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REsuMoO

Este trabalho apresenta o desenvolvimento de um software
de otimizagao topoldgica bi-dimensional aplicado ao projeto de
estruturas rotativas.O Método de Otimizagéo Topoldgica consiste

objetivo sintetizar estruturas de maxima rigidez com uma dada
quantidade de material sujeito a forgas externas e forcas de
campo, como a gravidade e aceleracao centripeta.

E apresentada a formulagédo tedrica do problema é discutida

apresentado evidenciando a potencialidade da aplicacdo do
método no meio industrial.



ABSTRACT.

This work presents the development of software for two-
dimensional topological optimization applied to the project of
rotating structures. The Topology Optimization Method consists in
the combination of the Finite Elements Methods with optimization
methods with the purpose of synthesize structures of optimum
geometry for a given criteria. This work has as objective to
synthesize structures of maximum stiffness for a given amount of
material subject to external forces and body forces, as the gravity
and centripetal acceleration. The theoretical formulation of the
problem is explained and the characteristics of the solution of the
problem of maximum stiffness considering inertial forces are
presented. A practical example of synthesis is presented showing
the potentiality of the method for industry projects.



1 Introducao.

Otimizacdo pode ser definida como o ato de obter o melhor
resultado sob dadas circunstancias. Na pratica de um projeto de
engenharia varias decisdes sdo tomadas com 0 objetivo de
melhorar o desempenho do produto, ou seja, minimizar os
esforcos e maximizar o desempenho gerado.

O conceito de otimizagdo é um ponto comum no dia a dia de
um engenheiro projetista. A procura por solugbes 6timas para a
solugdo dos problemas enfrentados sempre sera a meta do
engenheiro mecéanico. Apesar dessa obviedade em se procurar a
solugdo o6tima, hoje em dia o engenheiro, em geral, tem pouco
conhecimento a cerca dos métodos de otimizacao.

Focando no projeto de estruturas mecaéanicas, que é o tema
desse trabalho, observa-se uma grande evolugdo e difusdo dos
métodos de analise estrutural. Por exemplo, a utilizacdo do
Método de Elementos Finitos é uma realidade em grande parte
das empresas de projeto, entretanto 0s métodos de otimizacéo
ainda s@o pouco difundidos e aceitos fora do meio académico.
Essa situagdo se da por dois principais fatores: o primeiro é a
falta de dialogo entre os meios a industrial e o académico, o
segundo ¢ o fato de que os problemas enfrentados pelos
engenheiros da indUstria muitas vezes excedem a capacidade dos

meétodos de otimizacéo estrutural até hoje desenvolvidos.

A década de 90 observou uma ligeira mudanca nessa
cultura, a difusdo dos métodos de otimizagcdo pdde ser notada
pelo aumento do numero de publicacbes sobre o tema e o
surgimento de disciplinas de otimizagdo em alguns cursos de pés-
graduacéo no pais.

Entre os métodos mais comuns de otimizacdo estrutural o
Método de Otimizagao Topoldgica, tema deste trabalho, ganhou
destaque justamente por se mostrar capaz de solucionar grande
parte dos problemas enfrentados pela industria.

Hoje, indlstria mecanica comeca a se utilizar de métodos de
otimizacdo para auxiliar o projeto de suas estruturas. Por
exemplo, no mercado nacional de unidades hidrogeradoras, que
consiste na turbina hidraulica mais o gerador elétrico a ela
acoplado, a reducdo do custo dos equipamentos € uma busca
constante entre os fabricantes. Devido 2 longa historia de



desenvolvimento desse tipo de equipamento, mais de um século
de projeto, as solugdes estruturais ja foram exaustivamente
investigadas e poucos sdo os avang¢os obtidos ao se utilizar
métodos convencionais de projeto. Dessa forma o Método de
Otimizagcdo Topoldgica tem se mostrado uma alternativa
promissora para a redugdo de custo desses equipamentos.

Esse trabatho contribui para demonstrar a viabilidade de
aplicag@o desse método em projetos reais. :

Para exemplificar aplicagdo do método de utilizacéao
topolégica na industria Abaixo segue um exemplo mostrando o
desenvolvimento da estrutura de um 6nibus urbano através de
métodos do MOT.

Figura 2. Resultado obtido através
do MOT, distribuigdo 6tima de
Figura 1. Dominio fixo de projeto (Regido material

cinza) da carroceria do 6nibus, regido na

gual o método ird distribuir material.

Figura 3. Interpretagdo do Figura 4. Projeto final da estrutura.
resuitado obtido

Na industria mecénica pode se dizer que o custo da
estrutura ¢ proporcional ao seu peso de tal forma que o0 projeto
otimo dessas estruturas em geral serda a estrutura mais leve
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capaz de atender aos critérios de projeto. Em geral, dois sdo os
critérios que norteiam o projeto de pegas mecanicas, sua rigidez
€ sua resisténcia.

Este trabalho visa atender as situagdes de projeto onde o
objetivo é maximizar a rigidez da estrutura mantendo o peso
dentro de um limite aceitavel, pré-determinado.

Para isso foi desenvolvido nesse trabalho, um software de
Otimizacdo Topoldgica, capaz de sintetizar estruturas de maxima
rigidez com restricido de volume considerando tanto forcas
externas aplicadas a estrutura como forcas inerciais devido a uma
aceleragéo aplicada a peca.

A consideragdo de forcas inerciais no problema de OT,
curiosamente foi pouco explorada tanto em artigos cientificos
como em sua aplicagdo industrial, apesar de sua grande
importancia, como vera-se nesse trabalho.

O software foi implementado em linguagem C, e é composto
basicamente de dois mddulos, sendo um contendo o Método de
Elementos Finitos e o algoritmo de solucdo do sistema de
equagdes e o outro contendo o algoritmo de otimizacdo, para
fazer a conexd@o entre estes dois modulos ha a andlise de
sensibilidade.

Nos capitulos que seguem sera feita uma apresentaciao da
teoria necessaria para o0 entendimento do MOT e
conseqientemente do software desenvolvido. Ao final sera
apresentado um conjunto de estruturas sintetizadas pelo
Software.

2 Fundamentos teéricos

Nessa se¢do serdo apresentadas as formulagdes utilizadas
do Método dos Elementos Finitos e do Método de Otimizagdo
Topolégica.

2.1 Método dos Elementos Finitos

Aqui sera descrita a formulacdo do Método de Elementos
Finitos, e do tipo de elemento utilizado.

Neste trabalho foi utilizada a aproximacdo de estado plano
de tensdo, esta consideracdo é utilizada em COrpos que possuem
uma geometria com a largura (direcdo 1) e o comprimento
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(direcdo 3) em dimensdes comparaveis e, no entanto, muito
maiores que a espessura (direcdo 2), como mostra a figura
abaixo. As cargas mecanicas $40 aplicadas uniformemente sobre
a espessura da pecga.

'F 2,2
Figura 5. Exemplo de situagéo onde o caso de estado plano de tenséo é valido.

Dessa forma a matriz da lei de Hooke para um material
isotrépico torna-se:

T, 1 v o ([E,
T, 0 o L=V E,
2 ] (1)

Onde E representa o maodulo de Young e v o coeficiente de
Poisson

2.1.1 Formulagéo do elemento isoparamétrico de quatro nés

Neste trabalho foi utilizado elemento isoparamétrico bi-linear
de quatro nés.

Considere a configuracdo bidimensional do elemento
Quadrilatero de quatro nés, no sistema de coordenadas locais
(£.7) para um sistema de coordenadas globais (x, ¥}, Figura 8.
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Figura 6. Mapa de coordenadas isoparamétricas. (a) elemento em coordenadas locais, (b)
elemento em coordenadas globais.

No sistema de coordenadas locais, o elemento é quadrado
(dimensdo 2 x 2), com o eixo de coordenadas no centro do
elemento. Ja no sistema de coordenadas globais, o elemento é
distorcido da forma retanguiar. Sendo a funcdo de forma (N)
funcdo do sistema de coordenadas locais, as coordenadas de
qualquer ponto P, podem ser expressas em termos das
coordenadas (x, y) dos nds, assim:

AR &

onde {x} é o vetor de coordenadas nodais do elemento, ou
seja:

{X}e :{xl Y1 X Vo X3 ¥y Xy J’4} (3)

e [N] é a funcdo de forma expressa na forma matricial,
como:

%]
I

N, 0 N
0

N, 0 N

0 N, 0 N, 0
ON_ON:! (4)

N1<]

b
o
£

A func¢éo de forma sio fungdes de interpoiacao de Lagrange
e sd0 expressas em coordenadas (&m):
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M(é,n)=—————a—2ﬂ—m

N, &y~ HOA=1)

4
(5)
e = LKD)

N =0 De)

As coordenadas de um ponto genérico (x, y) do elemento
isoparamétrico, sdo obtidas em funcdo das coordenadas nodais
do elemento, usando os mesmos polindmios bi-lineares do
elemento retangular, dessa forma:

*¥=Nx +Nyx, + Nyx, + N,x,

(6)
y=Ny +N,y, +N,y, +N,y,

Esta equagdo representa as aproximagcdes para as
componentes horizontal e vertical, respectivamente, do
deslocamento mecanico de cada ponto no dominio do elemento.

No item seguinte veremos como determinar a matriz de
rigidez do elemento.

2.1.2 Formulacado da matriz de rigidez elemento

A expressdo geral da matriz do elemento é escrita em
termos das coordenadas globais (x, y). Portanto, o diferencial de
comprimento dx e dy devem ser éxXpressos em termos do
diferencial de coordenadas locais dgedn. Além do que, a
deformacdo é definida em termos da derivada da funcdo de forma
e€m coordenadas globais, e estas derivadas sdo os elementos da
matriz [B] e eles devem ser transformados em derivada na

réspectiva coordenada local. Portanto, matriz [B] € uma matriz de
operadores diferenciais dos polindmios bi-lineares.
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E A P
ax dy dy Iy (7)
[B]=[ 0 % 0 N, 0 @/_1 0 N,

dy ax dx ox

Os diferenciais (dx, dy) s&o relacionados com os diferenciais
dé edn por meio da equacdo abaixo. Assim:

=—a£d§+idn
9% " o (8)

dy:-ald§+a—ydn

o9& on

onde:

#* _woN, | P N
LTSN =) =y,
08 LGE 5ET 2 (©)
B_gWN Y W,

an an (I 817 anyr

As derivadas das coordenadas sdo combinadas na forma
matricial como:

ox Qy_
|9 of
lil=) 7 » (10)
on 9n

onde [j] € a matriz Jacobiana de transformaciao.

Relacionando estas equacdes, os diferenciais de dojs
sistemas de coordenadas podem ser expressos por:

15



o= af )

De maneira semelhante, as derivadas da fungdo de forma
dos ndés “/” sdo relacionadas por:

N, N,

O | g0 08

an, (=1l N, (12)
dy an

A partir desses resultados é possivel obter a matriz de
rigidez de um elemento.

(K], = J [B.]|¢"|[B,]ar (13)

Usando o Jacobiano como um operador para transformar as
coordenadas locais (£.7) em coordenadas globais (x, y), A

equacgdo acima pode ser escrita da seguinte forma:
L1 ;
[K],= ] [[BT [C][Bacednag (14)
hd s

A matriz de rigidez local é inserida numa matriz global [K],

através da conectividade de cada elemento, que associa um
numero a cada elemento e o numero de nds a que esta

conectado.

Para a solugdo das equagdes de equilibrio dada pelo
sistema:

Ku=F (15)
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E necessaria a determinacdo do termo a direita F da
equacéo acima que representa as cargas aplicadas ao modelo.

O vetor de forca F é a somatéria dos esforgos nodais, o seja
as cargas aplicadas diretamente sobre o né e as forcas de campo
dada por

Fc:thfch (16)
Ve

Onde N representa a matriz de interpolacdo de
deslocamentos e é dada pela equacéo 5.

No caso desse trabalho, o vetor f. é dado por:

o _| Prea| & (X, )]

(17)
prea! [gy +a)2(YP —YO)]

Onde p,, representa a densidade do material, aqui o
sobrescrito real é utilizado para diferenciar da variavel de projeto
.que sera apresentada a diante.

Os valores g, e g, frepresentam a decomposicdo da

aceleragdo da gravidade nos componentes x e y do sistema de
coordenadas, @ é o valor da velocidade angular perpendicular ao
plano Oxy, X,,¥, é o centro de rotacdo do sistema e X, Y, éo

ponto onde se estd calculando o vetor f..

A integral 17 é avaliada em coordenadas locais, utilizando o
operador Jacobinano temos:

f, = j j Nf, ]J]dndg (18)
B

Avaliagdo das integrais da equacado 19 e 15 & feita
numericamente utilizando a Quadratura Gaussiana, (Método de
Gauss-Legendre). E provado que o valor somatéria obtida por
este método representa a integral exata para um polinémio de

17



grau igual a, no maximo trés, atendendo as necessidades desse
trabalho.Uma explicagdo mais detalhada do método pode ser
obtida na referéncia [3].

Neste momento é possivel resolver o sistema Ku=F e
dessa forma se possui o valor dos deslocamentos nodais da
estrutura. A método de solucdo desse sistema esti exposto no
2.4 Implementagdo Numérica

2.2 Otimizagio Topolégica

A Otimizacgéo Topoidgica (OT) oferece um método
sistematico e eficiente para o projeto otimizado de pecas
mecéanicas, que consiste em redistribuir material em um dado
volume, de maneira iterativa, a fim de obter a topologia que
maximize uma ou mais fun¢des objetivo da estrutura, atendendo a
restricbes impostas. Esse método combina o método de
elementos finitos (MEF) com métodos de otimizacéo.

Com método otimizacdo Topolégica, a definicdo da forma
basica de uma estrutura deixa de ser um processo de tentativa e
erro (através de sucessivas andlises para procura de uma
estrutura com melhor desempenho) para se tornar um processo
de sintese da estrutura, isto é, ao se aplicar o método de
otimizagdo Topoldgica (MOT) o engenheiro obtém uma topologia
infcial 6tima da estrutura. Dessa maneira, o MOT ndo é apenas
uma ferramenta que permite um aprimoramento do produto mas,
também, que reduz os custo de projeto da pega uma vez que sua
aplicagéo é sistematica.

18



Dominio Inicial ou

, . Dominio Discretizado Topologia obtida
Dominio fixo estendido po‘og

{0 =
Fabricacdo -
Verificagio Interpretacgéo

Figura 7. Processo de projeto de estruturas utilizando o Método de Otimizagédo Topoldgica.

O problema de sintetizar a estrutura de uma viga engastada
sujeita a um carregamento na extremidade com critério minimo
peso e maxima rigidez, esta acima apresentado.

O primeiro passo para a solugdo desse probiema consiste
em definir o dominio no qual a estrutura pode existir. Esse
dominio é limitado pelas condigbes de contorno da estrutura
(pontos em que ela deve estar restrita) e pelos pontos de
aplicagéo de carga.

No segundo passo o dominio é discretizado em elementos
finitos e sdo aplicadas as condi¢cdes de contorno. No terceiro
passo, os dados do dominio sdo fornecidos ao software de
Otimizacdo Topoldgica que num processo iterativo distribui o
material no dominio de forma a minimizar (ou maximizar) a fungédo
objetivo especificada, no caso, minimizar a flexibilidade. O
resultado obtido é do tipo mostrado no item "topologia obtida"
onde a cor escura indica a presenca de material e a cor branca
indica a auséncia de material no ponto do dominio. Note que
podem surgir pontos com cores intermediarias, denominados de
escalas de cinza. Esses pontos indicam a presenca de materiaijs
intermediarios que nao podem ser implementados na pratica e
sempre ocorrem. Dessa forma, a imagem da estrutura obtida por
OT representa um excelente ponto de partida que necessita ser



interpretado para se obter o projeto final da estrutura. Essa
interpretagéo (quarta etapa) pode ser feita usando-se métodos de
processamento de imagem ou simplesmente desenhando-se uma
estrutura baseada na imagem obtida por OT sempre levando em
conta as restricées impostas pelo método de manufatura.

A penultima etapa consiste em se verificar o resultado final
da estrutura. Em geral os resultados gerados por OT ndo séo
intuitivos e é interessante fazer uma verificacdo da estrutura final
usando MEF, para criarmos confianga na solucédo através da
comprovagédo da optimalidade do resultado.

Finalmente, a titima etapa é a fabricagdo da estrutura. Hoje,
existem vadrias técnicas de fabricagcdo que permitem fabricar
estruturas com formas complexas como prototipagem réapida,
entre outras.

Esse trabalho se restringira a discutir a otimizacao
Topoldgica para o caso onde o objetivo é obter a estrutura de
Menor peso e maxima rigidez.

2.2.1 Conceitos tedricos do Método de Otimizagdo Topolégica.

Para a utilizacdo de qualquer método de otimizagédo é
necessario inicialmente definir a formulagdo matematica do
problema.

Nesta secdo serd apresentada a formulacdo do problema e
os dois principais conceitos do MOT, o dominio fixo estendido
(DFE) e modelo de material.

2.2,2 Formulagéo do Problema

Conforme dito anteriormente o objetivo desse trabalho é
sintese de estruturas atendendo o critério de maxima rigidez para
um dado volume de material considerando forcas inerciais na
formulagdo do problema.

Para atender a esse objetivo é necessario se formular o
problema de tal forma a se quantificar matematicamente a fungéo
objetivo a ser extremaizada e as restrigbes do problema.
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A formulagdo utilizada nesse trabalho é uma das maijs
tradicionais na sintese de componentes mecanicos e pode ser

Minimizar C=¥F"u (19)
Tal que
> Vip)

£ (20)
0<peminspespemax (21)

K-U=F onde K=f(p) a F=f(P)

C=F'U que quantifica a flexibilidade da estrutura, A funcao
objetivo que depende das variaveis de projeto. No caso exposto
as variaveis de projeto, definidas como Pes Tepresentam a
quantidade de material em cada elemento, os valores de Lo
compdem a matriz de rigidez (K) do modeio de elementos finitos,
que por sua vez permite obter 0s deslocamentos da estrutura
através da equacdo de equilibrio estatico xk-y=F. Assim temos a
flexibilidade dada também por C=U"KU,

A forma que a quantidade de material é representada pelas
variaveis de projeto (p.) é definida pelo modelo de materia| que
sera utilizado, entretanto é importante notar que

representa a quantidade de material presente em cada elemento,
€ comum denominar €ssa quantidade com sendo a pseudo-
densidade do elemento, que no caso pode variar de zero,
(auséncia de material), a um (presen¢a de materia ).

A restrigdo imposta ao problema é definida por:

V(X)
V H

o

onde ¥(X)= > p.v,
[}

e
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onde s é a fracdo de material que se deseja que
permanega no dominio fixo estendido de volume v,

2.2.3 Dominio Fixo Estendido (DFE)

O dominio estendido fixo (DFE) de projeto consiste num
dominio de forma fixa limitado pelos pontos de apoio da estrutura
€ pontos de aplicagédo de carregamento, e que conters a estrutura
desconhecida. O objetivo da otimizagdo Topoldgica & determinar
0S8 espagos sem material (“buracos”) e a conectividade da
estrutura através da remocao e adicdo de material nesse dominio.
O probiema de otimiza¢ao consiste em se encontrar a distribuicdo
otima de propriedades de Mmateriais no dominio fixo estendido
(DFE).

Na implementacgio numerica, o DFE ¢ discretizado em
elementos finitos. Portanto, o modelo de elementos finitos do
dominio ndo é alterado durante O processo de otimizacdo, sendo
alterada somente a distribuicdo de material nos elementos,
Assim, as varidveis de projeto estdo associadas a cada elemento
da malha de MEF. Como a malha néo varia durante o processo de
otimizacdo, o calculo da sensibilidade da fungao objetivo se torna
Um processo mais simples, pois ndo & influenciado pela variacéo
de forma do dominio.

2.2.4 Modelo de Material

O problema de otimizacéo Topoldgica é em sua €sséncia um
problema discreto binario, considerando como variavel de projeto
a quantidade de material dos elementos, os Unicos valores
admissiveis em uma solucdo seriam zero (auséncia de material),
ou um, (presenca de material), entretanto a formulagdes criadas
utilizando variaveis discretas ndo foram bem sucedidas. Em geral
0 custo computacional se torna proibitivo para a solugcdo de
problemas com grande ngmero de variaveis. Alem do que a
formulacdo discreta insere ao problema multiplos minimos gltobais
Para contornar esse problema foram criados modelos de material
que se baseiam em variaveis continuas

O modelo de material é uma equacédo que define a mistura
eém microescala de dois ou mais materiais (um deles pode ser ar)
permitindo que haja estagios intermediarios ao $e passar da
condigcdo de zero material (“buraco”) a sélido em cada ponto do
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dominio. Isso garante a relaxacdo do problema de otimizacéo
evitando que se passe de ar para solido de forma brusca, o que

Existem varios modelos de materiais descritos na literatura
que podem ser utilizados. O mais comum é o chamado Método
das Densidades ou SIMP (Solid Isotropic Material with
Penalization), que consiste numa equac¢ao matematica que define
0 valor da propriedade £ da equacao 2 em cada ponto do dominio
em funcdo da pseudo-densidade p. do material usado no projeto

(que varia de zero a um valor maximo) e a propriedade bésica
(E,) do material a ser distribuido, como descrito na equacéo

abaixo.

E,=p! E, (22)

e e

Dessa forma tem-se uma variavel em cada ponto do
dominio, representada pelo valor da densidade naquele ponto. No
caso do problema discretizado, define-se uma variavel por
elemento finito.

O valor p que aparece na equacgio 23 insere ao probiema

uma penalizagdo da rigidez para as pseudo-densidades
intermedidrias, ou seja valores de p, entre 0 e 1.

O valor atribuido a penalizacdo p é amplamente discutido
na literatura e uma discussido mais detalhada pode ser
encontrada nas referéncias [11,[2]. Nesse trabalho foi utilizado o
meétodo da continuagdo que consiste em se alterar o valor de P
ao longo das itera¢des de modo a auxiliar a obtencdo de um bom
resuitado.Conforme se discutira adiante.

2.2.5 Qualidade da Solucgio

Um fator importante para a utilizacdo do MOT ¢é a qualidade
do resultado obtido. Em um caso pratico se esta interessado em
obter um estrutura relativamente simples e principalmente bem
definida. Entretanto ao se resolver problemas de OT é
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relativamente freqiiente se deparar com problemas numéricos que
prejudicam a qualidade da solugédo. Estes problemas dependem
de varios fatores entre eles' o tipo e ordem do elemento utilizado,
densidade da malha de elementos finitos, algoritmo de ofimizacgéo
e 0 modelo de material.

Os probiemas encontrados mais relevantes sdo instabilidade
de tabuleiro e escalas de cinza.

Instabilidade de tabuleiro

O problema de instabilidade de tabuleiro é conhecido pela
formagdo de regides na estrutura final onde elementos vizinhos
possuem densidades zero ou um, de maneira intercalada
definindo um padrdo semelhante a um tabuleiro de damas, Figura
8. Abaixo estd um exemplo de uma estrutura que apresenta
instabilidade de tabuleiro, também conhecido na literatura como
tabuleiro de damas ou xadrez.

Tabuieiro de Xadrez_J

Figura 8. Estrutura com erro numérico de tabuleiro de xadrez

Acreditava-se que estas regibes representavam uma
distribuicdo de material 6tima, mas provou-se que este problema
aparece devido a uma modelagem fraca [2], inerente a utilizacéo
de elementos de baixa ordem (quatro nos, como é o caso desse
trabalho), na malha de elementos finitos para a modelagem do
dominio. Esses elementos causam uma rigidez artificial maior que
aquela dada por uma distribuicdo uniforme de material.

A precaugdo mais simples para esse problema ¢é g
modelagem do dominio com elementos de alta ordem (elementos
de 8 ou 9 ndés), entretanto essa solugdo aumenta o numero de
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graus de liberdade da malha de elementos finitos acarretando um
aumento de tempo computacional.

Outros métodos para prevenir a formacdo de tabuleiro de
damas baseiam-se na aplicagédo de filtros que sio utilizados para
o tratamento de imagens digitais. Basicamente os filtros tendem a
amenizar a distribuicdo de densidade [4]. Neste trabalho foi
utilizado o Método de Controle dos Gradientes (MCQG).

O MCG pode ser aplicado na forma de filtro ou na forma de
restricdo ao problema de otimizacéo, e consiste em se restringir a
variagéo espacial da varidvel de projeto de tal forma que se evite
0 tabuleiro de damas. Neste trabalho sera aplicado o filtro sobre
os limites méveis

Escalas de Cinza

Ao se utilizar a formulagdo com varidveis continuas, a
solu¢do pode apresentar regides com elementos de pseudo-
densidades intermediarias, chamadas de regibes com escala de
cinza. A formacgéo desse tipo de regido esta intimamente ligada
com o modelo de material utilizado. No modelo de material
chamado de método das densidades o controle de escala de cinza
é feita pelo valor da penalizagdo p Valores de p Mmaiores que 1

penalizam os elementos com densidades intermediarias

O controle de escala de cinzas é uma ferramenta importante
quando se trata de um problema pratico de engenharia uma vez
que elementos que ndo estdo bem definidos deverdo ser mantidos
ou retirados da estrutura conforme a interpretagdo do engenheiro
projetista, pois existirdo duvidas quanto a quais elementos se
devem retirar ou manter e como isso afetara a rigidez global da
estrutura.

A penalizagdo p apesar de ser Gtil na reducdo da escala de
cinza retira a convexidade do problema original. Ou seja. Na
formulagcdo com p igual a um é provado que o problema de
otimizagdo formulado nesse trabalho possui um 0Onico minimo
global. Dessa forma se garante matematicamente que a solugcao
Otima sera obtida. Quando se insere o valor p diferente de 1 o
problema deixa de ser convexo e a estrutura finali pode ser um
minimo local da funcéo objetivo que nao apresenta as a
caracteristicas desejadas.

Para amenizar este problema foi utilizado o Método da
Continuacdo cujo o objetivo é iniciar o problema mais relaxado,
ou seja com p igual a um e somente apos algumas iteracées
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elevar o valor para p igual a dois e finalmente 3, que é um valor
usualmente utilizado na literatura [1]. Dessa forma a solugédo
tende a caminhar para a proximidade do minimo global para entdo
penalizar as densidades intermediarias e assim obter uma
resposta de boa qualidade, sem escala de cinza.

Neste ponto é importante notar que o filtro e a penalizagédo
p competem entre si na definicdo da geometria 6tima. O fiitro
tende a criar escala de cinza, pois nio permite a variacdo
espacial brusca da pseudo-densidade e, por outro lado, a
penalizacdo tende a levar todos os elementos a zero ou um,
inserindo necessariamente uma variacdo espacial brusca.

Para se obter resultados de boa qualidade foi utilizada a
seguinte estratégia. O software faz dez iteragdes com p igual a 1,

seguido de mais dez com p igual a 2, entdo se ligar o fiitro e
elevar o valor de p para 3, sdo feitas » itera¢des necessarias

Fa

para se atender ao critério de convergéncia, entdo o filtro é

desligado e ocorre no minimo mais cinco iteragdes para entio se

verificar o critério de convergencia. Quando este é atingido
considera-se o fim da otimizacggo.

2.3 Método de otimizacéao

Um ponto de exirema importancia na solugdo numérica de
um problema de otimizacdo é o algoritmo de otimizacdo que esta
sendo utilizado.

Existem vaérios algoritmos de otimizacdo disponiveis para
solugédo de problemas de otimizacdo ndo-lineares com restricdes.

Entre os algoritmos baseados em métodos de aproximacao
sequencial, a programacéao linear seqliencial (PLS, ou “SLP“em
inglés) tem sido aplicada com Sucesso na solugdo de problemas
de otimizacao topoldgica. Neste algoritmo, o problema de
otimizacdo ndo-linear & aproximado por uma seqliéncia de
subproblemas de otimizagdo lineares obtidos através da
aproximag¢do local da funcdo objetivo e restricbes na solugio
corrente da iteragdo, usando termos de primeira ordem da
expansédo em série de Taylor. Em cada iteracao, o subproblema
linear é resolvido usando um meétodo de programacéo linear
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(Simplex ou Kamarkar)[6],[7], para encontrar o 6timo da
aproximacédo linear. O resultado do ditimo Subproblema de
aproximacdo é atualizado como ponto inicial para o préximo
subproblema de aproximacéo e este procedimento é repetido ao
longo das iteracbes. Em cada iteracdo, sido definidos limites
moveis para as variaveis de projeto. Em geral, durante uma

de variaveis de projeto e varias restricbes sao consideradas.
Dessa forma, a principio, o “PLS” ge aplica ao problema em
questdo com a grande vantagem de permitir incluir 2 vontade
restricoes no problema de otimizacgéo.

Para se utilizar a Programacdo Linear Seqliencial &
necessario, como ja foi dito, linearizar a funcdo objetivo, usando
termos de primeira ordem da expansao em série de Taylor. Como
se observa abaixo podemos representar a funcdo objetivo pela
seguinte fungdo de primeiro grau:

oC 0. oC 0 aC 0
C=C,+2=(p — (p, - ot —(p. - 23
o+aplo(p1 p1)+ap%(p2 P; )+ +apjg(pN Py ) (23)
p=g p=p p=p

Separando os termos constantes dos termos dependentes
das variadveis, temos:

oC , oC o oC , acC oC oC
C=C)~—p°——<p0_ _ + + +..+— 24
0 apz] P apzu P ap]g Py aprﬂ P apzn P ap}g Py (24)
P p=p p=p’, N p=p p=r"
constantes variaveis

As constantes podem ser retiradas da equag¢éo, pois nao
influenciam o processo de minimizagdo da funcdo objetivo. A
equacéo a ser minimizada, portanto, assume uma forma linear
cujas varidveis sdo as pseudo-densidades P.- O coeficiente da

variavel p, é a derivada da flexibilidade em relagdo a prépria
variavel p,, cujo calculo segue abaixo

Sendo a funcio objetivo dada por:
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Cp)=1"-u (25)

Aplicando a regra da cadeia:

a_C(_‘ﬂz_Qﬁ.u.i.fT -a_u
op,  9p, op, (26)

du
Necessitamos obter —
dp

e

Sendo
Ku=f

Derivando dos dois lados

oK-w) _ o
ap, ap,

Aplicando a regra da cadeia

ﬂg.,ﬁ.]{._a“__ of = du K. of JK

3, . dp, dp, = op - op,

(27)

Substituindo em ¢7.9%
ap,

fT.K-'._ai_fT.K-I. oK ‘u

ap, dp,

(28)
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nNo caso desse trabalho onde K é simétrica

uT :'.fT 'K_I

Substituindo (30) (31) em (27)

9Cp) o | v O K

%0, op, op, ap,

LAN §
Sendoape u=u .
Temos

@ _, x F . K

2y gT —

ap, p, 9P,

forma:

(29)

(30)

(31)

Dessa forma o problema de programacgao linear toma a

= . oC oC oC oC

Minimizar c= St —p +—p +.. + 2% 32
9y Py %, A o, P, %y Py (32)
p=p p=p p=p p=p

Tal que

M

PRW A (33)

e=1

pemin Spe Spemax (34)
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K-U=F onde K =1(p) e F =1(p)

Os valores de p_ e p  estdo limitados entre 5% a 15%

€max

abaixo e acima, respectivamente, do valor de p., € sao varidveis

conforme um algoritmo que verifica se esta ocorrendo oscilagbes
da varidvel p,, caso sim, os limites moveis tem seus valores

percentuais diminuidos. Conforme sera descrito no item
implementacdo numérica

2.4 Implementagédo Numeérica

Na impiementacdo numérica a OT combina o método de
elementos finitos (MEF) com algoritmos de otimizacdo. Os
principais passos de um programa de OT, estdo representados no
fluxograma da Figura 9.

Além do modelo de material & necessaria a implementacéo
conjunta de um mdédulo de elementos finitos, que deve ser capaz
de calcular o valor da fungédo objetivo, e um algoritmo de
otimizacdo que ird atualizar as variaveis de projeto de modo a
minimizar a fungdo objetivo.

O algoritmo de otimizag&o necessita como entrada o valor do
gradiente da funcéao objetivo e restricées em relacdo as variaveis
de projeto, Esse calculo & feito durante a anslise de
sensibilidade.
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Define valores
iniciais das varidveis
no dominio fixo
estendido

:

| Modelo de material

:

Montagem das
matrizes de rigidez e
Analise da estrutura

(MEF)

Sim

Convergiu ? ———»  Fim

Nio l

Anélise de sensibilidade

v

Otimizagio

’

Atualizac3o dos valores
das varigveis de projeto x;

Figura 9. Fluxograma de implementagéo do MOT.

Abaixo estd apresentado o processo de convergéncia de
uma estrutura bidimensional projetada pelo método de otimizacgéo
topoldgica.

O problema apresentado consiste em sintetizar uma viga bi-
apoiada com carregamento a meio vio. Com o intuito de reduzir o
nimero de elementos e tempo computacional foi sintetizada
apenas metade da viga utilizando-se o conceito de simetria.
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Figura 10. Convergéncia da soluggo no método de otimizag&o topoldgica

Para se «criar os dados de entrada do software
desenvolvido, foi utilizado o software comercial Ansys 6.1, onde é
gerada a geometria e aplicado os carregamentos, tanto externo
(forcas aplicadas aos nds) quanto os esforcos de inércia (rotagdo
e acelera¢do). A partir do modeio em Ansys é gerado um arquivo
em formato ASCII, através do comando Archive Model -> Write,

Este arquivo é entdo lido pelo software desenvolvido, ele
contém: as coordenadas de todos os nds, a conectividade dos
elementos, propriedades mecanicas do material, o vetor de forca
externa aplicada, a indicagdo dos graus de liberdade restritos, o
numero de elementos (M), o nimero de nés (N).

A conectividade do elemento define os nés que compdem
cada elemento, no caso de elementos de quatro nés sao os
vértices do quadrilatero.

A partir desses valores o software cria as matrizes fixas /D,
matriz dos graus de liberdade ndo restritos jA enumerados, a
matriz edof formada com a conectividade dos elementos, a fext
com as forgcas externas nodais aplicadas a estrutura, a coord
matriz de coordenadas nodais. Obtém se o valor de ksize,nimero
de graus de liberdade livres do modelo.
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Com a matriz ID ¢ edof, desenvolve-se a matriz LM. Apenas
fext,LM, ksize, coord e conect serdo utilizadas diretamente no
algoritmo do MEF.

E necessario entao a criagdo da matriz de rigidez local dos
elementos, para isso utiliza-se os valor de conect e coord. Cada
elemento possui uma matriz 8 x 8 que relaciona as forcas
aplicadas aos ndés com os respectivos deslocamentos. Calculada
a matriz local deve-se entdo inserir seus valores na matriz global
K que possui tamanho ksize x ksize.

Para completar o sistema K-u=f € necessério calcular o
vetor fb, forcas de campo aplicadas a estrutura. Tal qual a matriz
de rigidez local o vetor b & calculado utilizando 3 geometria do
elemento e os valores de densidade e aceleracédo do elemento.

Com a montagem da matriz de rigidez global K e o vetor de
forcas composto por fb mais fext. Deve-se entao resolver o
sistema linear K-u=f para isso utilizou-se a rotina linbcg
disponivel na referéncia [9]. Esta rotina resolve sistemas lineares
utilizando o método MGBSE, Método dos Gradientes Bi-

Fd

Dessa forma o valor dos deslocamentos sdo determinados
no vetor ub de tamanho ksize.

A resposta de deslocamentos obtida pelo MEF implementado
nesse software foi checada com a do software comercial Ansys
6.1. e os resultados se mostraram corretos.

quatro nés. Em uma malha mista o Ansys 6.1 respresenta o
elemento triangular como elemento quadrilatero com dois nés
coincidentes, essa representacdo néo acarreta problemas para a
formulagdo apresentada.

Outros valores necessarios para a otimizagdo sio fornecidos
dentro do corpo do programa, e sdo eles, Vfrac representa o
limite méaximo de material representado na forma de fracdo do
volume inicial, a pseudo-densidade inicial de cada elemento é
definida como Vfrac de tal modo que a restricdo de volume inicia
0 processo de otimizagéo ativa.
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O controle do valor da penalizacdo p utilizada no Método da

Continuagéo é feita dentro do corpo do programa. O software esta
preparado para ter até cinco etapas onde se pode controlar

O loop de otimizacdo se inicia com o calculo da matriz de
rigidez global, dado os valores de pseudo-densidade inicial, para
essa tarefa had um loop de M (nimero de elementos) voltas para
se calcular a matriz de rigidez local e o vetor de forgas de campo
de cada elemento. E entio formada a matriz de rigidez global e o
vetor de forgas, o sistema linear & resolvido.

Em posse dos deslocamentos nodais sio calculados a
funcdo objetivo e os gradientes desta. Neste momento deve-se
iniciar 0 médulo de otimizagdo, para isso sio calculados os
limites méveis de cada variavel.

a pseudo-densidade de um elemento esteja oscilando, o que é
comum quando se estd préximo da solugdo final, os limites
moveis sdo diminuidos auxiliando a convergéncia da solucéo.

O processo iterativo ira Seguir a programacio feita pelo
método da continuagéo, ao final de cada etapa é gerado um
arquivo texto em formato de APDL, que é a linguagem de
programacédo do software Ansys onde esta apresentada a
distribuicdo de pseudo-densidadas corrente haquela iteragdo. Ao
se ler este arquivo em Ansys sdo geradas as figuras que
permitem visualizar o resultado.

A listagem parcial do software desenvolvido ests
apresentada no Anexo A apenas as partes mais importantes sao
apresentadas.
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3 Resultados

Neste capitulo serdo apresentados os resultados obtidos
com o software desenvolvido. [nicialmente serzo apresentados os
resultados para uma viga em balang¢o, onde poder-se-a discutir as
particularidades do MOT considerando forcas inerciais, em
seguida sera abordado o problema de sintese de um rotor de alta
velocidade de uma maquina rotativa, no caso uma turbina a
vapor.

3.1 Viga engastada

De modo a validar o software e compreender as
caracteristicas da implementacio considerando forgas de campo
no MOT, foi estuda a sintese de uma viga em balanco.

O dominio fixo estendido utilizado consiste na geometria
abaixo apresentada.

I ;

Figura 11. Dominio fixo estendido para 0 modelo de viga em balango.

HLLLLHLLLLELL L0120

Inicialmente serd apresentada a influéncia do método da
continuagdo na qualidade do resultado obtido. A titulo de exemplo
sera sintetizada a estrutura da viga em balango Sujeita apenas a
forca externa f. No grafico de convergéncia da Figura 12 serio
definidos os pontos , A, B, Ce D, de altera¢do dos parametros de
otimizacéio.
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Figura 12. Curvas de convergéncia para uma viga engastada convergéncia sujeita apenas a
forca externa.

O trecho definido entre 0 inicio das iteragcbes e o ponto A,
répresenta a etapa do processo iterativo onde a penalizagdo p

igual a um e o filtro permanece desligado. Neste instante
estrutura obtida esta apresentada na Figura 13
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Figura 13. Estrutura obtida na instante representado pelo ponto A, no processo iterativo.

Era de se esperar, como se observa acima, que neste
momento a estrutura ainda nao estivesse bem definida, pois nao
foi permitida a convergéncia da solugéo.

No trecho entre os pontos A e B, penalizacdo p é elevada

ao valor 2 e o filtro & ligado, obtém-se entio a estrutura
apresentada na Figura 14,
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Figura 14. Estrutura obtida na instante representado pelo ponto B, no
processo iterativo.

Observa-se neste momento que a estrutura j& esta bem mais
definida, porem ainda ha um grande numero de elementos com
pseudo-densidades intermedidrias, isso ocorre pois o filtro nao
permite a variagdo espacial brusca de pseudo-densidade.

Na préxima etapa a penalizacédo é elevada a seu valor final
3, e sdo feitas mais n iteracdes necessarias para obter a
convergéncia, atingindo entdo o ponto representado pela letra C.
A estrutura obtida esta apresentada na Figura 15.

| =1 ) K
 EEEN [ | [
s..ﬂl. I Y D 3 u _omENE
NN NN NN NN NN En

Figura 15. Estrutura obtida na instante representado pelo ponto C, no
processo iterativo.

Observa-se que ha pouca alteracdo nas estruturas
referentes aos pontos B e C, para retirar escala de cinza é
necessario a desativagdo do filtro, permitido que existam
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elementos adjacentes com valores de pseudo-densidade préximos
de zero e um. Entre o ponto C e D a penalizacdo p é mantida
igual a 3 e o filtro é desligado, observa-se nesta etapa uma queda
significativa da fungéo objetivo devido a retirada dos elementos
cinza que possuem sua rigidez penalizada. O resultado final é
apresentado na Figura 16,
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Figura 16. Estrutura obtida na instante representado pelo ponto C, no processo iterativo.

Apresentada a capacidade do Método da Continuacdo em
methorar a qualidade do resultado final sera discutido agora a
influéncia da forga Pe€so na solugdo obtida. Para tanto foram
sintetizadas quatro estruturas com diferentes relagdes entre forgca
peso do dominio fixo estendido devido a aceleragdo da gravidade
e a forga externa.

Inicialmente é apresentada na Figura 17 a estrutura 6tima tal
que a aceleragédo da gravidade geére um carregamento igual a dez
vezes a carga externa aplicada a estrutura. Em um caso pratico
essa situagdo pode existir em um componente que sofre grande
aceleragbes porem suporta uma carga ndo muito grande,
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Figura 17. Estrutura obtida com o peso proprio do dominio fixo estendido igual a 10 vezes
forca externa aplicada.

Observa-se nesse resultado que 0 método concentra
material na regiéo préxima ao engaste, como era de se esperar,
minimizando assim o momento fletor exercido pelo peso préprio

da estrutura.

A figuras 18 e 19 apresentam outras relagdes de magnitude
entre forga peso e carregamento externo.

E Illllll============IllllIlllllllll.lllllllllll.l

Figura 18. Estrutura obtida com o peso proprio do domfnio fixo estendido igual a 2 vezes
forca externa aplicada.
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Figura 19. Estrutura obtida com o peso prdprio do dominio fixo estendido igual a forga
externa aplicada.

A titulo de comparacao a Figura 20 apresenta o resultado
desconsiderando o peso proprio da estrutura.
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Figura 20. Estrutura obtida apenas com a aplicagéo da forga externa.

Com os resultados acima apresentado, foi possivel validar o
software uma vez que estes se apresentaram similar aos da
referéncia [{1] bem como adquirir um sentimento melhor do
problema de OT considerando Peso proprio. Assim partiu-se para
resolver um problema de carater pratico, o cubo do rotor de uma
turbina a gas.
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3.2 Rotor de uma turbina a gas

O problema de projeto de um cubo de rotor de uma turbina a

gas foi extraido do artigo da referéncia [8], onde o problema é
tratado utilizando métodos evolucionarios de otimizacgao.

Conforme apresentado nesse artigo ao se projetar um rotor
de uma turbina a gas deve-se analisar a resposta da estrutura
frente a trés tipos basicos de carregamento, que siao eles carga
térmica, forgas centrifuga devido a alta rotacao e forgas externas
aplicadas devido ao acoplamento cubo eixo e a interagdo p4
fluido. As principais respostas a serem analisadas sdo: a
distribui¢do de tensdo na estrutura e sua deformagdo. Outro fator
de grande importancia no projeto desse tipo de componente é sua
massa, pode se dizer que a reducdo de massa é o principal
objetivo no projeto de rotores de turbinas a gas [8].

No artigo o problema de otimizacéo é formulado como:
Minimizar a flexibilidade e/ou a massa

Tal que: Restrigdes geométricas e de tensio fossem
atendidas.

Nesse trabalho ndo foi considerada a tensdo como restrigao
do problema, entretanto quando se usa a flexibilidade como
fungcdo objetivo & provado matematicamente que as tensdes
medias da estrutura tendem a diminuir, mas néo é garantido que a
tensdo local nédo atingirda um dado valor,

Primeiro passo para a sintese da estrutura por OT é a
definicAo do dominio fixo estendido e do carregamento da
estrutura.

De modo a adaptar o problema para o estado plano de
tensao foi proposto o dominio fixo estendido apresentado na
Figura 21, onde o centro do cubo & fixo e a carga das pas é
distribuida ao cubo apenas em quatro pontos da circunferéncia,
foram consideradas também forcas tangenciais de mesma
magnitude que as forgas radiais de modo a simular o torque
gerado pelas pés.
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Figura 21. Dominio fixo estendido e condigBes de contorno para o cubo do rotor de uma
turbina a gas.

Para este problema foram geradas duas familias de
resultados, sendo uma com restricdo de volume em 50% e outra
com 30% do volume inicial.

Com a restricdo de 30% foram feitas sinteses com malhas
de diferentes tamanhos. Na figuras que seguem & possivel
observar os resultados obtidos.
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Malha grosseira (2500 Malha refinada (3600
elementos) Elementos)

Forgas externas

Forgcas externas + Forca
centrifuga 20.000 rpm

Figura 22. Cubo do rotor de uma turbina a gas, resultados obtidos com restricdo de volume
igual a 30%

Para avaliar a influéncia da rotagcado foi sintetizada uma
estrutura com 30% de restricdo de volume e forca centrifuga
referente a rotacdo de 50.000 rem, o resultado esta abaixo
apresentado.
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Figura 23. Estrutura obtida com 30% de restricdo de volume e rotagéo igual a 50.000 rpm

A partir desses resultados podemos verificar que a
discretizacdo da malha tem influéncia no resultado obtido como
se observa na Figura 22 os resultados obtidos com a forca
centrifuga apresentam diferenga significativa entre a malha
grosseira e a refinada. A questdo de dependéncia da malha é um
€ um fato que vem sendo discutido na literatura especifica a
algum tempo, e ndo constitui exatamente um problema do MOT,
mas apenas um caracteristica que pode ser contornada utilizando
filtros.

Outro ponto observado é a influéncia da forga centrifuga no
resuitado obtido, como era de se esperar.

Dessa forma ao se otimizar uma estrutura com forcas
dependentes da massa é importante que a relacdo de magnitude
entre estas forgcas e as forgas externas representem com precisio
0S carregamentos aos quais a estrutura estara realmente
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submetida, pois se observa uma razoavel sensibilidade da
geometria em relagdo a forgas inerciais.

Em todos estes resuitados a otimizacdo convergiu e a
restricdo de volume n&o foi violada. Abaixo é apresentado um o
grafico de uma das sinteses, apenas para ilustrar a forma geral
das curvas de convergéncia.
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Figura 24. Curva de convergéncia tipica do problema de sintese do rotor com restricdo de
30%.

As curvas de convergéncia da maioria das sinteses do cubo
da turbina a gas apresentam o comportamento observado na
Figura 24, As descontinuidades da fungdo objetivo se devem ao
fato do método da continuidade ser utilizado. Como se pode
observar ha trés trechos suaves, um para cada valor de
penalizagdo p. As descontinuidades ocorrem devido a alteracdo

do valor de p, que ao se elevar penaliza os elementos de

pseudo-densidade intermediaria aumentando a flexibilidade da
estrutura.

A ultima alteracdo de parametro do método da continuidade
€ apenas a desativacdo do filtro, no grafico da Figura 24,
observa-se uma descontinuidade na derivada da fiexibilidade, em
torno da iteragdo 80, isto ocorre pois com a desativacido do filtro
€ permitido que os elementos proximos a estrutura tenha suas
pseudo-densidades diminuidas, criando uma variagdo brusca de
pseudo densidade, porém a funcéo objetivo é minimizada mais
rapidamente.

Os resultados obtidos com a restricdo de 50% do volume
serao abaixo apresentados.
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Forca externa Forcas externas + Forca
centrifuga 20.000 rpm

Figura 25 Cubo do rotor de uma turbina a gés resultados obtidos com restricdo de volume
igual & 50%

Os resultados obtidos para com a restricdo de volume igual
a 50% apresentam, a mesma tendéncia que o problema com
restricdo de 30%, como que era de se esperar.

Com estes resultados, fica demonstrado que a aplicacdo do
MOT em um caso pratico é viavel.

4 Conclusao

Neste trabalho foi apresentado o Método de Otimizacao
Topoldgica aplicado ao projeto de estruturas rotativas

A formulagdo considerando forcas inerciais foi apresentada
e implementada.

Foi discutida a importancia dessa formulacdo no projeto de
componentes mecanicos de maquinas rotativas que operam em
alta velocidade, e a influéncia dessas consideragdes tanto no
resultado obtido como no proprio MOT.
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O software desenvolvido nesse trabalho se mostrou robusto
e rapido, capaz de sintetizar estruturas cujo dominio fixo
estendido possui malhas relativamente grandes, de até 4000
elementos, em um tempo de no maximo 4 horas em um
computador Pentiun 4 intel.

Esse trabalho apesar de seu interesse mais académico, de
desenvolvimento e validagdo do Meétodo de Otimizacgéo
Topoldgica, ndo deixou de lado a visdo pratica de projeto de
engenharia, e por se tratar de um projeto de formatura, esteve
Sempre preocupado com a viabilidade técnica,

A viabilidade técnica da utilizacdo do MOT no meio industrial
se traduz em obter resultados de boa qualidade em tempo habil.

Um probiema de carater pratico foi resoivido, a despeito das
simplificagbes, uma vez que néo ha grande familiaridade com o
problema, o método se mostrou capaz de fornecer solucodes
estruturais interessantes.

Como continuagcdo desse trabalho na 4area de projeto de
rotores de turbina a gas, propde-se, de modo a tornar o software
mais préximo do problema real, a alteracdo do médulo de
elementos finitos de modo a sintetizar estruturas axissimétricas.
Tal alteragdo nao acarreta grandes altera¢gdes no Software, logo é
de facil implementag¢ao, porém os resultados obtidos podem ser
facilmente comparados com outros resultados presentes na
literatura.

Este trabalho deixa para as gerag¢des futuras um software
capaz de atender a problemas de projeto de estruturas rotativas
auxiliando, dessa forma, na disseminacdo dos métodos de
otimizagdo entre os alunos da Escola Politécnica e outros
interessados.
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6 Anexos

6.1 Anexo A
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#inciude < stdio.h>
#include < malloc.h>
#include <sidlib.h>
#include <math.h>
#include <string.h>
#include "nrutil.h"
/f#include "func_rl.h"

#define Nome "Vibal_fi05_f0_gl1_1564 v30"
#define Caminho ""

#define Entrada Caminho""Nome".txt" / *input*/

#define SaidaP1 Caminho""Nome" P1.ans" [*output*/
#define SaidaP2 Caminho""Nome" _P2.ans" *output*/
#define SaidaP3 Caminho""Nome"_P3.ans" [*output*/
#define SaidaP4 Caminho""Nome"_Filtro.ans" *output*/
#define SaidaP5 Caminho""Nome" Cont.ans" /*output*/
#define argANSYS Caminho""Nome" Final.ans” output*/
#define argAux Caminho""Nome" Aux.txt" *output®/
#define arqMATLAB ~ Caminho”"Nome".m" /*output*/
#define arqghist Caminho""Nome".out" /*output*/

#define RAIQ 0.005
#define FracVol 0.3

#define ITERTOL 0.5e-3
#define MAXITER 400

#define THRESH 1.0e-12
#define PT 3.1415192

/! Valores de Filtro
#define minf 0.95
#define msup 1.05

#define mllower 0.03
#define mlupper 0.07

// Limites da pseudo-densidade
#define ZERO 1.0e-3
#define HUM 1

// Defini?es do linbcg
#define TOL 1.0e-7
#define ITOL 1

#define ITMAX 500
#define TAM 150
#define NMAX 1000000

extern void dusrmt_();
extern void dsplp ();



void output(char *arqANS, int M, int N, int **conect, double **coord, double *xmax, double
*xmin, double *xold);

void nrerror(char error_text[]);

void dsprsin(double **a, unsigned long n, double thresh, unsigned long nmax, double sa[],
unsigned long ija[1);

void linbcg(unsigned long n, double b[], double x[], int itol, double tol, int itmax, int *iter,
double *err);

void simplx (float **a, int m, int n, int m1, int m2, int m3, int *icase, int izrov[], int iposv[]);
void filter(int M, int N, fioat **coord, int **conect, double *h, double *ilt_b, float radius);
double dist(float *xei, float *yei, float *xej, float *yej);

double size_elem(float *xe, float *ye);

void AuxMatF(double *xe, double *ye, double s, double t, double *det] , double *N);

void AuxMat(double *xe, double *ye, double s, double t, double *det] , double *dNdx, double
*dNdy);

void AuxMatV(double *xe, double *ye, double s, double t, double *detl);

void Ke(double *xe, double *ye, double E, double v, double *Kel,double ro, double p)

void Fe(double *xe,double*ye,double ro_elem,double g X,double g_y,double omg_x,double
omg_y,double omg_z,double *Fel, double ro, double p);

double Vol(double *xe,double*ye, double ro, double Ph

// VARIAVEIS GLOBAIS

unsigned long *ija;
double *sa;

void main () {

//VARIAVEIS AUXILIARES DE LEITURA DE DADOS E CONTROLE DE LOOP
int i, j, k, count, iter, size, ELE:;

int d2, 2, compara, q[8];

int b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, 10, dofl, dof2, dof3, doi4;

unsigned long i, jj;

char *temp, aux[15], d1[5], d3[5], el, e2, e3;

char f1[5], f3[5], f4[5], f6, £7, £8, c1[14], c2[14], ¢3[15], c4f5], c5, c6[5], c7[5];
char gi[15], g2[10], g3[5], g4[5], Saida[50];

float a4, a5, f5;

doubie teste, dv;

FILE *Auxiliar, *arquivo, *historiza;

FILE *Entr, *arg3;

HVARIAVEI DO MEF

int **conect, **spcl, **ID, **LM, M, N;

double **coord, **loada3, *fb, *fbext;

double *Kel, **K, *ye, *xe, *ml;

double g x, g y, omg_x, omg _y, omg_z, ni, E, real_dens;
double *ub, *bf, *Fel, err ;

unsigned long ksize;

{IVARIAVEIS DO MOT

double *xmin, *xmax, *xnew, *xold, *xlower, *xupper, *area; // *xupper, *xlower,,
*xo0ld, ;

float x0, Vfrac;

double *compliancia, *difer, *volume, *gradF, penalK, penalV ,penalF, Vol 0, Vol 1;
/1 *objetivo, ,



int it, opcao, filter en, itcontrole;

double *ube, tempmat[8], dcompl, didensF, dfdenskK:

double *signl, *sign2, *sign3, *filt_xupper, *filt_xlower, radius, complianciaold:
int maxiterP1, maxiterP2, maxiterP3, maxiterFiltr, maxiterCont;

/* Variaveis necessarias para o dsplp */

int nvars,mrelas;

double *prgopt, *dattrv, *primal, *duals, *work, *bl, *bu, *COsts;
int *ind,*ibasis, *iwork;

int wliw,info,lamat,lbm;

111117 ALOCA?O DE MEMORIA/HIHIHITIH I I

sa = dvector(1,NMAX);
ija = lvector(1, NMAX);

I INICIO DA LEITURA DE DADOSHTTHIHI TN
Auxiliar = fopen(argAux,"w"); /1 Aberturz do arquivo
auxiliar para Debbug

Entr =fopen(Entrada, "r"); /1 Abre o arquivo
de entrada
temp = (char *)malloc(TAM*sizeof(char }); /1 A leira ?sempre feita no arquivo

temp
TR G L 11
/* VALOR DE "N" (NUMERO DE NOS) */
compara = -1;
while ( compara > 0 || compara < 0) {

fgets(temp, TAM, Entr);
compara = strncmp( temp, "NUMOFF,NODE,", 12);
}

sscanf( temp, "%s %d", cl, &N ); /*le a string do temp e atribui a N como inteiro*/

/I IMPRIME AUXILIAR
iprintf(Auxiliar," Numero de ns = %d \n",N);

L
/* VALOR DE "M" (NUMERO DE ELEMENTOS) */

fgets(temp, TAM, Entr);
sscanf( temp, "%s %d”, c2, &M );

// IMPRIME AUXILIAR
fprintf(Auxiliar,” Numero de elementos = %d \n",M);

I N 1111514110
/* VETOR "COORD" (COORDENADAS DOS NOS) */

// IMPRIME AUXILIAR



/////I/////////////////f/f/////////////////////////f."/////////////l////////////////////
/* VETOR "CONECT" (GRAUS DE LIBERDADE DOS NOS) #/
conect = imatrix(1,M,1,4);

compara = -];
while ( compara > 0 || compara < 0) {

fgets(temp, TAM, Entr);
compara = strncmp( temp, "(19i8)", 6);

}
k=1;

while (k< =M){
fgets(temp, TAM, Entr);
1 printf(" %s\n", temp);
sscanf( temp, "%d %d %d %d %d %d %d %d %d %d %d %d %d %d %d

%d",
&b0, &bl, &b2, &b3, &b4, &bS5, &b6, &b7, &b8, &b9, &b10),

&dofl, &dof2,
&dof3, &dofd ),

conectfk]fi] = dofl;
conect[k][2] = dof2;
conect[k][3] = dof3;
conect[k]f4] = dof4;
k++:

}
//l/////////f//////.’/////f//////H////////l//////////////////////////////////////’//////

/* MODULO DE ELASTICIDADE "E" #/

compara = -I;
while ( compara > 0 || compara < 0) §

fgets(temp, TAM, Entr);
compara = strncmp( temp, "MPDATA,R5.0, 1,EX", 17},

sscanf( temp, "%s %s %c %s %s Blf", c3, c4, &3, c6, c?, &E ),

P BIHTHTTTEII
/* DENSIDADE "real_dens" */

compara = -1,
while ( compara > 0 || compara < 0) {

fgets(temp, TAM, Entr);
compara = strncmp( temp, "MPDATA,R5.0, 1,DENS,", 20);

sscanf( temp, "%s %s %s %s %", gl, g2, 23, g4, &real _dens );



/////////////////////////////////////////////f///////////////////////l/////////////f'///
/* COEFICIENTE DE POISSON "NI" #/

compara = -1;
while ( compara > 0 | | compara < 0) {

fgets(temp, TAM, Entr);
compara = strncmp( temp, "MPDATA ,R5.0, 1,PRXY,", 20);

}
sscanf( temp, "%s %s %s %s %", gl, g2, g3, g4, &ni );

/{ IMPRIME AUXILIAR
fprintf(Auxiliar, "Coeficiente de Poisson %If \n",ni);

/////////////////I///////////////////////////////////////l////////////////////////////f
/* ACELERACAOQ DA GRAVIDADE */

compara = -1;

while ( compara > 0 [| compara < 0) {
feets(temp, TAM, Entr);
compara = strncmp( temp, "ACEL,", 5):

sscanf( temp, "%s %If %s %If %s %s”, gl, &g x, g3, &g v, g4, gl);

/{ IMPRIME AUXILIAR
fprintf(Auxiliar, "Aceleragdo da gravidade x = %If sy =%1U\n", g x, g y)

////////////l////////////////////’///////////////////////////////////////////H///H////
/* ROTACAO DA ESTRUTURA */

compara = -1;

while ( compara > 0 || compara < 0y {
fgets(temp, TAM, Entr):
compara = strnemp( temp, "OMEGA, ", 6);

}
sscanf( temp, "%s %If %s %If %s %If %s %s", gl, &omg x, g2 ,&omg_y, g3,

&omg_z, g4, gl);

/I IMPRIME AUXILIAR
fprintf(Auxiliar, "Velocidade angular de rotacao Omega x = %If ; Omega y = % If ;
Omega z = % If \n", omg_x, omg_y, omg_z);

///////////////////f////////////////f'////////////////////H////////////////////////////
//////////////////l///!l////////////////I////////H////////Ih‘////////////fl///l///////

/* MATRIZ DE RESTRI?ES "SPC1" (GRAUS DE LIBERDADE FIX(OS) */
spcl = imatrix(1,N,1,2);
for (k=1; k< =N; k+ +) {

spel[k][1]=1;
spel[k][2]=1;



T e
# MATRIZ DE FOR?S "LOADA3" */

loada3 =dmatrix(1,N,1,2);

for (k=1; k<=N; k++) {

loada3[k][1]=0;
loada3{k][2]=0;

HITHTHTHTHHHLEITURA DOS DADOS AUXILIARES/ /1T

Vfrac = FracVol; R L e e,
x0=Vfrac; L T R
radius=RAIQ; e
maxiterP1=10; T e T T T I T e ags
maxiterP2 ==10; T T L I T
maxiterP3 =200; THEEEHTE T L ER T L L
maxiterFiltr =30, R e e i
maxiterCont = 100; L T ]
penalK=1; T T e
penalV=1;

penalF=1;

filter en=0; HIHEHET L LT

HTHEEEHT T T IMAATRIZES FIXAS/HHIIT T
/* VETOR "ID" (MATRIZ DE DOF's NAQ RESTRITOS ENUMERADOS) #/

ID =imatrix(1,N,1,2);
count=1;

for (i=1; i<=N; i+ +){
for (j=1;j<=2;j4 +){

if (spe1[ilfj]= =0) {
D[] =0;

else {
ID[i}fj]=count;
count+ +;



l//l////////////f//l/l/l////////////////l/l///l/////l/////////H///////////H///H////
/* TAMANHO "ksize" DA MATRIZ REDUZIDA */
ksize = count-1;

////////////l////////////////////////////////////////l///////////////////////////////

/* VETOR DE CARGAS "FB" */

tb=dvector(1,ksize);
thext=dvector(1,ksize);

for (ii=1; ii < =ksize; i+ +) {

fblii]=0;

thext[ii]=0;
}
for (i=1; i< =N; i+ +) {

for(j=1;j<=2;j++)

if (ID[i][j)!=0) {
thext[ID[i][j]1] =loada3[il{j];

/////////////////////////////////////////////////////////////////////////////////////
/* VETOR "LM" #/
LM=imatrix(1,M,1,8);

for (i=1; i<=M; i+ +) for (=L j<=4;j++) LM{i})j1=0;/*para zerar o vetor
inicial*/

for (i=1; i< =M; i++) {
for j=1; j<=4;j++) {
LMIil[2%G-1)+1] =ID[conect[i][j11[1];
LMIiI[2*(-1)+ 2] =1 D[conect[i1[11[21;

THIHIHTTH 1 HHTALOCA0 DE MEMLA/ I 11



xmin = dvector(1,M);
xmax = dvector(1,M);
xnew = dvector(1,M);
xold = dvector(1,M);
xXupper = dvector(1,M);
xlower = dvector(1,M);
signl = dvector(1,M);
sign2 = dvector(l,M);
sign3 = dvector(1,M);
ml = dvector(1,M);
area = dvecior(1,M);

volume =dvector(1, MAXITER);
compliancia =dvector(1, MAXITER);
difer =dvector(1, MAXITER);

bf = dvector(1,ksize);

ub= dvector(1,ksize);

ube = dvector(1,8);
gradF=dvector(1,M);
K=dmatrix(1,ksize,1,ksize);

xe = (double *)malloc(4*sizeof(double)):
ye = (double *)malloc(4*sizeof(double));
Kel = (double *)malloc(64*sizeof(double )):
Fel = {double *)malloc(8*sizeof(double ));

filt_xupper = (double *)mailoc(M*sizeof(double ));
filt_xlower = (double *)malloc(M*sizeof(double )):

//nmeros de v}aveis (nvars) e nmero de rstri?es (mrelas)
nvars = M;

mrelas = 1;

lamat=4*nvars+7;

Ibm=8*mrelas;

Iw=4*nvars +8*mrelas+lamat+Ibm;

liw=nvars + 11*mrelas +lamat+2*lbm;

//Dimensiona arrays que serao utilizados aqui
bl=dvector(l,mrelas+nvars); //restri?es inferiores
bu=dvector(1,mrelas+nvars): //restri?es superiores
prgopt=dvector(1,2);

datirv =dvector(1,(2*mrelas*nvars) + 1 +nvars):

ind =ivector(l,mrelas+nvars);
primal=dvector(1,mrelas +nvars);
duals=dvector(1,mrelas +nvars);
ibasis=ivector(1,mrelas+nvars);

costs = dvector(1,M);

work=dvector(1,lw);

iwork=ivector(1,liw);

1] INICIALIZATO DOS VETORES DO LOOP/ I

for (i=1; i< =MAXITER; i+ +) {
difer[i]=1;



for (i=1; i< =MAXITER; i+ +) {
volume[il=0;
}

for (i=1; i< =MAXITER; i+ +) {
compliancia[i]=0;

//vetor das densidades iniciais

for (i=1; i< =M, i++4) {
xminfi]=ZERO;
xmax[i]=HUM;

}

for (i=1; i<=M; i++) {
xnew[i]=x0;

/finicializa?o das vari?eis auxiliares para ¢?culo dos limites
/fmveis
for (i=1; i< =M; i+ +) {

signl[i] = 1;
sign2[i] = 1;
sign3[i] = 1:

ml[i] = mlupper;

}

/! Deslocamentos iniciais

for (ii=1; ii < =ksize; fi++){
ublii]=0.0;

}

// Calculo do Volume Inicial

Vol 0=0.0;
for(k=1; k< =M; k++) {

for(i = 0;1 < 4; i++){
xe[i] = coord[conect[k][i+1]][1];
ye[i] = coord[conect[k][i+ 1]][2];

arealk] = Vol(xe, ye, 1,1);
Vol 0 = Vol 0 + Vol(xe, ye, 1,1);

}

Vol_1=Vol_0*Vfrac;

//Normaliza?o do volume
for(k=1; k< =M; k++) {
area[k] =arealk]/Vol 0;



printf("Volume total %f \n", Vol 0);
printf("Volume maximo final %f\n", Vol_1);

historia = fopen(arghist, "w");
I Escrita do cabe?Tho do Arquivo de Saida/////ii1111111H1H1
fprintf(historia, "Arquivo de Saida: %s \n",argANSYS):

fprintfhistoria, "\nOPCOES DA OTIMIZACAO\n");

T H1ANICIO DO LOOP DE OTIMIZAO/ /11T

it=0;

itcontrole =0;

opcao = 1;

printf("Inicio da Otimizaeo");
while (opcao) {

it = it+;
itcontrole =jtcontrole + 1;

fprintfchistoria, "\n\nlteracao = %d \n",it);
printf("\n\nm\niITERACAO %d \n", it);

//atribui a xold o valor de xnew
for (i=1; i< =M; i+ +){
xold[i] = xnewli];

for (ii=1; ii < =ksize; ii++) {
fb[ii] = thext[ii];

for (ii=1; ii < =ksize; ii++) {
for (i=1; i< =ksize; i+ +) {
K[ii][i] =0.0;

}

TN LOOP POR ELEMENTOS PARA O PROBLEMA K.U=F
T
for(k=1; k< =M; k++) {

111111111 CRIA MATRIZ DE RIGIDEZ LOCAL DO
ELEMENTO K/
for(i = 0;i < 4;i++)
xe[i] = coord[conect[k][i+ 1Ti[1];
ye[i] = coord{conect[k][i+ IT]{2];



Ke(xe,ye,E,ni,Kel,xold[k],penalK);
TN HHIMATRIZ DE RIGIDEZ GLOBAL
G ]
for( = 1;j <=8;j++)
ql-11 = LMIK][j3;

for (i=1;i<=8; i++) {
if (qi-1]'=0) {
forj=1;j<=8 j++){
if (q[j-1]1=0) {
Klq[i-1]1[qlj-111 = K[q[i-
1{q(5-111 + Kel[(i-1)*8+(-1));

}

)
THUTTNNI1] CRIA VETOR DE FOR? LOCAL DO

ELEMENTO K /1111111111117
/1 Caleulo da forca no n

Fe(xe,ye,real_dens,g x.g _y.omg_X.omg_y,omg_z,Fel,xold[k],penalF);
1111/ ICOMPOEM O VETOR DE FOR?
GLOBAL/HTLEATHIH
for (i=0; i< =7; i+ +) {
if (qfi]!=0) {
folqlill =fb[qli]]+Fel[i];

/{ Calcula o volume total da estrutura
volumel[it] = volume[it]+ Vol{xe, ve, xold[k],penalV);
MHIHIEHFIM DO LOOP POR ELEMENTOS PARA O
PROBLEMA K. U=F /{11111

printf("Volume %f \n", volume[it]);
printf("Volume / Volume Total %f \n", volumel[it}/Vol 0);

fprintf(historia, "Volume = %f \n",volumelit]);

HHTTN71]/CALCULO DO DESLOCAMENTOS
UB/HTHTTH I

//montagem da mairiz esparsa

I for(i=1;i < =NMAX;i+ +){
! ija[i]=0;

I safi]=0.0;

/!

dsprsin(K, ksize, THRESH, NMAX, sa, ija);

//1esolu?o do sistema K.UB = fb

iter=0;

err=0;

linbcg(ksize, fb, ub, ITOL, TOL, ITMAX, &iter, &err);

fprintf(historia, “Solucao do sistema linear: iter: %d, err: %f\n", iter,err);



P HICALCULQ DE
FLEXIBILIDADE/ /I

compliancia[it] =0.0;

for (ii=1; ii < =ksize; ii+ +) compliancia[it] = compliancia[it] +
ubfii]*fb[ii];

printf("Flexibilidade %e \n",complianciafit]):
fprintfthistoria, "Flexibilidade = %e \n",compliancia[it]);

I IGRADIENTE DA FUNCAO
OBIETIVO/ T

for (k=1; k< =M; k+ +) gradF[k] =0;
for (k=1; k< =M; k++) {

for (i=0; i<8; i++) {
tempmat[i]=0;

forG = 1;j <=8; j++){
ube(j]=0.0;

flextrai de "ub" o vetor de deslocamento de cada elemento
for(j = 1;j <=8, j++){
If(LMIK][j1 = 0){
ube[j] =ub[LMIkI[j]};

}

/lcaleula a derivada da compliancia de cada elemento

for(i = 0;1 < 4; i+ +){
xe[i] = coord[conect[K][i+ 17][1];
yeli] = coord[conect{k][i+1]1[2]:

}

Ke(xe,ye,E,ni,Kel, 1,1);
Fe(xe,ye,real_dens,g_x, g y.omg x.omg y,omg_zFel,1,1);

dfdensF = penalF*pow(xold[k],(penalF-1));
dfdensK = penalK*pow(xold[k],(penalK-1));

{// Calculo do gradiente
for (j=0; j<8; j++) {
for (i=0; i<8; i++) {
temprmnat[j]=tempmat{j] + ube[i+ 1]*Kel[(j*8)+i];
}

}

dcompl ={);

for j=0; j<8; j++}{



dcompl = dcompl + 2 * dfdensF * ube[j+1] * Felfj] + -
dfdensK * ube[+ 1]*tempmat{j];

gradF[k] = dcompl;

i dv=0.01;
HELIEEEE L T IROTIN A LRI T 1

for (i=1; i<=M; i++) §

if (signlfi] > 0 && sign2[i] <= 0 && sign3[i] > = 0)
ml[i] = ml{i] * minf;

else if (signl{i] < 0 && sign2[i] > = 0 && sign3li] <=0)
mlfi] = mi[i] * minf;

else
ml[i] = ml{i} * msup;

if (ml[i] > mlupper)
ml[i] = mlupper;

if (mlfi] < mllower)
mifi] = milower;

xlowerl[i]l = xold[i] * (1 - ml[i]);
xupper[i] = xold[i] * (1 + mifi]);

if (xlower[i] < xmin[i]) xlower[i] = xminfi];
if (xupper[i] > xmax[il) xupper[i] = xmax[i];

}
if (filter_en) {

filter(M, N, coord, conect, Xupper, filt_xupper, radius);
filter(M, N, coord, conect, xlower, filt_xlower, radius);

N1 TIROTINA LRI DR
////////////////////////////////I’/////////////////////////////////////////////////////

//Prepara?o dos dados para DSPLP (Programa?®o Linear)

/* Rotina "DSPLP" que roda o LP em fortran

Recebe:

nvars  -> numero de variaveis de projeto

mrelas -> numero de resiricoes

flag -> minimizacao (0) ou maximizacao (D

bue bl -> limites moveis superior ¢ inferior (arrays com nvars
posicoes)

costs -> derivadas da funcao objetivo

Retorna:
info -> flag de sucesso do LP



densnew ->> nova distribuicao das variaveis de projeto
*/

flcopia as derivadas de "delF" para "costs" (input da rotina fortran)

for (i=1; i<=M: i++) {
costs[i] = gradFli];

{/Copia as informacoes de restricao lateral
if (filter_en){
for (i=1;i< =nvars;i+ +) {
bulil=filt_xupper[i-1];
bl[i]=filt_xlower[i-1];

indfi]=3:
}
else{
for (i=1i< =nvars;i++) {
bu(i]=xupper{i};
bl[i]=xlower[i];
ind[i]=3;
}
}

//Significa que a variavel e maior ou igual ao limite inferior e menor ou igual

{Mlimite superior

/! Copia o vetor com os valores das restricoes (b)
/1 Aqui estamos considerando Ax < =b
for (k=1;k< =mrelas;k+ +){

bu[nvars+k] = Vfrac;

ind[nvars+k] = 2;

i
//Copia dos valores de A para o vetor Ax< =b
count=1;

for (i=1;i< =nvars;i++) {
dattrv[count] =-i;
datirv{count+1]=1;
dattrv[count + 2] =areal[i];
count=count+3;

dattrv[count] =0;
//Minimiza?o sem op?es

prgopt[1]=1;
prgopt[2]=1;

//Dados auxiliares para dspip



/finicializa?o da variavel info
info=1;
//Chama o otimizador

dsplp_( dusrmt_,&mrelas, &nvars, &costs[1], &prgopt[1], &dattrv[1],
&bl[1], &bu[1], &ind[1], &info, &primai[1], &duals[1],
&ibasis[1], &work[1], &iw, &iwork[1], &liw);

//Resultado da otimiza?o (info>0 -> OK)

if(info > =0){
printf{ "Otimizacao OX\n");

else
printf("Otimizacao Falhou\n");

{{Copiza o0s valores de saida do otimizador

if(info > =0){

for (i=1;i < =nvars;i++)
xnewli]=primal[i];

}

WAL H1FICONTROLE DO LOOP DE
OTIMIZAQ/ I

/7 Controle dos limites moveis
for (i=1; i< =M; i++) {

sign3[i] = sign2[i];
sign2fi] = signl[i];
signl[i] = xnewli] - xold[i];

}

== 1){
complianciaold = compliancia[it];

)

else {
difer[it] = fabs((compliancia[it]-complianciacld)/complianciaold);
complianciaold = compliancia[it-1];

}

printf("\niteracao %d\t obj: %e\t vol: %f\t difer: %f\n", it, compliancia[it],

volume[it], difer[it]);
printf("Status: PenalK %f\t PenalF: %fit PenalV: %f\t Filtro: %d\n", penalK,

penalF, penalV, filter_en);

if (it> 1){



if (diferfit] < =ITERTOL){
if(itcontrole < maxiterP1){
itcontrole=maxiterP1;
fprintf(historia, "Convergencia: Diferenca normalizada
= %f \n" difer[it]);
printf{"Convergencia: Diferenca normalizada = %f
\n" difer[it]):
}
else if (itcontrole < maxiterP2 +maxiterP1){
itcontrole =maxiterP2 + maxiterP1;
fprintf(historia, "Convergencia: Diferenca normalizada
= %f \n",difer[it]);
printf("Convergencia: Diferenca normalizada = %f
\n",difer[it]);

else if(itcontrole < maxiterP3 +maxiterP2 +maxiterP1){
itcontrole =maxiterP3 + maxiterP2 -+ maxiterP1;
fprintf(historia, "Convergencia: Diferenca normalizada
= %f\n",difer[it]);
printf("Convergencia: Diferenca normalizada = %f
\n", difer[it]);
}
else
if(itcontrole < maxiterFiltr + maxiterP3 + maxiterP2 + maxiterP1 H

/fitcontrole =maxiterFiltr + maxiterP3 + maxiterP2 + maxiterP1;
fprintf(historia, "Retirando instabilidade de tabuleiro
\n");
fprintfthistoria, "Convergencia; Diferenca normalizada
= %f \n" difer[it]);
printf("Convergencia: Diferenca normalizada = %f
\n", difer[it]);
}
else
if(itcontrole < maxiterCont +maxiterFiltr + maxiterP3 + maxiterP2 4+ maxiterP1 H

itcontrole =maxiterCont+maxiterFiltr + maxiterP3 +maxiterP? + maxiterP1 ;
fprintf(historia, "Retirando escala de cinza \n");
fprintf(historia, "Convergencia: Diferenca normalizada
= %f \n" difer[it]);
printf("Convergencia: Diferenca normalizada = %f
\n", diferfit]);

}

if(itcontrole = =maxiterP1){

penalK=2;

penalF=2;

penalV=1;

filter en=0;

fprintf(historia,"MUDANCA DE STATUS: MODO DA
CONTINUACAO \n");

output(SaidaP},M,N,conect,coord, xmax, xmin, xold);

}

if(itcontrole = =maxiterP2 +maxiterP1){



penalK=3;

penalF=3;

penalV=1,

filter_en=0;

fprintf(historia,"MUDANCA DE STATUS: MODO DA
CONTINUACAO \n");

output(SaidaP2,M,N,conect,coord, xmax,xmin, xold);

if(itcontrole = =maxiterP3 + maxiterP2 + maxiterP1){

penalK=3;

penalvV=1;

penalF=3;

filter_en=0;

fprintfhistoria,"MUDANCA DE STATUS: MODO DA
CONTINUACAO \n");

output(SaidaP3,M,N, conect,coord, xmax,xmin, xold);

if(itcontrole = =maxiterFiltr +maxiterP3 + maxiterP2 +maxiterP1){
penalK=3;
penalV=1;
penalF =3;
filter_en=0;
fprintfChistoria, "MUDANCA DE STATUS: MODO DA

CONTINUACAO \n™);

output(SaidaP4,M,N,conect,coord, xmax,xmin, xold);

}

if(itcontrole = =maxiterCont +maxiterFiltr + maxiterP3 +maxiterP2 + maxiterP1){

opcao=0;
fprintf(historia,"FINAL DA OTIMIZACAO \n");
output(SaidaP5,M,N.conect,coord, xmax, xmin,xold);

H

3

if (it= =MAXITER){
opcao=0;

}

fclose(historia);
historia = fopen(arghist,"a");

}

R TFIM DO LOOP DE
OTIMIZAYO/IHITIHT T
// IMPRIME ARQUIVQ

fclose(historia);
it i HIGERA?O DOS VETORES PARA PLOTAGEM DE GRAFICOQS///HHTTIIHHT
T L T i

HHIIE T HPCRIATO DO ARQUIVO MATLAB/HITHIITIIH ]
T LTI L EE L L LT T L



/{Abre o arquivo em MATLAB

arquivo = fopen(arqMATLAB, "w");

//fun?o objetivo
fprintf(arquivo, "obj = [");

:vo MATLAB
/////////////////////////////////Hl///f///////////////f/'/////////////l//////////////////HHH

//fornecimento de dados para arquivo em ANSYS

arg3=fopen(arANSYS,"w™):
fprintf(arg3, "/CIEAR\n/TITLE, Modelo Otimizado\n/PREPT\nET, 1 »A42\nm\n");

fprintfarq3, "\nMP,EX, 1,1000aNUXY =0.3\n\n");
for (i=1; i<=N; i+ +) fprintf(arq3, "N, %d, %f, %f\n", i, coord[il[ 1], coord[i][2]);

fprintf(arqg3, "\n");
count=1;
for (i=1; i< =M; i++) {
fprintf(arg3, "REAL, %d\n", count):
fprintf(arq3, "E, %d, %d, %d, %d\n", conect[i][1], conect[i][2], conect[i)[3],
conect[i][4]);
count++;
h

fprintfiarq3, "\nFINISH™);
fclose(arg3);
fclose (Auxiliar); // fecha o arquivo auxiliar para debbug

HITHTTNTHTTTLIBERAO DE MEMMAM I
L

/Mibera?o de memria
free_dvector(xmin,1,M);

free_dvector(xmax,1,M);
free_dvector(xnew,1,M);



