assim, a robustez do uso dos classifica-
dores em sistemas de maior porte.
Finalmente, conclui-se que a metodologia adotada apresenta a mesma robustez e precisão
dos resultados da análise clássica para diferentes sistemas, mas seu custo computacional é
reduzido. Portanto é a metodologia ideal para aplicações que exigem análises em tempo
real.
É necessário ressaltar que neste trabalho, também, realizaram-se modificações e otimizações
no programa originalmente desenvolvido por Theodoro (2010) e esta versão modificada
foi utilizada para as análises realizadas. Observa-se que nessa nova versão do programa,
alteraram-se os parâmetros e funcionamento de alguns dos filtros classificadores, além disso
adotaram-se abordagens mais refinadas para a solução de sistemas lineares, não lineares e
dinâmicos. Nelas, métodos numéricos mais robustos e eficientes foram utilizados, de forma
a garantir maior desempenho e exatidão.
Por último, verificou-se que a versão desenvolvida e utilizada do programa neste trabalho
apresenta desempenho bem superior ao programa original, reduzindo em 350% o tempo
necessário para a avaliação de estabilidade transitória via classificadores BCU, e apresenta
melhores resultados, não indicando contingências estáveis como críticas. Observa-se, ainda,
que as melhorias realizadas se estenderam para a metodologia clássica, afinal, o esforço
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computacional exigido por ela na nova versão do programa é menor do que o esforço
exigido pela metodologia híbrida dos classificadores baseados no método BCU na versão
original.
As perspectivas futuras deste trabalho são a aplicação dos filtros em sistemas de maior
porte e com modelos mais detalhados. Espera-se também melhorar o desempenho dos filtros
5 e 7 que ainda deixam escapar contingências estáveis, encaminhando-as para simulação
no domínio do tempo. Deseja-se, também, estender os métodos diretos apresentados neste
trabalho para SEP’s que apresentam incertezas em sua geração.
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APÊNDICE A – Métodos Numéricos

A.1 Soluções de Sistemas de Equações Lineares
A resolução de sistemas de equações lineares é extremamente utilizada durante a

execução da análise de estabilidade transitória. Em muitos dos casos, porém, os sistemas a
serem resolvidos são mal condicionados, ou seja, a solução não é alcançada com a utilização
de um método simples. Dessa forma, três diferentes algoritmos, encadeados pela robustez,
foram aplicados com esse propósito:

1. Método de Gauss-Seidel;

2. Método de Gauss-Seidel melhorado;

3. Método dos Mínimos Quadrados.

Devido ao aumento de complexidade de cada método, o método subsequente só será
executado se o método anterior tiver falhado. A seguir são descritas as metodologias.

A.1.1 Método de Gauss-Seidel

Deseja-se resolver as n equações dos sistema linear Ax = b. A forma matricial
para esse sistema é:

A =


A11 · · · · · · A1n

A21 A22 · · · A2n
... ... . . . ...

An1 A2n · · · Ann

 ,b =


b1

b2
...
bn

 ,x =


x1

x2
...
xn

 (A.1)

A solução seria, então:

xi =
bi −

∑i−1
j=1 Aijxj −

∑n
j=i+1 Aijxj

Aii
, i = 1, 2, ..., n. (A.2)

Como os valores de x1 até xn são desconhecidos, uma aproximação inicial da solução é
tomada e calcula-se iterativamente a solução dos sistema. A equação (A.2) fica, então, da
seguinte forma:

xki =
bi −

∑i−1
j=1 Aijx

k
j −

∑n
j=i+1 Aijx

k−1
j

Aii
, i = 1, 2, ..., n. (A.3)

Esse processo é realizado até que a seguinte condição de convergência seja obtida:
‖xk − xk−1‖
‖xk‖

6 ε (A.4)

Finalmente o algoritmo, pode ser descrito como se segue:
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Input :Matrizes A,b;
Solução inicial x0

1,...,x0
n;

Tolerância ε;
Número máximo de interações N .

Output :A solução aproximada de x1...xn.
begin

k = 1
while k 6 N do

for i = 1, 2, ..., n do

xki =
bi −

∑i−1
j=1 Aijx

k
j −

∑n
j=i+1 Aijx

k−1
j

Aii
end

if
‖xk − xk−1‖
‖xk‖

6 ε then

return xk

end
k = k + 1

end
end

Algoritmo 1: Método de Gauss-Seidel

A.1.2 Método de Gauss-Seidel melhorado

Na execução do algoritmo de Gauss-Seidel se a matrizA (A.1) for mal condicionada,
ou seja, det(A) ≈ 0, a solução encontrada será muito distante da real. Dessa forma, é
necessário modificar o método original para se tentar obter uma solução para o sistema.
Para isso, definem-se dois novos vetores auxiliares para o sistema linear (A.1), a e a’:

a =


a1 = ∑n

j 6=1 ‖A1j‖
a2 = ∑n

j 6=2 ‖A2j‖
...

an = ∑n
j 6=n ‖Anj‖

 , a
′ =


a′1 = αa1 − A11

a′2 = αa2 − A22
...

a′n = αan − Ann

 , em que α ∈ R (A.5)

Utilizando-se da matriz a’ (A.5) modifica-se o sistema linear original (A.1) e se obtêm
uma estimativa para a solução inicial. A nova matriz A e a solução inicial são dadas como
se segue:

A =


A11 + a′1 · · · · · · A1n

A21 A22 + a′2 · · · A2n
... ... . . . ...

An1 A2n · · · Ann + a′n

 ,x
0 =


x1 = b1/A11

x2 = b2/A22
...

xn = bn/Ann

 (A.6)

A solução para o sistema linear considerando o método original (A.3) é, então, da seguinte
forma:

xki =
bi −

∑i−1
j=1 Aijx

k
j −

∑n
j=i+1 Aijx

k−1
j + a′ix

k−1
i

Aii
, i = 1, 2, .., n. (A.7)

Finalmente, tendo em vista o Algoritmo (1) anterior, é obtido o novo algoritmo:



A.1. Soluções de Sistemas de Equações Lineares 99

Input :Matrizes A,b;
Multiplicador α
Tolerância ε;
Número máximo de interações N .

Output :A solução aproximada de x1,...,xn.
begin

k = 1
for i = 1, 2, ..., n do

ai = ∑n
j=1
j 6=i
‖A1j‖

if Aii 6 0 then
a′i = αai − Aii

end
else

a′i = ai
end
Aii = Aii+ a′i

end
while k 6 N do

for i = 1, 2, ..., n do

xki =
bi −

∑i−1
j=1 Aijx

k
j −

∑n
j=i+1 Aijx

k−1
j + a′ix

k−1
i

Aii
end

if
‖xk − xk−1‖
‖xk‖

6 ε then

return xk

end
k = k + 1

end
end

Algoritmo 2: Método de Gauss-Seidel-Melhorado

A.1.3 Método dos Mínimos Quadrados

O último método é utilizado quando não é possível encontrar uma solução com a
utilização dos métodos anteriores, dessa forma a matriz A é uma matriz singular, detA ≈ 0.
Precisa-se, então, encontrar uma solução aproximada para o sistema, de forma que o erro
cometido ao se estimar seja o menor possível (STRANG, 2009). Então, seja o sistema
linear dado pela forma (A.1), é desejado minimizar o erro:

e = b−Ax̂ (A.8)

Em que x̂ é a solução aproximada do sistema dada pelo método dos mínimos quadrados
que minimiza a soma quadrática dos erros, isto é,

‖e‖2 =
m∑
i=1

[bi −
n∑
j=1

Aijx̂j]2. (A.9)
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O mínimo é encontrado quando x̂ satisfaz

∇‖e‖2 = 0⇔ ∇
m∑
i=1

[bi −
n∑
j=1

Aijx̂j]2 = 0 (A.10a)

m∑
i=1

2[bi −
n∑
j=1

Aijx̂j]Aik = 0, k = 1, ..., n (A.10b)

m∑
i=1

Aik[bi −
n∑
j=1

Aijx̂j] = 0, k = 1, ..., n (A.10c)

AT(b−Ax̂) = 0 (A.10d)

ATAx̂ = ATb (A.10e)

x̂ = (ATA)−1ATb. (A.10f)

A matriz A† = (ATA)−1AT é conhecida na literatura (PENROSE, 1955) como matriz
Pseudoinversa de Moore-Penrose. Calculada A†, pode-se proceder com o método de
Gauss-Seidel original. O algoritmo final é dado por:
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Input :Matrizes A,b;
Solução inicial x0

1...x0
n;

Tolerância ε;
Número máximo de interações N .

Output :A solução aproximada de x1,...,xn.
begin

k = 1
for i = 1, 2, ..., n do

for j = 1, 2, ..., n do
Aij =

n∑
k=1

AikAjk

end
end
for i = 1, 2, ..., n do

bi =
n∑
k=1

Akibk

end
while k 6 N do

for i = 1, 2, ..., n do

xki =
bi −

∑i−1
j=1 Aijx

k
j −

∑n
j=i+1 Aijx

k−1
j

Aii
end

if
‖xk − xk−1‖
‖xk‖

6 ε then

return xk

end
k = k + 1

end
end

Algoritmo 3: Método dos Mínimos Quadrados

A.1.4 Exemplo de solução de um Sistema de Equações Lineares

Como a solução dos métodos A.3, A.7 e A.10 é equivalente para uma sistema bem
condicionado e apenas o método A.10 é aplicável para um sistema mal condicionado,
não será exemplificado, aqui, a solução de um sistema de equações lineares. Ao leitor
interessado, pode ser encontrado exemplos em (STRANG, 2009) e (BURDEN; FAIRES;
BURDEN, 2015).

A.2 Soluções de Sistemas não Lineares

A metodologia híbrida dos classificadores BCU necessita em muitos momentos a
resolução de sistemas de equações não lineares. Por exemplo na resolução do fluxo de carga.
Neste trabalho são utilizados dois métodos de resolução: Método de Newton-Raphson e
Método de Broyden.
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A.2.1 Método de Newton-Raphson

A obtenção do Método de Newton-Raphson é realizada com a aproximação pela
série de Taylor da função f(x) (PRESS, 2007), como se segue:

f(x+ ε) ≈ f(x) + f ′(x)ε+ f ′′(x)
2! ε2 + ... (A.11)

Truncando o resultado anterior (A.11) na primeira derivada, f(x+ ε) = 0 implica em

ε = − f(x)
f ′(x) (A.12)

O processo de (A.11) e (A.12) é repetido até ser obtida uma aproximação suficientemente
próxima da solução real, dando origem ao Método de Newton-Raphson:

xk = xk−1 − f(xk−1)

f ′(xk−1) (A.13)

Para um problema n dimensional, o Método de Newton-Raphson é reescrito da seguinte
forma

xk = xk−1 − J(xk−1)−1F(xk−1) (A.14)

em que J(x) é a matriz Jacobiana de F,

Jij(x) = ∂fi
∂xj

(A.15)

Em prática o processo de inversão de uma matriz é muito custoso, ao invés disso, resolve-se
o sistema linear

J(xk−1)sk = −F(xk−1) (A.16)

para sk, assim a iteração para o Método de Newton-Raphson fica como se segue:

xk = xk−1 + sk (A.17)

As condições para a convergência do método são duas (BURDEN; FAIRES; BURDEN,
2015):

• ‖F(xk)‖ ≈ 0;

• ‖xk − xk−1‖ ≈ 0

A primeira indica o residual do método e a segunda indica o grau de proximidade da
solução aproximada da verdadeira. O algoritmo de resolução é, assim, apresentado a seguir:
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Input : n equações e variáveis;
Matriz Jacobiana do sistema de n equações
Solução inicial x0

1...x0
n;

Tolerância ε;
Número máximo de interações N .

Output :A solução aproximada de x1,...,xn.
begin

k = 1
while k 6 N do

Calcular F(x) e J(x)
Resolver o sistema linear J(xk−1)sk = −F(xk−1)
xk = xk−1 + sk
if ‖F(xk)‖<ε then

return xk
end
k = k + 1

end
end

Algoritmo 4: Método de Newton-Raphson

A.2.2 Método de Broyden

O método de Broyden é um método para solucionar F(x) = 0, mas ao invés de
se computar a Jacobiana J(x) (A.15) em cada iteração, atualiza-se seu valor com uma
aproximação B(x). Para isso aplica-se a aproximação de diferença finita:

Bk(xk − xk−1) ≈ F(xk)− F(xk−1) (A.18)

Por simplicidade define-se a seguinte notação:

Fk = F(xk)

Bk = B(xk)

sk = xk − xk−1

yk = Fk − Fk−1

(A.19)

Se n > 1, o sistema (A.18) é subdeterminado e não possui solução única. Então escolhe-se
Bk como solução de:

min
Bksk
‖Bk −Bk−1‖F (A.20)

Em que ‖‖F é norma de Frobenius1.
Broyden (1965) propõe a solução para (A.20) da seguinte forma:

Bk = Bk−1 + (yk −Bk−1sk)(sk)T

(sk)Tsk
(A.21)

1 A norma de Frobenius de uma matriz Am×n é dada por: ‖A‖F =
√

m∑
i=1

n∑
j=1
|Aij |2 (WEISSTEIN, 1999)
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Para inicializar o método de Broyden é necessário uma aproximação inicial da matriz
Jacobiana (A.15). Usualmente utilizam-se duas aproximações (BROYDEN, 1965):

• B0 = J(x0);

• B0 = αI, em que I é a matriz identidade n× n e α é um escalar.

Agora é possível proceder com o Algoritmo 4 com as alterações propostas anteriormente.

Input : n equações e variáveis;
Aproximação inicial da Matriz Jacobiana para o sistema
Solução inicial x0

1...x0
n;

Tolerância ε;
Número máximo de interações N .

Output :A solução aproximada de x1,...,xn.
begin

k = 1
while k 6 N do

Calcular F(xk−1)
Resolver o sistema linear Bk−1sk = −F(xk−1)
xk = xk−1 + sk
Calcular F(xk)
if ‖F(xk)‖<ε then

return xk
end
yk = F(xk)− F(xk−1)

Bk = Bk−1 + (yk −Bk−1sk)(sk)T

(sk)Tsk
k = k + 1

end
end

Algoritmo 5: Método de Broyden

A.2.3 Exemplo de solução de Sistema não Linear

Para exemplificar os métodos, suponha que se é desejado resolver o seguinte sistema
não linear:

e−e
−(x1+x2) − x2(1 + x2

1) = 0

x1 cos(x2) + x2 sin(x1)− 0.5 = 0
(A.22)

A matriz Jacobiana é, então, calculada por (A.15):
∂f1

x1

∂f1

x2
∂f2

x1

∂f2

x1

 =
e−e−(x1+x2)−x1−x2 − 2x1x2 −x2

1 + e−e
−(x1+x2)−x1−x2 − 1

x2 cos(x1) + cos(x2) sin(x1)− x1 sin(x2)

 (A.23)

Para ε = 10−4, obteve-se o seguinte resultado:
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Tabela 26 – Resultado da Aplicação do Método de Newton-Raphson e Método de Broyden

Iteração(k) xNewton ‖F(x)‖Newton xBroyden ‖F(x)‖Broyden
1 [0; 0]T 0,6208 [0; 0]T 0,6208
2 [0, 5; 0, 873]T 0,8900 [0, 5; 0, 873]T 0,8900
3 [0, 3801; 0, 1362]T 0,3096 [0, 4004; 0, 2520]T 0,1306
4 [0, 3428; 0, 4947]T 0,2427 [0, 3960; 0, 3347]T 0,0045
5 [0, 4042; 0, 2029]T 0,2069 [0, 3927; 0, 3370]T 7,8541e-04
6 [0, 3622; 0, 4378]T 0,1560 [0, 3931; 0, 3366]T 6,6486e-06
7 [0, 4033; 0, 2526]T 0,1298 × ×
8 [0, 3759; 0, 4008]T 0,0990 × ×
9 [0, 4009; 0, 2845]T 0,0805 × ×
10 [0, 3833; 0, 3768]T 0,0620 × ×
11 [0, 3986; 0, 3044]T 0,0498 × ×
12 [0, 3874; 0, 3616]T 0,0386 × ×
13 [0, 3967; 0, 3167]T 0,0307 × ×
14 [0, 3897; 0, 3522]T 0,0239 × ×
15 [0, 3954; 0, 3243]T 0,0190 × ×
16 [0, 3911; 0, 3462]T 0,0148 × ×
17 [0, 3946; 0, 3290]T 0,0117 × ×
18 [0, 3919; 0, 3426]T 0,0092 × ×
19 [0, 3940; 0, 3319]T 0,0072 × ×
20 [0, 3924; 0, 3403]T 0,0057 × ×
21 [0, 3937; 0, 3337]T 0,0045 × ×
22 [0, 3926; 0, 3389]T 0,0035 × ×
23 [0, 3935; 0, 3348]T 0,0028 × ×
24 [0, 3928; 0, 3380]T 0,0022 × ×
25 [0, 3933; 0, 3355]T 0,0017 × ×
26 [0, 3929; 0, 3375]T 0,0013 × ×
27 [0, 3933; 0, 3359]T 0,0011 × ×
28 [0, 3930; 0, 3372]T 8,3126e-04 × ×
29 [0, 3932; 0, 3362]T 6,5382e-04 × ×
30 [0, 3930; 0, 3370]T 5,1402e-04 × ×
31 [0, 3932; 0, 3364]T 4,0425e-04 × ×
32 [0, 3931; 0, 3368]T 3,1784e-04 × ×
33 [0, 3931; 0, 3365]T 2,4995e-04 × ×
34 [0, 3931; 0, 3368]T 1,9653e-04 × ×
35 [0, 3931; 0, 3367]T 1,2152e-04 × ×
36 [0, 3931; 0, 3366]T 9,5561e-05 × ×

É possível verificar, assim, que a mesma solução inicial apresenta resultados distintos
entre os dois métodos, até mesmo fazendo com que o Método de Broyden convirja mais
rapidamente para a solução do sistema. Justifica-se, assim, a metodologia adotada neste
trabalho da utilização combinada dos dois métodos: Itera-se poucas vezes o sistema não
linear via o Método de Broyden e utiliza-se esse ponto como solução inicial do Método
de Newton-Raphson. Dessa forma se o Método de Broyden for convergente para uma
solução inicial, em poucas iterações o Método de Newton-Raphson convergirá, por outro



106 APÊNDICE A. Métodos Numéricos

lado se o método divergir, descarta-se o resultado obtido e utiliza-se apenas o Método de
Newton-Raphson. Dessa forma alia-se a velocidade do primeiro método com a robustez do
segundo (BURDEN; FAIRES; BURDEN, 2015).

A.3 Soluções de Sistemas de Equações Diferenciais
Um Sistema Elétrico de Potência (SEP) é modelado por equações diferencias. Assim

para seu é estudo é necessário a resolução dessas equações dinâmicas. Neste trabalho,
dois métodos distintos são utilizados: 1) Método de Runge-Kutta e 2) Método de Adams-
Bashfort-Moulton. Por simplicidade e uniformidade, denota-se a equação diferencial da
seguinte forma:

x′ = f(t, x) (A.24)

A.3.1 Método de Runge-Kutta

Para derivar o método é necessário as seguintes séries de Taylor:

x(t+ ∆t) = x(t) + (∆t)x′(t) + (∆t)2

2! x′′(t) + termos de ordem mais alta (A.25)

f(t+ ∆t, x(t) + ∆x(t)) = f(t, x(t)) + (∆t)∂f(t, x(t))
∂t

+

(∆x(t))∂f(t, x(t))
∂x

+ termos de ordem mais alta (A.26)

É de interesse resolver a equação diferencial (A.24), logo integra-se a equação da seguinte
forma:

x(t+ h) = x(t) +
∫ t+h

t
f(τ, x(τ))dτ (A.27)

A solução para (A.27) é aproximada pela regra da quadratura:

x(t+ h) ≈ x(t) + h
N∑
i=1

ωif(t+ νih, x(t+ νih)) (A.28)

Para resolver a equação (A.28), fazem-se as seguintes considerações:

• Seja ν1 = 0, então define-se k1 = hf(t, x(t));

• O segundo termo da quadratura é, então, k2 = h(f(t+ αh, x(t) + βk1);

Com isso a regra da quadratura é:

x(t+ h) ≈ x(t) + ω1k1 + ω2k2 (A.29)
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Na equação (A.29), substitui-se a equação (A.25):

x(t) + hx′(t) + h2

2! x
′′(t) +O

(
h3
)

= x(t) + ω1k1 + ω2k2 (A.30)

Mas x′(t) = f(t, x(t)) e x′′(t) = ∂f(t, x(t))
∂t

+ f(t, x(t))∂f(t, x(t))
∂x

, dessa forma:

hf(t, x(t)) + h2

2

[
∂f(t, x(t))

∂t
+ f(t, x(t))∂f(t, x(t))

∂x

]
+O

(
h3
)

= ω1k1 + ω2k2 (A.31)

Substituindo as expressões de k1 e k2:

hf(t, x(t)) + h2

2

[
∂f(t, x(t))

∂t
+ f(t, x(t))∂f(t, x(t))

∂x

]
+O

(
h3
)

= ω1hf(t, x(t)) + ω2h(f(t+ αh, x(t) + βk1) (A.32)

Aplicando a segunda série de Taylor (equação (A.26)) na equação (A.32) chega-se no
seguinte resultado:

hf(t, x(t)) + h2

2

[
∂f(t, x(t))

∂t
+ f(t, x(t))∂f(t, x(t))

∂x

]
+O

(
h3
)

=

ω1hf(t, x(t)) + ω2

(
hf(t, x(t)) + αh2∂f(t, x(t))

∂t
+ βh2f(t, x(t))∂f(t, x(t))

∂x

)
(A.33)

Logo o Método de Runge-Kutta será equivalente a série de Taylor se forem escolhidos os
seguintes valores para as constantes:

ω1 + ω2 = 1 (A.34a)

αω2 = 1
2 (A.34b)

βω2 = 1
2 (A.34c)

A escolha canônica para as constantes de (A.34) é α = β = 1 e ω1 = ω2 = 1/2. Dessa
forma, foi obtido o Método de Runge-Kutta de ordem 2. Para maior precisão, foi utilizado,
nesse trabalho, o Método de Runge-Kutta de ordem 4, dado por:

x(ti) = xi (A.35a)

k1 = hf(ti, xi)) (A.35b)

k2 = hf(ti + h

2 , xi + 1
2k1) (A.35c)

k3 = hf(ti + h

2 , xi + 1
2k2) (A.35d)

k4 = hf(ti + h, xi + 1
2k3) (A.35e)

xi+1 = xi + 1
6(k1 + 2k2 + 3k3 + k4) (A.35f)

A derivação desse resultado pode ser encontrada em (BURDEN; FAIRES; BURDEN,
2015).
O Algoritmo 6 implementa o Método de Runge-Kutta de ordem 4.
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Input :Ponto inicial (t0, x0);
Tempo de simulação T;
Passo de integração h.

Output :A solução aproximada de x′(t) = f(t, x(t)) em [t0, t0 + T]
begin

N = T/h
t = t0
x = x0
i = 0
Output : t,x
while i 6 N do

Calcular: k1 = hf(ti, xi));

k2 = hf(ti + h

2 , xi + 1
2k1);

k3 = hf(ti + h

2 , xi + 1
2k2);

k4 = hf(ti + h, xi + k3.

Calcular:x = x+ 1
6(k1 + 2k2 + 2k3 + k4)

Atribuir:t = t+ h
Output : t,x
i = i+ 1

end
end

Algoritmo 6: Método de Runge-Kutta de Ordem 4

É necessário observar que o método pode ser estendido para um sistema de equações
diferencias. Nesse caso substituem-se no Algoritmo 6, f(t, x(t)), x(t), k1, k2, k3 e k4 por
vetores.

A.3.2 Método de Adams-Bashforth-Moulton

Foi observado que as equações diferencias utilizadas no Método BCU apresentam
stiffness (CHIANG; WU; VARAIYA, 1994). Assim, há a necessidade de utilização de um
método implícito de integração numérica para a resolução eficiente do sistema. Porém,
métodos implícitos usuais introduzem a necessidade de resolução de sistemas de equações
não lineares.
O Método de Adams-Bashforth-Moulton apresenta uma solução aos dois problemas apre-
sentados, pois é um método implícito que é resolvido explicitamente. Para isso é preciso
combinar o Método de Adams-Bashfort com o Método de Adams-Moulton (BURDEN;
FAIRES; BURDEN, 2015).
Inicialmente se integrada a equação diferencial (A.24) de ti+1 até ti+2, obtêm-se (WHIT-
TAKER; ROBINSON, 1924):∫ ti+s−1

ti+s

x′(τ)dτ =
∫ ti+s−1

ti+s

f(τ, x(τ))dτ ⇔ x(ti+s)−x(ti+s−1) =
∫ ti+s

ti+s−1
f(τ, x(τ))dτ (A.36)
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Aproxima-se f pelo seu polinômio interpolador linear. A formula de Lagrange para a
interpolação polinomial é:

p(τ) =
s−1∑
j=0

pL(τ)f(ti+j, xi+j) (A.37)

pL(τ) =
s−1∏
k=0
k 6=j

τ − ti+k
tk+j − ti+k

, j = 0, 1, ..., s− 1 (A.38)

Assim:

x(ti+s)− x(ti+s−1) ≈
∫ ti+s

ti+s−1
p(τ)dτ =

∫ ti+s

ti+s−1

s−1∑
j=0

pL(τ)f(ti+j, yi+j)dτ =

s−1∑
j=0

f(ti+j, yi+j)
∫ ti+s

ti+s−1
pL(τ)dτ (A.39)

O método numérico é então:

xi+s = xi+s−1 + h
s−1∑
j=0

bjf(ti+j, yi+j) (A.40)

Os coeficientes, bj, são obtidos de:

bj = 1
h

∫ ti+s

ti+s−1
pL(τ)dτ = 1

h

∫ h

0
pL(ti+s−1 + u)du (A.41)

O Método de Adams-Moulton segue a mesma demonstração acima, mas agora acrescenta-se
o ponto ts ao polinomio interpolador pL. Os coeficientes, bj, são obtidos, assim, de:

bj = 1
h

∫ h

0
pL(ti+s−1 + u)du, com p(τ) =

s∑
j=0

pL(τ)f(ti+j, xi+j) e

pL(τ) =
s∏

k=0
k 6=j

τ − ti+k
tk+j − ti+k

, j = 0, 1, ..., s (A.42)

O Método de Adams-Bashfort-Moulton é a combinação dos dois métodos. Para isso,
inicialmente aproxima-se solução de (A.24) em ti+h, conhecido na literatura como preditor,
via Adams-Bashfort em seguida corrige-se esse resultado, conhecido como corretor, via
Adams-Moulton. Porém esse método não consegue se iniciar por si só, é necessário o cálculo
de 3 pontos inicias, para isso emprega-se o Método de Runge-Kutta (A.35). O Método de
Adams-Bashfort-Moulton de Ordem 4 está descrito abaixo:

Preditor: xip = xi−1 + h

24[55f(ti−1, xi−1)− 59f(ti−2, xi−2) + 37f(ti−3, xi−3)− 9f(ti−4, xi−4)]

(A.43)

Corretor: xi = xi−1 + h

24[9(ti, xip) + 19f(ti−1, xi−1)− 5f(ti−2, xi−2) + f(ti−3, xi−3)]

(A.44)
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Finalmente o algoritmo final é da forma:

Input :Ponto inicial (t0, x0);
Tempo de simulação T;
Passo de integração h.

Output :A solução aproximada de x′(t) = f(t, x(t)) em [t0, t0 + T]
begin

N = T/h
t = t0
x = x0
Output : t,x
for i = 0, 1, 2 do

Calcular: k1 = hf(ti, xi));

k2 = hf(ti + h

2 , xi + 1
2k1);

k3 = hf(ti + h

2 , xi + 1
2k2);

k4 = hf(ti + h, xi + k3.

Calcular:x = x+ 1
6(k1 + 2k2 + 2k3 + k4)

Atribuir:ti+1 = t0 + h(i+ 1)
Output : t,x

end
for i = 3, ..., N do

t = t0 + h(i+ 1)

xp = x3 + h

24[55f(t3, x3)− 59f(t2, x2) + 37f(t1, x1)− 9f(t0, x0)]

x = x3 + h

24[9f(t, xp) + 19f(t3, x3)− 5f(t2, x2) + f(t1, x1)]
Output : t,x
for j = 0, 1, 2 do

tj = tj+1
xj = xj+1

end
t3 = t
x3 = x

end
end

Algoritmo 7: Método de Adams-Bashfort-Moulton de Ordem 4

Novamente o método pode ser estendido para um sistema de equações diferencias. Nesse
caso substituem-se no Algoritmo 7, f(t, x(t)), x(t), k1, k2, k3 e k4 por vetores.
O método, pode, também se utilizar de passos de integração variáveis. Por exemplo,
avalia-se o ∆x = xi − xi−1, se ∆x > γ1 diminua o passo em σ, ou se ∆x < γ2 aumente o
passo em σ.
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A.3.3 Exemplo de solução de Sistema Dinâmico

Considere, por exemplo, que é desejado saber a solução da equação diferencial de
Mathieu (HAZEWINKEL, 1994) em t = [0, 2π], descrita abaixo:

x′′ = −[a− 2q cos(2t)]x, com a=2 e q=5 (A.45)

As Figuras 30 e 31, abaixo, apresentam o resultado com a aplicação dos método (A.43)
e (A.35) para um passo de integração de h = 0, 01.

Figura 30 – Solução com o Método de Runge-Kutta

Figura 31 – Solução com o Método de Adams-Bashfort-Moulton

Pelos resultados obtidos é possível verificar que ambos os métodos resolveram a equação
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diferencial (A.45) satisfatoriamente. É necessário observar que o método de Adams-
Bashfort-Moulton (A.43) foi executado em 90% do tempo necessário para executar o
método de Runge-Kutta (A.35).
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APÊNDICE B – Prova do Teorema de
Estabilidade de Lyapunov

A prova do Teorema fundamental para o estudo de estabilidade transitória é
apresentado nesta seção. O autor acredita que dessa forma há completude no trabalho.
Suponha por simplicidade que a origem seja um ponto de equilíbrio do sistema, observa-se
que é sempre possível transladar um ponto de equilíbrio qualquer, por exemplo xe para a
origem com a seguinte transformação: T (x) = x− xe.

Demonstração. Dado ε > 0, escolhe-se r ∈ [0, ε], tal que Br = {x ∈ Rn, ‖x‖ 6 r} ⊂ D.
Seja α = min

‖x‖=r
V (x). Escolhe-se β ∈ [0, α] e define-se Ωβ = {x ∈ Br, V (x) 6 β}.

Se x(t0) ∈ Ωβ ⇒ x(t) ∈ Ωβ, ∀t > t0, pois

V̇ (x(t)) 6 0⇒ V (x(t)) 6 V (x(t0)) 6 β. (B.1)

Além disso ∃δ > 0 de forma que ‖x‖ < δ ⇒ V (x) < β. Logo, tem-se que

Bδ ⊂ Ωβ ⊂ Br (B.2)

e, além disso,

x(t0) ∈ Bδ ⇒ x(t0) ∈ Ωβ ⇒ x(t) ∈ Ωβ ⇒ x(t) ∈ Br. (B.3)

Finalmente, chega-se em

‖x(t0)‖ < δ ⇒ ‖x(t)‖ < r 6 ε, ∀t > t0 (B.4)

Está demonstrada, assim, a primeira parte do Teorema 1. Resta, agora, demonstrar a
estabilidade assintótica. Para isso, suponha que a trajetória de x(t) não convirja para 0.
Como V (x(t)) é decrescente e não negativa, então V (x(t)) converge para um ξ quando
t→∞.
Como x(t) não converge para 0, então ξ > 0, dessa forma para todo t > t0, ξ 6 V (x(t)) 6
V (x(t0)).
Seja C={z, ξ 6 V (z) 6 V (x(t0))}, então C é fechado e limitado, logo compacto. Logo V̇
possui seu supremo em C, isto é, sup

z∈C
V̇ (z) = −a < 0. Como V̇ (x(t)) 6 −a, ∀t > t0, então

V (x(T )) = V (x(t0)) +
∫ T

t0
V̇ (x(t)) dt 6 V (x(0))− aT. (B.5)

Porém para T > V (x(t0))/a, isso implica que V (x(T )) < 0, uma contradição.
Logo toda trajetória x(t) converge para 0. Isto é, o sistema dinâmico é assintoticamente
estável em D e a demonstração está concluída.
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APÊNDICE C – Estabilidade de Métodos
Implícitos

No Apêndice A afirmou-se que métodos implícitos apresentam estabilidade numérica.
Para demonstrar tal afirmação, considera-se, por simplicidade, o Método de Adams-Moulton
(implícito) e o Método de Adams-Bashfort (explícito) ambos de primeira de ordem. Supõe-
se, agora, que a equação diferencial seja da forma a seguir:

y′ = λy, λ ∈ C e y(0) , y0 (C.1)

A solução exata é obtida como se segue:

dy
dt = λy → dy

y
= λdt→

∫ dy
y

=
∫
λdt→ log(y) = λt+ c1 (C.2)

y = eλt+c1 → y = c1e
λt (C.3)

y(0) = y0 = c1e
λ0 = c1 (C.4)

y = y0e
λt (C.5)

Para a verificação de estabilidade do método, escolhe-se λ < 0 e λ ∈ R, de forma que (C.5)
seja estável. Pelo Método de Adams-Bashfort de primeira ordem a equação (C.1) pode ser
aproximada por:

yn+1 = yn + hλyn (C.6)

Supondo que a solução de (C.6) seja Amn, a equação de diferença pode ser reescrita como
segue:

Amn+1 = Amn + hλAmn → mn+1 = mn + hλmn (C.7)

Resolvendo-se (C.7) para m:
m = 1 + hλ (C.8)

Logo a solução geral de (C.6) é:

yn+1 = A(1 + hλ)n,mas y0 = A(1 + hλ)0 = A, então yn+1 = y0(1 + hλ)n (C.9)

A condição de estabilidade para sistemas discretos implica em:

|1 + hλ| < 1 (C.10)

Como λ ∈ R, resolve-se a equação (C.10) da seguinte forma:

|1 + hλ| =
√

(1 + hλ)2 < 1→ (1 + hλ)2 < 1→ hλ < −2→ h <
−2
λ

(C.11)
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Dessa forma o resultado apresentado em (C.11) diz que apesar da equação diferencial (C.5)
ser convergente, o método numérico o será, apenas se a condição de h < −2

λ
for satisfeita.

O mesmo procedimento pode ser realizado para o Método de Adams-Moulton de primeira
ordem, assim a equação (C.1) pode ser aproximada por:

yn+1 = yn + hλyn+1 (C.12)

Supondo que a solução de (C.12) seja Amn, a equação de diferença pode ser reescrita
como segue:

Amn+1 = Amn + hλAmn+1 → mn+1 = mn + hλmn+1 (C.13)

Resolvendo-se (C.13) para m, encontra-se:

m = 1 + hλm→ m(1− hλ) = 1→ m = 1
1− hλ (C.14)

A solução geral de (C.12) é:

yn+1 = A
( 1

1− hλ

)n
,mas y0 = A

( 1
1− hλ

)0
= A, então yn+1 = y0

( 1
1− hλ

)n
(C.15)

Como λ < 0 ∈ R e h > 0, verifica-se que
∣∣∣∣ 1
1− hλ

∣∣∣∣ < 1. De fato, lim
h→+∞

1
1− hλ = 0 e

lim
h→+0

1
1− hλ = 1

Dessa forma, conclui-se que enquanto que a estabilidade do método explícito é condicionada
ao valor do passo de integração, o método implícito é irreverentemente estável.
As Figuras, abaixo, ilustram esse resultado.

Figura 32 – Comparação entre passos de integração-Método Explicito para λ = −2
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Figura 33 – Comparação entre passos de integração-Método Implícito para λ = −2
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