Henrique Antonacio Povedano

Especificacao e desenvolvimento de software de gestdo para empresa de entregas

sustentaveis

Trabalho de formatura apresentado a
Escola Politécnica da Universidade de
Séo Paulo para obtencao do Diploma

de Engenheiro de Produgéo

Sao Paulo
2015

Henrique Antonacio Povedano

Especificacdo e desenvolvimento de software de gestdo para empresa de entregas

sustentaveis

Trabalho de formatura apresentado a
Escola Politécnica da Universidade de
Séo Paulo para obtencao do Diploma

de Engenheiro de Producao

Orientador: Prof. Dr.

Alvaro Hernandez

Sao Paulo
2015

Catalogacao-na-publicagdo

Povedano, Henrique A.

Especificagao e desenvolvimento de software de gestao para empresa de
entregas sustentaveis / H. A. Povedano -- Sao Paulo, 2015.

118 p.

Trabalho de Formatura - Escola Politécnica da Universidade de Séo
Paulo. Departamento de Engenharia de Producao.

1.Tecnologia da Informacado |.Universidade de S&o Paulo. Escola
Politécnica. Departamento de Engenharia de Producao Il.t.

AGRADECIMENTOS

A minha familia, meus amigos e minha namorada pelo apoio ao longo de meus

estudos.

A Escola Politécnica, por ter me proporcionado experiéncias de valor inestimavel para

minha formagé&o pessoal, académica e profissional.

Ao meu orientador, Prof. Dr. Alvaro Hernandez, por sua paciéncia, exigéncia e

divertidas reunides.

A equipe da Courrieros, em especial ao meu amigo de longa data André Biselli, pelo

apoio ao trabalho.

RESUMO

Este trabalho busca resolver as dificuldades de gestdo de entregas, recursos
humanos e de vendas enfrentados pela empresa Ecolivery Courrieros, do ramo de
entregas por bicicletas. Apdés uma revisdo da literatura que forneceu bases para a
escolha da metodologia e tecnologia de desenvolvimento, o autor construiu um
sistema para a plataforma Windows em C# e SQL-SERVER utilizando o método de
engenharia de software Praxis. O novo programa resolve os principais problemas que
atacou e da mais transparéncia aos resultados da Courrieros, qualidade fundamental

dado que se encontra em processo de captacdo de investimentos.

Palavras-chave: Praxis, Tecnologia da Informacao, C#, SQL-SERVER.

ABSTRACT

This paper aims to solve the sales, human-resources and delivery management
problems faced by Ecolivery Courrieros, a bike-delivery service company based in
Sédo Paulo, Brazil. After a literature review which supported the methodology and
technology choices, the author developed a C#, SQL-SERVER based solution for the
Windows operating system. The custom-built program addressed the main difficulties
the company faced and gives its sales data more transparency, a fundamental

attribute given its current search for venture-capital investment.

Key-words: SQL-Server, C#, Praxis, IT

LISTA DE TABELAS

Tabela 1 — Custo fiXO POr CICHISTA.........uuveii i e 29
Tabela 2 — Comparacdo Desenvolvimento Proprio x Compra de software................ 57
Tabela 3 — Pesos da matriz de deCISA0ccoevveeiiiiiiiiie e 61

Tabela 4 — Matriz de decisdo da metodologia...........ceevviiiiiiiiiiiiiiii e 61

LISTA DE FIGURAS

Figura 1 — Principais clientes da COUITIEIOScviieeeeieieiiiiiie e e e e et e e e e e eeeanns 27
Figura 2 - Sécio e entregador da Courrieros em matéria Folha de Sao Paulo.......... 28
Figura 3 - Ciclo de vida de Uma €Ntregauuuuuerummimiiiiiiiiiiiiiiiiiiiiiieeieeeeeeeieeneee 32
Figura 4 - Planilha de controle atual da COUITIEIOSuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiinee 33
Figura 5 - Parte da planilha de controle com a coluna "Entrega” em branco 34
Figura 6 - Atividades do paradigma waterfallcccvvviiiiii e, 40
Figura 7 - Atividades do paradigma &gleeeiiiiaiiiiiiiiiiee e 42
Figura 8 — Ciclos de um meétodo de ProtOtipOScceeeeiiiiiiiiiiiiiiie e 43
Figura 9 - Tela inicial do Wave ACCOUNLINGcoiiieeeiiiieiiiiiie e eee e eeeeee e eeeeeeeanns 50
Figura 10 - Tela de sincronizacdo de conta correte Zoho BOOKScccceeeeeeennnnns 50
Figura 11 - AtivIdades NO PraXiS..........uuuuuuuuuiuuiiiiiiiiiiiiiiiiiiiiiiieieeeeieseeeseeeeeeeeeeeeeeaeenee 66
Figura 12 - Distribuic&do da intensidade de trabalho com o tempo no Praxis............. 66
Figura 13 - Cadastro de fUNCIONAIIOcoeeuuuiiiiii e e e e e eeeaans 70
Figura 14 - Diagrama de contexto do Courribilidade.............cccoooeeeiiiiiiiiiiiiieeeeeeeens 76
Figura 15 - Classes do Courribilidadeuuueueiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeieeee 90
Figura 16 - Relacionamento de Cliente-Entregaevveiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinne 91
Figura 17 - Relacionamento Entrega-Nota Fiscal.................uuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinee 91
Figura 18 - Relacionamento com direcdo e multiplicidadeccccccveeiiiiiiennnnnns 92
Figura 19 - Diagrama de sequéncia para insercao de clientecccccceeeeeeeeeeennnnns 93
Figura 20 - Atributos da classe ENtregaeeeeveiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieee 95
Figura 21 - Exemplo de herangas no Courribilidadeccccccviiiiiiiiiiiiiiiiiiie 96
Figura 22 - Arquitetura base do PraXiS............ueiiiiiieiiiiiiiiiie e 100
Figura 23 - Alguns pacotes das camadas de controle e entidade............................ 102
Figura 24 - Classes das camadas de sistema, fronteira e persisténcia................... 103
Figura 25 - Tela de controle de relatdrios......... ..o 105
Figura 26 - Desenho interno da interface Tela de Gestao de Clientes.................... 106
Figura 27 - Relacionamento direcional Entrega-Clienteccoooovvviiiiiviiiieeeeennnn, 108
Figura 28 - Ideia fundamental da Implementagaouuuviviiiiiiiiiiiiiiiiiiiiiiiiiene 111
Figura 29 - Sequéncia de interfaces do caso de uso "Insercao de usuario” 112
Figura 30 - Cddigo de direcionamento a pagina de Gestao de Clientes.................. 113

Figura 31 - CAdigo da aparéncia da tela de gestédo de clientescccceeeeeeeeeennns 113

Figura 32 - Implementacao dos comportamentos de inser¢éo de clientes

LISTA DE QUADROS

Quadro 1 - Comparacdo VBA x VSTO (Outras linguagens).......cccccceeeeeeeeeeeeeeevnnnnnnnn. 53
Quadro 2 — Tarefas da fase de AlIVAGAODccoceeeeiiiieiiiiii e 65
Quadro 3 — Beneficios esperados do SIStEMa...........ueeeiiiiiiiiiiiiiiiiiiiee e 71
Quadro 4 - Casos de uso do Courribilidadeccooiiiiiiiiiii e 72
Quadro 5 - Enumeracao e descricdo dos atores do sistema...........ccceeeeeeeeeveeeinnnnnnnn. 74
Quadro 6 - Interfaces de USUANIo dO SIStEMA/..........cceeviiiieiiiiiieeeeeie e 80
Quadro 7 - Interfaces de software do Courribilidade.............ccooooviiiiiiiiiiiieee, 81
Quadro 8 - Requisitos ndo-funcionais do SiSteMa..........ccevvieeiiiiiiiiiiiiie e, 82
Quadro 9 - Atividades da analise N0 PraxXisccoooevuuiiiiiiiiiiieieeeiieeee e 86

Quadro 10 - Resultado da anélise dos casos de uso para determinacéo de classes88

Quadro 11 — Comparac¢ao Desenho X ANALISEeeveiieeiiiiiiiiiiiiiiie e 98
Quadro 12 - Atividades de Desenho N0 PraXiS............coveeeiiiiieeeiiiiie e e 99
Quadro 13 - Classes do Praxis € SuUas NAIUIEZAScceeeevvvviieeeeriiiieeeeeiineeeeeniannns 101

Quadro 14 - Representacao da Tabela de Clientes no Banco de Dados................ 110

LISTA DE ABREVIATURAS E SIGLAS

OEA - Organizacgao dos Estados Americanos

RUP — Rational Unified Process

AWS — Amazon Web Services

MS — The Microsoft Corporation

UML - Unified Modeling Language

GUI — Graphical User Interface, Interface Gréfica

DoD - Departmento of Defense, equivalente ao Ministério da Defesa nos EUA
OOA — Object-oriented Analysis

OOD - Object-oriented Design

OOP — Object-oriented Programming

VS — Microsoft Visual Studio

DB — Banco de Dados

PRO — Departamento de Engenharia de Producao da Escolha Politécnica da USP

TDD — Test-driven Development

SUMARIO

I 011 Yo [T Lo 25
2. ApPresentacao 0 EMPIESA. .. .ccccceiiieeeiiiiie e e e e e e e et e e e e e e e e e e et e e e e e e eaenra 26
A T o 115 (0] - PP PP PP PPPPPPP 26
2272 (o o (= Fo o L= TN V=T o Tod o P 26
2.3, ClIBNLES ..ottt e e e as 27
2.4. Reconhecimento do mercado: Presenca na midia e premiacdes 27
2.5. Dados operacionais da EMPIESAcceeeeeeieeeeeeeeeee e 29
3. O PIODIEMA ... 31
3.1. O sistema de informagfes contabeis atual...............ccccoeeiiiiei 31
3.2. Problemas segundo o0 gerente fiNaNCEeIr0oooeeeeieiiiiiiieeeeee e, 35
Lo INEFOTUGAD 37
2. Estudo dos paradigmas de desenvolvimento de software............ccccceeeeeeeeeeeenn. 38
2.1.1. Um modelo de projetos de desenvolvimento de software..............ccccevvueee. 38

2.1.1.1. Atividades fundamentais de um projeto de desenvolvimento de software 39

2.1.2. Paradigmas existentes e sua relagcdo com o modelo definido...................... 40
2.1.2.1. ParadigmaWaterfall ... 40
2.1.2.2. Paradigma Agil........c.ccoieioeeeeee et 41
2.1.3. Paradigma de ProtOtiposScooveiiiiiiiiii e 43

2.1.4. Conclus@es sobre o estudo dos paradigmas de desenvolvimento de software

45
3. Estudo de solucdes de software de contabilidade disponiveis no mercado 46
3.1.1. Caracteristicas relevantes para a escolha de um software................cc...eee... 46
3.1.2. Escolha e descricdo dos programas analisSadoscccceeeeeeieeeeiieeeeeeeee, 47
4. Estudo das tecnologias de desenvolvimento............ccoouiiiiiiiiiiii i 51

4.1. EficiENcia dO Programal........cooouiiiuiiiiieeeeeeeeeeiie e e e e e e et e e e e e e e e e e e 51

22

4.2. Produtividade do programador..................uuueuememeeeieiieiiiiniiiiieieane 52
4.3. Comparagao VBA — Outras linguagens € VSTO.....ccoooevviiiiiiiiiiinieeeeeeeeeeiiiinnn 52
4.4. Conclusdo sobre as tecnologias diSPONIVEISccooouiiiiiiiiiieeiiiiiiieeeeeeenn 54
Parte Il — Resolugao do problema ... 55
Lo INTOAUGAD ... 55
2. Escolha e descricdo dos métodos e tecnologias...........cceeeeeeeeieeveiiiiiiiiieeeeeeeeeinns 56
2.1. Desenvolver ou comprar 0 ProdutOo?..........ceeieeeeiiieeiiiiiiiiee e eeeeeeviiee e e e e e eeeeanns 56
2.2. Escolha da metodologia € MEt0do...........uuiiiiiieiiiiiiiiiie e 58
2.2.1. Método de escolha: Matriz de DECISA0............ceeuuvriiiiieieeeieiiieeee e 58
2.2.2. Fatores de ECISEOuuuriiiiieeeiiiiiiee ettt e e e e e e 58

2.2.3. Adaptacdo das metodologias aos critérios: Notas da Matriz de Deciséo 61

2.3. Escolha e descric80 do MEtOTOcevvuuuiiieeeeieeeeece e e e 62
2.3.1. ESCOING dO MELOTOuuiiiiiiiieieieieeee e 62
2.3.2. Breve descric80o do MEtod0o PraxXisccceeeeiiiiiiiiiiiiieieeee i 63
2.3.2.1. Estrutura de Uma IIErAGADuuuuuuuriiiiiiiiiiiiiieiiiiiiiiibeiienbeneebeeeeeeeeeeaeeenees 64
ARSI © o] =1 ()Y 0 SN [U] 4 g F= W1 (=] = Tox- Lo RN 64
2.3.2.3. Quanto tempo atribuir a cada fluxo em uma iterag&o?............cccvvvvvrnnnnnne 65
TN =17 oT=Tod] o= Tor=To o [0 K3 £=T0 |1 S (o 1S TR 68
3.1. Requisitos na Engenharia de SOftWareeuuueeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiineeens 68
3.2. REQUISItOS NO PraXiSccciviiiiiiiii e e eeeeeeeie et e e e e e e e et e e e e e e eeeanes 69
3.3, ESHrUtUra deSta SECAODccvvuuiiiiieeee it e e e et e e e e e e e e e e e e e e eeanns 69
3.4. Resultado do fluxo de reqUISItOScceuuuiiiiiii e 70
3.4.1. Beneficios esperados do SiStEMA..........cceeieiiiiiiiiiiiiiiii e, 70
3.4.2. Casos de Uso € atores dO SISTEMA.........uuuuuruririiiiiiiiiiiiiiiiiieaaee 72
3.4.2.1. Detalhamento dOS CASOS U€ USOuuvrrrrrrirmmrniiiiiiiiiiiiiiiiniiieeniennneeneeaeees 76
3.4.2.2. Detalhamento Caso de Uso INSer¢cao de USUANIOSevvvvevereennnnnnnnnns 77

A A o (= o [0 | (ol 02N 77

3.4.2.2.2. Detalnamento dO flUXOo, 77

3.4.2.2.3. Detalhamento do subfluxo alerta de dados incorretos.............ccccevvvnnnnn. 78
3.4.2.3. Detalhamento do caso de uso Georeferenciamento de entregas............. 78
3.4.2.3. 1. Pre-CONIGOES. ...cceiiieeiiiiiiitiie ettt e e e e e e as 78
3.4.2.3.2. Detalnamentociiiiiiiiiiieiiiie e 78
3.5, Interfaces do SISTEMAcoooeiiiei i 79
3.5.1. INterfaces 08 USUAIIO......ccoeeeee e 79
3.5.2. Interfaces de SOfWAIEcooeieiiieeeeeee 81
3.6. RequisitoS NAO-TUNCIONAIScevuiiiiiiieee e e e e e 82
. ANAIISE ..o 84
I © o= o 1 84
4.2. Andlise orientada @ ObJEIOSuiiiiiiiiieie e 85
4.3. ANALISE NO PraXiS.......cooiiiiiiiiiiiieieeee e 85
4.4. Classes chave identifiCadascooveeeeiiiiieiiiiie e 86
4.4.1. Substantivos em iNSercao de USUANO..........cccuuvuiiiiiieeeieiiiiiieeeee e 87
4.4.2. Substantivos em georeferenciamento de entregascccccvvveevvveeeieeeeennnnn. 87
4.5. Determinacao das classes pelas classes candidatas..............ccccevvevvvviiineeeennn. 88
4.6. Relagles entre as ClaSSES........ccuviiiiiiiiiiiiiiiieeeeee e 90
4.7. Realizag80 dOS CASOS U USO......cceiiiiiiiiiiiiiiiiiiiiieeieeeeeeeeee ettt 92
4.7.1. Diagramas d€ SEQUENCIA...........uieiieeeeiieiiiiiiie e e e e e e e e e e e e e e e e e 93
4.8. ldentificac8o dOS atribULOSuuiiiiii e 94
4.8.1. Método de identificacdo de atributos............ccooeeiiiiiiiiiiiiii 94
4.8.2. Atributos de Funcionario, Cliente € Entrega...........ccoovvviiieiiieiiieiiiiicie e, 94
4.8.3. ldentificagcio das NEraNGas.........ccovveiiiiiiiiiiii e 95
4.9. ConclusBes da analiSEcoeiviiiiiiiiiiiii 97

D DS BN e - 98

24

5.1, INTOTUGED ...ttt 98
5.2. Atividades do fluxo de DeSenho NO PraXiS..............uuuueermiemmmmmmimnniiiiniiiiieinnnnnnns 98
5.3. DeSENNO ArqUItETONICOuuuveriiiriiiiiiiiiiiiiiiteeeeeiiebeeeeeeebe bbb eeeebeeeeeeeenennnnes 99
5.3. 1. ArquItetura NO PraXiSuuuuuuuuuumiiiiiiiiiiiiiiisiiiiiiesieeeesnneeeseeeeeeeeeeeeeeeeeenennnees 99
5.3.2. DefiNiCA0 das CAMAUASuuuuuriiiiiiiiiiiiiiiiiiiiiiebii bbb 102
5.4. DesSenho das INErfACEScoiiiiiiiiiiiiiiiiiiee e 104
5.5. Detalnamento d0OS CASOS A€ USO........c.uuriiiiiieeaiiiiiiiiiiie e e e e e e 106
5.5.1. Detalhamento da “Criagdo de cliente”cccooviiiiiiiiiiiiiiiiie e, 106
5.5.1.1. Breve descricdo do estado das interfaces..........ccccceeeeveiiiiviiiiiie e, 107
5.5.1.2. Fluxo principal de “Criagao de clientes”............cccceeiiiieiiiiiiiiiiiiiee e, 107
5.5.1.3. Subfluxo Inserir Cliente no Banco de Dadosccccccovviiviiiiieeeeennnne 107
5.6. Desenho das entidades ... 108
5.7. DeSENNO0 08 PEISISIENCIAL.uuuuuuiruiiiiiiiiiiiiiiitteieiiaebebbbbeebe bbb eeeaeeaeaaees 109
5.8. CoONCIUSE0 0O DESENNO.......uuuiiiiiiiiiiiiiiiiiiie bbb 110
6. IMPIEMENTAGAOD........ciiiiiiiiiiiiiiii e 111
6.1. COAIfICAGADceeiiiiiiiiiiiiii et 111
6.1.1. Exemplo de codificagdo: Insercéo de clientes.........ccccccvvvvviiiiiiiiiiiiiiinnnnnn. 111
6.2. Conclusdo da implementagao...........couvvviiiiiiiiiiiiiiiiiiieeeeeeeeeeee e 115
7. Concluséo e andlise critica do trabalno.............ccceiiiiiiiiii i 117
% YU [of=1T=T0 o (o I o] £ | r= 1 1 - RSO 117
7.2. Critica a escolha da metodologia.............covuuiiiiiiieiiiice e 118
7.3, Critica a0 MELOUO PraXiS........cciiiiiiiiiiiiiiiiiee et e e 118

8. Referéncias bibliograficascccooeeiiiiiiiiiiii e 119

25

Parte | — Introducéo e definicdo do problema

1. Introducao

A eficiéncia e confiabilidade trazidas por um sistema digital geracdo de demonstrativos
contabeis sdo parte fundamental do sucesso de pequenas e médias empresas, COmo

sugere o estudo de Tim Mills-Gronninger (Gronninger, 2011, p. 1).

Em particular, empresas recém-criadas podem enfrentar maiores dificuldades do que
as mais bem estabelecidas no mercado: a falta de experiéncia de seus funcionérios e
a escassez de capital para investimento em sistemas de Tl podem ser fatores que
dificultam a decisdo de compra de um software adequado para a empresa. Segundo
Noah Abelson, CEO e fundador da empresa de marketing digital Shareroot, startups
sofrem por utilizar ferramentas ndo adaptadas ao forte crescimento que muitas vezes

encontram, como o gerenciador de planilhas Excel. (Abelson, 2015)

Este trabalho se insere neste contexto: A empresa Ecolivery Courrieros Entregas
Ecoldgicas, fundada em 2012, passa por uma fase de grande crescimento em sua
receita, 0 que atraiu potenciais investidores interessados no desempenho da
companhia. A firma néo conta, porém, com um sistema confiavel de controle de custos
e despesas, 0 que torna a apresentacdo dos resultados aos potenciais capitalistas

menos confiavel aos olhos destes.

Através de minha amizade com dois dos fundadores da empresa, fui convidado a
desenvolver meu trabalho de formatura com a Courrieros, com o0 tema de

especificacao e producédo de um software de gestao para a companhia.

A resolucéo do problema comeca com uma breve apresentacédo sobre a empresa, em
especial sobre seu sistema de gestao de entregas atual, que apresenta os problemas

gue devem ser resolvidos por este TF.

26

2. Apresentacdo da empresa

2.1. Historia

A empresa Ecolivery Courrieros, Ltda. € uma empresa de entregas por motos elétricas
e bicicletas fundada em outubro de 2012 pelos amigos André Biselli, Victor Castello
Branco e Stefano Cappanari, que decidiram explorar com um produto ambientalmente
sustentavel o mercado de entregas na cidade de Sao Paulo. Estabelecida
originalmente na Avenida Pedroso de Morais, em Pinheiros, a Courrieros esta sediada
atualmente na Rua Lisboa, no mesmo bairro, de onde atende o centro expandido da

capital.

A empresa passa por um periodo de forte crescimento desde sua fundac¢do: o niumero
de funcionarios-entregadores passou de 10 em outubro de 2013 para 26 em margo
de 2015, e o numero de entregas cresceu aproximadamente 200% de marco de 2014
a junho de 2015.

A empresa baseia seu modelo de negdécios em duas frentes principais: terceirizacdo
de ciclistas para estabelecimentos comerciais como cartdérios ou restaurantes, e

entregas avulsas, e atende o centro expandido.

2.2. Modelo de negdcios

Como mencionado acima, a empresa atende seus clientes de duas formas: por
entregas avulsas ou por contratos de terceirizacdo de servigos. A primeira consiste
em efetuar entregas individuais e, na segunda, o cliente assina um contrato com a
Courrieros em que esta se compromete a deixar a disposicdo do contratante um
entregador por um determinado periodo por dia. A Courrieros rentabiliza esta
operagédo cobrando mais do cliente do que paga ao ciclista, que continua sendo

funcionario da Ecolivery.

A participacdo de cada um dos dois modelos na receita da empresa varia
significativamente com a época do ano, mas podemos observar uma tendéncia de

maior participacao dos contratos de terceirizagdo com o passar do tempo.

27

2.3. Clientes

A empresa ja atendeu mais de 450 clientes ao longo de sua existéncia e conta
atualmente com 80 clientes regulares, i.e., que fazem uso dos servigos de entrega ao
menos uma vez por més. O tamanho e segmento de atuacéo dos clientes sdo muito
variados: A empresa atende desde o Banco Itad BBA, maior banco de investimentos
da América Latina, até o pequeno restaurante Piadina, localizado na regido do Itaim
Bibi. Além disso, a Courrieros € responsavel por efetuar as entregas do tipo same-day

da empresa de e-commerce Netshoes, maior empresa do segmento no Brasil.

A Figura 1 mostra os principais clientes da Courrieros. Nota-se a diversidade dos

ramos de atuacao.
Figura 1 — Principais clientes da Courrieros

_—/ ’

CHOCOLAT DUJOUR dePromon —W\ y&@ TROUSSEAL
CPFL | " . R
RENOVAVEIS

MEN'SMARKET LPI_A_M&A }}/m(c Ghao

-

4
g,?lfsg* 'Q& %Murﬂl Lynch

. | MARTENS
Tage Siko Pauk &."E'ﬂ TOGNOTTI

ADVOGADOS

£ - -

AV | J[r'| ffs] PROLIFICO Chbasgt;:'ay Eg__g; maua ’~:E’~<L4!|{i(m G5 EVERCORE

Investimentos

Fonte: www.courrieros.com/site/clientes

2.4. Reconhecimento do mercado: Presenca na midia e premiacdes

http://www.courrieros.com/site/clientes

28

A empresa ja recebeu prémios significativos pelo apelo ambientalmente responsavel
de seu modelo de negdcios. Dentre estes podemos citar como 0 mais significativo o
ECO-Challenge das Américas (PEPSICO, péagina unica), organizado pelo OEA
(Organizacdo dos Estados Americanos) e pela PEPSICO, empresa do ramo
alimenticio dona de companhias com Lay’s e Pepsi. O prémio reconhece a startup

mais sustentavel das Américas e premia a vencedora com US$ 5 000,00.

Além deste prémio, a empresa ja foi alvo de reportagens de grandes periédicos
nacionais. Recentemente foi capa do caderno Mercado MPME do jornal A Folha de
Sdo Paulo gracas ao viés sustentdvel do negdcio, em matéria sobre
empreendedorismo social no Brasil. A figura 2 mostra um dos sécios-fundadores,

André Biselli, e um de seus entregadores, em foto desta reportagem.

Figura 2 - Sécio e entregador da Courrieros em matéria Folha de Sao Paulo

g

O entregador Fabricio Santana e o dono da Courrier, Andre Bicelli

Fonte: A Folha de Sao Paulo, 19 de Abril de 2015

29

2.5. Dados operacionais da empresa

No més de maio de 2015 a empresa teve um faturamento de R$ 73 000,00, e efetuou
aproximadamente 3000 entregas - 0 humero exato ndo é conhecido pois ciclistas
alocados nédo séo obrigados a reportar suas entregas. No més em questao, a empresa
contava com 28 entregadores, sendo 26 ciclistas e 2 motoqueiros, que efetuam as
entregas de longa distdncia com motos elétricas. A terceirizacdo de ciclistas
corresponde em média a 75% do faturamento da empresa (R$ 56 000,00 em maio

2015), e as entregas avulsas sdo responsaveis pela fatia restante.

O custo fixo médio por ciclista em periodo integral para 0 més de outubro de 2014 é
mostrado na tabela 1 Chama atencao o fato de o salério representar apenas 50% do
custo médio de um ciclista, além do alto custo de manutengéo e vales pagos pela
empresa. Trata-se, porém, de um valor abaixo da média brasileira, como mostram
Souza et al. em pesquisa da Fundacao Getulio Vargas (2012, p. 4), que indica que 0s
desembolsos de uma empresa brasileira com seus funcionarios chegam a 255% do

salario mensal do trabalhador.

Tabela 1 — Custo fixo por ciclista

Componente Valor

Salario RS 1.001,00
Vales RS 350,00
Seguros RS 150,00
13¢ RS 83,42
Manutencio + Depreciacdo R$ 200,00
Férias RS 27,53
Uniforme RS 40,00
FGTS RS 120,12
Total RS 1.972,06

Fonte: Courrieros

O custo fixo por ciclista € um dado de grande relevancia para a Courrieros, pois indica
0 pre¢o minimo que esta deve cobrar por seus servigos de terceirizagdo (sem levar
em conta custos de oportunidade) ou a receita média mensal que um trabalhador deve

gerar em entregas avulsas para que consiga pagar por Seus custos.

30

Apébs esta breve imagem da histéria e das operacdes da empresa, o trabalho ira se
concentrar em definir o problema que a empresa enfrenta com seus sistemas de
gestdo e controle de entregas, fonte de contratempos que este projeto tratara de

evitar.

31

3. O problema

Como foi apresentado acima, a Courrieros apresenta atualmente forte crescimento de
suas receitas, o que atraiu um grupo de investidores interessados em se tornar socios
da empresa. Esse crescimento trouxe também dificuldades no controle financeiro, o
que torna a prestacdo de contas para com 0s hovos socios mais dificil, particularmente
devido a falta de informac@es confiaveis sobre os dados operacionais e financeiros da

empresa.

O objetivo desta sec¢éo é delimitar o problema enfrentado pela empresa, com foco no
sistema de informacdes gerenciais usado atualmente e em como este causa a falta

de confiabilidade nos dados da Courrieros.

3.1. Osistemade informacdes contabeis atual

O sistema de informacdes contabeis atual € baseado totalmente em uma planilha
Excel, chamada pelos funcionarios da Courrieros de Controle. Nela séo registradas
todas as informacdes das entregas contratadas, como nome do cliente contratante,

preco do servigo e enderecgo de retirada, entre outros.

A empresa possui uma planilha para cada més, ao final do qual é calculado o resultado
com base nos registros do controle. A planilha também é usada para a cobranca de
clientes, que recebem boletos gerados manualmente segundo as informacgdes da

planilha.

A figura 3 ilustra o ciclo de uma entrega, desde sua contratacdo até sua cobranca, ao
final do més. Nela, eventos ou acontecimentos sao representados por retangulos,

enguanto atividades ou acdes séo indicadas por setas.

32

Figura 3 - Ciclo de vida de uma entrega

-) Controlador registra Ciclista notifica
Contratagdo do servigo entrega no Controle controlador
- Entrega efetuada >
INICIO e notifica ciclista dos do sucesso da
detalhes entrego

Controlador ou gerente
Final de més: | Entregas consolidadas por geram boletas .
Entrega confirmada i i "
8 Controlador consolida cliente e enviam cobranca oo
entregas cliente
Controladeor cu
Cliente efetua gerente
Entrega paga -
Entregas cobradas » FIM *
pagamento registra receita

Entrega registrada no
resultado

FIn

Fonte: Do autor

E importante notar que todas as atividades do ciclo sdo executadas manualmente por
funcionarios da empresa ou clientes, mesmo aquelas que possuem grande potencial
para automacgao, como consolidacéo de entregas, registro de receitas ou geracéo de

boletos.

Parte da planilha de controle é mostrada na figura 4. E importante mencionar que a
planilha n&o possui mecanismos que validem a entrada de dados: E possivel registrar
uma entrega para um cliente que ndo existe, assim como é possivel atribuir dois
nomes para o0 mesmo cliente. Além disso, a planilha permite operacdes de excluséo

e edicdo sem confirmacao por parte do usuario.

E possivel notar algumas possiveis fontes de erro: Nomes de empresas cliente sdo
misturados com os de funcionarios dos clientes, e a planilha ndo detecta telefones de
contato inseridos como nomes de contatos, o que nona linha para o cliente
NETSHOES.

33

Figura 4 - Planilha de controle atual da Courrieros

Data__|Pedido
/114
[

[9/1/14 |

51114

31114
5/1/14

91114
1014
91014

31014
§1/14
5/1/14
91014
91114
91714
1
31114
8/1/14

31114
91114
$1114

CYTRLT]

Fonte: Courrieros

Mais um exemplo de possivel fonte de erro é a ndo obrigatoriedade de preenchimento
de alguns dados, como o horéario de entrega, o que pode levar a desentendimentos
entre a empresa e seus fregueses: Diversas vezes o cliente assume que sua entrega
sera realizada assim que retirada, enquanto na realidade o ciclista pode sé vir a
finalizar o servi¢o horas depois, frustrando as expectativas do contratante. O controle
se propde a atacar este problema com sua coluna “Entrega”, que indica o horario
esperado de finalizacdo, mas esta informacdo quase nunca é preenchida, como

mostra a figura 5.

Por ultimo, uma situacdo mencionada com frequéncia é a dupla cobranca, que ocorre
guando o cliente paga pelo servico a vista mas é cobrado por tal a prazo também. A

34

7z

principal causa-raiz deste erro € o ndo-preenchimento ou edigdo involuntaria da

coluna “Pago a vista”, também mostrada na figura 5.

Figura 5 - Parte da planilha de controle com a coluna "Entrega" em branco

[Home [Enderaga Retirada [Enderego Entrega | Data [Pedido Erirega [PagodVista

herta Co 913114
80311
S |30
9314

91314
/314
913 atéas 11h.
3314
9134
513114
913
513114
913

Fonte: Courrieros

Apesar de possuir os defeitos mencionados, o gerente financeiro da empresa afirma

gue o controle possui algumas vantagens fundamentais que a mantém em uso:

e Facil uso: Somente um conhecimento basico de planilhas Excel € necessario
para operar o documento de forma eficiente e eficaz

e Facilidade de acesso a dados passados: A interface grafica do MS Excel
permite que dados de periodos anteriores sejam facilmente acessados sem a
necessidade de executar buscar em algum banco de dados

e Flexibilidade: Facil insercédo e exclusdo de colunas ou dados com mudancas
nas operacdes da empresa

e Facilidade back-up de dados: Verséao salva diretamente no aplicativo de gestao
de arquivos DropBox, o que elimina a necessidade de back-up periédicos

e Rapidez em analises ad-hoc: Mecanismos de filtro e tabelas dinamicas
permitem a geracéo de indicadores de performance com facilidade e rapidez

3.2.

35

Problemas segundo o gerente financeiro

Em um primeiro momento, buscou-se definir os problemas contabeis enfrentados pela

empresa na visao do gerente financeiro da Courrieros, André Biselli. Foram apontados

0s seguintes desafios a serem superados:

Falta de confiabilidade dos dados do sistema financeiro atual: Planilhas
Excel ndo oferecem mecanismo de validagdo de dados confivel, o que gera a
presenca de muitas informacdes erradas ou mal digitadas na planilha de
controle. O prejuizo de tais imprecisdes é evidente: Cobranca errada de
clientes, esquecimento de entregas e imprecisdo de indicadores de
desempenho

Falta de homogeneidade nos dados atuais: O sistema de controle por
planilhas Excel, por ndo permitir validagéo de dados, leva a um problema de
referéncia de nomes: Clientes diferentes recebem o mesmo nome na planilha
e 0 mesmo cliente recebe dois nomes diferentes. Isso pode levar a cobrancas
erradas, além de gerar prejuizo a eventuais analises de vendas por cliente: o
volume de entregas por més por contratante pode ser super ou subestimado.
Dificuldade ou impossibilidade de geracdo de relatérios gerenciais:
Apesar de o Microsoft Excel permitir o uso de filtros, graficos e a geracédo de
tabelas dinamicas, estas sdo operagfes sujeitas a erro e que exigem certa
habilidade informética ndo possuida pelo operador da planilha.

Falta de integracdo dos diversos sistemas de controle: Os sistemas de
controle de entregas, de gerenciamento de recursos humanos, de controle de
gastos e de geracao de relatérios contabeis ndo possuem atualmente nenhum
tipo de integracdo: A entrada de dados para um sistema é feita manualmente
segundo a saida de algum outro sistema. Consequéncias disso sdo a
ineficiéncia na execucao das funcdes de cada sistema e a também a possivel

impreciséo nos dados transferidos entre aplicativos.

A solucdo a ser desenvolvida deve atacar estes problemas, mantendo, porém, as

vantagens enumeradas na subsecdo 3.1. Pode-se agora definir um critério de

sucesso do projeto, que sera a capacidade da solucdo de resolver os problemas

36

citados e de manter os pontos positivos da planilha de controle. O projeto perfeito

ataca todas as desvantagens do sistema atual sem comprometer seus beneficios.

Antes de iniciar a resolucdo do problema, porém, uma reviséo bibliografica guiara o
autor em sua busca por uma metodologia e tecnologia de desenvolvimento de

programas.

37

Parte Il — Revisao Bibliografica

1. Introducao

Nesta parte do trabalho séo analisados artigos cientificos e publicacdes relevantes ao
tema de desenvolvimento de software para pequenas empresas afim de criar uma

base de conhecimento para a resolugcédo do problema.

A revisdo se divide em trés partes: na primeira sdo pesquisados métodos para a
especificacdo de software. Na segunda parte estuda-se as solugbes disponiveis no
mercado como possiveis solucbes, e por fim s&do analisadas as tecnologias
(linguagens de programacao) de desenvolvimento de software mais adaptadas ao

problema em questéo.

38

2. Estudo dos paradigmas de desenvolvimento de software

Nesta secdo serdo estudados os principais paradigmas de desenvolvimento de
software existentes atualmente. O objetivo deste estudo € determinar qual destes sera
adotado para resolver o problema descrito em detalhes na se¢cdo acima com maior
chance de sucesso.

E importante esclarecer em que sentido o conceito de paradigma é utilizado no
contexto deste trabalho. Thomas Kuhn (1962, prefacio) definiu, no contexto das
ciéncias, um paradigma como sendo “uma tradigdo coerente na pesquisa cientifica”,
tradicdo esta que envolve técnicas, conhecimentos e prioridades de pesquisa. Para
este trabalho, a definicAo de Kuhn é usada com uma ligeira modificagdo. Um
paradigma é definido aqui como “uma tradigdo coerente de desenvolvimento de
software”. Esta tradicdo consiste do uso de ferramentas, técnicas, conhecimento e
prioridades para alcancar o sucesso no desenvolvimento de um programa de

computador.

Para poder efetuar comparacbes entre os paradigmas, é necessario estabelecer
critérios segundo o0s quais estes serdo comparados. Para isso, um modelo de projetos
de desenvolvimento de software é definido abaixo em funcédo de suas atividades
fundamentais. Este servira como base para executar as comparacdes entre
paradigmas e a consequente escolha do mais adaptado para resolver o problema
definido acima.

2.1.1. Um modelo de projetos de desenvolvimento de software

Nesta subsecao é estabelecido um modelo de projetos de software em funcao de
atividades fundamentais. Um modelo € uma representacao simplificada da realidade
com uma finalidade. A simplificagdo adotada aqui € a de descrever um projeto como
um conjunto de atividades executadas com maior ou menor prioridade e intensidade,

e a finalidade é a de comparar diferentes paradigmas.

39

2.1.1.1. Atividades fundamentais de um projeto de desenvolvimento de

software

Estabelecimento dos requisitos

Nesta atividade é estabelecido o que o software deve fazer, ou mais concretamente,
qual problema ele resolvera. Diversas ferramentas podem ser usadas determinar e
expressar esses requisitos, como os Diagramas de Caso de Uso e Diagrama de

Contexto.

Determinagao da arquitetura do sistema

Esta atividade determina a estrutura do sistema em um alto nivel de abstracéo.
Exemplo de estruturas de alto nivel sdo Banco de Dados, Classes do programa e
Interfaces, que podem ser representadas por Diagramas de Classe, Lista de
Interfaces, entre outros. E importante frisar que a arquitetura do sistema é
independente da linguagem de programacéo utilizada para construir o programa, e

inclui as atividades conhecidas como Andlise e Desenho, explicadas mais abaixo.

Implementacao (escrita do c6digo)
Nesta atividade, o cédigo necessario para que o sistema funcione € escrito. O cédigo

depende da escolha de uma linguagem de programacéo especifica (Java, C++, C).

Testes
Nesta atividade € controlada a qualidade do software e de seus componentes, ou seja,
a adequacéao das funcbes do software a seus requisitos estabelecidos previamente.

Exemplos de testes sdo testes de integracdo e testes de unidade.

Manutencéo
A manutencao consiste em manter o software em funcionamento ao longo de seu uso.

Para isso o programa ja deve estar em uso pelo usuario final.

40

2.1.2. Paradigmas existentes e sua relagdo com o modelo definido

2.1.2.1. Paradigma Waterfall

Os métodos pertencentes ao paradigma Waterfall possuem como caracteristica
principal a execucdo sequencial (em série) das atividades fundamentais descritas

acima, como mostra a figura 6.

Figura 6 - Atividades do paradigma waterfall

Requisitos

Arquitetura

Implementacgdo

Testes

Manutengdo

Fonte: Elaborada pelo autor

Neste paradigma, uma atividade so6 é iniciada quando a anterior foi terminada. Trata-
se do primeiro paradigma utilizado em desenvolvimento de software, com seu uso
instituido no final da década de 1960. Atualmente, variacbes deste paradigma séo
normalmente utilizados na indUstria de construcéo civil e de manufatura de produtos,

como explica Rajlich (2006, pag. 69).

Por se tratar de um processo sequencial, o paradigma Waterfall apresenta baixa
robustez a mudangas nos requisitos. Devido a sua execucdo em série, cada etapa é

baseada totalmente das saidas da etapa anterior para gerar seus resultados. Se

41

houver mudancas significativas em saidas de etapas ja executadas, ha o risco de que
todas as etapas que a seguem devam ser significativamente retrabalhadas.

Devido a alta volatilidade nos requisitos projetos de software, métodos baseados no
paradigma Waterfall podem apresentar baixas taxas de sucesso para projetos de
software. Uma ilustracdo concreta desta volatilidade é encontrada em Cusumano e
Shelby (1997, p. 56): Segundo os autores, a lista de especificacdo de requisitos pode

mudar em até 30% em projetos de software.

2.1.2.2. Paradigma Agil

Em resposta a falta de robustez a mudanca encontrada em processos do tipo
Waterfall, processos mais resistentes a mudancas nos requisitos foram popularizados
nos anos 1990 (Agile Allliance, [2001?]). Uma série destes processos pode ser
agrupada sob o paradigma &gil, formalizada em 2001 no Agile Manifesto (Agile
Alliance, 2001):

We are uncovering better ways of developing software by doing it and helping others
do it. Through this work we have come to value:

Individuals and interactions over Processes and tools
Working software over Comprehensive documentation
Customer collaboration over Contract negotiation
Responding to change over Following a plan

That is, while there is value in the items on the right, we value the items on the left more

Os versos mais significativos do manifesto para o entendimento da filosofia &gil séo o
qguarto e o sexto, que tratam das atividades de implementacao e estabelecimento de
requisitos do software: métodos ageis favorecem a resposta a mudancgas a seguir um

plano e software que funcione a documentacao extensiva.

O paradigma agil é baseado no desenvolvimento incremental do produto final,
gerando produtos intermediarios em ciclos de desenvolvimento. Um ciclo é uma

execucdo sequencial de cada uma das atividades acima descritas. Cada ciclo tem

42

duracdo de uma a quatro semanas, em geral, e o produto de cada ciclo é um programa

utilizavel, mesmo que este ndo satisfaca todos os requisitos finais do produto.

O fluxo de atividades de processos ageis pode ser representado pela figura 7.

Figura 7 - Atividades do paradigma agil

Requirements Analysis & Design

Implementation

Planning
P Deployment
Initial
Planning

Evaluation
Testing

Fonte: eclipesource.com

Traduzindo as atividades requirements, analysis & design, implementation, testing e
evaluation por requisitos, arquitetura, implementacéo, teste e avaliagcdo, podemos
perceber que um ciclo do paradigma agil corresponde ao processo completo do
paradigma Waterfall. A atividade de avaliacdo corresponde a analise do produto final
de cada ciclo, que serve como entrada para determinar os requisitos do préximo ciclo.
Uma vez que a avaliacdo afirmar que o produto esta pronto, parte-se para a entrega

(deployment).

http://www.eclipesource.com/

43

Desvantagens do paradigma agil séo sua dificil implementacdo em corporac¢des, como
mencionado em Barlow et al. (2011, p. 25) e a dificuldade de adaptacéo que muitos
desenvolvedores enfrentam ao tentar mudar de processos baseados no paradigma
Waterfall. Além disso, é intuitivo pensar que a filosofia incremental pode enfrentar
dificuldades para produzir programas de grande complexidade e com énfase em
performance, devido a dificuldades de alterar a arquitetura significativamente entre
ciclos. Uma solucéo proposta para esta Ultima desvantagem é a geracao de produtos
gue ataqguem 0s maiores riscos previstos do projeto no inicio deste, para que nao

surjam dificuldades insuperaveis no final do projeto somente.

2.1.3. Paradigma de protétipos

O paradigma de protétipos mistura caracteristicas dos dois paradigmas anteriores.
Nele, ha interacdes ou ciclos como em métodos ageis, mas nem todas as atividades
sdo executadas em cada ciclo, pois cada iteracdo possui uma énfase em certa
atividade. No inicio, forte prioridade € dada a definicdo de requisitos em detrimento da

implementacgéo, que adquire tragdo conforme o projeto avancga.
Outra diferenca fundamental em comparacdo com processos ageis é a de que nem
todos ciclos culminam com entregas de produtos prontos e 0s que terminam nao

satisfazem necessariamente todos os requisitos definidos até entéo.

Figura 8 — Ciclos de um método de protétipos

Iniciagdo Elaboracao Construcdo Transicdo
I1 E1l1 | E2 C1 C2 C3 C4 T1 | T2
Modelagem de Negécio #
Requisitos - =
|~ ——
Anélise e Design -
==
Implementagso = [— .
Teste — | i, |
Implantacéo === i e

Fonte: infoescola.com

44

A figura 8 mostra o ciclo de um projeto feito com um método de protétipos. Nota-se
que as cinco atividades fundamentais definidas acima estdo presentes no método
mostrado na figura 7 (a atividade de Modelagem de Negoécios corresponde a
caraterizacdo da empresa cliente e ndo constitui formalmente uma etapa do
desenvolvimento do software), mas que a intensidade com que cada uma delas
aparece em cada ciclo (indicado na figura 8 por 11, E1, etc.) varia conforme o projeto
avanca em direcao a transicao. H4, portanto, diferencas fundamentais entre métodos
de prototipo e métodos ageis: Nos Ultimos, as atividades fundamentais estdo
presentes em cada ciclo em igual intensidade e cada iteragdo produz um programa
completo segundo os requisitos estabelecidos no ciclo em questdo. J& nos métodos
de prototipo, as atividades séo distribuidas de maneira heterogénea nos diferentes
ciclos, chegando a ser completamente excluida de alguns, e os prototipos produzidos
nunca respeitardo completamente os requisitos definidos até entdo, mas se focardo

nos aspectos mais criticos e de maior risco.

Além do RUP, existem diversos outros métodos que possuem as caracteristicas do
paradigma de protétipos. Dentre estes, € possivel destacar o processo Praxis,
desenvolvido por Wilson de Padua Paulo Filho, exposto em seu livro Engenharia de
Software (Padua Filho, 2003).

Criticas ao paradigma de protétipos incluem as desvantagens das duas metodologias
citadas acima, dado que este inclui caracteristicas de ambos. Notavelmente, pode-se
citar o possivel apego de programadores a prototipos desenvolvidos e a decorrente
resisténcia em evoluir em direcao ao produto final, e 0 gasto excessivo de tempo no

desenvolvimento de protétipos que serdo eventualmente descartados.

Vantagens incluem o contato do cliente com software desde cedo e a possivel
aprendizagem decorrente das diversas versdes descartaveis produzidas antes de do

produto final.

A literatura indica que o uso do paradigma de prototipos € mais adaptado a aplicacdes
qgue oferecem intensa iteragdo com o usuario e onde equipes do projeto ndo possuem

todo o conhecimento para gerar uma solucao satisfatéria no inicio do projeto.

45

2.1.4. Conclusdes sobre o estudo dos paradigmas de desenvolvimento de

software

Foram estudados nesta secéo trés paradigmas de desenvolvimento de software com
0 intuito de guiar a escolha do método para resolver o problema exposto acima. Para
poder comparar os paradigmas entre si, foi estabelecido um modelo que descreve
todos os métodos de desenvolvimento em funcédo da presenca de cinco atividades
fundamentais presentes em qualquer projeto de TI. Na secdo de resolucdo do
problema deste trabalho um dos trés paradigmas serd escolhido para servir como
base da solucéo a ser apresentada.

46

3. Estudo de soluc¢des de software de contabilidade disponiveis no mercado

Nesta secdo sao estudados os programas de contabilidade disponiveis no mercado,
com dois objetivos principais. Primeiramente, visa-se determinar se alguma das
solugbes encontradas pode resolver o problema descrito acima. Em segundo lugar,
esta revisdo objetiva também aprender as principais caracteristicas dos programas
disponiveis para eventualmente aplica-las em uma solucéo individualizada produzida

pelo autor.

3.1.1. Caracteristicas relevantes para a escolha de um software

A base para este estudo € o trabalho de Elikai et al. (2007) em que séo apresentados
0s principais fatores que devem ser levados em conta na escolha de um software de

contabilidade.

Serdo analisadas as seguintes dimensfes dos produtos, que foram consideradas as

trés mais importantes segundo Elikai (2007, p. 27):

e Funcionalidades ou capacidades, incluindo flexibilidade de uso e possibilidade
de customizacgao
e Custo de aquisicdo e manutencao

e Compatibilidade com outros sistemas

Estabilidade financeira do produtor e suporte ao cliente ndo sdo consideradas aqui

por ser tratarem dos fatores menos importantes encontrados no trabalho acima.

Elikai et al. também encontraram as dimensdes mais importantes dentro de cada
categoria. Por exemplo, foi determinado que os quesitos funcionalidade € o mais
importante para os usuarios de software de contabilidade. Mais quais sdo as fung¢des
mais importantes dentro desta categoria? Abaixo sdo listados os fatores mais
relevantes das dimensdes acima escolhidas, filtrados pelo gerente financeiro da
Courrieros, que excluiu alguns itens e detalhou outros para tornar a andlise dos

programas mais objetiva.

a7

e Funcionalidades ou capacidades

©)

Funcionalidades: Variedade de relatorios gerados, possibilidade de
backup dos dados

Flexibilidade de uso: Numero maximo de clientes ou funcionarios
suportados, tamanho maximo do total de dados armazenados,
possibilidade de gerenciar mais de uma empresa

Usabilidade: Facilidade de uso

Seguranca: Seguranca dos dados e permissdes de acesso

diferenciadas por usuario

e Custo de manutencao e aquisicao

o

Custo total de uso excluindo treinamentos por um ano de software

e Compatibilidade com outros sistemas

o

o

Compatibilidade com diferentes versées do MS Windows
Compatibilidade com processadores com capacidade intermediaria de
processamento (1,5 — 1,9GHz)

Compatibilidade com softwares do MS Office para importacdo e

exportacao de dados

Agora que ja sdo conhecidas as caracteristicas importantes de um software de

contabilidade, é necessario decidir quais serdo os produtos analisados.

3.1.2. Escolha e descricdo dos programas analisados

Aqui serdo escolhidos os produtos que serdo alvo da analise. Esta decisdo sera
tomada de maneira pouco formal, mas eficiente e, espera-se, efetiva: Seréo buscados
na internet comparativos de softwares de contabilidade para pequenas empresas, e
entdo selecionados os produtos com mais forte presenca nos artigos encontrados.
Serdo usadas fontes de boa reputacdo no mercado de softwares, mas nao sera feita

uma analise dos métodos de escolha dos produtos comparados.

Business Insider (Angeles, 2011, p. 1)
Quickbooks Online

Wave Accounting

48

e Freshbooks

PCMAG (Wilson, 2011, p. 1)
e Quickbooks Premier
e Wave Accounting
e Freshbooks
e Billing Boss
Intuit Billing Manager
e Outright

e Zoho Invoice

Forbes (Marks, 2014, p. 1)
e Quickbooks Online
e Xero
e Chegbook
e Kashoo
e Wave
e Zoho Books

e FreshBooks

Accounting Software Review (2014, p. 1)
e Quickbooks Pro
e Sage
e AccountEdge
e Cougar Mountain
e CYMA
e Bookkepper
e Business2Go

e Express Account

Uma simples contagem dos programas presentes nas listas acima permite chegar aos

seguintes softwares para analise: Wave Accounting, Freshbooks, Quickbooks Online

49

7

e Zoho Account. Abaixo é apresentada uma breve descricdo de cada um dos

programas.

O Wave Accounting € uma solucdo de software de contabilidade da Wave Apps,
empresa que oferece produtos de pagamentos e geracao de boletos para pequenas
empresas. Trata-se de um programa totalmente gratuito para o usuério, que em troca
deve aceitar receber propagandas em alguns momentos quando esta usando o
programa. Foi projetado para empresas com 9 funcionarios ou menos, profissionais
independentes ou consultores, e nao apresenta uma grande riqueza de
funcionalidades, sendo voltado majoritariamente para facilitar as operacdes de

cobranca e pagamentos.

O aplicativo Quickbook Pro é produzido pela reputada empresa Intuit, gigante do
mercado e pioneira na producdo de programas para gestao financeira pessoal, com
valor de mercado de aproximadamente 26 bilhdes de délares. O Quickbook Pro é um
software de contabilidade com um grande namero de funcionalidades como relatorios
variados, servicos de pagamento e cobranca e célculo de valor agregado para
guestdes fiscais.

O Zoho Books oferece servicos semelhantes aos do Wave Apps, mas nao conta com
propagandas e é portanto pago. Pode ser integrado com servicos de pagamento
online como PayPal para facilitar a cobranga de clientes e conta também com um
moddulo de sincronizacdo bancaria que permite criar uma imagem do saldo da conta
corrente do usuario dentro do programa e classificar despesas para melhor gestao de

gastos.

Por ultimo, o Freshbooks € um servico online projetado especialmente para donos de
empresas sem experiéncia em contabilidade. Nao oferece um grande namero de
funcionalidades, mas foi eleito pelo site accounting-software-review como o melhor

programa na categoria de aplicativos de contabilidade para pequenas empresas.

50

Figura 9 - Tela inicial do Wave Accounting

%) Aviva Studios St Monay Need Melp? i

NEWS © Wave | Looking for heip with Wave? Connect wizh

= Recent activity . Financial snapshot

Income & Expenses
A Overdue Invoices & Bills

OVERDUE INVOICES BRI
* Sara Gauthier, $1,005.70 Lo
* Bee's Knees Honey, $108.48

OVIRDUE BILLS
o Clean Cleaners, $141.24

L 3l
Bank Accounts & Credit Cards
£ 55
The Bank I I I |
© Last updated 9 seconds ago. Updote now 0K B N Feb Mar Apr May) ~
" " AL} " 4 " " "“

" (.l 4 :
Bank Account USD $9,044.78
Payable & Owin
Credit Card Co. USD $44.78 e g

Fonte: www.waveapps.com

Figura 10 - Tela de sincronizagéo de conta correte Zoho Books

Banking Overview Add Benk or Credit Card

Chose Bonk - $3,838.03
10 Jan 2014

Last 12 months

Opening Balance

$1,205.03

Closing balance

$3,737.35

Fonte: www.zoho.com

http://www.waveapps.com/

51

4, Estudo das tecnologias de desenvolvimento

Nesta secdo serdo analisadas as principais tecnologias de desenvolvimento de
software disponiveis no mercado. Por tecnologias entende-se a linguagem de

programacao usada para o criar o produto.

Uma restricdo é colocada sobre as tecnologias: Estas devem poder ser utilizadas em
plataformas Windows, presentes nos computadores da Courrieros, e devem permitir
a escrita de arquivos em formato .xIs no sistema operacional, para permitir a geracao

de relatérios Excel.

Para estudo, serdo consideradas as linguagens C#, VB, VBA e C++. A imposi¢cao
desta restricdo de linguagens analisadas é simples: Sao as Unicas que possibilitam o
desenvolvimento de aplicacdes com interface grafica para o sistema operacional
Windows, como afirma a prépria Microsoft. (Chapter 3, p. 1). Esta secdo € baseada
em artigo de autoria da Microsoft intitulado “Choosing Windows Development
Technologies”, que compara as cinco possibilidades de linguagens segundo os
aspectos de performance e produtividade do programador. ([201-], p. 1). Esta parte
da reviséo da literatura € também dividida segundo estes critérios. A linguagem VBA
sera deixada de lado por enquanto, pois nao permite o desenvolvimento de aplicacdes

independentes para Windows.

4.1. Eficiénciado programa

A linguagem C++ é a de maior performance dentre todas. A necessidade de gerenciar
memoéria em aplicacbes desta tecnologia € ao mesmo tempo uma bencédo e uma
maldicdo: O ganho em performance é consideravel, mas a necessidade de gerenciar
0s objetos ndo usados pelo codigo pode gerar sobreuso de recursos e levar

eventualmente a falha do programa.

C# e VB séo as proximas na fila em termos de performance do programa escrito, sem

nenhuma vantagem significativa para algum dos lados, como afirma Jerry Nixon,

52

desenvolvedor da MS, em artigo sobre o assunto (sem data, p. 1), e a escolha entre
as duas seria baseada em preferéncias de cada programador.

4.2. Produtividade do programador

Este aspecto representa o quéo rapido um mesmo programador com conhecimentos
iguais de cada linguagem consegue escrever um programa com as mesmas

funcionalidades, em cada uma das tecnologias escolhidas.

A produtividade depende de diversos fatores, ainda segundo Nixon: a sintaxe da
linguagem, a disponibilidade de recursos de ajuda para uma das tecnologias e o
estado dos compiladores disponiveis para cada uma das op¢cdes. Na comparacéo VB
— C#, a ganhadora é C#, segundo Nixon. O desenvolvedor afirma que, apesar de VB
apresentar sintaxe menos densa e mais produtiva, a disponibilidade de recursos de

ajuda online € muito maior para C#, o que a torna vencedora.

Na comparacdo entre C# e C++, a clara vencedora € C#: Segundo Bill Kratochuvill,
escrevendo na revista de desenvolvedores da Microsoft, a linguagem C# foi
desenvolvida para favorecer produtividade sobre performance e é fortemente
integrada com o compilador Visual Studio (2014, p.1), o que significa menor
necessidade de digitar os nomes de varidveis e menos tempo corrigindo erros de
sintaxe e légica da aplicagdo. Conclui-se que C# é a mais produtiva das linguagens
estudadas.

4.3. Comparacédo VBA - Outras linguagens e VSTO

A linguagem VBA é de natureza particular, pois sé pode ser utilizada em uma
aplicacdo do Microsoft Office (como Excel ou Power Point). O VBA é considerado
como alternativa para o desenvolvimento da aplicagéo Courribilidade pois esta poderia
ser baseada totalmente em Excel, que atuaria tanto como base de dados como
interface de exibi¢cdo de relatorios e outras métricas. Solu¢des desenvolvidas em outro
ambiente (como o compilador Visual Studio) séo independentes do Microsoft Office e

autossuficientes, mas possuem o ponto negativo de possuirem integracdo mais lenta

53

e dificil com este. O quadro 1, de autoria da Microsoft mostra as principais diferencas

entre as duas alternativas.

Quadro 1 - Comparagédo VBA x VSTO (Outras linguagens)

VBA

C#, VB ou C++ (Visual Studio Tools for Office)

Cddigo presente no arquivo da suite Office em
questao

Trabalha com elementos do Office e APIs de
VBA

Projetado para um desenvolvimento de solugbes
simples

Funciona bem com solu¢gbes que requerem alta

integracéo com produtos do Office

Cdédigo separado do documento Office, sua
existéncia independe deste

Pode trabalhar com elementos do Office e o
framework .NET.

Projetado para alta segurancga e a possibilidade
de usar o Visual Studio par a desenvolvimento
Funciona bem com solu¢des que requerem

recursos do Visual Studio e do framework .NET

Possui limitagbes de seguranca e distribuicdo)
Projetado para uso em empresas
para empresas

Fonte: Microsoft Development Network

Com a leitura do quadro, percebe-se que a linguagem VBA é construida para atuar
principalmente sobre algum produto especifico do Office, funcdo que esta
desempenha de maneira eficiente. Para produtos que visam comunicar com 0S
programas desta suite, mas que também objetivam oferecer outras funcionalidades

independentes, projetos no Visual Studio sdo mais adaptados.

Uma das grandes vantagens do VBA, como mostrado no quadro 1, € a comunicacao
simples e eficiente com elementos que compde um documento Office. O VBA
possibilita, por exemplo, fazer referéncia direta a uma célula do Excel ou linha do Word
do cédigo, o que torna a experiéncia de programacao intuitiva e mais produtiva. Isso
nao era possivel usando C# ou outras linguagens do Visual Studio até 2003, quando
a Microsoft lancou o produto Visual Studio Tools for Office, que permite a integracéo
do cédigo escrito em C# ou VB com elementos do Office como células ou colunas do
Excel.

Esta solucao torna o uso do Visual Studio superior ao VBA para uma grande parte de
aplicacoes, pois a vantagem de comunicagao com elementos core dos documentos

Office que possuia o VBA passou a ser compartilhada com Visual Basic e C#.

54

Ainda h& uso para o VBA, em especial porque as ferramentas do VSTO sao pagas e
s estéo disponiveis para usuérios da versao Professional do Visual Studio, enquanto
todos os programas Office possuem modos de desenvolvedor que aceitam cédigo
VBA sem custos adicionais. Além disso, pode ser interessante entregar um
documento do Office com cédigo embutido ao invés de ter de produzir dois programas
separados. Por ultimo, o VBA ¢é a Unica linguagem que permite a gravagao de macros,
além de permitir analises ad-hoc de maneira rapida, o que ndo é possivel para
programas do Visual Studio, que exigem a escrita um programa completo para
interagir com documentos do Office.

4.4. Conclusao sobre as tecnologias disponiveis

A andlise das linguagens de programacdo disponiveis para Windows tratou da
performance e da produtividade do programador para quatro tecnologias disponiveis:
C++, C#, VB e VBA. Esta ultima foi analisada separadamente pelas limitacdes do tipo

de aplica¢des que pode produzir.

Os resultados da revisdao mostram que, em termos de performance do programa, C++
€ largamente superior a C# ou VB, sendo que entre estas Ultimas ndo ha diferenca

apreciavel de desempenho.

Em termos de produtividade do programador, C# se destaca sobre VB, que se destaca
sobre C++. Este resultado se deve principalmente a disponibilidade de recursos de
ajuda online existentes para a tecnologia C#, largamente superior aos de VB. Em
termos de produtividade intrinseca a linguagem, ndo ha diferenca significativa entre
VB e C#, e estas duas sao superiores neste quesito a C++, muito devido a

necessidade de gerenciar memaoria que esta apresenta.

55

Parte Il - Resolucé&o do problema

1. Introducao

Esta parte do trabalho trata da resolucéo do problema apresentado na introducao, e é

estruturada em duas secdes logicas principais.

Em um primeiro momento serdo escolhidas e descritas as ferramentas usadas para
solucionar a questdo proposta. Isto se traduz em escolher se um novo sistema sera
desenvolvido ou se uma solucédo disponivel no mercado sera usada, decidir sobre o
melhor método de desenvolvimento de software, que serd escolhido com base nos
estudos sobre metodologia feitos na revisdo da literatura e finalmente selecionar a

tecnologia para implementacao do Courribilidade.

Na sequéncia, passa-se a aplicacdo destas ferramentas e a apresentacdo dos

resultados com estas obtido.

56

2. Escolha e descricdo dos métodos e tecnologias

Nesta secdo sao escolhidos a metodologia, o método que a implementa e a tecnologia

a serem usados para solucionar o problema.

A metodologia é selecionada dentre as trés estudadas na se¢éo precedente. Uma vez
tomada esta decisdo, um método baseado nesta sera selecionado. E importante frisar
gue podem existir diversos métodos que sigam a mesma metodologia, e que a escolha
no contexto desse trabalho se fara baseada principalmente na disponibilidade de
material didatico sobre o método.

Trata-se de um critério de escolha simples e que ignora provavelmente caracteristicas
individuais de cada método, as decidiu-se por este caminho pela crenca de que a
decisdo da metodologia € de maior importancia.

Ja a escolha da tecnologia sera baseada no estudo das linguagens de programacéao
disponiveis para construir aplicagdes Windows, a saber C#, C++, VB e VBA. A decisdo
sera tomada tentando alinhar restricbes esperadas do produto, como requisitos de
performance e tempo limite para desenvolvimento, com as caracteristicas de cada

linguagem.

2.1. Desenvolver ou comprar o produto?

Neste item é tomada a decisédo da estratégia de resolucdo do problema. A definicao
deste dltimo deixa claro que se trata de um problema de software. Para resolvé-lo,
deve-se primeiramente decidir se um programa serd comprado do mercado ou

desenvolvido do zero.

Esta escolha sera baseada na capacidade de cada uma das alternativas em produzir
as caracteristicas necessarias para resolver o problema. Para isso, € necessario
revisitar a definicdo deste. Voltando a parte I, nota-se que o problema pode ser

descrito por 4 falhas do sistema atual:

57

e Falta de confiabilidade dos dados do sistema: Valores de propriedades
incorretos devido a falta de validacéo de dados

e Falta de coeréncia dos dados atuais: Problema de referéncia a entidades do
sistema como nome de empresas, funcionarios ou enderecos

e Dificuldade de geracédo automatica de relatérios

e Falta de integracéo entre os diversos sistemas

Uma simples matriz de decisdo sera usada para a escolha. Todos os critérios sédo
considerados como igualmente importantes, e as notas de cada alternativa para cada
critério variam de 1 a 3. O software de mercado utilizado para a comparacao foi o
QuickBooks Pro, julgado pelo autor como o mais completo dentre os encontrados. Os
resultados sdo mostrados na tabela 2.

Tabela 2 — Comparagéo Desenvolvimento Proprio x Compra de software

Confiabilidade Coeréncia Geracdo de Integracao Nota

Dos dados Dos dados relatérios entre Final
Desenvolvimento
] 3 3 3 12
Proprio
Compra de software
3 2 2 10

existente

Fonte: Do autor

7

A alternativa de desenvolvimento proprio é a vencedora, pois oferece melhor
possibilidade de geracao de relatérios e de integracdo de sistemas. Estas notas de
devem principalmente a possibilidade de personalizacdo que o desenvolvimento
proprio oferece, uma vez que softwares de prateleira oferecem pouca ou nenhuma

flexibilidade quanto as suas funcionalidades.

E importante notar que ndo foi usado um critério de custo de aquisicdo ou de
manutencdo para a deciséo. Isto € uma particularidade do contexto em que este o
problema e este trabalho se inserem: Primeiramente, os beneficios estimados pelo
cliente possuem valor largamente superior ao preco cobrado pelo mais caro dos
softwares encontrados na revisdo da literatura, e este seria, portanto, irrelevante. Em

segundo lugar, o custo para a Courrieros no caso desenvolvimento de

58

7

desenvolvimento proprio é nulo. Trata-se claramente de uma particularidade do

trabalho, que ndo pode ser extrapolada para casos de necessidades futuras.

2.2. Escolhada metodologia e método

2.2.1. Método de escolha: Matriz de Deciséao

O método de decisdo usado sera o de Matriz de Decisdo. Trata-se de um método
simples e de facil aplicacdo, e deve-se questionar se ndo é uma escolha simplista.
Mas uma breve revisdo da literatura nos mostra que ndo existem métodos de escolha
de metodologia mais sofisticados do que o bom senso, como indica Glass (2004, p.
19). Isso significa que o trabalho de classificar metodologias e problemas de
desenvolvimento e entdo determinar qual classe de métodos se adapta melhor a cada
classe de problemas ainda nao foi feito.

Na impossibilidade de usar métodos mais sofisticados, recorre-se entdo a matriz de
decisao para efetuar a ligacdo. Mas o problema néo esta resolvido: que critérios usar
na matriz, e como dar a cada um deles pesos diferentes? Este é o objeto dos

paragrafos seguintes.

2.2.2. Fatores de deciséao

Aqui sdo definidas caracteristicas esperadas do produto que guiardo a decisdo. A
literatura ndo apresenta materiais satisfatérios sobre o assunto, como mencionou
Glass (2004, p. 19). Fontes de menor confiabilidade serdo portanto usadas. Danie

Krige, funcionario da Amazon Web Services (AWS) sugere a seguinte lista de critérios:

e Conhecimento dos riscos: Os riscos do projeto estao claros?

e Conhecimento do escopo: As fronteiras do projeto estdo claras ou existe a
possibilidade de o desenvolvedor se perder em detalhes??

¢ Maturidade dos requisitos: O cliente conhece todos os requisitos que quer?

e Custo de desenvolvimento: Qual é o custo da qualidade e o custo de ownership

do projeto?

59

Relacionamentos dentro do time: Existe distancia geografica entre os membros
do time? O time estad focado em trabalho em equipe ou sdo os membros
colaboradores individuais para o projeto?

Flexibilidade dos stakeholders: Os stakeholders conseguem adaptar-se ao
projeto e ao time?

Experiéncia do time: Qual é o nivel de capacidade de cada membro do time?
Comprometimento dos clientes: H& alguém diretamente responsavel pelo
projeto na empresa cliente?

Documentacio: E necesséria documentacgéo a ser entregue ao cliente?
Complexidade do programa: Quédo complexo € o programa em termos de
inovacao?

Patamar minimo de tamanho do programa: Quéo alto é este patamar?
Estabilidade do ambiente do programa: Quéao estavel é este ambiente?
Tamanho do time: Qual é o tamanho do time?

Familiaridade com a aplicacdo: Trata-se de uma aplicacdo familiar ou
totalmente nova?

Linguagens de programacgédo a serem usadas: depende-se de capacidades
escassas para completar o projeto?

Método de contrato: Preco fixado por entrega de produto ou determinado pelo
tempo e pelo custo?

Influéncia de terceiros quanto a escolha da metodologia: Existe pressdo de

terceiras partes para que o time use certo método?

Esta lista serd tomada como base e filtrada para o problema que esta sendo

enfrentado e para o contexto de um trabalho de formatura. Obviamente, critérios de

grupo de trabalho ndo se aplicam, pois o projeto serd desenvolvido por uma Unica

pessoa. Dimensdes de custo também nédo serdo consideradas, assim como questdes

contratuais. Obtém-se entéo a seguinte lista, com critérios semelhantes agrupados.

Capacidade de lidar com incertezas: A metodologia permite lidar com riscos

ainda desconhecidos?

60

e Capacidade de lidar com mudancas de escopo: Os métodos permitem que se
mude radicalmente o0 escopo do projeto sem impor grandes mudancas na
arquitetura do projeto?

e Robustez quanto a mudanca nos requisitos: A metodologia tem espaco para
mudancas nos requisitos sem requerer grandes retrabalhos?

e Capacidade de permitir aprendizado durante o processo de desenvolvimento:
A metodologia permite que o programador aprenda sobre as tecnologias
envolvidas durante o projeto?

e Rastreabilidade e documentacédo: A metodologia permite que cada elemento
do sistema pronto possua uma causa de existéncia bem definida nos

requisitos? As decisdes sdo bem documentadas?

Graduar cada um dos elementos da lista acima de 1 a 5, sendo 5 o valor que indica
maior intensidade, como mostrado na escala abaixo, permitird determinar o quao
importante cada dimensdo é para 0 projeto. Esta importancia representara um

problema que devera ser enderecado pela metodologia.

e 1: Irrelevante ou ndo presente no projeto

e 2: De pequena importancia ou presenca esporadica no projeto
e 3: De importancia ou presenga a no projeto

e 4: De forte presenca ou importancia no projeto

e 5: De importancia crucial para o projeto

Por exemplo, espera-se que 0 projeto tenha requisitos estaveis, por se tratar
essencialmente de um sistema de gerenciamento de banco de dados. Pode-se,
portanto, classificar o critério Volatilidade de requisitos como tendo intensidade 1,
dado que este fator ndo esta presente no projeto. Trata-se de uma dimensao que as
metodologias estudadas néo terdo que resolver, e o fato de uma destas poder

enderecar melhor este desafio é totalmente irrelevante.

Por outro lado, o autor ndo possui fortes conhecimentos prévios sobre a linguagem de
programacao usada para implementacao da solucdo: pode-se dar intensidade 4 ou 5

para este critério pois a aprendizagem da tecnologia durante o processo certamente

61

estara presente nesse problema. Isso significa que esta é uma dimenséo prioritaria na
escolha da abordagem de resolugcédo do problema. Esta avaliacdo dos critérios nada

mais € do que a definicdo dos pesos da matriz de deciséo.

Tabela 3 — Pesos da matriz de decisao

Critério Peso
Resiliéncia a riscos

desconhecidos 2
Volatilidade de requisitos 4
Volatilidade da arquitetura

Necessidade de documentacao 4
Aprendizado durante o .

processo

Fonte: Do autor

2.2.3. Adaptacao das metodologias aos critérios: Notas da Matriz de Deciséo

Aqui sao definidos os graus de alinhamento das metodologias com os critérios
apresentados acima, ou, em outras palavras, as notas de cada uma delas na matriz

de decisdo. Sera usada uma escala de 1 a 5, onde 5 representa a mais alta adaptacao.

Como exemplo, considerando o alinhamento entre Volatilidade de Requisitos e a
metodologia agil, a nota € 5, pois, como foi exposto acima, métodos &geis sao
adaptados a projetos de alta volatilidade de requisitos. Processos do tipo Waterfall
possuem pouca robustez para lidar com requisitos variaveis e recebem nota 1 para
esta dimensé&o. Juntando as notas das alternativas com os pesos dados a cada um
dos critérios obtém-se a matriz de decisdo, representada na tabela 4. A Metodologia
vencedora é a metodologia de protétipos, ganhadora por pouco sobre os métodos

ageis, como indicado na linha Resultado Final da matriz.

Tabela 4 — Matriz de decisdo da metodologia (Continua)

Critério Peso Waterfall Agile Protétipos

Resiliéncia a riscos desconhecidos 2 1 5 3
Volatilidade de requisitos 4 1 5 4

62

Conclusdo
Critério Peso Waterfall Agile Protétipos
Volatilidade da arquitetura 2 1 2 4
Necessidade de documentacdo 3 5 3 5
Aprendizado durante o processo 5 1 4 4
Resultado Final 28 63 65

Fonte: Do autor

Processo Waterfall sdo pouquissimos adaptados ao tipo de projeto que sera
desenvolvido, em especial pois apresentam baixissima resiliéncia a mudancas e

assumem um conhecimento prévio das tecnologias que o autor ndo pode oferecer.

Entre a metodologia Agil e o Processo Unificado, o resultado foi praticamente um
empate. Métodos ageis se mostram mais adaptados a lidar com volatilidade de
requisitos, mas produzem menos documentagéo e sao, portanto, menos propensos a

oferecer rastreabilidade.

Prevaleceram os métodos do tipo UP, que se mostraram equilibrados em todos os
critérios escolhidos. Como ja foi mencionado na revisao da literatura, este equilibrio &
caracteristica fundamental dos métodos UP, que se localizam no meio do espectro de

agilidade, oferecendo elementos dos dois extremos.

Uma vez escolhida a metodologia, é necessario escolher o método que a implementa.
Trata-se de uma decisao de carater tatico, em oposicao a escolha que acaba de ser
feita, que possui caracteristicas estratégicas, mas ainda de suma importancia, em
especial para métodos de protétipos, que possuem uma grande variedade de métodos

disponiveis no mercado. A subsecédo seguinte tratara deste assunto.

2.3. Escolha e descricdo do método

2.3.1. Escolha do método

A escolha do método sera baseada em um Unico critério, extremamente simples, mas

na opinido do autor muito efetivo do ponto de vista pratico: O numero de projetos

63

desenvolvidos com a ajuda de cada método acessiveis ao autor. Para determinar esta

disponibilidade, o autor atuou em duas frentes.

Primeiramente, efetuou-se uma pesquisa sobre os trabalhos de formatura publicados
no site do departamento de Engenharia de Producdo da Escola Politécnica da USP,
buscando por temas semelhantes ao desta obra, a saber, especificacdo e

desenvolvimento de softwares, e tomou nota dos métodos usados pelos alunos.

Em seguida, foram buscados na Biblioteca da Engenharia Elétrica e da Engenharia
de Producdo titulos que descrevessem métodos de prototipos, em especial métodos
do tipo Unified Process. Foram pesquisadas obras que mostrassem, além dos
conceitos tedricos dos processos, exemplos de uso destes, para tornar a aplicacao do

método por parte do autor mais simples e eficaz.

ApoOs esta rapida busca por um método que implemente as ideias da filosofia de
protétipos, decidiu-se por utilizar o método Praxis, do Engenheiro Wilson de Padua
Paula Filho. O Praxis foi utilizado em maior ou menor intensidade em todos 0s
trabalhos de formatura do PRO que lidaram com especificacdo de software nos
altimos trés anos, tendo sido usado em sua totalidade por Michailovici (2012) e
Sumares (2012), e a Biblioteca da Producdo possui literatura satisfatoria sobre o

processo.

2.3.2. Breve descricdo do Método Praxis

O Praxis € um método baseado em iteracfes. Cada iteracdo compreende um ciclo
completo das atividades fundamentais da engenharia de software apresentadas na
secdo 2 da revisdao da literatura deste trabalho (especificacdo de requisitos,
implementacédo, etc). Estas tarefas fundamentais recebem o nome de fluxos. Dizer
“Tarefa de Especificagdo de Requisitos” é totalmente equivalente a dizer “Fluxo de

Requisitos”.

Cada iteracdo pode ser considerada como um mini-projeto Waterfall, cujo produto final
€ um protoétipo. Quando o protétipo satisfizer todos os requisitos definidos pelo cliente,

0 projeto é considerado terminado.

64

Desta descricao deve-se depreender dois aspectos principais do Praxis (e de qualquer
outro método de protoétipos). Primeiramente, os fluxos serdo executados em iteracoes,
e existirdo iteracdes até que o produto final for considerado satisfatorio. Em segundo
lugar, o produto final s6 é atingido na ultima iteracdo. Esta é uma diferenca
fundamental dos métodos ageis para o Praxis: Enquanto esses produzem um
programa pronto para uso ao final de cada sprint, o Praxis ndo visa obter um software
funcional antes do fim. A finalidade de prototipos € a de provar um conceito ou superar
um risco, e ndo de prover funcionalidade, e por isso muitos sdo descartados apds sua

producéo

Mas qual é a estrutura basica de uma iteracdo? Qual deve ser o fluxo com maior
intensidade de trabalho em cada uma delas? O que esperar como resultado de cada

ciclo? As respostas séo apresentadas abaixo.

2.3.2.1. Estrutura de uma iteracéao

A imagem da capa da terceira edicdo do livro Engenharia de Software (Padua Filho,
2010) traduz de maneira simples e expressiva todo o processo Praxis, e por isso esta
representada na figura 11. Uma iteracdo é a execucdo sequencial de cada um dos
fluxos mostrados na ilustracdo, com duracdo média de uma semana. A curta duracao
€ fundamental, pois forca os engenheiros a priorizarem suas atividades e impossibilita
o dispéndio excessivo de tempo com uma sé atividade, o que aproximaria 0 processo

da metodologia Waterfall e eliminaria suas vantagens.

2.3.2.2. Objetivos de uma iteragao

E fundamental que cada iterac&o possua um objetivo, sem o qual ndo ha como medir
seu sucesso. Para atribuir metas ao trabalho, o Praxis agrupa iteracdes em fases, e
define a meta de cada fase como sendo um documento que formaliza os resultados
atingidos pelas iteracdes. Como exemplo, a terceira fase do método possui como
deliverable o documento ERSw (especificacao dos requisitos do software) totalmente
completo. Quando todas as secdes deste documento tiverem sido preenchidas

corretamente, a quarta fase tera inicio.

65

O numero de repeticdes € entdo variavel: Devem ser feitas tantas iteragbes quanto
forem necessarias para atingir o objetivo da fase, respeitando o limite de duracao de
cada ciclo. De maneira geral, uma fase precisa de trés a cinco iteracdes para atingir
seus objetivos (Padua Filho, 2003, p. 1)

2.3.2.3. Quanto tempo atribuir a cada fluxo em uma iteracao?

Chega-se ao problema de priorizagéo de uso do tempo por fluxo. Quanto esforco deve
ser dado ao fluxo de implementacdo na primeira fase do projeto? Provavelmente ndo
muito, dado que pouco se conhece sobre o sistema a ser desenvolvido. Por outro lado,
o tempo gasto com testes ao final do projeto deve proporcionalmente grande, uma vez

que todos os requisitos ja foram estabelecidos.

Como exemplo, o quadro 2 mostra as tarefas da fase de Ativacdo, a primeira do
meétodo. Nota-se que ha trés atividades ligadas ao fluxo de requisitos, mas somente
uma (opcional) de implementacéo. E de se esperar que a proporcdo de tarefas de
implementagé&o cresga com a maturidade do produto.

Quadro 2 — Tarefas da fase de Ativacéo

Fluxo Tarefa

Requisitos Determinacéo do contexto
Requisitos Definicdo do escopo

Requisitos Definicdo dos requisitos (preliminar)
Andlise (Nao ha atividades)

Desenho Esboco arquitetnico
Implementagéo Prototipagem inicial (se necessério)
Testes (Nao hé atividades)

Fonte: Adaptado de Padua Filho (2003)

A figura 12, j4 apresentada na revisao bibliografica, mostra a intensidade de cada um
dos fluxos durante as fases, cujos nomes estéo indicados na primeira linha. (Por ser

baseada no processo RUP, as fases tém nomes diferentes)

66

Para solucionar o problema de priorizagéo, o Praxis define scripts para cada uma das
fases. Scripts sao roteiros que descrevem as tarefas a serem executadas em cada
iteracdo daquela fase. Se as tarefas definidas forem em sua maioria pertencentes ao

fluxo de especificacdo de analise, entdo a fase sera focada neste aspecto.

Figura 11 - Atividades no Praxis

Conceito Inicial

[Requisitos]
A%
[Analise]
[Desenho]
[Implermentagdo]

Testes

FProduto completo?

Sim

Fonte: Adaptado de Padua Filho (2010)

Figura 12 - Distribui¢c@o da intensidade de trabalho com o tempo no Praxis

67

iniciagio | Elaborago Construgio Transicdo
I1 El |E2 | C1 c2 Cc3 C4 | T1 | T2
Modelagem de Negécio
Requisitos ‘ —
Anélise e Design Y =
Implementacio e i
Teste
Implantagao

Fonte: infoescola.com

Agora gue ja se conhece um pouco mais sobre o Praxis, este sera usado para resolver
o problema da Courrieros. As secfes de 3 a 5 tratam da aplicagdo do método no
contexto da criacdo do software Courribilidade, comecando pela especificagdo de
requisitos.

68

3. Especificacao dos requisitos

3.1. Requisitos na Engenharia de Software

Assim como em qualquer projeto de engenharia, requisitos séo a base sobre a qual
se desenvolve um projeto de software. Nesta disciplina, requisitos podem ser divididos
em requisitos funcionais e nao-funcionais. Requisitos funcionais indicam o que o
software deve fazer, enquanto os ndo-funcionais definem restricbes sobre como estas
funcdes podem ser executadas. Por exemplo, o produto deste trabalho, o programa
Courribilidade, possui como requisito funcional executar o backup de dados essenciais
no software Dropbox. Um requisito ndo-funcional ligado a este requisito funcional pode
ser que o tempo para executar a gravagao dos dados no servidor ndo pode superar 5

minutos.

Como afirma Padua Filho (2003, p. 87), uma boa engenharia de requisitos é de
fundamental importancia para garantir o sucesso de um projeto de software. Mesmo
na aplicacdo de métodos &geis, € fundamental que os requisitos do ciclo de
desenvolvimento em questédo sejam precisamente definidos para que este possa ser
bem-sucedido. Ainda de acordo com o mesmo autor (2003, p. 90), especificacbes de

requisitos apresentam certas caracteristicas que definem sua qualidade. S&o estas:

e Correcao: Os requisitos da especificacdo sdo realmente requisitos desejados
no produto final

e Precisdo: Os requisitos apresentam definicdo precisa e objetiva, sem
ambiguidades ou margens para interpretacao subjetiva

e Completude: Nenhuma funcionalidade pode ser ignorada

e Consisténcia: Requisitos ndo apresentam conflitos entre si, € possivel
implementar todos 0s requisitos ao mesmo tempo

e Priorizagéo: Cada requisito deve ser classificado de acordo com sua

e Verificabilidade: Todos os requisitos definidos na especificagdo devem ser
verificaveis, i.e., deve ser possivel determinar se certo requisito foi

implementado

69

e Mutabilidade: E possivel mudar requisitos da especificacdo sem grande
esforco, mantendo consisténcia e completude
e Rastreabilidade: Cada requisito deve poder ser rastreado desde suas

consequéncias e permitir o rastreamento de suas origens

3.2. Requisitos no Praxis

3.3. Estrutura desta secao

A estrutura desta secéo baseia-se no papel dos requisitos no processo Praxis. Em um
primeiro momento serdo apresentados os beneficios que sédo esperados pela geréncia

da Courrieros do sistema desenvolvido.

Em seguida séo apresentados os casos de uso do sistema, que séo apresentados em
um diagrama de contexto UML. Nesta secdo esta a base sobre a qual sera construida
0 sistema, pois ai sdo definidas e detalhadas formalmente todas as funcionalidades

gue sao esperadas do sistema.

Na sequéncia, parte-se para a enumeracdo e desenho das interfaces do
Courribilidade. Existem dois tipos de interface segundo o processo de
desenvolvimento adotado: Interfaces de usuario e interfaces externas. Interfaces de
usuario sao aquelas que os atores confrontam quando do uso do sistema. Um bom
exemplo é a tela de cadastro de funcionarios, reproduzida na figura 13. Interfaces
externas sdo aquelas usadas pelo sistema para se relacionar com seu ambiente. Um

exemplo claro € a comunicacdo com o aplicativo Excel.

Por ultimo sdo apresentados os requisitos ndo-funcionais do Courribilidade. Se os
casos de uso representam o O QUE do sistema, os requisitos ndo-funcionais s&o o
COMO. Exemplo de um requisito deste tipo é a velocidade com que o sistema deve

gerar relatérios em formato Excel.

E importante notar que a estrutura aqui apresentada é adaptada do Praxis, mas néo

segue estritamente a légica por ele proposta para facilitar o entendimento do texto.

70

Figura 13 - Cadastro de funcionario

P "

o2 Cadastro Funcionério | = || B |js£3l

Informacgdes Gerais

MNome *

RG* -

CPF* — -

Telefone *) -

Salario™

Posigao™ W
Sexo

® Masculino i) Feminino

E sécio?

i) Sim ® MNao

Enderego
Logradouro™
NE
CEP~ -
(Cidade *
UF=

Woltar Insedr Funciongrio

L_F]

Fonte: Do autor

3.4. Resultado do fluxo de requisitos

3.4.1. Beneficios esperados do sistema

Os beneficios esperados do Courribilidade séo definidos na primeira fase do Praxis, a
de ativacao, e é o primeiro resultado concreto do fluxo de requisitos. Trata-se de uma
enumeracgdo das melhorias esperadas do sistema pelo cliente do projeto, e, portanto,

totalmente correlacionado com os problemas que este cliente enfrenta. No caso da

71

Courrieros, esta correlacdo é evidente quando se compara a secao de definicdo do

problema com a o quadro 3.

Quadro 3 — Beneficios esperados do sistema

Numero de ordem Beneficio Valor para o cliente

Maior precisdo nos dados)
1 o .) Essencial
operacionais e financeiros

Maior agilidade na geracao de)
2 . Essencial
relatorios

3 Relatérios mais inteligiveis Desejavel

Maior precisédo na avaliacao]
4 Essencial
dos entregadores

Maior abrangéncia dos]
5 . i Essencial
relatorios de venda por cliente

Maior agilidade na geracéo de)
6 .) Essencial
relatorios de venda por cliente

Maior espectro de indicadores .
7 o Desejavel
de avaliacdo de entregadores

Maior espectro de indicadores .
8 L] Desejavel
de avaliacdo de clientes

Geragao automética de notas

9 o Opcional
fiscais
Geragédo automatica de notas)

10 o Opcional
fiscais

Comunicagdo com o aplicativo]
11) Opcional
da Courrieros

Geragédo automética de]
12 Opcional
protocolos de entrega

Georeferenciamento de y
13 Desejavel
entregas

Fonte: Do autor

E importante notar também que todos os beneficios possuem também uma
classificacéo de valor para o cliente, que indica o quanto cada melhoria é importante
para a empresa contratante. No caso da Courrieros, os beneficios ligados a correcéo

e precisdo dos dados séo os de maior valor, enquanto que os beneficios ligados a

72

integragdo com outros sistemas, como emisséo de notas fiscais ou comunicagao com
o aplicativo séo considerados pelo gerente financeiro da Courrieros como opcionais

apenas.

A definicado de importancia para os beneficios se mostra essencial em projetos em que
os recursos de desenvolvimento s&o escassos, pois ajuda a priorizar funcionalidades

e a entregar o maximo de valor com o tempo e capital disponivel.

3.4.2. Casos de uso e atores do sistema

Nesta subsecéo sdo definidos os casos de uso do sistema, i.e., as representacées
das funcbes do produto na forma escrita ou diagramatica, assim como 0s atores que
sobre eles agem. Atores séo representacdes das classes de usuarios que agem sobre
o sistema, e modelam os papéis que cada usuario tem no seu relacionamento com o
sistema. Um usuario humano pode ter mais de um papel e ser representado por mais
de um ator. Por exemplo, o sr. Biselli, gerente financeiro da Courrieros, pode ora agir
sobre o sistema como administrador deste, adicionando ou excluindo usuérios, ora

registrar entregas e, portanto, agir como controlador.
A lista de casos de uso € gerada iterativamente no Praxis, comecando na fase de

Concepcao e terminando na primeira iteracdo da fase de Levantamento de Requisitos.

O resultado final das atividades é mostrado nesta subsecéo.

Quadro 4 - Casos de uso do Courribilidade (Continua)

Numero de ordem Caso de uso Descricao

) . Inserir usuario que tera acesso
1 Inserir usuario o
ao Courribilidade

Apagar usuario que tem

2 Apagar usuario .
acesso ao Courribilidade
. . Alterar dados de usuario que
3 Editar usuario o
tem acesso ao Courribilidade
o Inserir cliente na base de
4 Inserir cliente

dados do Courribilidade

Continuacao

73

NUmero de ordem

Caso de uso

Descricao

10

11

12

13

14

15

16

17

18

19

20

Apagar cliente

Gerar relatério de clientes

Editar cliente

Inserir entrega

Editar entrega

Apagar entrega

Gerar relatério de entregas

Inserir funcionario

Apagar funcionario

Editar funcionario

Gerar relatério de funcionario

Gerar relatério de resultados

Gerar relatério de fluxo de

caixa

Gerar balanco patrimonial

Georeferenciamento de

entregas

Emissao de nota fiscal

Apagar cliente presente na
base de dados do
Courribilidade
Gerar relatério gerencial de
clientes
Alterar dados de cliente
presenta na base de dados do
sistema
Inserir na base de dados de
uma entrega
Editar informacfes de uma
entrega presenta na base de
dados
Remover da base de dados
entrega la presente
Gerar relatério gerencial de
entregas/vendas
Inserir funcionario no banco de
dados do sistema
Remover funcionario do banco
de dados do sistema
Editar informac6es presentes
no banco de dados sobre um
dado funcionério
Gerar relatério gerencial sobre
funcionérios
Gerar relatério de resultados
econdmicos de um dado
periodo
Gerar relatério de fluxo de
caixa de um dado periodo
Gerar relatério de balanco
patrimonial da empresa
Célculo das coordenadas
geogréficas de cada ponto de
coleta e entrega
Emisséo de nota fiscal para

cliente

74

Concluséo
Numero de ordem Caso de uso Descricao
Backup de dados relevantes
para sistema de
21 Backup automatico de dados

armazenamento externo (cloud

ou néo)

Fonte: Do autor

E importante frisar que os casos de uso s&o a traducdo em fungdes do sistema dos
beneficios esperados. E facil notar isto: No quadro 4 acima observamos o caso de uso

Geracdao de relatério de entregas, que é claramente decorrente dos beneficios 5 e 6.

Quadro 5 - Enumeracéo e descri¢do dos atores do sistema

Numero de ordem Ator Definicao
Funcionério responséavel pela
1 Gerente . ~
administragdo da empresa
Funcionério responséavel pela
alocacdo de ciclistas para cada
2 Controlador de entregadores entrega e pelo registro de
entregas no livro de controle da
empresa
Aplicativo de gestéo de
3 Aplicativo entregas e rastreamento de
ciclistas
] Sistema operacional onde sera
4 Windows i
instalado o programa
5 Sdcio Sdcio da empresa Courrieros
Funcionario que executa
6 Entregador
entregas
o) Investidor que néo trabalha na
7 Saocio-Investidor
empresa
Funcionario responsavel pela
8 Administrador do sistema manutencdo do

Courribilidade

Fonte: Do Autor

75

Cada caso de uso é executado por um ator (como mostrado no quadro 5), que possui
também caracteristicas de uso particulares, o que influencia a realizacdo das
interfaces e dos fluxos de caso de uso. O controlador provavelmente usarad o
Courribilidade varias vezes ao dia. Um sdcio-investidor, porém, deve atuar sobre o
sistema uma ou duas vezes ao més. E natural esperar, por exemplo, que um ator com
baixas habilidades em informética apresente dificuldades para utilizar uma interface
grafica com muitas op¢des ou funcdes de natureza complexa, da mesma maneira que
alguém que interage pouco com o sistema pode requerer uma GUI (Graphical User
Interface) intuitiva dado que ndo conseguira memorizar os comandos do sistema com

pouca frequéncia de uso.

Casos de uso podem ser agrupados em classes, que indicam funcionalidades
semelhantes entre si ou que implementam o mesmo beneficio. Por exemplo, seria
possivel agrupas os casos de Inserir, Apagar e Editar usuéario na classe Gestao de
Usuérios. Isso torna na opinido do autor os casos de uso mais compreensiveis do
ponto de vista das melhorias trazidas, mas dificulta o detalhamento destes, atividade
executada mais adiante. Este texto ir4 utilizar as duas denominacdes, dependendo do

contexto.

Casos de uso podem ser apresentados de forma mais visual usando diagramas UML.
Para isto, é possivel usar o diagrama de contexto, que Padua Paula descreve como
uma figura que mostra as interfaces do sistema com seu ambiente (2003, p. 100) e as
funcionalidades de que estas interfaces participam. Trata-se de uma visao de alto nivel

do sistema. A figura 14 mostra o diagrama de contexto do Courribilidade.

76

Figura 14 - Diagrama de contexto do Courribilidade

Emlssan de nota=<pxend== Gen referenciamento ﬁ%

- "-"-E}{'[End’?’ -

Q y Aplicativo
)\ Cadastrar entrena

Controladaor Twi zzpdendss
Emissao de protocolo E/:)t
Windows (Excel)

Ermissan de relatarios
i
Gestdo financeira
Gerente

Gestdo de RH
Investidar
%\ Gestdo do software
Admin

Fonte: Do Autor

Nota-se que foi usada a denominagdo de classes para 0s casos de uso, 0 que
favorece o entendimento das funcionalidades que sdo executadas por cada um dos

atores e torna o diagrama mais sintético.

O diagrama de contexto fornece uma visédo geral sobre o sistema, mas nao fornece
detalhes sobre como as funcionalidades devem ser implementadas pelo programador
ou utilizadas pelo usuario. Isso € feito no detalhamento dos casos de uso, apresentado
abaixo. Mais uma vez, nem todos 0s casos de uso sao detalhados neste documento,

pois isto tornaria o texto de dificil leitura.

3.4.2.1. Detalhamento dos casos de uso

1

Detalhamentos seguem uma estrutura bem definida: primeiramente séo expostas as
pré-condi¢cdes para que 0 USUdrio possa ter acesso ao caso de uso, Como possuir
certas permissfes de uso ou estar em algum modo do sistema. Em seguida é
mostrado o0 passo a passo que o ator deve seguir para executar a funcéo, e por fim
sao detalhados sub-fluxos que podem estar contidos nos detalhes de execucdo da
funcao.

Abaixo sdo apresentados os detalhamentos para os casos de uso de insercdo de

usuario no Courribilidade e de geo-referenciamento de entregas.

3.4.2.2. Detalhamento Caso de Uso Insercao de usuérios

3.4.2.2.1. Pré-condicdes

1. O usuario deve estar registrado como administrador do sistema

3.4.2.2.2. Detalhamento do fluxo

1. O administrador clica no botdo “Gestéo de Usuarios”, dentro do item “Usuarios”
na barra de menu principal

2. O Courribilidade Exibe o painel de gestao de usuarios, ocupando integralmente
a tela do sistema
O administrador clica no botao “Inserir usuario” da tela de gestao de usuarios

4. O Courribilidade exibe a tela de insercéo de usuarios e bloqueia a execucao de
outras funcionalidades do programa enquanto o usuario nao finalizar o
processo de insergéo

5. O administrador preenche os dados do novo usuario e clica no botéo inserir
usuario

6. O Courribilidade verifica a validade de todas as informagdes; Caso haja pelo
menos uma informacg&o incorreta, executa-se o subfluxo alerta de erro de dados
incorretos

7. Caso todas as informacgdes estejam corretas, o Courribilidade cria na base de

dados o usuario com as informacgdes dadas pelo usuario

78

8. O Courribilidade exibe uma mensagem de sucesso, fecha o formulario de

insercdo de usuérios e desbloqueia a tela de gestdo de usuarios.

3.4.2.2.3. Detalhamento do subfluxo alerta de dados incorretos

1. O Courribilidade exibe uma mensagem de erro com uma lista das informacdes
incorretamente digitadas ou faltantes
2. O usuario clica em OK

3. O usuério é redirecionado para a tela de insercdo de usuérios

3.4.2.3. Detalhamento do caso de uso Georeferenciamento de entregas

3.4.2.3.1. Pré-condicdes

1. O usuario deve possuir permisséo para executar esta tarefa

3.4.2.3.2. Detalhamento

1. O gerente seleciona na barra de menu principal o botdo “Georeferenciamento”
2. O Courribilidade exibe no painel esquerdo a tela de controle de
georeferenciamento e no painel direito o painel de geracdo de relatério de
georeferenciamento pelo banco de dados
3. Caso o gerente deseje um relatério com dados externos:
a. O gerente clica no botdo correspondente no painel esquerdo
b. O Courribilidade exibe a tela correspondente a geracdo de relatérios
com dados externos
O gerente carrega o arquivo de dados externos
d. O Courribilidade exibe mensagem de erro ou sucesso conforme o
resultado da leitura do arquivo
e. Em caso de sucesso, o gerente clica no botéo gerar relatorio
f. O Courribilidade comeca a gerar o relatorio e exibe mensagem de
sucesso quando terminado
4. Caso o gerente deseje gerar relatério com dados de entregas do banco de

dados:

79

a. O gerente preenche os campos de busca necessérios para gerar seus
resultados

b. O Courribilidade executa a busca no banco de dados e mostra painel
com resultados no painel direito
O gerente clica em gerar relatério

d. O Courribilidade gera relatorio e avisa o gerente quando do sucesso da

geracao deste

Detalhamentos sdo construidos em comunica¢cdo com 0 Usudrio e sao a base para a
implementacgdo do sistema. Lendo-os com atenc¢do, j& € possivel visualizar como sera
o fluxo de execucédo de cada uma das funcionalidades pelo usuario e como deveréo
ser dispostas as GUI para satisfazer cada um dos requisitos. E possivel também
entender como o detalhamento € fundamental para uma constru¢cdo de manual do

sistema.

3.5. Interfaces do sistema

Apos a descricdo dos casos de uso, o Praxis foca na definicdo das interfaces do
sistema. Interfaces sdo os canais através dos quais o sistema interage com seu
ambiente. As telas vistas pelo usuéario quando do uso do programa sao claramente
interfaces, assim como as funcfes que se comunicam com o programa Excel. O Praxis

prevé quatro tipos de interface: de usudario, de software e hardware.

Interfaces de usuario sdo 0s canais que O usuario usa para se comunicar com o
sistema, e sao principalmente compostas pelas telas. Interfaces de software sao
meios de comunicagdo com outros programas, como as fungdes de leitura e escrita
sobre arquivos do sistema operacional usadas para gerar relatérios Excel. Interfaces
de hardware sédo ligacbes com recursos como memdaria ou cameras de video, que néo
se aplicam ao Courribilidade, enquanto que interfaces de comunicagdo S&o 0sS
protocolos ndo-usuais de comunicagcdo com o meio externo. Como o Courribilidade

nao faz uso de interfaces ndo convencionais, estas nao serdo tratadas.

3.5.1. Interfaces de usuario

80

O quadro 6 mostra as interfaces de usuario do Courribilidade. E importante mencionar

que as interfaces foram agrupadas por beneficio, para diminuir seu numero e tornar

sua leitura mais facil. Por exemplo, existem diversas telas ligadas a gestdo de RH,

como edicao de funcionarios ou geracdo de relatorios, mas somente uma interface, a

tela de gestéo de RH, foi mostrada aqui.

Quadro 6 - Interfaces de usuario do sistema (Continua)

Ndmero de .
Nome Ator Caso de uso Descricao
ordem
Interface para a
1 Tela inicial Todos Login de usuario autenticagdo do
usuario
Gerente e Tela onde entregas

Tela de gestéo de

entregas

Tela de geracgéo de
relatorios

gerenciais

Tela de gestédo de
RH

Tela de gestado de

clientes

Tela de gestéo

backup

Tela de geracgdo de
relatério de

resultados

controlador de
ciclistas
Gerente,
sécio-
investidor e

sdcio

Gerente de

RH e s6cio

Gerente de
marketing,
sécio-
investidor e

sécio

Gerente do

sistema

Gerente,
socio-
investidor,

sécio

Gestéao de vendas

Gestao de

resultados

Gestdo de RH

Gestao de clientes

Backup de dados

Geracao de

relatorios

sdo cadastradas no

banco de dados

Interface onde séo
gerados relatérios de

resultados financeiros

Interface onde séo
cadastrados,
consultados e e
deletados os

funcionarios da

Interface onde séo
cadastrados,
consultados e
deletados clientes

Interface onde o
backup de dados é
executado

Interface onde sao
gerados relatérios
gerenciais como
relatério de resultados

e relatério de clientes

81

Numero de .
Nome Ator Caso de uso Descricao
ordem
Tela de emisséo de Emiss&o de nota Interface onde é
8] Gerente])
nota fiscal fiscal gerada nota fiscal
Tela onde sé@o
Tela de i .
9 Gerente Georeferenciamento gerados relatérios de

georeferenciamento _
georeferenciamento

Fonte: Do autor

3.5.2. Interfaces de software

As interfaces de software sdo menos numerosas do que as de usuério, e sao

mostradas no quadro 7.

Quadro 7 - Interfaces de software do Courribilidade

Numero de ordem Nome Ator Caso de uso Descricao
Conexdo com o .
) Sistema Geracao de
1 sistema) o A
) operacional relatorios
operecional
Tabelas do banco
Conexdo com o de dados que
. Sistema de .
2 servico de backup Backup de dados serdo salvas no
backup de dados)
de dados sistema de
backup
L o L Dados em
Comunicagéao Aplicativo Comunicagéao
3 o o o formato JSON ou
com o aplicativo Courribilidade com aplicativo
XML
L Todos os casos Comunicagéo
Comunicagéo i
que envolverem através da
4 com o banco de SQL Server

leitura/escrita do linguagem SQL-
dados
banco de dados Server

Fonte: Do autor

82

3.6. Requisitos néao-funcionais

Requisitos funcionais, como mencionado na introducdo desta se¢éo, sdo as condicdes
de performance das funcionalidades. Mais claramente, sdo restricdes que as funcdes

do sistema devem obedecer para serem aceitas pelo cliente.

As principais restricbes em um sistema de informacéo séo relativas a eficiéncia de
célculo dos algoritmos, numeros maximo de transacdes aceitaveis por unidade de
tempo e tempo de resposta para uma dada requisi¢ado (estes dois Ultimos cruciais para

sistemas conectados a internet).

Como o Courribilidade nao sera um software web e ndo trabalhara com algoritmos de
computacdo complexos, as necessidades ndo-funcionais séo poucas e simples, e séo
mostrados no quadro 8. Estes foram levantados com o gerente financeiro, sr. André
Biselli, na primeira reunido de requisitos e mantiveram-se os mesmos até o final do

projeto.

Quadro 8 - Requisitos nao-funcionais do sistema

Requisito Descricao

Uma query com retorno de uma linha da tabela
Query unitaria ao banco de dados

ndo pode demorar mais do que 0,5 segundos

Uma query com retorno de mais de uma linha da
Query com retornos multiplos ao banco de dados tabela ndo pode demorar mais do que 5

segundos

A geracao e gravacao em disco de um relatério
Tempo de geracdo de um relatério qualquer qualquer ndo pode demorar mais do que 30

segundos

O backup de dados para a huvem nao pode

Tempo de backup do banco de dados))
demorar mais do que 2 minutos

Fonte: Do autor

Todas as restricdes levantadas tratam de tempo de resposta ou de execucédo de
alguma funcionalidade do sistema. Foram definidas de maneira subjetiva, e
representam o maior tempo que o sr. Biselli disse estar disposto a esperar para cada

uma das operacdes. Nao é sempre 0 caso para requisitos deste tipo: muitas vezes a

83

nao satisfagdo de um requisito ndo-funcional implica na perda de funcionalidade de
um caso de uso. Para sistemas web, por exemplo, se um website ndo responder
dentro de um certo intervalo de tempo definido pelo navegador, este envia um erro ao
usuario, que nado consegue fazer uso da pagina desejada, mesmo que esta esteja
pronta para oferecer seus Sservicos.

84

4. Andlise

Esta secao trata da analise do projeto Courribilidade. O fluxo de analise no Praxis visa
trés objetivos principais, segundo Padua Paula (2003, p. 121): Primeiramente, busca-
se modelar os conceitos trazidos pelo levantamento de requisitos de forma precisa.
Em seguida, verificar se os requisitos determinados anteriormente possuem a
gualidade necessaria. Por ultimo, procura-se detalhar estes requisitos para torna-los

compreensiveis para os desenvolvedores.

De maneira mais clara, a analise busca modelar os conceitos do dominio do problema.
Como ja foi visto antes, modelar € simplificar com um objetivo. Busca-se, portanto,

simplificar os requisitos de forma a tornar a sua implementacao possivel.

O fluxo de andlise ndo € exclusivo do desenvolvimento de software, mas é
caracteristico da engenharia de sistemas como menciona o Department of Defense
(DoD), o departamento de defesa americano (2001, p. 35). Ainda segundo o DoD,
existem diversos tipos de técnicas de andlise. (2001, p. 38), cada uma adaptada para
o tipo de sistema em projeto. O Praxis utiliza a Analise Orientada a Objetos, ou Object-
oriented Analysis, muito comum para o projeto de softwares.

4.1. Objetos

Objetos em linguagens de programacao a estes orientados sao estruturas de dados
gue contém informacdes, na forma de atributos, e codigo para manipular dados,
também chamados de métodos. Objetos podem controlar 0 acesso a seus atributos e
métodos através de permissdes, e podem interagir entre si através de mensagens
emitidas por um de seus métodos. Linguagens de programacao orientadas a objeto
consideram que todos os componentes de um programa Sao objeto, e 0 programa

funciona através da comunicacao seus diversos objetos. (Booth et al., 2007, p. 29).

Objetos sé@o, de maneira mais intuitiva, capsulas de dados e métodos, que sO expde
ao mundo exterior o que decidem mostrar. Esse tipo de estrutura de dados permite

aos desenvolvedores criar programas altamente modularizados e escalaveis.

85

4.2. Analise orientada a objetos

Grady Booch, um dos criadores da UML e guru da andlise orientada a objetos, fornece

uma definicéo clara e concisa dessa (2007, p. 42):

A analise orientada a objetos € 0 método de analise que examina 0s requisitos do
ponto de vista das classes e objetos encontrados no vocabulario do dominio do
problema

Percebe-se, portanto, que a analise esta intimamente ligada com o vocabulario usado
para definir o problema. Ora, no Praxis, o problema é definido no levantamento de
requisitos. Portanto, a andlise se concentrarAd nos requisitos levantados, mais

especificamente no fluxo dos requisitos.

4.3. Analise no Praxis

A andlise no Praxis € executada em seis atividades distintas, indicadas no quadro 9.
Mais uma vez, € importante mencionar que estas atividades nédo foram feitas na
sequéncia exata em que aparecem aqui. Cada uma € parte de uma iteracdo que
contém atividades de varios fluxos (como fluxo de Requisitos ou de Testes), mas para
tornar esta secdo mais compreensivel, o autor decidiu apresentar todas as etapas do
fluxo de andlise na mesma secao, seguindo a ordem em que estas sdo apresentadas

no quadro 9.

86

Quadro 9 - Atividades da andlise no Praxis

NUmero de ordem

Atividade

Descricdo sucinta

Identificacdo das classes

Organizacédo das classes

Identificag&o dos

relacionamentos

Identificagc&o dos atributos

Realizacdo dos casos de uso

Revisdo da analise

Identifica as classes do produto
baseada no detalhamento dos
casos de uso
Organiza as classes em
pacotes légicos

Determina os relacionamentos
de vérios tipos que podem
existir entre 0s objetos das
diversas classes identificadas
Levanta os atributos que
correspondem a propriedades
gue fazem parte do conceito
expresso pela classe

Verifica os fluxos dos casos de
uso, representando-os através
de diagramas de interacao
Valida o esfor¢o da andlise e o
correspondente esfor¢co dos

requisitos

4.4.

Fonte: Padua Filho (2003, p. 124)

Classes chave identificadas

Como foi dito de maneira superficial acima, a identificacdo de classes chave é feita

pela andlise do detalhamento dos casos de uso, responsabilidade do fluxo de

requisitos. O Praxis sugere marcar o nome do produto no estilo negrito sublinhado,

o de atores em sublinhado e o de outros substantivos em sublinhado duplo. Todas as

palavras marcadas com sublinhado sé&o potenciais classes.

O trabalho de identificacdo de classes é essencial para o sucesso do projeto, e pode

usar uma parte consideravel dos recursos disponiveis para a empreitada, como afirma

Padua Filho (2003, p. 120). Mesmo para um sistema simples como o Courribilidade,

consome-se quantidade consideravel de tempo para sua execuc¢éo. No corpo do texto

sdo apresentados os resultados da andlise feita sobre os detalhes dos casos de uso

apresentados anteriormente.

4.4.1.

87

Substantivos em insergdo de usuario

O administrador clica no botdo “Gestio de Usuarios”, dentro do item “Usuarios”

na barra de menu principal

O Courribilidade exibe o painel de gestdo de usuérios, ocupando
integralmente a tela do sistema

O administrador clica no botéo “Inserir usuario” da tela de gestéo de usuarios

O Courribilidade exibe a tela de insercdo de usuarios e bloqueia a execucao

de outras funcionalidades do programa enquanto o administrador nao finalizar

0 processo de insercéo

O administrador preenche os dados do novo usuario, a saber, nome de usuario,

senha e a identificacdo do funcionario (chave estrangeira) e clica no botdo
inserir usuario

O Courribilidade verifica a validade de todas as informacdes; Caso haja pelo

menos uma informacao incorreta, executa-se o subfluxo alerta de erro de dados
incorretos

Caso todas as informacgdes estejam corretas, o Courribilidade cria na base de

dados o usuario com as informacdes dadas pelo administrador

O Courribilidade exibe uma mensagem de sucesso, fecha o formulario de insercéo

de usuéarios e desbloqueia a tela de gestdo de usuarios.

4.4.2.

Substantivos em georeferenciamento de entregas

O gerente seleciona na barra de menu principal o botdo “Georeferenciamento”
O Courribilidade exibe no painel esquerdo a tela de controle de

georeferenciamento e no painel direito o painel de geracdo de relatério de
georeferenciamento pelo banco de dados

Caso o gerente deseje um relatério com dados externos:
a. O gerente clica no botdo correspondente no painel esquerdo

b. O Courribilidade exibe a tela correspondente a geracdo de relatérios

com dados externos

c. O gerente carrega o arguivo de dados externos

88

d. O Courribilidade exibe mensagem de erro ou sucesso conforme o

resultado da leitura do arquivo
e. Em caso de sucesso, o gerente clica no botéo gerar relatorio

f. O Courribilidade comeca a gerar o relatdrio e exibe mensagem de

sucesso quando terminado
4. Caso o gerente deseje gerar relatério com dados de entregas do banco de
dados:
a. O gerente preenche os campos de busca necessarios para gerar seus
resultados

b. O Courribilidade executa a busca no banco de dados e mostra painel

com resultados no painel direito
c. O gerente clica em gerar relatério

d. O Courribilidade gera relatério e avisa o gerente quando do sucesso da

geracéao deste
4.5. Determinacdo das classes pelas classes candidatas
Uma vez determinadas as classes candidatas, executa-se analisa-se com mais
cuidado estas para determinar quais sdo potenciais classes. O resultado é mostrado

no quadro 10

Quadro 10 - Resultado da analise dos casos de uso para determinagéo de classes (Continua)

Classe candidata

Anédlise

Barra de menu

Usuério

Dados

Alerta

Botdo Georeferenciamento
Painel esquerdo/direito
Georeferenciamento
Senha

Funcionario

Nome de usuéario

Provéavel classe

Provéavel classe

Atributo da classe usuério
Provéavel classe

Provavel classe

Provavel classe

Operacéo

Provavel atributo da classe usuario
Provavel classe

Provavel atributo da classe usuario

Concluséao

89

Classe candidata

Andlise

Banco de dados

Relatério

Tela

Dados externos

Mensagem de erro/sucesso
Entrega

Dados de entrega

Entidade externa, ndo tratada (ao contrario dos
resultados de pesquisas e escritas, que serdo
tratados)

Entidade de implementacéo

Provavel classe

Entidade externa, néo tratada

Provavel classe

Provavel classe

Atributo da classe candidata entrega

Fonte: Do autor

Vale a pena notar alguns fatos sobre a andlise: Elementos de interface de usuario
aparecem com alta frequéncia. Como ja estdo implementados como classes na
linguagem C#, ndo € necessario se preocupar com eles por ora. Além disso, algumas
classes que séo parte do projeto ndo sao facilmente identificadas através da marcacéo
dos substantivos. Sdo as classes de controle ou controladores, que tratam de
coordenar a execucdo de uma funcionalidade, e geralmente sdo associados a cada

caso de uso. Por se tratarem de classes muito abstratas, podem ser omitidas

Excluindo os itens de interface grafica e os atores e adicionando os resultados das
outras analises obtemos as seguintes classes mostradas na figura 15 para o
Courribilidade:

90

Figura 15 - Classes do Courribilidade

Cliente Funciondrio

Pessoa fisica

o Entrega
ou juridica &
Usudrio Endereco
. Conta
Nota fiscal .
bancaria

Fonte: Do autor

O Praxis sugere também que sejam mostradas as classes de fronteira, i.e., aguelas
através das quais ocorre a comunicacao do programa com o mundo exterior. Como o

Courribilidade possui muitas telas, isto ndo sera mostrado no corpo do texto.

4.6. Relacdes entre as classes

Uma vez estabelecidas as classes, passa-se a determinacao das relacdes entre elas.
Relacionamentos sdo conexdes logicas entre as classes do sistema. Podem ser de
diversos tipos, e 0s principais sdo o0s relacionamentos de associacdo e os de
agregacao. Um exemplo claro de associagao é a relacdo existente entre uma entrega
e um cliente. Nao pode existir entrega sem haver cliente, entdo é possivel que haja
uma relacdo de associacdo entre estas duas classes. Relacionamentos de agregacao
sdo conexodes do tipo “parte-todo” entre as classes. Por exemplo, é possivel pensar
na classe endereco como propriedade da classe cliente. Um endereco € portanto parte
de um cliente em particular, e o relacionamento entre eles € do tipo agregacdo. No
Praxis, estas relacdes sédo representadas através de diagramas de classe. Como nas

secOes anteriores, sO sdo dois dos relacionamentos obtidos.

91

Figura 16 - Relacionamento de Cliente-Entrega

Cliente pede Entrena

fazerPedidof

Fonte: Do autor

Figura 17 - Relacionamento Entrega-Nota Fiscal

Entrena Hera MHota Fiscal

pgerartlotalio

Fonte: Do autor

Relacionamentos na linguagem UML possuem diversos tipos de complexidade e nivel
de detalhes. E possivel, por exemplo, indicar a multiplicidade das associacdes, que

representa o nimero de elementos envolvidos na relagéo.

A figura 18 mostra as etiquetas de multiplicidade 0..* para as entregas e 0..1 para nota
fiscal. Deve-se ler o relacionamento assim: Da esquerda para a direita, uma entrega
gera zero ou uma nota fiscal (pode-se nao gerar nota fiscal pois o recibo é emitido
manualmente ou por outro sistema); Da direita para a esquerda, uma nota fiscal pode
ser emitida por nenhuma ou varias entregas (uma nota fiscal ndo necessariamente é

referente a uma entrega, e uma nota pode conter varias entregas).

92

Figura 18 - Relacionamento com direcao e multiplicidade

Entrega gera MHota fiscal
n.* 0.1

perartlotal

Fonte: Do autor

P&dua Filho (2003, p. 132) sugere que os detalhamentos de multiplicidade e direcéo
dos relacionamentos sejam deixados para a fase de desenho, e este trabalho segue

esta recomendacéo.

4.7. Realizagcdo dos casos de uso

A identificacdo das classes e dos relacionamentos deve permitir realizar os casos de
uso identificados no fluxo de requisito. Por realizacdo, entende-se, no caso de
sistemas orientados a objetos, a tradugcédo dos detalhamentos dos casos de uso em

interagcOes entre 0s objetos encontrados na analise.

Os relacionamentos entre objetos se dao por mensagens, ou seja, invocacdo dos
métodos ou procedimentos da classe receptora por parte da classe emissora. Um
exemplo no contexto deste trabalho: O objeto Nota Fiscal pede ao objeto Entrega o
valor de sua propriedade Preco. Neste caso, o emissor é a Nota Fiscal e o receptor,
gue possui o método, Entrega.

No Praxis, assim como em todos os métodos que utilizam a UML, representa-se 0s
casos de uso através dos diagramas de interacdo, que podem ser do tipo sequéncia
ou de colaboracdo. Diagramas de sequéncia enfatizam a ordem cronoldgica das
operacbes executadas sobre o sistema. Por isso, representam uma Vvisdo mais
proxima do sistema do detalhamento de casos de uso. O termo “mais préximo do
sistema” deve ser entendido aqui como representando maior proximidade as classes
que serdo implementadas no sistema. Diagramas de colaboracdo ddo énfase aos

relacionamentos entres as classes existentes no sistema. Foi decidido mostrar o

93

diagrama de sequéncia para o caso de uso escolhido pois este representa de maneira
mais inteligivel as operacoes e a légica da funcionalidade.

4.7.1. Diagramas de sequéncia

A figura 19 mostra o diagrama de sequéncia para o caso de uso de emissao de uma
nota fiscal. O diagrama da tem o objetivo de apresentar as operacdes necessarias
para a emissdo de uma nota fiscal na ordem cronologica em que acontecem. Ele
permite também a visualizacdo de todas as classes envolvidas e quando estas séo

invocadas pelo sistema.

Os retangulos na parte superior representam as classes que participam do processo.
As linhas (pontilhadas ou cheias) que descem das classes até a parte baixa da figura
séo as linhas de vida de cada classe, e representam o periodo de tempo pelo qual a
classe esta presente na memoria do programa. O usuario Controlador esta presente
desde o inicio, como indica sua linha do tempo integralmente cheia. Ja a classe Nota
Fiscal s6 é criada ao fim do processo, pela classe “Controlador de NF”, a classe que

€ responsavel pela coordenacao do caso de uso em questéo.

Figura 19 - Diagrama de sequéncia para insercao de cliente

Controladaor iTela de Entregas IControlador de NF iClignte IEntrega

T
I
deratEntrega ComNalag |

gerarEntregaComMot

T
I
I
I
I
I
I
I
I
I
obterDadosFiscaisClisgtel

dadnsFiscaisClients

I
obterDado5Entregas)
I

I
dadusEmr}agas
I

gerarkotad Y:Mota Fiscal

Fonte: Do autor

94

E importante notar que alguns objetos sdo efémeros, i.e., sdo criados somente para
efeito de realizac&o do caso de uso, e s&o destruidos logo depois. E o caso do objeto
da classe cliente: Ele surge para fornecer seus dados, e uma vez que estes sdo

obtidos, a classe nao é mais necessaria e é inutilizada.

4.8. Identificacdo dos atributos

Como mencionado no inicio desta secéo, atributos séo propriedades que definem uma
classe. No escopo deste trabalho, uma entrega é definida por um endereco de retirada
e de entrega, horéarios para entrega e retirada, um cliente, um entregador e um preco.
Uma vez definidos estes sete valores, uma entrega esta perfeitamente definida para
o Courribilidade. Assim como, para outros sistemas, um usuario pode ser definido

perfeitamente por sua senha e login, e talvez sua data de nascimento.

4.8.1. Método de identificacdo de atributos

O Praxis sugere a seguinte sequéncia de atividades para determinar os atributos de
uma classe (Padua Filho, 2003, p. 143):

1. Listar as propriedades de uma classe que sejam relevantes para o problema
em questdo. E importante manter em mente o tradeoff entre generalidade da
classe (e sua consequente facilidade para reuso em outros projetos e médulos
do mesmo sistema) e a objetividade dos atributos. No caso do sistema aqui
desenvolvido, atributos serdo tdo objetivos quanto possivel, dada a baixa
probabilidade de redesenho do sistema.

2. Localizar nos documentos de requisitos atributos que possam ter sido
ignorados em “1.”

3. Evitar atributos que sejam relevantes somente para implementacdo, como

indicadores de capacidade de uma variavel ou semelhantes.

4.8.2. Atributos de Funcionério, Cliente e Entrega

Para ilustrar o conceito de atributos foram escolhidas as classes Funcionario, Cliente

(Figura 21) e Entrega (Figura 20). Com estas sera possivel explicar o conceito de

95

heranga e de como uma classe pode ter como atributo elementos de outras classes,
0 que é ligado a multiplicidade das relagGes de associacdo entre elas.

E interessante notar dois pontos: Primeiramente, os atributos de uma classe sempre
possuem um tipo de dado, e este tipo pode ser outra classe. Por exemplo, a classe
entrega possui prego como atributo, do tipo double, e um enderego de retirada do tipo

Endereco.

Em segundo lugar, nota-se que alguns atributos fundamentais da classe Funcionario
(Figura 21) ndo estdo mostrados. Pode-se, a primeira vista, acreditar que ha um erro,
dado funcionarios parecem nao ter nomes. Mas um exame mais cuidadoso do
diagrama mostra que a classe Funcionario herda alguns atributos de
PessoaFisicaOuJuridica, dentre eles, o string nhome. A hereditariedade permite que
classes se especializem em certas fungdes enquanto guardam comportamentos mais

gerais herdados de suas maes.

Figura 20 - Atributos da classe Entrega

Entrega

idCliente : int
endere;oRetirada © string
endere;oEntrega | string
preco: float

idEntrega : int

Fonte: Do autor

4.8.3. Identificacdo das herancas

A capacidade de herdar atributos de classes “pai” € um dos blocos construtores de
linguagens orientadas a objetos. Heranca significa que uma classe mais geral gera
filhos mais especializados, que herdam de seus pais algumas caracteristicas e
métodos fundamentais e possuem por sua parte algo que os torna diferentes de seus

genitores.

96

Um exemplo claro no contexto do Courribilidade € a classe Funcionéario, que possui
atributos em comum com a classe Pessoa Fisica ou Juridica. Mais claramente, a
classe Pessoa Fisica ou Juridica € uma classe que possui os atributos Nome, Telefone
e Endereco, que podem ser atribuidos tanto a empresas (Clientes, no caso do
Courribilidade) quanto para pessoas fisicas (Funcionarios, neste contexto).

Algumas herancas relevantes para o Courribilidade sdo mostradas na figura 21. E
importante notar que a classe Pessoa Fisica ou Juridica é abstrata, i.e., ndo pode ser
instanciada. Isso significa que ndo pode existir no sistema um objeto que pertenca a
esta classe, pois esta ndo possui todos os atributos ou métodos necessarios para
executar algum caso de uso. Ja a classe Funcionério é perfeitamente completa para
os fins do sistema e pode portanto ser instanciada. Ela herda de sua mée os atributos
desta e se especializa com propriedades como Salario e Posicao, enquanto sua irma
Cliente possui atributos como Setor Econémico ou CNPJ que ndo sdo cabiveis para

uma pessoa fisica.

Figura 21 - Exemplo de herancas no Courribilidade

97

Class PesgoaFisicaCuluridica

narme ; String
endereco String
Telefone : String

Funcionario Cliente
ZPF : String CHPJ: String
R String EnderecoPrincipalDeRetirada : String
Sexo : Char SetorEcondrmico ; String
Posigdo : String newAttr Integer
Salartio: Double
ESdcio : Bool

Fonte: Do autor

49. Conclusdes da analise

O fluxo de andlise do Praxis visa traduzir os elementos do sistema, identificados
durante as atividades de requisitos, para uma linguagem orientada a objetos. Este
modelo do sistema em termos de objetos € mais proximo da linguagem de
programacao utilizada para implementacéo do sistema. Esta secao representa entao

um passo em direcdo a implementacao do sistema.

Se o sistema esta mais préximo de tomar forma, ainda é preciso algum trabalho antes
de comecar a codifica-lo. Mais especificamente, é preciso detalhar as interfaces e

classes do produto.

98

5. Desenho

5.1. Introducéo

O fluxo de desenho, em alguns processos chamado de design ou projeto, tem por
objetivo, segundo Padua Filho, definir uma estrutura para o produto que possibilite
sua implementacéao, satisfazendo os requisitos definidos anteriormente.

E importante ndo confundir a fase de desenho com a fase de andlise: a primeira é
centrada na descricdo de uma solucao, enquanto a ultima busca definir o problema

com uma linguagem mais adaptada a engenharia de software.

O quadro 11 nos mostra uma comparacéo feita por Padua Filho entre os dois fluxos
do Praxis, 0 que esclarece os papéis e caracteristicas de cada um deles.

Quadro 11 — Comparacédo Desenho x Andlise

Modelo de Anélise Modelo de desenho

Descreve o problema Descreve uma solucéo

Conceitual (n&o trata de implementagéo) Fisico (base da implementacao)

Suporta varios possiveis desenhos Especifico em relagdo a uma implementacao
Classes estereotipadas conceituais Pode conter classes estereotipadas

Pouco formal e pouco detalhado Muito formal e detalhado

Poucos pacotes légicos Muitos pacotes légicos

Fonte: Wilson Padua Paula Filho (2003, p. 149)

5.2. Atividades do fluxo de Desenho no Praxis

O fluxo de desenho no Praxis € que contém o maior numero de atividades. Comeca-
se pelo desenho arquitetbnico, que soluciona aspectos estratégicos do produto como

estrutura do sistema e escolha das tecnologias mais adequadas.

Passando pelo desenho das interfaces e o detalhamento definitivos dos casos de uso,
o Desenho do sistema termina com a realizacdo destes ultimos, i.e., como 0s objetos

das classes definidas colaborar&o entre si par realizar as funcionalidades esperadas

99

do sistema. O quadro 12 exibe as atividades na sequéncia em que estas sdo
realizadas nas interagdes do Praxis.

Quadro 12 - Atividades de Desenho no Praxis

Numero de Ordem Atividade Descrigcdo sucinta

Resolve aspectos estratégicos
1 Desenho arquiteténico de desenho externo e interno

com

Desenha em detalhes as

interfaces de usuario em seu

2 Desenho das interfaces) o
ambiente definitivo de
implementacéo
Resolve os detalhes dos fluxos
3 Detalhamento dos casos de uso) o
anteriormente definidos
_ Desenho das classes de
4 Desenho das entidades]
entidades
o Desenho das camadas de
5 Desenho da persisténcia o
persisténcia (Banco de Dados)
6 Realizacdo dos casos de uso J& descrito na analise

Fonte: Adaptado de Padua Filho (2003, p.1)

5.3. Desenho arquitetdonico

A primeira atividade de desenho é o desenho arquitetbnico, como mostrado no quadro
12. Trata-se, fundamentalmente, de dividir o sistema em subsistemas e componentes
com menor nivel de abstracdo, como indica Padua Filho (2003, p. 152). O objetivo
desta modelagem é tornar a implementacéo e consequente satisfacdo dos requisitos

funcionais e ndo-funcionais mais simples e sistematica.

A UML modela sistemas como conjuntos de subsistemas, e estes sdo por sua vez
modelados por pacotes ldgicos de desenho. Um pacote l6gico nada mais € do que um
agrupamento de classes (tudo € uma classe em OOP) em conjuntos com alta coesao

interna e baixo acoplamento externo.

5.3.1. Arquitetura no Praxis

100

O Praxis utiliza uma arquitetura prépria, comum a sistemas orientados a objetos,
mostrada na figura 22. A principal vantagem desta estrutura € a promocdo da
separacao entre a logica da aplicacdo que sera desenvolvida, a implementacédo e o
dominio de aplicacdo, o que permite a facil reutilizacdo das classes envolvidas no
programa, uma vez que estas estdo segregadas de sua utilizagéo efetiva. O quadro
13 torna o papel de cada uma das camadas mais claro.

Figura 22 - Arquitetura base do Praxis

Camada de fronteira

V4

Camada de cantrole

Y

Camada de entidade

Vi

Carmada de persisté

neia

E possivel também definir naturezas para cada uma das camadas. A natureza nada
mais é do que maneira de agrupar camadas (que por si ja sdo agrupamentos) de

acordo com o papel que cada uma desempenha na resolucdo do problema. O Praxis

i

>

Camanda de sistema

Fonte: Adaptado de Padua Filho (2003, p. 153)

101

considera trés tipos de natureza: De aplica¢do, de dominio e de implementacédo. Cada
uma destes é explicada em maiores detalhes nos paragrafos abaixo.

Classes de fronteira sdo aquelas que se comunicam com o ambiente do programa. As
mais comuns serdo, portanto, as interfaces de usuéario, mas podem existir canais de
troca de mensagens com o sistema operacional ou outros elementos do ambiente. A
camada de controle inclui os controladores definidos na fase de desenho, e séo
normalmente ligadas a implementacdo de cada caso de uso. Tanto a camada de
fronteira quanto a camada de controle fazem parte do grupo chamado de “camadas
de aplicacao”, pois sdo especificos do sistema que esta sendo desenvolvido e nao

podem ser reaproveitadas sem antes serem retrabalhadas.

Camadas de dominio incluem somente a camada de entidade, que, como 0 nome
sugere, contém as classes que representam as entidades ou elementos concretos do
sistema, como a classe Nota fiscal, Usuario ou Entrega. Por se tratarem de objetos
concretos que nao possuem o viés forte de nenhuma aplicacéo especifica, podem ser

reutilizados em outras solucdes que as requeiram.

Por ultimo, o Praxis define as camadas de implementacdo como aquelas que podem
ser reaproveitadas para resolver problemas de outros dominios, ou seja, sdo
logicamente independentes do problema que esta sendo resolvido. Elas sdo a camada
de persisténcia, que garante que as informacdes de objetos das camadas de dominio
possam ser salvas na meméria de maneira permanente (i.e., independentemente de
aplicacdo estar ativa ou ndo), e a camada de sistema, que contém 0S Servicos
compartilhados por todas as outras camadas da aplicacdo. Como exemplo desta

ultima, pode-se citar bibliotecas matematicas ou de conexao com a internet.

Quadro 13 - Classes do Praxis e suas naturezas (Continua)

Natureza Camada Descricao

Classes que implementam a
Camadas de aplicacéo Camada de fronteira interface do produto; Ex.: Tela

de insercdo de usuario

102

Conclusao

Natureza Camada Descricdo

Classes que implementam
aspectos especificos da logica
Camadas de aplicacdo Camada de controle da aplicag@o, como fluxos de
casos de uso; Ex.: Controlador
de insercdo de entrega
Classes que implementam as
Camadas de dominio Camada de entidade entidades concretas do
sistema; Ex.: Usuario, Entrega
Classes que garantem a
persisténcia de dados de
Camadas de implementagéo Camada de persisténcia
objetos da camada de entidade;
Ex.: Microsoft SQL Server
Classes que oferecem servicos
comuns a todas as classes do
Camadas de implementacéo Camada de sistema programa. Ex.:
System.Net.HTTP,
System.Math para C#

Fonte: Adaptado de Padua Filho, exemplos do autor (2003, p. 153)

5.3.2. Definicdo das camadas

Uma vez definida a estrutura das camadas, passa-se a definicdo dos pacotes ldgicos
gue as compdem, mostradas nas figuras 23 e 24. O Courribilidade, apesar de ser um
sistema relativamente simples, possui diversos pacotes e sua apresentacao integral
no corpo deste trabalho tornaria o texto de leitura dificil e fastidiosa. Por isso, séo

apresentados nesta subse¢do somente alguns conjuntos.

Figura 23 - Alguns pacotes das camadas de controle e entidade

Gestdo de Entregas /!

Camada de controle

T
I
I
! | N
I
I
I

v A

Gestdo de usuarios

Gestdo de relatdrios

103

Camada de entidade

|
| |
Entrega suatio Funcionario

|
Mota Fiscal

Fonte: Do autor

Figura 24 - Classes das camadas de sistema, fronteira e persisténcia

Camada de sistema

System 0

System. Math

104

Camada de franteira

Ny L b

Telalnsercanllsuario TelalLogin TelalnsercaoEntrega

Camada de sistema

v
Systern.Data. SQLClentd

Fonte: Do autor

5.4. Desenho das interfaces

Esta atividade consiste do desenho externo e interno das interfaces de usuério. Por
desenho externo deve-se entender o layout grafico das interfaces, ou seja, como o
usuario final enxergara o canal em questao. O desenho interno nada mais € do que o
codigo por tras do desenho externo. Mais claramente, trata-se da tradugdo em
linguagem de programacéo dos elementos presentes no desenho externo assim como

de suas funcionalidades esperadas.

Estes conceitos sdo exemplificados na figura 25 que mostra a tela de gestdo de

Clientes, ou mais precisamente, o desenho externo desta. E através desta que o

105

usuario do sistema executara todas as operacgdes relacionadas a instancias da classe
Cliente, como insercéo (canto direito superior), edicdo (canto esquerdo) ou excluséao
(canto esquerdo).

Figura 25 - Tela de controle de relatérios

Clientes Entregas Funciondrios Usudrios

Excluir Insesir

oweyeer [Fitrar axbidos
Exclirpor CHRI @CE O Nome O Seor L beewOes |
N e —
Edtar Selecionad
e — S—
cowp s
CHPJ sconomic Sectar mainFickLpAddress clentld phoneNumber mainAddress name

Onduras

Fonte: Do autor

E importante mencionar que o desenho das interfaces pode consumir muito tempo se
nao for feito com ferramentas especializadas, pois requer a definicAo manual da
posi¢cdo de cada elemento da interface, além da implementacdo do tratamento de
eventos como cliques e cliques duplos. Felizmente, a Escola Politécnica da USP
disponibiliza para seus alunos a ferramenta Visual Studio Ultimate (VS), que permite
que o programador se preocupe com o desenho externo das telas enquanto o
programa gera automaticamente o cédigo correspondente aos elementos da interface,
como posigao dos botbdes e esqueletos dos métodos para tratar os eventos que cada
elemento pode trazer. O cédigo da figura 26 foi totalmente gerado pelo VS, bastando
ao autor detalhar as fungdes criadas pelo software.

106

Figura 26 - Desenho interno da interface Tela de Gestéo de Clientes

public partial class MDIFrame : Form

{

private int childFormNumber = 8;

public MDIFramE(j[::

private wvoid MDIFrame_Load(ocbject sender, Ewventfrgs Ej[::

public MdiClient Gethi[lientNinduw(j[:]

private woid resizeChildren(int hDrec,int wDecrj[::

private vold MDIFrame_SizeChanged(cbject sender, Eventirgs ej[::

private vold gestdoDeClientesTooclStripMenuItem Click(object sender, Eventirgs ej[::
private void voltarPaginalnicialToolStripMenuIltem Click({object sender, Eventirgs Ej[:]

private woid relatdriosToolStripMenuIltem_Click(cbject sender, Eventhrgs Ej[::

Fonte: Do autor

Assim como nas sec¢des anteriores, mostrar o detalhamento de todas as interfaces

foge ao escopo do corpo do texto.

5.5. Detalhamento dos casos de uso

O detalhamento dos casos de uso para o fluxo de Desenho concentra-se em
descrever como cada funcionalidade serd realizada em termos das interfaces
desenhadas anteriormente. Usa-se o0 modelo de analise como base da logica dos
fluxos, mas desta vez estdo presentes os elementos da camada de fronteira
relevantes para o caso de uso. Esta subsec¢ao apresenta o detalhamento do caso de

uso “Criacao de cliente”.

5.5.1. Detalhamento da “Criagao de cliente”

5.5.1.1.

107

Breve descricdo do estado das interfaces

O acesso a funcionalidade de criacao de clientes é feito através da barra de menu

principal. Para tal, o usuario deve clicar sobre o botao “Clientes” e, em seguida, sobre

o item “Cadastrar cliente” na barra que aparece. Se o painel esquerdo contiver o painel

de gestéo de clientes, deve ser mantido em seu estado. Caso contrario, deve exibir

esta tela. O painel direito deve mostrar a tela de insercao de clientes, com os campos

em branco.
5.5.1.2. Fluxo principal de “Criagao de clientes”
1. O gerente clica no botao “Gestao de Clientes”, dentro do item “Clientes” da
barra de menu principal
2. O Courribilidade exibe a tela de gestéo de cliente (Figura 25)
3. O gerente clica no botao “Inserir Cliente” no canto superior direito da tela do
sistema
4. O Courribilidade exibe a tela de insercao de clientes com todos os campos
inicialmente em branco.
5. O Gerente de Vendas preenche os campos de Nome, CNPJ/CPF,
Endereco, Endereco de Retirada, Telefone e Setor Econémico do cliente
6. O Gerente clica sobre o botdo Criar Cliente
7. O Courribilidade executa o subfluxo Inserir Cliente no Banco de Dados,
responsabilidade da classe GestorDeClientes
8. O Courribilidade exibe uma mensagem de sucesso de insercdo no banco
de dados e o gerente é redirecionado para a tela de gestéo de clientes
5.5.1.3. Subfluxo Inserir Cliente no Banco de Dados
1. Se algum dos campos contiver informagdes incompletas ou com formato
incorreto, ou estiver vazia, o Courribilidade emite mensagem de erro
pedindo para eu o usuario verifique os dados
2. Quando os dados estiverem corretos, o Courribilidade instancia um objeto

da classe ClientManager, que lida com operacdes de banco de dados da

classe cliente

108

3. O objeto instanciado chama seu meétodo insertClient(data), com data
representado as informagdes inseridas no banco de dados do cliente

4, O sistema tenta inserir 0 novo cliente no banco de dados. Caso haja algum
erro na operacao, o Courribilidade emite uma mensagem de erro com o erro
SQL no corpo

5. Caso haja sucesso, o sistema emite uma mensagem de sucesso com 0O
nome do cliente, fecha a janela de insercdo de usuarios e desbloqueia o

acesso a tela de gestao de clientes

5.6. Desenho das entidades

O desenho das entidades nada mais € do que um detalhamento e refinamento das
classes obtidas durante a Andlise. Pode-se criar novas classes a partir das
anteriormente definidas, agrupar classes existentes em uma nova entidade, etc., como
afirma Padua Filho (2003, p. 161).

Em particular, é necessario detalhar os relacionamentos obtidos no fluxo anterior. Isso
significa determinar a diregdo de alguns relacionamentos. Como mencionado na
secdo anterior, a direcdo indica que € possivel obter o elemento destino através do
elemento origem. A figura 27 ilustra o caso mais concretamente: E possivel obter um
cliente através de uma entrega, mas para obter as entregas de um cliente € necessario

realizar uma pesquisa no banco de dados.

Figura 27 - Relacionamento direcional Entrega-Cliente

Entrena Cliente

Fonte: Do autor

109

5.7. Desenho da persisténcia

O desenho da persisténcia consiste em determinar o esquema do banco de dados
que sera utilizado. Pode-se usar um banco de dados orientado a objetos, que torna o
trabalho de determinacgao da estrutura deste praticamente inexistente: Basta criar uma
colecéo (termo para conjunto de objetos) por classe e preenche-la com os objetos

desejados.

O uso de bancos de dados néo-relacionais (ou NoSQL, no jargédo de programadores)
esta se popularizando enormemente devido a sua alta performance para aplicativos
da web e sua capacidade de crescer em volume sem prejudicar a performance, como
afirma um paper da MongoDB (2015, p. 1). Este tipo de estrutura de dados é muito
simples, o que permite queries com altissima eficiéncia. Além disso, ndo ha
necessidade de tratar os resultados de uma busca nas cole¢fes, uma vez que este ja

vem formatado como objeto da linguagem desejada.

Porém, o uso de DBs relacionais ainda é predominante sobre seus concorrentes,
principalmente para sistemas empresariais, como afirma o mesmo paper em sua
introducéo (2015, pag. 1). Juntando a isso o fato de o aluno possuir conhecimentos
prévios sobre este tipo de estrutura de armazenagem, esta foi a tecnologia esperada

para implementar a persisténcia do Courribilidade.

O Praxis sugere as seguintes praticas, a serem seguidas para o uso de banco de

dados SQL (relacionais):

e Cada classe da camada de entidades deve ser representada por uma tabela
e Atributos simples devem ser representados por uma coluna
e Atributos complexos por diversas colunas ou tabelas relacionadas adicionais
¢ A coluna da chave primaria devera ser um indicador do objeto salvo, que pode
ser
o Um atributo deste

o Um numero designado pelo sistema e sem nenhum significado concreto

110

Como exemplo, é mostrada no quadro 14 uma representacdo da tabela de Clientes,
segundo o Praxis. Alguns atributos (como telefone) foram deixados de lado para
permitir sua representacio no espaco de uma péagina. E importante notar que o

atributo endereco € em si uma classe, e é representado, portanto, por seu id na tabela

Enderecos.
Quadro 14 - Representacado da Tabela de Clientes no Banco de Dados
Endereco
Setor]
CNPJ: Id Nome Endereco Telefone . de retirada
Economico o
principal
Courri)
32494564312 0xx1343 Elis 345 0xx32
Corp.
32432352213 GreenDel 0xx3435 Maria 346 0xx1234
12345678909 EcoLiv 0xx4355 Jodo 123 0xx123

Fonte: Do autor (sem significado pratico)

5.8. Conclusdo do Desenho

As atividades do fluxo de Desenho permitem que se chegue a um modelo da solucéo
na forma de um software programado em linguagem orientada a objetos. Falta, porém,
transformar esta simplificacdo em um programa que execute todas as suas
funcionalidades. Este é o papel da implementacdo, que toma como entrada o
documento construido no fluxo que a precede e o transforma em cddigo-fonte e
consequentemente em software funcional. A secao 6, a ultima antes da conclusao do

trabalho, tratara das atividades deste fluxo.

111

6. Implementacéao

O fluxo de implementacdo possui 5 atividades definidas no Praxis: Desenho
detalhado, Codificacdo, Inspecéo, Testes de unidade e Integracdo. Somente a
atividade de codificagdo sera apresentada neste trabalho, pois as outras, excetuando-
se os testes de unidade, ndo produzem documentacéo relevante para o trabalho e

sdo executadas naturalmente durante a codificacao.

6.1. Codificacao

A codificacado € a atividade central da implementacéo e consiste na transformacéo do
modelo de Desenho definido anteriormente em codigo-fonte que pode ser compilado
ou interpretado pelo sistema operacional e que resulta em software funcional. A figura
28 ilustra de maneira gréfica a ideia desta fase: Como entrada tem-se um diagrama

de classe e como saida uma classe em C#.

Figura 28 - Ideia fundamental da Implementacéo

public class

i

Funcionario public string CPF { get; set; }

CFF - Blring

- Silning
Sexn - Char publi
Fosigan : String .
Saldrio - Double public string position { get; set; |

rJ
I
ESdcio - Bool

public string RG { geti set; }

double salary { get; set; }

A

public string sexs { get; set; }

public bool isPartner { get; set; }

Fonte: Do autor

6.1.1. Exemplo de codificacado: Insercao de clientes

Para ilustrar o processo de implementacgéo, sera tomado como exemplo o caso de uso
de insercdo de Clientes, pois a codificacdo deste é relativamente complexa e ilustra
bem o processo de construcdo do sistema. A sequéncia de interfaces enxergadas pelo

usuario é mostrada na figura 29.

112

Inicialmente, o usuario esta na pagina inicial e clica em “Gest&o de clientes” no menu
“Clientes”. O Courribilidade deve direciona-lo para a tela de gestao correspondente.
Este redirecionamento é feito pelo método gestdoClientesMenuStrip_Click() da classe

MDIFrame, a tela principal. A implementacédo deste método € mostrada na figura 30.

O usuario pode agora visualizar todos os clientes do banco. Para prosseguir, deve
clicar em “Inserir cliente”. O sistema deve criar uma nova interface de insergao e exibi-
a. Isto é implementado pelo método insertBtn_Click(), membro da classe ClientViewer,

chamado quando do clique do bot&o “Inserir Cliente”.

Figura 29 - Sequéncia de interfaces do caso de uso "Insercdo de usuério”

Bem vindo ao Courritilidadel

S) s S 3 G 0 Bt

Chente Paula insendo com sucessol

S — e ————
0K
L':__-’l":E—L’_‘

Fonte: Do autor

A seguir, apés o preenchimento dos dados, o sistema deve valida-los e inserir o novo
cliente no banco de dados. Esta funcionalidade € responsabilidade do método
createClient_Click(), da classe insertClientForm, e de insertClient() da classe
clientManager. O primeiro reage ao clique validando os dados e o segundo chamando

a funcao de insercéo de clientes no banco de dados.

113

Sem erros de validagdo, o sistema deve mostrar uma mensagem de sucesso e
retornar a tela clientViewer, responsabilidades do método MessageBox.Show() e

this.Close(), ambos mostrados no codido do formulario insertClientForm (Figura 32).

Figura 30 - Cddigo de direcionamento a pagina de Gestéo de Clientes

private woid gestdoDeClientesToolStripMenultem Click(object sender, Eventhrgs e)
1

foreach (var child in this.MdiChildren)

{
¥

ClientViewer clientWiewer = new ClientVWiewer();
clientViewer.MdiParent = this;
clientViewer.Dock = DockStyle.Fill;
clientViewer.Show();

child.Close();

Fonte: Do autor

Figura 31 - Cddigo da aparéncia da tela de gestao de clientes

namespace Courri Forms

{

partial class ClientViewer
1
| |fff Lsummary ..J
private System.ComponentModel.IContainer components = null;

[/// <summary> ...]

protected override wveid Dispose(bool dispusingj[:]

#region Windows Form Designer generated code

[/// <summary> ...]

private wvoid InitializeComponent()

1
this.clientGridView = new System.Windows.Forms.DataGridview();
this.labell = new System.Windows.Forms.Llabel();
this.filterTE = new System.Windows.Forms.TextBox();
this.labeld4 = new System.Windows.Forms.Llabel();
this.label5 = new System.Windows.Forms.Llabel();
this.labeld = new System.Windows.Forms.Llabel();
this.filterBtn = new System.Windows.Forms.Button();
this.deleteCNPITB = new System.Windows.Forms.MaskedTextBox();
this.labels = new System.Windows.Forms.Llabel();
this.label? = new System.Windows.Forms.Llabel();
this.editCNPITE = new System.Windows.Forms.MaskedTextBox();
this.deleteByCNPIBtn = new System.Windows.Forms.Button();
this.editByCNPIBtn = new System.Windows.Forms.Button();
this.editSelectedBtn = new System.Windows.Forms.Button();
this.deleteSelectedBtn = new System.Windows.Forms.Button();

Fonte: Do autor

114

Figura 32 - Implementa¢éo dos comportamentos de insercéo de clientes

private woild insertStn_Clicki{object sender, Evemtfrgs o)

InsertClismFom = mew InsertCliemtForml);
insertClicmtForm. ShowDialag()
loadGridviee]) ;

private woid createlliemt Click{object sender, EventArgs e}

string mainAddress = mainAddressStrectTE.Test + . © +
naindddressqurberTE. Text + 7, " #
raindddressZipiodeTE. Text + “, ° + maindddressCityTE.Test + =" +
naindddressState TE . Text
string mainPickUpAddress = mainPickUpsddressStrectTB.Text + %, © #
nmainFickUpsddresskunmberTB. Text + *, © #
rainPicklpdddressIiplodeTE. Text + %, ° + mainPickUpsddressCityTE. Text
"=+ mainFicklpiddressStateTE. Text;
if (string. [=¥ul l0rubdteSpace|naindddress} | |
string. IshulloridhiteSpace| phonekurber TE. Text)
|| string.IsMullorghiteSpace{maindddressstrectT. Text) ||
string. IshullOridhiteSpace{mdnaddre sshumherTE., Text)
|| string.IsMullorkhiteSpace{mindddressZipCode TE. Text] ||
strimg. IshullOridhiteSpace{mdnaddressStateTH. Text |)

MessageBau Show|*Un ou mais canpos cbrigatdrios foran deixados em
brancal®);

elze
if (this.clientId <= @]
! try
CliemtMarager clientManager = new CliemtManager();
cliemtMarager. insertCliont{nameTE. Text, phoneMurberTE. Text,

nmainAddress, (NPITE.Text, economichectarTB.Text, mainPickUpaddress);

MessageBoe. Show(“Cliente ¥ + nameTB.Text + ° inserido com
sucessnl®);

this.Closed();
Ltch (Exception es)
i

MessageBoe. Show(“Ooorrew un errolin® + eos.Meszage);

el

Clienmtramager clicrmtManager = new ClismtManager();

clientManager.updateClient (this.clientId, this.nameTH. Text,
this . phomciunbsrTE . Text, this.mradn&ddress, this (ONFITE. Text,
thisz.ecomomicSectorT. Text, this.mainPickUpaddress);

MessageBor. Show(“Cliente ¥ + nameTB.Text + ° editado com
sucessnl®);

thizs. . Close();

Fonte: Do autor

115

6.2. Conclusao da implementacao

A implementacdo é a parte que mais consumiu recursos ao autor, devido
principalmente a falta de conhecimentos prévios sobre a linguagem C# e a dificuldade
de se desenhar interfaces de usuario que reajam bem a todos os tamanhos de janela.
Seus objetivos foram, porém, alcancados, e o produto final implementa com sucesso
0s casos de uso considerados prioritarios pelo cliente, em especial os referentes a
integridade e validacdo dos dados.

Antes de passar a conclusdo do trabalho, é importante mencionar as atividades

propostas no Praxis e ndo executadas pelo autor.

Primeiramente, tém-se a atividade de testes unitarios. Testes unitarios visam
determinar se uma certa unidade de cédigo (em geral uma funcéo) satisfaz seus
requisitos. Este tipo de teste pode ser executado ao final da implementacéo de todas
as funcdes, caso em que requer planejamento e documentacao, ou durante a criacao
dos métodos, no estilo Test-driven Development (TDD). Neste caso, o programador
s6 avanca para a implementacao de uma outra unidade caso a anterior tenha passado
nos testes. Para acelerar a implementacédo e diminuir a documentacéo necessaria, foi
adotada a técnica TDD, o que eliminou a necessidade de um plano formal de testes

de unidade.

Em seguida, a inspecao de cddigo, que nao foi executada de maneira formal pois
requer que os inspetores sejam diferentes dos programadores que escreveram 0O
cbdigo, o que € impossivel no contexto deste trabalho. Padua Filho ainda cita alguns
estudos que colocam em davida a eficécia e eficiéncia da inspe¢éo como instrumento
de garantia de qualidade (2003, p. 209), o que contribuiu para que esta atividade fosse

totalmente ignorada.

Na sequéncia, o desenho detalhado foi totalmente relevado, pois considerou-se que
0 modelo obtido na fase anterior possuia um grau de detalhe suficiente para permitir

a implementacao.

116

Por ultimo, a integracéo foi feita no estilo bottom-up, sem porém seguir um plano

formal de execucéo, dado que o sistema nao possui grandes graus de complexidade.

117

7. Conclusao e andlise critica do trabalho

Esta secdo comporta uma analise critica dos resultados do trabalho, e € dividida em
trés partes. Na primeira, analisa-se o programa desenvolvido com base no critério de
sucesso definido na introdugcdo deste trabalho. Em seguida, é feita uma critica do
método de escolha da metodologia aplicada, e por ultimo o autor discorre sobre a

adaptacdo do método Praxis para problemas pouco complexos.

7.1. Sucesso do programa

No momento de redacdo desta secdo, o software Courribilidade encontra-se
completamente finalizado, i.e., todas as suas funcionalidades foram implementadas e
testadas no ambiente de desenvolvimento do autor. Retornando aos problemas
encontrados pelo gerente financeiro André Biselli, pode-se analisar a real contribuicao

do sistema para resolvé-los:

e [Falta de confiabilidade e homogeneidade dos dados: Problema totalmente
resolvido pelo novo sistema. A validacao de dados feita dentro do programa e
pelo gerenciador de banco de dados permite garantir que o formato dos dados
esta correto, além de assegurar o fim do problema de referéncias incorretas

¢ Dificuldade ou impossibilidade de geracéo de relatérios: Problema parcialmente
resolvido. A geracéo de relatérios foi implementada no Courribilidade e permite
a criacdo de documentos gerenciais com rapidez e confiabilidade. Falta porém
um instrumento semelhante a Tabela Dinamica, que permita maior flexibilidade
destes

e Falta de integracéo: Problema parcialmente resolvido. O controle de entregas
se faz de maneira muito mais rapida segura com o uso do Courribilidade, o que
facilita o processo de cobranca e calculo de receitas. A ambicdo de integrar
todos os aspectos relevantes da empresa, como comunicagédo com o aplicativo

da empresa nao foi implementada

A real medida de sucesso vira porém quando o sistema for completamente
implementado na empresa e for avaliado pelos funcionarios, em especial quanto a

manutencao dos beneficios que a planilha de controle atual possui.

118

7.2. Critica a escolha da metodologia

O processo de escolha da metodologia de desenvolvimento foi considerado pelo autor
como ineficaz, pois, analisando o andamento do processo de desenvolvimento uma
vez terminado este, acredita-se que um método agil teria sido mais bem adaptado ao
problema.

Uma sugestao para trabalhos futuros por parte do autor € testar, durante uma semana,
ao menos dois métodos de escolas diferentes e s6 entdo tomar uma decisdo. A
escolha feita para este trabalho foi tomada com base em conceitos puramente tedricos
que na pratica se mostraram menos relevantes do que o imaginado. E importante
enxergar o funcionamento dos métodos na prética para poder fazer uma escolha mais

informada.

7.3. Critica ao método Praxis

Na opinido do autor, métodos do estilo UP, quando aplicados a projetos de
complexidade relativamente baixa como o Courribilidade, ddo énfase exagerada na
documentacgéo, tomando recursos que poderiam ser aplicados na implementagdo. Um
namero consideravel de atividades propostas por Padua Filho foi deixado de lado para
acelerar o trabalho de implementacédo. O codigo-fonte, quando utiliza boas praticas de
formatacdo e nomeacdo de variaveis, pode ser em si uma documentacao de grande

valor.

A documentacéo ndo gera valor suficiente na coordenacéo do projeto para compensar
pelo tempo e esforco que consome, pois a gestdo do desenvolvimento € em si
relativamente simples para projetos com poucos casos de uso e poucas classes de

entidade, e pode portanto ser feita ser uso de metodologias especializadas.

E importante frisar que estas colocacfes s6 se aplicam para projetos simples e em
gue ndo ha necessidade de coordenar o trabalho de diversos programadores. Para
empreitadas de maior complexidade, o autor imagina que a documentacao precisa e

a maior énfase no planejamento dos métodos UP pode trazer valor ao trabalho.

119

Referéncias bibliograficas

ABELSON, N. Accounting for startups: depoimento. Disponivel em
https://www.xero.com/small-business-guides/cloud-accounting/accounting-for-
startups. Acesso: 15 de abr. 2015. [S.l.]. Entrevista concedida ao site Xero.

AGILE ALLIANCE. What is Agile Software Development? Disponivel em
http://www.agilealliance.org/the-alliance/the-agile-manifesto. Acesso em 20 de margo
de 2015.

AGILE ALLIANCE. The Agile Manifesto. Disponivel em
http://www.agilealliance.org/the-alliance/the-agile-manifesto. Acesso em: 20 de marco
2015.

ALBAHARI. A comparative overview of C#. Disponivel em
http://genamics.com/developer/csharp_comparative.htm. Acesso em: 1° de junho de
2015.

ANGELES, S. Best Accounting Software. Disponivel em:
http://www.businessnewsdaily.com/7543-best-accounting-software.html. Acesso em:
30 de margo, 2015.

BARLOW, J. Overview and Guidance on agile development in large
organizations. Communications of the Association for Information Systems. [S.1], Vol.
29, No. 1, janeiro 2006, pp. 25-44

BOOCH, G. et al. Object-oriented analysis and design. 3rd Edition. Upper Saddle
River: Addison-Wesley, 2007.

CUSUMANO, M.; SELBY, R. How Microsoft Bulds Software. Communications of the
ACM. New York, Vol. 40, No. 6, junho de 1997, pp. 53-61

DEPARTMENT OF DEFENSE. Systems Engineering Fundamentals.
Supplementary text. Fort Belvoir, Virginia: Defense Acquisition University Press. Jan
2001.

GLASS, R. Matching methodology to problem domain. Communications of the
ACM. New York, Vol. 47, No. 5, maio de 2004, pp. 19-21

GRONINGER, T. Accounting chores: doing more with less, and yet... The
NonProfit Times. Morris-Plains, NJ, 2011, Vol. 25, No. 1, janeiro 2011, p. 19

KUHN, T. The structure of scientific revolutions. 2" Edition, Enlarged. Chicago:
The University of Chicago Press. 1962

KRATOCHVIL, W. Windows Store C++ for C# developers. MSDN Magazine. [S.1],
abril 2014.

https://www.xero.com/small-business-guides/cloud-accounting/accounting-for-startups
https://www.xero.com/small-business-guides/cloud-accounting/accounting-for-startups

120

KRIGE, Danie. Selection criteria for a development methodology. Disponivel em
https://www.linkedin.com/grp/post/3774402-254265649. Acesso em: 27 de mar, 2015.

MARKS, G. And the best small business cloud accounting software is...
Disponivel em http://www.forbes.com/sites/quickerbettertech/2014/05/05/and-the-
best-small-business-cloud-accounting-software-is/. Acesso em: 4 de maio de 2015.

THE MICROSOFT CORPORATION. Chapter 3: Choosing Windows develpment
technologies. Disponivel em: https://msdn.microsoft.com/en-
us/library/windows/desktop/ff795785.aspx. Acesso em: 15 de abril de 2015.

THE MICROSOFT CORPORATION. Choosing the programming language.
Disponivel em https://msdn.microsoft.com/en-
us/library/windows/apps/dn263221.aspx. Acesso em: 20 de mar 2015.

MONGODB. Top 5 considerations when evaluating NoSQL Databases. New York:
MongoDB, fevereiro de 2015.

NIXON, Jerry. Choosing between Visual Basic and C#. Disponivel em
http://blog.jerrynixon.com/2014/01/choosing-between-visual-basic-and-c.html. Acesso
em 20 de maio de 2015.

PAULA FILHO, W. Engenharia de Software. 12 Edicdo. Rio de Janeiro: LTC Editora,
2003.

PAULA FILHO, W. Engenharia de Software. 32 Edi¢do. Rio de Janeiro: LTC Editora,
2010.

PEPSICO BRASIL. Prémio internacional Eco-Challenge reconhece equipe
brasileira por iniciativa sustentavel. Disponivel em
http://www.pepsico.com.br/premio-internacional-eco-challenge-reconhece-equipe-
brasileira-por-iniciativa-sustentavel. Acesso em: 20 de outubro de 2014.

RAJLICH, V. Changing the paradigm of software engineering. Communications of
the ACM. New York. Vol. 2, No. 8, agosto de 2006, pp. 67-70

SOUZA, A. etal. Custo do Trabalho no Brasil: Propostade umanova metodologia
de mensuracédo. Sao Paulo: FGV C-Micro, maio de 2012.

WILSON, J. The Best Free Small Business Accounting Software. Disponivel em
http://www.pcmag.com/article2/0,2817,2382514,00.asp. Acesso em: 31 de maio,
2015.

http://www.pcmag.com/article2/0,2817,2382514,00.asp

