

LUCAS AUGSTEN GALVÃO

São Paulo

2017

Desenvolvimento de um ambiente de simulação para o problema de dimensionamento do

time buffer no método DBR em ambiente flow shop genérico com produção MTO

LUCAS AUGSTEN GALVÃO

Trabalho de Formatura apresentado à Escola

Politécnica da Universidade de São Paulo para

obtenção do diploma de Engenheiro de Produção

São Paulo

2017

Desenvolvimento de um ambiente de simulação para o problema de dimensionamento do

time buffer no método DBR em ambiente flow shop genérico com produção MTO

LUCAS AUGSTEN GALVÃO

Trabalho de Formatura apresentado à Escola

Politécnica da Universidade de São Paulo para

obtenção do diploma de Engenheiro de Produção

Orientador: Prof. Dr. Marco Aurélio de Mesquita

São Paulo

2017

Desenvolvimento de um ambiente de simulação para o problema de dimensionamento do

time buffer no método DBR em ambiente flow shop genérico com produção MTO

Galvão, Lucas

Desenvolvimento de um ambiente de simulação para o

problema de dimensionamento do time buffer no método DBR em

ambiente flow shop genérico com produção MTO / L. Galvão -- São

Paulo, 2017.

136 p.

Trabalho de Formatura - Escola Politécnica da Universidade

de São Paulo. Departamento de Engenharia de Produção.

1.Controle da Produção 2.Simulação I.Universidade de São Paulo.

Escola Politécnica. Departamento de Engenharia de Produção II.t.

FICHA CATALOGRÁFICA

AGRADECIMENTOS

Primeiramente, dedico este trabalho aos meus pais e minha irmã por todo o apoio e carinho

sempre presentes durante estes anos, bem como pelos ensinamentos de vida. Também agradeço

por sempre se esforçarem para que eu tenha usufruído da melhor educação possível, o que me é e

sempre foi fonte de motivação.

Ao professor Marco Aurélio Mesquita, pela atenção, suporte e ensinamentos prestados para

o desenvolvimento e aperfeiçoamento deste trabalho.

Ao corpo docente, direção e demais funcionários da Universidade de São Paulo, por me

propiciar todas as oportunidades de aprendizagem e desenvolvimento que tive durante o período

de graduação.

E a todos que aqui não foram mencionados, mas fizeram parte da minha formação

profissional e acadêmica, meu profundo agradecimento.

“A ciência não é uma ilusão, mas seria uma

ilusão acreditar que poderemos encontrar

noutro lugar o que ela não nos pode dar.”

(Sigmund Freud)

RESUMO

O DBR (drum buffer and rope) é um método de controle da produção baseado na teoria das

restrições que busca explorar o gargalo de um sistema de produção de forma a evitar sua ociosidade

e maximizar a produtividade do sistema. O dimensionamento do time buffer é um dos grandes

desafios do DBR e pouca importância tem sido dada a este problema na literatura atual. Desta

maneira, o presente trabalho tem como objetivo central a elaboração de um ambiente de simulação

por eventos discretos que permita o estudo do problema do dimensionamento do time buffer na

aplicação do método de controle DBR. O estudo focou na simulação de um ambiente flow shop

genérico dentro da lógica de produção MTO (make-to-order) e buscou avaliar o impacto de certos

parâmetros do ambiente de simulação em conjunto com o time buffer em indicadores de

desempenho escolhidos. Para a realização deste trabalho, realizou-se uma extensa revisão

bibliográfica sobre o assunto, seguida pela concepção conceitual do modelo e desenvolvimento do

modelo de simulação de acordo com esta concepção. Após a etapa de testes para verificação, o

modelo foi utilizado para simular uma série de cenários. Os resultados mostraram que o

desempenho do DBR está diretamente atrelado a um correto dimensionamento do time buffer. Por

sua vez, este dimensionamento depende das características ou parâmetros do ambiente de

simulação. Desta maneira, a simulação por eventos discretos se mostrou uma ferramenta poderosa

na condução do dimensionamento do time buffer.

Palavras-chave: Controle da produção. Teoria das Restrições. DBR. Dimensionamento do time

buffer. Simulação por eventos discretos.

ABSTRACT

DBR (drum buffer and rope) is a production control technique based on the Theory of Constraints,

which explores the system’s bottleneck to avoid idleness and maximize the performance of the

production system. The determination of the time buffer size is a critical step in the DBR

application, but little attention has been given to this issue in the current scientific literature.

Therefore, the objective of the present study is the development of discrete events simulation

environment to support the study of the time buffer size determination in DBR application. The

study focused on the general flow shop routing configuration and MTO (make-to-order) strategy

to assess the influence of certain configuration parameters in connection with the time buffer size

over selected performance indicators. The methodology started with an extensive literature review

followed by the conceptual design of the simulation model and the operational model development.

After a verification period, the model was used to conduct a set of simulations with different

scenarios. The simulation output was extensively analyzed in order to draw conclusions. The

results showed that the DBR performance was directly related to the adjustment of the time buffer

size. In addition, the time buffer size determination depends on a series of system configuration

parameters. Thus, the discrete events simulation was found to be a powerful tool in the study of the

time buffer size determination.

Keywords: Production control. Theory of Constraints. DBR. Time buffer sizing. Discrete events

simulation.

LISTA DE FIGURAS

Figura 1 - Flow shop puro com 5 estágios ... 25

Figura 2 - Flow shop flexível com 5 estágios e 3 máquinas por estágio 26

Figura 3 - Flow shop genérico com 5 estágios com 3 máquinas por estágio e 3 padrões de fluxo 27

Figura 4 - Job shop puro com 5 estágios ... 27

Figura 5 - Job shop flexível com 5 estágios e 3 máquinas .. 28

Figura 6 - Assembly shop com 3 linhas ... 29

Figura 7 - Kanban de dois cartões ... 31

Figura 8 - Método ConWIP de controle da produção ... 33

Figura 9 - DBR em sistema com múltiplos laços .. 36

Figura 10 - Ilustração de DBR aplicado em Assembly Shop com produção MTS 38

Figura 11 - Componentes principais para desenvolvimento de um modelo de simulação 51

Figura 12 - Parâmetros de entrada do modelo de simulação (Inputs) ... 56

Figura 13 - Relação entre funções de sequenciamento do modelo de simulação 66

Figura 14 - Arquivos pertencentes ao modelo de simulação e interfaces 69

Figura 15 - Exemplo de output do modelo de simulação .. 70

Figura 16 - Funções do modelo computacional e suas interfaces ... 71

Figura 17 - Teste de verificação de probabilidade de passagem ... 74

Figura 18 - Funções de suporte do modelo de simulação .. 77

LISTA DE GRÁFICOS

Gráfico 1 - Percentual de jobs terminados para cenários 1, 2 e 3 .. 83

Gráfico 2 - Mean lead time para cenários 1, 2 e 3 .. 84

Gráfico 3 - Mean throughtput time para cenários 1, 2 e 3 ... 84

Gráfico 4 - Percentage tardy para cenários 1, 2 e 3 .. 84

Gráfico 5 - Mean tardiness para cenários 1, 2 e 3 ... 85

Gráfico 6 - Percentual de jobs terminados para cenários 4, 5 e 6 .. 86

Gráfico 7 - Mean lead time para cenários 4, 5 e 6 ... 86

Gráfico 8 - Mean throughtput time para cenários 4, 5 e 6 ... 87

Gráfico 9 - Percentage tardy para cenários 4, 5 e 6 .. 87

Gráfico 10 - Mean tardiness para cenários 4, 5 e 6 ... 87

Gráfico 11 - Percentual de jobs terminados para cenários 7, 8, 9 e 10 .. 90

Gráfico 12 - Mean lead time para cenários 7, 8, 9 e 10 ... 90

Gráfico 13 - Mean throughtput time para cenários 7, 8, 9 e 10 ... 91

Gráfico 14 - Percentage tardy para cenários 7, 8, 9 e 10 .. 91

Gráfico 15 - Mean tardiness para cenários 7, 8, 9 e 10 ... 91

Gráfico 16 - Percentual de jobs terminados para cenários 11, 12 e 13 .. 93

Gráfico 17 - Mean lead time para cenários 11, 12 e 13 ... 93

Gráfico 18 - Mean throughtput time para cenários 11, 12 e 13 ... 94

Gráfico 19 - Percentage tardy para cenários 11, 12 e 13 .. 94

Gráfico 20 - Mean tardiness para cenários 11, 12 e 13 ... 94

Gráfico 21 - Percentual de jobs terminados para cenários 14 e 15 .. 96

Gráfico 22 - Mean lead time para cenários 14 e 15 ... 96

Gráfico 23 - Mean throughtput time para cenários 14 e 15 ... 97

Gráfico 24 - Percentage tardy para cenários 14 e 15 .. 97

Gráfico 25 - Mean tardiness para cenários 14 e 15 ... 97

LISTA DE TABELAS

Tabela 1 - Principais características das estratégias de produção ... 24

Tabela 2 - Inputs gerais e de geração para cenário padrão .. 79

Tabela 3 - Inputs de estágios para cenário padrão ... 80

Tabela 4 - Razão entre tempos médios de geração e processamentos testados 80

Tabela 5 - Cenários testados para severidade do gargalo .. 81

Tabela 6 - Cenários com base nas regras de sequenciamento ... 81

Tabela 7 - Cenários com base na posição do estágio gargalo ... 82

Tabela 8 - Cenários com base no desvio padrão do tempo de processamento 82

Tabela 9 - Níveis de time buffer para teste de cada cenário .. 83

Tabela 10 - Média dos indicadores de desempenho obtidos para cenários 11, 12 e 13 95

LISTA DE ABREVIATURAS E SIGLAS

ATO Assemble to Order

ConWIP Constant Work in Process

CR Critical Ratio

DBR Drum Buffer Rope

EDD Earliest Due Date

ETO Engineer to Order

FIFO First In, First Out

LIFO Last In, First Out

LPT Longest Processing Time

LS Least Slack

LWQ Least Work Next Queue

MRP Material Requirements Planning

MTO Make to Order

MTS Make to Stock

PCP Programação e Controle da Produção

SKU Stock Keeping Unit

SPT Shortest Processing Time

ToC Theory of Constraints

WIP Work in Process

WLC Workload Control

SUMÁRIO

1. INTRODUÇÃO .. 15

1.1. Motivação ... 15

1.2. Objetivos ... 18

1.3. Estrutura do Trabalho ... 18

2. REVISÃO BIBLIOGRÁFICA .. 21

2.1. Estratégias de Produção .. 21

2.1.1. MTS (”make to stock”) ... 21

2.1.2. ATO (“assemble to order”) .. 22

2.1.3. MTO (“make to order”) .. 23

2.1.4. ETO (“engineer to order”) ... 23

2.2. Ambientes de Produção .. 24

2.2.1. Flow Shop Puro ... 25

2.2.2. Flow Shop Flexível .. 25

2.2.3. Flow Shop Genérico .. 26

2.2.4. Job Shop Puro .. 27

2.2.5. Job Shop Flexível .. 28

2.2.6. Open Shop.. 29

2.2.7. Assembly Shop ... 29

2.3. Métodos de Controle da Produção .. 30

2.3.1. MRP: Backward Scheduling .. 30

2.3.2. Kanban... 31

2.3.3. Workload Control .. 32

2.3.4. ConWIP ... 33

2.3.5. DBR ... 34

2.4. DBR: revisão da literatura ... 35

2.4.1. Relação com ToC ... 35

2.4.2. Lógica de Funcionamento .. 36

2.4.3. Regras de Sequenciamento .. 39

2.4.4. Indicadores de Desempenho .. 40

2.4.5. Questões Exploradas na Literatura .. 41

2.4.6. Dimensionamento do Buffer .. 42

2.5. Simulação .. 45

3. METODOLOGIA ... 47

4. MODELO DE SIMULAÇÃO .. 51

4.1. Modelagem Conceitual ... 51

4.1.1. Inputs do Modelo de Simulação .. 52

4.1.2. Ambiente de Simulação ... 57

4.1.3. Outputs do Modelo de Simulação .. 57

4.1.4. Lógica de Simulação .. 58

4.2. Modelagem Computacional .. 59

4.2.1. Função “Inputs” ... 60

4.2.2. Funções de Suporte .. 60

4.2.3. Função “GeracaoJobs” ... 61

4.2.4. Função “Processamento” ... 62

4.2.5. Função “Drum” .. 63

4.2.6. Função “Buffer” ... 64

4.2.7. Função “Rope” ... 65

4.2.8. Funções de Sequenciamento .. 65

4.2.9. Bloco Principal e Output .. 68

4.3. Verificação e Validação .. 71

4.3.1. Verificação da Geração de jobs e due date .. 72

4.3.2. Verificação do Processamento nos Estágios ... 72

4.3.3. Verificação do DBR .. 75

4.3.4. Verificação das Regras de Sequenciamento .. 76

4.3.5. Verificação das Funções de Suporte .. 76

4.3.6. Validação ... 78

5. INSTÂNCIAS DE SIMULAÇÃO ... 79

6. ANÁLISE DE EXPERIMENTOS .. 83

6.1. Análise da Razão entre Tempos de Geração e Processamento 83

6.2. Análise da Severidade do Gargalo .. 86

6.3. Análise das Regras de Sequenciamento .. 90

6.4. Análise da Posição do Estágio Gargalo .. 93

6.5. Análise da Variância no Tempo de Processamento .. 96

7. CONCLUSÕES .. 99

7.1. Síntese ... 99

7.2. Limitações ... 101

7.3. Desdobramentos .. 102

REFERÊNCIA BIBLIOGRÁFICA ... 105

ANEXO A – MODELO DE SIMULAÇÃO .. 111

ANEXO B – PLANILHA DE ENTRADA (INPUT)... 129

ANEXO C – PLANILHA DE SAÍDAS (OUTPUT) ... 131

ANEXO D – MACROS DE SUPORTE ... 133

15

1. INTRODUÇÃO

1.1. Motivação

O flow shop genérico é uma linha de produção com múltiplos estágios, tendo cada estágio

uma ou múltiplas máquinas idênticas. A linha produz múltiplos produtos em lotes, todos com o

mesmo fluxo de produção. Em outras palavras, todos os jobs (ordens de produção) percorrem a

linha no mesmo sentido, não necessariamente passando por todos os estágios. Desta forma, é um

ambiente de produção existente na grande maioria das linhas de produção, podendo ser a linha

como um todo ou somente uma parte desta (ENNS, 1995).

A estratégia de produção MTO (make to order) é aquela em que o pedido, ou a realização

do ato de venda, é realizado antes do início da produção de determinado produto. É uma das

estratégias de produção mais comumente empregadas em sistemas de produção, sendo

extremamente útil principalmente para empresas com um nível maior de sofisticação, onde há a

probabilidade de customização (KRAJEWSKI & RITZMAN, 1996).

O método DBR (drum, buffer and rope) é um dos métodos de controle da produção mais

conhecidos e estudados recentemente. Ele se baseia no recurso gargalo do sistema de produção

para realizar o controle da produção de forma a evitar ociosidade no recurso gargalo e elevado

estoque em processo (UMBLE & SRIKANTH, 2002).

A ideia básica do DBR é controlar a liberação de ordens de tal forma que o recurso gargalo

tenha sempre uma fila (estoque) de ordens para processar, evitando risco de parada por falta de

material. Por outro lado, a liberação das ordens deve garantir que o estoque não seja

desnecessariamente elevado, ao ponto de prejudicar a produtividade da linha. A taxa de liberação

das ordens adequada é representada pelo drum (tambor) e o sinal de liberação que vem do buffer

(pulmão) para o início do processo é representado pela rope (corda).

Para a efetiva implementação do método DBR, existem certos desafios que necessitam ser

considerados e que são foco de diversas pesquisas e artigos científicos sobre o tema. Os principais

desafios para a implementação do DBR são: identificação do recurso gargalo, programação da fila

de entrada, dimensionamento do time buffer e definição das datas de entrega para os clientes

(aplicável somente a sistema MTO).

16

Portanto, um dos pilares da aplicação do método DBR consiste em dimensionar o time

buffer, ou pulmão da restrição, que consiste na antecedência programada para a chegada de jobs

no gargalo. O dimensionamento do time buffer é responsável por regular a ocupação do recurso

gargalo do sistema, controlando o ritmo do sistema de produção, como prega a teoria das restrições

(DE SOUZA, 2005).

Isto é fator determinante para o desempenho operacional de uma linha de produção,

impactando diretamente a produtividade, a capacidade de suprir a demanda, o custo de produção e

a necessidade de capital para girar a operação de um determinado sistema de produção.

Enquanto valores muito baixos de time buffer podem resultar em perda de produtividade e

default de ordens de produção, valores elevados levam para o caminho contrário. Porém, estes

valores elevados geram um aumento de jobs em processamento no sistema de produção que pode

inviabilizar operacionalmente a produção, devido ao custo de estoque elevado gerado por esta

prática, que trará a empresa a necessidade de capital de giro.

Além disso, um número excessivo de jobs no sistema pode fazer com que pedidos com

maior urgência de atendimento não possam ser atendidos, devido ao número excessivo de jobs que

já estão no sistema e tem prioridade de processamento. Um elevado WIP pode ser prejudicial para

a capacidade de entrega de um sistema de produção por aumentar o lead time de jobs, como

demonstra a Lei de Little (1).

𝑊𝐼𝑃 = 𝜆 ∗ 𝐿𝑒𝑎𝑑 𝑡𝑖𝑚𝑒

Desta maneira, a etapa de dimensionamento do time buffer durante a aplicação do método

DBR deve ser feita cuidadosamente, com sua devida importância, de forma a maximizar

indicadores de desempenho operacionais e financeiros que estejam alinhados com os objetivos

estratégicos da companhia. Embora existam métodos empíricos para o dimensionamento do time

buffer em uma implantação do DBR (THURER et al., 2017; SCHRAGENHEIM & RONEN, 1990;

DANIEL & GUIDE, 1997), esses métodos não buscam atingir um ponto ótimo em relação ao

desempenho operacional e/ou financeiro, mas sim, uma solução conveniente para casos específicos

de sistemas de produção.

(1)

17

Além disso, em sistemas reais, com maior grau de complexidade do ambiente de produção

e/ou maior grau de imprevisibilidade maior da entrada de pedidos, uma solução empírica pode ser

difícil de ser achada e soluções existentes elaboradas pelos autores citados acima podem ser

ineficientes.

Com exceção dos métodos empíricos, o autor deste trabalho identificou pouca produção

científica na literatura acerca de métodos que busquem otimizar o time buffer ou que discutam o

impacto de variações de parâmetros do ambiente de produção sobre valores de time buffer que

impactem positivamente na operação do sistema. Em geral, os artigos identificados na literatura

abordam casos muito específicos, como o trabalho de Radovilsky (1997), que estuda o caso de um

job shop puro com tempo de chegada de jobs necessariamente igual ao tempo de processamento

dos estágios ou o trabalho de Ye & Han (2008), que estuda o caso de um assembly shop, trabalho

que se mostra complexo em termos de aplicação prática.

Além disto, estes métodos limitam-se a indicadores de performance financeiros, pouco

avaliando aspectos operacionais, como o tempo de produção e o atraso de entrega. Um maior

detalhamento sobre a literatura relativa ao método DBR será apresentado adiante.

Zhang & Du (2015) produziram o artigo mais abrangente sobre o tema, permitindo a

adaptação a variedades de sistemas de produção dentro do ambiente de produção job shop puro. A

abordagem consiste na implantação de um modelo de otimização de programação linear que, com

o auxílio de um modelo de simulação para o sistema de produção, permite a determinação do

tamanho ótimo de time buffer que minimiza os custos de produção. Desta maneira, a criação de um

modelo de simulação que permita a implementação do método DBR é uma alternativa viável e

eficiente para o dimensionamento do time buffer.

A larga existência de sistemas de produção com ambiente de produção flow shop genérico

e estratégia de produção MTO, aliado ao fato de não terem sido identificados na literatura estudos

sobre o impacto de parâmetros operacionais sobre o tamanho do time buffer que traz melhores

valores de indicadores de desempenho operacionais, como atraso de entregas, produtividade e lead

time, é o que motivou o desenvolvimento deste trabalho.

 Adicionalmente, a utilidade da simulação para a implantação prática do método DBR e

para o estudo do dimensionamento do time buffer motivou a criação de um ambiente de simulação

adaptável como método para estudar o dimensionamento do time buffer em diferentes cenários e o

impacto de certos parâmetros neste dimensionamento.

18

1.2. Objetivos

O presente trabalho tem como objetivo principal estudar o problema de dimensionamento

de time buffer sob a ótica do DBR em um ambiente de produção flow shop genérico com estratégia

de produção MTO.

Para isto, os seguintes objetivos específicos foram definidos:

 Desenvolver um modelo de simulação genérico que represente a aplicação do método

de controle DBR e permita o estudo de diferentes configurações possíveis de sua

aplicação em um sistema flow shop genérico com estratégia de produção MTO.

 Estudar o impacto do tamanho do time buffer em alguns indicadores de desempenho

operacional do sistema de produção, em cada cenário estudado.

 Estudar o impacto de certos parâmetros, como severidade do gargalo e regras de

sequenciamento no comportamento dos indicadores de desempenho estudados, para

diferentes configurações com tamanhos variados de time buffer.

 Estudar como o tamanho do time buffer ideal se comporta conforme se variam os

parâmetros do sistema de produção, como posição do recurso gargalo, número de

estágios de produção no sistema, severidade do gargalo, etc.

1.3. Estrutura do Trabalho

O presente trabalho será composto de sete capítulos. Conforme já visto, o presente capítulo

discutiu a motivação e os objetivos para a realização deste trabalho.

O segundo capítulo trará uma revisão bibliográfica extensa sobre os temas relacionados ao

presente trabalho, como: (i) estratégias de produção existentes e suas características e

particularidades; (ii) configurações de ambientes de produção existentes, definindo-os e

apresentando suas características; (iii) métodos de controle da produção mais conhecidos na

literatura, bem como suas características e diferenças; (iv) revisão sobre o método DBR,

destacando sua lógica de funcionamento e literatura existente, com destaque para o

dimensionamento do time buffer; (v) revisão da literatura sobre métodos de simulação.

19

O terceiro capítulo trata da metodologia utilizada para o desenvolvimento do trabalho,

destacando os passos dos capítulos seguintes. O quarto capítulo discute o desenvolvimento do

modelo de simulação, descrevendo seu funcionamento, testes de verificação e validação, e as

instâncias que foram utilizadas no capítulo cinco.

O quinto capítulo traz o método para a escolha das instânias de simulação e apresenta em

detalhe os parâmetros de entrada dos cenários gerados. O capítulo seis apresenta os resultados

obtidos com a simulação das instâncias geradas no capítulo cinco e uma análise comparativa crítica

destes resultados.

O capítulo sete resume a análise feita no capítulo seis para subsidiar a conclusão do presente

trabalho. Por fim, o também discute os próximos trabalhos que possam resultar do tema aqui

tratado, dos resultados obtidos do trabalho ou do modelo de simulação elaborado.

Além destes sete capítulos, o código do modelo de simulação, bem como as planilhas e

macros utilizadas de suporte ao modelo, estão anexados ao final do trabalho.

20

21

2. REVISÃO BIBLIOGRÁFICA

Antes da construção do modelo de simulação e execução dos experimentos, é necessário

apresentar uma revisão bibliográfica sobre o tema “controle da produção” e sobre o método DBR.

As técnicas abordadas na literatura sobre o dimensionamento do time buffer são também discutidas.

Também é de fundamental importância definir conceitualmente o ambiente e a estratégia

de produção, bem como os termos utilizados no desenvolvimento do presente trabalho. Todos estes

aspectos serão discutidos no presente capítulo.

2.1. Estratégias de Produção

Os sistemas de produção de empresas de manufatura guardam semelhanças entre si.

Portanto, estes sistemas são muitas vezes agrupados com base nestas características para fins de

estudo e aplicação de técnicas específicas de programação e controle da produção.

Com este intuito, diversos autores apresentaram diferentes classificações para agrupar

sistemas de produção semelhantes. Uma das classificações mais famosas é a classificação

reproduzida por Krajewski & Ritzman (1996), que se refere às estratégias de produção para os

sistemas de produção, dividindo-as em três grupos: MTS (make-to-order), ATO (assemble-to-

order) e MTO (make-to-order).

Posteriormente, Pires (2004) destaca a existência de uma quarta estratégia, de forma a

complementar a classificação apresentada por Krajewski & Ritzman (1996): a estratégia de

produção ETO (engineering-to-order). Segue abaixo breve resumo descritivo das principais

características destas quatro estratégias.

2.1.1. MTS (”make to stock”)

Krajewski & Ritzman (1996) definem a estratégia de produção MTS como sendo aquela

em que a produção é voltada para estocagem, ou seja, em que a companhia produz itens

padronizados que passam pelo estoque e posteriormente são destinados para venda.

Pires (2004) destaca que a interferência do cliente no processo produtivo é praticamente

inexistente, com exceção da pesquisa de mercado, uma vez que a programação da produção é feita

por previsão de demanda em sistemas MTS.

22

Segundo Arnold (1999), a estratégia de produção MTS é aquela que permite o menor grau

de customização de produtos, mas que possui menor tempo de entrega (lead time) em comparação

com as demais estratégias de produção. Nestas estratégias, o cliente possui pequeno envolvimento

direto no projeto do produto. Por este motivo, a estratégia de produção MTS é muito empregada

na produção de produtos mais padronizados, com vendas em massa e pouca customização.

2.1.2. ATO (“assemble to order”)

Segundo Krajewski & Ritzman (1996), a estratégia de produção ATO é aquela em que a

empresa produz componentes padronizados que, após a realização efetiva do processo de venda,

são combinados entre si para configurar o produto final conforme pedido pelo cliente. Em outras

palavras, o processo de produção começa antes da venda, diferentemente da produção MTS, porém

acaba após a venda, com a montagem de componentes padronizados.

Vale ressaltar que para um sistema de produção ser considerado ATO, não há a necessidade

de todos os componentes serem pré-fabricados, mas apenas aqueles de maior uso. Pires (2004)

destaca que em um sistema ATO, apesar do estoque de produtos acabados ser pequeno,

comparativamente a estratégia MTS, ainda há elevado número de peças em estoque, no caso,

principalmente no estoque intermediário, formado pelos componentes pré-fabricados.

Segundo Arnold (1999), na estratégia de produção ATO, a participação do cliente no

processo produtivo se limita à configuração do produto final, ou seja, seleção do conjunto de

componentes para a etapa de montagem. A seleção dos componentes que serão pré-fabricados é

realizada com base no histórico de pedidos.

Arnold (1999) destaca que o tempo para entrega no sistema ATO é reduzido, quando

comparado com as demais estratégias de produção (exceção feita a estratégia MTS), pois se limita

ao tempo de montagem e fabricação de componentes específicos. Esta estratégia também permite

certo nível de customização, uma vez que oferece ao cliente um leque de possibilidades de

combinação de componentes.

23

2.1.3. MTO (“make to order”)

Segundo Krajewski & Ritzman (1996), a estratégia de produção MTO é aquela em que a

empresa começa a produzir o pedido apenas após a concretização da venda, ou seja, o processo de

venda antecede qualquer atividade relacionada à produção, consistindo em produção sobre

encomenda. O que vai ser produzido pode variar desde um produto inédito, produzido de forma

customizada, até um produto escolhido entre um conjunto de opções (PIRES, 2004).

Arnold (1999) afirma que a participação do cliente em relação às atividades produtivas em

um sistema MTO é maior, uma vez que as atividades a serem executadas no sistema de produção

dependem diretamente do pedido dos clientes.

Além disso, Arnold (1999) aponta que o projeto dos produtos em uma estratégia MTO pode

sofrer influência, ou até mesmo se originar dos contatos iniciais com o cliente. Contudo, a etapa de

produção só se inicia após o recebimento do pedido formal.

Segundo Arnold (1999), o tempo até a entrega em um sistema com estratégia MTO é

proporcionalmente maior do que nas demais estratégias previamente apresentadas. Porém, este

maior tempo até a entrega é o custo a ser pago com o ganho de customização do pedido que esta

estratégia de produção traz para determinada companhia.

2.1.4. ETO (“engineer to order”)

A estratégia de produção ETO consiste em uma extensão da abordagem MTO, que se

diferencia desta, pois a etapa de projeto do produto se inicia após a formalização da venda, ou seja,

o projeto do produto, assim como a produção, é feito sob encomenda. Nesta estratégia de produção,

os produtos são altamente customizados, variando conforme a especificação do cliente (PIRES,

2004).

Arnold (1999) destaca que o cliente é altamente envolvido no projeto dos produtos e o

estoque de materiais em um sistema baseado na estratégia ETO normalmente só é adquirido até

que haja necessidade de sua utilização. Desta forma, esta estratégia de produção apresenta nível

reduzido de estoques de matéria-prima, produtos em processo ou produtos acabados.

24

Como consequência das características únicas de um sistema de produção ETO, temos o

maior tempo até a entrega entre as estratégias de produção, pois passa a incluir a etapa de projeto

dos produtos. Porém, a estratégia ETO é aquela que permite maior customização de produtos, e,

portanto, é a mais apropriada para o desenvolvimento de projetos únicos e diferenciados,

geralmente de grande porte, como navios, aeronaves, entre outros (ARNOLD, 1999).

A Tabela 1 resume as principais características de cada estratégia de produção, com base

nos estudos feitos por Krajewski & Ritzman (1996), Arnold (1999) e Pires (2004).

Tabela 1 - Principais características das estratégias de produção

Estratégia de

Produção

Grau de Customização

dos Produtos

Tempo até

a Entrega

Principal Tipo

de Estoque

MTS Baixo Baixo Produtos Acabados

ATO Médio Médio Produtos em Processamento

MTO Elevado Elevado Matéria Prima

ETO Produtos únicos Elevado -

Fonte: Elaborado pelo autor

2.2. Ambientes de Produção

Além da estratégia de produção, outro tema essencial que delimita o estudo de sistemas de

produção é a configuração do ambiente de produção. Cada ambiente de produção permite um

funcionamento diferente do caminho do job no sistema de produção e é elemento determinante

para a implementação de ferramentas de controle da produção. Ou seja, determina o fluxo de

materiais na fábrica. O ambiente de produção está diretamente associado a estratégia de produção,

uma vez que determinadas estratégias possuem uma tendência maior de estarem associados a tipos

de ambiente de produção (MTS com flow shop puro, MTO com flow shop genérico ou job shop).

25

Pinedo (2002), em sua obra sobre scheduling em sistemas de produção, delimita os

diferentes tipos de ambientes de produção e suas características e diferenças. Para a finalidade deste

trabalho, procurou-se definir e apresentar as principais características que diferenciam cada

ambiente de produção, segundo o modelo proposto por Pinedo (2002), adicionando a definição de

Enns (1995) e Thurer et al. (2017) para flow shop genérico.

2.2.1. Flow Shop Puro

O flow shop puro é o ambiente de produção em linha mais básico. Consiste em um sistema

de produção formado por n estágios (ou etapas produtivas) em série, em que cada job percorre cada

um destes estágios, na mesma sequência, até a conclusão do processo. Todos os jobs devem

percorrer o mesmo caminho em um flow shop puro. Cada estágio do ambiente de produção é

composto por apena uma máquina (PINEDO, 2002).

A Figura 1 ilustra um flow shop puro com um total (n) de 5 estágios.

Figura 1 - Flow shop puro com 5 estágios

Fonte: Elaborado pelo autor

2.2.2. Flow Shop Flexível

O flow shop flexível é uma generalização do flow shop puro, de forma a permitir mais de

uma máquina em cada estágio. Consiste em um sistema de produção formado por n estágios (ou

etapas produtivas) em série, em que o job deve percorrer cada um destes estágios até a conclusão

do processo produtivo. Da mesma forma que o flow shop puro, todos os jobs devem percorrer o

mesmo caminho (PINEDO, 2002). Conforme discutido por este autor, a diferença de um flow shop

flexível para o puro é que, diferentemente do puro, cada estágio do ambiente de produção pode ser

composto por mais de uma máquina trabalhando em paralelo.

26

Em outras palavras, no flow shop flexível, cada estágio pode possuir uma quantidade m de

máquinas idênticas, de forma que um job que passa por certo estágio pode ser processado por

qualquer uma das m máquinas, sendo processado uma única vez apenas em cada estágio. Desta

forma, o flow shop flexível permite que em um mesmo estágio, m jobs sejam processados

simultaneamente. O número de máquinas em cada estágio não necessita ser igual para todos os

estágios para que o sistema seja enquadrado como flow shop flexível (PINEDO, 2002).

A Figura 2 mostra um flow shop flexível com n = 5 estágios e m = 3 máquinas para cada

estágio.

Figura 2 - Flow shop flexível com 5 estágios e 3 máquinas por estágio

Fonte: Elaborado pelo autor

2.2.3. Flow Shop Genérico

O modelo de flow shop flexível foi modificado por Enns (1995) e, posteriormente, utilizado

por Thurer et al. (2017), de forma a torná-lo ainda mais genérico do que o conceito previamente

apresentado por Pinedo (2002).

De acordo com estes autores, o flow shop genérico possui uma única diferença em relação

ao flow shop flexível. A diferença é o conceito de que não há a necessidade de um job passar

necessariamente por todas as estações, ou seja, cada job pode ter seu próprio caminho, desde que

a ordem do fluxo dentro do sistema seja mantida (Figura 3). Ou seja, o sentido do fluxo é o mesmo,

mas determinado job pode pular um ou mais estágios. Para fins deste trabalho, utilizaremos o

conceito apresentado por Enns (1995) e Thurer et al. (2017) para flow shop genérico como ambiente

de produção.

27

Figura 3 - Flow shop genérico com 5 estágios com 3 máquinas por estágio e 3 padrões de fluxo

Fonte: Elaborado pelo autor

2.2.4. Job Shop Puro

De acordo com Pinedo (2002), em um job shop puro, da mesma forma que no flow shop

puro, o sistema de produção é formado por n estágios, cada um destes com apenas uma máquina.

A diferença existente é que no job shop puro, os jobs seguem rotas diferentes. Portanto, não há um

caminho pré-determinado para o conjunto de jobs, mas sim um sequenciamento diferenciado para

cada job que entra no sistema.

Há variações do modelo de job shop puro em que o job deve passar obrigatoriamente por

cada estágio, podendo passar mais de uma vez por certo estágio, e variações em que o job deve

passar apenas uma vez por cada estágio (PINEDO, 2002).

A Figura 4 exemplifica um job shop puro com n = 5 estágios e três configurações de fluxo.

É possível notar que cada job percorre seu próprio roteiro, gerando múltiplos fluxos de produção.

Figura 4 - Job shop puro com 5 estágios

Fonte: Elaborado pelo autor

28

2.2.5. Job Shop Flexível

O job shop flexível é uma generalização do job shop puro. Consiste em um sistema de

produção formado por n estágios (ou etapas produtivas) em série, em que cada job possui sua

própria rota, ou seja, não há rota única (PINEDO, 2002).

Conforme ressaltado por Pinedo (2002), a diferença de um job shop flexível para o puro é

que, diferentemente do puro, cada estágio do ambiente de produção pode ser composto por mais

de uma máquina trabalhando em paralelo.

Desta forma, cada estágio pode possuir uma quantidade mj de máquinas idênticas, de

maneira que um job que passa por certo estágio pode ser processado por qualquer uma das mj

máquinas, sendo processado uma única vez apenas em cada passagem pelo estágio. Portanto, o job

shop flexível permite que em um mesmo estágio, até mj jobs sejam processados simultaneamente

(PINEDO, 2002).

Há variações do modelo de job shop flexível em que o job deve passar obrigatoriamente

por cada estágio, podendo passar mais de uma vez por certo estágio, e variações em que o job deve

passar apenas uma vez por cada estágio (PINEDO, 2002).

A Figura 5 destaca um job shop flexível com n = 5 estágios e m = 3 máquinas por estágio,

além do caminho percorrido por três jobs. É possível notar que cada job percorre seu próprio

caminho, sem um direcionamento único para o ambiente de produção.

Figura 5 - Job shop flexível com 5 estágios e 3 máquinas

Fonte: Elaborado pelo autor

29

2.2.6. Open Shop

O open shop consiste na generalização do job shop flexível, de forma a permitir que um

determinado job não necessite passar por todos os n estágios do processo produtivo (tempo de

processamento zero é permitido). De resto, guarda as mesmas características do ambiente de

produção do job shop flexível. É o ambiente de produção mais genérico existente, em que cada job

possui seu próprio caminho podendo passar ou não por determinado estágio (PINEDO, 2002).

2.2.7. Assembly Shop

Assembly shop é um ambiente de produção em que certo produto é formado pela união de

módulos e componentes após uma etapa de montagem, sendo que cada componente possui um

processo de produção em flow shop ou job shop. Portanto, é composto por uma série de linhas de

produção para cada componente, com uma etapa final de montagem (PINEDO, 2002).

A Figura 6 ilustra um assembly shop formado por três linhas, com montagem dos três

componentes como etapa final, para a formação do produto. Cada linha possui características de

um flow shop puro para cada componente, com n = 5 estágios.

Figura 6 - Assembly shop com 3 linhas

Fonte: Elaborado pelo autor

30

2.3. Métodos de Controle da Produção

Desde o início da década de 80, com o crescimento do estudo de como programar e

controlar a produção sistemas de produção, diversas técnicas para planejamento e controle da

produção vêm surgindo na literatura. Algumas destas técnicas destacam-se, sendo alternativas

viáveis e eficientes para o planejamento e controle da produção (GUPTA & SNYDER, 2009).

Para o escopo deste trabalho, serão detalhadas a seguir as principais técnicas existentes que

se destacam no âmbito do controle da produção, bem como desenvolvimentos recentes que tratam

sobre o tema.

2.3.1. MRP: Backward Scheduling

O MRP (“material requirements planning”) é a técnica de programação e controle da

produção mais utilizada atualmente no planejamento e controle da produção. A grande vantagem

trazida pela implementação do MRP é a possibilidade de se lidar com ambientes com elevado

número de SKUs de forma eficiente, diferentemente de grande parte dos sistemas de PCP existentes

(FERNANDES et al., 2007).

O MRP não é um sistema eficiente no dimensionamento de lead time e em programação de

curto prazo (FERNANDES et al., 2007). Em termos de controle da produção, o MRP normalmente

é um sistema empurrado, porém, existem mecanismos para o controle do estoque em processo. A

programação é baseada em métodos de previsão de demanda e é formada a partir de lotes que visam

minimizar o estoque em processo, garantindo o cumprimento de prazos. Portanto, o mecanismo de

controle utilizado no MRP se mostra susceptível à variabilidade e imprevistos (CORRÊA &

GIANESI, 1993).

31

2.3.2. Kanban

Kanban é uma técnica de controle da produção japonesa correlacionada ao famoso método

JIT (“Just-In-Time”). Kanban, que em português significa “cartão”, consiste em uma técnica de

controle da produção que utiliza cartões para formalizar a movimentação de materiais dentro do

sistema de produção (PRICE et al., 1994). Conforme destacado por este autor, é um método de

controle da produção que gera em um sistema puxado, pois determinado estágio só irá operar o job

se certo item for retirado do estoque entre esta etapa e a etapa posterior (produção para reposição

de estoque). Desta forma, a produção será sempre regida pelo final do sistema produzido.

 Existem diversas vertentes para o método Kanban. O Kanban composto por dois tipos de

cartão é uma das vertentes mais tradicionais. O primeiro é um cartão de retirada (“Withdrawl

Kanban”), que formaliza o pedido de material de um estágio de produção posterior para seu

precedente e autoriza a movimentação de jobs entre estações. O segundo é um cartão de produção

(“Production Kanban”), que formaliza o pedido de produção para determinada estação com o

objetivo de repor o estoque movimentado, autorizando a operação na estação (PRICE et al., 1994)

(Figura 7).

Figura 7 - Kanban de dois cartões

Fonte: Elaborado pelo autor

Embora tenha se mostrado uma técnica efetiva e muito utilizada para controle da produção,

com extensa produção bibliográfica associada, o método Kanban tem recebido críticas, sendo

considerado adequado para produção repetitiva (MTS), mas inadequado para produção

intermitente (PRICE et al., 1994).

32

Por exemplo, Lambrecht & Decaluwe (1988) afirmam que o método Kanban reage

tardiamente ao aparecimento de problemas de um sistema de produção. Adicionalmente, Gardiner

et al. (1994) destacaram que o método Kanban, por bloquear a produção de produtos acabados

quando o estoque final estiver completo, é um sistema menos susceptível a grandes incertezas

associadas à geração de pedidos, o que é menos evidente no método DBR.

2.3.3. Workload Control

O método de controle da produção denominado workload control, ou WLC, é um método

com mais de 30 anos de história. Sua principal característica é o uso de um mecanismo de entrada

de jobs no sistema conectado ao nível de jobs já em processamento no sistema de produção

(THURER et al., 2017).

O objetivo deste método consiste em nivelar a quantidade de jobs dentro do sistema,

denominado “carga de trabalho”, evitando ociosidade ou superlotamento do sistema. Apesar deste

método possuir maior aplicação e ter resultados superiores em sistemas balanceados, sem um

recurso gargalo evidente, há evidências de melhoria de performance com a adoção do método

workload control em sistemas com um recurso gargalo evidente (THURER et al., 2017).

Thurer et al. (2017) mencionam que a utilidade do método workload control é maior em

sistemas MTO, onde o uso de buffer permite maior proteção contra a variabilidade na chegada de

jobs no sistema, bem como mantém níveis adequados de WIP no sistema. Os autores ressaltam que

a técnica workload control é um método genérico, com diversas variações existentes na literatura

sobre o tema. Por exemplo, existe a técnica starvation avoidance, que se comporta de forma similar

ao DBR, ou seja, considerando a apenas a carga de trabalho antes do gargalo do sistema. Há

também a técnica denominada path aggregation, introduzida por Fredendall et al. (2010), que

controla a carga de trabalho em cada estação do sistema de produção.

Apesar das diversas técnicas existentes relativas ao método workload control, a mais

conhecida e por mais vezes citada na literatura pelo autor é a técnica ConWIP (“Constant Work In

Process”), que será detalhada no próximo tópico.

33

2.3.4. ConWIP

O método de controle da produção ConWIP é um caso específico do workload control

introduzido por Spearman et al. (1990). Este método busca manter estável o nível de estoque em

processo em todo o sistema de produção durante o período de operação (SPEARMAN et al., 1990).

O ConWIP monitora o número de jobs entre a primeira e a última estação na linha, esteja

ele na fila ou sendo processado. Estabelece-se um nível máximo para esta carga de trabalho. Este

valor não pode ser ultrapassado. Desta forma, pedidos gerados só entram no sistema quando a carga

de trabalho for menor que este valor máximo, evitando a superlotação do sistema (SPEARMAN et

al., 1990).

Spearman et al. (1990) ainda destacam a similaridade do ConWIP com o método kanban

de controle de produção, afirmando que ambos buscam manter um nível constante de estoque em

processo. Porém, enquanto o kanban busca manter esta constância de estação por estação, o

ConWIP trata o sistema como um todo, buscando manter tal constância na linha, ou seja, entre a

entrada e a saída do sistema.

Da mesma forma que o método kanban, o ConWIP também pode funcionar por meio de

cartões, que conectam a saída de jobs do sistema de produção com a entrada de um novo job no

sistema (SPEARMAN et al., 1990). Porém, sistemas computacionais também se habilitam a

realizar o ConWIP (Figura 8).

Figura 8 - Método ConWIP de controle da produção

Fonte: Elaborado pelo autor

34

2.3.5. DBR

O método de controle da produção DBR (“drum-buffer-rope”) é um método que segue a

lógica introduzida por Goldratt & Cox (1986) em sua obra “A Meta”: a Teoria das Restrições, ou

ToC (“Theory of Constrains”). O método DBR parte do pressuposto de que existem apenas alguns

estágios, dentro de um sistema de produção, que efetivamente possuem a capacidade de restringir

a produção do sistema. Estes serão os estágios que efetivamente irão ser determinantes para o nível

de produção global do sistema como um todo (UMBLE & SRIKANTH, 2002).

Por esta razão, o método DBR busca garantir que apenas nestes estágios limitantes a

produção não seja interrompida durante a operação da fábrica. Desta maneira, o método DBR busca

otimizar a produção da fábrica evitando que o gargalo do sistema de produção tenha ociosidade

(UMBLE & SRIKANTH, 2002).

Devido à relevância deste tema para o desenvolvimento deste trabalho, um tópico a parte

foi destinado para aprofundar este método, com o objetivo de descrever suas etapas, a literatura

existente sobre o tema e a questão do dimensionamento do buffer ou pulmão do sistema, tema

central do presente trabalho.

35

2.4. DBR: revisão da literatura

2.4.1. Relação com ToC

Como mencionado na última seção, o método DBR segue a lógica da Teoria das Restrições

(ToC) de Goldratt & Cox (1986), que pauta seu mecanismo de programação e controle do sistema

de produção com base no recurso gargalo do sistema, de forma a evitar ociosidade no gargalo.

Goldratt & Cox (1986) formularam um método em cinco passos que caracteriza a ToC:

 1º Passo – Identificar o gargalo

 2º Passo – Explorar ao máximo a capacidade do gargalo

 3º Passo – Subordinar a programação e controle do resto do sistema de forma a evitar

ociosidade no gargalo

 4º Passo – Elevar a capacidade do sistema aumentando a produtividade do gargalo

 5º Passo – Retornar ao 1º passo de forma a fechar o ciclo e balancear o sistema

Como resultado do método, a ToC busca constantemente balancear o sistema de produção

de forma a eliminar recursos gargalos. Procura-se, então, implementar um ciclo contínuo de

diagnóstico-melhoria até que o sistema esteja balanceado (DARLINGTON et al., 2015).

O DBR consiste em um método de programação e controle, ou seja, efetivamente busca

implementar em um sistema de produção mecanismos capazes de realizar os três primeiros passos

da ToC. O DBR se limita a estes três passos somente, uma vez que é apenas um mecanismo de

controle, não promovendo melhorias no sistema de forma direta (WU et al., 2006).

 Porém, indiretamente, o DBR é responsável pela promoção de melhorias operacionais,

uma vez que identifica o gargalo do sistema e o ponto limitante a ser explorado para melhoria da

capacidade produtiva. Isto permite a mensuração do impacto de cada ação promovida no sistema

com o uso de indicadores de efetividade (WU et al., 2006).

De acordo com Wu et al. (2006), a utilidade do DBR diminui quando o sistema é bem

balanceado, uma vez que dificulta a execução da primeira etapa. Além disso, o método DBR não

se mostra muito efetivo em ambientes de produção repetitiva.

36

2.4.2. Lógica de Funcionamento

O método DBR pode ser dividido em três componentes, cada um diretamente relacionado

com as três primeiras etapas do método ToC. O componente drum, ou tambor, que se relaciona a

primeira etapa da ToC; o componente buffer, ou pulmão, que se relaciona com a segunda etapa da

ToC, e o componente rope, ou corda, relacionado à terceira etapa da ToC (DE SOUZA, 2005).

O drum é o recurso com maior uso dentro de um sistema de produção, ou seja, é o recurso

gargalo do sistema, que efetivamente controla a produtividade do sistema de produção. É de

fundamental importância que não haja ociosidade no gargalo, pois não há forma de recuperar a

produção perdida com a ociosidade do gargalo, diferentemente das outras operações do sistema

(GOLDRATT & COX, 1986).

O buffer está associado ao WIP entre o recurso gargalo e a entrada de jobs no sistema com

a função de proteger o recurso gargalo de variabilidades e incertezas, evitando sua ociosidade.

Diferentemente de técnicas como o kanban e WLC, o buffer no DBR é apresentado em unidades

de tempo e não em número de jobs, ou seja, consiste em um time buffer (DARLINGTON et al.,

2015).

Em determinado sistema de produção, o DBR pode ser implementado de forma segregada

para diversos segmentos do sistema de produção, conforme destacado por Wu et al. (2006). Desta

forma, um sistema pode ser formado por mais de um drum e um buffer (Figura 9).

Figura 9 - DBR em sistema com múltiplos laços

Fonte: Adaptado de Wu et al. (2006)

Além disso, dependendo do ambiente de produção, o DBR pode ter dois outros tipos

diferentes de buffer (DE SOUZA, 2005). O segundo tipo seria o buffer de montagem, aplicável

apenas em assembly shops. O buffer consiste em WIP de jobs em linhas que não contém recursos

gargalos, de forma a evitar que componentes vindos de linhas que contêm o recurso gargalo tenham

de esperar a chegada de componentes provindos de outras linhas.

37

O terceiro tipo seria o buffer de mercado, aplicável apenas em estratégia de produção MTS,

que consiste em um estoque de produtos acabados ao final do sistema de forma a evitar a falta de

produtos para a venda, mas também o excesso de estoque em caso de queda de demanda (DE

SOUZA, 2005).

O rope é o último componente do DBR, sendo o mecanismo que conecta o buffer com a

entrada de jobs no sistema. O rope mantém, assim, o nível de WIP (em unidade de tempo) entre a

entrada e o gargalo em um nível pré-determinado, permitindo a entrada de um novo job no sistema

assim que o recurso gargalo (Drum) conclui uma operação (DARLINGTON et al., 2015).

Desta forma, o método de controle da produção via DBR é composto por três etapas básicas

(GOLDRATT & COX, 1986):

1ª Etapa – A identificação do recurso gargalo dentro do sistema de produção. De Souza

(2005) destaca que, em sistemas balanceados, esta etapa pode ser um desafio e pode ter múltiplos

gargalos alternantes, dependendo do apoio de um sistema computacional especializado para a

efetiva implementação do controle via DBR.

2ª Etapa – Consiste no dimensionamento de um time buffer que seja capaz de evitar a

ociosidade no recurso gargalo e otimizar o volume de produção ou qualquer outra variável

relevante ao sistema. Em recursos em que o buffer de montagem e mercado sejam aplicáveis, o seu

dimensionamento também deve ser feito nesta etapa. Ela depende diretamente da primeira etapa,

uma vez que só é possível dimensionar e controlar o buffer se sua posição no sistema for conhecida.

3ª Etapa – É a implementação do mecanismo que controla a entrada de jobs no sistema,

quando o time buffer pré-determinado for maior que o WIP em unidade de tempo atual, entre o

ponto de entrada e o gargalo.

Para sistemas MTO, ou MTS com tipos diferentes de jobs, na entrada de novo job no

sistema, é importante determinar uma regra de sequenciamento que permita determinar qual job

deve entrar no sistema, dentre de um leque de opções (DE SOUZA, 2005).

Nos últimos anos, diversos trabalhos foram publicados estudando o impacto das regras de

sequenciamento em indicadores de desempenho de sistema com controle de estoque em processo.

Os trabalhos mostraram que a determinação desta regra influencia consideravelmente parâmetros

como atraso de pedidos e lead time médio do sistema (THURER et al., 2017). As regras de

sequenciamento mais comuns serão apresentadas no próximo tópico.

38

A Figura 10 ilustra a aplicação do DBR em um ambiente de produção assembly shop com

os três tipos de buffer, de acordo com Souza (2005): buffer de produção, buffer de montagem e

buffer de mercado.

Figura 10 - Ilustração de DBR aplicado em Assembly Shop com produção MTS

Fonte: Adaptado de De Souza (2005)

39

2.4.3. Regras de Sequenciamento

Regras de sequenciamento, ou dispatching rules, são comumente utilizadas para ordenar a

entrada de jobs contidos em um pré-shop para dentro do sistema de produção. O pré-shop é um

conjunto de jobs ordenados, segundo determinada regra de sequenciamento, que aguardam o

ativamento do mecanismo rope para liberação de entrada no sistema de produção (DA SILVA et

al., 2012).

As principais regras de sequenciamento apresentadas por Silva et al. (2012), adaptadas de

Gaither e Frazier (2001), Chan e Chan (2004), Suresh e Sridharan (2007), Tubino (2007) e Lustosa

et al. (2008), são:

FIFO (“First In, First Out”) – o ordenamento de entrada de jobs no sistema segue a ordem

de chegada dos jobs dentro do pré-shop. Logo, os jobs que chegam primeiro são os primeiros a

sair. Esta regra é útil para minimizar o tempo entre a chegada/geração do job e a sua saída do

sistema.

LIFO (“Last In, First Out”) – é a regra de sequenciamento inversa da regra FIFO, ou seja,

o último job a ser gerado é aquele que irá adentrar primeiro no sistema de produção. Ou seja, os

jobs são processados na ordem inversa de chegada.

SPT (“Shortest Processing Time”) – nesta regra, a entrada de jobs no sistema é ordenada

pelo tempo total de processamento, do menor para o maior. A lógica desta regra é que jobs com

menor tempo esperado de processamento tendem a sair mais rapidamente do sistema, de forma a

agilizar o fluxo no sistema.

LPT (“Longest Processing Time”) – é a regra de sequenciamento inversa à regra SPT, ou

seja, jobs com maior tempo estimado de processamento são os primeiros a entrar no sistema.

 EDD (“Earliest Due Date”) – nesta regra de sequenciamento, os jobs entram no sistema

com base no prazo de entrega (due date). A lógica é simples - jobs que precisam ser entregues

primeiro devem ter prioridade na fila para entrada no sistema de produção.

LS (“Least Slack”) – nesta regra, o sequenciamento ocorre com base na diferença entre a

data de entrega prometida e o tempo estimado de processamento, ou seja, menor folga entre a data

mais cedo de conclusão estimada e a data em que o pedido deve ser entregue. A lógica também é

priorizar jobs com menor folga para evitar atrasos.

40

LWQ (“Least Work Next Queue”) – aqui, a prioridade de entrada é de jobs cujo destino

primário tenha a menor fila, buscando produzir um item que vai para uma máquina com fila em

detrimento de outro que vai para uma máquina que corre o risco de parar por falta de material.

CR (“Critical Ratio”) – nesta regra, tem prioridade o job com menor razão crítica, que

consiste na divisão do tempo de folga do job (tempo para entrega – tempo de estimado

processamento) pelo seu tempo de processamento estimado. Logo, é uma regra que mescla os

conceitos das regras SPT e EDD.

2.4.4. Indicadores de Desempenho

Thurer et al. (2017), ao estudarem o desempenho dos métodos de controle DBR e WLC em

um sistema com estratégia de produção MTO em um ambiente flow shop flexível, sugerem uma

série de indicadores de desempenho. Para fins deste trabalho, serão considerados os seguintes

indicadores de desempenho utilizados por Thurer et al. (2017):

Mean Throughtput Time – corresponde ao tempo médio de produção dos jobs do sistema.

Para calcular este parâmetro, calcula-se o tempo de produção de cada job efetivamente terminado

durante o período estudado e tira-se a média. O tempo de produção de um job corresponde à

diferença entre o tempo de entrada do job no sistema e o fim da última etapa de processamento e

saída do sistema, ou seja, desconsidera o tempo de espera no pré-shop.

Mean Lead Time – corresponde ao lead time médio de entrega do job. Para calcular este

parâmetro, calcula-se para cada job a diferença entre o tempo do pedido que originou determinado

job e o tempo de término da última etapa de processamento e saída do sistema. Calcula-se a média.

Portanto, este indicador de desempenho considera o tempo que o job ficou no pré-shop aguardando

liberação, sendo sempre maior ou igual que o indicador mean throughtput time.

Percentage Tardy – corresponde ao percentual de jobs que foram concluídos após a data

combinada, ou seja, corresponde ao número de jobs cujo término da produção ocorreu

posteriormente ao seu due date dividido pelo número total de jobs terminados.

Mean Tardiness – corresponde ao tempo médio de atraso de entrega de jobs ao cliente final

sistema. Este parâmetro é calculado pela média do atraso de cada job terminado no período

estudado, contando que este atraso é zero para jobs com saída do sistema anterior ao due date

estipulado.

41

2.4.5. Questões Exploradas na Literatura

Desde o final da década de 90, com a introdução da ToC e do DBR por Goldratt & Cox

(1986), este método de controle da produção tem sido amplamente estudado e tratado em artigos e

outras publicações científicas.

Diversos foram os temas estudados, desde estudos de caso até o estudo de pontos chave na

implantação do DBR em um sistema MTO: programação da fila de entrada (pré-shop pool),

determinação do recurso gargalo do sistema (drum) e definição de data de entrega de pedidos (due

date setting).

Wu et al. (1994) aplicaram o DBR em uma empresa fabricante de móveis, estudo de caso

que visou medir a eficácia e a eficiência do método DBR em um caso prático, utilizando como

principal indicador o mean throughtput time.

Krajewski et al. (1996) estudaram os resultados da implantação do método DBR no Centro

Logístico de Manutenção da Marinha dos Estados Unidos da América. Segundo estes autores, o

tempo médio de reparos após a implementação do DBR caiu de 167 dias para 58 dias. Por sua vez,

os níveis de WIP foram reduzidos severamente em aproximadamente 25% dos custos de

manutenção, causando um aumento de mais de 100% de capacidade ao mês.

Daniel & Guide (1997) elaboraram um modelo de simulação para testar a eficiência de

diversas regras de sequenciamento em combinação com o algoritmo DBR em um estudo de caso

em um ambiente de re-manufatura.

Corbett & Csillag (2001) analisaram sete empresas que adotaram o método de controle da

produção DBR, visando medir a eficiência em termos de programação da produção.

Um experimento pautado no desenvolvimento de um modelo de simulação para medir a

eficiência do método de controle DBR foi publicado por Atwater & Chakravorty (2002). Eles

variaram o nível de utilização do recurso gargalo, medindo o impacto de free goods (jobs que não

passam pelo recurso gargalo) na efetividade do DBR.

Uma análise comparativa da implementação dos métodos DBR e MRP, em um sistema de

produção real, foi feita por Steele et al. (2005). O objetivo foi identificar similaridades e diferenças,

neste caso, pontuando-se quem leva vantagem sobre o que. Os resultados mostraram performance

superior do método DBR quando comparado ao MRP.

42

Wu et al. (2010) utilizaram um modelo para simular a implantação de um método de PCP

com base no DBR em uma empresa fabricante de televisores. Russel & Taylor (2011) estudaram

diversos exemplos de aplicação do método DBR combinado com a programação da produção,

variando o tamanho de lotes e tempo de set up. Darlington et al. (2015) publicaram um artigo sobre

a concepção e implantação de um modelo DBR para uma linha de painéis automotivos de uma

empresa britânica.

A rotina de programação de jobs em ambiente job shop com o modelo DBR, acrescido de

um modelo de otimização, foi feita por Golmohammadi (2015). Por sua vez, Thurer et al. (2017)

compararam a eficiência do método DBR em relação ao método WLC em ambientes de produção

job shop e flow shop sob a lógica de produção MTO, variando diversos parâmetros dos ambientes

estudados.

Além destas publicações mencionadas, diversos autores também abordaram métodos

modificados baseados no DBR, como Lee et al. (2010) com o simplified-DBR; e Sirikrai et al.

(2006) com o modified-DBR. Vale ressaltar que a literatura sobre o método DBR é vasta. Nesta

seção, foi apresentada apenas uma seleção de publicações científicas mais afeitas ao escopo da

presente investigação.

2.4.6. Dimensionamento do Buffer

O dimensionamento do time buffer é uma das etapas mais importantes do método de

controle DBR, sendo uma das decisões fundamentais a ser tomada. A decisão tem impacto direto

nos indicadores de desempenho de um sistema de produção. Entretanto, após revisão de literatura,

foram identificados poucos artigos científicos sobre este tema, quando comparado com outros

temas fundamentais do método DBR, conforme apresentado na seção anterior.

Além disto, em relação ao componente buffer do DBR, a grande maioria da literatura

existente aborda a comparação do método DBR com outros métodos como o WLC (THURER et

al., 2017); o MRP (STEELE et al., 2005); e demais métodos de controle da produção (CORRÊA

& GIANESI, 1993; DE SOUZA, 2005; GUPTA & SNYDER, 2009; MANIKAS et al., 2015).

Os únicos artigos encontrados pelo autor deste trabalho que tratam especificamente sobre

o tema foram os estudos realizados por Radovilsky (1997), Ye & Han (2008) e Zhang & Du (2015),

descritos a seguir.

43

No trabalho de Radovilsky (1997), discute-se uma abordagem quantitativa que busca

encontrar o time buffer ótimo para maximizar os lucros operacionais do sistema de produção, em

um ambiente de produção flow shop puro com estratégia de produção MTS. Manipulando as

equações da teoria das filas, Radovilsky (1997) obteve a seguinte equação para o time buffer ótimo

e lucro operacional ótimo, considerando taxa de chegada igual a taxa de processamento:

 𝑲∗ = √
𝟐µ𝑪𝑻𝑯

𝑪𝑶𝑬
− 𝟏

𝑵𝑷∗ =
𝟏

𝟐
∗ (√𝟐µ𝑪𝑻𝑯 − √𝑪𝑶𝑬)𝟐

Na fórmula apresentada em (2), K* corresponde ao time buffer ótimo. Na fórmula

apresentada em (3), NP* corresponde ao lucro operacional ótimo. Nas fórmulas mencionadas, Cth

corresponde a margem de contribuição de cada produto que sai do sistema, Coe corresponde ao

custo de estoque por WIP unitário, e µ representa a taxa de processamento de cada estágio no

sistema, considerando distribuição exponencial.

Desta forma, o resultado apresentado por Radovilsky (1997) obteve um time buffer ótimo

via abordagem analítica para um caso muito específico de sistema de produção, um flow shop puro

com tempo médio de produção igual a tempo médio de chegada, distribuição exponencial/Poisson

e margem de contribuição e custo de estoque constantes para todos jobs.

Portanto, o resultado de Radovilsky (1997) mostra-se bastante restrito ao caso específico,

não permitindo análise comparativa com base na variação de parâmetros do sistema. Além disso,

a otimização focou apenas de parâmetros financeiros e não operacionais.

Uma abordagem analítica foi apresentada por Ye & Han (2008) para a determinação do

time buffer em um sistema de produção assembly shop, considerando não apenas para o gargalo de

produção, como também o processo de montagem (buffer de montagem). Os autores revisaram

estudos anteriores sobre o método DBR e a pouca atenção dada à questão de como dimensionar o

time buffer, com pouquíssimos artigos tendo como foco principal este tema.

(2)

(3)

44

Além disso, em muitas publicações, o dimensionamento do buffer se dá de forma empírica,

ou seja, sem nenhum critério mais elaborado para a escolha, como um valor arbitrário (THURER

et al., 2017) ou como um múltiplo do lead time estimado para os jobs (SCHRAGENHEIM &

RONEN, 1990; DANIEL & GUIDE, 1997).

Apesar de Ye & Han (2008) terem estabelecido um modelo heurístico para a determinação

do time buffer ótimo, o modelo proposto é extremamente complexo para aplicações práticas e

restrito à assembly shops. Além disso, os autores não estudaram em profundidade o impacto que

variáveis do ambiente de produção possuem sobre o time buffer ótimo. Por sua complexidade e

aplicação somente para assembly shops, o método de Ye & Han (2008) não será detalhado no

presente trabalho.

No trabalho de Zhang & Du (2015), propõe-se um modelo de simulação com a aplicação

do método DBR, ou seja, capaz de identificar o recurso gargalo, otimizar o time buffer e

implementar o mecanismo do componente rope, conectando a entrada de jobs no sistema com o

buffer.

Em relação ao dimensionamento do buffer, a otimização é feita por meio de um modelo de

programação linear que visa minimizar o custo de produção. Desta forma, assim como o trabalho

de Radovilsky (1997), o trabalho de Zhang & Du (2015) é um modelo de otimização pautado em

indicadores financeiros e não operacionais, não considerando a sensibilidade do time buffer ótimo

com a variação de parâmetros do sistema.

Por fim, Negahban & Smith (2014) mostram em seu trabalho que o tema controle da

produção foi identificado por como uma das áreas de destaque na aplicação de ferramentas e

modelos de simulação, com número significante e crescente de artigos relativos a este tema que

utilizam o conceito de simulação. A simulação por eventos discretos se mostra uma boa forma de

estudar o dimensionamento do time buffer no método DBR.

45

2.5. Simulação

A simulação é uma técnica de pesquisa operacional largamente empregada para a resolução

de problemas de natureza variada. É uma tentativa de representar um sistema real a partir da

construção de um modelo de simulação, podendo ter maior ou menor nível de generalidade. Devido

a sua grande utilização, diversos autores têm revisado a literatura sobre a utilização de modelos de

simulação (p. ex., JAHANGIRIAN et al., 2010; NEGAHBAN & SMITH, 2014). Segundo

Jahangirian et al. (2010), entre 1999 e 2007, pelo menos onze artigos foram publicados com este

objetivo.

Desde a sua concepção, o ato de simular vem sendo mais e mais utilizado, para as mais

diversas finalidades em diversos setores da economia, como manufatura, setor de saúde, serviços

públicos, logística, entre outros (JAHANGIRIAN et al., 2010).

Especificamente, quando se trata do estudo de sistemas de produção, o uso de simulação

tem sido uma das ferramentas de maior importância na definição do layout e na promoção de

melhorias operacionais. Na última década, houve uma tendência de mudança da aplicação de

modelos de simulação, que deixaram de ser utilizados apenas para design, sendo cada vez mais

presentes em projetos de melhoria da performance operacional (NEGAHBAN & SMITH, 2014).

Jahangirian et al. (2010) dividem a simulação em três classes diferentes: (i) classe A,

formada por artigos para resolução de problemas reais; (ii) classe B, formada por artigos para

resolução de problemas hipotéticos; (iii) classe C, formada por artigos voltados ao

desenvolvimento de metodologias.

Na classe A, o estudo objetiva a resolução de um problema real, concreto e específico, e

para isto, utiliza dados reais. Na classe B, a simulação objetiva a resolução de problemas reais,

porém, comuns a mais de uma situação. Portanto, a busca é por uma solução genérica, e para isto

utilizam-se dados artificiais. Na classe C, o objetivo é desenvolver e validar uma metodologia de

simulação, independentemente de sua aplicação prática (JAHANGIRIAN et al., 2010).

 A revisão de literatura feita por Jahangirian et al. (2010) retrata a importância crescente

que modelos de simulação têm tido em termos de produção científica. A produção de artigos com

pesquisas baseadas em modelos de simulação relativos às classes A e B cresceu cerca de 92% entre

2000 e 2010. Entre 1970 e 2000, Shafer & Smunt (2004) verificaram que a produção de artigos

com pesquisa baseada em modelos de simulação cresceu apenas 14%.

46

Resultados similares foram obtidos por Negahban & Smith (2014), que também detectaram

o crescimento produção de artigos com pesquisa baseada em modelos de simulação quanto o tema

é referente à sistemas de produção.

Entrando no âmbito deste trabalho, os resultados são ainda mais expressivos. A revisão

realizada por Jahangirian et al. (2010) mostra que a técnica de simulação por eventos discretos é a

mais utilizada na penúltima década (40% de todos os artigos levantados) e é apoiada pelo

crescimento contínuo do mercado de softwares de simulação.

47

3. METODOLOGIA

Para o desenvolvimento do presente trabalho, adotou-se a metodologia de trabalho descrita

a seguir, em amplo escopo. A descrição fornecerá uma ideia geral da metodologia de trabalho

adotada na execução deste estudo.

Portanto, detalhes específicos que não estão aqui descritos serão, posteriormente,

detalhados nas próximas seções deste trabalho, de acordo com o tema abordado em cada seção.

Modelagem conceitual

Nesta etapa, definiu-se a estrutura do modelo de simulação a ser elaborado. Primeiramente,

foram definidos os inputs do sistema, ou seja, os parâmetros e variáveis de entrada utilizadas no

processo de simulação.

Depois, foram definidos os outputs do sistema, ou seja, as variáveis de saída resultantes da

simulação, sendo utilizadas para análise dos resultados e discussão.

Por fim, definiu-se o ambiente de desenvolvimento do modelo de simulação, ou seja, a

ferramenta computacional utilizada de suporte para o desenvolvimento do modelo de simulação.

Implantação do Modelo Computacional

Neste procedimento, houve criação efetiva do modelo de simulação, com base no

ambiente/ferramenta escolhido, permitindo a simulação com base nos parâmetros de entrada

(inputs) definidos e obtendo-se os parâmetros de saída (outputs) escolhidos na etapa anterior. Esta

etapa gerou indicadores de performance para verificação do modelo e das instâncias utilizadas.

Verificação do Modelo de Simulação

A verificação incluiu testes iniciais sobre cada parte do modelo para garantir que erros ou

inconsistências que prejudicassem a obtenção de resultados consistentes não fossem considerados

ou propagados. Para tal finalidade, foi necessário testar cenários em que os resultados fossem

conhecidos.

48

Para a validação do modelo, foi necessário atender as condições de contorno descritas a

seguir durante os testes de validação:

 Inexistência de erros durante processo de simulação – durante o período em que o

modelo estava efetivamente simulando o ambiente de teste, o programa não deveria apresentar

mensagens de erros que pudessem resultar no término do processo de simulação.

 Verificação e validação do processamento de jobs– o ambiente de simulação deveria

estar funcionando corretamente, independentemente do método de controle DBR. Para isto, foi

utilizada a teoria das filas, envolvendo casos conhecidos para validar o correto funcionamento

do ambiente de produção.

 Correto funcionamento dos mecanismos do DBR – uma condição importante é que o

modelo deveria ser capaz de realizar corretamente as três etapas básicas do DBR: identificar o

recurso gargalo do sistema com base nos inputs fornecidos; ser capaz de monitorar o WIP entre

a entrada do sistema e o recurso gargalo; utilizar o monitoramento de WIP e time buffer

fornecido como input para determinar o correto momento de entrada de jobs no sistema.

 Correto funcionamento das regras de sequenciamento – o funcionamento e a ordem de

entrada de jobs no sistema de produção deveria ser compatível com a regra de equacionamento

escolhida para a simulação.

Definição das instâncias

A quarta etapa deste trabalho foi definir as instâncias de simulação, ou seja, especificar os

valores a serem utilizados para simulação dentre os parâmetros de entrada previamente definidos

para a geração de jobs, estágios, due dates, entre outros.

Na literatura, é possível obter diversas instâncias teóricas utilizadas por outros autores para

simulação, bem como há a possibilidade de realização de estudo de caso baseado em sistema de

produção existente. As instâncias definidas serão posteriormente detalhadas neste trabalho, na

seção correspondente.

49

Experimentos

Esta etapa consistiu da execução dos experimentos de simulação das instâncias definidas

na etapa anterior. Para pautar a etapa de análise e discussão, gráficos e tabelas foram elaboradas

com base nos resultados obtidos pela saída do modelo de simulação para cada cenário rodado.

Análise e Discussão

Esta foi a etapa final do trabalho, consistindo em analisar os resultados obtidos durante a

etapa de experimento para fornecer subsídios para as conclusões do estudo. Nesta etapa, discutiu-

se também as limitações do modelo de simulação, recomendando-se estudos futuros para dar

sequência ao tema estudado.

50

51

4. MODELO DE SIMULAÇÃO

Este trabalho propõe o desenvolvimento de um modelo de simulação por eventos discretos

para o estudo do dimensionamento do time buffer em alguns cenários. O objetivo foi simular um

ambiente de produção flow shop genérico cuja estratégia de produção segue o padrão MTO, onde

os jobs seriam gerados a partir do pedido ou efetivação da venda, já com due date estabelecido. A

este ambiente de simulação, foi acrescido o método de controle DBR.

O presente capítulo discorre sobre o modelo de simulação, desde seu desenho conceitual,

passando pelo sua implantação computacional, até sua verificação e validação. Por fim, foram

definidas as instâncias de simulação que serão analisadas no próximo capítulo.

4.1. Modelagem Conceitual

Qualquer modelo de simulação pode ser dividido em três partes essenciais: parâmetros de

entrada ou inputs, ambiente de simulação (onde se desenvolve o modelo) e parâmetros de saída ou

outputs. Os parâmetros de entrada são variáveis escolhidas para alimentarem o modelo de

simulação, de forma a reger o comportamento da simulação.

O ambiente de simulação executa a simulação de acordo com a lógica de simulação e libera

como resultado os parâmetros de saída ou outputs (Figura 11). Os parâmetros de saída são,

geralmente, indicadores diretamente utilizados para a análise dos resultados da simulação e

conclusão do experimento. Porém, podem ser também dados utilizados para montar estes

indicadores, sendo, portanto, usados indiretamente para a análise de resultados da simulação e

conclusão do experimento.

Figura 11 - Componentes principais para desenvolvimento de um modelo de simulação

Fonte: Elaborado pelo autor

52

Desta forma, esta seção busca definir conceitualmente as variáveis usadas como inputs, o

ambiente de simulação escolhido para o desenvolvimento do modelo de simulação, os outputs do

modelo e a lógica de simulação.

4.1.1. Inputs do Modelo de Simulação

Para simular um sistema de produção flow shop genérico, com estratégia de produção MTO

com método de controle DBR, uma série de parâmetros precisam ser fornecidos para definir o

ambiente que efetivamente se quer simular. Estes serão os inputs do sistema.

Número de simulações – O número de simulações realizadas cada vez que o modelo é

rodado será um parâmetro de entrada. O valor estabelecido será o número de vezes em que o

ambiente simulará de forma repetida o sistema escolhido, ou seja, não se muda os outros inputs de

simulação. A única grandeza que efetivamente muda entre simulações é a semente para geração de

números aleatórios.

O objetivo de definir esta grandeza como parâmetro de entrada é permitir maior grau de

confiabilidade dos indicadores de desempenho, de forma a simular o mesmo sistema um número

significante de vezes para eliminar a potencial existência de outliers.

Tempo de simulação – É o parâmetro de entrada que delimitará até quando uma simulação

irá rodar. O presente modelo de simulação terá como gatilho de parada uma grandeza temporal

genérica, que pode ser segundos, minutos, horas, dias, semanas ou qualquer outra grandeza

escolhida na hora de fornecer os dados temporais dos experimentos.

Tipo de distribuição para geração da chegada de jobs – A geração de jobs no sistema

será fixo ou variável (probabilístico), com os tempos entre gerações definidos a partir de um tipo

de distribuição fornecida como parâmetro de entrada. No caso de geração de jobs com distribuição

fixa, jobs chegam após o mesmo intervalo temporal no sistema. Logo, o modelo não trabalhará

com tempos de geração diferentes entre jobs.

53

As distribuições escolhidas para a elaboração do modelo foram as mais comumente

apresentadas na literatura existente e que melhor representam ambientes de simulação reais. São

elas: distribuição exponencial, distribuição normal, distribuição uniforme e distribuição fixa.

Parâmetros para a geração das chegadas de jobs – Após definir qual o tipo de

distribuição a ser considerado para a geração de jobs no sistema, é necessário definir parâmetros

temporais para determinar o tempo entre gerações. Dependendo do caso, quatro parâmetros de

simulação serão necessários: tempo médio entre gerações, tempo mínimo entre gerações, tempo

máximo entre gerações e desvio padrão do tempo médio entre gerações.

Para distribuição exponencial, será necessário fornecer o tempo médio entre gerações que

consiste no inverso da taxa média utilizada para gerar tempos de chegada de jobs. Para distribuição

normal, será necessário fornecer tempo médio e desvio padrão dos tempos entre gerações. Para

distribuição uniforme, será necessário fornecer os tempos máximos e mínimos, para determinar um

intervalo de valores com a mesma probabilidade para ser o tempo entre a chegada de jobs no

sistema. Por fim, na distribuição fixa, o tempo médio será o tempo entre a geração de jobs no

sistema.

Tipo de distribuição para geração de due date– Como o presente modelo considerará

apenas a estratégia de produção MTO, quando um job é gerado, ele já deve possuir um determinado

due date. Para a geração de due date para cada job gerado na simulação, também se deve determinar

um tipo de distribuição, de forma similar ao tipo de distribuição determinado para a geração de

tempos de chegada, porém, de forma independente.

Os tipos de distribuição que podem ser escolhidas para a geração de due dates são as

mesmas disponíveis para a geração de tempos de chegada, ou seja: distribuição exponencial,

distribuição normal, distribuição uniforme e distribuição fixa.

54

Parâmetros para a geração de due date– Após definir qual o tipo de distribuição a ser

considerado para a geração de jobs no sistema, é necessário definir os parâmetros para a definição

dos tempos. Os parâmetros que o sistema considera para geração de due date devem ser os mesmos

que para a geração de tempos de chegada, ou seja: tempo médio, tempo mínimo, tempo máximo e

desvio padrão. Os parâmetros só serão necessários dependendo do tipo de distribuição, da mesma

forma que para a geração de tempos de chegada.

Número de estágios – O número de estágios deve ser um input do modelo de simulação.

O modelo proposto simulará as passagens do número de jobs gerados pelo número de estágios

gerados, considerando as características de cada estágio, que devem ser customizáveis de estágio

para estágio.

Número de máquinas por estágio – Cada estágio pode ter número de máquinas diferentes,

como definição do ambiente flow shop genérico. O número de máquinas para cada estágio é um

input do modelo de simulação. As máquinas existentes dentro de um estágio de produção devem

ser idênticas entre si.

Tipo de distribuição para geração de tempos de processamento – Da mesma forma que

a geração de tempos de chegada de jobs no sistema e due date, a geração de tempos de

processamento podem ser probabilísticas ou determinísticas e seguem uma distribuição

previamente estabelecida.

As distribuições para a geração de tempos de processamento podem ser: exponencial,

normal, uniforme, fixa (determinística), triangular ou Erlang. Vale ressaltar que o tipo de

distribuição, bem como os parâmetros para a geração de tempos de processamento, são

características do estágio e não dos jobs.

Parâmetros para a geração de tempos de processamento – Após definir qual o tipo de

distribuição a ser considerado para a geração de tempos de processamento, é necessário definir

parâmetros temporais para determinar o tempo entre gerações. Dependendo do caso, cinco

parâmetros de simulação serão necessários: tempo médio, tempo mínimo, tempo máximo, desvio

padrão e número de exponenciais para formação da distribuição Erlang.

55

Para distribuição exponencial, será necessário fornecer o tempo médio, que consiste no

inverso da taxa média utilizada para gerar tempos de processamento. Para distribuição normal, será

necessário fornecer tempo médio e desvio padrão dos tempos de processamento. Para distribuição

uniforme, será necessário fornecer os tempos máximos e mínimos, para determinar um intervalo

de valores com a mesma probabilidade para ser o tempo de processamento.

Na distribuição fixa, o tempo médio será o tempo de processamento. Na distribuição

triangular, os tempos mínimos e máximos funcionam como valores limites e o tempo médio será a

moda.

A distribuição Erlang é uma distribuição de probabilidade contínua com uma ampla

aplicabilidade, principalmente devido à sua relação com a distribuição exponencial e a distribuição

gama. Atualmente, esta distribuição é utilizada em várias áreas que aplicam processos estocásticos,

consistindo em uma combinação de distribuições exponenciais. Para a distribuição Erlang, será

necessário fornecer o tempo médio de processamento e o número de exponenciais combinados,

denominado beta de Erlang.

Probabilidade de um job qualquer passar por cada estágio – Cada estágio terá um

atributo de entrada que consiste na probabilidade de um job qualquer passar ou não por este estágio.

No processo de geração do job, seu caminho será determinado com base nestas probabilidades, que

são atributos do estágio e não do job gerado. Desta forma, conseguiu-se adaptar o modelo para a

criação de um flow shop genérico. Caso estas probabilidades sejam todas 100%, temos um flow

shop flexível.

Regra de sequenciamento – A regra de sequenciamento utilizada para ordenar jobs

contidos no pré-shop devido ao método de controle DBR é um input do sistema. Vale ressaltar que

este ordenamento só ocorre no pré-shop, sendo que quando o job está dentro do sistema, seguirá a

regra de sequenciamento FIFO.

As regras escolhidas para serem retratadas no modelo de simulação foram as mais

comumente utilizadas e que apresentam maior aplicação prática: FIFO (First In, First Out), SPT

(Shortest Processing Time), EDD (Earliest Due Date) e LS (Least Slack).

56

Tamanho do time buffer limite para a entrada de jobs no sistema – O tamanho do time

buffer limite, parâmetro fundamental para os objetivos do presente trabalho, será um input do

sistema. Isto nos permitirá criar diversos cenários com diferentes tamanhos de time buffer para

como se comportam os indicadores de desempenho em função do time buffer para diferentes

layouts de ambientes de produção.

A Figura 12 ilustra todos os inputs que o modelo de simulação requer para efetivamente

conduzir a simulação pelo modelo de simulação elaborado.

Figura 12 - Parâmetros de entrada do modelo de simulação (Inputs)

Fonte: Elaborado pelo autor

57

4.1.2. Ambiente de Simulação

O ambiente de simulação escolhido para o desenvolvimento do modelo de simulação foi a

linguagem de programação Python, com auxílio da biblioteca Simpy. Simpy © é um módulo da

linguagem Python© open source voltado à criação de modelos de simulação por eventos discretos,

permitindo a criação de entidades, como jobs e estágios. Esta biblioteca permite realizar simulações

com processos que não interagem uns com os outros, mas que possuem recursos partilhados, fator

fundamental para o caso deste trabalho.

Este foi o ambiente escolhido, pois permite maior grau de customização do ambiente

escolhido, ou seja, pode-se montar um modelo genérico que receba dados e gere uma das possíveis

versões de sistemas simulados. Isto não é possível em softwares especializados clássicos de

simulação de sistemas de produção por eventos discretos, como Simul8©, Arena© e ProModel©.

4.1.3. Outputs do Modelo de Simulação

O output do modelo de simulação deste trabalho foi a simulação em si, ao invés de

indicadores de desempenho. Em outras palavras, ao invés de calcular os indicadores de

desempenho que serão posteriormente analisados com base nos eventos da simulação, o modelo

de simulação exportará os eventos relevantes da simulação em si, de forma a se ter o retrato do que

ocorreu na simulação.

Isto foi importante porque, ao exportar os eventos da simulação ao invés de exportar apenas

os indicadores de desempenho, foi possível entender o funcionamento do modelo e analisar pontos

específicos da simulação. Isto foi essencial para a identificação de erros do modelo e sua correção,

de forma a facilitar a validação do modelo.

Além disso, isto não prejudicou a análise de indicadores de desempenho. Estes indicadores

continuaram a ser calculados, porém, fora da simulação. Os indicadores de desempenho

considerados no presente trabalho foram: mean lead time, mean throughtput time, mean tardiness

e percentage tardy. A descrição destes indicadores foi feita no Capítulo 2 (seção 2.4.4).

58

Os eventos de simulação exportados foram: geração do job dentro do sistema; entrada do

job no sistema de produção; entrada do job na fila de cada uma das operações em seu caminho;

início da operação do job em cada uma das operações em seu caminho; fim da operação do job em

cada uma das operações em seu caminho; saída do job do sistema de produção, representando sua

entrega para o cliente. Eventualmente, se o job for encaminhado para o pré-shop após a sua geração,

os eventos de entrada e saída do pré-shop também devem ser exportados como eventos da

simulação.

4.1.4. Lógica de Simulação

A lógica é função do ambiente de simulação ser capaz de incluir os inputs fornecidos e, por

meio da lógica de simulação, fornecer os outputs determinados, no caso, exportar os eventos de

simulação.

Para isto, a lógica do modelo de simulação deve seguir a de um sistema de produção flow

shop genérico com estratégia MTO controlada pelo método de controle DBR. Para tal finalidade,

controlou-se as seguintes diretrizes.

 A simulação deve ser repetida com base no número de simulações determinadas e, em cada

vez, o tempo de simulação deve ser igual ao tempo determinado como parâmetro de entrada.

 Os jobs devem ser gerados em intervalos de tempos determinados a partir do tipo de

distribuição escolhida e parâmetros temporais fornecidos como inputs do modelo. A geração

de novos jobs é livre, ou seja, não é restringida a não ser pelo tempo de simulação.

 No mesmo instante em que o job é gerado no sistema, seu due date e caminho dentro do

sistema (estágios em que passa) devem ser gerados. Para isso, usa-se o tipo de distribuição

escolhida e parâmetros determinados para a geração de due date bem como a probabilidade de

cada máquina estar no caminho de um job.

 Após a geração de um job qualquer, checa-se o volume de WIP na forma de time buffer e

compara-se este valor com o time buffer limite definido como input. Se o valor atual for menor

que o limite, o job gerado entra no sistema de produção. Caso contrário, entrará no pré-shop e

aguardará seu momento de entrar no sistema.

59

 O método de controle DBR é ativado a cada vez que um novo job é gerado ou alguma

máquina de alguma estação termina seu processamento. Caso o DBR indique que um novo job

contido no pré-shop deve entrar no sistema, o pré-shop é reordenado conforme regra de

sequenciamento definida como parâmetro de entrada e aquele job mais prioritário é o escolhido

para entrar no sistema de produção.

 No sistema, cada job deve seguir seu caminho no sentido do fluxo do sistema, não

necessitando ficar em filas de estágios em que não precisam passar.

 A regra de sequenciamento de jobs dentro do sistema de produção é FIFO, ou seja, sempre

o primeiro a entrar terá prioridade.

 Caso um job necessite operar em um estágio e todas as máquinas estiverem em operação,

ele deve aguardar na fila do estágio.

 Para seguir corretamente o método de controle DBR, o modelo de simulação deve

identificar o estágio gargalo do sistema, antes do início da simulação.

 O modelo de simulação deve ser capaz de calcular o tamanho do time buffer atual do sistema

de produção simulado a cada instante que for necessário durante a simulação.

 O modelo de simulação deve ser capaz de sequenciar o pré-shop de acordo com as

possibilidades existentes de regras de prioridade e deve ser capaz de liberar um novo job para

o sistema dentro desta ordem toda vez em que a checagem identificar que o sistema está abaixo

do time buffer limite.

4.2. Modelagem Computacional

Busca-se resumir nesta seção como a modelagem conceitual foi efetivamente implantada

em Python© com auxílio da biblioteca Simpy©. Desta maneira, o presente item será dividido da

mesma maneira que o modelo de simulação foi dividido: em funções.

Vale ressaltar que funções menos importantes e mais simples, cujo escopo para sua criação

foi meramente o de suporte, serão descritas de forma conjunta e menos detalhada como “funções

de suporte”.

O modelo completo e comentado pode ser visto no ANEXO A, bem como fotos da planilha

Excel e as macros de suporte utilizadas para importar inputs e analisar os indicadores de

desempenho (ANEXOS B, C e D).

60

4.2.1. Função “Inputs”

Esta é a função do modelo de simulação responsável por importar da planilha Excel de

suporte os inputs necessários para a simulação. Como se pode observar no ANEXO A, as variáveis

são importadas por meio de suas respectivas coordenadas da planilha de Excel que podem ser vistas

no ANEXO B.

Além de importar todos os inputs mencionados no item 4.1.1 do presente trabalho, esta

função gera uma lista (“ListaEstagios”) que possuirá tamanho equivalente ao número de estágios,

em que cada item da lista corresponde a um estágio do ambiente de simulação a ser gerado.

Cada item da lista, correspondente a um estágio, terá oito elementos ou componentes:

números de máquinas do estágio, tipo de distribuição para geração de tempos de processamento,

tempo médio, desvio padrão, tempo mínimo, tempo máximo, beta Erlang e probabilidade de um

job passar ou não pelo estágio.

A lista criada terá todos os atributos dos estágios, auxiliando na criação do ambiente de

simulação. Para criar esta lista, um loop é gerado pela importação do número de estágios, de forma

a ler os atributos de cada estágio. O número de estágios corresponde a uma fórmula CONT.NÚM

do Excel, de forma a contar o número de máquinas atribuídas como parâmetro de entrada. Por fim,

a função retorna todos os parâmetros de entrada importados, inclusive a lista de estágios.

4.2.2. Funções de Suporte

Com o objetivo de suporte a operações muito utilizadas durante o modelo de simulação,

duas funções de suporte foram criadas: a função ‘NumAleatorio”, responsável por gerar números

aleatórios e a função “TempoMed”, responsável por retornar o tempo médio esperado de acorda

com a distribuição escolhida e parâmetros de entrada.

A função responsável por gerar números aleatórios possui como parâmetro de entrada o

tipo de distribuição escolhida e parâmetros auxiliares para geração de tempos: tempo médio, desvio

padrão, tempo mínimo, tempo máximo e beta Erlang.

61

A função é formada por um conjunto de ifs que realizam o teste condicional de forma a

identificar o tipo de distribuição escolhida. A partir da distribuição escolhida, gera-se um número

aleatório por meio de uma função da biblioteca random (ex: random.expovariate). Por fim, a função

retorna o número aleatório gerado. Caso a distribuição seja fixa, retorna-se o tempo médio de

parâmetro de entrada.

A função responsável por retornar o tempo médio recebe os mesmos parâmetros que a

função responsável por gerar números aleatórios. Também é formada por um conjunto de ifs que

realizam o teste condicional de forma a identificar o tipo de distribuição escolhida. Caso a

distribuição seja exponencial, normal, fixa ou Erlang, retorna o tempo médio. Caso seja uniforme,

retorna a média aritmética entre o tempo mínimo e o tempo máximo. Caso seja triangular, retorna

a média aritmética entre o tempo mínimo, tempo máximo e tempo médio.

4.2.3. Função “GeracaoJobs”

A função “GeracaoJobs” é responsável por gerar os jobs, desta forma, dando início a

simulação, sendo que a geração de jobs só é cessada quando o tempo de simulação é ultrapassado.

Para isto, um elemento lógico while é utilizado.

Cada job, ao ser criado, recebe uma numeração, um nome, um due date e um caminho, ou

seja, no momento de geração já é definido os estágios em que o job passará. O nome do job será

formado pelo prefixo “Job” acrescido à sua numeração. Desta forma, o quinto job gerado terá

nomenclatura “Job5”. A numeração de jobs não é independente entre simulações, de forma que

uma variável global foi definida para estocar o número do último job gerado na simulação anterior

para dar sequência nesta ordem.

O caminho será uma lista binária com o mesmo número de itens em relação ao número de

estágios. Caso o elemento n da lista seja 1, o estágio n do sistema de produção, na ordem do fluxo,

estará no caminho do job gerado. Caso contrário (elemento 0), o job ultrapassa o estágio

correspondente.

Para a geração desta lista caminho, uma lista auxiliar denominada “SimouNao” foi criada

com a proporcionalidade de uns e zeros igual a relação de probabilidade do estágio n estar ou não

no caminho do job. Para cada estágio n, é gerada uma lista “SimouNao” e um elemento é

aleatoriamente escolhido desta lista para compor a lista caminho.

62

Por fim, após a geração efetiva do jobs, a presente função define a próxima etapa do job,

que será seu acréscimo ao pré-shop, um recurso Store do Simpy©, ou o início de seu processamento,

ou seja, a chamada da função “Processamento”. Para isto, a função “Buffer” é chamada para

comparar o time buffer atual do sistema com o time buffer limite determinado. Vale ressaltar que

os tempos de geração são acrescidos ao tempo atual da simulação no momento da geração.

4.2.4. Função “Processamento”

A função “Processamento” é a responsável por simular a passagem de jobs pelo sistema de

produção, ou seja, pelos estágios do sistema que estão no caminho de cada job. Para isto, um loop

é gerado para cada job, de forma que ele passe por cada estágio de produção, sendo que é realizado

um teste na forma do operador lógico if para identificar se o estágio está ou não no caminho do job.

Se ele não estiver, o estágio é pulado. Se ele estiver no caminho, o job entrará na fila do estágio,

realizará a operação e será liberado para o próximo estágio.

Cada estágio do modelo de simulação recebe um Resource da biblioteca Simpy©, que o

permite ter as características de um recurso com jobs na fila de entrada e jobs em operação,

facilitando o processo de simulação. Os estágios do modelo de simulação foram definidos como

“classe”, de forma a facilitar ao modelo de simulação a criação de um número finito de estágios,

determinado como parâmetro de entrada. Sem o uso de “classes”, isso seria inviável.

Os operadores logísticos “request” e “release” foram utilizados respectivamente para

simular o tempo de fila de cada job e sua remoção do estágio. Após a saída de qualquer job de

qualquer estágio, a função “Rope” é chamada, de forma a ativar o mecanismo DBR, caso o time

buffer permita.

Vale ressaltar que todos os eventos de chegada de Jobs na fila, bem como o início e término

de suas operações, em qualquer estágio, foram exportados como output da simulação.

Ao final da função de processamento, o job termina a sua simulação e sai do sistema, evento

que também é exportado da simulação como output. Por fim, os tempos de espera em fila e de

processamento foram sempre acrescidos ao tempo de simulação. Os tempos de processamento

foram definidos com o auxílio da função “NumAleatorio”.

63

4.2.5. Função “Drum”

A função “Drum” é a responsável por simular a primeira etapa do método de controle DBR,

ou seja, a identificação do recurso gargalo. Esta função é chamada no início do bloco principal,

antes do início da simulação temporal. No modelo de simulação desenvolvido para fins deste

trabalho, o recurso gargalo do sistema é então identificado com base nos parâmetros definidos para

os estágios e não com base em parâmetros obtidos durante a simulação temporal.

Além disso, o recurso gargalo é único e definido uma única vez antes da simulação, não

sendo, portanto, um processo iterativo durante a simulação. A definição do recurso gargalo se dá

pelo recurso cuja expectativa para processamento de um lote n de jobs fosse a maior. Para isto, a

função “TempoMed”, que calcula a expectativa médio de processamento de certo job em cada

estágio, é utilizada para achar o tempo médio esperado que uma máquina em cada estágio processa

certo job. Além do tempo médio, o número de máquinas no estágio e a probabilidade de certo job

passar pelo estágio são considerados para cálculo do tempo de processamento de um lote de jobs.

Sumarizando, o recurso gargalo será aquele que possuir o maior valor de TL (tempo de

processamento de um lote de jobs unitário por número de jobs no lote), de acordo com a equação

(4). Se dois estágios possuírem o mesmo TL, o gargalo será aquele que vier primeiro no sistema.

Isto foi determinado de forma arbitrária, de forma a possibilitar a implementação do DBR.

𝑇𝐿𝑒𝑠𝑡á𝑔𝑖𝑜 𝑛 =
𝑡𝑒𝑚𝑝𝑜 𝑚é𝑑𝑖𝑜 𝑑𝑒 𝑝𝑟𝑜𝑐𝑒𝑠. 𝑑𝑒 1 𝑗𝑜𝑏𝑛 ∗ 𝑃𝑟𝑜𝑏. 𝑑𝑒 𝑗𝑜𝑏 𝑠𝑒𝑟 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑎𝑑𝑜𝑛

𝑁ú𝑚𝑒𝑟𝑜 𝑑𝑒 𝑚á𝑞𝑢𝑖𝑛𝑎𝑠𝑛

Por fim, a função “Drum” retornará a posição do estágio gargalo no sistema, parâmetro que

será utilizado para o cálculo do time buffer durante a simulação.

(4)

64

4.2.6. Função “Buffer”

A função “Buffer” é a responsável por realizar a checagem do tamanho atual do time buffer

toda vez que for chamada e compará-la ao time buffer limite. A função retorna True, caso haja a

possibilidade de liberar certo job para o sistema, ou seja, o time buffer limite seja maior que o atual,

no momento de checagem. Caso contrário, a função retorna False, caso o sistema não permita a

liberação de novo job.

Para isto, a função é composta basicamente de duas etapas: cálculo do time buffer no

momento que a função é chamada; comparação do time buffer calculado com o time buffer limite,

parâmetro de entrada do sistema.

Para realizar a primeira etapa, a função necessita receber como parâmetro de entrada a lista

de estágios, que contém todas as informações de processamento de cada estágio; e a posição do

gargalo, pois, conceitualmente, o time buffer no modelo DBR consiste no tempo total de

processamento esperado dos jobs entre a entrada do sistema e o recurso gargalo, como visto no

Capítulo 2.

A partir daí, a função “Buffer” calcula o tempo médio esperado de processamento de um

job qualquer para cada estágio entre o início do sistema de produção e o estágio gargalo e guarda

estes tempos em uma lista de suporte “ListaTempos”. Para isto, utiliza a função “TempoMed” de

suporte.

Posteriormente, passa contando o número de jobs na fila de cada estágio (considerando

aqueles em operação) e o tempo médio de processamento esperado até o gargalo. Para cálculo do

tempo médio de processamento até o gargalo, soma-se o tempo médio esperado de processamento

entre o estágio em que os jobs estão na fila até o tempo médio do estágio gargalo.

Com estes dois valores determinados para cada estágio, estes são multiplicados e

registrados em uma variável que somará esta multiplicação para cada um dos estágios até o gargalo,

e, portanto, terá ao final do processo, o tamanho do time buffer atual.

A segunda etapa, que consiste em comparar o time buffer calculado com o time buffer

limite, é bem simples. Ela consiste em comparar os dois atributos com o uso do operador logístico

if, retornando True, caso o limite seja maior que o atual, e False, caso contrário.

65

4.2.7. Função “Rope”

A função “Rope” é a responsável pela liberação de jobs dentro do pré-shop para o sistema

de produção. Ela é chamada toda vez que uma operação de processamento qualquer dentro do

sistema de produção é terminada. A função “Rope” não retorna nenhum valor, apenas inicia o

processamento de um novo job caso a função “Buffer”, que é chamada dentro da função “Rope”,

retornar True, isto é, o time buffer limite for maior que o time buffer atual.

Caso a função “Buffer” retorne True, a função “Rope” realizará a seguinte rotina: chamará

a função “RegrasPrioridade”, que reordenará o pré-shop de acordo com a ordem de prioridade

escolhida como parâmetro de entrada; removerá o job mais prioritário do pré-shop por meio do

comando “get”, ou seja, removerá o primeiro job no recurso do Simpy© equivalente ao pré-shop;

chamará a função “Processamento”, dando início ao processamento do job removido do pré-shop

dentro dos estágios do sistema de produção.

Caso a função “Buffer” retorne False, a função “Rope” somente acionará a função

“RegrasPrioridade”, que reordenará o pré-shop de acordo com a ordem de prioridade escolhida

como parâmetro de entrada.

4.2.8. Funções de Sequenciamento

Em relação a regras de sequenciamento ou regras de prioridade, o modelo de simulações

possui quatro funções que tratam sobre este aspecto: a função “RegrasPrioridade”, a função

“EDD”, a função “SPT” e a função “LS”.

A função “RegrasPrioridade” consiste na função que efetivamente realiza o

sequenciamento de jobs no pré-shop. A lógica desta função é bem simples: é composta por um

conjunto de operadores lógicos ifs que checam se o parâmetro de entrada relativo a regra de

sequenciamento escolhida é compatível com as regras de sequenciamento FIFO, EDD, SPT ou LS.

Caso corresponda a regra de sequenciamento EDD, a função “EDD”, que efetivamente

realizada a ordenação do pré-shop é acionada. Caso corresponda a regra de sequenciamento SPT,

a função “SPT”, que efetivamente realizada a ordenação do pré-shop é ativada. Caso corresponda

a regra de sequenciamento LS, a função “LS”, que efetivamente realizada a ordenação do pré-shop

é chamada.

66

A exceção se dá pela regra FIFO. Caso o parâmetro de entrada corresponda a regra de

sequenciamento FIFO, a função “RegrasPrioridade” não realiza nenhuma operação e simplesmente

termina sua operação. Isto ocorre, pois a mecânica de adição de novos jobs no pré-shop ocorre pela

ordem de geração do job no sistema. Logo, o pré-shop já possui o seu sequenciamento de acordo

com a regra FIFO.

Vale ressaltar que a função “RegrasPrioridade” não retorna nenhum valor ou variável, ou

seja, apenas ordena o pré-shop de acordo com a regra de sequenciamento escolhido para que a

saída de jobs do pré-shop siga esta mesma ordem. A Figura 13 ilustra o fluxograma de

relacionamentos de funções de sequenciamento.

Figura 13 - Relação entre funções de sequenciamento do modelo de simulação

Fonte: Elaborado pelo autor

As funções “EDD”, ”SPT” e “LS” possuem a mesma finalidade: se forem acionadas,

ordenarão o pré-shop de acordo com a regra de prioridade da qual herdam seu nome. Portanto, a

função “EDD” ordenará os jobs dentro do pré-shop de acordo com due date, a função “SPT”

ordenará os jobs do pré-shop de acordo com seu tempo global de processamento e a função “LS”

ordenará os jobs do pré-shop de acordo com sua folga (tempo esperado para finalização do job

menos seu due date).

67

Da mesma forma que a utilidade destas funções é a mesma, o seu funcionamento é bem

similar entre si. Pode-se descrever este funcionamento em sete etapas:

 Primeira etapa – consiste na criação de uma lista auxiliar idêntica a lista do pré-shop, por

meio de um loop que adiciona todos os elementos da lista do pré-shop na mesma ordem na

lista auxiliar.

 Segunda etapa – consiste em esvaziar a lista do pré-shop, de forma que possibilita

adicionar novamente os jobs de acordo com a nova ordem, numa lista vazia.

 Terceira etapa – consiste em definir o primeiro item da lista como parâmetro de

comparação inicial para achar o job mais prioritário dentro da lista auxiliar, de acordo com

a regra escolhida.

 Quarta etapa – comparar um a um os jobs da lista auxiliar de forma a identificar aquele

mais prioritário. Ou seja, começamos comparando o primeiro job da lista com o segundo e

identificando o mais prioritário. Em seguida, comparamos o terceiro item da lista com o

mais prioritário entre o segundo e o primeiro juntos. Isto é feito desta maneira em diante

até o final da lista auxiliar, de forma que teremos identificado o job mais prioritário ao final

desta etapa.

 Quinta etapa – consiste em adicionar este job mais prioritário a lista do pré-shop, por meio

do elemento lógico do Simpy© denominado put.

 Sexta etapa – consiste em remover da lista auxiliar o job já adicionado na lista do pré-

shop, com o auxiio do elemento lógico pop.

 Sétima etapa – consiste em repetir as seis primeiras etapas na mesma ordem até a remoção

de todos os jobs da lista auxiliar, de forma a esvaziá-la. Assim, teremos no final deste

processo a lista do pré-shop devidamente ordenada de acordo com a regra escolhida.

Vale ressaltar que os jobs na lista do pré-shop são representados por uma lista composta de

cinco itens: número, nome, número de estágios por onde é processado, due date e a lista caminho.

Estas variáveis permitem o cálculo das variáveis utilizadas como parâmetro de comparação para

as regras EDD, SPT e LS. Para a regra EDD, a variável a ser comparada é retirada da lista. Para as

regras SPT e LS, é necessária uma série de processos de manipulação de dados que podem ser

vistos em detalhes e com comentários no ANEXO A.

Portanto, a única diferença efetiva entre as funções EDD, SPT e LS é a forma de cálculo da

variável a ser comparada.

68

4.2.9. Bloco Principal e Output

O bloco principal consiste na parte principal do modelo de simulação, que começará a

simulação e acionará as funções auxiliares, apresentadas anteriormente neste capítulo. O código de

programação é bem simples, comparativamente as funções do modelo, podendo ser dividido em

três partes: importação de parâmetros de entrada e bibliotecas; execução do número escolhido de

simulações por meio de um loop, de acordo com o tempo de simulação determinado; importação

do output da simulação para planilha excel e análise de dados via macro do Excel.

A primeira etapa começa com a importação das bibliotecas utilizadas como suporte para o

desenvolvimento do modelo de simulação. São três bibliotecas importadas: a já mencionada

Simpy©, que permite a simulação por eventos discretos; a biblioteca random, que possibilita a

geração de número aleatórios, com base nas distribuições de probabilidade previamente retratadas;

a biblioteca xlwings, que permite a interface do código python com o Excel.

Após importar estas bibliotecas, o código define a planilha na qual a interface entre Python©

e Excel será gerada. Fotos desta planilha podem ser vistos nos ANEXOS B e C. Para acabar esta

primeira fase, o bloco principal do código do modelo de simulação ativa duas funções: a função

“Inputs”, responsável por ler os inputs do arquivo Excel e retornar os parâmetros de entrada para

geração de jobs, due dates e estágios; a função “Drum”, que identifica a posição do recurso gargalo,

parte do método de controle DBR que será fundamental para a simulação do modelo.

Por fim, a primeira etapa ainda engloba a geração de uma entidade Store para simular o

pré-shop e n entidades Resource, para simular os estágios do sistema de produção, com o auxílio

do Simpy©. Os recursos gerados estão sobre a classe “Máquinas” e são englobados em uma lista

denominada “Estágio”.

A segunda etapa do bloco principal consiste em chamar a função “GeracaoJobs”, que dá

início ao processo de simulação e geração de jobs no sistema, durante a simulação. Isto só é

permitido, pois, após chamar esta função, o bloco principal aciona o comando

“env.run(until=TempoSimulacao)”, que corresponde ao gatilho de início da simulação,

terminando-a quando se estoura o tempo de simulação previamente definido como parâmetro de

entrada. As chamadas desta função e do comando gatilho são feitas no mesmo número de vezes

que o número de simulações definido como input.

69

A terceira etapa consiste em ativar a macro “Automatico” escrita em linguagem de

programação VBA, atrelada à planilha Excel dos ANEXOS B e C. Esta macro importa os eventos

gerados durante a simulação para planilha Excel e ativa as fórmulas que a analisam para gerar os

indicadores de desempenho definidos na modelagem conceitual: mean lead time, mean throughtput

time, mean tardiness e percentage tardy. Esta macro pode ser observada no ANEXO D do presente

trabalho.

Vale ressaltar que o modelo de simulação, durante a execução da simulação, registra os

eventos de simulação ocorridos, em ordem temporal, em arquivo txt., que ao rodar a macro

“Automatica”, é importada para o arquivo Excel (Figura 14).

Figura 14 - Arquivos pertencentes ao modelo de simulação e interfaces

Fonte: Elaborado pelo autor

Em relação ao output do sistema, já foi previamente afirmado que ocorre na forma da

impressão de eventos em um arquivo txt., que é exportado para o Excel. Porém, ainda não foi

mencionado a forma em que estes eventos são retratados. A Figura 15 mostra um exemplo de

output da simulação, elaborado para fins de ilustração.

70

Figura 15 - Exemplo de output do modelo de simulação

Fonte: Elaborado pelo autor

Número da Simulação Número do Job Evento Local Tempo de Simulação Due Date

1.0 Job1 Geração Sistema 2.0 23.6

1.0 Job1 Entrada Sistema 2.0 23.6

1.0 Job1 ChegadaOp Operação1 2.0 -

1.0 Job1 InícioOp Operação1 2.0 -

1.0 Job1 FimOp Operação1 3.9 -

1.0 Job1 ChegadaOp Operação2 3.9 -

1.0 Job1 InícioOp Operação2 3.9 -

1.0 Job2 Geração Sistema 4.4 28.1

1.0 Job2 Entrada Sistema 4.4 28.1

1.0 Job2 ChegadaOp Operação1 4.4 -

1.0 Job2 InícioOp Operação1 4.4 -

1.0 Job3 Geração Sistema 6.2 27.2

1.0 Job3 Entrada Sistema 6.2 27.2

1.0 Job3 ChegadaOp Operação1 6.2 -

1.0 Job3 InícioOp Operação1 6.2 -

1.0 Job2 FimOp Operação1 6.9 -

1.0 Job2 ChegadaOp Operação2 6.9 -

1.0 Job2 InícioOp Operação2 6.9 -

1.0 Job1 FimOp Operação2 7.2 -

1.0 Job1 ChegadaOp Operação3 7.2 -

1.0 Job1 InícioOp Operação3 7.2 -

1.0 Job4 Geração Sistema 7.9 25.4

1.0 Job4 Entrada Sistema 7.9 25.4

1.0 Job4 ChegadaOp Operação1 7.9 -

1.0 Job4 InícioOp Operação1 7.9 -

1.0 Job3 FimOp Operação1 9.0 -

1.0 Job3 ChegadaOp Operação2 9.0 -

1.0 Job3 InícioOp Operação2 9.0 -

1.0 Job4 FimOp Operação1 9.3 -

1.0 Job4 ChegadaOp Operação2 9.3 -

1.0 Job5 Geração Sistema 9.9 25.9

1.0 Job5 Entrada PréShop 9.9 25.9

1.0 Job2 FimOp Operação2 10.1 -

1.0 Job2 ChegadaOp Operação3 10.1 -

1.0 Job2 InícioOp Operação3 10.1 -

1.0 Job4 InícioOp Operação2 10.1 -

1.0 Job1 FimOp Operação3 10.5 -

1.0 Job1 ChegadaOp Operação4 10.5 -

1.0 Job1 InícioOp Operação4 10.5 -

1.0 Job6 Geração Sistema 11.8 26.6

1.0 Job6 Entrada Sistema 11.8 26.6

1.0 Job6 ChegadaOp Operação1 11.8 -

1.0 Job6 InícioOp Operação1 11.8 -

1.0 Job3 FimOp Operação2 12.5 -

1.0 Job3 ChegadaOp Operação3 12.5 -

71

Como pode-se observar, a impressão de um evento da simulação ocorre com o apoio de

seis colunas: número da simulação, nome do job, evento, local do evento, tempo de simulação e

due date. Vale ressaltar que o due date só é impresso no momento de geração do job, de forma a

simplificar o output, evitando a repetição constante deste número.

Os eventos a serem impressos durante uma simulação são: a geração de um job; sua entrada

e saída do pré-shop; entrada, início da operação e fim da operação de um job em todos os estágios

em seu caminho; a saída do job do sistema.

Por fim, a Figura 16 retrata a relação existente entre as principais funções do código

elaborado que corresponde ao modelo de simulação. Para fins de esclarecimento, quando uma

função aciona a outra, ela está conectada à esta por uma linha, sendo que aquela função que recebe

a seta é a acionada. Funções de suporte são amplamente utilizadas no modelo e, para melhor

representação gráfica, não foram consideradas.

Figura 16 - Funções do modelo computacional e suas interfaces

Fonte: Elaborado pelo autor

4.3. Verificação e Validação

O modelo de simulação passou por um rigoroso processo de verificação, que foi conduzido

de forma modular, validando parte por parte do modelo. Todas as funções foram verificadas

individualmente. No final, o modelo foi verificado como um todo por meio de uma série de testes.

A seguir, será retratado como foi conduzido o processo de verificação das principais partes do

modelo.

72

4.3.1. Verificação da Geração de jobs e due date

A etapa de verificação do processo de geração de jobs e due dates focou em garantir dois

fatores principais: que a geração de jobs seguisse efetivamente a distribuição e parâmetros

escolhidos; que o processo de geração de jobs fosse conduzido até o tempo de simulação

determinado como parâmetro de entrada.

Para garantir que a geração de jobs seguisse a distribuição escolhida, uma série de

simulações foram conduzidas para cada tipo de distribuição e os tempos entre gerações foram

plotados em gráficos. Calculou-se então a média, desvio padrão, tempo mínimo e tempo máximo,

conforme o tipo de distribuição. O mesmo processo foi conduzido para a geração de due dates.

O que se observou foi que o modelo de simulação está aderente a qualquer um dos tipos de

distribuição habilitados dentro do modelo de simulação: distribuição exponencial, normal,

uniforme e fixa. Esta observação é válida tanto para a geração de jobs quanto para a determinação

de due dates.

4.3.2. Verificação do Processamento nos Estágios

A etapa de verificação da operação de processamento dos jobs dentro dos estágios foi feita

de modo independente do método de controle DBR. Para isto, um time buffer limite inatingível foi

estipulado, de forma a evitar seu acionamento e a entrada de jobs no pré-shop.

Desta forma, o sistema de produção simulado funcionou sem nenhum mecanismo de

controle de jobs em processo. Vale ressaltar que o método de controle DBR também foi verificado

de forma separada seguindo metodologia específica, tema a ser discutido adiante.

A etapa de verificação da função “Processamento” foi dividida em duas partes: parte

conceitual, para garantir que o funcionamento da passagem de jobs dentro do modelo de simulação

é coerente com o de um flow shop genérico; parte quantitativa, para assegurar que os tempos de

processamento estão compatíveis com o tipo de distribuição e parâmetros temporais determinados

como parâmetros de entrada.

73

Na parte conceitual, buscou-se garantir os seguintes mecanismos: (i) o fluxo dentro do

sistema de produção simulado é sempre o mesmo; (ii) o número de máquinas em cada estágio

corresponde ao valor determinado como parâmetro de entrada; (iii) caso certo job chegue em

determinado estágio e todas as máquinas estejam ocupadas, ele deve aguardar na fila deste estágio;

(iv) o ordenamento de jobs na fila dos estágios deve ser sempre FIFO; (v) a probabilidade de certo

job passar pela máquina deve seguir o parâmetro de entrada correspondente a esta probabilidade,

determinado individualmente para cada máquina.

Para verificar (i), simulou-se cerca de 20 vezes o modelo de simulação, com cenários

diferentes de estágios, em termos de número de estágios, número de máquinas e probabilidade de

estágio estar no caminho de jobs. Observando os eventos exportados da simulação, em todos os

cenários testados, observou-se sempre o mesmo sentido de fluxo.

Para verificar (ii), simulou-se cerca de 20 vezes o modelo de simulação, variando o número

de máquinas no estágio. Estas simulações foram conduzidas com taxa de geração grande o

suficiente (não a ponto de acionar o DBR) para lotar as máquinas dos primeiros estágios, estágios

efetivamente usados para fins de verificação. Em todos os estágios avaliados, em todos os cenários,

o número de máquinas da simulação correspondeu ao número de máquinas determinado como

input.

A verificação de (iii) e (iv) ocorreu em paralelo à verificação de (ii). Em todos os estágios

avaliados, em todos os cenários, após o atingimento do número de máquinas determinado, os jobs

excedentes aguardaram na fila de entrada. Nenhum tipo de reordenação foi observado. Logo, a

ordenação das filas de entrada é compatível com a regra FIFO.

A verificação de (v) ocorreu da seguinte forma: foram estabelecidos cinco cenários com 10

estágios cada, com tempos de processamento dos estágios extremamente rápidos e tempos entre

chegada de jobs no sistema extremamente pequenos. A cada estágio, foi atribuído a mesma

probabilidade de passagem de jobs pelo estágio. Os cinco cenários testaram diferentes

probabilidades de passagem. Os cenários avaliados e os resultados do teste podem ser vistos na

Figura 17.

74

Figura 17 - Teste de verificação de probabilidade de passagem

Fonte: Elaborado pelo autor

Como os resultados ficaram extremamente próximos e dentro de um intervalo de confiança

de 95% de probabilidade, comparativamente ao parâmetro de entrada estabelecido para os cinco

cenários de teste, o modelo de simulação elaborado se mostrou aderente ao modelo conceitual

desenhado, em termos de processamento, dando fim a verificação da parte conceitual.

Na parte quantitativa, buscou-se garantir que os tempos de processamento dos estágios

fossem compatíveis com o tipo de distribuição escolhida e os parâmetros escolhidos como input.

Para isto, o teste conduzido foi similar ao teste conduzido para verificar o processo de geração de

jobs.

Uma série de simulações foram conduzidas para cada tipo de distribuição, com cada estágio

seguindo a mesma distribuição. Os tempos entre gerações foram plotados em gráficos e calculados

a média, desvio padrão, tempo mínimo e tempo máximo, conforme aplicabilidade à distribuição.

O que se observou, com o auxílio de um intervalo de confiança, foi que o modelo de

simulação está aderente a qualquer um dos tipos de distribuição habilitados dentro do modelo de

simulação para processamento de jobs: distribuição exponencial, normal, uniforme, fixa, triangular

e Erlang.

Desta forma, a etapa de verificação da função “Processamento” foi encerrada, mostrando

que o modelo de simulação desenvolvido está de acordo com o modelo conceitual concebido.

Cenário

Testado

Probabilidade

de Passagem

Jobs gerados e

concluídos durante

simulação

Média entre estágios do

número de jobs

processados e concluídos

na simulação

Parâmetro

Comparativo

1 100% 488 488 100,0%

2 75% 511 384 75,1%

3 50% 494 251 50,8%

4 25% 498 121 24,3%

5 0% 503 0 0,0%

75

4.3.3. Verificação do DBR

A etapa de verificação do método de controle DBR foi dividida em três etapas de forma a

verificar separadamente as três funções relacionadas aos três componentes principais do método

DBR: drum, buffer e rope.

A checagem do drum foi feita por meio da criação de uma impressão intermediária da

posição do estágio gargalo, de forma a identificar qual estágio o modelo identifica como gargalo.

A impressão gerada foi comparada com o estágio gargalo real, calculado pelo autor deste trabalho

com base nos inputs determinados anteriormente à execução da simulação.

Este teste foi realizado em pelo menos 10 cenários diferentes para cada tipo de distribuição

possível em termos de tempo de processamento: exponencial, normal, uniforme, fixa, triangular e

Erlang. Em outras palavras, o teste da função “Drum” foi realizado em mais de 60 cenários

diferentes, retornando sempre o valor esperado.

A checagem do buffer foi feita de forma similar a checagem do drum. O valor do time buffer

a cada etapa de checagem foi impresso juntamente a simulação. O valor real do time buffer foi

calculado manualmente, com base no retrato dos estágios no momento da checagem, ou seja,

número de jobs na fila de cada estágio entre a entrada do sistema e o estágio gargalo.

Este processo foi repetido por cerca de 30 vezes. Em todas as checagens, os valores foram

compatíveis, concluindo a verificação da função “Buffer”. A posição do recurso gargalo foi variada

propositalmente durante as checagens, porém, o modelo se mostrou aderente ao método DBR.

Por fim, a realização da verificação do componente rope foi realizada de forma similar a

verificação do buffer, pela impressão do time buffer durante a simulação. A cada checagem foi

possível visualizar se o mecanismo da função “Rope” funcionava corretamente, ou seja, se o

tamanho do time buffer limite efetivamente limita e controla a entrada de jobs no sistema.

Portanto, checou-se a aderência a dois eventos: (i) se o time buffer atual for maior ou igual

que o time buffer limite, nenhum job é permitido de entrar no sistema; (ii) se o time buffer atual for

menor que o time buffer limite, o job mais prioritário do pré-shop é liberado para o sistema.

Cerca de 15 simulações foram realizadas e a checagem do mecanismo da função “Rope”

foi realizada durante todo os instantes destas simulações. O mecanismo implementado no modelo

de simulação se mostrou compatível ao conceito apresentado durante a etapa de modelo conceitual,

mostrando que o modelo de simulação está compatível com o método de controle DBR.

76

A partir da verificação destas três funções separadamente, finalizou-se a etapa de

verificação do mecanismo de controle da produção DBR. Vale ressaltar que as regras de

sequenciamento não foram testadas durante a verificação do método DBR, de forma que a sua

verificação ocorreu de forma apartada, como será apresentado a seguir.

4.3.4. Verificação das Regras de Sequenciamento

A etapa de verificação das regras de sequenciamento aceitas pelo modelo de simulação foi

feita por meio da impressão do pré-shop durante a simulação. A lista contendo as informações de

cada job na fila foram impressas sempre que a ordenação do pré-shop foi realizada, de forma a

possibilitar a comparação entre a ordem antes e depois da ordenação.

Para a função “EDD”, “SPT” e “LS”, o processo de checagem foi o mesmo: a cada

simulação, no instante de cada reordenação do pré-shop, calculou-se os parâmetros responsáveis

pela ordenação do pré-shop para cada job, ou seja, calculou-se o due date, tempo esperado de

processamento e folga, respectivamente para funções “EDD”, “SPT” e “LS”.

Em seguida, realizou-se a ordenação ideal por meio destes parâmetros e comparou-se esta

ordenação com a ordenação resultante da simulação. Este processo foi realizado em 10 simulações

para cada uma das funções. A ordenação não apresentou diferenças em relação a ordenação

resultante da simulação.

Por fim, a função “RegrasPrioridade” foi testada em 10 checagens. Para testar esta função,

comparou-se a ordenação resultante da simulação com a ordenação ideal de acordo com a regra de

prioridade escolhida (da mesma maneira que o procedimento utilizado para checar as outras

funções de ordenamento).

A ordenação ideal se mostrou compatível com a ordenação resultante da simulação em

todos os casos. Desta maneira, concluiu-se a etapa de verificação das regras de sequenciamento.

4.3.5. Verificação das Funções de Suporte

Nenhum procedimento específico foi realizado para validar as funções de suporte. Porém,

pode-se afirmar que estas funções estão corretas em sua função, pois são extensamente utilizadas

no modelo dentro de outras funções que foram validadas. Este foi o motivo da não elaboração de

um método para verificação destas funções.

77

A Figura 18 ilustra a aplicação das duas funções de suporte do modelo, mostrando sua

ampla presença no código do modelo de simulação. Para fins de esclarecimento, quando uma

função aciona a outra, ela está conectada à está por uma linha, sendo que aquela função que recebe

a seta é a acionada.

Figura 18 - Funções de suporte do modelo de simulação

Fonte: Elaborado pelo autor

78

4.3.6. Validação

Enquanto a etapa de verificação consiste em verificar que o modelo de simulação está isento

de erros e compatível com o modelo conceitual concebido, a validação do modelo consiste em

garantir sua utilidade. Desta forma, o modelo pode ser considerado válido, pois possui as seguintes

potenciais aplicações:

 Aplicação científica – o modelo de simulação pode ser aplicado na geração de produção

científica relacionada a controle de sistemas de produção via DBR. Como visto durante a

revisão bibliográfica, o método DBR tem sido um tema discutido e estudado de forma

extensa nos últimos anos. O presente trabalho retrata esta aplicação do modelo de simulação

elaborado.

 Aplicação prática – o modelo de simulação pode ser aplicado no estudo de sistemas de

produção com características de produção flow shop genérico reais, cujas simplificações

necessárias para adequação do sistema para o modelo não impactem de forma relevante nos

resultados gerados. Portanto, o modelo de simulação gerado pode ser muito útil no estudo

de partes de sistemas de produção, como, por exemplo, no estudo de implementação do

método de controle DBR para produção de uma peça dentro de uma linha de produção.

 Aplicação acadêmica – o modelo de simulação pode ser aplicado para fins acadêmico, ou

seja, de ensino e aprendizado. O modelo de simulação desenvolvido apresenta-se de forma

bem documentada, de forma a facilitar o entendimento da lógica de funcionamento e

construção por trás do modelo. Desta forma, pode ser utilizado para: (i) ensino sobre o

método de controle DBR; (ii) ensino sobre o desenvolvimento de modelos de simulação em

Python© com o auxílio do Simpy©.

79

5. INSTÂNCIAS DE SIMULAÇÃO

O modelo de simulação foi utilizado para testar o efeito do time buffer no desempenho do

sistema, sob diferentes configurações (cenários), com a finalidade de atingir os objetivos

específicos propostos neste trabalho. Esta seção possui o intuito de apresentar as instâncias de

simulação, que consistem nos cenários que serão fornecidos de parâmetro de entrada para a

simulação, cujos resultados serão posteriormente analisados no próximo capítulo.

Para a determinação das instâncias de simulação, partiu-se de um cenário padrão para a

criação dos demais cenários de simulação. Foram criados uma série de cenários que variam apenas

um tipo de grandeza. Diferentes simulações foram rodadas com diferentes tamanhos diferentes de

time buffer para cada cenário. O objetivo é entender como que o impacto do tamanho do time buffer

nos indicadores de desempenho se comporta conforme se variam isoladamente certos parâmetros

de entrada, bem como estes parâmetros de entrada influenciam os indicadores de desempenho do

sistema.

O cenário padrão para a criação de cenários alternativos usados na análise foi adaptado de

Thurer et al. (2017) e pode ser visto nas Tabelas 2 e 3. Consiste em um sistema de produção com

sete estágios, sendo seis idênticos e um com tempo maior de processamento, sendo este o estágio

gargalo do sistema. A posição escolhida para o estágio gargalo no cenário padrão foi a de número

quatro dentro do sistema de produção.

Tabela 2 - Inputs gerais e de geração para cenário padrão

Parâmetro de Entrada Valor

Número de Simulações 5

Tempo de Simulação 100

Regra de Sequencionamento FIFO

Distribuição – tempo entre gerações Exponencial

Tempo médio entre gerações 0,9

Tipo de distribuição - due date Uniforme

Tempo mínimo para due date 15,0

Tempo máximo para due date 25,0

Fonte: Elaborado pelo autor

80

Tabela 3 - Inputs de estágios para cenário padrão

Estágios
Número de

máquinas

Tipo de

distribuição

Tempo

médio

Desvio

padrão

Estágio

Gargalo

Probabilidade

de job estar

no caminho

Estágio 1 1 Normal 1,0 0,2 100%

Estágio 2 1 Normal 1,0 0,2 100%

Estágio 3 1 Normal 1,0 0,2 100%

Estágio 4 1 Normal 1,3 0,2 Sim 100%

Estágio 5 1 Normal 1,0 0,2 100%

Estágio 6 1 Normal 1,0 0,2 100%

Estágio 7 1 Normal 1,0 0,2 100%

Fonte: Elaborado pelo autor

Os fatores objetivo dos testes realizados foram:

 Razão entre tempo médio de entrada e tempo médio de processamento – este parâmetro

está diretamente relacionado ao nível de utilização do sistema de produção simulado e a

capacidade deste de atender a demanda. A razão do cenário padrão é de 0,9x, sendo que para

testar esta grandeza, outros dois valores foram simulados, um maior e outro menor. As razões

e parâmetros de entrada para os três cenários a serem avaliados são apresentados na Tabela 4.

Os outros parâmetros são mantidos iguais ao do cenário padrão.

Tabela 4 - Razão entre tempos médios de geração e processamentos testados

Cenários

Razão entre tempo

médio

de geração e de

processamento

Tempo

médio

entre

gerações

Tempo médio

de

processamento

(ex gargalo)

Tempo médio

de

processamento

do gargalo

Desvio

padrão

Cenário 1 0,9 0,9 1,0 1,3 0,2

Cenário 2 0,7 0,7 1,0 1,3 0,2

Cenário 3 1,1 1,1 1,0 1,3 0,2

Fonte: Elaborado pelo autor

81

 Severidade do gargalo – esta grandeza mede o quanto o estágio leva a mais de tempo para

processar determinado job. Segundo Thurer et al. (2017), a severidade de um estágio gargalo

pode ser determinado pelo percentual a mais de tempo médio de processamento do estágio

gargalo, comparativamente aos demais estágios. O cenário padrão possui severidade do gargalo

de 30%. Para a criação de cenários de simulação para testar esta grandeza, outros dois valores

foram determinados - um menor e outro maior. Estes podem ser vistos na Tabela 5. Os demais

parâmetros foram mantidos iguais aos do cenário padrão.

Tabela 5 - Cenários testados para severidade do gargalo

Cenários Severidade do gargalo

Tempo médio

de

processamento

(ex gargalo)

Tempo médio

de

processamento

do gargalo

Desvio

padrão

Cenário 4 30% 1,0 1,3 0,2

Cenário 5 15% 1,0 1,15 0,2

Cenário 6 60% 1,0 1,6 0,2
 Fonte: Elaborado pelo autor

 Regras de Sequenciamento – as quatros regras de sequenciamento serão testadas, dando

origem a quatro cenários distintos. A Tabela 6 ilustra os cenários gerados pelas regras de

sequenciamento. Os demais parâmetros foram mantidos iguais aos do cenário padrão.

Tabela 6 - Cenários com base nas regras de sequenciamento

Cenários Regra de sequenciamento

Cenário 7 FIFO

Cenário 8 SPT

Cenário 9 EDD

Cenário 10 LS

Fonte: Elaborado pelo autor

82

 Posição do recurso gargalo – a posição do recurso gargalo dentro do sistema de produção

também será alvo de testes. Três cenários diferentes serão testados, como demonstra a Tabela

7. Os demais parâmetros serão mantidos iguais aos do cenário padrão, inclusive tempos de

processamento.

Tabela 7 - Cenários com base na posição do estágio gargalo

Cenários Posição do estágio gargalo

Cenário 11 Estágio 4

Cenário 12 Estágio 2

Cenário 13 Estágio 6

Fonte: Elaborado pelo autor

 Variância da distribuição normal – o desvio padrão dos tempos de processamento

também será alvo de testes. Dois cenários diferentes serão testados (Tabela 8). Os demais

parâmetros serão mantidos iguais aos valores do cenário padrão, inclusive tempos de

processamento.

Tabela 8 - Cenários com base no desvio padrão do tempo de processamento

Cenários
Desvio padrão do tempo de

processamento

Cenário 14 0,2

Cenário 15 0,4

 Fonte: Elaborado pelo autor

83

6. ANÁLISE DE EXPERIMENTOS

Para a análise de cada cenário definido no capítulo 5, utilizou-se sete níveis diferentes de

time buffer limite para método de controle DBR. Os níveis de time buffer foram definidos com base

em experimentos preliminares de forma a atingir níveis entre 2,5 vezes a 20 vezes o tempo de

processamento do sistema do cenário padrão, em intervalos constantes e de forma aproximada. Os

valores de time buffer simulados para cada cenário podem ser vistos na Tabela 9. Valores temporais

serão apresentados sem uma unidade de tempo definida, mas na mesma base de valores.

Tabela 9 - Níveis de time buffer para teste de cada cenário

Teste por cenário Tamanho do time buffer

Teste 1 20

Teste 2 40

Teste 3 60

Teste 4 80

Teste 5 100

Teste 6 120

Teste 7 140

Fonte: Elaborado pelo autor

6.1. Análise da Razão entre Tempos de Geração e Processamento

Os resultados das simulações com base na variação da razão entre tempos de geração e

processamentos, para os cenários 1 (padrão), 2 e 3 definidos no capítulo 5, podem ser vistos nos

Gráficos 1, 2, 3, 4 e 5.

Gráfico 1 - Percentual de jobs terminados para cenários 1, 2 e 3

Fonte: Elaborado pelo autor

84

Gráfico 2 - Mean lead time para cenários 1, 2 e 3

Fonte: Elaborado pelo autor

Gráfico 3 - Mean throughtput time para cenários 1, 2 e 3

Fonte: Elaborado pelo autor

Gráfico 4 - Percentage tardy para cenários 1, 2 e 3

Fonte: Elaborado pelo autor

85

Gráfico 5 - Mean tardiness para cenários 1, 2 e 3

Fonte: Elaborado pelo autor

No Gráfico 1, pode-se perceber como o percentual de jobs terminados entre jobs gerados é

diretamente influenciado pela razão temporal aqui tratada. O percentual de jobs terminados

consiste na média da razão entre números de jobs gerados e número de jobs terminados durante as

simulações, sendo un indicador da produtividade do cenário simulado.

Isto ocorre, pois, apesar da média do número de jobs terminados nos três cenários ser

similar (345, 350 e 346, para os cenários 1, 2 e 3), o número de jobs gerados no sistema é

diretamente proporcional a razão temporal (556, 727 e 462, para os cenários 1, 2 e 3). Isto

demonstra o principal teorema da ToC: o estágio gargalo dita o ritmo de produção de todo o sistema

de produção.

Em termos de indicadores de desempenho, claramente se percebe que quanto maior a razão

entre o intervalo médio entre chegadas e tempos de processamento, pior é o desempenho dos quatro

indicadores de desempenho escolhidos. Ou seja, o cenário 2, com razão de 1,1, possui maiores

mean lead time, mean throughtput time, percentage tardy e mean tardiness.

Em termos de time buffer, é possível notar o impacto deste fator, principalmente para os

indicadores de desempenho percentage tardy e mean tardiness. Nos três cenários, o valor do time

buffer influencia a curva dos indicadores de desempenho de forma similar, com o melhor cenário

sendo um time buffer perto de 100 unidades de tempo.

86

Porém, percebe-se que o impacto do time buffer nos indicadores de desempenho não produz

variações claras entre cenários. Em outras palavras, o comportamento das curvas é similar, com o

melhor cenário de simulação sendo igual para todos. Além disso, para os três cenários, o time buffer

limite para a ativação do DBR alcança cerca de 120 unidades de tempo. Isto pode ser notado pela

diferença relativamente pequena entre mean lead time e mean throughtput time para time buffer

limite de 120 e 140 unidades de tempo.

6.2. Análise da Severidade do Gargalo

Os resultados das simulações da variação da severidade do gargalo, para os cenários 4

(padrão), 5 e 6 definidos no capítulo 5, podem ser vistos nos Gráficos 6, 7, 8, 9 e 10.

Gráfico 6 - Percentual de jobs terminados para cenários 4, 5 e 6

Fonte: Elaborado pelo autor

Gráfico 7 - Mean lead time para cenários 4, 5 e 6

Fonte: Elaborado pelo autor

87

Gráfico 8 - Mean throughtput time para cenários 4, 5 e 6

Fonte: Elaborado pelo autor

Gráfico 9 - Percentage tardy para cenários 4, 5 e 6

Fonte: Elaborado pelo autor

Gráfico 10 - Mean tardiness para cenários 4, 5 e 6

Fonte: Elaborado pelo autor

88

No Gráfico 6, pode-se perceber como o percentual de jobs terminados entre jobs gerados é

diretamente influenciado pela severidade do gargalo. O cenário 5, com gargalo com menor

severidade, apresentou, considerando a média, 20% a mais percentualmente de jobs concluídos do

que o cenário 6, com severidade quatro vezes maior do que a do cenário 5.

Diferentemente do teste realizado na seção 5.1, a variável que efetivamente mudou entre

cenários não foi o número de jobs gerados, mas sim o número de jobs concluídos. Enquanto as

médias de jobs gerados nos testes foram de 556, 567 e 564, respectivamente, para os cenários 4

(padrão), 5 e 6, a média de jobs concluídos foi de 345, 391 e 283, respectivamente, para a mesma

sequência de cenários. Mais uma vez, pode-se observar o princípio central da ToC: o estágio

gargalo dita o ritmo de produção de todo o sistema de produção.

Além disto, observando os Gráficos de 6 a 10, percebemos que não é somente no quesito

número de jobs concluídos que a severidade do gargalo influencia diretamente nos resultados

obtidos. Conforme mostra o presente experimento, quanto maior é a severidade do gargalo, maior

é a tendência de se obter piores indicadores de desempenho, considerando que o resto dos

parâmetros de entrada produzem valores equivalentes.

Em termos de impacto do time buffer nos indicadores de desempenho, observou-se dois

eventos importantes. O primeiro evento consiste no deslocamento do tamanho do time buffer limite

que melhora os indicadores de desempenho. Em outras palavras, quanto maior é a severidade do

time buffer, maior é o time buffer limite que trouxe melhores resultados nos testes realizados, em

termos de indicadores de desempenho.

Por exemplo, observando os Gráficos de 6 a 10, é possível notar que, para o cenário 4

(padrão), um time buffer de 100 unidades de tempo apresentou melhores resultados. Para o cenário

5, um time buffer de 60 unidades de tempo resultou em melhor desempenho. A variação do tempo

total de processamento possui impacto neste evento. Porém, em testes adicionais realizados no

modelo, testando-se cenários com aumento equivalente de tempo de processamento, mas sem

alteração na severidade do gargalo, os resultados não se mostraram tão relevantes como os

resultados apresentados nos Gráficos de 6 a 10.

89

O segundo evento observado foi o fato do método de controle DBR possuir um impacto

maior em cenários de maior severidade do que em cenários de menor severidade. Nos Gráficos 6

a 10, é possível observar que, conforme o mecanismo de controle deixa de exercer controle efetivo

sobre a entrada de jobs no sistema, no cenário 6, o impacto negativo sobre os indicadores de

desempenho é consideravelmente maior do que nos outros cenários.

Por exemplo, no cenário 6, um time buffer de 140, que possui pouco controle sobre a entrada

de jobs, uma vez que o mean lead time está muito próximo ao mean throughtput time (indicando

que poucos jobs entram no pré-shop), resulta em piora significativa nos indicadores de desempenho

percentage tardy. O percentage tardy aumenta mais de 10% em relação ao time buffer anterior

testado, enquanto o mean tardiness apresenta um aumento percentual de cerca de 35% em relação

ao time buffer anterior.

Esta grande diferença não é observada nos cenários 4 (padrão) e 5. Por exemplo, no cenário

5, a partir do time buffer de 100 unidades temporais, em que o mean lead time quase se iguala ao

mean throughtput time, os indicadores de desempenho não se mostram tão sensíveis.

Esta observação está em linha com o estudo realizado por Thurer et al. (2017). Eles

concluíram que concluiu que o método DBR é mais eficaz do que sistemas sem mecanismos de

controle e o método WLC em flow shops flexíveis e job shops flexíveis, com base nos mesmos

indicadores de desempenho analisados neste trabalho.

90

6.3. Análise das Regras de Sequenciamento

Os resultados das simulações com as regras de sequenciamento, para os cenários 7 (padrão),

8, 9 e 10 definidos no capítulo 5, podem ser vistos nos Gráficos 11, 12, 13, 14 e 15.

Gráfico 11 - Percentual de jobs terminados para cenários 7, 8, 9 e 10

Fonte: Elaborado pelo autor

Gráfico 12 - Mean lead time para cenários 7, 8, 9 e 10

Fonte: Elaborado pelo autor

91

Gráfico 13 - Mean throughtput time para cenários 7, 8, 9 e 10

Fonte: Elaborado pelo autor

Gráfico 14 - Percentage tardy para cenários 7, 8, 9 e 10

Fonte: Elaborado pelo autor

Gráfico 15 - Mean tardiness para cenários 7, 8, 9 e 10

Fonte: Elaborado pelo au tor

92

Observando-se os Gráficos 11, 12 e 13, não se nota nenhuma diferença causada pelas

diferentes regras de sequenciamento testadas, em termos de percentual de jobs gerados que são

concluídos, mean lead time e mean throughtput time. Isto pode ser explicado pelo fato das regras

de sequenciamento não interferirem no fluxo de jobs dentro do sistema de produção simulado, mas

somente controlar a ordem de entrada dos jobs no sistema.

Como todos os jobs passam por todas as máquinas nos cenários simulados, e o tempo de

processamento é característica das máquinas, todos os jobs possuem a mesma expectativa de tempo

de processamento. Este fator não só explica a ausência de diferenças significativas com base nas

informações dos Gráficos 11, 12 e 13, como também explica a ausência de diferenças relevantes

entre as regras de sequenciamento FIFO e SPT. O mesmo ocorre também para a ausência de

diferenças relevantes entre as regras de sequenciamento EDD e LS (Gráficos de 11 e 15).

A única diferença perceptível entre os cenários simulados reside nos indicadores de

desempenho percentage tardy e mean tardiness (Gráficos 14 e 15). Nestes indicadores, as regras

de sequenciamento EDD e LS tiveram desempenho superior em time buffers limites baixos. Esta

diferença se explica pela priorização que as regras de sequenciamento EDD e LS fornecem a jobs

mais prioritários.

Este resultado é compatível com o estudo realizado por Daniel & Guide (1997), em que a

regra de sequenciamento EDD se mostrou significantemente superior do que outras regra s

analisadas, em termos de percentage tardy e lateness.

Embora exista, a diferença não é significativa. Isto ocorre, pois jobs gerados posteriormente

possuem a tendência de possuir due date maior, em função do método de geração de due dates,

abordado no capítulo 4 deste trabalho.

Além disso, conforme o tamanho do time buffer limite simulado aumenta, esta diferença

diminui, uma vez que diminui a influência de mecanismos de controle e regras de sequenciamento

para a entrada de jobs no sistema. Por fim, a influência do tamanho do time buffer para o valor

obtido nos indicadores de desempenho não muda entre regras de sequenciamento. O seu

comportamento é similar ao do cenário padrão.

93

6.4. Análise da Posição do Estágio Gargalo

Os resultados das simulações que variam a posição do estágio gargalo, ou seja, da simulação

dos cenários 11 (padrão), 12 e 13 definidos no capítulo 5, podem ser vistos nos Gráficos 16 a 20.

Gráfico 16 - Percentual de jobs terminados para cenários 11, 12 e 13

Fonte: Elaborado pelo autor

Gráfico 17 - Mean lead time para cenários 11, 12 e 13

Fonte: Elaborado pelo autor

94

Gráfico 18 - Mean throughtput time para cenários 11, 12 e 13

Fonte: Elaborado pelo autor

Gráfico 19 - Percentage tardy para cenários 11, 12 e 13

Fonte: Elaborado pelo autor

Gráfico 20 - Mean tardiness para cenários 11, 12 e 13

Fonte: Elaborado pelo autor

95

Primeiramente, em termos gerais, não há diferença significativa em nenhum indicador de

desempenho analisado dentre os cenários aqui testados. Considerando todos os testes realizados

para os cenários 11 (padrão), 12 e 13, embora o cenário 11 (padrão) apresente resultados melhores,

as médias dos indicadores de desempenho obtidas estão muito próximas, não se percebendo

nenhuma tendência aparente nos gráficos plotados.

Desta maneira, não se pode afirmar que a posição do estágio gargalo dentro de um sistema

de produção é relevante para a produtividade do sistema como um todo, caso os demais parâmetros

sejam mantidos. As médias dos indicadores de desempenho analisados para tais cenários podem

ser vistas na Tabela 10.

Tabela 10 - Média dos indicadores de desempenho obtidos para cenários 11, 12 e 13

Cenário
% jobs

terminados

Mean lead

time

Mean

throughtput

time

Percentage

tardy

Mean

tardiness

Cenário 11 62% 22,4 20,7 54,7% 5,2

Cenário 12 59% 24,3 23,2 57,7% 6,8

Cenário 13 58% 24,5 20,8 57,6% 7,3

Fonte: Elaborado pelo autor

A única diferença perceptível entre os cenários testados está na influência do time buffer

nos indicadores de desempenho analisados. Observando os Gráficos 19 e 20, é possível concluir

que os três cenários apresentam um comportamento similar. Dentre os sete valores de time buffer

testados, há variações, porém, há um único vale, cuja abcissa corresponde ao time buffer limite que

minimiza o total de jobs atrasados e tempo médio de atraso.

Entre os cenários testados é perceptível a relação do time buffer correspondente ao vale

com a posição do gargalo. Quanto mais para o fim do sistema simulado está o gargalo, maior o

time buffer correspondente ao vale. A explicação para este evento é simples: para controlar um

menor número de jobs entre a entrada do sistema e o estágio gargalo, é necessário um time buffer

maior para estágios gargalos localizados mais ao final da linha. Caso tratássemos os 3 cenários

analisados com o mesmo time buffer limite, aquele com estágio gargalo mais ao final (cenário 13)

teria um buffer menor em números de jobs.

96

6.5. Análise da Variância no Tempo de Processamento

Os resultados das simulações com base na variação do desvio padrão dos tempos de

processamento, correspondentes aos cenários 14 (padrão) e 15 definidos no capítulo 5, podem ser

vistos nos Gráficos 21, 22, 23, 24 e 25.

Gráfico 21 - Percentual de jobs terminados para cenários 14 e 15

Fonte: Elaborado pelo autor

Gráfico 22 - Mean lead time para cenários 14 e 15

Fonte: Elaborado pelo autor

97

Gráfico 23 - Mean throughtput time para cenários 14 e 15

Fonte: Elaborado pelo autor

Gráfico 24 - Percentage tardy para cenários 14 e 15

Fonte: Elaborado pelo autor

Gráfico 25 - Mean tardiness para cenários 14 e 15

Fonte: Elaborado pelo autor

98

Observando os Gráficos de 21 a 25, nota-se que a variação do desvio padrão dos tempos de

processamento em uma distribuição normal pouco influencia os resultados de indicadores de

desempenho analisados. As simulações realizadas para o cenário 15, em que o desvio padrão é o

dobro do cenário 14 (padrão), se mostraram ligeiramente inferiores, em termos de desempenho,

comparativamente ao cenário 14 (padrão), em termos de percentual de jobs terminados, mean lead

time, mean throughtput time, percentage tardy e mean tardiness.

Em termos de influência do time buffer nos indicadores de desempenho, poucos pontos de

teste divergiram. De forma geral, as curvas para os quatro indicadores de desempenho analisados

se mostraram aderentes entre os cenários 14 (padrão) e 15.

Não se observou nenhum grau maior de variação de nível de indicadores de desempenho

analisados entre testes, mostrando que a maior variabilidade de tempos de simulação só é

observável em eventos individuais da simulação. Observou-se a tendência do elevado número de

jobs processados remover tal grau de variabilidade.

99

7. CONCLUSÕES

7.1. Síntese

O primeiro objetivo específico deste trabalho foi o desenvolvimento de um modelo de

simulação que conseguisse replicar a lógica do método de controle DBR em um sistema flow shop

genérico com estratégia de produção MTO. O capítulo 4 descreve em detalhe o modelo elaborado,

incluindo suas interfaces de entrada e saída

Além disto, o modelo desenvolvido permite testar diferentes configurações de sistemas de

produção operando no modelo DBR,, aceitando número praticamente ilimitado de máquinas e

estágios e diversos tipos de distribuições de intervalos entre chegadas e tempos de processamento

e alguns dos mais utilizados indicadores de desempenho.

O modelo de simulação mostrou-se compatível com seu desenho conceitual concebido,

fornecendo resultados consistentes durante a etapa de verificação e validação retratada na seção

4.3. Por fim, forneceu uma gama de possibilidades de aplicação nos contextos de ensino, pesquisa

e prática, de forma a constituir ferramenta para a análise de sistemas de produção que se enquadrem

nas simplificações adotadas. Desta maneira, o presente trabalho cumpre com o primeiro objetivo

específico proposto.

Os demais objetivos propostos deste trabalho consistem no uso do modelo de simulação

para o estudo combinado de uma série de fatores e diferentes tamanho de time buffers, de forma a

analisar o efeito do time buffer em diferentes indicadores de desempenho, considerando diferentes

configurações do sistema (máquinas, posição do gargalo, regra etc).

Com base nos experimentos apresentados e analisados no capítulo 6 deste trabalho, uma

série de conclusões podem ser obtidas. Primeiramente, nos experimentos sobre a relação entre

tempos de geração e tempos de processamento e severidade do gargalo, foi possível notar o

princípio central da teoria das restrições do trabalho de Goldratt & Cox (1986): a produtividade de

um sistema de produção é ditada pelo ritmo de produção do estágio gargalo.

 O fato do aumento da presença de jobs no sistema não ter causado aumento do número de

jobs terminados, assim como do aumento da severidade ter afetado de forma diretamente

proporcional ao número de jobs terminados, ilustra a teoria de Goldratt & Cox (1986). Isto, de certa

forma, originou a criação do método de controle DBR.

100

Ainda no âmbito da relação tempos entre gerações e tempos de processamento, é possível

concluir que esta relação impacta diretamente os indicadores de desempenho mean lead time, mean

throughtput time, percentage tardy e mean tardiness em sistemas sobrecarregados, ou seja, com

atraso de grande parte dos jobs gerados devido ao aumento do nível de utilização e estoque em

processo.

No estudo do fator severidade do gargalo, duas observações podem ser feitas com base na

análise de resultados. A primeira consiste no fato de que, quanto maior a severidade do gargalo,

maior o time buffer responsável pelo melhor desempenho dentre as simulações feitas. Ou seja,

quanto maior a severidade, maior a proteção requerida em números de jobs.

A segunda observação consiste no fato de que, quanto maior a severidade do gargalo, maior

a performance do método de controle DBR, uma vez que time buffers elevados que causam a

diminuição da efetividade do mecanismo de controle produzem mudanças abruptas nos dos

indicadores de desempenho analisados, o que não é observado em cenários menos severos.

No estudo do faotr regras de sequenciamento, pode-se observar que a regra de

sequenciamento EDD apresenta um ligeiro melhor desempenho do que a regra de sequenciamento

FIFO sob a ótica dos indicadores de desempenho percentage tardy e mean tardiness.

Isto ocorre, pois, esta regra prioriza o processamento de jobs que possuem prazo de entrega

mais apertado. É provável que a diferença de desempenho seria mais significante caso a geração

de due dates tivesse maior variância e/ou menor correlação com a data de geração. Pelo cenário

padrão estudado (cada job deve passar por todos os estágios) e o fato do tempo de processamento

ser intrínseco aos estágios, não houve discriminação de tempos de processamento entre jobs. Desta

maneira, não se pode fazer nenhuma observação sobre o desempenho das regras SPT ou LS, pois

elas se comportaram de forma similar às regras FIFO e EDD, respectivamente.

Em termos de posicionamento do estágio gargalo, não foi possível observar diferenças

absolutas de desempenho (considerando a média das simulações). A única diferença notável foi o

deslocamento das curvas dos indicadores de desempenho dos Gráficos 16 a 20. Ou seja, é essencial

conhecer o estágio gargalo e a posição dentro do sistema de produção para a etapa de

dimensionamento do time buffer e, consequentemente, adoção do DBR para maximizar o

desempenho do sistema.

101

Sumarizando, o presente trabalho permitiu a criação de uma ferramenta adequada para o

estudo do método DBR dentro de múltilos cenários que possam ser enquadrados no ambiente flow

shop genérico, permitindo o estudo do dimensionamento do buffer. Adicionalmente, o presente

trabalho preenche uma lacuna na lliteratura sobre o tema, uma vez que não foi identificado nenhum

trabalho anterior que estudou o impacto conjunto do tamanho do time buffer limite no DBR com

diversos parâmetros de entrada na performance do sistema de produção.

O que se concluiu é que o desempenho de um sistema de produção flow shop genérico está

diretamente atrelado a um correto dimensionamento do time buffer. Para realizar este

dimensionamento de forma correta, é necessário considerar diversas características do sistema de

produção que impactam severamente no tamanho de time buffer ótimo. Desta maneira, considerar

todas estas características pode ser um trabalho árduo. A simulação por eventos discretos se mostra

uma ferramenta poderosa para conduzir este dimensionamento.

7.2. Limitações

O presente trabalho possui uma série de limitações. Primeiramente,o modelo de simulação

desenvolvido somente permite a análise em ambientes flow shop, não podendoser aplicado para

ambiente jobshop ou assembly shop, por exemplo.

Além disse, toda a análse de resultados foi feita sobre os indicadores de desempenho mean

throughtput time, mean lead time, percentage tardy e mean tardiness. Desta maneira,indicadores

de desemepnho relacionados a aspectos como nível de estoque em processo e nível de utilização

não foram utilizados e analisados. Desta maneira, além de não podermos influir nada sobre estes

indicadores nos cenários simulados, o modelo de simulação se mostra mais adequado a estratégias

de produção MTO.

Sob o ponto de vista dos resultados retirados dos experimentos analisados, a primeira

limitação consiste no fato dos cenários gerados não nos permitirem uma análise comparativa das

regras de sequenciamento SPT e LS.

Além disto, o estudo foi focado na geração de cenários em que apenas uma variável é

alterada. Ou seja, a ausência de uma análise correlativa entre variáveis limita a geração de literatura

uma vez que não identifica correlações.

102

7.3. Desdobramentos

O presente trabalho estudou o impacto de diversos parâmetros de entrada no time buffer

ótimo do método de controle DBR e o impacto de time buffers diferentes para diversos cenários

avaliados. O trabalho visou preencher uma lacuna existente atualmente sobre o estudo do

dimensionamento do time buffer no método de controle DBR.

Durante a execução do presente trabalho, uma ferramenta muito poderosa e com diversas

possibilidades de aplicação foi elaborada: o modelo de simulação. Como recomendações para

trabalhos futuros, relacionados ao estudo do time buffer no DBR ou ao modelo de simulação, é

importante destacar alguns aspectos.

Em relação ao estudo do time buffer no método de controle DBR, o presente trabalho

abordou o estudo deste tema em sistemas flow shop genérico com estratégia de produção MTO.

Logo, ainda há muito que ser estudado sob a ótica de outras estratégias de produção e ambientes

de simulação.

O estudo deste tema em ambientes de produção job shop flexível e assembly shop éum

potencial desdobramento destetrabalho, sendo que no último cabe o estudo não somente do time

buffer do gargalo, como também do time buffer de montagem.

Outro potencial desdobramento é o estudo do time buffer em sistemas com estratégias de

produção MTS. Nestes sistemas, a importância do ordenamento de jobs no método de controle

DBR diminui e o foco passa a ser evitar a ociosidade no gargalo. Neste caso, recomenda-se o estudo

do time buffer relacionado à restrição de mercado, formado para evitar perdas com demanda

perdida.

O modelo de simulação possui um leque de aplicações muito grande, em termos científicos,

práticos e acadêmicos. Sob a ótica da produção científica, constitui uma oportunidade para

aplicação do método DBR sob ambientes de produção flow shop genérico.

O presente trabalho focalizou o estudo do comportamento dos indicadores de desempenho

escolhidos com base em cenários formados por variedades de fatores escolhidos, como severidade

do gargalo e posição do gargalo, em combinação com cenários de time buffer limite.

103

Porém, o trabalho não exauriu o universo de testes e estudos que podem ser realizados com

base no modelo elaborado, como o teste de cenários com maior número de máquinas por estágio,

números diferentes de estágios ou com possibilidades diferentes de 100% de certo job passar ou

não em cada estágio. Além disso, testar cenários combinados, variando mais de uma grandeza, é

uma possibilidade de estudo utilizando o modelo de simulação. Esta possibilidade não fez parte do

escopo deste trabalho. Todas estas oportunidades citadas podem ser então alvos de estudos futuros.

Por fim, o modelo de simulação pode ser modificado para tornar-se ainda mais genérico de

forma a comportar outros ambientes de produção e métodos de controle de produção. Em outras

palavras, pode se tornar uma ferramenta ainda mais poderosa.

Finalmente, permitir a leitura de uma carteira de pedidos também é um potencial

desdobramento de melhoria do modelo elaborado. Isto permitiria uma outra vertente de estudo,

menos focada na parte de controle da produção e mais focada na programação da produção, ou até

mesmo combinando estas areas.

104

105

REFERÊNCIA BIBLIOGRÁFICA

ARNOLD, JR Tony; RIMOLI, Celso; ESTEVES, Lenita R. Administração de materiais: uma

indrodução. Atlas, 1999.

ATWATER, J. Brian; CHAKRAVORTY, Satya S. A Study of the Utilization of Capacity

Constrained Resources in Drum‐Buffer‐Rope Systems. Production and Operations

Management, v. 11, n. 2, p. 259-273, 2002.

DA SILVA, Edna et al. Avaliação de regras de sequenciamento da produção em ambientes Job

shop e Flow shop por meio de simulação computacional. Exacta, v. 10, n. 1, 2012.

CHAN, Felix TS; CHAN, H. K. Analysis of dynamic control strategies of an FMS under different

scenarios. Robotics and Computer-Integrated Manufacturing, v. 20, n. 5, p. 423-437, 2004.

CORBETT, Thomas; CSILLAG, Joao Mario. Analysis of the effects of seven drum-buffer-rope

implementations. Production and Inventory Management Journal, v. 42, n. 3/4, p. 17, 2001.

CORRÊA, H. L.; GIANESI, IGN. Just-in-Time, MRPII e OPT: um enfoque estratégico. São

Paulo: Atlas, 1993.

DANIEL, V.; GUIDE, R. Scheduling with priority dispatching rules and drum-buffer-rope in a

recoverable manufacturing system. International Journal of Production Economics, v. 53, n. 1,

p. 101-116, 1997.

DARLINGTON, John et al. Design and implementation of a Drum-Buffer-Rope pull-

system. Production Planning & Control, v. 26, n. 6, p. 489-504, 2015.

DE SOUZA, FERNANDO BERNARDI. Do OPT à Teoria das Restrições: avanços e

mitos. Production, v. 15, n. 2, p. 184-197, 2005.

106

ENNS, S. T. An integrated system for controlling shop loading and work flow. International

Journal of Production Research, v. 33, n. 10, p. 2801-2820, 1995.

FERNANDES, Flávio Cesar Faria; GODINHO FILHO, Moacir. Sistemas de coordenação de

ordens: revisão, classificação, funcionamento e aplicabilidade. Revista Gestão & Produção, São

Carlos, v. 14, n. 2, 2007.

GAITHER, Norman; FRAZIER, Greg. Administração da produção e operações. Pioneira

Thomson Learning, 2001.

GARDINER, S.C., BLACKSTONE, J.H., and GARDINER, L.R. The evolution of the theory of

constraints. Industrial Management, 1994.

GOLDRATT, E.M.; COX, J. A meta: um processo de aprimoramento contínuo. São Paulo:

IMAM, 1986.

GOLMOHAMMADI, Davood. A study of scheduling under the theory of constraints.

International Journal of Production Economics, v. 165, p. 38-50, 2015.

GUPTA, Mahesh; SNYDER, Doug. Comparing ToC with MRP and JIT: a literature

review. International Journal of Production Research, v. 47, n. 13, p. 3705-3739, 2009.

JAHANGIRIAN, Mohsen et al. Simulation in manufacturing and business: A review. European

Journal of Operational Research, v. 203, n. 1, p. 1-13, 2010.

KRAJEWSKI, Lee J.; RITZMAN, Larry P. Process Management. Operations Management—

Strategy and Analysis, Addison—Wesley Publishing Company, p. 93-138, 1996.

LAMBRECHT, Marc R.; DECALUWE, Lieve. Jit And Constraint Theory: The Issue Of

Bottleneck Manageme. Production and Inventory Management Journal, v. 29, n. 3, p. 61, 1988.

107

LEE, Jun-Huei et al. Research on enhancement of ToC Simplified Drum-Buffer-Rope system using

novel generic procedures. Expert Systems with Applications, v. 37, n. 5, p. 3747-3754, 2010.

MANIKAS, Andrew; GUPTA, Mahesh; BOYD, Lynn. Experiential exercises with four production

planning and control systems. International Journal of Production Research, v. 53, n. 14, p.

4206-4217, 2015.

MESQUITA, M. et al. Programação detalhada da produção. In: LUSTOSA, L. J. et al.

Planejamento e Controle da Produção. Rio de Janeiro: Elsevier, 2008.

NEGAHBAN, Ashkan; SMITH, Jeffrey S. Simulation for manufacturing system design and

operation: Literature review and analysis. Journal of Manufacturing Systems, v. 33, n. 2, p. 241-

261, 2014.

PINEDO, Michael. Scheduling: Theory, algorithms, and systems. New Jersey: Prentice Hall,

2002.

PIRES, Silvio RI. Gestão da cadeia de suprimentos: conceitos, estratégias, práticas e

casos. São Paulo: Atlas, 2004.

PRICE, Wilson; GRAVEL, Marc; NSAKANDA, Aaron Luntala. A review of optimisation models

of Kanban-based production systems. European Journal of Operational Research, v. 75, n. 1,

p. 1-12, 1994.

RADOVILSKY, Zinovy D. A quantitative approach to estimate the size of the time buffer in the

theory of constraints. International Journal of Production Economics, v. 55, n. 2, p. 113-119,

1998.

S RUSSELL, Roberta; W TAYLOR, Bernard. Operations Management Creating Value Along

the Supply Chain. 2011.

108

SCHRAGENHEIM, Eli; RONEN, Boaz. Drum-buffer-rope shop floor control. Production and

Inventory Management Journal, v. 31, n. 3, p. 18-22, 1990.

SHAFER, Scott M.; SMUNT, Timothy L. Empirical simulation studies in operations management:

context, trends, and research opportunities. Journal of Operations Management, v. 22, n. 4, p.

345-354, 2004.

SIRIKRAI, Vimalin; YENRADEE, Pisal. Modified drum–buffer–rope scheduling mechanism for

a non-identical parallel machine flow shop with processing-time variation. International Journal

of Production Research, v. 44, n. 17, p. 3509-3531, 2006.

SPEARMAN, Mark L.; WOODRUFF, David L.; HOPP, Wallace J. CONWIP: a pull alternative

to kanban. The International Journal of Production Research, v. 28, n. 5, p. 879-894, 1990.

STEELE, Daniel C. et al. Comparisons between drum–buffer–rope and material requirements

planning: a case study. International Journal of Production Research, v. 43, n. 15, p. 3181-

3208, 2005.

SURESH, K.N.; SRIDHARAN, R. Simulation modeling and analysis of tool sharing and part

Scheduling decisions in single-stage multimachine flexible manufacturing systems. Robotics and

Computer-Integrated Manufacturing, n. 23, p. 361-370, 2007.

THÜRER, Matthias et al. Drum-buffer-rope and workload control in High-variety flow and job

shops with bottlenecks: An assessment by simulation. International Journal of Production

Economics, v. 188, p. 116-127, 2017.

TUBINO, D. F. Planejamento e controle da produção: teoria e prática. São Paulo: Atlas, 2007.

UMBLE, E. J.; UMBLE, M. Integrating the Theory of Constraints into Supply Chain Management.

Proceedings of the 33rd annual Decision Sciences Conference, San Diego, CA, p. 479-484,

2002.

109

WU, Shih-Yun; MORRIS, John S.; GORDON, Thomas M. A simulation analysis of the

effectiveness of drum-buffer-rope scheduling in furniture manufacturing. Computers &

Industrial Engineering, v. 26, n. 4, p. 757-764, 1994.

WU, H.-H.; YEH, M.-L. A DBR scheduling method for manufacturing environments with

bottleneck re-entrant flows. International journal of production research, v. 44, n. 5, p. 883-

902, 2006.

WU, Horng-Huei et al. Simulation and scheduling implementation study of TFT-LCD Cell plants

using Drum–Buffer–Rope system. Expert Systems with Applications, v. 37, n. 12, p. 8127-8133,

2010.

YE, T.; HAN, W. Determination of buffer sizes for drum–buffer–rope (DBR)-controlled

production systems. International Journal of Production Research, v. 46, n. 10, p. 2827-2844,

2008.

ZHANG, X. M.; DU, Y. L. Research of Production Scheduling Based on Theory of Constraints.

In: 2015 International Conference on Electrical, Automation and Mechanical Engineering.

Atlantis Press, 2015.

110

111

ANEXO A – MODELO DE SIMULAÇÃO

""" x-----------Bibliotecas---"""

""" Importa Bibliotecas do Python e se conecta a planilha de simulação,que fornecerá os inp
uts para a simulação deste programa bem como receberá a simulação como output para análise
da simulação. Adicionalmente, cria variável global JobAcumulados, que serve de suporte para
 numeração dos jobs gerados de forma a manter sequência de numeração mesmmo após simulações
 diferentes"""

import random

import simpy

import xlwings as xw

wb = xw.Book('Modelo_DBR - Input&Output.xlsm')

shtInput = wb.sheets['Input']

file = open ("OutputSimulacao.txt","w")

 global JobAcumulado

JobAcumulado = 0

 """ -----------Inputs---"""

 def Inputs ():

 """ Lê da planilha excel os inputs a serem utilizados para fins do modelo de simulaçã
o. Estes inputs são todos os dados usados para fins de simulação. Estes estão destacados ab
aixo """

 NumSimulacoes = int (shtInput.range('C7').value) # Número de Simulações diferentes rod
adas com o mesmo cenário

 TempoSimulacao = float(shtInput.range('C9').value) # Tempo limite para cada simulação

 TimeBuffer = int (shtInput.range('C11').value) # Tamanho do Time Buffer utilizado para
implementação do DBR

 Sequenciamento = str (shtInput.range('C13').value) # Regra de Sequenciamento escolhida,
 podendo ser FIFO, EDD, SPT ou LS

 # Parâmetros para geração de Jobs no sistema. Podem ou não ser úteis durante a simulaçã
o, dependendo da distribuição escolhida

 DistrGeracao = int (shtInput.range('C17').value) #Distribuição escolhida, podendo ser
exponencial(1), normal(2), uniforme(3), ou fixa(4)

 TMGeracao = float (shtInput.range('C24').value) # Tempo médio entre gerações. Aplicáve
l para distr. exponencial, normal e fixa (neste caso é o tempo entre gerações)

112

 DVGeracao = float (shtInput.range('C25').value) # Desvio Padrão para distribuição norm
al

 TMINGeracao = float (shtInput.range('C26').value) # Tempo mínimo para geração da distr
ibuição uniforme

 TMAXGeracao = float (shtInput.range('C27').value) # Tempo máximo para geração da distr
ibuição uniforme

 # Parâmetros para geração de Due Date para Jobs gerados. Podem ou não ser úteis durante
 a simulação, dependendo da distribuição escolhida. Vale ressaltar que o número gerado por
estas variáveis é acrescido ao tempo atual da simulação na geração

 DistrDueDate = int (shtInput.range('C32').value) #Distribuição escolhida, podendo ser
exponencial(1), normal(2), uniforme(3), ou fixa(4)

 TMDueDate = float (shtInput.range('C40').value) # Tempo médio. Aplicável para distr. ex
ponencial, normal e fixa (neste caso é o tempo entre gerações)

 DVDueDate = float (shtInput.range('C41').value) # Desvio Padrão para distribuição norm
al

 TMINDueDate = float (shtInput.range('C42').value) # Tempo mínimo para distribuição uni
forme

 TMAXDueDate = float (shtInput.range('C43').value) # Tempo máximo para distribuição uni
forme

 # Parâmetros do Ambiente - Estágios e Máquinas

 NumEstagios = int (shtInput.range('C55').value) # Lê o valor do número de estágios da p
lanilha excel

 ListaEstagios = []

 for i in range (NumEstagios): # Loop para geração de lista de estágios com cada estági
o sendo um item da lista. Em cada item da lista correspondente a um estágio, temos:

 i = i + 1

 Line = str (58 + i)

 Estg = []

 Estg.append (shtInput.range('C'+Line).value) # Número de Máquinas

 Estg.append (shtInput.range('D'+Line).value) # Distribuição escolhida para geração
 de tempos de processamento, podendo ser: exponencial(1), normal(2), uniforme(3), fixa(4),
triangular(5), erlang(5)

 Estg.append (shtInput.range('E'+Line).value) # Tempo médio para fins de distribuiç
ão

 Estg.append (shtInput.range('F'+Line).value) # Desvio padrão para fins de distribu
ição

113

 Estg.append (shtInput.range('G'+Line).value) # Tempo mínimo para fins de distribui
ção

 Estg.append (shtInput.range('H'+Line).value) # Tempo máximo para fins de distribui
ção

 Estg.append (shtInput.range('I'+Line).value) # Número de exponenciais (beta) para
distr. erlang

 Estg.append (shtInput.range('J'+Line).value) # Probabilidade de cada job de passar
 pelo estágio i

 ListaEstagios.append (Estg)

 return (NumSimulacoes, TempoSimulacao, TimeBuffer, Sequenciamento,DistrGeracao,TMGeraca
o,DVGeracao,TMINGeracao,TMAXGeracao,DistrDueDate,TMDueDate,DVDueDate,TMINDueDate,TMAXDueDat
e,NumEstagios,ListaEstagios) # Retorna valores para simulação

""" -----------Funções de Suporte---"""

def NumAleatorio (Distr,TM,DV,TMIN,TMAX,ERLANG):

 """ Cria números aleatórios a partir da distribuição escolhida e parâmetros importados.
 Serve para gerar números aleatórios para determinar tempos de geração, tempos de processam
ento e due dates"""

 if Distr == 1: # Distr. exponencial

 Taxa = 1/TM

 NumAleatorio = random.expovariate (1/Taxa)

 elif Distr == 2: # Distr. normal

 NumAleatorio = random.normalvariate (TM,DV)

 elif Distr == 3: # Distr. uniforme

 NumAleatorio = random.uniform (TMIN,TMAX)

 elif Distr == 4: # Distr. fixa

 NumAleatorio = TM

 elif Distr == 5: # Distr. triangular

 NumAleatorio = random.triangular (TMIN,TMAX, TM)

 elif Distr == 6: # Distr. erlang

 NumAleatorio = random.gammavariate (ERLANG, TM/ERLANG)

 return (NumAleatorio) # Retorna número aleatório de acordo com a distribuição escolhida

114

def TempoMed (Distr,TM,DV,TMIN,TMAX,ERLANG):

 """ Calcula o tempo médio esperado para a geração de número aleatórios de acordo com a
distribuição escolhida """

 if Distr == 1: # Distr. exponencial

 TempoMed = TM

 elif Distr == 2: # Distr. normal

 TempoMed = TM

 elif Distr == 3: # Distr. uniforme

 TempoMed = (TMIN + TMAX)/2

 elif Distr == 4: # Distr. fixa

 TempoMed = TM

 elif Distr == 5: # Distr. triangular

 TempoMed = (TM + TMIN + TMAX)/3

 elif Distr == 6: # Distr. erlang

 TempoMed = TM

 return (TempoMed) # Retorna tempo médio de acordo com a distribuição escolhida

""" -----------Classe de Máquinas--"""

class Maquinas(object):

 def __init__(self, env, cod, ListaEstagios):

 """Função que define classe máquinas. Quando chama-se a classe Máquinas, gera-
se um novo Estágio com as características de Tempo de Processamento, Probabilidade de estar
 no caminho e número de máquinas correspondente ao input fornecido na lista ListaEstagios""
"

 self.env = env # Parte do Ambiente de Simulação do Simpy

 NumRecursos = int (ListaEstagios [cod-1] [0])

 self.maq = simpy.Resource(env, NumRecursos) # Cada Estágio consiste em um Resource
 da biblioteca simpy com seu respectivo número de maquinas

 self.cod = cod

 self.tp = [ListaEstagios [cod-1] [1], ListaEstagios [cod-
1] [2], ListaEstagios [cod-1] [3], ListaEstagios [cod-1] [4], ListaEstagios [cod-
1] [5], ListaEstagios [cod-1] [6]]

115

 # Cria lista de variáveis que serão posteriormente usadas para criar tempos aleatór
ios

""" -----------Entrada no Sistema--"""

def GeracaoJobs (env,NumAtualSimulacao,DistrGeracao,TMGeracao,DVGeracao,TMINGeracao,TMAXGer
acao,DistrDueDate,TMDueDate,DVDueDate,TMINDueDate,TMAXDueDate,ListaEstagios,NumEstagios,Pos
Buffer):

 """ Função que simula a geração de jobs no sistema, gerando seu tempo de entrada na sim
ulação, seu due date e decidindo se o job entra no ambiente de simulação ou no pré-
shop segundo método DBR """

 Job=0

 global JobAcumulado # Importa variável global para função para manter numeração do núm
ero de jobs

 Job = JobAcumulado

 while True: # Este loop faz com que a geração de jobs ocorra até o tempo de simulação d
eterminado na planilha

 TGeracao = NumAleatorio (DistrGeracao,TMGeracao,DVGeracao,TMINGeracao,TMAXGeracao,0
) # Tempo de geração é criado conforme distr. escolhida pela função NumAleatorio

 yield env.timeout(max (TGeracao,0)) # Adiciona o tempo gerado ao tempo atual da sim
ulação, rodando a simulação

 Job=Job+1 # Próximo Job será numerado com número que vem na sequencia, mesmo que s
imulação mude

 JobAcumulado = Job

 JobName = "Job%d" % Job # Cria variável com nome do job, com base em sua numeração

 TDueDate = NumAleatorio (DistrDueDate,TMDueDate,DVDueDate,TMINDueDate,TMAXDueDate,0
) # Gera número aleatório com base na distribuição escolhida para determinar due date do j
ob

 DueDate = env.now + TDueDate # Due Date consiste na soma do número aleatório mais
o tempo de simulação na hora que o job é gerado

 file.write('%d\t%s\tGeração\tSistema\t%7.4f\t%7.4f\n' % (NumAtualSimulacao,JobName,
env.now,DueDate)) # Escreve em arquivo txt o evento Geração

 Caminho = [] # Lista Caminho guiará o job no sistema de
produção. Possuirá tamanho igual o número de estágios, com valores de o ou 1. 0, se não pas
sar pelo estágio correspondendte a ordem na lista e 1 se passar por este estágio

 NumEstagioJob = 0 # Variável que conterá o número de estágios em que o job gerado p
assará

116

 for i in range (NumEstagios): # Loop para gerar as variáveis Caminho e NumEstagioJ
ob, conforme a probabilidade de cada máestágio de um job passar ou não por ela

 SimouNao= [] # Lista contendo 10000 elementos na proporção de 1/(0+1) equivale
nte a probabilidade de certo job passar pelo estágio i

 ProbCaminho = (ListaEstagios [i][7])*10000 #ProbCaminho é variável decisiva no
 cálculo

 ProbCaminho = int (ProbCaminho)

 for j in range (ProbCaminho):

 SimouNao.append (1)

 for j in range (10000 - ProbCaminho):

 SimouNao.append (0)

 k= random.choice (SimouNao) # Escolha de número aleatório na lista SimouNão si
mula geração de número aleatório entre o e 1 de acordo com a variável ProbCaminho

 NumEstagioJob = NumEstagioJob + k

 Caminho.append (k) # Lista caminho é composta pelo mesmo número de itens do nú
mero de estágios, com itens binários (0:job não é processado no estágio / 1:job é processad
o no estágio)

 RopeEntrada = Buffer (env, PosBuffer, TimeBuffer, NumEstagios,ListaEstagios) # Var
iável que checa se sistema esta lotado (com base no time buffer)

 if RopeEntrada == True : # Se sistema não tiver lotado, recebe True e começa proce
ssamento

 env.process(Processamento(env, NumAtualSimulacao,Job, JobName, Caminho, PosBuff
er,NumEstagios,ListaEstagios)) #Função que inicia processamento

 file.write('%d\t%s\tEntrada\tSistema\t%7.4f\t%7.4f\n' % (NumAtualSimulacao,JobN
ame,env.now,DueDate)) # Escreve em arquivo txt o evento de entrada do job no sistema

 else : # Se sistema estiver lotado, recebe False e adiciona job ao pré-
shop, onde será devidamente ordenado e aguardará sua hora de entrar

 file.write('%d\t%s\tEntrada\tPréShop\t%7.4f\t%7.4f\n' % (NumAtualSimulacao,JobN
ame,env.now,DueDate)) # Escreve em arquivo txt a entrada do job no pré-shop

 yield PreShop.put ([Job,JobName,DueDate,NumEstagioJob,Caminho]) # Adiciona job
 na o pré-shop

""" -----------Funções de Processamento------------------------------------"""

def Processamento (env, NumAtualSimulacao, Job, JobName, Caminho, PosBuffer,NumEstagios, Li
staEstagios):

117

 """ Função que simula o processamento de cada job dentro do flow shop flexível.Utiliza
o caminho de cada job e importa recursos do simpy (classse máquinas) para simular cada está
gio """

 for i in range (NumEstagios): # Este Loop faz o job rodar por cada um dos estágios da
simulação

 NumOp = i+1 # Número do estágio, ou operação

 NomeOp = 'Operação'+ str(NumOp) # Nome do estágio, ou operação

 if Caminho [i] == 1: # Verifica se o estágio está no caminho do job, se sim, simul
a a operação ou adiciona-o a fila de espera. Se não, pula para o próximo estágio

 file.write('%d\t%s\tChegadaOp\t%s\t%7.4f\t-
\n' % (NumAtualSimulacao,JobName,NomeOp, env.now)) # Escreve em arquivo txt o evento de ch
egada do job na fila do estágio i

 atendReq1 = Estagios[i].maq.request() # Gera um request e tempo até o job come
çar efetivamente o processamento

 yield atendReq1 # Adiciona o tempo de fila à simulação

 file.write('%d\t%s\tInícioOp\t%s\t%7.4f\t-
\n' % (NumAtualSimulacao,JobName,NomeOp, env.now)) # Escreve em arquivo txt o início do pr
ocessamento jo job i no estágio j

 DistrProcesso = int (Estagios[i].tp [0])

 TMProcesso = float (Estagios[i].tp [1])

 DVProcesso = float (Estagios[i].tp [2])

 TMINProcesso = float (Estagios[i].tp [3])

 TMAXProcesso = float (Estagios[i].tp [4])

 BetaErlang = int (Estagios[i].tp [5])

 TProcesso = max (NumAleatorio (DistrProcesso,TMProcesso,DVProcesso,TMINProcesso
,TMAXProcesso,BetaErlang),0) # Com base na distribuição para tempo de simulação e parâmetr
os de cada estágio, gera-se o tempo de processamento

 yield env.timeout (TProcesso) # Adiciona ao tempo de simulação o tempo de proc
essamento do job j na máquina i, calculado com base na distribuição escolhida

 Estagios[i].maq.release(atendReq1) # Solta o job do estágio em que estava oper
ando, caracterizando fim de seu processamento neste estágio

 env.process(Rope (env,NumAtualSimulacao,NumEstagios,ListaEstagios,PosBuffer,Tim
eBuffer)) # Saída do job de um estágio ativa a função Rope do método DBR, que checa o buffe
r e compara com o time buffer máximo para liberar ou não novo job que está no pré-
shop no sistema

118

 file.write('%d\t%s\tFimOp\t%s\t%7.4f\t-
\n' % (NumAtualSimulacao,JobName,NomeOp, env.now)) # Escreve em arquivo txt fim do evento
de processammento do job i no estágio j

 file.write('%d\t%s\tSaídaSist\t%s\t%7.4f\t-
\n' % (NumAtualSimulacao,JobName,NomeOp, env.now)) # Escreve em arquivo txt fim do evento
de processammento do job i e sua saída do ambiente de simulação

""" -----------Drum-Buffer-Rope--"""

def Drum(ListaEstagios):

 """ Função do método de controle DBR que exerce a 1ª etapa do método: Identifica o recu
rso gergalo do sistema. Por isto, está diretamente relacionado ao componente Drum """

 # Chama parâmetros do primeiro estágio do sistema de
produção para usar como ponto de partida para achar o gargalo. Estágio 1 parte como sendo o
 gargalo, no começo da função

 DistrGargalo = ListaEstagios [0][1]

 TMGargalo = ListaEstagios [0][2]

 DVGargalo = ListaEstagios [0][3]

 TMINGargalo = ListaEstagios [0][4]

 TMAXGargalo = ListaEstagios [0][5]

 ERLANGGargalo = ListaEstagios [0][6]

 MAQGargalo = ListaEstagios [0][0]

 PROBGargalo = ListaEstagios [0][7]

 TMaqGargalo = TempoMed (DistrGargalo,TMGargalo,DVGargalo,TMINGargalo,TMAXGargalo,ERLANG
Gargalo) # Gera o tempo medio de operação de uma máquina dentro do estágio

 TMGargalo = TMaqGargalo * PROBGargalo / MAQGargalo # Multiplica-
se o tempo médio estimado pela probabilidade de um job estar no caminho do estágio e divide
-
se este valor pelo número de máquinas no estágio. O estágio gargalo será aquele com o númer
o

 PosGargalo = 1

 for i in range (len(ListaEstagios)-
1): # Loop que compara 1 a 1 os estágios até identificar aquele que e o gargalo

 # Chama parâmetros dos outros estágios do sistema de
produção para fazer comparação 1 a 1

 DistrComp = ListaEstagios [i+1][1]

 TMComp = ListaEstagios [i+1][2]

119

 DVComp = ListaEstagios [i+1][3]

 TMINComp = ListaEstagios [i+1][4]

 TMAXComp = ListaEstagios [i+1][5]

 ERLANGComp = ListaEstagios [i+1][6]

 MAQComp = ListaEstagios [i+1][0]

 PROBComp = ListaEstagios [i+1][7]

 TMaqComp = TempoMed (DistrComp,TMComp,DVComp,TMINComp,TMAXComp,ERLANGComp)

 TMComp = TMaqComp * PROBComp / MAQComp

 if TMComp > TMGargalo : # Se estágio i é mais lento que o mais lento até o momento
, passa a ser momentaneamente o gargalo e, portanto, ponto de comparação com os próximos es
tágios

 TMGargalo = TMComp

 PosGargalo = i + 2

 return (PosGargalo) # Esta função retorna onde está o recurso gargalo

def Buffer (env,PosBuffer,TimeBuffer, NumEstagios,ListaEstagios):

 """ Função do método de controle DBR que exerce a checagem do buffer atual do sistema e
 faz a comparação com o time buffer limite escolhido.

 Retorna True se pode-
se lançar um novo job no sistema e retorna False caso contrário """

 BufferAtual = 0

 ListaTempos = [] # Lista contendo todos as expectativas de tempos médios para cálculo
do buffer atual

 for i in range (PosBuffer): # Loop para criar ListaTempos

 # Pega parâmetros que serão utilizados

 Distr = ListaEstagios [i][1]

 TM = ListaEstagios [i][2]

 DV = ListaEstagios [i][3]

 TMIN = ListaEstagios [i][4]

 TMAX = ListaEstagios [i][5]

120

 ERLANG = ListaEstagios [i][6]

 MAQ = ListaEstagios [i][0]

 PROB = ListaEstagios [i][7]

 TMaq = TempoMed (Distr,TM,DV,TMIN,TMAX,ERLANG) # Gera tempo médio de processamento
 esperado

 TEstagio = TMaq * PROB / MAQ # Tempo utilizado para fins de comparação será o temp
o esperado de processamento (tempo médio) x Probabilidade dos jobs passarem pelo estágio /
número de máquinas no estágio

 ListaTempos.append (TEstagio)

 for j in range (PosBuffer): # Loop para calcular o buffer atual com o auxílio da Lista
Tempos

 TamFila = len (Estagios[i].maq.queue) # Tamanho da fila do estágio i

 TempoUnitFila = 0 # Variável que irá calcular o tempo esperado para os jobs da fil
a i concluírem o processamento

 for k in range (PosBuffer - j): # Calcula TempoUnitFila

 TempoUnitFila = TempoUnitFila + ListaTempos [PosBuffer-1-k]

 BufferAtual = BufferAtual + TamFila * TempoUnitFila # Variável TempoUnitFila para
as filas de todos os estágios são somadas para achar o tamanho atual do buffer

 if TimeBuffer > BufferAtual: # Teste comparativo entre time buffer limite e tamanho at
ual

 return True # Libera job para o sistema

 else:

 return False # Não libera job

def Rope(env,NumAtualSimulacao,NumEstagios,ListaEstagios,PosBuffer,TimeBuffer):

 """ Função do método de controle DBR que, caso a função buffer retorne True, exerce a e
ntrada de um novo job no sistema e sua remoção do pré-shop.

 Função Rope, sempre quando acionada, realiza o Sequenciamento do pré-shop """

 if len (PreShop.items) != 0: # Se o pré-
shop não tiver nenhum job, não há o que fazer. Caso haja, realiza a checagem do buffer e se
quenciamento

 RopeDBR = Buffer (env, PosBuffer, TimeBuffer, NumEstagios,ListaEstagios) # Checa s
e irá liberar job para o sistema ou não

121

 if RopeDBR == True: # Libera job para o sistema

 RegrasPrioridade (env,Sequenciamento,ListaEstagios) # Realiza o sequenciamento
 antes de liberar o primeiro job

 Job = PreShop.items[0][0]

 JobName = PreShop.items[0][1]

 DueDate = PreShop.items[0][2]

 NumEstagioJob = PreShop.items[0][3]

 Caminho = PreShop.items[0][4]

 yield PreShop.get() # Remove o job mais prioritário do pré-shop

 env.process(Processamento(env, NumAtualSimulacao, Job, JobName, Caminho, PosBuf
fer,NumEstagios,ListaEstagios)) # Job mais prioritário entra no sistema de produção

 file.write('%d\t%s\tSaída\tPréShop\t%7.4f\t%7.4f\n' % (NumAtualSimulacao,JobNam
e,env.now,DueDate)) # Escreve em arquivo txt o evento de saída do job mais priritário do p
ré-shop

 file.write('%d\t%s\tEntrada\tSistema\t%7.4f\t%7.4f\n' % (NumAtualSimulacao,JobN
ame,env.now,DueDate)) # Escreve em arquivo txt o evento de entrada do job mais prioritário
 no sistema de produção

 else: # Não libera job, mais realiza o sequenciamento

 RegrasPrioridade (env,Sequenciamento,ListaEstagios)

""" -----------Regras de Sequenciamento------------------------------------"""

def RegrasPrioridade (env,Sequenciamento, ListaEstagios):

 """ Função que ativa o sequenciamento do pré-
shop de acordo com a regra de prioridade escolhida e importada da planilha excel """

 if Sequenciamento == 'EDD' : # Mecanismo EDD (early due date) - ordena jobs no sistema
 pela menor due date até maior due date

 env.process (EDD (env))

 elif Sequenciamento == 'SPT': # Mecanismo SPT (shortest processing time) - ordena jobs
 no sistema pela menor expectativa de Tempo de Processamento até a maior

 env.process (SPT (env,ListaEstagios))

 elif Sequenciamento == 'LS': # Mecanismo SPT (shortest processing time) - ordena jobs
no sistema pela menor folga até a maior folga, sendo que folga corresponde a diferença entr
e a data de due date e o tempo estimado de conclusão

 env.process (LS (env,ListaEstagios))

122

 # Caso default consiste em sequenciamento FIFO (first in first out), em que o primeiro
job na fila é o que efetivamente sai

def EDD (env):

 """ Ordena pré-shop segundo regra de sequenciamento EDD """

 k = len(PreShop.items)

 Auxiliar = []

 for i in range (k) : # Cria PreShop auxiliar com mesma ordem de PreShop e Esvazia PreSh
op

 Job=PreShop.items[0][0]

 JobName=PreShop.items[0][1]

 DueDate=PreShop.items[0][2]

 NumEstagioJob=PreShop.items[0][3]

 Caminho=PreShop.items [0][4]

 Auxiliar.append ([Job,JobName,DueDate,NumEstagioJob,Caminho])

 yield PreShop.get()

 n = k

for i in range (k) : # Loop do novo ordenamento de jobs no sistema com sequenciamento EDD

 Job = Auxiliar[0][0]

 JobName = Auxiliar[0][1]

 DueDate = Auxiliar[0][2]

 NumEstagios = Auxiliar[0][3]

 Caminho = Auxiliar [0][4]

 Position = 0

 for j in range (n-
1) : # Loop comparativo - compara jobs no sistema com base no Due Date e seleciona o menor

 ParEDD = Auxiliar[j+1][2]

123

 if ParEDD < DueDate:

 Job = Auxiliar[j+1][0]

 JobName = Auxiliar[j+1][1]

 DueDate = Auxiliar[j+1][2]

 NumEstagios = Auxiliar[j+1][3]

 Caminho = Auxiliar [j+1][4]

 Position = j+1

 n = n -1

 yield PreShop.put ([Job,JobName,DueDate,NumEstagios,Caminho]) # Adiciona novamente
na lista elemento de menor due date

 Auxiliar.pop (Position)# Elimina elemento da lista de suporte

def SPT (env,ListaEstagios):

 """ Ordena pré-shop segundo regra de sequenciamento SPT """

 k = len(PreShop.items)

 Auxiliar = []

 for i in range (k) : # Cria PreShop auxiliar com mesma ordem de PreShop e Esvazia PreSh
op

 Job = PreShop.items[0][0]

 JobName = PreShop.items[0][1]

 DueDate = PreShop.items[0][2]

 NumEstagioJob = PreShop.items[0][3]

 Caminho = PreShop.items [0][4]

 Auxiliar.append ([Job,JobName,DueDate,NumEstagioJob,Caminho])

 yield PreShop.get()

 q = k

 for i in range (k) : # Loop do novo ordenamento de jobs no sistema com sequenciamento S
PT

124

 Job = Auxiliar[0][0]

 JobName = Auxiliar[0][1]

 DueDate = Auxiliar[0][2]

 NumEstagioJob = Auxiliar[0][3]

 Caminho = Auxiliar [0][4]

 Position = 0

 SPT = 0

 for m in range (len(Caminho)):

 AdSPT = Caminho [m]* TempoMed (ListaEstagios [m][1],ListaEstagios[m][2],ListaEs
tagios[m][3],ListaEstagios[m][4],ListaEstagios[m][5],ListaEstagios[m][6])

 SPT = SPT + AdSPT

 for j in range (q-
1) : # Loop comparativo - compara jobs no sistema com base no Due Date e seleciona o menor

 ParCaminho = Auxiliar [j+1][4]

 ParSPT = 0

 for n in range (len(ParCaminho)):

 AdParSPT = ParCaminho[n] * TempoMed (ListaEstagios [m][1],ListaEstagios[m]
[2],ListaEstagios[m][3],ListaEstagios[m][4],ListaEstagios[m][5],ListaEstagios[m][6])

 ParSPT = ParSPT +AdParSPT

 if ParSPT < SPT:

 Job = Auxiliar[j+1][0]

 JobName = Auxiliar[j+1][1]

 DueDate = Auxiliar[j+1][2]

 NumEstagioJob = Auxiliar[j+1][3]

 Caminho = Auxiliar [j+1][4]

 Position = j+1

 SPT = ParSPT

125

 q = q - 1

 yield PreShop.put ([Job,JobName,DueDate,NumEstagioJob,Caminho]) # Adiciona novament
e na lista elemento de menor tempo de processamento

 Auxiliar.pop (Position)# Elimina elemento da lista de suporte

def LS (env,ListaEstagios):

 """ Ordena pré-shop segundo regra de sequenciamento LS """

 k = len(PreShop.items)

 Auxiliar = []

 for i in range (k) : # Cria PreShop auxiliar com mesma ordem de PreShop e Esvazia PreSh
op

 Job = PreShop.items[0][0]

 JobName = PreShop.items[0][1]

 DueDate = PreShop.items[0][2]

 NumEstagioJob = PreShop.items[0][3]

 Caminho = PreShop.items [0][4]

 Auxiliar.append ([Job,JobName,DueDate,NumEstagioJob,Caminho])

 yield PreShop.get()

 for i in range (k) : # Loop do novo ordenamento de jobs no sistema com sequenciamento S
PT

 Job = Auxiliar[0][0]

 JobName = Auxiliar[0][1]

 DueDate = Auxiliar[0][2]

 NumEstagioJob = Auxiliar[0][3]

 Caminho = Auxiliar [0][4]

 Position = 0

 SPT = 0

 q = k

126

 for m in range (len(Caminho)):

 AdSPT = Caminho [m]* TempoMed (ListaEstagios [m][1],ListaEstagios[m][2],ListaEs
tagios[m][3],ListaEstagios[m][4],ListaEstagios[m][5],ListaEstagios[m][6])

 SPT = SPT + AdSPT

 LS = DueDate - SPT

 for j in range (q-
1) : # Loop comparativo - compara jobs no sistema com base no Due Date e seleciona o menor

 ParCaminho = Auxiliar [j+1][4]

 ParSPT = 0

 for n in range (len(ParCaminho)):

 AdParSPT = ParCaminho[n] * TempoMed (ListaEstagios [m][1],ListaEstagios[m][
2],ListaEstagios[m][3],ListaEstagios[m][4],ListaEstagios[m][5],ListaEstagios[m][6])

 ParSPT = ParSPT +AdParSPT

 ParDueDate = Auxiliar[j+1][2]

 ParLS = ParDueDate - ParSPT

 if ParLS < LS:

 Job = Auxiliar[j+1][0]

 JobName = Auxiliar[j+1][1]

 DueDate = Auxiliar[j+1][2]

 NumEstagioJob = Auxiliar[j+1][3]

 Caminho = Auxiliar [j+1][4]

 Position = j+1

 SPT = ParSPT

 LS = ParLS

 q = q -1

 yield PreShop.put ([Job,JobName,DueDate,NumEstagioJob,Caminho]) # Adiciona novament
e na lista elemento de menor tempo de processamento

 Auxiliar.pop (Position)# Elimina elemento da lista de suporte

127

""" -----------Bloco Principal---"""

""" Bloco Principal, que ativa a simulação chamando as funções deste programa"""

random.seed() # Semente para gerar números aleatórios

NumSimulacoes, TempoSimulacao, TimeBuffer, Sequenciamento,DistrGeracao,TMGeracao,DVGeracao,
TMINGeracao,TMAXGeracao,DistrDueDate,TMDueDate,DVDueDate,TMINDueDate,TMAXDueDate,NumEstagio
s,ListaEstagios = Inputs () # Recebe os inputs do sistema

NumAtualSimulacao = 0

PosBuffer = Drum (ListaEstagios) # Identifica a posição do recurso gargalo no sistema, que
 será um input da simulação

while NumAtualSimulacao < NumSimulacoes : # Gera n simulações distintas com o mesmo cenári
o de inputs retirados do excel

 NumAtualSimulacao = NumAtualSimulacao + 1

 env = simpy.Environment() # Importa ambiente de simulação do simpy

 PreShop = simpy.Store (env) # Cria pr-e-shop como objeto de estoque do simpy

 Estagios = []

 for i in range(NumEstagios): # Loop que cria os estágios onde ocorre a simulação

 Estagios.append(Maquinas(env, i+1 , ListaEstagios))

 env.process(GeracaoJobs(env, NumAtualSimulacao,DistrGeracao,TMGeracao,DVGeracao,TMINGer
acao,TMAXGeracao,DistrDueDate,TMDueDate,DVDueDate,TMINDueDate,TMAXDueDate,ListaEstagios,Num
Estagios, PosBuffer)) # Ativa a funçao de Processamento

 env.run(until=TempoSimulacao) # Ativa a simulação

""" -----------Ler Macros do Arquivo Excel---------------------------------"""

""" Ativa macro da planilha excel, que importa o arquivo txt para dentro da aba Output da p
lanilha excel e ativa a análise, puxando as fórmulas necessárias para obter os Indicadores
de Desempenho na aba Indicadores de Desempenho """

ImportSimulacao = wb.macro('Automatico')

ImportSimulacao ()

file.close()

128

129

ANEXO B – PLANILHA DE ENTRADA (INPUT)

Modelagem DBR
Planilha de Input

Parâmetros de Simulação

Número de simulações 1

Tempo de simulação 100.0

Time buffer 3.0

Regra de sequenciaonamento de jobs para Pré-Shop EDD

Parâmetros para Geração de Jobs

Tipo de distribuição para geração de jobs 2

Exponencial 1

Normal 2

Uniforme 3

Fixa 4

Parâmetros

Tempo Médio 2.0

Desvio Padrão 0.2

Tempo Mínimo 0.0

Tempo Máximo 0.0

Parâmetros para Determinação de Due Date

Tipo de distribuição para determinação de due date 3

Exponencial 1

Normal 2

Uniforme 3

Fixa 4

Parâmetros

Tempo Médio 0.0

Desvio Padrão 0.0

Tempo Mínimo 10.0

Tempo Máximo 30.0

Parâmetros de Processo

Tipo de distribuição para determinação de taxa de processamento

Exponencial 1

Normal 2

Uniforme 3

Fixa 4

Triangular 5

Erlang 6

Número de Estágios 10

Estágios Quant. Máquinas
Distribuição

Processamento
Tempo Médio Desvio Padrão Tempo Mínimo Tempo Máximo Erlang Beta

Probabilidade de estágio

estar no caminho do job

1 10 2 2.0 0.5 0.0 0.0 0.0 100%

2 2 2 3.0 0.5 0.0 0.0 0.0 100%

3 3 2 4.0 0.5 0.0 0.0 0.0 100%

4 4 2 2.0 0.5 0.0 0.0 0.0 100%

5 5 2 1.0 0.5 0.0 0.0 0.0 100%

6 6 2 5.0 0.5 0.0 0.0 0.0 100%

7 6 2 4.0 0.5 0.0 0.0 0.0 100%

8 6 2 3.0 0.5 0.0 0.0 0.0 80%

9 6 2 2.0 0.5 0.0 0.0 0.0 50%

10 6 2 1.0 0.5 0.0 0.0 0.0 100%

130

131

ANEXO C – PLANILHA DE SAÍDAS (OUTPUT)

Modelagem DBR
Output

Número da Simulação Número do Job Evento Local Tempo de Simulação Due Date Geração de jobs Saída de jobs Número do Job Data de Geração Data de Entrada Data de Saída (0= Não saiu) Due Date Lead Time Throughtput Time Concluído? Atraso? Tardiness

1.0 Job1 Geração Sistema 2.0 23.6 1.0 Job1 2.0 2.0 25.3 23.6 23.3 23.3 Sim Sim 1.7

1.0 Job1 Entrada Sistema 2.0 23.6 Job2 4.4 4.4 25.5 28.1 21.2 21.2 Sim 0.0

1.0 Job1 ChegadaOp Operação1 2.0 - Job3 6.2 6.2 33.8 27.2 27.6 27.6 Sim Sim 6.6

1.0 Job1 InícioOp Operação1 2.0 - Job4 7.9 7.9 30.6 25.4 22.7 22.7 Sim Sim 5.2

1.0 Job1 FimOp Operação1 3.9 - Job5 9.9 0.0 0.0 25.9

1.0 Job1 ChegadaOp Operação2 3.9 - Job6 11.8 11.8 37.4 26.6 25.6 25.6 Sim Sim 10.8

1.0 Job1 InícioOp Operação2 3.9 - Job7 13.8 13.8 33.1 30.4 19.3 19.3 Sim Sim 2.7

1.0 Job2 Geração Sistema 4.4 28.1 1.0 Job8 15.3 15.3 42.8 32.6 27.5 27.5 Sim Sim 10.3

1.0 Job2 Entrada Sistema 4.4 28.1 Job9 17.4 17.4 41.0 43.1 23.6 23.6 Sim 0.0

1.0 Job2 ChegadaOp Operação1 4.4 - Job10 19.6 19.6 41.0 41.5 21.4 21.4 Sim 0.0

1.0 Job2 InícioOp Operação1 4.4 - Job11 21.7 21.7 44.6 49.4 23.0 23.0 Sim 0.0

1.0 Job3 Geração Sistema 6.2 27.2 1.0 Job12 23.9 23.9 47.9 43.0 24.1 24.1 Sim Sim 4.9

1.0 Job3 Entrada Sistema 6.2 27.2 Job13 26.4 26.4 50.9 41.1 24.6 24.6 Sim Sim 9.9

1.0 Job3 ChegadaOp Operação1 6.2 - Job14 28.4 28.4 55.3 43.3 27.0 27.0 Sim Sim 12.0

1.0 Job3 InícioOp Operação1 6.2 - Job15 30.7 30.7 57.7 42.5 27.1 27.1 Sim Sim 15.2

1.0 Job2 FimOp Operação1 6.9 - Job16 32.5 32.5 58.9 52.6 26.5 26.5 Sim Sim 6.3

1.0 Job2 ChegadaOp Operação2 6.9 - Job17 34.5 34.5 62.1 57.7 27.7 27.7 Sim Sim 4.4

1.0 Job2 InícioOp Operação2 6.9 - Job18 36.5 36.5 64.8 48.3 28.3 28.3 Sim Sim 16.6

1.0 Job1 FimOp Operação2 7.2 - Job19 38.4 38.4 62.3 52.8 23.9 23.9 Sim Sim 9.5

1.0 Job1 ChegadaOp Operação3 7.2 - Job20 40.2 40.2 67.3 64.3 27.1 27.1 Sim Sim 3.0

1.0 Job1 InícioOp Operação3 7.2 - Job21 42.3 42.3 68.6 54.4 26.3 26.3 Sim Sim 14.2

1.0 Job4 Geração Sistema 7.9 25.4 1.0 Job22 44.4 44.4 71.2 65.6 26.8 26.8 Sim Sim 5.6

1.0 Job4 Entrada Sistema 7.9 25.4 Job23 46.7 46.7 76.3 64.7 29.6 29.6 Sim Sim 11.6

1.0 Job4 ChegadaOp Operação1 7.9 - Job24 48.6 48.6 77.5 66.6 29.0 29.0 Sim Sim 10.9

1.0 Job4 InícioOp Operação1 7.9 - Job25 50.5 50.5 81.0 80.1 30.5 30.5 Sim Sim 0.9

1.0 Job3 FimOp Operação1 9.0 - Job26 52.2 52.2 76.0 79.2 23.8 23.8 Sim 0.0

1.0 Job3 ChegadaOp Operação2 9.0 - Job27 53.9 53.9 78.9 69.4 25.0 25.0 Sim Sim 9.6

1.0 Job3 InícioOp Operação2 9.0 - Job28 55.9 0.0 0.0 73.7

1.0 Job4 FimOp Operação1 9.3 - Job29 58.1 58.1 79.9 71.6 21.8 21.8 Sim Sim 8.3

1.0 Job4 ChegadaOp Operação2 9.3 - Job30 59.6 59.6 79.8 77.1 20.2 20.2 Sim Sim 2.7

1.0 Job5 Geração Sistema 9.9 25.9 1.0 Job31 61.5 61.5 86.4 82.4 24.9 24.9 Sim Sim 4.0

1.0 Job5 Entrada PréShop 9.9 25.9 Job32 63.7 63.7 0.0 90.7

1.0 Job2 FimOp Operação2 10.1 - Job33 65.9 65.9 90.6 86.3 24.7 24.7 Sim Sim 4.3

1.0 Job2 ChegadaOp Operação3 10.1 - Job34 68.0 68.0 0.0 95.0

1.0 Job2 InícioOp Operação3 10.1 - Job35 70.0 0.0 0.0 94.2

1.0 Job4 InícioOp Operação2 10.1 - Job36 72.1 72.1 0.0 88.1

1.0 Job1 FimOp Operação3 10.5 - Job37 74.0 74.0 0.0 88.5

1.0 Job1 ChegadaOp Operação4 10.5 - Job38 75.9 75.9 0.0 86.9

1.0 Job1 InícioOp Operação4 10.5 - Job39 78.1 78.1 0.0 95.6

1.0 Job6 Geração Sistema 11.8 26.6 1.0 Job40 80.2 80.2 0.0 97.7

1.0 Job6 Entrada Sistema 11.8 26.6 Job41 82.1 82.1 0.0 99.0

1.0 Job6 ChegadaOp Operação1 11.8 - Job42 84.6 84.6 0.0 95.4

1.0 Job6 InícioOp Operação1 11.8 - Job43 86.7 86.7 0.0 108.5

1.0 Job3 FimOp Operação2 12.5 - Job44 88.9 88.9 0.0 105.0

1.0 Job3 ChegadaOp Operação3 12.5 -

1.0 Job3 InícioOp Operação3 12.5 -

1.0 Job4 FimOp Operação2 13.2 -

1.0 Job4 ChegadaOp Operação3 13.2 -

1.0 Job4 InícioOp Operação3 13.2 -

1.0 Job2 FimOp Operação3 13.4 -

1.0 Job2 ChegadaOp Operação4 13.4 -

1.0 Job2 InícioOp Operação4 13.4 -

1.0 Job1 FimOp Operação4 13.5 -

1.0 Job1 ChegadaOp Operação5 13.5 -

1.0 Job1 InícioOp Operação5 13.5 -

1.0 Job6 FimOp Operação1 13.5 -

1.0 Job6 ChegadaOp Operação2 13.5 -

1.0 Job6 InícioOp Operação2 13.5 -

1.0 Job1 FimOp Operação5 13.7 -

1.0 Job1 ChegadaOp Operação6 13.7 -

1.0 Job1 InícioOp Operação6 13.7 -

1.0 Job7 Geração Sistema 13.8 30.4 1.0

1.0 Job7 Entrada Sistema 13.8 30.4

1.0 Job7 ChegadaOp Operação1 13.8 -

1.0 Job7 InícioOp Operação1 13.8 -

Modelagem DBR
Indicadores de Desempenho

Indicadores de Desempenho

Jobs gerados 92

Jobs terminados 64

Mean Throughtput Time 27.0

Mean Lead Time 27.0

Percentage Tardy 39%

Mean Tardiness 0.6

Modelo de Otimização

Indicador de desempenho foco 1

Mean Throughtput Time 1

Mean Lead Time 2

Percentage Tardy 3

Mean Tardiness 4

Margem de erro 2.0

Eventos no pré-shop 0

Time buffer maximizador/minimizador 0.0

132

133

ANEXO D – MACROS DE SUPORTE

Sub Automatico()

 ' Macro que une importar simulação de arquivo txt e executa a análise

 Sheets("Output").Select

 Range("B6").Select

 With ActiveSheet.QueryTables.Add(Connection:= _

 "TEXT; OutputSimulacao.txt" _

 , Destination:=Range("B6"))

 .Name = "OutputSimulacao"

 .FieldNames = True

 .RowNumbers = False

 .FillAdjacentFormulas = False

 .PreserveFormatting = True

 .RefreshOnFileOpen = False

 .RefreshStyle = xlInsertDeleteCells

 .SavePassword = False

 .SaveData = True

 .AdjustColumnWidth = True

 .RefreshPeriod = 0

 .TextFilePromptOnRefresh = False

 .TextFilePlatform = 1252

 .TextFileStartRow = 1

 .TextFileParseType = xlDelimited

 .TextFileTextQualifier = xlTextQualifierDoubleQuote

 .TextFileConsecutiveDelimiter = False

 .TextFileTabDelimiter = True

134

 .TextFileSemicolonDelimiter = False

 .TextFileCommaDelimiter = False

 .TextFileSpaceDelimiter = False

 .TextFileColumnDataTypes = Array(1, 1, 1, 1, 1, 1)

 .TextFileTrailingMinusNumbers = True

 .Refresh BackgroundQuery:=False

 End With

 Range("B5").Select

 Range(Selection, Selection.End(xlToRight)).Select

 Range(Selection, Selection.End(xlDown)).Select

 Selection.Columns.AutoFit

 Range("A1").Select

 Sheets("Indicadores de Desempenho").Select

 Range("A1").Select

 Dim NumJobs As Integer

 Dim i As Integer

 NumJobs = Sheets("Indicadores de Desempenho").Cells(7, 3).Value

 i = 0

 Sheets("Output").Select

 Do While i < NumJobs

 i = i + 1

 Cells(i + 5, 12) = "Job" & i

 Loop

 Cells(i + 5, 13) = "x"

 Cells(i + 5, 18) = "x"

 Range("M6:P6").Select

 Range(Selection, Selection.End(xlDown)).Select

135

 Selection.FillDown

 Range("R6:V6").Select

 Range(Selection, Selection.End(xlDown)).Select

 Selection.FillDown

 Sheets("Indicadores de Desempenho").Select

 Range("A1").Select

End Sub

Sub Limpa_Automatico()

'Macro que limpa análise da planilha e limpa simulação do excel e arquivo txt

 Sheets("Output").Select

 Range("L7").Select

 Range(Selection, Selection.End(xlDown)).Select

 Range(Selection, Selection.End(xlToRight)).Select

 Selection.ClearContents

 With Selection.Interior

 .Pattern = xlNone

 .TintAndShade = 0

 .PatternTintAndShade = 0

 End With

 Range("R7").Select

 Range(Selection, Selection.End(xlDown)).Select

 Range(Selection, Selection.End(xlToRight)).Select

 Selection.ClearContents

 With Selection.Interior

 .Pattern = xlNone

 .TintAndShade = 0

 .PatternTintAndShade = 0

136

 End With

 Sheets("Indicadores de Desempenho").Select

 Range("A1").Select

 Sheets("Output").Select

 Range("B6:G6").Select

 Range(Selection, Selection.End(xlDown)).Select

 Selection.ClearContents

 Sheets("Indicadores de Desempenho").Select

 Range("A1").Selec

 Open "OutputSimulacao.txt" For Output As #1: Close #1 '

End Sub

