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RESUMO 

 

O DBR (drum buffer and rope) é um método de controle da produção baseado na teoria das 

restrições que busca explorar o gargalo de um sistema de produção de forma a evitar sua ociosidade 

e maximizar a produtividade do sistema. O dimensionamento do time buffer é um dos grandes 

desafios do DBR e pouca importância tem sido dada a este problema na literatura atual. Desta 

maneira, o presente trabalho tem como objetivo central a elaboração de um ambiente de simulação 

por eventos discretos que permita o estudo do problema do dimensionamento do time buffer na 

aplicação do método de controle DBR. O estudo focou na simulação de um ambiente flow shop 

genérico dentro da lógica de produção MTO (make-to-order) e buscou avaliar o impacto de certos 

parâmetros do ambiente de simulação em conjunto com o time buffer em indicadores de 

desempenho escolhidos. Para a realização deste trabalho, realizou-se uma extensa revisão 

bibliográfica sobre o assunto, seguida pela concepção conceitual do modelo e desenvolvimento do 

modelo de simulação de acordo com esta concepção. Após a etapa de testes para verificação, o 

modelo foi utilizado para simular uma série de cenários. Os resultados mostraram que o 

desempenho do DBR está diretamente atrelado a um correto dimensionamento do time buffer. Por 

sua vez, este dimensionamento depende das características ou parâmetros do ambiente de 

simulação. Desta maneira, a simulação por eventos discretos se mostrou uma ferramenta poderosa 

na condução do dimensionamento do time buffer. 

 

Palavras-chave: Controle da produção. Teoria das Restrições. DBR. Dimensionamento do time 

buffer. Simulação por eventos discretos. 

  



 
 

 

  



 
 

 

ABSTRACT 
 

DBR (drum buffer and rope) is a production control technique based on the Theory of Constraints, 

which explores the system’s bottleneck to avoid idleness and maximize the performance of the 

production system. The determination of the time buffer size is a critical step in the DBR 

application, but little attention has been given to this issue in the current scientific literature. 

Therefore, the objective of the present study is the development of discrete events simulation 

environment to support the study of the time buffer size determination in DBR application. The 

study focused on the general flow shop routing configuration and MTO (make-to-order) strategy 

to assess the influence of certain configuration parameters in connection with the time buffer size 

over selected performance indicators. The methodology started with an extensive literature review 

followed by the conceptual design of the simulation model and the operational model development. 

After a verification period, the model was used to conduct a set of simulations with different 

scenarios. The simulation output was extensively analyzed in order to draw conclusions. The 

results showed that the DBR performance was directly related to the adjustment of the time buffer 

size. In addition, the time buffer size determination depends on a series of system configuration 

parameters. Thus, the discrete events simulation was found to be a powerful tool in the study of the 

time buffer size determination. 

 

Keywords: Production control. Theory of Constraints. DBR. Time buffer sizing. Discrete events 

simulation.   
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1. INTRODUÇÃO 
 

1.1. Motivação 

O flow shop genérico é uma linha de produção com múltiplos estágios, tendo cada estágio 

uma ou múltiplas máquinas idênticas. A linha produz múltiplos produtos em lotes, todos com o 

mesmo fluxo de produção. Em outras palavras, todos os jobs (ordens de produção) percorrem a 

linha no mesmo sentido, não necessariamente passando por todos os estágios. Desta forma, é um 

ambiente de produção existente na grande maioria das linhas de produção, podendo ser a linha 

como um todo ou somente uma parte desta (ENNS, 1995). 

A estratégia de produção MTO (make to order) é aquela em que o pedido, ou a realização 

do ato de venda, é realizado antes do início da produção de determinado produto. É uma das 

estratégias de produção mais comumente empregadas em sistemas de produção, sendo 

extremamente útil principalmente para empresas com um nível maior de sofisticação, onde há a 

probabilidade de customização (KRAJEWSKI & RITZMAN, 1996). 

O método DBR (drum, buffer and rope) é um dos métodos de controle da produção mais 

conhecidos e estudados recentemente. Ele se baseia no recurso gargalo do sistema de produção 

para realizar o controle da produção de forma a evitar ociosidade no recurso gargalo e elevado 

estoque em processo (UMBLE & SRIKANTH, 2002).  

A ideia básica do DBR é controlar a liberação de ordens de tal forma que o recurso gargalo 

tenha sempre uma fila (estoque) de ordens para processar, evitando risco de parada por falta de 

material. Por outro lado, a liberação das ordens deve garantir que o estoque não seja 

desnecessariamente elevado, ao ponto de prejudicar a produtividade da linha. A taxa de liberação 

das ordens adequada é representada pelo drum (tambor) e o sinal de liberação que vem do buffer 

(pulmão) para o início do processo é representado pela rope (corda). 

Para a efetiva implementação do método DBR, existem certos desafios que necessitam ser 

considerados e que são foco de diversas pesquisas e artigos científicos sobre o tema. Os principais 

desafios para a implementação do DBR são: identificação do recurso gargalo, programação da fila 

de entrada, dimensionamento do time buffer e definição das datas de entrega para os clientes 

(aplicável somente a sistema MTO). 
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Portanto, um dos pilares da aplicação do método DBR consiste em dimensionar o time 

buffer, ou pulmão da restrição, que consiste na antecedência programada para a chegada de jobs 

no gargalo. O dimensionamento do time buffer é responsável por regular a ocupação do recurso 

gargalo do sistema, controlando o ritmo do sistema de produção, como prega a teoria das restrições 

(DE SOUZA, 2005).  

Isto é fator determinante para o desempenho operacional de uma linha de produção, 

impactando diretamente a produtividade, a capacidade de suprir a demanda, o custo de produção e 

a necessidade de capital para girar a operação de um determinado sistema de produção.  

Enquanto valores muito baixos de time buffer podem resultar em perda de produtividade e 

default de ordens de produção, valores elevados levam para o caminho contrário. Porém, estes 

valores elevados geram um aumento de jobs em processamento no sistema de produção que pode 

inviabilizar operacionalmente a produção, devido ao custo de estoque elevado gerado por esta 

prática, que trará a empresa a necessidade de capital de giro.  

Além disso, um número excessivo de jobs no sistema pode fazer com que pedidos com 

maior urgência de atendimento não possam ser atendidos, devido ao número excessivo de jobs que 

já estão no sistema e tem prioridade de processamento. Um elevado WIP pode ser prejudicial para 

a capacidade de entrega de um sistema de produção por aumentar o lead time de jobs, como 

demonstra a Lei de Little (1). 

 

𝑊𝐼𝑃 =  𝜆 ∗ 𝐿𝑒𝑎𝑑 𝑡𝑖𝑚𝑒 

 

Desta maneira, a etapa de dimensionamento do time buffer durante a aplicação do método 

DBR deve ser feita cuidadosamente, com sua devida importância, de forma a maximizar 

indicadores de desempenho operacionais e financeiros que estejam alinhados com os objetivos 

estratégicos da companhia. Embora existam métodos empíricos para o dimensionamento do time 

buffer em uma implantação do DBR (THURER et al., 2017; SCHRAGENHEIM & RONEN, 1990; 

DANIEL & GUIDE, 1997), esses métodos não buscam atingir um ponto ótimo em relação ao 

desempenho operacional e/ou financeiro, mas sim, uma solução conveniente para casos específicos 

de sistemas de produção.  

  

(1) 
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Além disso, em sistemas reais, com maior grau de complexidade do ambiente de produção 

e/ou maior grau de imprevisibilidade maior da entrada de pedidos, uma solução empírica pode ser 

difícil de ser achada e soluções existentes elaboradas pelos autores citados acima podem ser 

ineficientes. 

Com exceção dos métodos empíricos, o autor deste trabalho identificou pouca produção 

científica na literatura acerca de métodos que busquem otimizar o time buffer ou que discutam o 

impacto de variações de parâmetros do ambiente de produção sobre valores de time buffer que 

impactem positivamente na operação do sistema. Em geral, os artigos identificados na literatura 

abordam casos muito específicos, como o trabalho de Radovilsky (1997), que estuda o caso de um 

job shop puro com tempo de chegada de jobs necessariamente igual ao tempo de processamento 

dos estágios ou o trabalho de Ye & Han (2008), que estuda o caso de um assembly shop, trabalho 

que se mostra complexo em termos de aplicação prática.  

Além disto, estes métodos limitam-se a indicadores de performance financeiros, pouco 

avaliando aspectos operacionais, como o tempo de produção e o atraso de entrega. Um maior 

detalhamento sobre a literatura relativa ao método DBR será apresentado adiante. 

Zhang & Du (2015) produziram o artigo mais abrangente sobre o tema, permitindo a 

adaptação a variedades de sistemas de produção dentro do ambiente de produção job shop puro. A 

abordagem consiste na implantação de um modelo de otimização de programação linear que, com 

o auxílio de um modelo de simulação para o sistema de produção, permite a determinação do 

tamanho ótimo de time buffer que minimiza os custos de produção. Desta maneira, a criação de um 

modelo de simulação que permita a implementação do método DBR é uma alternativa viável e 

eficiente para o dimensionamento do time buffer. 

A larga existência de sistemas de produção com ambiente de produção flow shop genérico 

e estratégia de produção MTO, aliado ao fato de não terem sido identificados na literatura estudos 

sobre o impacto de parâmetros operacionais sobre o tamanho do time buffer que traz melhores 

valores de indicadores de desempenho operacionais, como atraso de entregas, produtividade e lead 

time, é o que motivou o desenvolvimento deste trabalho. 

 Adicionalmente, a utilidade da simulação para a implantação prática do método DBR e 

para o estudo do dimensionamento do time buffer motivou a criação de um ambiente de simulação 

adaptável como método para estudar o dimensionamento do time buffer em diferentes cenários e o 

impacto de certos parâmetros neste dimensionamento.   
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1.2. Objetivos 

O presente trabalho tem como objetivo principal estudar o problema de dimensionamento 

de time buffer sob a ótica do DBR em um ambiente de produção flow shop genérico com estratégia 

de produção MTO.  

Para isto, os seguintes objetivos específicos foram definidos: 

 Desenvolver um modelo de simulação genérico que represente a aplicação do método 

de controle DBR e permita o estudo de diferentes configurações possíveis de sua 

aplicação em um sistema flow shop genérico com estratégia de produção MTO. 

 Estudar o impacto do tamanho do time buffer em alguns indicadores de desempenho 

operacional do sistema de produção, em cada cenário estudado. 

 Estudar o impacto de certos parâmetros, como severidade do gargalo e regras de 

sequenciamento no comportamento dos indicadores de desempenho estudados, para 

diferentes configurações com tamanhos variados de time buffer. 

 Estudar como o tamanho do time buffer ideal se comporta conforme se variam os 

parâmetros do sistema de produção, como posição do recurso gargalo, número de 

estágios de produção no sistema, severidade do gargalo, etc. 

1.3. Estrutura do Trabalho 

O presente trabalho será composto de sete capítulos. Conforme já visto, o presente capítulo 

discutiu a motivação e os objetivos para a realização deste trabalho.  

O segundo capítulo trará uma revisão bibliográfica extensa sobre os temas relacionados ao 

presente trabalho, como: (i) estratégias de produção existentes e suas características e 

particularidades; (ii) configurações de ambientes de produção existentes, definindo-os e 

apresentando suas características; (iii) métodos de controle da produção mais conhecidos na 

literatura, bem como suas características e diferenças; (iv) revisão sobre o método DBR, 

destacando sua lógica de funcionamento e literatura existente, com destaque para o 

dimensionamento do time buffer; (v) revisão da literatura sobre métodos de simulação. 
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O terceiro capítulo trata da metodologia utilizada para o desenvolvimento do trabalho, 

destacando os passos dos capítulos seguintes. O quarto capítulo discute o desenvolvimento do 

modelo de simulação, descrevendo seu funcionamento, testes de verificação e validação, e as 

instâncias que foram utilizadas no capítulo cinco. 

O quinto capítulo traz o método para a escolha das instânias de simulação e apresenta em 

detalhe os parâmetros de entrada dos cenários gerados. O capítulo seis apresenta os resultados 

obtidos com a simulação das instâncias geradas no capítulo cinco e uma análise comparativa crítica 

destes resultados.  

O capítulo sete resume a análise feita no capítulo seis para subsidiar a conclusão do presente 

trabalho. Por fim, o também discute os próximos trabalhos que possam resultar do tema aqui 

tratado, dos resultados obtidos do trabalho ou do modelo de simulação elaborado. 

Além destes sete capítulos, o código do modelo de simulação, bem como as planilhas e 

macros utilizadas de suporte ao modelo, estão anexados ao final do trabalho. 
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2. REVISÃO BIBLIOGRÁFICA 

 

Antes da construção do modelo de simulação e execução dos experimentos, é necessário 

apresentar uma revisão bibliográfica sobre o tema “controle da produção” e sobre o método DBR. 

As técnicas abordadas na literatura sobre o dimensionamento do time buffer são também discutidas.  

Também é de fundamental importância definir conceitualmente o ambiente e a estratégia 

de produção, bem como os termos utilizados no desenvolvimento do presente trabalho. Todos estes 

aspectos serão discutidos no presente capítulo. 

 

2.1. Estratégias de Produção 

Os sistemas de produção de empresas de manufatura guardam semelhanças entre si. 

Portanto, estes sistemas são muitas vezes agrupados com base nestas características para fins de 

estudo e aplicação de técnicas específicas de programação e controle da produção. 

Com este intuito, diversos autores apresentaram diferentes classificações para agrupar 

sistemas de produção semelhantes. Uma das classificações mais famosas é a classificação 

reproduzida por Krajewski & Ritzman (1996), que se refere às estratégias de produção para os 

sistemas de produção, dividindo-as em três grupos: MTS (make-to-order), ATO (assemble-to-

order) e MTO (make-to-order). 

Posteriormente, Pires (2004) destaca a existência de uma quarta estratégia, de forma a 

complementar a classificação apresentada por Krajewski & Ritzman (1996): a estratégia de 

produção ETO (engineering-to-order). Segue abaixo breve resumo descritivo das principais 

características destas quatro estratégias. 

 

2.1.1. MTS (”make to stock”) 

Krajewski & Ritzman (1996) definem a estratégia de produção MTS como sendo aquela 

em que a produção é voltada para estocagem, ou seja, em que a companhia produz itens 

padronizados que passam pelo estoque e posteriormente são destinados para venda.  

Pires (2004) destaca que a interferência do cliente no processo produtivo é praticamente 

inexistente, com exceção da pesquisa de mercado, uma vez que a programação da produção é feita 

por previsão de demanda em sistemas MTS. 
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Segundo Arnold (1999), a estratégia de produção MTS é aquela que permite o menor grau 

de customização de produtos, mas que possui menor tempo de entrega (lead time) em comparação 

com as demais estratégias de produção. Nestas estratégias, o cliente possui pequeno envolvimento 

direto no projeto do produto. Por este motivo, a estratégia de produção MTS é muito empregada 

na produção de produtos mais padronizados, com vendas em massa e pouca customização. 

 

2.1.2. ATO (“assemble to order”) 

Segundo Krajewski & Ritzman (1996), a estratégia de produção ATO é aquela em que a 

empresa produz componentes padronizados que, após a realização efetiva do processo de venda, 

são combinados entre si para configurar o produto final conforme pedido pelo cliente. Em outras 

palavras, o processo de produção começa antes da venda, diferentemente da produção MTS, porém 

acaba após a venda, com a montagem de componentes padronizados. 

Vale ressaltar que para um sistema de produção ser considerado ATO, não há a necessidade 

de todos os componentes serem pré-fabricados, mas apenas aqueles de maior uso. Pires (2004) 

destaca que em um sistema ATO, apesar do estoque de produtos acabados ser pequeno, 

comparativamente a estratégia MTS, ainda há elevado número de peças em estoque, no caso, 

principalmente no estoque intermediário, formado pelos componentes pré-fabricados. 

Segundo Arnold (1999), na estratégia de produção ATO, a participação do cliente no 

processo produtivo se limita à configuração do produto final, ou seja, seleção do conjunto de 

componentes para a etapa de montagem. A seleção dos componentes que serão pré-fabricados é 

realizada com base no histórico de pedidos.  

Arnold (1999) destaca que o tempo para entrega no sistema ATO é reduzido, quando 

comparado com as demais estratégias de produção (exceção feita a estratégia MTS), pois se limita 

ao tempo de montagem e fabricação de componentes específicos. Esta estratégia também permite 

certo nível de customização, uma vez que oferece ao cliente um leque de possibilidades de 

combinação de componentes.   
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2.1.3. MTO (“make to order”) 

Segundo Krajewski & Ritzman (1996), a estratégia de produção MTO é aquela em que a 

empresa começa a produzir o pedido apenas após a concretização da venda, ou seja, o processo de 

venda antecede qualquer atividade relacionada à produção, consistindo em produção sobre 

encomenda. O que vai ser produzido pode variar desde um produto inédito, produzido de forma 

customizada, até um produto escolhido entre um conjunto de opções (PIRES, 2004). 

Arnold (1999) afirma que a participação do cliente em relação às atividades produtivas em 

um sistema MTO é maior, uma vez que as atividades a serem executadas no sistema de produção 

dependem diretamente do pedido dos clientes.  

Além disso, Arnold (1999) aponta que o projeto dos produtos em uma estratégia MTO pode 

sofrer influência, ou até mesmo se originar dos contatos iniciais com o cliente. Contudo, a etapa de 

produção só se inicia após o recebimento do pedido formal.  

Segundo Arnold (1999), o tempo até a entrega em um sistema com estratégia MTO é 

proporcionalmente maior do que nas demais estratégias previamente apresentadas. Porém, este 

maior tempo até a entrega é o custo a ser pago com o ganho de customização do pedido que esta 

estratégia de produção traz para determinada companhia. 

 

2.1.4. ETO (“engineer to order”) 

A estratégia de produção ETO consiste em uma extensão da abordagem MTO, que se 

diferencia desta, pois a etapa de projeto do produto se inicia após a formalização da venda, ou seja, 

o projeto do produto, assim como a produção, é feito sob encomenda. Nesta estratégia de produção, 

os produtos são altamente customizados, variando conforme a especificação do cliente (PIRES, 

2004).  

Arnold (1999) destaca que o cliente é altamente envolvido no projeto dos produtos e o 

estoque de materiais em um sistema baseado na estratégia ETO normalmente só é adquirido até 

que haja necessidade de sua utilização. Desta forma, esta estratégia de produção apresenta nível 

reduzido de estoques de matéria-prima, produtos em processo ou produtos acabados.  

  



24 
 

 

Como consequência das características únicas de um sistema de produção ETO, temos o 

maior tempo até a entrega entre as estratégias de produção, pois passa a incluir a etapa de projeto 

dos produtos. Porém, a estratégia ETO é aquela que permite maior customização de produtos, e, 

portanto, é a mais apropriada para o desenvolvimento de projetos únicos e diferenciados, 

geralmente de grande porte, como navios, aeronaves, entre outros (ARNOLD, 1999).  

A Tabela 1 resume as principais características de cada estratégia de produção, com base 

nos estudos feitos por Krajewski & Ritzman (1996), Arnold (1999) e Pires (2004). 

 

Tabela 1 - Principais características das estratégias de produção 

Estratégia de  

Produção 

Grau de Customização  

dos Produtos 

Tempo até  

a Entrega 

Principal Tipo  

de Estoque 

MTS Baixo Baixo Produtos Acabados 

ATO Médio Médio Produtos em Processamento 

MTO Elevado Elevado Matéria Prima 

ETO Produtos únicos Elevado - 

Fonte: Elaborado pelo autor 

 

 

2.2. Ambientes de Produção 

Além da estratégia de produção, outro tema essencial que delimita o estudo de sistemas de 

produção é a configuração do ambiente de produção. Cada ambiente de produção permite um 

funcionamento diferente do caminho do job no sistema de produção e é elemento determinante 

para a implementação de ferramentas de controle da produção. Ou seja, determina o fluxo de 

materiais na fábrica. O ambiente de produção está diretamente associado a estratégia de produção, 

uma vez que determinadas estratégias possuem uma tendência maior de estarem associados a tipos 

de ambiente de produção (MTS com flow shop puro, MTO com flow shop genérico ou job shop). 
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Pinedo (2002), em sua obra sobre scheduling em sistemas de produção, delimita os 

diferentes tipos de ambientes de produção e suas características e diferenças. Para a finalidade deste 

trabalho, procurou-se definir e apresentar as principais características que diferenciam cada 

ambiente de produção, segundo o modelo proposto por Pinedo (2002), adicionando a definição de 

Enns (1995) e Thurer et al. (2017) para flow shop genérico. 

 

2.2.1. Flow Shop Puro 

O flow shop puro é o ambiente de produção em linha mais básico. Consiste em um sistema 

de produção formado por n estágios (ou etapas produtivas) em série, em que cada job percorre cada 

um destes estágios, na mesma sequência, até a conclusão do processo. Todos os jobs devem 

percorrer o mesmo caminho em um flow shop puro. Cada estágio do ambiente de produção é 

composto por apena uma máquina (PINEDO, 2002).  

A Figura 1 ilustra um flow shop puro com um total (n) de 5 estágios. 

 

Figura 1 - Flow shop puro com 5 estágios 

  
Fonte: Elaborado pelo autor 

 

2.2.2. Flow Shop Flexível 

O flow shop flexível é uma generalização do flow shop puro, de forma a permitir mais de 

uma máquina em cada estágio. Consiste em um sistema de produção formado por n estágios (ou 

etapas produtivas) em série, em que o job deve percorrer cada um destes estágios até a conclusão 

do processo produtivo. Da mesma forma que o flow shop puro, todos os jobs devem percorrer o 

mesmo caminho (PINEDO, 2002). Conforme discutido por este autor, a diferença de um flow shop 

flexível para o puro é que, diferentemente do puro, cada estágio do ambiente de produção pode ser 

composto por mais de uma máquina trabalhando em paralelo.  
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Em outras palavras, no flow shop flexível, cada estágio pode possuir uma quantidade m de 

máquinas idênticas, de forma que um job que passa por certo estágio pode ser processado por 

qualquer uma das m máquinas, sendo processado uma única vez apenas em cada estágio. Desta 

forma, o flow shop flexível permite que em um mesmo estágio, m jobs sejam processados 

simultaneamente. O número de máquinas em cada estágio não necessita ser igual para todos os 

estágios para que o sistema seja enquadrado como flow shop flexível (PINEDO, 2002). 

A Figura 2 mostra um flow shop flexível com n = 5 estágios e m = 3 máquinas para cada 

estágio. 

 

Figura 2 - Flow shop flexível com 5 estágios e 3 máquinas por estágio 

 

Fonte: Elaborado pelo autor 

 

2.2.3. Flow Shop Genérico 

O modelo de flow shop flexível foi modificado por Enns (1995) e, posteriormente, utilizado 

por Thurer et al. (2017), de forma a torná-lo ainda mais genérico do que o conceito previamente 

apresentado por Pinedo (2002).  

De acordo com estes autores, o flow shop genérico possui uma única diferença em relação 

ao flow shop flexível. A diferença é o conceito de que não há a necessidade de um job passar 

necessariamente por todas as estações, ou seja, cada job pode ter seu próprio caminho, desde que 

a ordem do fluxo dentro do sistema seja mantida (Figura 3). Ou seja, o sentido do fluxo é o mesmo, 

mas determinado job pode pular um ou mais estágios. Para fins deste trabalho, utilizaremos o 

conceito apresentado por Enns (1995) e Thurer et al. (2017) para flow shop genérico como ambiente 

de produção. 
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Figura 3 - Flow shop genérico com 5 estágios com 3 máquinas por estágio e 3 padrões de fluxo 

 
Fonte: Elaborado pelo autor 

2.2.4. Job Shop Puro 

De acordo com Pinedo (2002), em um job shop puro, da mesma forma que no flow shop 

puro, o sistema de produção é formado por n estágios, cada um destes com apenas uma máquina. 

A diferença existente é que no job shop puro, os jobs seguem rotas diferentes. Portanto, não há um 

caminho pré-determinado para o conjunto de jobs, mas sim um sequenciamento diferenciado para 

cada job que entra no sistema. 

Há variações do modelo de job shop puro em que o job deve passar obrigatoriamente por 

cada estágio, podendo passar mais de uma vez por certo estágio, e variações em que o job deve 

passar apenas uma vez por cada estágio (PINEDO, 2002).  

A Figura 4 exemplifica um job shop puro com n = 5 estágios e três configurações de fluxo. 

É possível notar que cada job percorre seu próprio roteiro, gerando múltiplos fluxos de produção. 

 

Figura 4 - Job shop puro com 5 estágios 

 

Fonte: Elaborado pelo autor 
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2.2.5. Job Shop Flexível 

O job shop flexível é uma generalização do job shop puro. Consiste em um sistema de 

produção formado por n estágios (ou etapas produtivas) em série, em que cada job possui sua 

própria rota, ou seja, não há rota única (PINEDO, 2002).  

Conforme ressaltado por Pinedo (2002), a diferença de um job shop flexível para o puro é 

que, diferentemente do puro, cada estágio do ambiente de produção pode ser composto por mais 

de uma máquina trabalhando em paralelo.  

Desta forma, cada estágio pode possuir uma quantidade mj de máquinas idênticas, de 

maneira que um job que passa por certo estágio pode ser processado por qualquer uma das mj 

máquinas, sendo processado uma única vez apenas em cada passagem pelo estágio. Portanto, o job 

shop flexível permite que em um mesmo estágio, até mj jobs sejam processados simultaneamente 

(PINEDO, 2002). 

Há variações do modelo de job shop flexível em que o job deve passar obrigatoriamente 

por cada estágio, podendo passar mais de uma vez por certo estágio, e variações em que o job deve 

passar apenas uma vez por cada estágio (PINEDO, 2002). 

A Figura 5 destaca um job shop flexível com n = 5 estágios e m = 3 máquinas por estágio, 

além do caminho percorrido por três jobs. É possível notar que cada job percorre seu próprio 

caminho, sem um direcionamento único para o ambiente de produção. 

 

Figura 5 - Job shop flexível com 5 estágios e 3 máquinas 

 

Fonte: Elaborado pelo autor 
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2.2.6. Open Shop 

O open shop consiste na generalização do job shop flexível, de forma a permitir que um 

determinado job não necessite passar por todos os n estágios do processo produtivo (tempo de 

processamento zero é permitido). De resto, guarda as mesmas características do ambiente de 

produção do job shop flexível. É o ambiente de produção mais genérico existente, em que cada job 

possui seu próprio caminho podendo passar ou não por determinado estágio (PINEDO, 2002). 

 

2.2.7. Assembly Shop 

Assembly shop é um ambiente de produção em que certo produto é formado pela união de 

módulos e componentes após uma etapa de montagem, sendo que cada componente possui um 

processo de produção em flow shop ou job shop. Portanto, é composto por uma série de linhas de 

produção para cada componente, com uma etapa final de montagem (PINEDO, 2002).  

A Figura 6 ilustra um assembly shop formado por três linhas, com montagem dos três 

componentes como etapa final, para a formação do produto. Cada linha possui características de 

um flow shop puro para cada componente, com n = 5 estágios. 

 

Figura 6 - Assembly shop com 3 linhas 

 
 

Fonte: Elaborado pelo autor  
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2.3. Métodos de Controle da Produção 

Desde o início da década de 80, com o crescimento do estudo de como programar e 

controlar a produção sistemas de produção, diversas técnicas para planejamento e controle da 

produção vêm surgindo na literatura. Algumas destas técnicas destacam-se, sendo alternativas 

viáveis e eficientes para o planejamento e controle da produção (GUPTA & SNYDER, 2009). 

Para o escopo deste trabalho, serão detalhadas a seguir as principais técnicas existentes que 

se destacam no âmbito do controle da produção, bem como desenvolvimentos recentes que tratam 

sobre o tema. 

 

2.3.1. MRP: Backward Scheduling 

O MRP (“material requirements planning”) é a técnica de programação e controle da 

produção mais utilizada atualmente no planejamento e controle da produção. A grande vantagem 

trazida pela implementação do MRP é a possibilidade de se lidar com ambientes com elevado 

número de SKUs de forma eficiente, diferentemente de grande parte dos sistemas de PCP existentes 

(FERNANDES et al., 2007).  

O MRP não é um sistema eficiente no dimensionamento de lead time e em programação de 

curto prazo (FERNANDES et al., 2007). Em termos de controle da produção, o MRP normalmente 

é um sistema empurrado, porém, existem mecanismos para o controle do estoque em processo. A 

programação é baseada em métodos de previsão de demanda e é formada a partir de lotes que visam 

minimizar o estoque em processo, garantindo o cumprimento de prazos. Portanto, o mecanismo de 

controle utilizado no MRP se mostra susceptível à variabilidade e imprevistos (CORRÊA & 

GIANESI, 1993). 
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2.3.2. Kanban 

Kanban é uma técnica de controle da produção japonesa correlacionada ao famoso método 

JIT (“Just-In-Time”). Kanban, que em português significa “cartão”, consiste em uma técnica de 

controle da produção que utiliza cartões para formalizar a movimentação de materiais dentro do 

sistema de produção (PRICE et al., 1994). Conforme destacado por este autor, é um método de 

controle da produção que gera em um sistema puxado, pois determinado estágio só irá operar o job 

se certo item for retirado do estoque entre esta etapa e a etapa posterior (produção para reposição 

de estoque). Desta forma, a produção será sempre regida pelo final do sistema produzido. 

 Existem diversas vertentes para o método Kanban. O Kanban composto por dois tipos de 

cartão é uma das vertentes mais tradicionais. O primeiro é um cartão de retirada (“Withdrawl 

Kanban”), que formaliza o pedido de material de um estágio de produção posterior para seu 

precedente e autoriza a movimentação de jobs entre estações. O segundo é um cartão de produção 

(“Production Kanban”), que formaliza o pedido de produção para determinada estação com o 

objetivo de repor o estoque movimentado, autorizando a operação na estação (PRICE et al., 1994) 

(Figura 7). 

 

Figura 7 - Kanban de dois cartões 

 

Fonte: Elaborado pelo autor 

Embora tenha se mostrado uma técnica efetiva e muito utilizada para controle da produção, 

com extensa produção bibliográfica associada, o método Kanban tem recebido críticas, sendo 

considerado adequado para produção repetitiva (MTS), mas inadequado para produção 

intermitente (PRICE et al., 1994). 
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Por exemplo, Lambrecht & Decaluwe (1988) afirmam que o método Kanban reage 

tardiamente ao aparecimento de problemas de um sistema de produção. Adicionalmente, Gardiner 

et al. (1994) destacaram que o método Kanban, por bloquear a produção de produtos acabados 

quando o estoque final estiver completo, é um sistema menos susceptível a grandes incertezas 

associadas à geração de pedidos, o que é menos evidente no método DBR.  

 

2.3.3. Workload Control 

O método de controle da produção denominado workload control, ou WLC, é um método 

com mais de 30 anos de história. Sua principal característica é o uso de um mecanismo de entrada 

de jobs no sistema conectado ao nível de jobs já em processamento no sistema de produção 

(THURER et al., 2017). 

O objetivo deste método consiste em nivelar a quantidade de jobs dentro do sistema, 

denominado “carga de trabalho”, evitando ociosidade ou superlotamento do sistema. Apesar deste 

método possuir maior aplicação e ter resultados superiores em sistemas balanceados, sem um 

recurso gargalo evidente, há evidências de melhoria de performance com a adoção do método 

workload control em sistemas com um recurso gargalo evidente (THURER et al., 2017). 

Thurer et al. (2017) mencionam que a utilidade do método workload control é maior em 

sistemas MTO, onde o uso de buffer permite maior proteção contra a variabilidade na chegada de 

jobs no sistema, bem como mantém níveis adequados de WIP no sistema. Os autores ressaltam que 

a técnica workload control é um método genérico, com diversas variações existentes na literatura 

sobre o tema. Por exemplo, existe a técnica starvation avoidance, que se comporta de forma similar 

ao DBR, ou seja, considerando a apenas a carga de trabalho antes do gargalo do sistema. Há 

também a técnica denominada path aggregation, introduzida por Fredendall et al. (2010), que 

controla a carga de trabalho em cada estação do sistema de produção. 

Apesar das diversas técnicas existentes relativas ao método workload control, a mais 

conhecida e por mais vezes citada na literatura pelo autor é a técnica ConWIP (“Constant Work In 

Process”), que será detalhada no próximo tópico. 
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2.3.4. ConWIP 

O método de controle da produção ConWIP é um caso específico do workload control 

introduzido por Spearman et al. (1990). Este método busca manter estável o nível de estoque em 

processo em todo o sistema de produção durante o período de operação (SPEARMAN et al., 1990). 

O ConWIP monitora o número de jobs entre a primeira e a última estação na linha, esteja 

ele na fila ou sendo processado. Estabelece-se um nível máximo para esta carga de trabalho. Este 

valor não pode ser ultrapassado. Desta forma, pedidos gerados só entram no sistema quando a carga 

de trabalho for menor que este valor máximo, evitando a superlotação do sistema (SPEARMAN et 

al., 1990). 

Spearman et al. (1990) ainda destacam a similaridade do ConWIP com o método kanban 

de controle de produção, afirmando que ambos buscam manter um nível constante de estoque em 

processo. Porém, enquanto o kanban busca manter esta constância de estação por estação, o 

ConWIP trata o sistema como um todo, buscando manter tal constância na linha, ou seja, entre a 

entrada e a saída do sistema.  

Da mesma forma que o método kanban, o ConWIP também pode funcionar por meio de 

cartões, que conectam a saída de jobs do sistema de produção com a entrada de um novo job no 

sistema (SPEARMAN et al., 1990). Porém, sistemas computacionais também se habilitam a 

realizar o ConWIP (Figura 8). 

 

Figura 8 - Método ConWIP de controle da produção 

 

Fonte: Elaborado pelo autor 
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2.3.5. DBR 

O método de controle da produção DBR (“drum-buffer-rope”) é um método que segue a 

lógica introduzida por Goldratt & Cox (1986) em sua obra “A Meta”: a Teoria das Restrições, ou 

ToC (“Theory of Constrains”). O método DBR parte do pressuposto de que existem apenas alguns 

estágios, dentro de um sistema de produção, que efetivamente possuem a capacidade de restringir 

a produção do sistema. Estes serão os estágios que efetivamente irão ser determinantes para o nível 

de produção global do sistema como um todo (UMBLE & SRIKANTH, 2002). 

Por esta razão, o método DBR busca garantir que apenas nestes estágios limitantes a 

produção não seja interrompida durante a operação da fábrica. Desta maneira, o método DBR busca 

otimizar a produção da fábrica evitando que o gargalo do sistema de produção tenha ociosidade 

(UMBLE & SRIKANTH, 2002). 

Devido à relevância deste tema para o desenvolvimento deste trabalho, um tópico a parte 

foi destinado para aprofundar este método, com o objetivo de descrever suas etapas, a literatura 

existente sobre o tema e a questão do dimensionamento do buffer ou pulmão do sistema, tema 

central do presente trabalho. 
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2.4. DBR: revisão da literatura 

2.4.1. Relação com ToC 

Como mencionado na última seção, o método DBR segue a lógica da Teoria das Restrições 

(ToC) de Goldratt & Cox (1986), que pauta seu mecanismo de programação e controle do sistema 

de produção com base no recurso gargalo do sistema, de forma a evitar ociosidade no gargalo. 

Goldratt & Cox (1986) formularam um método em cinco passos que caracteriza a ToC: 

 1º Passo – Identificar o gargalo  

 2º Passo – Explorar ao máximo a capacidade do gargalo 

 3º Passo – Subordinar a programação e controle do resto do sistema de forma a evitar 

ociosidade no gargalo 

 4º Passo – Elevar a capacidade do sistema aumentando a produtividade do gargalo 

 5º Passo – Retornar ao 1º passo de forma a fechar o ciclo e balancear o sistema 

 

Como resultado do método, a ToC busca constantemente balancear o sistema de produção 

de forma a eliminar recursos gargalos. Procura-se, então, implementar um ciclo contínuo de 

diagnóstico-melhoria até que o sistema esteja balanceado (DARLINGTON et al., 2015). 

O DBR consiste em um método de programação e controle, ou seja, efetivamente busca 

implementar em um sistema de produção mecanismos capazes de realizar os três primeiros passos 

da ToC. O DBR se limita a estes três passos somente, uma vez que é apenas um mecanismo de 

controle, não promovendo melhorias no sistema de forma direta (WU et al., 2006). 

 Porém, indiretamente, o DBR é responsável pela promoção de melhorias operacionais, 

uma vez que identifica o gargalo do sistema e o ponto limitante a ser explorado para melhoria da 

capacidade produtiva. Isto permite a mensuração do impacto de cada ação promovida no sistema 

com o uso de indicadores de efetividade (WU et al., 2006). 

De acordo com Wu et al. (2006), a utilidade do DBR diminui quando o sistema é bem 

balanceado, uma vez que dificulta a execução da primeira etapa. Além disso, o método DBR não 

se mostra muito efetivo em ambientes de produção repetitiva.  
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2.4.2. Lógica de Funcionamento 

O método DBR pode ser dividido em três componentes, cada um diretamente relacionado 

com as três primeiras etapas do método ToC. O componente drum, ou tambor, que se relaciona a 

primeira etapa da ToC; o componente buffer, ou pulmão, que se relaciona com a segunda etapa da 

ToC, e o componente rope, ou corda, relacionado à terceira etapa da ToC (DE SOUZA, 2005). 

O drum é o recurso com maior uso dentro de um sistema de produção, ou seja, é o recurso 

gargalo do sistema, que efetivamente controla a produtividade do sistema de produção. É de 

fundamental importância que não haja ociosidade no gargalo, pois não há forma de recuperar a 

produção perdida com a ociosidade do gargalo, diferentemente das outras operações do sistema 

(GOLDRATT & COX, 1986). 

O buffer está associado ao WIP entre o recurso gargalo e a entrada de jobs no sistema com 

a função de proteger o recurso gargalo de variabilidades e incertezas, evitando sua ociosidade. 

Diferentemente de técnicas como o kanban e WLC, o buffer no DBR é apresentado em unidades 

de tempo e não em número de jobs, ou seja, consiste em um time buffer (DARLINGTON et al., 

2015). 

Em determinado sistema de produção, o DBR pode ser implementado de forma segregada 

para diversos segmentos do sistema de produção, conforme destacado por Wu et al. (2006). Desta 

forma, um sistema pode ser formado por mais de um drum e um buffer (Figura 9). 

 

Figura 9 - DBR em sistema com múltiplos laços 

 

Fonte: Adaptado de Wu et al. (2006) 

 

Além disso, dependendo do ambiente de produção, o DBR pode ter dois outros tipos 

diferentes de buffer (DE SOUZA, 2005). O segundo tipo seria o buffer de montagem, aplicável 

apenas em assembly shops. O buffer consiste em WIP de jobs em linhas que não contém recursos 

gargalos, de forma a evitar que componentes vindos de linhas que contêm o recurso gargalo tenham 

de esperar a chegada de componentes provindos de outras linhas.  
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O terceiro tipo seria o buffer de mercado, aplicável apenas em estratégia de produção MTS, 

que consiste em um estoque de produtos acabados ao final do sistema de forma a evitar a falta de 

produtos para a venda, mas também o excesso de estoque em caso de queda de demanda (DE 

SOUZA, 2005). 

O rope é o último componente do DBR, sendo o mecanismo que conecta o buffer com a 

entrada de jobs no sistema. O rope mantém, assim, o nível de WIP (em unidade de tempo) entre a 

entrada e o gargalo em um nível pré-determinado, permitindo a entrada de um novo job no sistema 

assim que o recurso gargalo (Drum) conclui uma operação (DARLINGTON et al., 2015). 

Desta forma, o método de controle da produção via DBR é composto por três etapas básicas 

(GOLDRATT & COX, 1986):  

1ª Etapa – A identificação do recurso gargalo dentro do sistema de produção. De Souza 

(2005) destaca que, em sistemas balanceados, esta etapa pode ser um desafio e pode ter múltiplos 

gargalos alternantes, dependendo do apoio de um sistema computacional especializado para a 

efetiva implementação do controle via DBR. 

2ª Etapa – Consiste no dimensionamento de um time buffer que seja capaz de evitar a 

ociosidade no recurso gargalo e otimizar o volume de produção ou qualquer outra variável 

relevante ao sistema. Em recursos em que o buffer de montagem e mercado sejam aplicáveis, o seu 

dimensionamento também deve ser feito nesta etapa. Ela depende diretamente da primeira etapa, 

uma vez que só é possível dimensionar e controlar o buffer se sua posição no sistema for conhecida. 

3ª Etapa – É a implementação do mecanismo que controla a entrada de jobs no sistema, 

quando o time buffer pré-determinado for maior que o WIP em unidade de tempo atual, entre o 

ponto de entrada e o gargalo.  

Para sistemas MTO, ou MTS com tipos diferentes de jobs, na entrada de novo job no 

sistema, é importante determinar uma regra de sequenciamento que permita determinar qual job 

deve entrar no sistema, dentre de um leque de opções (DE SOUZA, 2005). 

Nos últimos anos, diversos trabalhos foram publicados estudando o impacto das regras de 

sequenciamento em indicadores de desempenho de sistema com controle de estoque em processo. 

Os trabalhos mostraram que a determinação desta regra influencia consideravelmente parâmetros 

como atraso de pedidos e lead time médio do sistema (THURER et al., 2017). As regras de 

sequenciamento mais comuns serão apresentadas no próximo tópico. 
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A Figura 10 ilustra a aplicação do DBR em um ambiente de produção assembly shop com 

os três tipos de buffer, de acordo com Souza (2005): buffer de produção, buffer de montagem e 

buffer de mercado. 

 

Figura 10 - Ilustração de DBR aplicado em Assembly Shop com produção MTS 

 

Fonte: Adaptado de De Souza (2005) 
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2.4.3. Regras de Sequenciamento 

Regras de sequenciamento, ou dispatching rules, são comumente utilizadas para ordenar a 

entrada de jobs contidos em um pré-shop para dentro do sistema de produção. O pré-shop é um 

conjunto de jobs ordenados, segundo determinada regra de sequenciamento, que aguardam o 

ativamento do mecanismo rope para liberação de entrada no sistema de produção (DA SILVA et 

al., 2012). 

As principais regras de sequenciamento apresentadas por Silva et al. (2012), adaptadas de 

Gaither e Frazier (2001), Chan e Chan (2004), Suresh e Sridharan (2007), Tubino (2007) e Lustosa 

et al. (2008), são: 

FIFO (“First In, First Out”) – o ordenamento de entrada de jobs no sistema segue a ordem 

de chegada dos jobs dentro do pré-shop. Logo, os jobs que chegam primeiro são os primeiros a 

sair. Esta regra é útil para minimizar o tempo entre a chegada/geração do job e a sua saída do 

sistema.  

LIFO (“Last In, First Out”) – é a regra de sequenciamento inversa da regra FIFO, ou seja, 

o último job a ser gerado é aquele que irá adentrar primeiro no sistema de produção. Ou seja, os 

jobs são processados na ordem inversa de chegada. 

SPT (“Shortest Processing Time”) – nesta regra, a entrada de jobs no sistema é ordenada 

pelo tempo total de processamento, do menor para o maior. A lógica desta regra é que jobs com 

menor tempo esperado de processamento tendem a sair mais rapidamente do sistema, de forma a 

agilizar o fluxo no sistema. 

LPT (“Longest Processing Time”) – é a regra de sequenciamento inversa à regra SPT, ou 

seja, jobs com maior tempo estimado de processamento são os primeiros a entrar no sistema. 

 EDD (“Earliest Due Date”) – nesta regra de sequenciamento, os jobs entram no sistema 

com base no prazo de entrega (due date). A lógica é simples - jobs que precisam ser entregues 

primeiro devem ter prioridade na fila para entrada no sistema de produção. 

LS (“Least Slack”) – nesta regra, o sequenciamento ocorre com base na diferença entre a 

data de entrega prometida e o tempo estimado de processamento, ou seja, menor folga entre a data 

mais cedo de conclusão estimada e a data em que o pedido deve ser entregue. A lógica também é 

priorizar jobs com menor folga para evitar atrasos. 
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LWQ (“Least Work Next Queue”) – aqui, a prioridade de entrada é de jobs cujo destino 

primário tenha a menor fila, buscando produzir um item que vai para uma máquina com fila em 

detrimento de outro que vai para uma máquina que corre o risco de parar por falta de material. 

CR (“Critical Ratio”) – nesta regra, tem prioridade o job com menor razão crítica, que 

consiste na divisão do tempo de folga do job (tempo para entrega – tempo de estimado 

processamento) pelo seu tempo de processamento estimado. Logo, é uma regra que mescla os 

conceitos das regras SPT e EDD. 

 

2.4.4. Indicadores de Desempenho 

Thurer et al. (2017), ao estudarem o desempenho dos métodos de controle DBR e WLC em 

um sistema com estratégia de produção MTO em um ambiente flow shop flexível, sugerem uma 

série de indicadores de desempenho. Para fins deste trabalho, serão considerados os seguintes 

indicadores de desempenho utilizados por Thurer et al. (2017): 

Mean Throughtput Time – corresponde ao tempo médio de produção dos jobs do sistema. 

Para calcular este parâmetro, calcula-se o tempo de produção de cada job efetivamente terminado 

durante o período estudado e tira-se a média. O tempo de produção de um job corresponde à 

diferença entre o tempo de entrada do job no sistema e o fim da última etapa de processamento e 

saída do sistema, ou seja, desconsidera o tempo de espera no pré-shop. 

Mean Lead Time – corresponde ao lead time médio de entrega do job. Para calcular este 

parâmetro, calcula-se para cada job a diferença entre o tempo do pedido que originou determinado 

job e o tempo de término da última etapa de processamento e saída do sistema. Calcula-se a média. 

Portanto, este indicador de desempenho considera o tempo que o job ficou no pré-shop aguardando 

liberação, sendo sempre maior ou igual que o indicador mean throughtput time. 

Percentage Tardy – corresponde ao percentual de jobs que foram concluídos após a data 

combinada, ou seja, corresponde ao número de jobs cujo término da produção ocorreu 

posteriormente ao seu due date dividido pelo número total de jobs terminados. 

Mean Tardiness – corresponde ao tempo médio de atraso de entrega de jobs ao cliente final 

sistema. Este parâmetro é calculado pela média do atraso de cada job terminado no período 

estudado, contando que este atraso é zero para jobs com saída do sistema anterior ao due date 

estipulado. 
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2.4.5. Questões Exploradas na Literatura 

Desde o final da década de 90, com a introdução da ToC e do DBR por Goldratt & Cox 

(1986), este método de controle da produção tem sido amplamente estudado e tratado em artigos e 

outras publicações científicas.  

Diversos foram os temas estudados, desde estudos de caso até o estudo de pontos chave na 

implantação do DBR em um sistema MTO: programação da fila de entrada (pré-shop pool), 

determinação do recurso gargalo do sistema (drum) e definição de data de entrega de pedidos (due 

date setting). 

Wu et al. (1994) aplicaram o DBR em uma empresa fabricante de móveis, estudo de caso 

que visou medir a eficácia e a eficiência do método DBR em um caso prático, utilizando como 

principal indicador o mean throughtput time.  

Krajewski et al. (1996) estudaram os resultados da implantação do método DBR no Centro 

Logístico de Manutenção da Marinha dos Estados Unidos da América. Segundo estes autores, o 

tempo médio de reparos após a implementação do DBR caiu de 167 dias para 58 dias. Por sua vez, 

os níveis de WIP foram reduzidos severamente em aproximadamente 25% dos custos de 

manutenção, causando um aumento de mais de 100% de capacidade ao mês. 

Daniel & Guide (1997) elaboraram um modelo de simulação para testar a eficiência de 

diversas regras de sequenciamento em combinação com o algoritmo DBR em um estudo de caso 

em um ambiente de re-manufatura. 

Corbett & Csillag (2001) analisaram sete empresas que adotaram o método de controle da 

produção DBR, visando medir a eficiência em termos de programação da produção. 

Um experimento pautado no desenvolvimento de um modelo de simulação para medir a 

eficiência do método de controle DBR foi publicado por Atwater & Chakravorty (2002). Eles 

variaram o nível de utilização do recurso gargalo, medindo o impacto de free goods (jobs que não 

passam pelo recurso gargalo) na efetividade do DBR. 

Uma análise comparativa da implementação dos métodos DBR e MRP, em um sistema de 

produção real, foi feita por Steele et al. (2005). O objetivo foi identificar similaridades e diferenças, 

neste caso, pontuando-se quem leva vantagem sobre o que. Os resultados mostraram performance 

superior do método DBR quando comparado ao MRP. 
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Wu et al. (2010) utilizaram um modelo para simular a implantação de um método de PCP 

com base no DBR em uma empresa fabricante de televisores. Russel & Taylor (2011) estudaram 

diversos exemplos de aplicação do método DBR combinado com a programação da produção, 

variando o tamanho de lotes e tempo de set up. Darlington et al. (2015) publicaram um artigo sobre 

a concepção e implantação de um modelo DBR para uma linha de painéis automotivos de uma 

empresa britânica. 

A rotina de programação de jobs em ambiente job shop com o modelo DBR, acrescido de 

um modelo de otimização, foi feita por Golmohammadi (2015). Por sua vez, Thurer et al. (2017) 

compararam a eficiência do método DBR em relação ao método WLC em ambientes de produção 

job shop e flow shop sob a lógica de produção MTO, variando diversos parâmetros dos ambientes 

estudados. 

Além destas publicações mencionadas, diversos autores também abordaram métodos 

modificados baseados no DBR, como Lee et al. (2010) com o simplified-DBR; e Sirikrai et al. 

(2006) com o modified-DBR. Vale ressaltar que a literatura sobre o método DBR é vasta. Nesta 

seção, foi apresentada apenas uma seleção de publicações científicas mais afeitas ao escopo da 

presente investigação. 

 

2.4.6. Dimensionamento do Buffer 

O dimensionamento do time buffer é uma das etapas mais importantes do método de 

controle DBR, sendo uma das decisões fundamentais a ser tomada. A decisão tem impacto direto 

nos indicadores de desempenho de um sistema de produção. Entretanto, após revisão de literatura, 

foram identificados poucos artigos científicos sobre este tema, quando comparado com outros 

temas fundamentais do método DBR, conforme apresentado na seção anterior. 

Além disto, em relação ao componente buffer do DBR, a grande maioria da literatura 

existente aborda a comparação do método DBR com outros métodos como o WLC (THURER et 

al., 2017); o MRP (STEELE et al., 2005); e demais métodos de controle da produção (CORRÊA 

& GIANESI, 1993; DE SOUZA, 2005; GUPTA & SNYDER, 2009; MANIKAS et al., 2015). 

Os únicos artigos encontrados pelo autor deste trabalho que tratam especificamente sobre 

o tema foram os estudos realizados por Radovilsky (1997), Ye & Han (2008) e Zhang & Du (2015), 

descritos a seguir. 
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No trabalho de Radovilsky (1997), discute-se uma abordagem quantitativa que busca 

encontrar o time buffer ótimo para maximizar os lucros operacionais do sistema de produção, em 

um ambiente de produção flow shop puro com estratégia de produção MTS. Manipulando as 

equações da teoria das filas, Radovilsky (1997) obteve a seguinte equação para o time buffer ótimo 

e lucro operacional ótimo, considerando taxa de chegada igual a taxa de processamento: 

 

 𝑲∗ =  √
𝟐µ𝑪𝑻𝑯

𝑪𝑶𝑬
− 𝟏  

𝑵𝑷∗ =  
𝟏

𝟐
∗ (√𝟐µ𝑪𝑻𝑯 −  √𝑪𝑶𝑬)𝟐 

 

Na fórmula apresentada em (2), K* corresponde ao time buffer ótimo. Na fórmula 

apresentada em (3), NP* corresponde ao lucro operacional ótimo. Nas fórmulas mencionadas, Cth 

corresponde a margem de contribuição de cada produto que sai do sistema, Coe corresponde ao 

custo de estoque por WIP unitário, e µ representa a taxa de processamento de cada estágio no 

sistema, considerando distribuição exponencial. 

Desta forma, o resultado apresentado por Radovilsky (1997) obteve um time buffer ótimo 

via abordagem analítica para um caso muito específico de sistema de produção, um flow shop puro 

com tempo médio de produção igual a tempo médio de chegada, distribuição exponencial/Poisson 

e margem de contribuição e custo de estoque constantes para todos jobs. 

Portanto, o resultado de Radovilsky (1997) mostra-se bastante restrito ao caso específico, 

não permitindo análise comparativa com base na variação de parâmetros do sistema. Além disso, 

a otimização focou apenas de parâmetros financeiros e não operacionais. 

Uma abordagem analítica foi apresentada por Ye & Han (2008) para a determinação do 

time buffer em um sistema de produção assembly shop, considerando não apenas para o gargalo de 

produção, como também o processo de montagem (buffer de montagem). Os autores revisaram 

estudos anteriores sobre o método DBR e a pouca atenção dada à questão de como dimensionar o 

time buffer, com pouquíssimos artigos tendo como foco principal este tema. 

  

(2) 

(3) 
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Além disso, em muitas publicações, o dimensionamento do buffer se dá de forma empírica, 

ou seja, sem nenhum critério mais elaborado para a escolha, como um valor arbitrário (THURER 

et al., 2017) ou como um múltiplo do lead time estimado para os jobs (SCHRAGENHEIM & 

RONEN, 1990; DANIEL & GUIDE, 1997). 

Apesar de Ye & Han (2008) terem estabelecido um modelo heurístico para a determinação 

do time buffer ótimo, o modelo proposto é extremamente complexo para aplicações práticas e 

restrito à assembly shops. Além disso, os autores não estudaram em profundidade o impacto que 

variáveis do ambiente de produção possuem sobre o time buffer ótimo. Por sua complexidade e 

aplicação somente para assembly shops, o método de Ye & Han (2008) não será detalhado no 

presente trabalho. 

No trabalho de Zhang & Du (2015), propõe-se um modelo de simulação com a aplicação 

do método DBR, ou seja, capaz de identificar o recurso gargalo, otimizar o time buffer e 

implementar o mecanismo do componente rope, conectando a entrada de jobs no sistema com o 

buffer. 

Em relação ao dimensionamento do buffer, a otimização é feita por meio de um modelo de 

programação linear que visa minimizar o custo de produção. Desta forma, assim como o trabalho 

de Radovilsky (1997), o trabalho de Zhang & Du (2015) é um modelo de otimização pautado em 

indicadores financeiros e não operacionais, não considerando a sensibilidade do time buffer ótimo 

com a variação de parâmetros do sistema. 

Por fim, Negahban & Smith (2014) mostram em seu trabalho que o tema controle da 

produção foi identificado por como uma das áreas de destaque na aplicação de ferramentas e 

modelos de simulação, com número significante e crescente de artigos relativos a este tema que 

utilizam o conceito de simulação. A simulação por eventos discretos se mostra uma boa forma de 

estudar o dimensionamento do time buffer no método DBR. 
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2.5. Simulação 

A simulação é uma técnica de pesquisa operacional largamente empregada para a resolução 

de problemas de natureza variada. É uma tentativa de representar um sistema real a partir da 

construção de um modelo de simulação, podendo ter maior ou menor nível de generalidade. Devido 

a sua grande utilização, diversos autores têm revisado a literatura sobre a utilização de modelos de 

simulação (p. ex., JAHANGIRIAN et al., 2010; NEGAHBAN & SMITH, 2014). Segundo 

Jahangirian et al. (2010), entre 1999 e 2007, pelo menos onze artigos foram publicados com este 

objetivo. 

Desde a sua concepção, o ato de simular vem sendo mais e mais utilizado, para as mais 

diversas finalidades em diversos setores da economia, como manufatura, setor de saúde, serviços 

públicos, logística, entre outros (JAHANGIRIAN et al., 2010). 

Especificamente, quando se trata do estudo de sistemas de produção, o uso de simulação 

tem sido uma das ferramentas de maior importância na definição do layout e na promoção de 

melhorias operacionais. Na última década, houve uma tendência de mudança da aplicação de 

modelos de simulação, que deixaram de ser utilizados apenas para design, sendo cada vez mais 

presentes em projetos de melhoria da performance operacional (NEGAHBAN & SMITH, 2014). 

Jahangirian et al. (2010) dividem a simulação em três classes diferentes: (i) classe A, 

formada por artigos para resolução de problemas reais; (ii) classe B, formada por artigos para 

resolução de problemas hipotéticos; (iii) classe C, formada por artigos voltados ao 

desenvolvimento de metodologias. 

Na classe A, o estudo objetiva a resolução de um problema real, concreto e específico, e 

para isto, utiliza dados reais. Na classe B, a simulação objetiva a resolução de problemas reais, 

porém, comuns a mais de uma situação. Portanto, a busca é por uma solução genérica, e para isto 

utilizam-se dados artificiais. Na classe C, o objetivo é desenvolver e validar uma metodologia de 

simulação, independentemente de sua aplicação prática (JAHANGIRIAN et al., 2010). 

 A revisão de literatura feita por Jahangirian et al. (2010) retrata a importância crescente 

que modelos de simulação têm tido em termos de produção científica. A produção de artigos com 

pesquisas baseadas em modelos de simulação relativos às classes A e B cresceu cerca de 92% entre 

2000 e 2010. Entre 1970 e 2000, Shafer & Smunt (2004) verificaram que a produção de artigos 

com pesquisa baseada em modelos de simulação cresceu apenas 14%. 
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Resultados similares foram obtidos por Negahban & Smith (2014), que também detectaram 

o crescimento produção de artigos com pesquisa baseada em modelos de simulação quanto o tema 

é referente à sistemas de produção. 

Entrando no âmbito deste trabalho, os resultados são ainda mais expressivos. A revisão 

realizada por Jahangirian et al. (2010) mostra que a técnica de simulação por eventos discretos é a 

mais utilizada na penúltima década (40% de todos os artigos levantados) e é apoiada pelo 

crescimento contínuo do mercado de softwares de simulação. 
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3. METODOLOGIA 
 

Para o desenvolvimento do presente trabalho, adotou-se a metodologia de trabalho descrita 

a seguir, em amplo escopo. A descrição fornecerá uma ideia geral da metodologia de trabalho 

adotada na execução deste estudo. 

Portanto, detalhes específicos que não estão aqui descritos serão, posteriormente, 

detalhados nas próximas seções deste trabalho, de acordo com o tema abordado em cada seção. 

 

Modelagem conceitual 

Nesta etapa, definiu-se a estrutura do modelo de simulação a ser elaborado. Primeiramente, 

foram definidos os inputs do sistema, ou seja, os parâmetros e variáveis de entrada utilizadas no 

processo de simulação. 

Depois, foram definidos os outputs do sistema, ou seja, as variáveis de saída resultantes da 

simulação, sendo utilizadas para análise dos resultados e discussão.  

Por fim, definiu-se o ambiente de desenvolvimento do modelo de simulação, ou seja, a 

ferramenta computacional utilizada de suporte para o desenvolvimento do modelo de simulação. 

 

Implantação do Modelo Computacional 

Neste procedimento, houve criação efetiva do modelo de simulação, com base no 

ambiente/ferramenta escolhido, permitindo a simulação com base nos parâmetros de entrada 

(inputs) definidos e obtendo-se os parâmetros de saída (outputs) escolhidos na etapa anterior. Esta 

etapa gerou indicadores de performance para verificação do modelo e das instâncias utilizadas. 

 

Verificação do Modelo de Simulação 

A verificação incluiu testes iniciais sobre cada parte do modelo para garantir que erros ou 

inconsistências que prejudicassem a obtenção de resultados consistentes não fossem considerados 

ou propagados. Para tal finalidade, foi necessário testar cenários em que os resultados fossem 

conhecidos.  
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Para a validação do modelo, foi necessário atender as condições de contorno descritas a 

seguir durante os testes de validação: 

 Inexistência de erros durante processo de simulação – durante o período em que o 

modelo estava efetivamente simulando o ambiente de teste, o programa não deveria apresentar 

mensagens de erros que pudessem resultar no término do processo de simulação. 

 Verificação e validação do processamento de jobs– o ambiente de simulação deveria 

estar funcionando corretamente, independentemente do método de controle DBR. Para isto, foi 

utilizada a teoria das filas, envolvendo casos conhecidos para validar o correto funcionamento 

do ambiente de produção. 

 Correto funcionamento dos mecanismos do DBR – uma condição importante é que o 

modelo deveria ser capaz de realizar corretamente as três etapas básicas do DBR: identificar o 

recurso gargalo do sistema com base nos inputs fornecidos; ser capaz de monitorar o WIP entre 

a entrada do sistema e o recurso gargalo; utilizar o monitoramento de WIP e time buffer 

fornecido como input para determinar o correto momento de entrada de jobs no sistema. 

 Correto funcionamento das regras de sequenciamento – o funcionamento e a ordem de 

entrada de jobs no sistema de produção deveria ser compatível com a regra de equacionamento 

escolhida para a simulação. 

  

Definição das instâncias 

A quarta etapa deste trabalho foi definir as instâncias de simulação, ou seja, especificar os 

valores a serem utilizados para simulação dentre os parâmetros de entrada previamente definidos 

para a geração de jobs, estágios, due dates, entre outros. 

Na literatura, é possível obter diversas instâncias teóricas utilizadas por outros autores para 

simulação, bem como há a possibilidade de realização de estudo de caso baseado em sistema de 

produção existente. As instâncias definidas serão posteriormente detalhadas neste trabalho, na 

seção correspondente.  
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Experimentos 

Esta etapa consistiu da execução dos experimentos de simulação das instâncias definidas 

na etapa anterior. Para pautar a etapa de análise e discussão, gráficos e tabelas foram elaboradas 

com base nos resultados obtidos pela saída do modelo de simulação para cada cenário rodado. 

 

Análise e Discussão 

Esta foi a etapa final do trabalho, consistindo em analisar os resultados obtidos durante a 

etapa de experimento para fornecer subsídios para as conclusões do estudo. Nesta etapa, discutiu-

se também as limitações do modelo de simulação, recomendando-se estudos futuros para dar 

sequência ao tema estudado. 
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4. MODELO DE SIMULAÇÃO 
 

Este trabalho propõe o desenvolvimento de um modelo de simulação por eventos discretos 

para o estudo do dimensionamento do time buffer em alguns cenários. O objetivo foi simular um 

ambiente de produção flow shop genérico cuja estratégia de produção segue o padrão MTO, onde 

os jobs seriam gerados a partir do pedido ou efetivação da venda, já com due date estabelecido. A 

este ambiente de simulação, foi acrescido o método de controle DBR. 

O presente capítulo discorre sobre o modelo de simulação, desde seu desenho conceitual, 

passando pelo sua implantação computacional, até sua verificação e validação. Por fim, foram 

definidas as instâncias de simulação que serão analisadas no próximo capítulo. 

 

4.1. Modelagem Conceitual 

Qualquer modelo de simulação pode ser dividido em três partes essenciais: parâmetros de 

entrada ou inputs, ambiente de simulação (onde se desenvolve o modelo) e parâmetros de saída ou 

outputs. Os parâmetros de entrada são variáveis escolhidas para alimentarem o modelo de 

simulação, de forma a reger o comportamento da simulação. 

O ambiente de simulação executa a simulação de acordo com a lógica de simulação e libera 

como resultado os parâmetros de saída ou outputs (Figura 11). Os parâmetros de saída são, 

geralmente, indicadores diretamente utilizados para a análise dos resultados da simulação e 

conclusão do experimento. Porém, podem ser também dados utilizados para montar estes 

indicadores, sendo, portanto, usados indiretamente para a análise de resultados da simulação e 

conclusão do experimento. 

 

Figura 11 - Componentes principais para desenvolvimento de um modelo de simulação 

 

Fonte: Elaborado pelo autor  
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Desta forma, esta seção busca definir conceitualmente as variáveis usadas como inputs, o 

ambiente de simulação escolhido para o desenvolvimento do modelo de simulação, os outputs do 

modelo e a lógica de simulação. 

 

4.1.1. Inputs do Modelo de Simulação 

Para simular um sistema de produção flow shop genérico, com estratégia de produção MTO 

com método de controle DBR, uma série de parâmetros precisam ser fornecidos para definir o 

ambiente que efetivamente se quer simular. Estes serão os inputs do sistema. 

 

Número de simulações – O número de simulações realizadas cada vez que o modelo é 

rodado será um parâmetro de entrada. O valor estabelecido será o número de vezes em que o 

ambiente simulará de forma repetida o sistema escolhido, ou seja, não se muda os outros inputs de 

simulação. A única grandeza que efetivamente muda entre simulações é a semente para geração de 

números aleatórios.  

O objetivo de definir esta grandeza como parâmetro de entrada é permitir maior grau de 

confiabilidade dos indicadores de desempenho, de forma a simular o mesmo sistema um número 

significante de vezes para eliminar a potencial existência de outliers. 

 

Tempo de simulação – É o parâmetro de entrada que delimitará até quando uma simulação 

irá rodar. O presente modelo de simulação terá como gatilho de parada uma grandeza temporal 

genérica, que pode ser segundos, minutos, horas, dias, semanas ou qualquer outra grandeza 

escolhida na hora de fornecer os dados temporais dos experimentos.    

 

Tipo de distribuição para geração da chegada de jobs – A geração de jobs no sistema 

será fixo ou variável (probabilístico), com os tempos entre gerações definidos a partir de um tipo 

de distribuição fornecida como parâmetro de entrada. No caso de geração de jobs com distribuição 

fixa, jobs chegam após o mesmo intervalo temporal no sistema. Logo, o modelo não trabalhará 

com tempos de geração diferentes entre jobs.  
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As distribuições escolhidas para a elaboração do modelo foram as mais comumente 

apresentadas na literatura existente e que melhor representam ambientes de simulação reais. São 

elas: distribuição exponencial, distribuição normal, distribuição uniforme e distribuição fixa.  

 

Parâmetros para a geração das chegadas de jobs – Após definir qual o tipo de 

distribuição a ser considerado para a geração de jobs no sistema, é necessário definir parâmetros 

temporais para determinar o tempo entre gerações. Dependendo do caso, quatro parâmetros de 

simulação serão necessários: tempo médio entre gerações, tempo mínimo entre gerações, tempo 

máximo entre gerações e desvio padrão do tempo médio entre gerações. 

Para distribuição exponencial, será necessário fornecer o tempo médio entre gerações que 

consiste no inverso da taxa média utilizada para gerar tempos de chegada de jobs. Para distribuição 

normal, será necessário fornecer tempo médio e desvio padrão dos tempos entre gerações. Para 

distribuição uniforme, será necessário fornecer os tempos máximos e mínimos, para determinar um 

intervalo de valores com a mesma probabilidade para ser o tempo entre a chegada de jobs no 

sistema. Por fim, na distribuição fixa, o tempo médio será o tempo entre a geração de jobs no 

sistema. 

 

Tipo de distribuição para geração de due date– Como o presente modelo considerará 

apenas a estratégia de produção MTO, quando um job é gerado, ele já deve possuir um determinado 

due date. Para a geração de due date para cada job gerado na simulação, também se deve determinar 

um tipo de distribuição, de forma similar ao tipo de distribuição determinado para a geração de 

tempos de chegada, porém, de forma independente. 

Os tipos de distribuição que podem ser escolhidas para a geração de due dates são as 

mesmas disponíveis para a geração de tempos de chegada, ou seja: distribuição exponencial, 

distribuição normal, distribuição uniforme e distribuição fixa.  
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Parâmetros para a geração de due date– Após definir qual o tipo de distribuição a ser 

considerado para a geração de jobs no sistema, é necessário definir os parâmetros para a definição 

dos tempos. Os parâmetros que o sistema considera para geração de due date devem ser os mesmos 

que para a geração de tempos de chegada, ou seja: tempo médio, tempo mínimo, tempo máximo e 

desvio padrão. Os parâmetros só serão necessários dependendo do tipo de distribuição, da mesma 

forma que para a geração de tempos de chegada.  

 

Número de estágios – O número de estágios deve ser um input do modelo de simulação. 

O modelo proposto simulará as passagens do número de jobs gerados pelo número de estágios 

gerados, considerando as características de cada estágio, que devem ser customizáveis de estágio 

para estágio. 

 

Número de máquinas por estágio – Cada estágio pode ter número de máquinas diferentes, 

como definição do ambiente flow shop genérico. O número de máquinas para cada estágio é um 

input do modelo de simulação. As máquinas existentes dentro de um estágio de produção devem 

ser idênticas entre si. 

 

Tipo de distribuição para geração de tempos de processamento – Da mesma forma que 

a geração de tempos de chegada de jobs no sistema e due date, a geração de tempos de 

processamento podem ser probabilísticas ou determinísticas e seguem uma distribuição 

previamente estabelecida. 

As distribuições para a geração de tempos de processamento podem ser: exponencial, 

normal, uniforme, fixa (determinística), triangular ou Erlang. Vale ressaltar que o tipo de 

distribuição, bem como os parâmetros para a geração de tempos de processamento, são 

características do estágio e não dos jobs. 

 

Parâmetros para a geração de tempos de processamento – Após definir qual o tipo de 

distribuição a ser considerado para a geração de tempos de processamento, é necessário definir 

parâmetros temporais para determinar o tempo entre gerações. Dependendo do caso, cinco 

parâmetros de simulação serão necessários: tempo médio, tempo mínimo, tempo máximo, desvio 

padrão e número de exponenciais para formação da distribuição Erlang. 
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Para distribuição exponencial, será necessário fornecer o tempo médio, que consiste no 

inverso da taxa média utilizada para gerar tempos de processamento. Para distribuição normal, será 

necessário fornecer tempo médio e desvio padrão dos tempos de processamento. Para distribuição 

uniforme, será necessário fornecer os tempos máximos e mínimos, para determinar um intervalo 

de valores com a mesma probabilidade para ser o tempo de processamento.  

Na distribuição fixa, o tempo médio será o tempo de processamento. Na distribuição 

triangular, os tempos mínimos e máximos funcionam como valores limites e o tempo médio será a 

moda. 

A distribuição Erlang é uma distribuição de probabilidade contínua com uma ampla 

aplicabilidade, principalmente devido à sua relação com a distribuição exponencial e a distribuição 

gama. Atualmente, esta distribuição é utilizada em várias áreas que aplicam processos estocásticos, 

consistindo em uma combinação de distribuições exponenciais. Para a distribuição Erlang, será 

necessário fornecer o tempo médio de processamento e o número de exponenciais combinados, 

denominado beta de Erlang. 

 

Probabilidade de um job qualquer passar por cada estágio – Cada estágio terá um 

atributo de entrada que consiste na probabilidade de um job qualquer passar ou não por este estágio. 

No processo de geração do job, seu caminho será determinado com base nestas probabilidades, que 

são atributos do estágio e não do job gerado. Desta forma, conseguiu-se adaptar o modelo para a 

criação de um flow shop genérico. Caso estas probabilidades sejam todas 100%, temos um flow 

shop flexível. 

 

Regra de sequenciamento – A regra de sequenciamento utilizada para ordenar jobs 

contidos no pré-shop devido ao método de controle DBR é um input do sistema. Vale ressaltar que 

este ordenamento só ocorre no pré-shop, sendo que quando o job está dentro do sistema, seguirá a 

regra de sequenciamento FIFO. 

As regras escolhidas para serem retratadas no modelo de simulação foram as mais 

comumente utilizadas e que apresentam maior aplicação prática: FIFO (First In, First Out), SPT 

(Shortest Processing Time), EDD (Earliest Due Date) e LS (Least Slack). 
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Tamanho do time buffer limite para a entrada de jobs no sistema – O tamanho do time 

buffer limite, parâmetro fundamental para os objetivos do presente trabalho, será um input do 

sistema. Isto nos permitirá criar diversos cenários com diferentes tamanhos de time buffer para 

como se comportam os indicadores de desempenho em função do time buffer para diferentes 

layouts de ambientes de produção. 

 

A Figura 12 ilustra todos os inputs que o modelo de simulação requer para efetivamente 

conduzir a simulação pelo modelo de simulação elaborado. 

 

Figura 12 - Parâmetros de entrada do modelo de simulação (Inputs) 

 

Fonte: Elaborado pelo autor  
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4.1.2. Ambiente de Simulação 

O ambiente de simulação escolhido para o desenvolvimento do modelo de simulação foi a 

linguagem de programação Python, com auxílio da biblioteca Simpy. Simpy © é um módulo da 

linguagem Python© open source voltado à criação de modelos de simulação por eventos discretos, 

permitindo a criação de entidades, como jobs e estágios. Esta biblioteca permite realizar simulações 

com processos que não interagem uns com os outros, mas que possuem recursos partilhados, fator 

fundamental para o caso deste trabalho. 

Este foi o ambiente escolhido, pois permite maior grau de customização do ambiente 

escolhido, ou seja, pode-se montar um modelo genérico que receba dados e gere uma das possíveis 

versões de sistemas simulados. Isto não é possível em softwares especializados clássicos de 

simulação de sistemas de produção por eventos discretos, como Simul8©, Arena© e ProModel©. 

 

4.1.3. Outputs do Modelo de Simulação 

O output do modelo de simulação deste trabalho foi a simulação em si, ao invés de 

indicadores de desempenho. Em outras palavras, ao invés de calcular os indicadores de 

desempenho que serão posteriormente analisados com base nos eventos da simulação, o modelo 

de simulação exportará os eventos relevantes da simulação em si, de forma a se ter o retrato do que 

ocorreu na simulação. 

Isto foi importante porque, ao exportar os eventos da simulação ao invés de exportar apenas 

os indicadores de desempenho, foi possível entender o funcionamento do modelo e analisar pontos 

específicos da simulação. Isto foi essencial para a identificação de erros do modelo e sua correção, 

de forma a facilitar a validação do modelo. 

Além disso, isto não prejudicou a análise de indicadores de desempenho. Estes indicadores 

continuaram a ser calculados, porém, fora da simulação. Os indicadores de desempenho 

considerados no presente trabalho foram: mean lead time, mean throughtput time, mean tardiness 

e percentage tardy. A descrição destes indicadores foi feita no Capítulo 2 (seção 2.4.4). 
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Os eventos de simulação exportados foram: geração do job dentro do sistema; entrada do 

job no sistema de produção; entrada do job na fila de cada uma das operações em seu caminho; 

início da operação do job em cada uma das operações em seu caminho; fim da operação do job em 

cada uma das operações em seu caminho; saída do job do sistema de produção, representando sua 

entrega para o cliente. Eventualmente, se o job for encaminhado para o pré-shop após a sua geração, 

os eventos de entrada e saída do pré-shop também devem ser exportados como eventos da 

simulação.  

 

4.1.4. Lógica de Simulação 

A lógica é função do ambiente de simulação ser capaz de incluir os inputs fornecidos e, por 

meio da lógica de simulação, fornecer os outputs determinados, no caso, exportar os eventos de 

simulação. 

Para isto, a lógica do modelo de simulação deve seguir a de um sistema de produção flow 

shop genérico com estratégia MTO controlada pelo método de controle DBR. Para tal finalidade, 

controlou-se as seguintes diretrizes. 

 A simulação deve ser repetida com base no número de simulações determinadas e, em cada 

vez, o tempo de simulação deve ser igual ao tempo determinado como parâmetro de entrada. 

 Os jobs devem ser gerados em intervalos de tempos determinados a partir do tipo de 

distribuição escolhida e parâmetros temporais fornecidos como inputs do modelo. A geração 

de novos jobs é livre, ou seja, não é restringida a não ser pelo tempo de simulação. 

 No mesmo instante em que o job é gerado no sistema, seu due date e caminho dentro do 

sistema (estágios em que passa) devem ser gerados. Para isso, usa-se o tipo de distribuição 

escolhida e parâmetros determinados para a geração de due date bem como a probabilidade de 

cada máquina estar no caminho de um job.  

 Após a geração de um job qualquer, checa-se o volume de WIP na forma de time buffer e 

compara-se este valor com o time buffer limite definido como input. Se o valor atual for menor 

que o limite, o job gerado entra no sistema de produção. Caso contrário, entrará no pré-shop e 

aguardará seu momento de entrar no sistema. 
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 O método de controle DBR é ativado a cada vez que um novo job é gerado ou alguma 

máquina de alguma estação termina seu processamento. Caso o DBR indique que um novo job 

contido no pré-shop deve entrar no sistema, o pré-shop é reordenado conforme regra de 

sequenciamento definida como parâmetro de entrada e aquele job mais prioritário é o escolhido 

para entrar no sistema de produção. 

 No sistema, cada job deve seguir seu caminho no sentido do fluxo do sistema, não 

necessitando ficar em filas de estágios em que não precisam passar. 

 A regra de sequenciamento de jobs dentro do sistema de produção é FIFO, ou seja, sempre 

o primeiro a entrar terá prioridade. 

 Caso um job necessite operar em um estágio e todas as máquinas estiverem em operação, 

ele deve aguardar na fila do estágio. 

 Para seguir corretamente o método de controle DBR, o modelo de simulação deve 

identificar o estágio gargalo do sistema, antes do início da simulação. 

 O modelo de simulação deve ser capaz de calcular o tamanho do time buffer atual do sistema 

de produção simulado a cada instante que for necessário durante a simulação.  

 O modelo de simulação deve ser capaz de sequenciar o pré-shop de acordo com as 

possibilidades existentes de regras de prioridade e deve ser capaz de liberar um novo job para 

o sistema dentro desta ordem toda vez em que a checagem identificar que o sistema está abaixo 

do time buffer limite. 

 

4.2. Modelagem Computacional 

Busca-se resumir nesta seção como a modelagem conceitual foi efetivamente implantada 

em Python© com auxílio da biblioteca Simpy©. Desta maneira, o presente item será dividido da 

mesma maneira que o modelo de simulação foi dividido: em funções. 

Vale ressaltar que funções menos importantes e mais simples, cujo escopo para sua criação 

foi meramente o de suporte, serão descritas de forma conjunta e menos detalhada como “funções 

de suporte”. 

O modelo completo e comentado pode ser visto no ANEXO A, bem como fotos da planilha 

Excel e as macros de suporte utilizadas para importar inputs e analisar os indicadores de 

desempenho (ANEXOS B, C e D). 
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4.2.1. Função “Inputs” 

Esta é a função do modelo de simulação responsável por importar da planilha Excel de 

suporte os inputs necessários para a simulação. Como se pode observar no ANEXO A, as variáveis 

são importadas por meio de suas respectivas coordenadas da planilha de Excel que podem ser vistas 

no ANEXO B. 

Além de importar todos os inputs mencionados no item 4.1.1 do presente trabalho, esta 

função gera uma lista (“ListaEstagios”) que possuirá tamanho equivalente ao número de estágios, 

em que cada item da lista corresponde a um estágio do ambiente de simulação a ser gerado.  

Cada item da lista, correspondente a um estágio, terá oito elementos ou componentes: 

números de máquinas do estágio, tipo de distribuição para geração de tempos de processamento, 

tempo médio, desvio padrão, tempo mínimo, tempo máximo, beta Erlang e probabilidade de um 

job passar ou não pelo estágio.  

A lista criada terá todos os atributos dos estágios, auxiliando na criação do ambiente de 

simulação. Para criar esta lista, um loop é gerado pela importação do número de estágios, de forma 

a ler os atributos de cada estágio. O número de estágios corresponde a uma fórmula CONT.NÚM 

do Excel, de forma a contar o número de máquinas atribuídas como parâmetro de entrada. Por fim, 

a função retorna todos os parâmetros de entrada importados, inclusive a lista de estágios. 

 

4.2.2. Funções de Suporte 

Com o objetivo de suporte a operações muito utilizadas durante o modelo de simulação, 

duas funções de suporte foram criadas: a função ‘NumAleatorio”, responsável por gerar números 

aleatórios e a função “TempoMed”, responsável por retornar o tempo médio esperado de acorda 

com a distribuição escolhida e parâmetros de entrada. 

A função responsável por gerar números aleatórios possui como parâmetro de entrada o 

tipo de distribuição escolhida e parâmetros auxiliares para geração de tempos: tempo médio, desvio 

padrão, tempo mínimo, tempo máximo e beta Erlang. 
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A função é formada por um conjunto de ifs que realizam o teste condicional de forma a 

identificar o tipo de distribuição escolhida. A partir da distribuição escolhida, gera-se um número 

aleatório por meio de uma função da biblioteca random (ex: random.expovariate). Por fim, a função 

retorna o número aleatório gerado. Caso a distribuição seja fixa, retorna-se o tempo médio de 

parâmetro de entrada. 

A função responsável por retornar o tempo médio recebe os mesmos parâmetros que a 

função responsável por gerar números aleatórios. Também é formada por um conjunto de ifs que 

realizam o teste condicional de forma a identificar o tipo de distribuição escolhida. Caso a 

distribuição seja exponencial, normal, fixa ou Erlang, retorna o tempo médio. Caso seja uniforme, 

retorna a média aritmética entre o tempo mínimo e o tempo máximo. Caso seja triangular, retorna 

a média aritmética entre o tempo mínimo, tempo máximo e tempo médio. 

 

4.2.3. Função “GeracaoJobs” 

A função “GeracaoJobs” é responsável por gerar os jobs, desta forma, dando início a 

simulação, sendo que a geração de jobs só é cessada quando o tempo de simulação é ultrapassado. 

Para isto, um elemento lógico while é utilizado. 

Cada job, ao ser criado, recebe uma numeração, um nome, um due date e um caminho, ou 

seja, no momento de geração já é definido os estágios em que o job passará. O nome do job será 

formado pelo prefixo “Job” acrescido à sua numeração. Desta forma, o quinto job gerado terá 

nomenclatura “Job5”. A numeração de jobs não é independente entre simulações, de forma que 

uma variável global foi definida para estocar o número do último job gerado na simulação anterior 

para dar sequência nesta ordem. 

O caminho será uma lista binária com o mesmo número de itens em relação ao número de 

estágios. Caso o elemento n da lista seja 1, o estágio n do sistema de produção, na ordem do fluxo, 

estará no caminho do job gerado. Caso contrário (elemento 0), o job ultrapassa o estágio 

correspondente. 

Para a geração desta lista caminho, uma lista auxiliar denominada “SimouNao” foi criada 

com a proporcionalidade de uns e zeros igual a relação de probabilidade do estágio n estar ou não 

no caminho do job. Para cada estágio n, é gerada uma lista “SimouNao” e um elemento é 

aleatoriamente escolhido desta lista para compor a lista caminho. 
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Por fim, após a geração efetiva do jobs, a presente função define a próxima etapa do job, 

que será seu acréscimo ao pré-shop, um recurso Store do Simpy©, ou o início de seu processamento, 

ou seja, a chamada da função “Processamento”. Para isto, a função “Buffer” é chamada para 

comparar o time buffer atual do sistema com o time buffer limite determinado. Vale ressaltar que 

os tempos de geração são acrescidos ao tempo atual da simulação no momento da geração. 

 

4.2.4. Função “Processamento” 

A função “Processamento” é a responsável por simular a passagem de jobs pelo sistema de 

produção, ou seja, pelos estágios do sistema que estão no caminho de cada job. Para isto, um loop 

é gerado para cada job, de forma que ele passe por cada estágio de produção, sendo que é realizado 

um teste na forma do operador lógico if para identificar se o estágio está ou não no caminho do job. 

Se ele não estiver, o estágio é pulado. Se ele estiver no caminho, o job entrará na fila do estágio, 

realizará a operação e será liberado para o próximo estágio. 

Cada estágio do modelo de simulação recebe um Resource da biblioteca Simpy©, que o 

permite ter as características de um recurso com jobs na fila de entrada e jobs em operação, 

facilitando o processo de simulação. Os estágios do modelo de simulação foram definidos como 

“classe”, de forma a facilitar ao modelo de simulação a criação de um número finito de estágios, 

determinado como parâmetro de entrada. Sem o uso de “classes”, isso seria inviável. 

Os operadores logísticos “request” e “release” foram utilizados respectivamente para 

simular o tempo de fila de cada job e sua remoção do estágio. Após a saída de qualquer job de 

qualquer estágio, a função “Rope” é chamada, de forma a ativar o mecanismo DBR, caso o time 

buffer permita.  

Vale ressaltar que todos os eventos de chegada de Jobs na fila, bem como o início e término 

de suas operações, em qualquer estágio, foram exportados como output da simulação. 

Ao final da função de processamento, o job termina a sua simulação e sai do sistema, evento 

que também é exportado da simulação como output. Por fim, os tempos de espera em fila e de 

processamento foram sempre acrescidos ao tempo de simulação. Os tempos de processamento 

foram definidos com o auxílio da função “NumAleatorio”. 
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4.2.5. Função “Drum” 

A função “Drum” é a responsável por simular a primeira etapa do método de controle DBR, 

ou seja, a identificação do recurso gargalo. Esta função é chamada no início do bloco principal, 

antes do início da simulação temporal. No modelo de simulação desenvolvido para fins deste 

trabalho, o recurso gargalo do sistema é então identificado com base nos parâmetros definidos para 

os estágios e não com base em parâmetros obtidos durante a simulação temporal. 

Além disso, o recurso gargalo é único e definido uma única vez antes da simulação, não 

sendo, portanto, um processo iterativo durante a simulação. A definição do recurso gargalo se dá 

pelo recurso cuja expectativa para processamento de um lote n de jobs fosse a maior. Para isto, a 

função “TempoMed”, que calcula a expectativa médio de processamento de certo job em cada 

estágio, é utilizada para achar o tempo médio esperado que uma máquina em cada estágio processa 

certo job. Além do tempo médio, o número de máquinas no estágio e a probabilidade de certo job 

passar pelo estágio são considerados para cálculo do tempo de processamento de um lote de jobs. 

Sumarizando, o recurso gargalo será aquele que possuir o maior valor de TL (tempo de 

processamento de um lote de jobs unitário por número de jobs no lote), de acordo com a equação 

(4). Se dois estágios possuírem o mesmo TL, o gargalo será aquele que vier primeiro no sistema. 

Isto foi determinado de forma arbitrária, de forma a possibilitar a implementação do DBR. 

 

 

𝑇𝐿𝑒𝑠𝑡á𝑔𝑖𝑜 𝑛 =
𝑡𝑒𝑚𝑝𝑜 𝑚é𝑑𝑖𝑜 𝑑𝑒 𝑝𝑟𝑜𝑐𝑒𝑠. 𝑑𝑒 1 𝑗𝑜𝑏𝑛 ∗  𝑃𝑟𝑜𝑏. 𝑑𝑒 𝑗𝑜𝑏 𝑠𝑒𝑟 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑎𝑑𝑜𝑛

𝑁ú𝑚𝑒𝑟𝑜 𝑑𝑒 𝑚á𝑞𝑢𝑖𝑛𝑎𝑠𝑛
 

 

 

Por fim, a função “Drum” retornará a posição do estágio gargalo no sistema, parâmetro que 

será utilizado para o cálculo do time buffer durante a simulação. 

 

  

(4) 
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4.2.6. Função “Buffer” 

A função “Buffer” é a responsável por realizar a checagem do tamanho atual do time buffer 

toda vez que for chamada e compará-la ao time buffer limite. A função retorna True, caso haja a 

possibilidade de liberar certo job para o sistema, ou seja, o time buffer limite seja maior que o atual, 

no momento de checagem. Caso contrário, a função retorna False, caso o sistema não permita a 

liberação de novo job. 

Para isto, a função é composta basicamente de duas etapas: cálculo do time buffer no 

momento que a função é chamada; comparação do time buffer calculado com o time buffer limite, 

parâmetro de entrada do sistema. 

Para realizar a primeira etapa, a função necessita receber como parâmetro de entrada a lista 

de estágios, que contém todas as informações de processamento de cada estágio; e a posição do 

gargalo, pois, conceitualmente, o time buffer no modelo DBR consiste no tempo total de 

processamento esperado dos jobs entre a entrada do sistema e o recurso gargalo, como visto no 

Capítulo 2. 

A partir daí, a função “Buffer” calcula o tempo médio esperado de processamento de um 

job qualquer para cada estágio entre o início do sistema de produção e o estágio gargalo e guarda 

estes tempos em uma lista de suporte “ListaTempos”. Para isto, utiliza a função “TempoMed” de 

suporte. 

Posteriormente, passa contando o número de jobs na fila de cada estágio (considerando 

aqueles em operação) e o tempo médio de processamento esperado até o gargalo. Para cálculo do 

tempo médio de processamento até o gargalo, soma-se o tempo médio esperado de processamento 

entre o estágio em que os jobs estão na fila até o tempo médio do estágio gargalo. 

Com estes dois valores determinados para cada estágio, estes são multiplicados e 

registrados em uma variável que somará esta multiplicação para cada um dos estágios até o gargalo, 

e, portanto, terá ao final do processo, o tamanho do time buffer atual. 

A segunda etapa, que consiste em comparar o time buffer calculado com o time buffer 

limite, é bem simples. Ela consiste em comparar os dois atributos com o uso do operador logístico 

if, retornando True, caso o limite seja maior que o atual, e False, caso contrário. 
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4.2.7. Função “Rope” 

A função “Rope” é a responsável pela liberação de jobs dentro do pré-shop para o sistema 

de produção. Ela é chamada toda vez que uma operação de processamento qualquer dentro do 

sistema de produção é terminada. A função “Rope” não retorna nenhum valor, apenas inicia o 

processamento de um novo job caso a função “Buffer”, que é chamada dentro da função “Rope”, 

retornar True, isto é, o time buffer limite for maior que o time buffer atual. 

Caso a função “Buffer” retorne True, a função “Rope” realizará a seguinte rotina: chamará 

a função “RegrasPrioridade”, que reordenará o pré-shop de acordo com a ordem de prioridade 

escolhida como parâmetro de entrada; removerá o job mais prioritário do pré-shop por meio do 

comando “get”, ou seja, removerá o primeiro job no recurso do Simpy© equivalente ao pré-shop; 

chamará a função “Processamento”, dando início ao processamento do job removido do pré-shop 

dentro dos estágios do sistema de produção. 

Caso a função “Buffer” retorne False, a função “Rope” somente acionará a função 

“RegrasPrioridade”, que reordenará o pré-shop de acordo com a ordem de prioridade escolhida 

como parâmetro de entrada. 

 

4.2.8. Funções de Sequenciamento 

Em relação a regras de sequenciamento ou regras de prioridade, o modelo de simulações 

possui quatro funções que tratam sobre este aspecto: a função “RegrasPrioridade”, a função 

“EDD”, a função “SPT” e a função “LS”. 

A função “RegrasPrioridade” consiste na função que efetivamente realiza o 

sequenciamento de jobs no pré-shop. A lógica desta função é bem simples: é composta por um 

conjunto de operadores lógicos ifs que checam se o parâmetro de entrada relativo a regra de 

sequenciamento escolhida é compatível com as regras de sequenciamento FIFO, EDD, SPT ou LS. 

Caso corresponda a regra de sequenciamento EDD, a função “EDD”, que efetivamente 

realizada a ordenação do pré-shop é acionada. Caso corresponda a regra de sequenciamento SPT, 

a função “SPT”, que efetivamente realizada a ordenação do pré-shop é ativada. Caso corresponda 

a regra de sequenciamento LS, a função “LS”, que efetivamente realizada a ordenação do pré-shop 

é chamada. 
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A exceção se dá pela regra FIFO. Caso o parâmetro de entrada corresponda a regra de 

sequenciamento FIFO, a função “RegrasPrioridade” não realiza nenhuma operação e simplesmente 

termina sua operação. Isto ocorre, pois a mecânica de adição de novos jobs no pré-shop ocorre pela 

ordem de geração do job no sistema. Logo, o pré-shop já possui o seu sequenciamento de acordo 

com a regra FIFO. 

Vale ressaltar que a função “RegrasPrioridade” não retorna nenhum valor ou variável, ou 

seja, apenas ordena o pré-shop de acordo com a regra de sequenciamento escolhido para que a 

saída de jobs do pré-shop siga esta mesma ordem. A Figura 13 ilustra o fluxograma de 

relacionamentos de funções de sequenciamento. 

 

Figura 13 - Relação entre funções de sequenciamento do modelo de simulação 

 

Fonte: Elaborado pelo autor 

 

As funções “EDD”, ”SPT” e “LS” possuem a mesma finalidade: se forem acionadas, 

ordenarão o pré-shop de acordo com a regra de prioridade da qual herdam seu nome. Portanto, a 

função “EDD” ordenará os jobs dentro do pré-shop de acordo com due date, a função “SPT” 

ordenará os jobs do pré-shop de acordo com seu tempo global de processamento e a função “LS” 

ordenará os jobs do pré-shop de acordo com sua folga (tempo esperado para finalização do job 

menos seu due date). 
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Da mesma forma que a utilidade destas funções é a mesma, o seu funcionamento é bem 

similar entre si. Pode-se descrever este funcionamento em sete etapas: 

 Primeira etapa – consiste na criação de uma lista auxiliar idêntica a lista do pré-shop, por 

meio de um loop que adiciona todos os elementos da lista do pré-shop na mesma ordem na 

lista auxiliar. 

 Segunda etapa – consiste em esvaziar a lista do pré-shop, de forma que possibilita 

adicionar novamente os jobs de acordo com a nova ordem, numa lista vazia. 

 Terceira etapa – consiste em definir o primeiro item da lista como parâmetro de 

comparação inicial para achar o job mais prioritário dentro da lista auxiliar, de acordo com 

a regra escolhida. 

 Quarta etapa – comparar um a um os jobs da lista auxiliar de forma a identificar aquele 

mais prioritário. Ou seja, começamos comparando o primeiro job da lista com o segundo e 

identificando o mais prioritário. Em seguida, comparamos o terceiro item da lista com o 

mais prioritário entre o segundo e o primeiro juntos. Isto é feito desta maneira em diante 

até o final da lista auxiliar, de forma que teremos identificado o job mais prioritário ao final 

desta etapa. 

 Quinta etapa – consiste em adicionar este job mais prioritário a lista do pré-shop, por meio 

do elemento lógico do Simpy© denominado put. 

 Sexta etapa – consiste em remover da lista auxiliar o job já adicionado na lista do pré-

shop, com o auxiio do elemento lógico pop. 

 Sétima etapa – consiste em repetir as seis primeiras etapas na mesma ordem até a remoção 

de todos os jobs da lista auxiliar, de forma a esvaziá-la. Assim, teremos no final deste 

processo a lista do pré-shop devidamente ordenada de acordo com a regra escolhida. 

Vale ressaltar que os jobs na lista do pré-shop são representados por uma lista composta de 

cinco itens: número, nome, número de estágios por onde é processado, due date e a lista caminho. 

Estas variáveis permitem o cálculo das variáveis utilizadas como parâmetro de comparação para 

as regras EDD, SPT e LS. Para a regra EDD, a variável a ser comparada é retirada da lista. Para as 

regras SPT e LS, é necessária uma série de processos de manipulação de dados que podem ser 

vistos em detalhes e com comentários no ANEXO A. 

Portanto, a única diferença efetiva entre as funções EDD, SPT e LS é a forma de cálculo da 

variável a ser comparada.  
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4.2.9. Bloco Principal e Output 

O bloco principal consiste na parte principal do modelo de simulação, que começará a 

simulação e acionará as funções auxiliares, apresentadas anteriormente neste capítulo. O código de 

programação é bem simples, comparativamente as funções do modelo, podendo ser dividido em 

três partes: importação de parâmetros de entrada e bibliotecas; execução do número escolhido de 

simulações por meio de um loop, de acordo com o tempo de simulação determinado; importação 

do output da simulação para planilha excel e análise de dados via macro do Excel. 

A primeira etapa começa com a importação das bibliotecas utilizadas como suporte para o 

desenvolvimento do modelo de simulação. São três bibliotecas importadas: a já mencionada 

Simpy©, que permite a simulação por eventos discretos; a biblioteca random, que possibilita a 

geração de número aleatórios, com base nas distribuições de probabilidade previamente retratadas; 

a biblioteca xlwings, que permite a interface do código python com o Excel. 

Após importar estas bibliotecas, o código define a planilha na qual a interface entre Python© 

e Excel será gerada. Fotos desta planilha podem ser vistos nos ANEXOS B e C. Para acabar esta 

primeira fase, o bloco principal do código do modelo de simulação ativa duas funções: a função 

“Inputs”, responsável por ler os inputs do arquivo Excel e retornar os parâmetros de entrada para 

geração de jobs, due dates e estágios; a função “Drum”, que identifica a posição do recurso gargalo, 

parte do método de controle DBR que será fundamental para a simulação do modelo. 

Por fim, a primeira etapa ainda engloba a geração de uma entidade Store para simular o 

pré-shop e n entidades Resource, para simular os estágios do sistema de produção, com o auxílio 

do Simpy©. Os recursos gerados estão sobre a classe “Máquinas” e são englobados em uma lista 

denominada “Estágio”. 

A segunda etapa do bloco principal consiste em chamar a função “GeracaoJobs”, que dá 

início ao processo de simulação e geração de jobs no sistema, durante a simulação. Isto só é 

permitido, pois, após chamar esta função, o bloco principal aciona o comando 

“env.run(until=TempoSimulacao)”, que corresponde ao gatilho de início da simulação, 

terminando-a quando se estoura o tempo de simulação previamente definido como parâmetro de 

entrada. As chamadas desta função e do comando gatilho são feitas no mesmo número de vezes 

que o número de simulações definido como input. 
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A terceira etapa consiste em ativar a macro “Automatico” escrita em linguagem de 

programação VBA, atrelada à planilha Excel dos ANEXOS B e C. Esta macro importa os eventos 

gerados durante a simulação para planilha Excel e ativa as fórmulas que a analisam para gerar os 

indicadores de desempenho definidos na modelagem conceitual: mean lead time, mean throughtput 

time, mean tardiness e percentage tardy. Esta macro pode ser observada no ANEXO D do presente 

trabalho. 

Vale ressaltar que o modelo de simulação, durante a execução da simulação, registra os 

eventos de simulação ocorridos, em ordem temporal, em arquivo txt., que ao rodar a macro 

“Automatica”, é importada para o arquivo Excel (Figura 14). 

 

Figura 14 - Arquivos pertencentes ao modelo de simulação e interfaces 

 

Fonte: Elaborado pelo autor 

 

Em relação ao output do sistema, já foi previamente afirmado que ocorre na forma da 

impressão de eventos em um arquivo txt., que é exportado para o Excel. Porém, ainda não foi 

mencionado a forma em que estes eventos são retratados. A Figura 15 mostra um exemplo de 

output da simulação, elaborado para fins de ilustração. 
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Figura 15 - Exemplo de output do modelo de simulação 

 

Fonte: Elaborado pelo autor 

 

  

Número da Simulação Número do Job Evento Local Tempo de Simulação Due Date

1.0 Job1 Geração Sistema 2.0 23.6

1.0 Job1 Entrada Sistema 2.0 23.6

1.0 Job1 ChegadaOp Operação1 2.0 -

1.0 Job1 InícioOp Operação1 2.0 -

1.0 Job1 FimOp Operação1 3.9 -

1.0 Job1 ChegadaOp Operação2 3.9 -

1.0 Job1 InícioOp Operação2 3.9 -

1.0 Job2 Geração Sistema 4.4 28.1

1.0 Job2 Entrada Sistema 4.4 28.1

1.0 Job2 ChegadaOp Operação1 4.4 -

1.0 Job2 InícioOp Operação1 4.4 -

1.0 Job3 Geração Sistema 6.2 27.2

1.0 Job3 Entrada Sistema 6.2 27.2

1.0 Job3 ChegadaOp Operação1 6.2 -

1.0 Job3 InícioOp Operação1 6.2 -

1.0 Job2 FimOp Operação1 6.9 -

1.0 Job2 ChegadaOp Operação2 6.9 -

1.0 Job2 InícioOp Operação2 6.9 -

1.0 Job1 FimOp Operação2 7.2 -

1.0 Job1 ChegadaOp Operação3 7.2 -

1.0 Job1 InícioOp Operação3 7.2 -

1.0 Job4 Geração Sistema 7.9 25.4

1.0 Job4 Entrada Sistema 7.9 25.4

1.0 Job4 ChegadaOp Operação1 7.9 -

1.0 Job4 InícioOp Operação1 7.9 -

1.0 Job3 FimOp Operação1 9.0 -

1.0 Job3 ChegadaOp Operação2 9.0 -

1.0 Job3 InícioOp Operação2 9.0 -

1.0 Job4 FimOp Operação1 9.3 -

1.0 Job4 ChegadaOp Operação2 9.3 -

1.0 Job5 Geração Sistema 9.9 25.9

1.0 Job5 Entrada PréShop 9.9 25.9

1.0 Job2 FimOp Operação2 10.1 -

1.0 Job2 ChegadaOp Operação3 10.1 -

1.0 Job2 InícioOp Operação3 10.1 -

1.0 Job4 InícioOp Operação2 10.1 -

1.0 Job1 FimOp Operação3 10.5 -

1.0 Job1 ChegadaOp Operação4 10.5 -

1.0 Job1 InícioOp Operação4 10.5 -

1.0 Job6 Geração Sistema 11.8 26.6

1.0 Job6 Entrada Sistema 11.8 26.6

1.0 Job6 ChegadaOp Operação1 11.8 -

1.0 Job6 InícioOp Operação1 11.8 -

1.0 Job3 FimOp Operação2 12.5 -

1.0 Job3 ChegadaOp Operação3 12.5 -
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Como pode-se observar, a impressão de um evento da simulação ocorre com o apoio de 

seis colunas: número da simulação, nome do job, evento, local do evento, tempo de simulação e 

due date. Vale ressaltar que o due date só é impresso no momento de geração do job, de forma a 

simplificar o output, evitando a repetição constante deste número. 

Os eventos a serem impressos durante uma simulação são: a geração de um job; sua entrada 

e saída do pré-shop; entrada, início da operação e fim da operação de um job em todos os estágios 

em seu caminho; a saída do job do sistema. 

Por fim, a Figura 16 retrata a relação existente entre as principais funções do código 

elaborado que corresponde ao modelo de simulação. Para fins de esclarecimento, quando uma 

função aciona a outra, ela está conectada à esta por uma linha, sendo que aquela função que recebe 

a seta é a acionada. Funções de suporte são amplamente utilizadas no modelo e, para melhor 

representação gráfica, não foram consideradas. 

 

Figura 16 - Funções do modelo computacional e suas interfaces 

 

Fonte: Elaborado pelo autor 

 

4.3. Verificação e Validação 

O modelo de simulação passou por um rigoroso processo de verificação, que foi conduzido 

de forma modular, validando parte por parte do modelo. Todas as funções foram verificadas 

individualmente. No final, o modelo foi verificado como um todo por meio de uma série de testes. 

A seguir, será retratado como foi conduzido o processo de verificação das principais partes do 

modelo. 
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4.3.1. Verificação da Geração de jobs e due date 

A etapa de verificação do processo de geração de jobs e due dates focou em garantir dois 

fatores principais: que a geração de jobs seguisse efetivamente a distribuição e parâmetros 

escolhidos; que o processo de geração de jobs fosse conduzido até o tempo de simulação 

determinado como parâmetro de entrada. 

Para garantir que a geração de jobs seguisse a distribuição escolhida, uma série de 

simulações foram conduzidas para cada tipo de distribuição e os tempos entre gerações foram 

plotados em gráficos. Calculou-se então a média, desvio padrão, tempo mínimo e tempo máximo, 

conforme o tipo de distribuição. O mesmo processo foi conduzido para a geração de due dates.  

O que se observou foi que o modelo de simulação está aderente a qualquer um dos tipos de 

distribuição habilitados dentro do modelo de simulação: distribuição exponencial, normal, 

uniforme e fixa. Esta observação é válida tanto para a geração de jobs quanto para a determinação 

de due dates. 

 

4.3.2. Verificação do Processamento nos Estágios 

A etapa de verificação da operação de processamento dos jobs dentro dos estágios foi feita 

de modo independente do método de controle DBR. Para isto, um time buffer limite inatingível foi 

estipulado, de forma a evitar seu acionamento e a entrada de jobs no pré-shop. 

Desta forma, o sistema de produção simulado funcionou sem nenhum mecanismo de 

controle de jobs em processo. Vale ressaltar que o método de controle DBR também foi verificado 

de forma separada seguindo metodologia específica, tema a ser discutido adiante. 

A etapa de verificação da função “Processamento” foi dividida em duas partes: parte 

conceitual, para garantir que o funcionamento da passagem de jobs dentro do modelo de simulação 

é coerente com o de um flow shop genérico; parte quantitativa, para assegurar que os tempos de 

processamento estão compatíveis com o tipo de distribuição e parâmetros temporais determinados 

como parâmetros de entrada. 
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Na parte conceitual, buscou-se garantir os seguintes mecanismos: (i) o fluxo dentro do 

sistema de produção simulado é sempre o mesmo; (ii) o número de máquinas em cada estágio 

corresponde ao valor determinado como parâmetro de entrada; (iii) caso certo job chegue em 

determinado estágio e todas as máquinas estejam ocupadas, ele deve aguardar na fila deste estágio; 

(iv) o ordenamento de jobs na fila dos estágios deve ser sempre FIFO; (v) a probabilidade de certo 

job passar pela máquina deve seguir o parâmetro de entrada correspondente a esta probabilidade, 

determinado individualmente para cada máquina.  

Para verificar (i), simulou-se cerca de 20 vezes o modelo de simulação, com cenários 

diferentes de estágios, em termos de número de estágios, número de máquinas e probabilidade de 

estágio estar no caminho de jobs. Observando os eventos exportados da simulação, em todos os 

cenários testados, observou-se sempre o mesmo sentido de fluxo. 

Para verificar (ii), simulou-se cerca de 20 vezes o modelo de simulação, variando o número 

de máquinas no estágio. Estas simulações foram conduzidas com taxa de geração grande o 

suficiente (não a ponto de acionar o DBR) para lotar as máquinas dos primeiros estágios, estágios 

efetivamente usados para fins de verificação. Em todos os estágios avaliados, em todos os cenários, 

o número de máquinas da simulação correspondeu ao número de máquinas determinado como 

input. 

A verificação de (iii) e (iv) ocorreu em paralelo à verificação de (ii). Em todos os estágios 

avaliados, em todos os cenários, após o atingimento do número de máquinas determinado, os jobs 

excedentes aguardaram na fila de entrada. Nenhum tipo de reordenação foi observado. Logo, a 

ordenação das filas de entrada é compatível com a regra FIFO. 

A verificação de (v) ocorreu da seguinte forma: foram estabelecidos cinco cenários com 10 

estágios cada, com tempos de processamento dos estágios extremamente rápidos e tempos entre 

chegada de jobs no sistema extremamente pequenos. A cada estágio, foi atribuído a mesma 

probabilidade de passagem de jobs pelo estágio. Os cinco cenários testaram diferentes 

probabilidades de passagem. Os cenários avaliados e os resultados do teste podem ser vistos na 

Figura 17. 
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Figura 17 - Teste de verificação de probabilidade de passagem 

 

Fonte: Elaborado pelo autor 

 

Como os resultados ficaram extremamente próximos e dentro de um intervalo de confiança 

de 95% de probabilidade, comparativamente ao parâmetro de entrada estabelecido para os cinco 

cenários de teste, o modelo de simulação elaborado se mostrou aderente ao modelo conceitual 

desenhado, em termos de processamento, dando fim a verificação da parte conceitual. 

Na parte quantitativa, buscou-se garantir que os tempos de processamento dos estágios 

fossem compatíveis com o tipo de distribuição escolhida e os parâmetros escolhidos como input. 

Para isto, o teste conduzido foi similar ao teste conduzido para verificar o processo de geração de 

jobs. 

Uma série de simulações foram conduzidas para cada tipo de distribuição, com cada estágio 

seguindo a mesma distribuição. Os tempos entre gerações foram plotados em gráficos e calculados 

a média, desvio padrão, tempo mínimo e tempo máximo, conforme aplicabilidade à distribuição.  

O que se observou, com o auxílio de um intervalo de confiança, foi que o modelo de 

simulação está aderente a qualquer um dos tipos de distribuição habilitados dentro do modelo de 

simulação para processamento de jobs: distribuição exponencial, normal, uniforme, fixa, triangular 

e Erlang. 

Desta forma, a etapa de verificação da função “Processamento” foi encerrada, mostrando 

que o modelo de simulação desenvolvido está de acordo com o modelo conceitual concebido. 

  

Cenário 

Testado

Probabilidade 

de Passagem

Jobs gerados e 

concluídos durante 

simulação

Média entre estágios do 

número de jobs 

processados e concluídos 

na simulação

Parâmetro 

Comparativo

1 100% 488 488 100,0%

2 75% 511 384 75,1%

3 50% 494 251 50,8%

4 25% 498 121 24,3%

5 0% 503 0 0,0%
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4.3.3. Verificação do DBR 

A etapa de verificação do método de controle DBR foi dividida em três etapas de forma a 

verificar separadamente as três funções relacionadas aos três componentes principais do método 

DBR: drum, buffer e rope.  

A checagem do drum foi feita por meio da criação de uma impressão intermediária da 

posição do estágio gargalo, de forma a identificar qual estágio o modelo identifica como gargalo. 

A impressão gerada foi comparada com o estágio gargalo real, calculado pelo autor deste trabalho 

com base nos inputs determinados anteriormente à execução da simulação. 

Este teste foi realizado em pelo menos 10 cenários diferentes para cada tipo de distribuição 

possível em termos de tempo de processamento: exponencial, normal, uniforme, fixa, triangular e 

Erlang. Em outras palavras, o teste da função “Drum” foi realizado em mais de 60 cenários 

diferentes, retornando sempre o valor esperado. 

A checagem do buffer foi feita de forma similar a checagem do drum. O valor do time buffer 

a cada etapa de checagem foi impresso juntamente a simulação. O valor real do time buffer foi 

calculado manualmente, com base no retrato dos estágios no momento da checagem, ou seja, 

número de jobs na fila de cada estágio entre a entrada do sistema e o estágio gargalo. 

Este processo foi repetido por cerca de 30 vezes. Em todas as checagens, os valores foram 

compatíveis, concluindo a verificação da função “Buffer”. A posição do recurso gargalo foi variada 

propositalmente durante as checagens, porém, o modelo se mostrou aderente ao método DBR. 

Por fim, a realização da verificação do componente rope foi realizada de forma similar a 

verificação do buffer, pela impressão do time buffer durante a simulação. A cada checagem foi 

possível visualizar se o mecanismo da função “Rope” funcionava corretamente, ou seja, se o 

tamanho do time buffer limite efetivamente limita e controla a entrada de jobs no sistema. 

Portanto, checou-se a aderência a dois eventos: (i) se o time buffer atual for maior ou igual 

que o time buffer limite, nenhum job é permitido de entrar no sistema; (ii) se o time buffer atual for 

menor que o time buffer limite, o job mais prioritário do pré-shop é liberado para o sistema. 

Cerca de 15 simulações foram realizadas e a checagem do mecanismo da função “Rope” 

foi realizada durante todo os instantes destas simulações. O mecanismo implementado no modelo 

de simulação se mostrou compatível ao conceito apresentado durante a etapa de modelo conceitual, 

mostrando que o modelo de simulação está compatível com o método de controle DBR. 
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A partir da verificação destas três funções separadamente, finalizou-se a etapa de 

verificação do mecanismo de controle da produção DBR. Vale ressaltar que as regras de 

sequenciamento não foram testadas durante a verificação do método DBR, de forma que a sua 

verificação ocorreu de forma apartada, como será apresentado a seguir. 

 

4.3.4. Verificação das Regras de Sequenciamento 

A etapa de verificação das regras de sequenciamento aceitas pelo modelo de simulação foi 

feita por meio da impressão do pré-shop durante a simulação. A lista contendo as informações de 

cada job na fila foram impressas sempre que a ordenação do pré-shop foi realizada, de forma a 

possibilitar a comparação entre a ordem antes e depois da ordenação. 

Para a função “EDD”, “SPT” e “LS”, o processo de checagem foi o mesmo: a cada 

simulação, no instante de cada reordenação do pré-shop, calculou-se os parâmetros responsáveis 

pela ordenação do pré-shop para cada job, ou seja, calculou-se o due date, tempo esperado de 

processamento e folga, respectivamente para funções “EDD”, “SPT” e “LS”. 

Em seguida, realizou-se a ordenação ideal por meio destes parâmetros e comparou-se esta 

ordenação com a ordenação resultante da simulação. Este processo foi realizado em 10 simulações 

para cada uma das funções. A ordenação não apresentou diferenças em relação a ordenação 

resultante da simulação. 

Por fim, a função “RegrasPrioridade” foi testada em 10 checagens. Para testar esta função, 

comparou-se a ordenação resultante da simulação com a ordenação ideal de acordo com a regra de 

prioridade escolhida (da mesma maneira que o procedimento utilizado para checar as outras 

funções de ordenamento).  

A ordenação ideal se mostrou compatível com a ordenação resultante da simulação em 

todos os casos. Desta maneira, concluiu-se a etapa de verificação das regras de sequenciamento. 

 

4.3.5. Verificação das Funções de Suporte 

Nenhum procedimento específico foi realizado para validar as funções de suporte. Porém, 

pode-se afirmar que estas funções estão corretas em sua função, pois são extensamente utilizadas 

no modelo dentro de outras funções que foram validadas. Este foi o motivo da não elaboração de 

um método para verificação destas funções. 
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A Figura 18 ilustra a aplicação das duas funções de suporte do modelo, mostrando sua 

ampla presença no código do modelo de simulação. Para fins de esclarecimento, quando uma 

função aciona a outra, ela está conectada à está por uma linha, sendo que aquela função que recebe 

a seta é a acionada.  

 

Figura 18 - Funções de suporte do modelo de simulação 

 

Fonte: Elaborado pelo autor 
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4.3.6. Validação 

Enquanto a etapa de verificação consiste em verificar que o modelo de simulação está isento 

de erros e compatível com o modelo conceitual concebido, a validação do modelo consiste em 

garantir sua utilidade. Desta forma, o modelo pode ser considerado válido, pois possui as seguintes 

potenciais aplicações: 

 

 Aplicação científica – o modelo de simulação pode ser aplicado na geração de produção 

científica relacionada a controle de sistemas de produção via DBR. Como visto durante a 

revisão bibliográfica, o método DBR tem sido um tema discutido e estudado de forma 

extensa nos últimos anos. O presente trabalho retrata esta aplicação do modelo de simulação 

elaborado.  

 Aplicação prática – o modelo de simulação pode ser aplicado no estudo de sistemas de 

produção com características de produção flow shop genérico reais, cujas simplificações 

necessárias para adequação do sistema para o modelo não impactem de forma relevante nos 

resultados gerados. Portanto, o modelo de simulação gerado pode ser muito útil no estudo 

de partes de sistemas de produção, como, por exemplo, no estudo de implementação do 

método de controle DBR para produção de uma peça dentro de uma linha de produção. 

 

 Aplicação acadêmica – o modelo de simulação pode ser aplicado para fins acadêmico, ou 

seja, de ensino e aprendizado. O modelo de simulação desenvolvido apresenta-se de forma 

bem documentada, de forma a facilitar o entendimento da lógica de funcionamento e 

construção por trás do modelo. Desta forma, pode ser utilizado para: (i) ensino sobre o 

método de controle DBR; (ii) ensino sobre o desenvolvimento de modelos de simulação em 

Python© com o auxílio do Simpy©.   
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5. INSTÂNCIAS DE SIMULAÇÃO 
 

O modelo de simulação foi utilizado para testar o efeito do time buffer no desempenho do 

sistema, sob diferentes configurações (cenários), com a finalidade de atingir os objetivos 

específicos propostos neste trabalho. Esta seção possui o intuito de apresentar as instâncias de 

simulação, que consistem nos cenários que serão fornecidos de parâmetro de entrada para a 

simulação, cujos resultados serão posteriormente analisados no próximo capítulo. 

Para a determinação das instâncias de simulação, partiu-se de um cenário padrão para a 

criação dos demais cenários de simulação. Foram criados uma série de cenários que variam apenas 

um tipo de grandeza. Diferentes simulações foram rodadas com diferentes tamanhos diferentes de 

time buffer para cada cenário. O objetivo é entender como que o impacto do tamanho do time buffer 

nos indicadores de desempenho se comporta conforme se variam isoladamente certos parâmetros 

de entrada, bem como estes parâmetros de entrada influenciam os indicadores de desempenho do 

sistema. 

O cenário padrão para a criação de cenários alternativos usados na análise foi adaptado de 

Thurer et al. (2017) e pode ser visto nas Tabelas 2 e 3. Consiste em um sistema de produção com 

sete estágios, sendo seis idênticos e um com tempo maior de processamento, sendo este o estágio 

gargalo do sistema. A posição escolhida para o estágio gargalo no cenário padrão foi a de número 

quatro dentro do sistema de produção. 

 

Tabela 2 - Inputs gerais e de geração para cenário padrão 

Parâmetro de Entrada Valor 

Número de Simulações 5 

Tempo de Simulação 100 

Regra de Sequencionamento FIFO 

Distribuição – tempo entre gerações Exponencial 

Tempo médio entre gerações 0,9 

Tipo de distribuição - due date Uniforme 

Tempo mínimo para due date 15,0 

Tempo máximo para due date 25,0 

Fonte: Elaborado pelo autor 
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Tabela 3 - Inputs de estágios para cenário padrão 

Estágios 
Número de  

máquinas 

Tipo de  

distribuição 

Tempo 

médio 

Desvio  

padrão 

Estágio  

Gargalo 

Probabilidade 

de job estar 

no caminho 

Estágio 1 1 Normal 1,0 0,2  100% 

Estágio 2 1 Normal 1,0 0,2  100% 

Estágio 3 1 Normal 1,0 0,2  100% 

Estágio 4 1 Normal 1,3 0,2 Sim 100% 

Estágio 5 1 Normal 1,0 0,2  100% 

Estágio 6 1 Normal 1,0 0,2  100% 

Estágio 7 1 Normal 1,0 0,2  100% 

Fonte: Elaborado pelo autor 

 

Os fatores objetivo dos testes realizados foram: 

 

 Razão entre tempo médio de entrada e tempo médio de processamento – este parâmetro 

está diretamente relacionado ao nível de utilização do sistema de produção simulado e a 

capacidade deste de atender a demanda. A razão do cenário padrão é de 0,9x, sendo que para 

testar esta grandeza, outros dois valores foram simulados, um maior e outro menor. As razões 

e parâmetros de entrada para os três cenários a serem avaliados são apresentados na Tabela 4. 

Os outros parâmetros são mantidos iguais ao do cenário padrão. 

 

Tabela 4 - Razão entre tempos médios de geração e processamentos testados 

Cenários 

Razão entre tempo 

médio  

de geração e de 

processamento 

Tempo 

médio 

entre 

gerações 

Tempo médio 

de 

processamento 

(ex gargalo) 

Tempo médio 

de 

processamento 

do gargalo 

Desvio  

padrão 

Cenário 1 0,9 0,9 1,0 1,3 0,2 

Cenário 2 0,7 0,7 1,0 1,3 0,2 

Cenário 3 1,1 1,1 1,0 1,3 0,2 

Fonte: Elaborado pelo autor 
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 Severidade do gargalo – esta grandeza mede o quanto o estágio leva a mais de tempo para 

processar determinado job. Segundo Thurer et al. (2017), a severidade de um estágio gargalo 

pode ser determinado pelo percentual a mais de tempo médio de processamento do estágio 

gargalo, comparativamente aos demais estágios. O cenário padrão possui severidade do gargalo 

de 30%. Para a criação de cenários de simulação para testar esta grandeza, outros dois valores 

foram determinados - um menor e outro maior. Estes podem ser vistos na Tabela 5. Os demais 

parâmetros foram mantidos iguais aos do cenário padrão. 

 

Tabela 5 - Cenários testados para severidade do gargalo 

Cenários Severidade do gargalo 

Tempo médio 

de 

processamento 

(ex gargalo) 

Tempo médio 

de 

processamento 

do gargalo 

Desvio  

padrão 

Cenário 4 30% 1,0 1,3 0,2 

Cenário 5 15% 1,0 1,15 0,2 

Cenário 6 60% 1,0 1,6 0,2 
 Fonte: Elaborado pelo autor 

 

 Regras de Sequenciamento – as quatros regras de sequenciamento serão testadas, dando 

origem a quatro cenários distintos. A Tabela 6 ilustra os cenários gerados pelas regras de 

sequenciamento. Os demais parâmetros foram mantidos iguais aos do cenário padrão. 

 
Tabela 6 - Cenários com base nas regras de sequenciamento 

Cenários Regra de sequenciamento 

Cenário 7 FIFO 

Cenário 8 SPT 

Cenário 9 EDD 

Cenário 10 LS 

Fonte: Elaborado pelo autor  
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 Posição do recurso gargalo – a posição do recurso gargalo dentro do sistema de produção 

também será alvo de testes. Três cenários diferentes serão testados, como demonstra a Tabela 

7. Os demais parâmetros serão mantidos iguais aos do cenário padrão, inclusive tempos de 

processamento. 

 
Tabela 7 - Cenários com base na posição do estágio gargalo 

Cenários Posição do estágio gargalo 

Cenário 11 Estágio 4 

Cenário 12 Estágio 2 

Cenário 13 Estágio 6 

Fonte: Elaborado pelo autor  

 

 Variância da distribuição normal – o desvio padrão dos tempos de processamento 

também será alvo de testes. Dois cenários diferentes serão testados (Tabela 8). Os demais 

parâmetros serão mantidos iguais aos valores do cenário padrão, inclusive tempos de 

processamento. 

 
Tabela 8 - Cenários com base no desvio padrão do tempo de processamento 

Cenários 
Desvio padrão do tempo de 

processamento 

Cenário 14 0,2 

Cenário 15 0,4 

 Fonte: Elaborado pelo autor   
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6. ANÁLISE DE EXPERIMENTOS 
 

Para a análise de cada cenário definido no capítulo 5, utilizou-se sete níveis diferentes de 

time buffer limite para método de controle DBR. Os níveis de time buffer foram definidos com base 

em experimentos preliminares de forma a atingir níveis entre 2,5 vezes a 20 vezes o tempo de 

processamento do sistema do cenário padrão, em intervalos constantes e de forma aproximada. Os 

valores de time buffer simulados para cada cenário podem ser vistos na Tabela 9. Valores temporais 

serão apresentados sem uma unidade de tempo definida, mas na mesma base de valores. 

 

Tabela 9 - Níveis de time buffer para teste de cada cenário 

Teste por cenário Tamanho do time buffer 

Teste 1 20 

Teste 2 40 

Teste 3 60 

Teste 4 80 

Teste 5 100 

Teste 6 120 

Teste 7 140 

Fonte: Elaborado pelo autor 

 

6.1. Análise da Razão entre Tempos de Geração e Processamento 

Os resultados das simulações com base na variação da razão entre tempos de geração e 

processamentos, para os cenários 1 (padrão), 2 e 3 definidos no capítulo 5, podem ser vistos nos 

Gráficos 1, 2, 3, 4 e 5. 

   
Gráfico 1 - Percentual de jobs terminados para cenários 1, 2 e 3 

 

Fonte: Elaborado pelo autor 
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Gráfico 2 -  Mean lead time para cenários 1, 2 e 3 

 

Fonte: Elaborado pelo autor 

 

Gráfico 3 - Mean throughtput time para cenários 1, 2 e 3 

 

Fonte: Elaborado pelo autor 

 

Gráfico 4 - Percentage tardy para cenários 1, 2 e 3 

 

Fonte: Elaborado pelo autor 
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Gráfico 5 - Mean tardiness para cenários 1, 2 e 3 

 

Fonte: Elaborado pelo autor 

 

No Gráfico 1, pode-se perceber como o percentual de jobs terminados entre jobs gerados é 

diretamente influenciado pela razão temporal aqui tratada. O percentual de jobs terminados 

consiste na média da razão entre números de jobs gerados e número de jobs terminados durante as 

simulações, sendo un indicador da produtividade do cenário simulado. 

Isto ocorre, pois, apesar da média do número de jobs terminados nos três cenários ser 

similar (345, 350 e 346, para os cenários 1, 2 e 3), o número de jobs gerados no sistema é 

diretamente proporcional a razão temporal (556, 727 e 462, para os cenários 1, 2 e 3). Isto 

demonstra o principal teorema da ToC: o estágio gargalo dita o ritmo de produção de todo o sistema 

de produção. 

Em termos de indicadores de desempenho, claramente se percebe que quanto maior a razão 

entre o intervalo médio entre chegadas e tempos de processamento, pior é o desempenho dos quatro 

indicadores de desempenho escolhidos. Ou seja, o cenário 2, com razão de 1,1, possui maiores 

mean lead time, mean throughtput time, percentage tardy e mean tardiness. 

Em termos de time buffer, é possível notar o impacto deste fator, principalmente para os 

indicadores de desempenho percentage tardy e mean tardiness. Nos três cenários, o valor do time 

buffer influencia a curva dos indicadores de desempenho de forma similar, com o melhor cenário 

sendo um time buffer perto de 100 unidades de tempo. 
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Porém, percebe-se que o impacto do time buffer nos indicadores de desempenho não produz 

variações claras entre cenários. Em outras palavras, o comportamento das curvas é similar, com o 

melhor cenário de simulação sendo igual para todos. Além disso, para os três cenários, o time buffer 

limite para a ativação do DBR alcança cerca de 120 unidades de tempo. Isto pode ser notado pela 

diferença relativamente pequena entre mean lead time e mean throughtput time para time buffer 

limite de 120 e 140 unidades de tempo. 

 

6.2. Análise da Severidade do Gargalo 

Os resultados das simulações da variação da severidade do gargalo, para os cenários 4 

(padrão), 5 e 6 definidos no capítulo 5, podem ser vistos nos Gráficos 6, 7, 8, 9 e 10. 

 

Gráfico 6 - Percentual de jobs terminados para cenários 4, 5 e 6 

 

Fonte: Elaborado pelo autor 

 

Gráfico 7 - Mean lead time para cenários 4, 5 e 6 

 

Fonte: Elaborado pelo autor 
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Gráfico 8 - Mean throughtput time para cenários 4, 5 e 6 

 

Fonte: Elaborado pelo autor 

 

Gráfico 9 - Percentage tardy para cenários 4, 5 e 6 

 

Fonte: Elaborado pelo autor 

 

Gráfico 10 - Mean tardiness para cenários 4, 5 e 6 

 

Fonte: Elaborado pelo autor 
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No Gráfico 6, pode-se perceber como o percentual de jobs terminados entre jobs gerados é 

diretamente influenciado pela severidade do gargalo. O cenário 5, com gargalo com menor 

severidade, apresentou, considerando a média, 20% a mais percentualmente de jobs concluídos do 

que o cenário 6, com severidade quatro vezes maior do que a do cenário 5. 

Diferentemente do teste realizado na seção 5.1, a variável que efetivamente mudou entre 

cenários não foi o número de jobs gerados, mas sim o número de jobs concluídos. Enquanto as 

médias de jobs gerados nos testes foram de 556, 567 e 564, respectivamente, para os cenários 4 

(padrão), 5 e 6, a média de jobs concluídos foi de 345, 391 e 283, respectivamente, para a mesma 

sequência de cenários. Mais uma vez, pode-se observar o princípio central da ToC: o estágio 

gargalo dita o ritmo de produção de todo o sistema de produção. 

Além disto, observando os Gráficos de 6 a 10, percebemos que não é somente no quesito 

número de jobs concluídos que a severidade do gargalo influencia diretamente nos resultados 

obtidos. Conforme mostra o presente experimento, quanto maior é a severidade do gargalo, maior 

é a tendência de se obter piores indicadores de desempenho, considerando que o resto dos 

parâmetros de entrada produzem valores equivalentes. 

Em termos de impacto do time buffer nos indicadores de desempenho, observou-se dois 

eventos importantes. O primeiro evento consiste no deslocamento do tamanho do time buffer limite 

que melhora os indicadores de desempenho. Em outras palavras, quanto maior é a severidade do 

time buffer, maior é o time buffer limite que trouxe melhores resultados nos testes realizados, em 

termos de indicadores de desempenho.  

Por exemplo, observando os Gráficos de 6 a 10, é possível notar que, para o cenário 4 

(padrão), um time buffer de 100 unidades de tempo apresentou melhores resultados. Para o cenário 

5, um time buffer de 60 unidades de tempo resultou em melhor desempenho. A variação do tempo 

total de processamento possui impacto neste evento. Porém, em testes adicionais realizados no 

modelo, testando-se cenários com aumento equivalente de tempo de processamento, mas sem 

alteração na severidade do gargalo, os resultados não se mostraram tão relevantes como os 

resultados apresentados nos Gráficos de 6 a 10. 
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O segundo evento observado foi o fato do método de controle DBR possuir um impacto 

maior em cenários de maior severidade do que em cenários de menor severidade. Nos Gráficos 6 

a 10, é possível observar que, conforme o mecanismo de controle deixa de exercer controle efetivo 

sobre a entrada de jobs no sistema, no cenário 6, o impacto negativo sobre os indicadores de 

desempenho é consideravelmente maior do que nos outros cenários. 

Por exemplo, no cenário 6, um time buffer de 140, que possui pouco controle sobre a entrada 

de jobs, uma vez que o mean lead time está muito próximo ao mean throughtput time (indicando 

que poucos jobs entram no pré-shop), resulta em piora significativa nos indicadores de desempenho 

percentage tardy. O percentage tardy aumenta mais de 10% em relação ao time buffer anterior 

testado, enquanto o mean tardiness apresenta um aumento percentual de cerca de 35% em relação 

ao time buffer anterior. 

Esta grande diferença não é observada nos cenários 4 (padrão) e 5. Por exemplo, no cenário 

5, a partir do time buffer de 100 unidades temporais, em que o mean lead time quase se iguala ao 

mean throughtput time, os indicadores de desempenho não se mostram tão sensíveis. 

Esta observação está em linha com o estudo realizado por Thurer et al. (2017). Eles 

concluíram que concluiu que o método DBR é mais eficaz do que sistemas sem mecanismos de 

controle e o método WLC em flow shops flexíveis e job shops flexíveis, com base nos mesmos 

indicadores de desempenho analisados neste trabalho. 
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6.3. Análise das Regras de Sequenciamento 

Os resultados das simulações com as regras de sequenciamento, para os cenários 7 (padrão), 

8, 9 e 10 definidos no capítulo 5, podem ser vistos nos Gráficos 11, 12, 13, 14 e 15. 

 

Gráfico 11 - Percentual de jobs terminados para cenários 7, 8, 9 e 10 

 
Fonte: Elaborado pelo autor 

 

Gráfico 12 - Mean lead time para cenários 7, 8, 9 e 10 

 
Fonte: Elaborado pelo autor 
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Gráfico 13 - Mean throughtput time para cenários 7, 8, 9 e 10 

 
Fonte: Elaborado pelo autor 

 

Gráfico 14 - Percentage tardy para cenários 7, 8, 9 e 10 

 
Fonte: Elaborado pelo autor 

 

Gráfico 15 - Mean tardiness para cenários 7, 8, 9 e 10 

 
Fonte: Elaborado pelo au tor 
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Observando-se os Gráficos 11, 12 e 13, não se nota nenhuma diferença causada pelas 

diferentes regras de sequenciamento testadas, em termos de percentual de jobs gerados que são 

concluídos, mean lead time e mean throughtput time. Isto pode ser explicado pelo fato das regras 

de sequenciamento não interferirem no fluxo de jobs dentro do sistema de produção simulado, mas 

somente controlar a ordem de entrada dos jobs no sistema. 

Como todos os jobs passam por todas as máquinas nos cenários simulados, e o tempo de 

processamento é característica das máquinas, todos os jobs possuem a mesma expectativa de tempo 

de processamento. Este fator não só explica a ausência de diferenças significativas com base nas 

informações dos Gráficos 11, 12 e 13, como também explica a ausência de diferenças relevantes 

entre as regras de sequenciamento FIFO e SPT. O mesmo ocorre também para a ausência de 

diferenças relevantes entre as regras de sequenciamento EDD e LS (Gráficos de 11 e 15). 

A única diferença perceptível entre os cenários simulados reside nos indicadores de 

desempenho percentage tardy e mean tardiness (Gráficos 14 e 15). Nestes indicadores, as regras 

de sequenciamento EDD e LS tiveram desempenho superior em time buffers limites baixos. Esta 

diferença se explica pela priorização que as regras de sequenciamento EDD e LS fornecem a jobs 

mais prioritários. 

Este resultado é compatível com o estudo realizado por Daniel & Guide (1997), em que a 

regra de sequenciamento EDD se mostrou significantemente superior do que outras regra s 

analisadas, em termos de percentage tardy e lateness.  

Embora exista, a diferença não é significativa. Isto ocorre, pois jobs gerados posteriormente 

possuem a tendência de possuir due date maior, em função do método de geração de due dates, 

abordado no capítulo 4 deste trabalho. 

Além disso, conforme o tamanho do time buffer limite simulado aumenta, esta diferença 

diminui, uma vez que diminui a influência de mecanismos de controle e regras de sequenciamento 

para a entrada de jobs no sistema. Por fim, a influência do tamanho do time buffer para o valor 

obtido nos indicadores de desempenho não muda entre regras de sequenciamento. O seu 

comportamento é similar ao do cenário padrão. 
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6.4. Análise da Posição do Estágio Gargalo 

Os resultados das simulações que variam a posição do estágio gargalo, ou seja, da simulação 

dos cenários 11 (padrão), 12 e 13 definidos no capítulo 5, podem ser vistos nos Gráficos 16 a 20. 

 

Gráfico 16 - Percentual de jobs terminados para cenários 11, 12 e 13 

 
Fonte: Elaborado pelo autor 

Gráfico 17 - Mean lead time para cenários 11, 12 e 13 

 
Fonte: Elaborado pelo autor 
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Gráfico 18 - Mean throughtput time para cenários 11, 12 e 13 

 
Fonte: Elaborado pelo autor 

 

 

Gráfico 19 - Percentage tardy para cenários 11, 12 e 13 

 
Fonte: Elaborado pelo autor 

 

Gráfico 20 - Mean tardiness para cenários 11, 12 e 13 

 
Fonte: Elaborado pelo autor 
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Primeiramente, em termos gerais, não há diferença significativa em nenhum indicador de 

desempenho analisado dentre os cenários aqui testados. Considerando todos os testes realizados 

para os cenários 11 (padrão), 12 e 13, embora o cenário 11 (padrão) apresente resultados melhores, 

as médias dos indicadores de desempenho obtidas estão muito próximas, não se percebendo 

nenhuma tendência aparente nos gráficos plotados.  

Desta maneira, não se pode afirmar que a posição do estágio gargalo dentro de um sistema 

de produção é relevante para a produtividade do sistema como um todo, caso os demais parâmetros 

sejam mantidos. As médias dos indicadores de desempenho analisados para tais cenários podem 

ser vistas na Tabela 10. 

 

Tabela 10 - Média dos indicadores de desempenho obtidos para cenários 11, 12 e 13 

Cenário 
% jobs 

terminados 

Mean lead 

time 

Mean 

throughtput 

time 

Percentage 

tardy 

Mean 

tardiness 

Cenário 11 62% 22,4 20,7 54,7% 5,2 

Cenário 12 59% 24,3 23,2 57,7% 6,8 

Cenário 13 58% 24,5 20,8 57,6% 7,3 

Fonte: Elaborado pelo autor 

 

A única diferença perceptível entre os cenários testados está na influência do time buffer 

nos indicadores de desempenho analisados. Observando os Gráficos 19 e 20, é possível concluir 

que os três cenários apresentam um comportamento similar. Dentre os sete valores de time buffer 

testados, há variações, porém, há um único vale, cuja abcissa corresponde ao time buffer limite que 

minimiza o total de jobs atrasados e tempo médio de atraso. 

Entre os cenários testados é perceptível a relação do time buffer correspondente ao vale 

com a posição do gargalo. Quanto mais para o fim do sistema simulado está o gargalo, maior o 

time buffer correspondente ao vale. A explicação para este evento é simples: para controlar um 

menor número de jobs entre a entrada do sistema e o estágio gargalo, é necessário um time buffer 

maior para estágios gargalos localizados mais ao final da linha. Caso tratássemos os 3 cenários 

analisados com o mesmo time buffer limite, aquele com estágio gargalo mais ao final (cenário 13) 

teria um buffer menor em números de jobs. 
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6.5. Análise da Variância no Tempo de Processamento  

Os resultados das simulações com base na variação do desvio padrão dos tempos de 

processamento, correspondentes aos cenários 14 (padrão) e 15 definidos no capítulo 5, podem ser 

vistos nos Gráficos 21, 22, 23, 24 e 25. 

 

Gráfico 21 - Percentual de jobs terminados para cenários 14 e 15 

 

Fonte: Elaborado pelo autor 

 

Gráfico 22 - Mean lead time para cenários 14 e 15 

 

Fonte: Elaborado pelo autor 
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Gráfico 23 - Mean throughtput time para cenários 14 e 15 

 

Fonte: Elaborado pelo autor 

 

Gráfico 24 - Percentage tardy para cenários 14 e 15 

 

Fonte: Elaborado pelo autor 

 

Gráfico 25 - Mean tardiness para cenários 14 e 15 

 

Fonte: Elaborado pelo autor 

 



98 
 

 

Observando os Gráficos de 21 a 25, nota-se que a variação do desvio padrão dos tempos de 

processamento em uma distribuição normal pouco influencia os resultados de indicadores de 

desempenho analisados. As simulações realizadas para o cenário 15, em que o desvio padrão é o 

dobro do cenário 14 (padrão), se mostraram ligeiramente inferiores, em termos de desempenho, 

comparativamente ao cenário 14 (padrão), em termos de percentual de jobs terminados, mean lead 

time, mean throughtput time, percentage tardy e mean tardiness. 

Em termos de influência do time buffer nos indicadores de desempenho, poucos pontos de 

teste divergiram. De forma geral, as curvas para os quatro indicadores de desempenho analisados 

se mostraram aderentes entre os cenários 14 (padrão) e 15.  

Não se observou nenhum grau maior de variação de nível de indicadores de desempenho 

analisados entre testes, mostrando que a maior variabilidade de tempos de simulação só é 

observável em eventos individuais da simulação. Observou-se a tendência do elevado número de 

jobs processados remover tal grau de variabilidade. 
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7. CONCLUSÕES 

 

7.1. Síntese 

O primeiro objetivo específico deste trabalho foi o desenvolvimento de um modelo de 

simulação que conseguisse replicar a lógica do método de controle DBR em um sistema flow shop 

genérico com estratégia de produção MTO. O capítulo 4 descreve em detalhe o modelo elaborado, 

incluindo suas interfaces de entrada e saída  

Além disto, o modelo desenvolvido permite testar diferentes configurações de sistemas de 

produção operando no modelo DBR,, aceitando número praticamente ilimitado de máquinas e 

estágios e diversos tipos de distribuições de intervalos entre chegadas e tempos de processamento 

e alguns dos mais utilizados indicadores de desempenho.  

O modelo de simulação mostrou-se compatível com seu desenho conceitual concebido, 

fornecendo resultados consistentes durante a etapa de verificação e validação retratada na seção 

4.3. Por fim, forneceu uma gama de possibilidades de aplicação nos contextos de ensino, pesquisa 

e prática, de forma a constituir ferramenta para a análise de sistemas de produção que se enquadrem 

nas simplificações adotadas. Desta maneira, o presente trabalho cumpre com o primeiro objetivo 

específico proposto. 

Os demais objetivos propostos deste trabalho consistem no uso do modelo de simulação 

para o estudo combinado de uma série de fatores e diferentes tamanho de time buffers, de forma a 

analisar o efeito do time buffer em diferentes indicadores de desempenho, considerando diferentes 

configurações do sistema (máquinas, posição do gargalo, regra etc). 

Com base nos experimentos apresentados e analisados no capítulo 6 deste trabalho, uma 

série de conclusões podem ser obtidas. Primeiramente, nos experimentos sobre a relação entre 

tempos de geração e tempos de processamento e severidade do gargalo, foi possível notar o 

princípio central da teoria das restrições do trabalho de Goldratt & Cox (1986): a produtividade de 

um sistema de produção é ditada pelo ritmo de produção do estágio gargalo. 

 O fato do aumento da presença de jobs no sistema não ter causado aumento do número de 

jobs terminados, assim como do aumento da severidade ter afetado de forma diretamente 

proporcional ao número de jobs terminados, ilustra a teoria de Goldratt & Cox (1986). Isto, de certa 

forma, originou a criação do método de controle DBR. 



100 
 

 

Ainda no âmbito da relação tempos entre gerações e tempos de processamento, é possível 

concluir que esta relação impacta diretamente os indicadores de desempenho mean lead time, mean 

throughtput time, percentage tardy e mean tardiness em sistemas sobrecarregados, ou seja, com 

atraso de grande parte dos jobs gerados devido ao aumento do nível de utilização e estoque em 

processo. 

No estudo do fator severidade do gargalo, duas observações podem ser feitas com base na 

análise de resultados. A primeira consiste no fato de que, quanto maior a severidade do gargalo, 

maior o time buffer responsável pelo melhor desempenho dentre as simulações feitas. Ou seja, 

quanto maior a severidade, maior a proteção requerida em números de jobs. 

A segunda observação consiste no fato de que, quanto maior a severidade do gargalo, maior 

a performance do método de controle DBR, uma vez que time buffers elevados que causam a 

diminuição da efetividade do mecanismo de controle produzem mudanças abruptas nos dos 

indicadores de desempenho analisados, o que não é observado em cenários menos severos. 

No estudo do faotr regras de sequenciamento, pode-se observar que a regra de 

sequenciamento EDD apresenta um ligeiro melhor desempenho do que a regra de sequenciamento 

FIFO sob a ótica dos indicadores de desempenho percentage tardy e mean tardiness.  

Isto ocorre, pois, esta regra prioriza o processamento de jobs que possuem prazo de entrega 

mais apertado. É provável que a diferença de desempenho seria mais significante caso a geração 

de due dates tivesse maior variância e/ou menor correlação com a data de geração. Pelo cenário 

padrão estudado (cada job deve passar por todos os estágios) e o fato do tempo de processamento 

ser intrínseco aos estágios, não houve discriminação de tempos de processamento entre jobs. Desta 

maneira, não se pode fazer nenhuma observação sobre o desempenho das regras SPT ou LS, pois 

elas se comportaram de forma similar às regras FIFO e EDD, respectivamente. 

Em termos de posicionamento do estágio gargalo, não foi possível observar diferenças 

absolutas de desempenho (considerando a média das simulações). A única diferença notável foi o 

deslocamento das curvas dos indicadores de desempenho dos Gráficos 16 a 20. Ou seja, é essencial 

conhecer o estágio gargalo e a posição dentro do sistema de produção para a etapa de 

dimensionamento do time buffer e, consequentemente, adoção do DBR para maximizar o 

desempenho do sistema. 
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Sumarizando, o presente trabalho permitiu a criação de uma ferramenta adequada para o 

estudo do método DBR dentro de múltilos cenários que possam ser enquadrados no ambiente flow 

shop genérico, permitindo o estudo do dimensionamento do buffer. Adicionalmente, o presente 

trabalho preenche uma lacuna na lliteratura sobre o tema, uma vez que não foi identificado nenhum 

trabalho anterior que estudou o impacto conjunto do tamanho do time buffer limite no DBR com 

diversos parâmetros de entrada na performance do sistema de produção.  

O que se concluiu é que o desempenho de um sistema de produção flow shop genérico está 

diretamente atrelado a um correto dimensionamento do time buffer. Para realizar este 

dimensionamento de forma correta, é necessário considerar diversas características do sistema de 

produção que impactam severamente no tamanho de time buffer ótimo. Desta maneira, considerar 

todas estas características pode ser um trabalho árduo. A simulação por eventos discretos se mostra 

uma ferramenta poderosa para conduzir este dimensionamento. 

 

7.2. Limitações 

O presente trabalho possui uma série de limitações. Primeiramente,o modelo de simulação 

desenvolvido somente permite a análise em ambientes flow shop, não podendoser aplicado para 

ambiente jobshop  ou assembly shop, por exemplo. 

Além disse, toda a análse de resultados foi feita  sobre os indicadores de desempenho mean 

throughtput time, mean lead time, percentage tardy e mean tardiness. Desta maneira,indicadores 

de desemepnho relacionados a aspectos como nível de estoque em processo e nível de utilização 

não foram utilizados e analisados. Desta maneira, além de não podermos influir nada sobre estes 

indicadores nos cenários simulados, o  modelo de simulação se mostra mais adequado a estratégias 

de produção MTO. 

Sob o ponto de vista dos resultados retirados dos experimentos analisados, a primeira 

limitação consiste no fato dos cenários gerados não nos permitirem uma análise comparativa das 

regras de sequenciamento SPT e  LS. 

Além disto, o estudo foi focado na geração de cenários em que apenas uma variável é 

alterada. Ou seja, a ausência de uma análise correlativa entre variáveis limita a geração de literatura 

uma vez que não identifica correlações. 
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7.3. Desdobramentos 

O presente trabalho estudou o impacto de diversos parâmetros de entrada no time buffer 

ótimo do método de controle DBR e o impacto de time buffers diferentes para diversos cenários 

avaliados. O trabalho visou preencher uma lacuna existente atualmente sobre o estudo do 

dimensionamento do time buffer no método de controle DBR. 

Durante a execução do presente trabalho, uma ferramenta muito poderosa e com diversas 

possibilidades de aplicação foi elaborada: o modelo de simulação. Como recomendações para 

trabalhos futuros, relacionados ao estudo do time buffer no DBR ou ao modelo de simulação, é 

importante destacar alguns aspectos. 

Em relação ao estudo do time buffer no método de controle DBR, o presente trabalho 

abordou o estudo deste tema em sistemas flow shop genérico com estratégia de produção MTO. 

Logo, ainda há muito que ser estudado sob a ótica de outras estratégias de produção e ambientes 

de simulação. 

O estudo deste tema em ambientes de produção job shop flexível e assembly shop éum 

potencial desdobramento destetrabalho, sendo que no último cabe o estudo não somente do time 

buffer do gargalo, como também do time buffer de montagem.  

Outro potencial desdobramento é o estudo do time buffer em sistemas com estratégias de 

produção MTS. Nestes sistemas, a importância do ordenamento de jobs no método de controle 

DBR diminui e o foco passa a ser evitar a ociosidade no gargalo. Neste caso, recomenda-se o estudo 

do time buffer relacionado à restrição de mercado, formado para evitar perdas com demanda 

perdida. 

O modelo de simulação possui um leque de aplicações muito grande, em termos científicos, 

práticos e acadêmicos. Sob a ótica da produção científica, constitui uma oportunidade para 

aplicação do método DBR sob ambientes de produção flow shop genérico.  

O presente trabalho focalizou o estudo do comportamento dos indicadores de desempenho 

escolhidos com base em cenários formados por variedades de fatores escolhidos, como severidade 

do gargalo e posição do gargalo, em combinação com cenários de time buffer limite.  

  



103 
 

 

Porém, o trabalho não exauriu o universo de testes e estudos que podem ser realizados com 

base no modelo elaborado, como o teste de cenários com maior número de máquinas por estágio, 

números diferentes de estágios ou com possibilidades diferentes de 100% de certo job passar ou 

não em cada estágio. Além disso, testar cenários combinados, variando mais de uma grandeza, é 

uma possibilidade de estudo utilizando o modelo de simulação. Esta possibilidade não fez parte do 

escopo deste trabalho. Todas estas oportunidades citadas podem ser então alvos de estudos futuros. 

Por fim, o modelo de simulação pode ser modificado para tornar-se ainda mais genérico de 

forma a comportar outros ambientes de produção e métodos de controle de produção. Em outras 

palavras, pode se tornar uma ferramenta ainda mais poderosa.  

Finalmente, permitir a leitura de uma carteira de pedidos também é um potencial 

desdobramento de melhoria do modelo elaborado. Isto permitiria uma outra vertente de estudo, 

menos focada na parte de controle da produção e mais focada na programação da produção, ou até 

mesmo combinando estas areas. 

 

 

 

  



104 
 

 

  



105 
 

 

REFERÊNCIA BIBLIOGRÁFICA 
 

ARNOLD, JR Tony; RIMOLI, Celso; ESTEVES, Lenita R. Administração de materiais: uma 

indrodução. Atlas, 1999. 

 

ATWATER, J. Brian; CHAKRAVORTY, Satya S. A Study of the Utilization of Capacity 

Constrained Resources in Drum‐Buffer‐Rope Systems. Production and Operations 

Management, v. 11, n. 2, p. 259-273, 2002. 

 

DA SILVA, Edna et al. Avaliação de regras de sequenciamento da produção em ambientes Job 

shop e Flow shop por meio de simulação computacional. Exacta, v. 10, n. 1, 2012. 

 

CHAN, Felix TS; CHAN, H. K. Analysis of dynamic control strategies of an FMS under different 

scenarios. Robotics and Computer-Integrated Manufacturing, v. 20, n. 5, p. 423-437, 2004. 

 

CORBETT, Thomas; CSILLAG, Joao Mario. Analysis of the effects of seven drum-buffer-rope 

implementations. Production and Inventory Management Journal, v. 42, n. 3/4, p. 17, 2001. 

 

CORRÊA, H. L.; GIANESI, IGN. Just-in-Time, MRPII e OPT: um enfoque estratégico. São 

Paulo: Atlas, 1993. 

 

DANIEL, V.; GUIDE, R. Scheduling with priority dispatching rules and drum-buffer-rope in a 

recoverable manufacturing system. International Journal of Production Economics, v. 53, n. 1, 

p. 101-116, 1997. 

 

DARLINGTON, John et al. Design and implementation of a Drum-Buffer-Rope pull-

system. Production Planning & Control, v. 26, n. 6, p. 489-504, 2015. 

 

DE SOUZA, FERNANDO BERNARDI. Do OPT à Teoria das Restrições: avanços e 

mitos. Production, v. 15, n. 2, p. 184-197, 2005. 

 



106 
 

 

ENNS, S. T. An integrated system for controlling shop loading and work flow. International 

Journal of Production Research, v. 33, n. 10, p. 2801-2820, 1995. 

 

FERNANDES, Flávio Cesar Faria; GODINHO FILHO, Moacir. Sistemas de coordenação de 

ordens: revisão, classificação, funcionamento e aplicabilidade. Revista Gestão & Produção, São 

Carlos, v. 14, n. 2, 2007. 

 

GAITHER, Norman; FRAZIER, Greg. Administração da produção e operações. Pioneira 

Thomson Learning, 2001. 

 

GARDINER, S.C., BLACKSTONE, J.H., and GARDINER, L.R. The evolution of the theory of 

constraints. Industrial Management, 1994. 

 

GOLDRATT, E.M.; COX, J. A meta: um processo de aprimoramento contínuo. São Paulo: 

IMAM, 1986. 

 

GOLMOHAMMADI, Davood. A study of scheduling under the theory of constraints. 

International Journal of Production Economics, v. 165, p. 38-50, 2015. 

 

GUPTA, Mahesh; SNYDER, Doug. Comparing ToC with MRP and JIT: a literature 

review. International Journal of Production Research, v. 47, n. 13, p. 3705-3739, 2009. 

 

JAHANGIRIAN, Mohsen et al. Simulation in manufacturing and business: A review. European 

Journal of Operational Research, v. 203, n. 1, p. 1-13, 2010. 

 

KRAJEWSKI, Lee J.; RITZMAN, Larry P. Process Management. Operations Management—

Strategy and Analysis, Addison—Wesley Publishing Company, p. 93-138, 1996. 

 

LAMBRECHT, Marc R.; DECALUWE, Lieve. Jit And Constraint Theory: The Issue Of 

Bottleneck Manageme. Production and Inventory Management Journal, v. 29, n. 3, p. 61, 1988. 

 



107 
 

 

LEE, Jun-Huei et al. Research on enhancement of ToC Simplified Drum-Buffer-Rope system using 

novel generic procedures. Expert Systems with Applications, v. 37, n. 5, p. 3747-3754, 2010. 

 

MANIKAS, Andrew; GUPTA, Mahesh; BOYD, Lynn. Experiential exercises with four production 

planning and control systems. International Journal of Production Research, v. 53, n. 14, p. 

4206-4217, 2015. 

 

MESQUITA, M. et al. Programação detalhada da produção. In: LUSTOSA, L. J. et al. 

Planejamento e Controle da Produção. Rio de Janeiro: Elsevier, 2008. 

 

NEGAHBAN, Ashkan; SMITH, Jeffrey S. Simulation for manufacturing system design and 

operation: Literature review and analysis. Journal of Manufacturing Systems, v. 33, n. 2, p. 241-

261, 2014. 

 

PINEDO, Michael. Scheduling: Theory, algorithms, and systems. New Jersey: Prentice Hall, 

2002. 

 

PIRES, Silvio RI. Gestão da cadeia de suprimentos: conceitos, estratégias, práticas e 

casos. São Paulo: Atlas, 2004. 

 

PRICE, Wilson; GRAVEL, Marc; NSAKANDA, Aaron Luntala. A review of optimisation models 

of Kanban-based production systems. European Journal of Operational Research, v. 75, n. 1, 

p. 1-12, 1994. 

 

RADOVILSKY, Zinovy D. A quantitative approach to estimate the size of the time buffer in the 

theory of constraints. International Journal of Production Economics, v. 55, n. 2, p. 113-119, 

1998. 

 

S RUSSELL, Roberta; W TAYLOR, Bernard. Operations Management Creating Value Along 

the Supply Chain. 2011. 

 



108 
 

 

SCHRAGENHEIM, Eli; RONEN, Boaz. Drum-buffer-rope shop floor control. Production and 

Inventory Management Journal, v. 31, n. 3, p. 18-22, 1990. 

 

SHAFER, Scott M.; SMUNT, Timothy L. Empirical simulation studies in operations management: 

context, trends, and research opportunities. Journal of Operations Management, v. 22, n. 4, p. 

345-354, 2004. 

 

SIRIKRAI, Vimalin; YENRADEE, Pisal. Modified drum–buffer–rope scheduling mechanism for 

a non-identical parallel machine flow shop with processing-time variation. International Journal 

of Production Research, v. 44, n. 17, p. 3509-3531, 2006. 

 

SPEARMAN, Mark L.; WOODRUFF, David L.; HOPP, Wallace J. CONWIP: a pull alternative 

to kanban. The International Journal of Production Research, v. 28, n. 5, p. 879-894, 1990. 

 

STEELE, Daniel C. et al. Comparisons between drum–buffer–rope and material requirements 

planning: a case study. International Journal of Production Research, v. 43, n. 15, p. 3181-

3208, 2005. 

 

SURESH, K.N.; SRIDHARAN, R. Simulation modeling and analysis of tool sharing and part 

Scheduling decisions in single-stage multimachine flexible manufacturing systems. Robotics and 

Computer-Integrated Manufacturing, n. 23, p. 361-370, 2007. 

 

THÜRER, Matthias et al. Drum-buffer-rope and workload control in High-variety flow and job 

shops with bottlenecks: An assessment by simulation. International Journal of Production 

Economics, v. 188, p. 116-127, 2017. 

 

TUBINO, D. F. Planejamento e controle da produção: teoria e prática. São Paulo: Atlas, 2007. 

 

UMBLE, E. J.; UMBLE, M. Integrating the Theory of Constraints into Supply Chain Management. 

Proceedings of the 33rd annual Decision Sciences Conference, San Diego, CA, p. 479-484, 

2002. 



109 
 

 

 

WU, Shih-Yun; MORRIS, John S.; GORDON, Thomas M. A simulation analysis of the 

effectiveness of drum-buffer-rope scheduling in furniture manufacturing. Computers & 

Industrial Engineering, v. 26, n. 4, p. 757-764, 1994. 

 

WU, H.-H.; YEH, M.-L. A DBR scheduling method for manufacturing environments with 

bottleneck re-entrant flows. International journal of production research, v. 44, n. 5, p. 883-

902, 2006. 

 

WU, Horng-Huei et al. Simulation and scheduling implementation study of TFT-LCD Cell plants 

using Drum–Buffer–Rope system. Expert Systems with Applications, v. 37, n. 12, p. 8127-8133, 

2010. 

 

YE, T.; HAN, W. Determination of buffer sizes for drum–buffer–rope (DBR)-controlled 

production systems. International Journal of Production Research, v. 46, n. 10, p. 2827-2844, 

2008. 

 

ZHANG, X. M.; DU, Y. L. Research of Production Scheduling Based on Theory of Constraints. 

In: 2015 International Conference on Electrical, Automation and Mechanical Engineering. 

Atlantis Press, 2015. 

  



110 
 

 

  



111 
 

 

ANEXO A – MODELO DE SIMULAÇÃO 

""" x-----------Bibliotecas-------------------------------------------------------"""     

""" Importa Bibliotecas do Python e se conecta a planilha de simulação,que fornecerá os inp
uts para a simulação deste programa bem como receberá a simulação como output para análise 
da simulação. Adicionalmente, cria variável global JobAcumulados, que serve de suporte para
 numeração dos jobs gerados de forma a manter sequência de numeração mesmmo após simulações
 diferentes"""     

import random     

import simpy     

import xlwings as xw     

wb = xw.Book('Modelo_DBR - Input&Output.xlsm')     

shtInput = wb.sheets['Input']     

file = open ("OutputSimulacao.txt","w")     

  global JobAcumulado     

JobAcumulado = 0       

  """ -----------Inputs-----------------------------------------------------------"""     

  def Inputs ():     

      """ Lê da planilha excel os inputs a serem utilizados para fins do modelo de simulaçã
o. Estes inputs são todos os dados usados para fins de simulação. Estes estão destacados ab
aixo """         

    NumSimulacoes = int (shtInput.range('C7').value)  # Número de Simulações diferentes rod
adas com o mesmo cenário      

    TempoSimulacao = float(shtInput.range('C9').value) # Tempo limite para cada simulação  
  

    TimeBuffer = int (shtInput.range('C11').value) # Tamanho do Time Buffer utilizado para 
implementação do DBR     

    Sequenciamento = str (shtInput.range('C13').value) # Regra de Sequenciamento escolhida,
 podendo ser FIFO, EDD, SPT ou LS     

    # Parâmetros para geração de Jobs no sistema. Podem ou não ser úteis durante a simulaçã
o, dependendo da distribuição escolhida     

    DistrGeracao = int (shtInput.range('C17').value)  #Distribuição escolhida, podendo ser 
exponencial(1), normal(2), uniforme(3), ou fixa(4)     

    TMGeracao = float (shtInput.range('C24').value)  # Tempo médio entre gerações. Aplicáve
l para distr. exponencial, normal e fixa (neste caso é o tempo entre gerações)     
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    DVGeracao = float (shtInput.range('C25').value)  # Desvio Padrão para distribuição norm
al      

    TMINGeracao = float (shtInput.range('C26').value)  # Tempo mínimo para geração da distr
ibuição uniforme     

    TMAXGeracao = float (shtInput.range('C27').value)  # Tempo máximo para geração da distr
ibuição uniforme     

    # Parâmetros para geração de Due Date para Jobs gerados. Podem ou não ser úteis durante
 a simulação, dependendo da distribuição escolhida. Vale ressaltar que o número gerado por 
estas variáveis é acrescido ao tempo atual da simulação na geração      

    DistrDueDate = int (shtInput.range('C32').value)  #Distribuição escolhida, podendo ser 
exponencial(1), normal(2), uniforme(3), ou fixa(4)     

    TMDueDate = float (shtInput.range('C40').value) # Tempo médio. Aplicável para distr. ex
ponencial, normal e fixa (neste caso é o tempo entre gerações)     

    DVDueDate = float (shtInput.range('C41').value)  # Desvio Padrão para distribuição norm
al     

    TMINDueDate = float (shtInput.range('C42').value)  # Tempo mínimo para distribuição uni
forme     

    TMAXDueDate = float (shtInput.range('C43').value)  # Tempo máximo para distribuição uni
forme     

    # Parâmetros do Ambiente - Estágios e Máquinas     

    NumEstagios = int (shtInput.range('C55').value) # Lê o valor do número de estágios da p
lanilha excel     

    ListaEstagios = []     

    for i in range (NumEstagios):  # Loop para geração de lista de estágios com cada estági
o sendo um item da lista. Em cada item da lista correspondente a um estágio, temos:       

        i = i + 1     

        Line = str (58 + i)     

        Estg = []     

        Estg.append (shtInput.range('C'+Line).value)  # Número de Máquinas     

        Estg.append (shtInput.range('D'+Line).value)  # Distribuição escolhida para geração
 de tempos de processamento, podendo ser: exponencial(1), normal(2), uniforme(3), fixa(4), 
triangular(5), erlang(5)      

        Estg.append (shtInput.range('E'+Line).value)  # Tempo médio para fins de distribuiç
ão     

        Estg.append (shtInput.range('F'+Line).value)  # Desvio padrão para fins de distribu
ição     
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        Estg.append (shtInput.range('G'+Line).value)  # Tempo mínimo para fins de distribui
ção     

        Estg.append (shtInput.range('H'+Line).value)  # Tempo máximo para fins de distribui
ção     

        Estg.append (shtInput.range('I'+Line).value)  # Número de exponenciais (beta) para 
distr. erlang     

        Estg.append (shtInput.range('J'+Line).value)  # Probabilidade de cada job de passar
 pelo estágio i     

        ListaEstagios.append (Estg)     

    return (NumSimulacoes, TempoSimulacao, TimeBuffer, Sequenciamento,DistrGeracao,TMGeraca
o,DVGeracao,TMINGeracao,TMAXGeracao,DistrDueDate,TMDueDate,DVDueDate,TMINDueDate,TMAXDueDat
e,NumEstagios,ListaEstagios)  # Retorna valores para simulação     

""" -----------Funções de Suporte-------------------------------------------------"""     

def NumAleatorio (Distr,TM,DV,TMIN,TMAX,ERLANG):     

    """ Cria números aleatórios a partir da distribuição escolhida e parâmetros importados.
 Serve para gerar números aleatórios para determinar tempos de geração, tempos de processam
ento e due dates"""     

    if Distr == 1:  # Distr. exponencial     

        Taxa = 1/TM     

        NumAleatorio = random.expovariate (1/Taxa)     

    elif Distr == 2:  # Distr. normal     

        NumAleatorio = random.normalvariate (TM,DV)     

    elif Distr == 3:  # Distr. uniforme     

        NumAleatorio = random.uniform (TMIN,TMAX)     

    elif Distr == 4:  # Distr. fixa     

        NumAleatorio = TM     

    elif Distr == 5:  # Distr. triangular     

        NumAleatorio = random.triangular (TMIN,TMAX, TM)     

    elif Distr == 6:  # Distr. erlang     

        NumAleatorio = random.gammavariate (ERLANG, TM/ERLANG)     

    return (NumAleatorio) # Retorna número aleatório de acordo com a distribuição escolhida
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def TempoMed (Distr,TM,DV,TMIN,TMAX,ERLANG):     

    """ Calcula o tempo médio esperado para a geração de número aleatórios de acordo com a 
distribuição escolhida """     

    if Distr == 1:  # Distr. exponencial     

        TempoMed = TM     

    elif Distr == 2:  # Distr. normal     

        TempoMed = TM     

    elif Distr == 3:  # Distr. uniforme     

        TempoMed = (TMIN + TMAX)/2     

    elif Distr == 4:  # Distr. fixa     

        TempoMed = TM    

    elif Distr == 5:  # Distr. triangular     

        TempoMed = (TM + TMIN + TMAX)/3     

    elif Distr == 6:  # Distr. erlang     

        TempoMed = TM     

    return (TempoMed)  # Retorna tempo médio de acordo com a distribuição escolhida     

""" -----------Classe de Máquinas------------------------------------------"""     

class Maquinas(object):     

    def __init__(self, env, cod, ListaEstagios):     

        """Função que define classe máquinas. Quando chama-se a classe Máquinas, gera-
se um novo Estágio com as características de Tempo de Processamento, Probabilidade de estar
 no caminho e número de máquinas correspondente ao input fornecido na lista ListaEstagios""
"     

        self.env = env  # Parte do Ambiente de Simulação do Simpy     

        NumRecursos = int (ListaEstagios [cod-1] [0])     

        self.maq = simpy.Resource(env, NumRecursos)  # Cada Estágio consiste em um Resource
 da biblioteca simpy com seu respectivo número de maquinas      

        self.cod = cod     

        self.tp = [ ListaEstagios [cod-1] [1], ListaEstagios [cod-
1] [2], ListaEstagios [cod-1] [3], ListaEstagios [cod-1] [4], ListaEstagios [cod-
1] [5], ListaEstagios [cod-1] [6]]     
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        # Cria lista de variáveis que serão posteriormente usadas para criar tempos aleatór
ios       

""" -----------Entrada no Sistema------------------------------------------"""     

def GeracaoJobs (env,NumAtualSimulacao,DistrGeracao,TMGeracao,DVGeracao,TMINGeracao,TMAXGer
acao,DistrDueDate,TMDueDate,DVDueDate,TMINDueDate,TMAXDueDate,ListaEstagios,NumEstagios,Pos
Buffer):    

    """ Função que simula a geração de jobs no sistema, gerando seu tempo de entrada na sim
ulação, seu due date e decidindo se o job entra no ambiente de simulação ou no pré-
shop segundo método DBR """      

    Job=0       

    global JobAcumulado  # Importa variável global para função para manter numeração do núm
ero de jobs     

    Job = JobAcumulado    

    while True: # Este loop faz com que a geração de jobs ocorra até o tempo de simulação d
eterminado na planilha     

        TGeracao = NumAleatorio (DistrGeracao,TMGeracao,DVGeracao,TMINGeracao,TMAXGeracao,0
) # Tempo de geração é criado conforme distr. escolhida pela função NumAleatorio     

        yield env.timeout(max (TGeracao,0)) # Adiciona o tempo gerado ao tempo atual da sim
ulação, rodando a simulação    

        Job=Job+1  # Próximo Job será numerado com número que vem na sequencia, mesmo que s
imulação mude     

        JobAcumulado = Job     

        JobName = "Job%d" % Job  # Cria variável com nome do job, com base em sua numeração
     

        TDueDate = NumAleatorio (DistrDueDate,TMDueDate,DVDueDate,TMINDueDate,TMAXDueDate,0
)  # Gera número aleatório com base na distribuição escolhida para determinar due date do j
ob    

        DueDate = env.now + TDueDate  # Due Date consiste na soma do número aleatório mais 
o tempo de simulação na hora que o job é gerado    

        file.write('%d\t%s\tGeração\tSistema\t%7.4f\t%7.4f\n' % (NumAtualSimulacao,JobName,
env.now,DueDate))  # Escreve em arquivo txt o evento Geração    

        Caminho = []  # Lista Caminho guiará o job no sistema de 
produção. Possuirá tamanho igual o número de estágios, com valores de o ou 1. 0, se não pas
sar pelo estágio correspondendte a ordem na lista e 1 se passar por este estágio        

        NumEstagioJob = 0 # Variável que conterá o número de estágios em que o job gerado p
assará    
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        for i in range (NumEstagios):  # Loop para gerar as variáveis Caminho e NumEstagioJ
ob, conforme a probabilidade de cada máestágio de um job passar ou não por ela           

            SimouNao= []  # Lista contendo 10000 elementos na proporção de 1/(0+1) equivale
nte a probabilidade de certo job passar pelo estágio i    

            ProbCaminho = (ListaEstagios [i][7])*10000  #ProbCaminho é variável decisiva no
 cálculo    

            ProbCaminho = int (ProbCaminho)    

            for j in range (ProbCaminho):         

                SimouNao.append (1)     

            for j in range (10000 - ProbCaminho):         

                SimouNao.append (0)     

            k= random.choice (SimouNao)  # Escolha de número aleatório na lista SimouNão si
mula geração de número aleatório entre o e 1 de acordo com a variável ProbCaminho     

            NumEstagioJob = NumEstagioJob + k    

            Caminho.append (k)  # Lista caminho é composta pelo mesmo número de itens do nú
mero de estágios, com itens binários (0:job não é processado no estágio / 1:job é processad
o no estágio)    

        RopeEntrada = Buffer (env, PosBuffer, TimeBuffer, NumEstagios,ListaEstagios)  # Var
iável que checa se sistema esta lotado (com base no time buffer)    

        if RopeEntrada == True :  # Se sistema não tiver lotado, recebe True e começa proce
ssamento     

            env.process(Processamento(env, NumAtualSimulacao,Job, JobName, Caminho, PosBuff
er,NumEstagios,ListaEstagios))  #Função que inicia processamento    

            file.write('%d\t%s\tEntrada\tSistema\t%7.4f\t%7.4f\n' % (NumAtualSimulacao,JobN
ame,env.now,DueDate))  # Escreve em arquivo txt o evento de entrada do job no sistema    

        else :  # Se sistema estiver lotado, recebe False e adiciona job ao pré-
shop, onde será devidamente ordenado e aguardará sua hora de entrar    

            file.write('%d\t%s\tEntrada\tPréShop\t%7.4f\t%7.4f\n' % (NumAtualSimulacao,JobN
ame,env.now,DueDate))  # Escreve em arquivo txt a entrada do job no pré-shop     

            yield PreShop.put ([Job,JobName,DueDate,NumEstagioJob,Caminho])  # Adiciona job
 na o pré-shop     

   

""" -----------Funções de Processamento------------------------------------"""      

def Processamento (env, NumAtualSimulacao, Job, JobName, Caminho, PosBuffer,NumEstagios, Li
staEstagios):     
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    """ Função que simula o processamento de cada job dentro do flow shop flexível.Utiliza 
o caminho de cada job e importa recursos do simpy (classse máquinas) para simular cada está
gio """     

    for i in range (NumEstagios):  # Este Loop faz o job rodar por cada um dos estágios da 
simulação    

        NumOp = i+1  # Número do estágio, ou operação    

        NomeOp = 'Operação'+ str(NumOp)  # Nome do estágio, ou operação    

        if Caminho [i] == 1:  # Verifica se o estágio está no caminho do job, se sim, simul
a a operação ou adiciona-o a fila de espera. Se não, pula para o próximo estágio     

            file.write('%d\t%s\tChegadaOp\t%s\t%7.4f\t-
\n' % (NumAtualSimulacao,JobName,NomeOp, env.now))  # Escreve em arquivo txt o evento de ch
egada do job na fila do estágio i     

            atendReq1 = Estagios[i].maq.request()  # Gera um request e tempo até o job come
çar efetivamente o processamento    

            yield atendReq1  # Adiciona o tempo de fila à simulação    

            file.write('%d\t%s\tInícioOp\t%s\t%7.4f\t-
\n' % (NumAtualSimulacao,JobName,NomeOp, env.now))  # Escreve em arquivo txt o início do pr
ocessamento jo job i no estágio j     

            DistrProcesso = int (Estagios[i].tp [0])    

            TMProcesso = float (Estagios[i].tp [1])    

            DVProcesso = float (Estagios[i].tp [2])    

            TMINProcesso = float (Estagios[i].tp [3])    

            TMAXProcesso = float (Estagios[i].tp [4])    

            BetaErlang = int (Estagios[i].tp [5])    

            TProcesso = max (NumAleatorio (DistrProcesso,TMProcesso,DVProcesso,TMINProcesso
,TMAXProcesso,BetaErlang),0)  # Com base na distribuição para tempo de simulação e parâmetr
os de cada estágio, gera-se o tempo de processamento    

            yield env.timeout (TProcesso)  # Adiciona ao tempo de simulação o tempo de proc
essamento do job j na máquina i, calculado com base na distribuição escolhida      

            Estagios[i].maq.release(atendReq1)  # Solta o job do estágio em que estava oper
ando, caracterizando fim de seu processamento neste estágio      

            env.process(Rope (env,NumAtualSimulacao,NumEstagios,ListaEstagios,PosBuffer,Tim
eBuffer)) # Saída do job de um estágio ativa a função Rope do método DBR, que checa o buffe
r e compara com o time buffer máximo para liberar ou não novo job que está no pré-
shop no sistema    
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            file.write('%d\t%s\tFimOp\t%s\t%7.4f\t-
\n' % (NumAtualSimulacao,JobName,NomeOp, env.now))  # Escreve em arquivo txt fim do evento 
de processammento do job i no estágio j           

    file.write('%d\t%s\tSaídaSist\t%s\t%7.4f\t-
\n' % (NumAtualSimulacao,JobName,NomeOp, env.now))  # Escreve em arquivo txt fim do evento 
de processammento do job i e sua saída do ambiente de simulação    

""" -----------Drum-Buffer-Rope--------------------------------------------"""     

def Drum(ListaEstagios):    

    """ Função do método de controle DBR que exerce a 1ª etapa do método: Identifica o recu
rso gergalo do sistema. Por isto, está diretamente relacionado ao componente Drum """    

    # Chama parâmetros do primeiro estágio do sistema de 
produção para usar como ponto de partida para achar o gargalo. Estágio 1 parte como sendo o
 gargalo, no começo da função    

    DistrGargalo = ListaEstagios [0][1]    

    TMGargalo = ListaEstagios [0][2]   

    DVGargalo = ListaEstagios [0][3]     

    TMINGargalo = ListaEstagios [0][4]     

    TMAXGargalo = ListaEstagios [0][5]     

    ERLANGGargalo = ListaEstagios [0][6]     

    MAQGargalo = ListaEstagios [0][0]     

    PROBGargalo = ListaEstagios [0][7]     

    TMaqGargalo = TempoMed (DistrGargalo,TMGargalo,DVGargalo,TMINGargalo,TMAXGargalo,ERLANG
Gargalo)  # Gera o tempo medio de operação de uma máquina dentro do estágio    

    TMGargalo = TMaqGargalo * PROBGargalo / MAQGargalo  # Multiplica-
se o tempo médio estimado pela probabilidade de um job estar no caminho do estágio e divide
-
se este valor pelo número de máquinas no estágio. O estágio gargalo será aquele com o númer
o     

    PosGargalo = 1           

    for i in range (len(ListaEstagios)-
1):  # Loop que compara 1 a 1 os estágios até identificar aquele que e o gargalo     

         # Chama parâmetros dos outros estágios do sistema de 
produção para fazer comparação 1 a 1     

        DistrComp = ListaEstagios [i+1][1]     

        TMComp = ListaEstagios [i+1][2]    
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        DVComp = ListaEstagios [i+1][3]     

        TMINComp = ListaEstagios [i+1][4]     

        TMAXComp = ListaEstagios [i+1][5]    

        ERLANGComp = ListaEstagios [i+1][6]     

        MAQComp = ListaEstagios [i+1][0]     

        PROBComp = ListaEstagios [i+1][7]     

        TMaqComp = TempoMed (DistrComp,TMComp,DVComp,TMINComp,TMAXComp,ERLANGComp)     

        TMComp = TMaqComp * PROBComp / MAQComp     

        if TMComp > TMGargalo :  # Se estágio i é mais lento que o mais lento até o momento
, passa a ser momentaneamente o gargalo e, portanto, ponto de comparação com os próximos es
tágios     

            TMGargalo = TMComp     

            PosGargalo = i + 2     

    return (PosGargalo)  # Esta função retorna onde está o recurso gargalo     

def Buffer (env,PosBuffer,TimeBuffer, NumEstagios,ListaEstagios):    

    """ Função do método de controle DBR que exerce a checagem do buffer atual do sistema e
 faz a comparação com o time buffer limite escolhido.   

    Retorna True se pode-
se lançar um novo job no sistema e retorna False caso contrário """     

    BufferAtual = 0     

    ListaTempos = []  # Lista contendo todos as expectativas de tempos médios para cálculo 
do buffer atual      

    for i in range (PosBuffer):  # Loop para criar ListaTempos    

        # Pega parâmetros que serão utilizados     

        Distr = ListaEstagios [i][1]    

        TM = ListaEstagios [i][2]     

        DV = ListaEstagios [i][3]     

        TMIN = ListaEstagios [i][4]    

        TMAX = ListaEstagios [i][5]    
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        ERLANG = ListaEstagios [i][6]    

        MAQ = ListaEstagios [i][0]    

        PROB = ListaEstagios [i][7]    

        TMaq = TempoMed (Distr,TM,DV,TMIN,TMAX,ERLANG)  # Gera tempo médio de processamento
 esperado    

        TEstagio = TMaq * PROB / MAQ  # Tempo utilizado para fins de comparação será o temp
o esperado de processamento (tempo médio) x Probabilidade dos jobs passarem pelo estágio / 
número de máquinas no estágio    

        ListaTempos.append (TEstagio)     

    for j in range (PosBuffer):  # Loop para calcular o buffer atual com o auxílio da Lista
Tempos     

        TamFila = len (Estagios[i].maq.queue)  # Tamanho da fila do estágio i     

        TempoUnitFila = 0  # Variável que irá calcular o tempo esperado para os jobs da fil
a i concluírem o processamento      

        for k in range (PosBuffer - j):  # Calcula TempoUnitFila    

            TempoUnitFila = TempoUnitFila + ListaTempos [PosBuffer-1-k]     

        BufferAtual = BufferAtual + TamFila * TempoUnitFila  # Variável TempoUnitFila para 
as filas de todos os estágios são somadas para achar o tamanho atual do buffer    

    if TimeBuffer > BufferAtual:  # Teste comparativo entre time buffer limite e tamanho at
ual    

        return True  # Libera job para o sistema    

    else:     

        return False  # Não libera job     

def Rope(env,NumAtualSimulacao,NumEstagios,ListaEstagios,PosBuffer,TimeBuffer):     

    """ Função do método de controle DBR que, caso a função buffer retorne True, exerce a e
ntrada de um novo job no sistema e sua remoção do pré-shop.   

    Função Rope, sempre quando acionada, realiza o Sequenciamento do pré-shop """     

   

    if len (PreShop.items) != 0:  # Se o pré-
shop não tiver nenhum job, não há o que fazer. Caso haja, realiza a checagem do buffer e se
quenciamento      

        RopeDBR = Buffer (env, PosBuffer, TimeBuffer, NumEstagios,ListaEstagios)  # Checa s
e irá liberar job para o sistema ou não     
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        if RopeDBR == True:  # Libera job para o sistema     

            RegrasPrioridade (env,Sequenciamento,ListaEstagios)  # Realiza o sequenciamento
 antes de liberar o primeiro job     

            Job = PreShop.items[0][0]     

            JobName = PreShop.items[0][1]    

            DueDate = PreShop.items[0][2]    

            NumEstagioJob = PreShop.items[0][3]     

            Caminho = PreShop.items[0][4]     

            yield PreShop.get()  # Remove o job mais prioritário do pré-shop     

            env.process(Processamento(env, NumAtualSimulacao, Job, JobName, Caminho, PosBuf
fer,NumEstagios,ListaEstagios))  # Job mais prioritário entra no sistema de produção     

            file.write('%d\t%s\tSaída\tPréShop\t%7.4f\t%7.4f\n' % (NumAtualSimulacao,JobNam
e,env.now,DueDate))  # Escreve em arquivo txt o evento de saída do job mais priritário do p
ré-shop     

            file.write('%d\t%s\tEntrada\tSistema\t%7.4f\t%7.4f\n' % (NumAtualSimulacao,JobN
ame,env.now,DueDate))  # Escreve em arquivo txt o evento de entrada do job mais prioritário
 no sistema de produção      

        else:  # Não libera job, mais realiza o sequenciamento    

            RegrasPrioridade (env,Sequenciamento,ListaEstagios)    

""" -----------Regras de Sequenciamento------------------------------------"""    

def RegrasPrioridade (env,Sequenciamento, ListaEstagios):    

    """ Função que ativa o sequenciamento do pré-
shop de acordo com a regra de prioridade escolhida e importada da planilha excel """     

    if Sequenciamento == 'EDD' :  # Mecanismo EDD (early due date) - ordena jobs no sistema
 pela menor due date até maior due date     

       env.process (EDD (env))     

    elif Sequenciamento == 'SPT':  # Mecanismo SPT (shortest processing time) - ordena jobs
 no sistema pela menor expectativa de Tempo de Processamento até a maior     

        env.process (SPT (env,ListaEstagios))     

    elif Sequenciamento == 'LS':  # Mecanismo SPT (shortest processing time) - ordena jobs 
no sistema pela menor folga até a maior folga, sendo que folga corresponde a diferença entr
e a data de due date e o tempo estimado de conclusão     

        env.process (LS (env,ListaEstagios))     
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    # Caso default consiste em sequenciamento FIFO (first in first out), em que o primeiro 
job na fila é o que efetivamente sai            

def EDD (env):     

    """ Ordena pré-shop segundo regra de sequenciamento EDD """     

    k = len(PreShop.items)     

    Auxiliar = []     

    for i in range (k) : # Cria PreShop auxiliar com mesma ordem de PreShop e Esvazia PreSh
op     

        Job=PreShop.items[0][0]    

        JobName=PreShop.items[0][1]     

        DueDate=PreShop.items[0][2]     

        NumEstagioJob=PreShop.items[0][3]     

        Caminho=PreShop.items [0][4]           

        Auxiliar.append ([Job,JobName,DueDate,NumEstagioJob,Caminho])    

        yield PreShop.get()     

        n = k     

for i in range (k) : # Loop do novo ordenamento de jobs no sistema com sequenciamento EDD  
   

        Job = Auxiliar[0][0]     

        JobName = Auxiliar[0][1]     

        DueDate = Auxiliar[0][2]     

        NumEstagios = Auxiliar[0][3]     

        Caminho = Auxiliar [0][4]     

        Position = 0     

   

        for j in range (n-
1) : # Loop comparativo - compara jobs no sistema com base no Due Date e seleciona o menor 
     

            ParEDD =  Auxiliar[j+1][2]     



123 
 

 

            if ParEDD < DueDate:     

                Job = Auxiliar[j+1][0]     

                JobName = Auxiliar[j+1][1]    

                DueDate = Auxiliar[j+1][2]     

                NumEstagios = Auxiliar[j+1][3]     

                Caminho = Auxiliar [j+1][4]     

                Position = j+1 

     n = n -1     

        yield PreShop.put ([Job,JobName,DueDate,NumEstagios,Caminho]) # Adiciona novamente 
na lista elemento de menor due date     

        Auxiliar.pop (Position)# Elimina elemento da lista de suporte   

def SPT (env,ListaEstagios):     

    """ Ordena pré-shop segundo regra de sequenciamento SPT """     

    k = len(PreShop.items)     

    Auxiliar = []     

    for i in range (k) : # Cria PreShop auxiliar com mesma ordem de PreShop e Esvazia PreSh
op    

        Job = PreShop.items[0][0]     

        JobName = PreShop.items[0][1]    

        DueDate = PreShop.items[0][2]     

        NumEstagioJob = PreShop.items[0][3]     

        Caminho = PreShop.items [0][4]          

        Auxiliar.append ([Job,JobName,DueDate,NumEstagioJob,Caminho])     

        yield PreShop.get()     

        q = k 

   

    for i in range (k) : # Loop do novo ordenamento de jobs no sistema com sequenciamento S
PT     
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        Job = Auxiliar[0][0]     

        JobName = Auxiliar[0][1]     

        DueDate = Auxiliar[0][2]     

        NumEstagioJob = Auxiliar[0][3]     

        Caminho = Auxiliar [0][4]    

        Position = 0     

        SPT = 0     

        for m in range (len(Caminho)):     

            AdSPT = Caminho [m]* TempoMed (ListaEstagios [m][1],ListaEstagios[m][2],ListaEs
tagios[m][3],ListaEstagios[m][4],ListaEstagios[m][5],ListaEstagios[m][6])     

            SPT = SPT + AdSPT     

        for j in range (q-
1) : # Loop comparativo - compara jobs no sistema com base no Due Date e seleciona o menor 
    

            ParCaminho = Auxiliar [j+1][4]     

            ParSPT = 0    

            for n in range (len(ParCaminho)):     

                AdParSPT = ParCaminho[n] * TempoMed (ListaEstagios [m][1],ListaEstagios[m] 
[2],ListaEstagios[m][3],ListaEstagios[m][4],ListaEstagios[m][5],ListaEstagios[m][6])       
                            

                ParSPT = ParSPT +AdParSPT    

            if ParSPT < SPT:    

                Job = Auxiliar[j+1][0]     

                JobName = Auxiliar[j+1][1]     

                DueDate = Auxiliar[j+1][2]     

                NumEstagioJob = Auxiliar[j+1][3]     

                Caminho = Auxiliar [j+1][4]     

                Position = j+1     

                SPT = ParSPT 
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            q = q - 1     

        yield PreShop.put ([Job,JobName,DueDate,NumEstagioJob,Caminho]) # Adiciona novament
e na lista elemento de menor tempo de processamento     

        Auxiliar.pop (Position)# Elimina elemento da lista de suporte     

def LS (env,ListaEstagios):     

    """ Ordena pré-shop segundo regra de sequenciamento LS """    

    k = len(PreShop.items)     

    Auxiliar = []     

    for i in range (k) : # Cria PreShop auxiliar com mesma ordem de PreShop e Esvazia PreSh
op     

        Job = PreShop.items[0][0]     

        JobName = PreShop.items[0][1]     

        DueDate = PreShop.items[0][2]     

        NumEstagioJob = PreShop.items[0][3]     

        Caminho = PreShop.items [0][4]           

        Auxiliar.append ([Job,JobName,DueDate,NumEstagioJob,Caminho])     

        yield PreShop.get()     

    for i in range (k) : # Loop do novo ordenamento de jobs no sistema com sequenciamento S
PT     

        Job = Auxiliar[0][0]     

        JobName = Auxiliar[0][1]   

        DueDate = Auxiliar[0][2]     

        NumEstagioJob = Auxiliar[0][3]     

        Caminho = Auxiliar [0][4]     

        Position = 0     

        SPT = 0     

        q = k   
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        for m in range (len(Caminho)):      

            AdSPT = Caminho [m]* TempoMed (ListaEstagios [m][1],ListaEstagios[m][2],ListaEs
tagios[m][3],ListaEstagios[m][4],ListaEstagios[m][5],ListaEstagios[m][6])     

            SPT = SPT + AdSPT     

        LS = DueDate - SPT    

        for j in range (q-
1) : # Loop comparativo - compara jobs no sistema com base no Due Date e seleciona o menor 
    

            ParCaminho = Auxiliar [j+1][4]     

            ParSPT = 0     

            for n in range (len(ParCaminho)):     

                AdParSPT = ParCaminho[n] * TempoMed (ListaEstagios [m][1],ListaEstagios[m][
2],ListaEstagios[m][3],ListaEstagios[m][4],ListaEstagios[m][5],ListaEstagios[m][6])        
                            

                ParSPT = ParSPT +AdParSPT     

            ParDueDate = Auxiliar[j+1][2]     

            ParLS = ParDueDate - ParSPT     

            if ParLS < LS:     

                Job = Auxiliar[j+1][0]     

                JobName = Auxiliar[j+1][1]     

                DueDate = Auxiliar[j+1][2]     

                NumEstagioJob = Auxiliar[j+1][3]     

                Caminho = Auxiliar [j+1][4]     

                Position = j+1     

                SPT = ParSPT    

                LS = ParLS 

        q = q -1     

        yield PreShop.put ([Job,JobName,DueDate,NumEstagioJob,Caminho]) # Adiciona novament
e na lista elemento de menor tempo de processamento     

        Auxiliar.pop (Position)# Elimina elemento da lista de suporte     
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""" -----------Bloco Principal---------------------------------------------"""     

""" Bloco Principal, que ativa a simulação chamando as funções deste programa"""   

random.seed()  # Semente para gerar números aleatórios    

NumSimulacoes, TempoSimulacao, TimeBuffer, Sequenciamento,DistrGeracao,TMGeracao,DVGeracao,
TMINGeracao,TMAXGeracao,DistrDueDate,TMDueDate,DVDueDate,TMINDueDate,TMAXDueDate,NumEstagio
s,ListaEstagios = Inputs ()  # Recebe os inputs do sistema     

NumAtualSimulacao = 0    

PosBuffer = Drum (ListaEstagios)  # Identifica a posição do recurso gargalo no sistema, que
 será um input da simulação     

while NumAtualSimulacao < NumSimulacoes :  # Gera n simulações distintas com o mesmo cenári
o de inputs retirados do excel     

    NumAtualSimulacao = NumAtualSimulacao + 1     

    env = simpy.Environment()  # Importa ambiente de simulação do simpy     

    PreShop = simpy.Store (env)  # Cria pr-e-shop como objeto de estoque do simpy     

    Estagios =  []       

    for i in range(NumEstagios):  # Loop que cria os estágios onde ocorre a simulação      

        Estagios.append(Maquinas(env, i+1 , ListaEstagios))     

    env.process(GeracaoJobs(env, NumAtualSimulacao,DistrGeracao,TMGeracao,DVGeracao,TMINGer
acao,TMAXGeracao,DistrDueDate,TMDueDate,DVDueDate,TMINDueDate,TMAXDueDate,ListaEstagios,Num
Estagios, PosBuffer))  # Ativa a funçao de Processamento     

    env.run(until=TempoSimulacao) # Ativa a simulação     

""" -----------Ler Macros do Arquivo Excel---------------------------------"""    

""" Ativa macro da planilha excel, que importa o arquivo txt para dentro da aba Output da p
lanilha excel e ativa a análise, puxando as fórmulas necessárias para obter os Indicadores 
de Desempenho na aba Indicadores de Desempenho """     

ImportSimulacao = wb.macro('Automatico')    

ImportSimulacao ()    

file.close()   
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ANEXO B – PLANILHA DE ENTRADA (INPUT) 

 

 

  

Modelagem DBR
Planilha de Input

Parâmetros de Simulação

Número de simulações 1

Tempo de simulação 100.0

Time buffer 3.0

Regra de sequenciaonamento de jobs para Pré-Shop EDD

Parâmetros para Geração de Jobs

Tipo de distribuição para geração de jobs 2

Exponencial 1

Normal 2

Uniforme 3

Fixa 4

Parâmetros

Tempo Médio 2.0

Desvio Padrão 0.2

Tempo Mínimo 0.0

Tempo Máximo 0.0

Parâmetros para Determinação de Due Date

Tipo de distribuição para determinação de due date 3

Exponencial 1

Normal 2

Uniforme 3

Fixa 4

Parâmetros

Tempo Médio 0.0

Desvio Padrão 0.0

Tempo Mínimo 10.0

Tempo Máximo 30.0

Parâmetros de Processo

Tipo de distribuição para determinação de taxa de processamento

Exponencial 1

Normal 2

Uniforme 3

Fixa 4

Triangular 5

Erlang 6

Número de Estágios 10

Estágios Quant. Máquinas
Distribuição

Processamento
Tempo Médio Desvio Padrão Tempo Mínimo Tempo Máximo Erlang Beta

Probabilidade de estágio 

estar no caminho do job

1 10 2 2.0 0.5 0.0 0.0 0.0 100%

2 2 2 3.0 0.5 0.0 0.0 0.0 100%

3 3 2 4.0 0.5 0.0 0.0 0.0 100%

4 4 2 2.0 0.5 0.0 0.0 0.0 100%

5 5 2 1.0 0.5 0.0 0.0 0.0 100%

6 6 2 5.0 0.5 0.0 0.0 0.0 100%

7 6 2 4.0 0.5 0.0 0.0 0.0 100%

8 6 2 3.0 0.5 0.0 0.0 0.0 80%

9 6 2 2.0 0.5 0.0 0.0 0.0 50%

10 6 2 1.0 0.5 0.0 0.0 0.0 100%
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ANEXO C – PLANILHA DE SAÍDAS (OUTPUT) 

 

 

 

Modelagem DBR
Output

Número da Simulação Número do Job Evento Local Tempo de Simulação Due Date Geração de jobs Saída de jobs Número do Job Data de Geração Data de Entrada Data de Saída (0= Não saiu) Due Date Lead Time Throughtput Time Concluído? Atraso? Tardiness

1.0 Job1 Geração Sistema 2.0 23.6 1.0 Job1 2.0 2.0 25.3 23.6 23.3 23.3 Sim Sim 1.7

1.0 Job1 Entrada Sistema 2.0 23.6 Job2 4.4 4.4 25.5 28.1 21.2 21.2 Sim 0.0

1.0 Job1 ChegadaOp Operação1 2.0 - Job3 6.2 6.2 33.8 27.2 27.6 27.6 Sim Sim 6.6

1.0 Job1 InícioOp Operação1 2.0 - Job4 7.9 7.9 30.6 25.4 22.7 22.7 Sim Sim 5.2

1.0 Job1 FimOp Operação1 3.9 - Job5 9.9 0.0 0.0 25.9

1.0 Job1 ChegadaOp Operação2 3.9 - Job6 11.8 11.8 37.4 26.6 25.6 25.6 Sim Sim 10.8

1.0 Job1 InícioOp Operação2 3.9 - Job7 13.8 13.8 33.1 30.4 19.3 19.3 Sim Sim 2.7

1.0 Job2 Geração Sistema 4.4 28.1 1.0 Job8 15.3 15.3 42.8 32.6 27.5 27.5 Sim Sim 10.3

1.0 Job2 Entrada Sistema 4.4 28.1 Job9 17.4 17.4 41.0 43.1 23.6 23.6 Sim 0.0

1.0 Job2 ChegadaOp Operação1 4.4 - Job10 19.6 19.6 41.0 41.5 21.4 21.4 Sim 0.0

1.0 Job2 InícioOp Operação1 4.4 - Job11 21.7 21.7 44.6 49.4 23.0 23.0 Sim 0.0

1.0 Job3 Geração Sistema 6.2 27.2 1.0 Job12 23.9 23.9 47.9 43.0 24.1 24.1 Sim Sim 4.9

1.0 Job3 Entrada Sistema 6.2 27.2 Job13 26.4 26.4 50.9 41.1 24.6 24.6 Sim Sim 9.9

1.0 Job3 ChegadaOp Operação1 6.2 - Job14 28.4 28.4 55.3 43.3 27.0 27.0 Sim Sim 12.0

1.0 Job3 InícioOp Operação1 6.2 - Job15 30.7 30.7 57.7 42.5 27.1 27.1 Sim Sim 15.2

1.0 Job2 FimOp Operação1 6.9 - Job16 32.5 32.5 58.9 52.6 26.5 26.5 Sim Sim 6.3

1.0 Job2 ChegadaOp Operação2 6.9 - Job17 34.5 34.5 62.1 57.7 27.7 27.7 Sim Sim 4.4

1.0 Job2 InícioOp Operação2 6.9 - Job18 36.5 36.5 64.8 48.3 28.3 28.3 Sim Sim 16.6

1.0 Job1 FimOp Operação2 7.2 - Job19 38.4 38.4 62.3 52.8 23.9 23.9 Sim Sim 9.5

1.0 Job1 ChegadaOp Operação3 7.2 - Job20 40.2 40.2 67.3 64.3 27.1 27.1 Sim Sim 3.0

1.0 Job1 InícioOp Operação3 7.2 - Job21 42.3 42.3 68.6 54.4 26.3 26.3 Sim Sim 14.2

1.0 Job4 Geração Sistema 7.9 25.4 1.0 Job22 44.4 44.4 71.2 65.6 26.8 26.8 Sim Sim 5.6

1.0 Job4 Entrada Sistema 7.9 25.4 Job23 46.7 46.7 76.3 64.7 29.6 29.6 Sim Sim 11.6

1.0 Job4 ChegadaOp Operação1 7.9 - Job24 48.6 48.6 77.5 66.6 29.0 29.0 Sim Sim 10.9

1.0 Job4 InícioOp Operação1 7.9 - Job25 50.5 50.5 81.0 80.1 30.5 30.5 Sim Sim 0.9

1.0 Job3 FimOp Operação1 9.0 - Job26 52.2 52.2 76.0 79.2 23.8 23.8 Sim 0.0

1.0 Job3 ChegadaOp Operação2 9.0 - Job27 53.9 53.9 78.9 69.4 25.0 25.0 Sim Sim 9.6

1.0 Job3 InícioOp Operação2 9.0 - Job28 55.9 0.0 0.0 73.7

1.0 Job4 FimOp Operação1 9.3 - Job29 58.1 58.1 79.9 71.6 21.8 21.8 Sim Sim 8.3

1.0 Job4 ChegadaOp Operação2 9.3 - Job30 59.6 59.6 79.8 77.1 20.2 20.2 Sim Sim 2.7

1.0 Job5 Geração Sistema 9.9 25.9 1.0 Job31 61.5 61.5 86.4 82.4 24.9 24.9 Sim Sim 4.0

1.0 Job5 Entrada PréShop 9.9 25.9 Job32 63.7 63.7 0.0 90.7

1.0 Job2 FimOp Operação2 10.1 - Job33 65.9 65.9 90.6 86.3 24.7 24.7 Sim Sim 4.3

1.0 Job2 ChegadaOp Operação3 10.1 - Job34 68.0 68.0 0.0 95.0

1.0 Job2 InícioOp Operação3 10.1 - Job35 70.0 0.0 0.0 94.2

1.0 Job4 InícioOp Operação2 10.1 - Job36 72.1 72.1 0.0 88.1

1.0 Job1 FimOp Operação3 10.5 - Job37 74.0 74.0 0.0 88.5

1.0 Job1 ChegadaOp Operação4 10.5 - Job38 75.9 75.9 0.0 86.9

1.0 Job1 InícioOp Operação4 10.5 - Job39 78.1 78.1 0.0 95.6

1.0 Job6 Geração Sistema 11.8 26.6 1.0 Job40 80.2 80.2 0.0 97.7

1.0 Job6 Entrada Sistema 11.8 26.6 Job41 82.1 82.1 0.0 99.0

1.0 Job6 ChegadaOp Operação1 11.8 - Job42 84.6 84.6 0.0 95.4

1.0 Job6 InícioOp Operação1 11.8 - Job43 86.7 86.7 0.0 108.5

1.0 Job3 FimOp Operação2 12.5 - Job44 88.9 88.9 0.0 105.0

1.0 Job3 ChegadaOp Operação3 12.5 -

1.0 Job3 InícioOp Operação3 12.5 -

1.0 Job4 FimOp Operação2 13.2 -

1.0 Job4 ChegadaOp Operação3 13.2 -

1.0 Job4 InícioOp Operação3 13.2 -

1.0 Job2 FimOp Operação3 13.4 -

1.0 Job2 ChegadaOp Operação4 13.4 -

1.0 Job2 InícioOp Operação4 13.4 -

1.0 Job1 FimOp Operação4 13.5 -

1.0 Job1 ChegadaOp Operação5 13.5 -

1.0 Job1 InícioOp Operação5 13.5 -

1.0 Job6 FimOp Operação1 13.5 -

1.0 Job6 ChegadaOp Operação2 13.5 -

1.0 Job6 InícioOp Operação2 13.5 -

1.0 Job1 FimOp Operação5 13.7 -

1.0 Job1 ChegadaOp Operação6 13.7 -

1.0 Job1 InícioOp Operação6 13.7 -

1.0 Job7 Geração Sistema 13.8 30.4 1.0

1.0 Job7 Entrada Sistema 13.8 30.4

1.0 Job7 ChegadaOp Operação1 13.8 -

1.0 Job7 InícioOp Operação1 13.8 -

Modelagem DBR
Indicadores de Desempenho

Indicadores de Desempenho

Jobs gerados 92

Jobs terminados 64

Mean Throughtput Time 27.0

Mean Lead Time 27.0

Percentage Tardy 39%

Mean Tardiness 0.6

Modelo de Otimização

Indicador de desempenho foco 1

Mean Throughtput Time 1

Mean Lead Time 2

Percentage Tardy 3

Mean Tardiness 4

Margem de erro 2.0

Eventos no pré-shop 0

Time buffer maximizador/minimizador 0.0
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ANEXO D – MACROS DE SUPORTE 

Sub Automatico()   

  ' Macro que une importar simulação de arquivo txt e executa a análise    

    Sheets("Output").Select   

    Range("B6").Select   

    With ActiveSheet.QueryTables.Add(Connection:= _   

        "TEXT; OutputSimulacao.txt" _   

        , Destination:=Range("$B$6"))   

        .Name = "OutputSimulacao"   

        .FieldNames = True   

        .RowNumbers = False   

        .FillAdjacentFormulas = False   

        .PreserveFormatting = True   

        .RefreshOnFileOpen = False   

        .RefreshStyle = xlInsertDeleteCells   

        .SavePassword = False   

        .SaveData = True   

        .AdjustColumnWidth = True   

        .RefreshPeriod = 0   

        .TextFilePromptOnRefresh = False   

        .TextFilePlatform = 1252   

        .TextFileStartRow = 1   

        .TextFileParseType = xlDelimited   

        .TextFileTextQualifier = xlTextQualifierDoubleQuote   

        .TextFileConsecutiveDelimiter = False   

        .TextFileTabDelimiter = True   
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        .TextFileSemicolonDelimiter = False   

        .TextFileCommaDelimiter = False   

        .TextFileSpaceDelimiter = False   

        .TextFileColumnDataTypes = Array(1, 1, 1, 1, 1, 1)   

        .TextFileTrailingMinusNumbers = True   

        .Refresh BackgroundQuery:=False   

    End With   

    Range("B5").Select   

    Range(Selection, Selection.End(xlToRight)).Select   

    Range(Selection, Selection.End(xlDown)).Select   

    Selection.Columns.AutoFit   

    Range("A1").Select   

    Sheets("Indicadores de Desempenho").Select   

    Range("A1").Select    

    Dim NumJobs As Integer   

    Dim i As Integer   

    NumJobs = Sheets("Indicadores de Desempenho").Cells(7, 3).Value   

    i = 0   

    Sheets("Output").Select   

    Do While i < NumJobs   

        i = i + 1   

        Cells(i + 5, 12) = "Job" & i   

    Loop   

    Cells(i + 5, 13) = "x"   

    Cells(i + 5, 18) = "x"   

    Range("M6:P6").Select   

    Range(Selection, Selection.End(xlDown)).Select   
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    Selection.FillDown   

    Range("R6:V6").Select   

    Range(Selection, Selection.End(xlDown)).Select   

    Selection.FillDown   

    Sheets("Indicadores de Desempenho").Select   

    Range("A1").Select  

End Sub   

Sub Limpa_Automatico()   

'Macro que limpa análise da planilha e limpa simulação do excel e arquivo txt   

    Sheets("Output").Select   

    Range("L7").Select   

    Range(Selection, Selection.End(xlDown)).Select   

    Range(Selection, Selection.End(xlToRight)).Select   

    Selection.ClearContents   

    With Selection.Interior   

        .Pattern = xlNone   

        .TintAndShade = 0   

        .PatternTintAndShade = 0   

    End With   

    Range("R7").Select   

    Range(Selection, Selection.End(xlDown)).Select   

    Range(Selection, Selection.End(xlToRight)).Select   

    Selection.ClearContents   

    With Selection.Interior   

        .Pattern = xlNone   

        .TintAndShade = 0   

        .PatternTintAndShade = 0   
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    End With   

    Sheets("Indicadores de Desempenho").Select   

    Range("A1").Select   

    Sheets("Output").Select   

    Range("B6:G6").Select   

    Range(Selection, Selection.End(xlDown)).Select   

    Selection.ClearContents   

    Sheets("Indicadores de Desempenho").Select   

    Range("A1").Selec   

    Open "OutputSimulacao.txt" For Output As #1: Close #1 '   

End Sub   

 

 

 


