

Henrique Antonácio Povedano

Especificação e desenvolvimento de software de gestão para empresa de entregas

sustentáveis

Trabalho de formatura apresentado à

Escola Politécnica da Universidade de

São Paulo para obtenção do Diploma

de Engenheiro de Produção

São Paulo

2015

Henrique Antonácio Povedano

Especificação e desenvolvimento de software de gestão para empresa de entregas

sustentáveis

Trabalho de formatura apresentado à

Escola Politécnica da Universidade de

São Paulo para obtenção do Diploma

de Engenheiro de Produção

Orientador: Prof. Dr.

Álvaro Hernandez

São Paulo

2015

AGRADECIMENTOS

À minha família, meus amigos e minha namorada pelo apoio ao longo de meus

estudos.

À Escola Politécnica, por ter me proporcionado experiências de valor inestimável para

minha formação pessoal, acadêmica e profissional.

Ao meu orientador, Prof. Dr. Álvaro Hernandez, por sua paciência, exigência e

divertidas reuniões.

À equipe da Courrieros, em especial ao meu amigo de longa data André Biselli, pelo

apoio ao trabalho.

RESUMO

Este trabalho busca resolver as dificuldades de gestão de entregas, recursos

humanos e de vendas enfrentados pela empresa Ecolivery Courrieros, do ramo de

entregas por bicicletas. Após uma revisão da literatura que forneceu bases para a

escolha da metodologia e tecnologia de desenvolvimento, o autor construiu um

sistema para a plataforma Windows em C# e SQL-SERVER utilizando o método de

engenharia de software Praxis. O novo programa resolve os principais problemas que

atacou e dá mais transparência aos resultados da Courrieros, qualidade fundamental

dado que se encontra em processo de captação de investimentos.

Palavras-chave: Praxis, Tecnologia da Informação, C#, SQL-SERVER.

ABSTRACT

This paper aims to solve the sales, human-resources and delivery management

problems faced by Ecolivery Courrieros, a bike-delivery service company based in

São Paulo, Brazil. After a literature review which supported the methodology and

technology choices, the author developed a C#, SQL-SERVER based solution for the

Windows operating system. The custom-built program addressed the main difficulties

the company faced and gives its sales data more transparency, a fundamental

attribute given its current search for venture-capital investment.

Key-words: SQL-Server, C#, Praxis, IT

LISTA DE TABELAS

Tabela 1 – Custo fixo por ciclista ... 29

Tabela 2 – Comparação Desenvolvimento Próprio x Compra de software 57

Tabela 3 – Pesos da matriz de decisão .. 61

Tabela 4 – Matriz de decisão da metodologia ... 61

LISTA DE FIGURAS

Figura 1 – Principais clientes da Courrieros .. 27

Figura 2 - Sócio e entregador da Courrieros em matéria Folha de São Paulo 28

Figura 3 - Ciclo de vida de uma entrega ... 32

Figura 4 - Planilha de controle atual da Courrieros ... 33

Figura 5 - Parte da planilha de controle com a coluna "Entrega" em branco 34

Figura 6 - Atividades do paradigma waterfall .. 40

Figura 7 - Atividades do paradigma ágil ... 42

Figura 8 – Ciclos de um método de protótipos .. 43

Figura 9 - Tela inicial do Wave Accounting ... 50

Figura 10 - Tela de sincronização de conta correte Zoho Books 50

Figura 11 - Atividades no Praxis .. 66

Figura 12 - Distribuição da intensidade de trabalho com o tempo no Praxis 66

Figura 13 - Cadastro de funcionário .. 70

Figura 14 - Diagrama de contexto do Courribilidade ... 76

Figura 15 - Classes do Courribilidade ... 90

Figura 16 - Relacionamento de Cliente-Entrega ... 91

Figura 17 - Relacionamento Entrega-Nota Fiscal .. 91

Figura 18 - Relacionamento com direção e multiplicidade .. 92

Figura 19 - Diagrama de sequência para inserção de cliente 93

Figura 20 - Atributos da classe Entrega ... 95

Figura 21 - Exemplo de heranças no Courribilidade ... 96

Figura 22 - Arquitetura base do Praxis .. 100

Figura 23 - Alguns pacotes das camadas de controle e entidade 102

Figura 24 - Classes das camadas de sistema, fronteira e persistência 103

Figura 25 - Tela de controle de relatórios .. 105

Figura 26 - Desenho interno da interface Tela de Gestão de Clientes 106

Figura 27 - Relacionamento direcional Entrega-Cliente .. 108

Figura 28 - Ideia fundamental da Implementação ... 111

Figura 29 - Sequência de interfaces do caso de uso "Inserção de usuário" 112

Figura 30 - Código de direcionamento à página de Gestão de Clientes 113

Figura 31 - Código da aparência da tela de gestão de clientes 113

Figura 32 - Implementação dos comportamentos de inserção de clientes 114

LISTA DE QUADROS

Quadro 1 - Comparação VBA x VSTO (Outras linguagens) 53

Quadro 2 – Tarefas da fase de Ativação ... 65

Quadro 3 – Benefícios esperados do sistema ... 71

Quadro 4 - Casos de uso do Courribilidade .. 72

Quadro 5 - Enumeração e descrição dos atores do sistema 74

Quadro 6 - Interfaces de usuário do sistema/.. 80

Quadro 7 - Interfaces de software do Courribilidade ... 81

Quadro 8 - Requisitos não-funcionais do sistema ... 82

Quadro 9 - Atividades da análise no Praxis .. 86

Quadro 10 - Resultado da análise dos casos de uso para determinação de classes88

Quadro 11 – Comparação Desenho x Análise .. 98

Quadro 12 - Atividades de Desenho no Praxis.. 99

Quadro 13 - Classes do Praxis e suas naturezas ... 101

Quadro 14 - Representação da Tabela de Clientes no Banco de Dados 110

LISTA DE ABREVIATURAS E SIGLAS

OEA – Organização dos Estados Americanos

RUP – Rational Unified Process

AWS – Amazon Web Services

MS – The Microsoft Corporation

UML – Unified Modeling Language

GUI – Graphical User Interface, Interface Gráfica

DoD – Departmento of Defense, equivalente ao Ministério da Defesa nos EUA

OOA – Object-oriented Analysis

OOD - Object-oriented Design

OOP – Object-oriented Programming

VS – Microsoft Visual Studio

DB – Banco de Dados

PRO – Departamento de Engenharia de Produção da Escolha Politécnica da USP

TDD – Test-driven Development

SUMÁRIO

1. Introdução ... 25

2. Apresentação da empresa .. 26

2.1. História .. 26

2.2. Modelo de negócios .. 26

2.3. Clientes ... 27

2.4. Reconhecimento do mercado: Presença na mídia e premiações 27

2.5. Dados operacionais da empresa ... 29

3. O problema ... 31

3.1. O sistema de informações contábeis atual .. 31

3.2. Problemas segundo o gerente financeiro .. 35

1. Introdução ... 37

2. Estudo dos paradigmas de desenvolvimento de software 38

2.1.1. Um modelo de projetos de desenvolvimento de software 38

2.1.1.1. Atividades fundamentais de um projeto de desenvolvimento de software 39

2.1.2. Paradigmas existentes e sua relação com o modelo definido 40

2.1.2.1. Paradigma Waterfall ... 40

2.1.2.2. Paradigma Ágil .. 41

2.1.3. Paradigma de protótipos .. 43

2.1.4. Conclusões sobre o estudo dos paradigmas de desenvolvimento de software

 45

3. Estudo de soluções de software de contabilidade disponíveis no mercado 46

3.1.1. Características relevantes para a escolha de um software 46

3.1.2. Escolha e descrição dos programas analisados .. 47

4. Estudo das tecnologias de desenvolvimento .. 51

4.1. Eficiência do programa .. 51

22

4.2. Produtividade do programador .. 52

4.3. Comparação VBA – Outras linguagens e VSTO ... 52

4.4. Conclusão sobre as tecnologias disponíveis .. 54

Parte II – Resolução do problema .. 55

1. Introdução .. 55

2. Escolha e descrição dos métodos e tecnologias .. 56

2.1. Desenvolver ou comprar o produto? ... 56

2.2. Escolha da metodologia e método .. 58

2.2.1. Método de escolha: Matriz de Decisão .. 58

2.2.2. Fatores de decisão .. 58

2.2.3. Adaptação das metodologias aos critérios: Notas da Matriz de Decisão 61

2.3. Escolha e descrição do método .. 62

2.3.1. Escolha do método .. 62

2.3.2. Breve descrição do Método Praxis .. 63

2.3.2.1. Estrutura de uma iteração .. 64

2.3.2.2. Objetivos de uma iteração .. 64

2.3.2.3. Quanto tempo atribuir a cada fluxo em uma iteração? 65

3. Especificação dos requisitos .. 68

3.1. Requisitos na Engenharia de Software ... 68

3.2. Requisitos no Praxis ... 69

3.3. Estrutura desta seção ... 69

3.4. Resultado do fluxo de requisitos ... 70

3.4.1. Benefícios esperados do sistema .. 70

3.4.2. Casos de uso e atores do sistema ... 72

3.4.2.1. Detalhamento dos casos de uso .. 76

3.4.2.2. Detalhamento Caso de Uso Inserção de usuários 77

3.4.2.2.1. Pré-condições ... 77

3.4.2.2.2. Detalhamento do fluxo ... 77

3.4.2.2.3. Detalhamento do subfluxo alerta de dados incorretos 78

3.4.2.3. Detalhamento do caso de uso Georeferenciamento de entregas 78

3.4.2.3.1. Pré-condições .. 78

3.4.2.3.2. Detalhamento .. 78

3.5. Interfaces do sistema .. 79

3.5.1. Interfaces de usuário .. 79

3.5.2. Interfaces de software .. 81

3.6. Requisitos não-funcionais ... 82

4. Análise .. 84

4.1. Objetos .. 84

4.2. Análise orientada a objetos ... 85

4.3. Análise no Praxis ... 85

4.4. Classes chave identificadas .. 86

4.4.1. Substantivos em inserção de usuário... 87

4.4.2. Substantivos em georeferenciamento de entregas 87

4.5. Determinação das classes pelas classes candidatas 88

4.6. Relações entre as classes ... 90

4.7. Realização dos casos de uso .. 92

4.7.1. Diagramas de sequência .. 93

4.8. Identificação dos atributos ... 94

4.8.1. Método de identificação de atributos .. 94

4.8.2. Atributos de Funcionário, Cliente e Entrega ... 94

4.8.3. Identificação das heranças ... 95

4.9. Conclusões da análise .. 97

5. Desenho ... 98

24

5.1. Introdução ... 98

5.2. Atividades do fluxo de Desenho no Praxis .. 98

5.3. Desenho arquitetônico .. 99

5.3.1. Arquitetura no Praxis ... 99

5.3.2. Definição das camadas ... 102

5.4. Desenho das interfaces .. 104

5.5. Detalhamento dos casos de uso ... 106

5.5.1. Detalhamento da “Criação de cliente” ... 106

5.5.1.1. Breve descrição do estado das interfaces .. 107

5.5.1.2. Fluxo principal de “Criação de clientes” .. 107

5.5.1.3. Subfluxo Inserir Cliente no Banco de Dados .. 107

5.6. Desenho das entidades .. 108

5.7. Desenho da persistência... 109

5.8. Conclusão do Desenho ... 110

6. Implementação ... 111

6.1. Codificação ... 111

6.1.1. Exemplo de codificação: Inserção de clientes ... 111

6.2. Conclusão da implementação ... 115

7. Conclusão e análise crítica do trabalho .. 117

7.1. Sucesso do programa ... 117

7.2. Crítica à escolha da metodologia .. 118

7.3. Crítica ao método Praxis ... 118

8. Referências bibliográficas .. 119

 25

Parte I – Introdução e definição do problema

 Introdução

A eficiência e confiabilidade trazidas por um sistema digital geração de demonstrativos

contábeis são parte fundamental do sucesso de pequenas e médias empresas, como

sugere o estudo de Tim Mills-Gronninger (Gronninger, 2011, p. 1).

Em particular, empresas recém-criadas podem enfrentar maiores dificuldades do que

as mais bem estabelecidas no mercado: a falta de experiência de seus funcionários e

a escassez de capital para investimento em sistemas de TI podem ser fatores que

dificultam a decisão de compra de um software adequado para a empresa. Segundo

Noah Abelson, CEO e fundador da empresa de marketing digital Shareroot, startups

sofrem por utilizar ferramentas não adaptadas ao forte crescimento que muitas vezes

encontram, como o gerenciador de planilhas Excel. (Abelson, 2015)

Este trabalho se insere neste contexto: A empresa Ecolivery Courrieros Entregas

Ecológicas, fundada em 2012, passa por uma fase de grande crescimento em sua

receita, o que atraiu potenciais investidores interessados no desempenho da

companhia. A firma não conta, porém, com um sistema confiável de controle de custos

e despesas, o que torna a apresentação dos resultados aos potenciais capitalistas

menos confiável aos olhos destes.

Através de minha amizade com dois dos fundadores da empresa, fui convidado a

desenvolver meu trabalho de formatura com a Courrieros, com o tema de

especificação e produção de um software de gestão para a companhia.

A resolução do problema começa com uma breve apresentação sobre a empresa, em

especial sobre seu sistema de gestão de entregas atual, que apresenta os problemas

que devem ser resolvidos por este TF.

26

 Apresentação da empresa

2.1. História

A empresa Ecolivery Courrieros, Ltda. é uma empresa de entregas por motos elétricas

e bicicletas fundada em outubro de 2012 pelos amigos André Biselli, Victor Castello

Branco e Stefano Cappanari, que decidiram explorar com um produto ambientalmente

sustentável o mercado de entregas na cidade de São Paulo. Estabelecida

originalmente na Avenida Pedroso de Morais, em Pinheiros, a Courrieros está sediada

atualmente na Rua Lisboa, no mesmo bairro, de onde atende o centro expandido da

capital.

A empresa passa por um período de forte crescimento desde sua fundação: o número

de funcionários-entregadores passou de 10 em outubro de 2013 para 26 em março

de 2015, e o número de entregas cresceu aproximadamente 200% de março de 2014

a junho de 2015.

A empresa baseia seu modelo de negócios em duas frentes principais: terceirização

de ciclistas para estabelecimentos comerciais como cartórios ou restaurantes, e

entregas avulsas, e atende o centro expandido.

2.2. Modelo de negócios

Como mencionado acima, a empresa atende seus clientes de duas formas: por

entregas avulsas ou por contratos de terceirização de serviços. A primeira consiste

em efetuar entregas individuais e, na segunda, o cliente assina um contrato com a

Courrieros em que esta se compromete a deixar à disposição do contratante um

entregador por um determinado período por dia. A Courrieros rentabiliza esta

operação cobrando mais do cliente do que paga ao ciclista, que continua sendo

funcionário da Ecolivery.

A participação de cada um dos dois modelos na receita da empresa varia

significativamente com a época do ano, mas podemos observar uma tendência de

maior participação dos contratos de terceirização com o passar do tempo.

 27

2.3. Clientes

A empresa já atendeu mais de 450 clientes ao longo de sua existência e conta

atualmente com 80 clientes regulares, i.e., que fazem uso dos serviços de entrega ao

menos uma vez por mês. O tamanho e segmento de atuação dos clientes são muito

variados: A empresa atende desde o Banco Itaú BBA, maior banco de investimentos

da América Latina, até o pequeno restaurante Piadina, localizado na região do Itaim

Bibi. Além disso, a Courrieros é responsável por efetuar as entregas do tipo same-day

da empresa de e-commerce Netshoes, maior empresa do segmento no Brasil.

A Figura 1 mostra os principais clientes da Courrieros. Nota-se a diversidade dos

ramos de atuação.

Figura 1 – Principais clientes da Courrieros

Fonte: www.courrieros.com/site/clientes

2.4. Reconhecimento do mercado: Presença na mídia e premiações

http://www.courrieros.com/site/clientes

28

A empresa já recebeu prêmios significativos pelo apelo ambientalmente responsável

de seu modelo de negócios. Dentre estes podemos citar como o mais significativo o

ECO-Challenge das Américas (PEPSICO, página única), organizado pelo OEA

(Organização dos Estados Americanos) e pela PEPSICO, empresa do ramo

alimentício dona de companhias com Lay’s e Pepsi. O prêmio reconhece a startup

mais sustentável das Américas e premia a vencedora com US$ 5 000,00.

Além deste prêmio, a empresa já foi alvo de reportagens de grandes periódicos

nacionais. Recentemente foi capa do caderno Mercado MPME do jornal A Folha de

São Paulo graças ao viés sustentável do negócio, em matéria sobre

empreendedorismo social no Brasil. A figura 2 mostra um dos sócios-fundadores,

André Biselli, e um de seus entregadores, em foto desta reportagem.

Figura 2 - Sócio e entregador da Courrieros em matéria Folha de São Paulo

Fonte: A Folha de São Paulo, 19 de Abril de 2015

 29

2.5. Dados operacionais da empresa

No mês de maio de 2015 a empresa teve um faturamento de R$ 73 000,00, e efetuou

aproximadamente 3000 entregas - o número exato não é conhecido pois ciclistas

alocados não são obrigados a reportar suas entregas. No mês em questão, a empresa

contava com 28 entregadores, sendo 26 ciclistas e 2 motoqueiros, que efetuam as

entregas de longa distância com motos elétricas. A terceirização de ciclistas

corresponde em média a 75% do faturamento da empresa (R$ 56 000,00 em maio

2015), e as entregas avulsas são responsáveis pela fatia restante.

O custo fixo médio por ciclista em período integral para o mês de outubro de 2014 é

mostrado na tabela 1 Chama atenção o fato de o salário representar apenas 50% do

custo médio de um ciclista, além do alto custo de manutenção e vales pagos pela

empresa. Trata-se, porém, de um valor abaixo da média brasileira, como mostram

Souza et al. em pesquisa da Fundação Getúlio Vargas (2012, p. 4), que indica que os

desembolsos de uma empresa brasileira com seus funcionários chegam a 255% do

salário mensal do trabalhador.

Tabela 1 – Custo fixo por ciclista

Componente Valor

Salário R$ 1.001,00

Vales R$ 350,00

Seguros R$ 150,00

13º R$ 83,42

Manutenção + Depreciação R$ 200,00

Férias R$ 27,53

Uniforme R$ 40,00

FGTS R$ 120,12

Total R$ 1.972,06

Fonte: Courrieros

O custo fixo por ciclista é um dado de grande relevância para a Courrieros, pois indica

o preço mínimo que esta deve cobrar por seus serviços de terceirização (sem levar

em conta custos de oportunidade) ou a receita média mensal que um trabalhador deve

gerar em entregas avulsas para que consiga pagar por seus custos.

30

Após esta breve imagem da história e das operações da empresa, o trabalho irá se

concentrar em definir o problema que a empresa enfrenta com seus sistemas de

gestão e controle de entregas, fonte de contratempos que este projeto tratará de

evitar.

 31

 O problema

Como foi apresentado acima, a Courrieros apresenta atualmente forte crescimento de

suas receitas, o que atraiu um grupo de investidores interessados em se tornar sócios

da empresa. Esse crescimento trouxe também dificuldades no controle financeiro, o

que torna a prestação de contas para com os novos sócios mais difícil, particularmente

devido à falta de informações confiáveis sobre os dados operacionais e financeiros da

empresa.

O objetivo desta seção é delimitar o problema enfrentado pela empresa, com foco no

sistema de informações gerenciais usado atualmente e em como este causa a falta

de confiabilidade nos dados da Courrieros.

3.1. O sistema de informações contábeis atual

O sistema de informações contábeis atual é baseado totalmente em uma planilha

Excel, chamada pelos funcionários da Courrieros de Controle. Nela são registradas

todas as informações das entregas contratadas, como nome do cliente contratante,

preço do serviço e endereço de retirada, entre outros.

A empresa possui uma planilha para cada mês, ao final do qual é calculado o resultado

com base nos registros do controle. A planilha também é usada para a cobrança de

clientes, que recebem boletos gerados manualmente segundo as informações da

planilha.

A figura 3 ilustra o ciclo de uma entrega, desde sua contratação até sua cobrança, ao

final do mês. Nela, eventos ou acontecimentos são representados por retângulos,

enquanto atividades ou ações são indicadas por setas.

32

Figura 3 - Ciclo de vida de uma entrega

Fonte: Do autor

É importante notar que todas as atividades do ciclo são executadas manualmente por

funcionários da empresa ou clientes, mesmo aquelas que possuem grande potencial

para automação, como consolidação de entregas, registro de receitas ou geração de

boletos.

Parte da planilha de controle é mostrada na figura 4. É importante mencionar que a

planilha não possui mecanismos que validem a entrada de dados: É possível registrar

uma entrega para um cliente que não existe, assim como é possível atribuir dois

nomes para o mesmo cliente. Além disso, a planilha permite operações de exclusão

e edição sem confirmação por parte do usuário.

É possível notar algumas possíveis fontes de erro: Nomes de empresas cliente são

misturados com os de funcionários dos clientes, e a planilha não detecta telefones de

contato inseridos como nomes de contatos, o que nona linha para o cliente

NETSHOES.

 33

Figura 4 - Planilha de controle atual da Courrieros

Fonte: Courrieros

Mais um exemplo de possível fonte de erro é a não obrigatoriedade de preenchimento

de alguns dados, como o horário de entrega, o que pode levar a desentendimentos

entre a empresa e seus fregueses: Diversas vezes o cliente assume que sua entrega

será realizada assim que retirada, enquanto na realidade o ciclista pode só vir a

finalizar o serviço horas depois, frustrando as expectativas do contratante. O controle

se propõe a atacar este problema com sua coluna “Entrega”, que indica o horário

esperado de finalização, mas esta informação quase nunca é preenchida, como

mostra a figura 5.

Por último, uma situação mencionada com frequência é a dupla cobrança, que ocorre

quando o cliente paga pelo serviço à vista mas é cobrado por tal à prazo também. A

34

principal causa-raiz deste erro é o não-preenchimento ou edição involuntária da

coluna “Pago à vista”, também mostrada na figura 5.

Figura 5 - Parte da planilha de controle com a coluna "Entrega" em branco

Fonte: Courrieros

Apesar de possuir os defeitos mencionados, o gerente financeiro da empresa afirma

que o controle possui algumas vantagens fundamentais que a mantêm em uso:

 Fácil uso: Somente um conhecimento básico de planilhas Excel é necessário

para operar o documento de forma eficiente e eficaz

 Facilidade de acesso a dados passados: A interface gráfica do MS Excel

permite que dados de períodos anteriores sejam facilmente acessados sem a

necessidade de executar buscar em algum banco de dados

 Flexibilidade: Fácil inserção e exclusão de colunas ou dados com mudanças

nas operações da empresa

 Facilidade back-up de dados: Versão salva diretamente no aplicativo de gestão

de arquivos DropBox, o que elimina a necessidade de back-up periódicos

 Rapidez em análises ad-hoc: Mecanismos de filtro e tabelas dinâmicas

permitem a geração de indicadores de performance com facilidade e rapidez

 35

3.2. Problemas segundo o gerente financeiro

Em um primeiro momento, buscou-se definir os problemas contábeis enfrentados pela

empresa na visão do gerente financeiro da Courrieros, André Biselli. Foram apontados

os seguintes desafios a serem superados:

 Falta de confiabilidade dos dados do sistema financeiro atual: Planilhas

Excel não oferecem mecanismo de validação de dados confiável, o que gera a

presença de muitas informações erradas ou mal digitadas na planilha de

controle. O prejuízo de tais imprecisões é evidente: Cobrança errada de

clientes, esquecimento de entregas e imprecisão de indicadores de

desempenho

 Falta de homogeneidade nos dados atuais: O sistema de controle por

planilhas Excel, por não permitir validação de dados, leva a um problema de

referência de nomes: Clientes diferentes recebem o mesmo nome na planilha

e o mesmo cliente recebe dois nomes diferentes. Isso pode levar a cobranças

erradas, além de gerar prejuízo a eventuais análises de vendas por cliente: o

volume de entregas por mês por contratante pode ser super ou subestimado.

 Dificuldade ou impossibilidade de geração de relatórios gerenciais:

Apesar de o Microsoft Excel permitir o uso de filtros, gráficos e a geração de

tabelas dinâmicas, estas são operações sujeitas a erro e que exigem certa

habilidade informática não possuída pelo operador da planilha.

 Falta de integração dos diversos sistemas de controle: Os sistemas de

controle de entregas, de gerenciamento de recursos humanos, de controle de

gastos e de geração de relatórios contábeis não possuem atualmente nenhum

tipo de integração: A entrada de dados para um sistema é feita manualmente

segundo a saída de algum outro sistema. Consequências disso são a

ineficiência na execução das funções de cada sistema e a também a possível

imprecisão nos dados transferidos entre aplicativos.

A solução a ser desenvolvida deve atacar estes problemas, mantendo, porém, as

vantagens enumeradas na subseção 3.1. Pode-se agora definir um critério de

sucesso do projeto, que será a capacidade da solução de resolver os problemas

36

citados e de manter os pontos positivos da planilha de controle. O projeto perfeito

ataca todas as desvantagens do sistema atual sem comprometer seus benefícios.

Antes de iniciar a resolução do problema, porém, uma revisão bibliográfica guiará o

autor em sua busca por uma metodologia e tecnologia de desenvolvimento de

programas.

 37

Parte II – Revisão Bibliográfica

 Introdução

Nesta parte do trabalho são analisados artigos científicos e publicações relevantes ao

tema de desenvolvimento de software para pequenas empresas afim de criar uma

base de conhecimento para a resolução do problema.

A revisão se divide em três partes: na primeira são pesquisados métodos para a

especificação de software. Na segunda parte estuda-se as soluções disponíveis no

mercado como possíveis soluções, e por fim são analisadas as tecnologias

(linguagens de programação) de desenvolvimento de software mais adaptadas ao

problema em questão.

38

 Estudo dos paradigmas de desenvolvimento de software

Nesta seção serão estudados os principais paradigmas de desenvolvimento de

software existentes atualmente. O objetivo deste estudo é determinar qual destes será

adotado para resolver o problema descrito em detalhes na seção acima com maior

chance de sucesso.

É importante esclarecer em que sentido o conceito de paradigma é utilizado no

contexto deste trabalho. Thomas Kuhn (1962, prefácio) definiu, no contexto das

ciências, um paradigma como sendo “uma tradição coerente na pesquisa científica”,

tradição esta que envolve técnicas, conhecimentos e prioridades de pesquisa. Para

este trabalho, a definição de Kuhn é usada com uma ligeira modificação. Um

paradigma é definido aqui como “uma tradição coerente de desenvolvimento de

software”. Esta tradição consiste do uso de ferramentas, técnicas, conhecimento e

prioridades para alcançar o sucesso no desenvolvimento de um programa de

computador.

Para poder efetuar comparações entre os paradigmas, é necessário estabelecer

critérios segundo os quais estes serão comparados. Para isso, um modelo de projetos

de desenvolvimento de software é definido abaixo em função de suas atividades

fundamentais. Este servirá como base para executar as comparações entre

paradigmas e a consequente escolha do mais adaptado para resolver o problema

definido acima.

2.1.1. Um modelo de projetos de desenvolvimento de software

Nesta subseção é estabelecido um modelo de projetos de software em função de

atividades fundamentais. Um modelo é uma representação simplificada da realidade

com uma finalidade. A simplificação adotada aqui é a de descrever um projeto como

um conjunto de atividades executadas com maior ou menor prioridade e intensidade,

e a finalidade é a de comparar diferentes paradigmas.

 39

2.1.1.1. Atividades fundamentais de um projeto de desenvolvimento de

software

Estabelecimento dos requisitos

Nesta atividade é estabelecido o que o software deve fazer, ou mais concretamente,

qual problema ele resolverá. Diversas ferramentas podem ser usadas determinar e

expressar esses requisitos, como os Diagramas de Caso de Uso e Diagrama de

Contexto.

Determinação da arquitetura do sistema

Esta atividade determina a estrutura do sistema em um alto nível de abstração.

Exemplo de estruturas de alto nível são Banco de Dados, Classes do programa e

Interfaces, que podem ser representadas por Diagramas de Classe, Lista de

Interfaces, entre outros. É importante frisar que a arquitetura do sistema é

independente da linguagem de programação utilizada para construir o programa, e

inclui as atividades conhecidas como Análise e Desenho, explicadas mais abaixo.

Implementação (escrita do código)

Nesta atividade, o código necessário para que o sistema funcione é escrito. O código

depende da escolha de uma linguagem de programação específica (Java, C++, C).

Testes

Nesta atividade é controlada a qualidade do software e de seus componentes, ou seja,

a adequação das funções do software a seus requisitos estabelecidos previamente.

Exemplos de testes são testes de integração e testes de unidade.

Manutenção

A manutenção consiste em manter o software em funcionamento ao longo de seu uso.

Para isso o programa já deve estar em uso pelo usuário final.

40

2.1.2. Paradigmas existentes e sua relação com o modelo definido

2.1.2.1. Paradigma Waterfall

Os métodos pertencentes ao paradigma Waterfall possuem como característica

principal a execução sequencial (em série) das atividades fundamentais descritas

acima, como mostra a figura 6.

Figura 6 - Atividades do paradigma waterfall

Fonte: Elaborada pelo autor

Neste paradigma, uma atividade só é iniciada quando a anterior foi terminada. Trata-

se do primeiro paradigma utilizado em desenvolvimento de software, com seu uso

instituído no final da década de 1960. Atualmente, variações deste paradigma são

normalmente utilizados na indústria de construção civil e de manufatura de produtos,

como explica Rajlich (2006, pág. 69).

Por se tratar de um processo sequencial, o paradigma Waterfall apresenta baixa

robustez a mudanças nos requisitos. Devido à sua execução em série, cada etapa é

baseada totalmente das saídas da etapa anterior para gerar seus resultados. Se

 41

houver mudanças significativas em saídas de etapas já executadas, há o risco de que

todas as etapas que a seguem devam ser significativamente retrabalhadas.

Devido à alta volatilidade nos requisitos projetos de software, métodos baseados no

paradigma Waterfall podem apresentar baixas taxas de sucesso para projetos de

software. Uma ilustração concreta desta volatilidade é encontrada em Cusumano e

Shelby (1997, p. 56): Segundo os autores, a lista de especificação de requisitos pode

mudar em até 30% em projetos de software.

2.1.2.2. Paradigma Ágil

Em resposta à falta de robustez a mudança encontrada em processos do tipo

Waterfall, processos mais resistentes a mudanças nos requisitos foram popularizados

nos anos 1990 (Agile Allliance, [2001?]). Uma série destes processos pode ser

agrupada sob o paradigma ágil, formalizada em 2001 no Agile Manifesto (Agile

Alliance, 2001):

We are uncovering better ways of developing software by doing it and helping others

do it. Through this work we have come to value:

Individuals and interactions over Processes and tools

Working software over Comprehensive documentation

Customer collaboration over Contract negotiation

Responding to change over Following a plan

That is, while there is value in the items on the right, we value the items on the left more

Os versos mais significativos do manifesto para o entendimento da filosofia ágil são o

quarto e o sexto, que tratam das atividades de implementação e estabelecimento de

requisitos do software: métodos ágeis favorecem a resposta a mudanças a seguir um

plano e software que funcione a documentação extensiva.

O paradigma ágil é baseado no desenvolvimento incremental do produto final,

gerando produtos intermediários em ciclos de desenvolvimento. Um ciclo é uma

execução sequencial de cada uma das atividades acima descritas. Cada ciclo tem

42

duração de uma a quatro semanas, em geral, e o produto de cada ciclo é um programa

utilizável, mesmo que este não satisfaça todos os requisitos finais do produto.

O fluxo de atividades de processos ágeis pode ser representado pela figura 7.

Figura 7 - Atividades do paradigma ágil

Fonte: eclipesource.com

Traduzindo as atividades requirements, analysis & design, implementation, testing e

evaluation por requisitos, arquitetura, implementação, teste e avaliação, podemos

perceber que um ciclo do paradigma ágil corresponde ao processo completo do

paradigma Waterfall. A atividade de avaliação corresponde à análise do produto final

de cada ciclo, que serve como entrada para determinar os requisitos do próximo ciclo.

Uma vez que a avaliação afirmar que o produto está pronto, parte-se para a entrega

(deployment).

http://www.eclipesource.com/

 43

Desvantagens do paradigma ágil são sua difícil implementação em corporações, como

mencionado em Barlow et al. (2011, p. 25) e a dificuldade de adaptação que muitos

desenvolvedores enfrentam ao tentar mudar de processos baseados no paradigma

Waterfall. Além disso, é intuitivo pensar que a filosofia incremental pode enfrentar

dificuldades para produzir programas de grande complexidade e com ênfase em

performance, devido a dificuldades de alterar a arquitetura significativamente entre

ciclos. Uma solução proposta para esta última desvantagem é a geração de produtos

que ataquem os maiores riscos previstos do projeto no início deste, para que não

surjam dificuldades insuperáveis no final do projeto somente.

2.1.3. Paradigma de protótipos

O paradigma de protótipos mistura características dos dois paradigmas anteriores.

Nele, há interações ou ciclos como em métodos ágeis, mas nem todas as atividades

são executadas em cada ciclo, pois cada iteração possui uma ênfase em certa

atividade. No início, forte prioridade é dada à definição de requisitos em detrimento da

implementação, que adquire tração conforme o projeto avança.

Outra diferença fundamental em comparação com processos ágeis é a de que nem

todos ciclos culminam com entregas de produtos prontos e os que terminam não

satisfazem necessariamente todos os requisitos definidos até então.

Figura 8 – Ciclos de um método de protótipos

Fonte: infoescola.com

44

A figura 8 mostra o ciclo de um projeto feito com um método de protótipos. Nota-se

que as cinco atividades fundamentais definidas acima estão presentes no método

mostrado na figura 7 (a atividade de Modelagem de Negócios corresponde à

caraterização da empresa cliente e não constitui formalmente uma etapa do

desenvolvimento do software), mas que a intensidade com que cada uma delas

aparece em cada ciclo (indicado na figura 8 por I1, E1, etc.) varia conforme o projeto

avança em direção à transição. Há, portanto, diferenças fundamentais entre métodos

de protótipo e métodos ágeis: Nos últimos, as atividades fundamentais estão

presentes em cada ciclo em igual intensidade e cada iteração produz um programa

completo segundo os requisitos estabelecidos no ciclo em questão. Já nos métodos

de protótipo, as atividades são distribuídas de maneira heterogênea nos diferentes

ciclos, chegando a ser completamente excluída de alguns, e os protótipos produzidos

nunca respeitarão completamente os requisitos definidos até então, mas se focarão

nos aspectos mais críticos e de maior risco.

Além do RUP, existem diversos outros métodos que possuem as características do

paradigma de protótipos. Dentre estes, é possível destacar o processo Praxis,

desenvolvido por Wilson de Pádua Paulo Filho, exposto em seu livro Engenharia de

Software (Pádua Filho, 2003).

Críticas ao paradigma de protótipos incluem as desvantagens das duas metodologias

citadas acima, dado que este inclui características de ambos. Notavelmente, pode-se

citar o possível apego de programadores a protótipos desenvolvidos e a decorrente

resistência em evoluir em direção ao produto final, e o gasto excessivo de tempo no

desenvolvimento de protótipos que serão eventualmente descartados.

Vantagens incluem o contato do cliente com software desde cedo e a possível

aprendizagem decorrente das diversas versões descartáveis produzidas antes de do

produto final.

A literatura indica que o uso do paradigma de protótipos é mais adaptado a aplicações

que oferecem intensa iteração com o usuário e onde equipes do projeto não possuem

todo o conhecimento para gerar uma solução satisfatória no início do projeto.

 45

2.1.4. Conclusões sobre o estudo dos paradigmas de desenvolvimento de

software

Foram estudados nesta seção três paradigmas de desenvolvimento de software com

o intuito de guiar a escolha do método para resolver o problema exposto acima. Para

poder comparar os paradigmas entre si, foi estabelecido um modelo que descreve

todos os métodos de desenvolvimento em função da presença de cinco atividades

fundamentais presentes em qualquer projeto de TI. Na seção de resolução do

problema deste trabalho um dos três paradigmas será escolhido para servir como

base da solução a ser apresentada.

46

 Estudo de soluções de software de contabilidade disponíveis no mercado

Nesta seção são estudados os programas de contabilidade disponíveis no mercado,

com dois objetivos principais. Primeiramente, visa-se determinar se alguma das

soluções encontradas pode resolver o problema descrito acima. Em segundo lugar,

esta revisão objetiva também aprender as principais características dos programas

disponíveis para eventualmente aplicá-las em uma solução individualizada produzida

pelo autor.

3.1.1. Características relevantes para a escolha de um software

A base para este estudo é o trabalho de Elikai et al. (2007) em que são apresentados

os principais fatores que devem ser levados em conta na escolha de um software de

contabilidade.

Serão analisadas as seguintes dimensões dos produtos, que foram consideradas as

três mais importantes segundo Elikai (2007, p. 27):

 Funcionalidades ou capacidades, incluindo flexibilidade de uso e possibilidade

de customização

 Custo de aquisição e manutenção

 Compatibilidade com outros sistemas

Estabilidade financeira do produtor e suporte ao cliente não são consideradas aqui

por ser tratarem dos fatores menos importantes encontrados no trabalho acima.

Elikai et al. também encontraram as dimensões mais importantes dentro de cada

categoria. Por exemplo, foi determinado que os quesitos funcionalidade é o mais

importante para os usuários de software de contabilidade. Mais quais são as funções

mais importantes dentro desta categoria? Abaixo são listados os fatores mais

relevantes das dimensões acima escolhidas, filtrados pelo gerente financeiro da

Courrieros, que excluiu alguns itens e detalhou outros para tornar a análise dos

programas mais objetiva.

 47

 Funcionalidades ou capacidades

o Funcionalidades: Variedade de relatórios gerados, possibilidade de

backup dos dados

o Flexibilidade de uso: Número máximo de clientes ou funcionários

suportados, tamanho máximo do total de dados armazenados,

possibilidade de gerenciar mais de uma empresa

o Usabilidade: Facilidade de uso

o Segurança: Segurança dos dados e permissões de acesso

diferenciadas por usuário

 Custo de manutenção e aquisição

o Custo total de uso excluindo treinamentos por um ano de software

 Compatibilidade com outros sistemas

o Compatibilidade com diferentes versões do MS Windows

o Compatibilidade com processadores com capacidade intermediária de

processamento (1,5 – 1,9GHz)

o Compatibilidade com softwares do MS Office para importação e

exportação de dados

Agora que já são conhecidas as características importantes de um software de

contabilidade, é necessário decidir quais serão os produtos analisados.

3.1.2. Escolha e descrição dos programas analisados

Aqui serão escolhidos os produtos que serão alvo da análise. Esta decisão será

tomada de maneira pouco formal, mas eficiente e, espera-se, efetiva: Serão buscados

na internet comparativos de softwares de contabilidade para pequenas empresas, e

então selecionados os produtos com mais forte presença nos artigos encontrados.

Serão usadas fontes de boa reputação no mercado de softwares, mas não será feita

uma análise dos métodos de escolha dos produtos comparados.

Business Insider (Angeles, 2011, p. 1)

 Quickbooks Online

 Wave Accounting

48

 Freshbooks

PCMAG (Wilson, 2011, p. 1)

 Quickbooks Premier

 Wave Accounting

 Freshbooks

 Billing Boss

Intuit Billing Manager

 Outright

 Zoho Invoice

Forbes (Marks, 2014, p. 1)

 Quickbooks Online

 Xero

 Cheqbook

 Kashoo

 Wave

 Zoho Books

 FreshBooks

Accounting Software Review (2014, p. 1)

 Quickbooks Pro

 Sage

 AccountEdge

 Cougar Mountain

 CYMA

 Bookkepper

 Business2Go

 Express Account

Uma simples contagem dos programas presentes nas listas acima permite chegar aos

seguintes softwares para análise: Wave Accounting, Freshbooks, Quickbooks Online

 49

e Zoho Account. Abaixo é apresentada uma breve descrição de cada um dos

programas.

O Wave Accounting é uma solução de software de contabilidade da Wave Apps,

empresa que oferece produtos de pagamentos e geração de boletos para pequenas

empresas. Trata-se de um programa totalmente gratuito para o usuário, que em troca

deve aceitar receber propagandas em alguns momentos quando está usando o

programa. Foi projetado para empresas com 9 funcionários ou menos, profissionais

independentes ou consultores, e não apresenta uma grande riqueza de

funcionalidades, sendo voltado majoritariamente para facilitar as operações de

cobrança e pagamentos.

O aplicativo Quickbook Pro é produzido pela reputada empresa Intuit, gigante do

mercado e pioneira na produção de programas para gestão financeira pessoal, com

valor de mercado de aproximadamente 26 bilhões de dólares. O Quickbook Pro é um

software de contabilidade com um grande número de funcionalidades como relatórios

variados, serviços de pagamento e cobrança e cálculo de valor agregado para

questões fiscais.

O Zoho Books oferece serviços semelhantes aos do Wave Apps, mas não conta com

propagandas e é portanto pago. Pode ser integrado com serviços de pagamento

online como PayPal para facilitar a cobrança de clientes e conta também com um

módulo de sincronização bancária que permite criar uma imagem do saldo da conta

corrente do usuário dentro do programa e classificar despesas para melhor gestão de

gastos.

Por último, o Freshbooks é um serviço online projetado especialmente para donos de

empresas sem experiência em contabilidade. Não oferece um grande número de

funcionalidades, mas foi eleito pelo site accounting-software-review como o melhor

programa na categoria de aplicativos de contabilidade para pequenas empresas.

50

Figura 9 - Tela inicial do Wave Accounting

Fonte: www.waveapps.com

Figura 10 - Tela de sincronização de conta correte Zoho Books

Fonte: www.zoho.com

http://www.waveapps.com/

 51

 Estudo das tecnologias de desenvolvimento

Nesta seção serão analisadas as principais tecnologias de desenvolvimento de

software disponíveis no mercado. Por tecnologias entende-se a linguagem de

programação usada para o criar o produto.

Uma restrição é colocada sobre as tecnologias: Estas devem poder ser utilizadas em

plataformas Windows, presentes nos computadores da Courrieros, e devem permitir

a escrita de arquivos em formato .xls no sistema operacional, para permitir a geração

de relatórios Excel.

Para estudo, serão consideradas as linguagens C#, VB, VBA e C++. A imposição

desta restrição de linguagens analisadas é simples: São as únicas que possibilitam o

desenvolvimento de aplicações com interface gráfica para o sistema operacional

Windows, como afirma a própria Microsoft. (Chapter 3, p. 1). Esta seção é baseada

em artigo de autoria da Microsoft intitulado “Choosing Windows Development

Technologies”, que compara as cinco possibilidades de linguagens segundo os

aspectos de performance e produtividade do programador. ([201-], p. 1). Esta parte

da revisão da literatura é também dividida segundo estes critérios. A linguagem VBA

será deixada de lado por enquanto, pois não permite o desenvolvimento de aplicações

independentes para Windows.

4.1. Eficiência do programa

A linguagem C++ é a de maior performance dentre todas. A necessidade de gerenciar

memória em aplicações desta tecnologia é ao mesmo tempo uma benção e uma

maldição: O ganho em performance é considerável, mas a necessidade de gerenciar

os objetos não usados pelo código pode gerar sobreuso de recursos e levar

eventualmente à falha do programa.

C# e VB são as próximas na fila em termos de performance do programa escrito, sem

nenhuma vantagem significativa para algum dos lados, como afirma Jerry Nixon,

52

desenvolvedor da MS, em artigo sobre o assunto (sem data, p. 1), e a escolha entre

as duas seria baseada em preferências de cada programador.

4.2. Produtividade do programador

Este aspecto representa o quão rápido um mesmo programador com conhecimentos

iguais de cada linguagem consegue escrever um programa com as mesmas

funcionalidades, em cada uma das tecnologias escolhidas.

A produtividade depende de diversos fatores, ainda segundo Nixon: a sintaxe da

linguagem, a disponibilidade de recursos de ajuda para uma das tecnologias e o

estado dos compiladores disponíveis para cada uma das opções. Na comparação VB

– C#, a ganhadora é C#, segundo Nixon. O desenvolvedor afirma que, apesar de VB

apresentar sintaxe menos densa e mais produtiva, a disponibilidade de recursos de

ajuda online é muito maior para C#, o que a torna vencedora.

Na comparação entre C# e C++, a clara vencedora é C#: Segundo Bill Kratochvill,

escrevendo na revista de desenvolvedores da Microsoft, a linguagem C# foi

desenvolvida para favorecer produtividade sobre performance e é fortemente

integrada com o compilador Visual Studio (2014, p.1), o que significa menor

necessidade de digitar os nomes de variáveis e menos tempo corrigindo erros de

sintaxe e lógica da aplicação. Conclui-se que C# é a mais produtiva das linguagens

estudadas.

4.3. Comparação VBA – Outras linguagens e VSTO

A linguagem VBA é de natureza particular, pois só pode ser utilizada em uma

aplicação do Microsoft Office (como Excel ou Power Point). O VBA é considerado

como alternativa para o desenvolvimento da aplicação Courribilidade pois esta poderia

ser baseada totalmente em Excel, que atuaria tanto como base de dados como

interface de exibição de relatórios e outras métricas. Soluções desenvolvidas em outro

ambiente (como o compilador Visual Studio) são independentes do Microsoft Office e

autossuficientes, mas possuem o ponto negativo de possuírem integração mais lenta

 53

e difícil com este. O quadro 1, de autoria da Microsoft mostra as principais diferenças

entre as duas alternativas.

Quadro 1 - Comparação VBA x VSTO (Outras linguagens)

VBA C#, VB ou C++ (Visual Studio Tools for Office)

Código presente no arquivo da suíte Office em

questão

Código separado do documento Office, sua

existência independe deste

Trabalha com elementos do Office e APIs de

VBA

Pode trabalhar com elementos do Office e o

framework .NET.

Projetado para um desenvolvimento de soluções

simples

Projetado para alta segurança e a possibilidade

de usar o Visual Studio par a desenvolvimento

Funciona bem com soluções que requerem alta

integração com produtos do Office

Funciona bem com soluções que requerem

recursos do Visual Studio e do framework .NET

Possui limitações de segurança e distribuição

para empresas
Projetado para uso em empresas

Fonte: Microsoft Development Network

Com a leitura do quadro, percebe-se que a linguagem VBA é construída para atuar

principalmente sobre algum produto específico do Office, função que esta

desempenha de maneira eficiente. Para produtos que visam comunicar com os

programas desta suíte, mas que também objetivam oferecer outras funcionalidades

independentes, projetos no Visual Studio são mais adaptados.

Uma das grandes vantagens do VBA, como mostrado no quadro 1, é a comunicação

simples e eficiente com elementos que compõe um documento Office. O VBA

possibilita, por exemplo, fazer referência direta a uma célula do Excel ou linha do Word

do código, o que torna a experiência de programação intuitiva e mais produtiva. Isso

não era possível usando C# ou outras linguagens do Visual Studio até 2003, quando

a Microsoft lançou o produto Visual Studio Tools for Office, que permite a integração

do código escrito em C# ou VB com elementos do Office como células ou colunas do

Excel.

Esta solução torna o uso do Visual Studio superior ao VBA para uma grande parte de

aplicações, pois a vantagem de comunicação com elementos core dos documentos

Office que possuía o VBA passou a ser compartilhada com Visual Basic e C#.

54

Ainda há uso para o VBA, em especial porque as ferramentas do VSTO são pagas e

só estão disponíveis para usuários da versão Professional do Visual Studio, enquanto

todos os programas Office possuem modos de desenvolvedor que aceitam código

VBA sem custos adicionais. Além disso, pode ser interessante entregar um

documento do Office com código embutido ao invés de ter de produzir dois programas

separados. Por último, o VBA é a única linguagem que permite a gravação de macros,

além de permitir análises ad-hoc de maneira rápida, o que não é possível para

programas do Visual Studio, que exigem a escrita um programa completo para

interagir com documentos do Office.

4.4. Conclusão sobre as tecnologias disponíveis

A análise das linguagens de programação disponíveis para Windows tratou da

performance e da produtividade do programador para quatro tecnologias disponíveis:

C++, C#, VB e VBA. Esta última foi analisada separadamente pelas limitações do tipo

de aplicações que pode produzir.

Os resultados da revisão mostram que, em termos de performance do programa, C++

é largamente superior a C# ou VB, sendo que entre estas últimas não há diferença

apreciável de desempenho.

Em termos de produtividade do programador, C# se destaca sobre VB, que se destaca

sobre C++. Este resultado se deve principalmente à disponibilidade de recursos de

ajuda online existentes para a tecnologia C#, largamente superior aos de VB. Em

termos de produtividade intrínseca à linguagem, não há diferença significativa entre

VB e C#, e estas duas são superiores neste quesito a C++, muito devido à

necessidade de gerenciar memória que esta apresenta.

 55

Parte III – Resolução do problema

 Introdução

Esta parte do trabalho trata da resolução do problema apresentado na introdução, e é

estruturada em duas seções lógicas principais.

Em um primeiro momento serão escolhidas e descritas as ferramentas usadas para

solucionar a questão proposta. Isto se traduz em escolher se um novo sistema será

desenvolvido ou se uma solução disponível no mercado será usada, decidir sobre o

melhor método de desenvolvimento de software, que será escolhido com base nos

estudos sobre metodologia feitos na revisão da literatura e finalmente selecionar a

tecnologia para implementação do Courribilidade.

Na sequência, passa-se à aplicação destas ferramentas e à apresentação dos

resultados com estas obtido.

56

 Escolha e descrição dos métodos e tecnologias

Nesta seção são escolhidos a metodologia, o método que a implementa e a tecnologia

a serem usados para solucionar o problema.

A metodologia é selecionada dentre as três estudadas na seção precedente. Uma vez

tomada esta decisão, um método baseado nesta será selecionado. É importante frisar

que podem existir diversos métodos que sigam a mesma metodologia, e que a escolha

no contexto desse trabalho se fará baseada principalmente na disponibilidade de

material didático sobre o método.

Trata-se de um critério de escolha simples e que ignora provavelmente características

individuais de cada método, as decidiu-se por este caminho pela crença de que a

decisão da metodologia é de maior importância.

Já a escolha da tecnologia será baseada no estudo das linguagens de programação

disponíveis para construir aplicações Windows, a saber C#, C++, VB e VBA. A decisão

será tomada tentando alinhar restrições esperadas do produto, como requisitos de

performance e tempo limite para desenvolvimento, com as características de cada

linguagem.

2.1. Desenvolver ou comprar o produto?

Neste item é tomada a decisão da estratégia de resolução do problema. A definição

deste último deixa claro que se trata de um problema de software. Para resolvê-lo,

deve-se primeiramente decidir se um programa será comprado do mercado ou

desenvolvido do zero.

Esta escolha será baseada na capacidade de cada uma das alternativas em produzir

as características necessárias para resolver o problema. Para isso, é necessário

revisitar a definição deste. Voltando à parte I, nota-se que o problema pode ser

descrito por 4 falhas do sistema atual:

 57

 Falta de confiabilidade dos dados do sistema: Valores de propriedades

incorretos devido à falta de validação de dados

 Falta de coerência dos dados atuais: Problema de referência a entidades do

sistema como nome de empresas, funcionários ou endereços

 Dificuldade de geração automática de relatórios

 Falta de integração entre os diversos sistemas

Uma simples matriz de decisão será usada para a escolha. Todos os critérios são

considerados como igualmente importantes, e as notas de cada alternativa para cada

critério variam de 1 a 3. O software de mercado utilizado para a comparação foi o

QuickBooks Pro, julgado pelo autor como o mais completo dentre os encontrados. Os

resultados são mostrados na tabela 2.

Tabela 2 – Comparação Desenvolvimento Próprio x Compra de software

Confiabilidade

Dos dados

Coerência

Dos dados

Geração de

relatórios

Integração

entre

Nota

Final

Desenvolvimento

Próprio
3 3 3 3 12

Compra de software

existente
3 3 2 2 10

Fonte: Do autor

A alternativa de desenvolvimento próprio é a vencedora, pois oferece melhor

possibilidade de geração de relatórios e de integração de sistemas. Estas notas de

devem principalmente à possibilidade de personalização que o desenvolvimento

próprio oferece, uma vez que softwares de prateleira oferecem pouca ou nenhuma

flexibilidade quanto às suas funcionalidades.

É importante notar que não foi usado um critério de custo de aquisição ou de

manutenção para a decisão. Isto é uma particularidade do contexto em que este o

problema e este trabalho se inserem: Primeiramente, os benefícios estimados pelo

cliente possuem valor largamente superior ao preço cobrado pelo mais caro dos

softwares encontrados na revisão da literatura, e este seria, portanto, irrelevante. Em

segundo lugar, o custo para a Courrieros no caso desenvolvimento de

58

desenvolvimento próprio é nulo. Trata-se claramente de uma particularidade do

trabalho, que não pode ser extrapolada para casos de necessidades futuras.

2.2. Escolha da metodologia e método

2.2.1. Método de escolha: Matriz de Decisão

O método de decisão usado será o de Matriz de Decisão. Trata-se de um método

simples e de fácil aplicação, e deve-se questionar se não é uma escolha simplista.

Mas uma breve revisão da literatura nos mostra que não existem métodos de escolha

de metodologia mais sofisticados do que o bom senso, como indica Glass (2004, p.

19). Isso significa que o trabalho de classificar metodologias e problemas de

desenvolvimento e então determinar qual classe de métodos se adapta melhor a cada

classe de problemas ainda não foi feito.

Na impossibilidade de usar métodos mais sofisticados, recorre-se então à matriz de

decisão para efetuar a ligação. Mas o problema não está resolvido: que critérios usar

na matriz, e como dar a cada um deles pesos diferentes? Este é o objeto dos

parágrafos seguintes.

2.2.2. Fatores de decisão

Aqui são definidas características esperadas do produto que guiarão a decisão. A

literatura não apresenta materiais satisfatórios sobre o assunto, como mencionou

Glass (2004, p. 19). Fontes de menor confiabilidade serão portanto usadas. Danie

Krige, funcionário da Amazon Web Services (AWS) sugere a seguinte lista de critérios:

 Conhecimento dos riscos: Os riscos do projeto estão claros?

 Conhecimento do escopo: As fronteiras do projeto estão claras ou existe a

possibilidade de o desenvolvedor se perder em detalhes??

 Maturidade dos requisitos: O cliente conhece todos os requisitos que quer?

 Custo de desenvolvimento: Qual é o custo da qualidade e o custo de ownership

do projeto?

 59

 Relacionamentos dentro do time: Existe distância geográfica entre os membros

do time? O time está focado em trabalho em equipe ou são os membros

colaboradores individuais para o projeto?

 Flexibilidade dos stakeholders: Os stakeholders conseguem adaptar-se ao

projeto e ao time?

 Experiência do time: Qual é o nível de capacidade de cada membro do time?

 Comprometimento dos clientes: Há alguém diretamente responsável pelo

projeto na empresa cliente?

 Documentação: É necessária documentação a ser entregue ao cliente?

 Complexidade do programa: Quão complexo é o programa em termos de

inovação?

 Patamar mínimo de tamanho do programa: Quão alto é este patamar?

 Estabilidade do ambiente do programa: Quão estável é este ambiente?

 Tamanho do time: Qual é o tamanho do time?

 Familiaridade com a aplicação: Trata-se de uma aplicação familiar ou

totalmente nova?

 Linguagens de programação a serem usadas: depende-se de capacidades

escassas para completar o projeto?

 Método de contrato: Preço fixado por entrega de produto ou determinado pelo

tempo e pelo custo?

 Influência de terceiros quanto à escolha da metodologia: Existe pressão de

terceiras partes para que o time use certo método?

Esta lista será tomada como base e filtrada para o problema que está sendo

enfrentado e para o contexto de um trabalho de formatura. Obviamente, critérios de

grupo de trabalho não se aplicam, pois o projeto será desenvolvido por uma única

pessoa. Dimensões de custo também não serão consideradas, assim como questões

contratuais. Obtêm-se então a seguinte lista, com critérios semelhantes agrupados.

 Capacidade de lidar com incertezas: A metodologia permite lidar com riscos

ainda desconhecidos?

60

 Capacidade de lidar com mudanças de escopo: Os métodos permitem que se

mude radicalmente o escopo do projeto sem impor grandes mudanças na

arquitetura do projeto?

 Robustez quanto a mudança nos requisitos: A metodologia tem espaço para

mudanças nos requisitos sem requerer grandes retrabalhos?

 Capacidade de permitir aprendizado durante o processo de desenvolvimento:

A metodologia permite que o programador aprenda sobre as tecnologias

envolvidas durante o projeto?

 Rastreabilidade e documentação: A metodologia permite que cada elemento

do sistema pronto possua uma causa de existência bem definida nos

requisitos? As decisões são bem documentadas?

Graduar cada um dos elementos da lista acima de 1 a 5, sendo 5 o valor que indica

maior intensidade, como mostrado na escala abaixo, permitirá determinar o quão

importante cada dimensão é para o projeto. Esta importância representará um

problema que deverá ser endereçado pela metodologia.

 1: Irrelevante ou não presente no projeto

 2: De pequena importância ou presença esporádica no projeto

 3: De importância ou presença a no projeto

 4: De forte presença ou importância no projeto

 5: De importância crucial para o projeto

Por exemplo, espera-se que o projeto tenha requisitos estáveis, por se tratar

essencialmente de um sistema de gerenciamento de banco de dados. Pode-se,

portanto, classificar o critério Volatilidade de requisitos como tendo intensidade 1,

dado que este fator não está presente no projeto. Trata-se de uma dimensão que as

metodologias estudadas não terão que resolver, e o fato de uma destas poder

endereçar melhor este desafio é totalmente irrelevante.

Por outro lado, o autor não possui fortes conhecimentos prévios sobre a linguagem de

programação usada para implementação da solução: pode-se dar intensidade 4 ou 5

para este critério pois a aprendizagem da tecnologia durante o processo certamente

 61

estará presente nesse problema. Isso significa que esta é uma dimensão prioritária na

escolha da abordagem de resolução do problema. Esta avaliação dos critérios nada

mais é do que a definição dos pesos da matriz de decisão.

Tabela 3 – Pesos da matriz de decisão

Critério Peso

Resiliência a riscos

desconhecidos
2

Volatilidade de requisitos 4

Volatilidade da arquitetura 2

Necessidade de documentação 4

Aprendizado durante o

processo
5

Fonte: Do autor

2.2.3. Adaptação das metodologias aos critérios: Notas da Matriz de Decisão

Aqui são definidos os graus de alinhamento das metodologias com os critérios

apresentados acima, ou, em outras palavras, as notas de cada uma delas na matriz

de decisão. Será usada uma escala de 1 a 5, onde 5 representa a mais alta adaptação.

Como exemplo, considerando o alinhamento entre Volatilidade de Requisitos e a

metodologia ágil, a nota é 5, pois, como foi exposto acima, métodos ágeis são

adaptados a projetos de alta volatilidade de requisitos. Processos do tipo Waterfall

possuem pouca robustez para lidar com requisitos variáveis e recebem nota 1 para

esta dimensão. Juntando as notas das alternativas com os pesos dados a cada um

dos critérios obtêm-se a matriz de decisão, representada na tabela 4. A Metodologia

vencedora é a metodologia de protótipos, ganhadora por pouco sobre os métodos

ágeis, como indicado na linha Resultado Final da matriz.

Tabela 4 – Matriz de decisão da metodologia (Continua)

Critério Peso Waterfall Agile Protótipos

Resiliência a riscos desconhecidos 2 1 5 3

Volatilidade de requisitos 4 1 5 4

62

 Conclusão

Critério Peso Waterfall Agile Protótipos

Volatilidade da arquitetura 2 1 2 4

Necessidade de documentação 3 5 3 5

Aprendizado durante o processo 5 1 4 4

Resultado Final 28 63 65

Fonte: Do autor

Processo Waterfall são pouquíssimos adaptados ao tipo de projeto que será

desenvolvido, em especial pois apresentam baixíssima resiliência a mudanças e

assumem um conhecimento prévio das tecnologias que o autor não pode oferecer.

Entre a metodologia Ágil e o Processo Unificado, o resultado foi praticamente um

empate. Métodos ágeis se mostram mais adaptados a lidar com volatilidade de

requisitos, mas produzem menos documentação e são, portanto, menos propensos a

oferecer rastreabilidade.

Prevaleceram os métodos do tipo UP, que se mostraram equilibrados em todos os

critérios escolhidos. Como já foi mencionado na revisão da literatura, este equilíbrio é

característica fundamental dos métodos UP, que se localizam no meio do espectro de

agilidade, oferecendo elementos dos dois extremos.

Uma vez escolhida a metodologia, é necessário escolher o método que a implementa.

Trata-se de uma decisão de caráter tático, em oposição à escolha que acaba de ser

feita, que possui características estratégicas, mas ainda de suma importância, em

especial para métodos de protótipos, que possuem uma grande variedade de métodos

disponíveis no mercado. A subseção seguinte tratará deste assunto.

2.3. Escolha e descrição do método

2.3.1. Escolha do método

A escolha do método será baseada em um único critério, extremamente simples, mas

na opinião do autor muito efetivo do ponto de vista prático: O número de projetos

 63

desenvolvidos com a ajuda de cada método acessíveis ao autor. Para determinar esta

disponibilidade, o autor atuou em duas frentes.

Primeiramente, efetuou-se uma pesquisa sobre os trabalhos de formatura publicados

no site do departamento de Engenharia de Produção da Escola Politécnica da USP,

buscando por temas semelhantes ao desta obra, a saber, especificação e

desenvolvimento de softwares, e tomou nota dos métodos usados pelos alunos.

Em seguida, foram buscados na Biblioteca da Engenharia Elétrica e da Engenharia

de Produção títulos que descrevessem métodos de protótipos, em especial métodos

do tipo Unified Process. Foram pesquisadas obras que mostrassem, além dos

conceitos teóricos dos processos, exemplos de uso destes, para tornar a aplicação do

método por parte do autor mais simples e eficaz.

Após esta rápida busca por um método que implemente as ideias da filosofia de

protótipos, decidiu-se por utilizar o método Praxis, do Engenheiro Wilson de Pádua

Paula Filho. O Praxis foi utilizado em maior ou menor intensidade em todos os

trabalhos de formatura do PRO que lidaram com especificação de software nos

últimos três anos, tendo sido usado em sua totalidade por Michailovici (2012) e

Sumares (2012), e a Biblioteca da Produção possui literatura satisfatória sobre o

processo.

2.3.2. Breve descrição do Método Praxis

O Praxis é um método baseado em iterações. Cada iteração compreende um ciclo

completo das atividades fundamentais da engenharia de software apresentadas na

seção 2 da revisão da literatura deste trabalho (especificação de requisitos,

implementação, etc). Estas tarefas fundamentais recebem o nome de fluxos. Dizer

“Tarefa de Especificação de Requisitos” é totalmente equivalente a dizer “Fluxo de

Requisitos”.

Cada iteração pode ser considerada como um mini-projeto Waterfall, cujo produto final

é um protótipo. Quando o protótipo satisfizer todos os requisitos definidos pelo cliente,

o projeto é considerado terminado.

64

Desta descrição deve-se depreender dois aspectos principais do Praxis (e de qualquer

outro método de protótipos). Primeiramente, os fluxos serão executados em iterações,

e existirão iterações até que o produto final for considerado satisfatório. Em segundo

lugar, o produto final só é atingido na última iteração. Esta é uma diferença

fundamental dos métodos ágeis para o Praxis: Enquanto esses produzem um

programa pronto para uso ao final de cada sprint, o Praxis não visa obter um software

funcional antes do fim. A finalidade de protótipos é a de provar um conceito ou superar

um risco, e não de prover funcionalidade, e por isso muitos são descartados após sua

produção

Mas qual é a estrutura básica de uma iteração? Qual deve ser o fluxo com maior

intensidade de trabalho em cada uma delas? O que esperar como resultado de cada

ciclo? As respostas são apresentadas abaixo.

2.3.2.1. Estrutura de uma iteração

A imagem da capa da terceira edição do livro Engenharia de Software (Pádua Filho,

2010) traduz de maneira simples e expressiva todo o processo Praxis, e por isso está

representada na figura 11. Uma iteração é a execução sequencial de cada um dos

fluxos mostrados na ilustração, com duração média de uma semana. A curta duração

é fundamental, pois força os engenheiros a priorizarem suas atividades e impossibilita

o dispêndio excessivo de tempo com uma só atividade, o que aproximaria o processo

da metodologia Waterfall e eliminaria suas vantagens.

2.3.2.2. Objetivos de uma iteração

É fundamental que cada iteração possua um objetivo, sem o qual não há como medir

seu sucesso. Para atribuir metas ao trabalho, o Praxis agrupa iterações em fases, e

define a meta de cada fase como sendo um documento que formaliza os resultados

atingidos pelas iterações. Como exemplo, a terceira fase do método possui como

deliverable o documento ERSw (especificação dos requisitos do software) totalmente

completo. Quando todas as seções deste documento tiverem sido preenchidas

corretamente, a quarta fase terá início.

 65

O número de repetições é então variável: Devem ser feitas tantas iterações quanto

forem necessárias para atingir o objetivo da fase, respeitando o limite de duração de

cada ciclo. De maneira geral, uma fase precisa de três a cinco iterações para atingir

seus objetivos (Pádua Filho, 2003, p. 1)

2.3.2.3. Quanto tempo atribuir a cada fluxo em uma iteração?

Chega-se ao problema de priorização de uso do tempo por fluxo. Quanto esforço deve

ser dado ao fluxo de implementação na primeira fase do projeto? Provavelmente não

muito, dado que pouco se conhece sobre o sistema a ser desenvolvido. Por outro lado,

o tempo gasto com testes ao final do projeto deve proporcionalmente grande, uma vez

que todos os requisitos já foram estabelecidos.

Como exemplo, o quadro 2 mostra as tarefas da fase de Ativação, a primeira do

método. Nota-se que há três atividades ligadas ao fluxo de requisitos, mas somente

uma (opcional) de implementação. É de se esperar que a proporção de tarefas de

implementação cresça com a maturidade do produto.

Quadro 2 – Tarefas da fase de Ativação

Fluxo Tarefa

Requisitos Determinação do contexto

Requisitos Definição do escopo

Requisitos Definição dos requisitos (preliminar)

Análise (Não há atividades)

Desenho Esboço arquitetônico

Implementação Prototipagem inicial (se necessário)

Testes (Não há atividades)

Fonte: Adaptado de Pádua Filho (2003)

A figura 12, já apresentada na revisão bibliográfica, mostra a intensidade de cada um

dos fluxos durante as fases, cujos nomes estão indicados na primeira linha. (Por ser

baseada no processo RUP, as fases têm nomes diferentes)

66

Para solucionar o problema de priorização, o Praxis define scripts para cada uma das

fases. Scripts são roteiros que descrevem as tarefas a serem executadas em cada

iteração daquela fase. Se as tarefas definidas forem em sua maioria pertencentes ao

fluxo de especificação de análise, então a fase será focada neste aspecto.

Figura 11 - Atividades no Praxis

Fonte: Adaptado de Pádua Filho (2010)

Figura 12 - Distribuição da intensidade de trabalho com o tempo no Praxis

 67

Fonte: infoescola.com

Agora que já se conhece um pouco mais sobre o Praxis, este será usado para resolver

o problema da Courrieros. As seções de 3 a 5 tratam da aplicação do método no

contexto da criação do software Courribilidade, começando pela especificação de

requisitos.

68

 Especificação dos requisitos

3.1. Requisitos na Engenharia de Software

Assim como em qualquer projeto de engenharia, requisitos são a base sobre a qual

se desenvolve um projeto de software. Nesta disciplina, requisitos podem ser divididos

em requisitos funcionais e não-funcionais. Requisitos funcionais indicam o que o

software deve fazer, enquanto os não-funcionais definem restrições sobre como estas

funções podem ser executadas. Por exemplo, o produto deste trabalho, o programa

Courribilidade, possui como requisito funcional executar o backup de dados essenciais

no software Dropbox. Um requisito não-funcional ligado a este requisito funcional pode

ser que o tempo para executar a gravação dos dados no servidor não pode superar 5

minutos.

Como afirma Pádua Filho (2003, p. 87), uma boa engenharia de requisitos é de

fundamental importância para garantir o sucesso de um projeto de software. Mesmo

na aplicação de métodos ágeis, é fundamental que os requisitos do ciclo de

desenvolvimento em questão sejam precisamente definidos para que este possa ser

bem-sucedido. Ainda de acordo com o mesmo autor (2003, p. 90), especificações de

requisitos apresentam certas características que definem sua qualidade. São estas:

 Correção: Os requisitos da especificação são realmente requisitos desejados

no produto final

 Precisão: Os requisitos apresentam definição precisa e objetiva, sem

ambiguidades ou margens para interpretação subjetiva

 Completude: Nenhuma funcionalidade pode ser ignorada

 Consistência: Requisitos não apresentam conflitos entre si, é possível

implementar todos os requisitos ao mesmo tempo

 Priorização: Cada requisito deve ser classificado de acordo com sua

 Verificabilidade: Todos os requisitos definidos na especificação devem ser

verificáveis, i.e., deve ser possível determinar se certo requisito foi

implementado

 69

 Mutabilidade: É possível mudar requisitos da especificação sem grande

esforço, mantendo consistência e completude

 Rastreabilidade: Cada requisito deve poder ser rastreado desde suas

consequências e permitir o rastreamento de suas origens

3.2. Requisitos no Praxis

3.3. Estrutura desta seção

A estrutura desta seção baseia-se no papel dos requisitos no processo Praxis. Em um

primeiro momento serão apresentados os benefícios que são esperados pela gerência

da Courrieros do sistema desenvolvido.

Em seguida são apresentados os casos de uso do sistema, que são apresentados em

um diagrama de contexto UML. Nesta seção está a base sobre a qual será construída

o sistema, pois aí são definidas e detalhadas formalmente todas as funcionalidades

que são esperadas do sistema.

Na sequência, parte-se para a enumeração e desenho das interfaces do

Courribilidade. Existem dois tipos de interface segundo o processo de

desenvolvimento adotado: Interfaces de usuário e interfaces externas. Interfaces de

usuário são aquelas que os atores confrontam quando do uso do sistema. Um bom

exemplo é a tela de cadastro de funcionários, reproduzida na figura 13. Interfaces

externas são aquelas usadas pelo sistema para se relacionar com seu ambiente. Um

exemplo claro é a comunicação com o aplicativo Excel.

Por último são apresentados os requisitos não-funcionais do Courribilidade. Se os

casos de uso representam o O QUÊ do sistema, os requisitos não-funcionais são o

COMO. Exemplo de um requisito deste tipo é a velocidade com que o sistema deve

gerar relatórios em formato Excel.

É importante notar que a estrutura aqui apresentada é adaptada do Praxis, mas não

segue estritamente a lógica por ele proposta para facilitar o entendimento do texto.

70

Figura 13 - Cadastro de funcionário

Fonte: Do autor

3.4. Resultado do fluxo de requisitos

3.4.1. Benefícios esperados do sistema

Os benefícios esperados do Courribilidade são definidos na primeira fase do Praxis, a

de ativação, e é o primeiro resultado concreto do fluxo de requisitos. Trata-se de uma

enumeração das melhorias esperadas do sistema pelo cliente do projeto, e, portanto,

totalmente correlacionado com os problemas que este cliente enfrenta. No caso da

 71

Courrieros, esta correlação é evidente quando se compara a seção de definição do

problema com a o quadro 3.

Quadro 3 – Benefícios esperados do sistema

Número de ordem Benefício Valor para o cliente

1
Maior precisão nos dados

operacionais e financeiros
Essencial

2
Maior agilidade na geração de

relatórios
Essencial

3 Relatórios mais inteligíveis Desejável

4
Maior precisão na avaliação

dos entregadores
Essencial

5
Maior abrangência dos

relatórios de venda por cliente
Essencial

6
Maior agilidade na geração de

relatórios de venda por cliente
Essencial

7
Maior espectro de indicadores

de avaliação de entregadores
Desejável

8
Maior espectro de indicadores

de avaliação de clientes
Desejável

9
Geração automática de notas

fiscais
Opcional

10
Geração automática de notas

fiscais
Opcional

11
Comunicação com o aplicativo

da Courrieros
Opcional

12
Geração automática de

protocolos de entrega
Opcional

13
Georeferenciamento de

entregas
Desejável

Fonte: Do autor

É importante notar também que todos os benefícios possuem também uma

classificação de valor para o cliente, que indica o quanto cada melhoria é importante

para a empresa contratante. No caso da Courrieros, os benefícios ligados à correção

e precisão dos dados são os de maior valor, enquanto que os benefícios ligados à

72

integração com outros sistemas, como emissão de notas fiscais ou comunicação com

o aplicativo são considerados pelo gerente financeiro da Courrieros como opcionais

apenas.

A definição de importância para os benefícios se mostra essencial em projetos em que

os recursos de desenvolvimento são escassos, pois ajuda a priorizar funcionalidades

e a entregar o máximo de valor com o tempo e capital disponível.

3.4.2. Casos de uso e atores do sistema

Nesta subseção são definidos os casos de uso do sistema, i.e., as representações

das funções do produto na forma escrita ou diagramática, assim como os atores que

sobre eles agem. Atores são representações das classes de usuários que agem sobre

o sistema, e modelam os papéis que cada usuário tem no seu relacionamento com o

sistema. Um usuário humano pode ter mais de um papel e ser representado por mais

de um ator. Por exemplo, o sr. Biselli, gerente financeiro da Courrieros, pode ora agir

sobre o sistema como administrador deste, adicionando ou excluindo usuários, ora

registrar entregas e, portanto, agir como controlador.

A lista de casos de uso é gerada iterativamente no Praxis, começando na fase de

Concepção e terminando na primeira iteração da fase de Levantamento de Requisitos.

O resultado final das atividades é mostrado nesta subseção.

Quadro 4 - Casos de uso do Courribilidade (Continua)

Número de ordem Caso de uso Descrição

1 Inserir usuário
Inserir usuário que terá acesso

ao Courribilidade

2 Apagar usuário
Apagar usuário que tem

acesso ao Courribilidade

3 Editar usuário
Alterar dados de usuário que

tem acesso ao Courribilidade

4 Inserir cliente
Inserir cliente na base de

dados do Courribilidade

 73

 Continuação

Número de ordem Caso de uso Descrição

5 Apagar cliente

Apagar cliente presente na

base de dados do

Courribilidade

6 Gerar relatório de clientes
Gerar relatório gerencial de

clientes

7 Editar cliente

Alterar dados de cliente

presenta na base de dados do

sistema

8 Inserir entrega
Inserir na base de dados de

uma entrega

9 Editar entrega

Editar informações de uma

entrega presenta na base de

dados

10 Apagar entrega
Remover da base de dados

entrega lá presente

11 Gerar relatório de entregas
Gerar relatório gerencial de

entregas/vendas

12 Inserir funcionário
Inserir funcionário no banco de

dados do sistema

13 Apagar funcionário
Remover funcionário do banco

de dados do sistema

14 Editar funcionário

Editar informações presentes

no banco de dados sobre um

dado funcionário

15 Gerar relatório de funcionário
Gerar relatório gerencial sobre

funcionários

16 Gerar relatório de resultados

Gerar relatório de resultados

econômicos de um dado

período

17
Gerar relatório de fluxo de

caixa

Gerar relatório de fluxo de

caixa de um dado período

18 Gerar balanço patrimonial
Gerar relatório de balanço

patrimonial da empresa

19
Georeferenciamento de

entregas

Cálculo das coordenadas

geográficas de cada ponto de

coleta e entrega

20 Emissão de nota fiscal
Emissão de nota fiscal para

cliente

74

 Conclusão

Número de ordem Caso de uso Descrição

21 Backup automático de dados

Backup de dados relevantes

para sistema de

armazenamento externo (cloud

ou não)

Fonte: Do autor

É importante frisar que os casos de uso são a tradução em funções do sistema dos

benefícios esperados. É fácil notar isto: No quadro 4 acima observamos o caso de uso

Geração de relatório de entregas, que é claramente decorrente dos benefícios 5 e 6.

Quadro 5 - Enumeração e descrição dos atores do sistema

Número de ordem Ator Definição

1 Gerente
Funcionário responsável pela

administração da empresa

2 Controlador de entregadores

Funcionário responsável pela

alocação de ciclistas para cada

entrega e pelo registro de

entregas no livro de controle da

empresa

3 Aplicativo

Aplicativo de gestão de

entregas e rastreamento de

ciclistas

4 Windows
Sistema operacional onde será

instalado o programa

5 Sócio Sócio da empresa Courrieros

6 Entregador
Funcionário que executa

entregas

7 Sócio-Investidor
Investidor que não trabalha na

empresa

8 Administrador do sistema

Funcionário responsável pela

manutenção do

Courribilidade

Fonte: Do Autor

 75

Cada caso de uso é executado por um ator (como mostrado no quadro 5), que possui

também características de uso particulares, o que influencia a realização das

interfaces e dos fluxos de caso de uso. O controlador provavelmente usará o

Courribilidade várias vezes ao dia. Um sócio-investidor, porém, deve atuar sobre o

sistema uma ou duas vezes ao mês. É natural esperar, por exemplo, que um ator com

baixas habilidades em informática apresente dificuldades para utilizar uma interface

gráfica com muitas opções ou funções de natureza complexa, da mesma maneira que

alguém que interage pouco com o sistema pode requerer uma GUI (Graphical User

Interface) intuitiva dado que não conseguirá memorizar os comandos do sistema com

pouca frequência de uso.

Casos de uso podem ser agrupados em classes, que indicam funcionalidades

semelhantes entre si ou que implementam o mesmo benefício. Por exemplo, seria

possível agrupas os casos de Inserir, Apagar e Editar usuário na classe Gestão de

Usuários. Isso torna na opinião do autor os casos de uso mais compreensíveis do

ponto de vista das melhorias trazidas, mas dificulta o detalhamento destes, atividade

executada mais adiante. Este texto irá utilizar as duas denominações, dependendo do

contexto.

Casos de uso podem ser apresentados de forma mais visual usando diagramas UML.

Para isto, é possível usar o diagrama de contexto, que Pádua Paula descreve como

uma figura que mostra as interfaces do sistema com seu ambiente (2003, p. 100) e as

funcionalidades de que estas interfaces participam. Trata-se de uma visão de alto nível

do sistema. A figura 14 mostra o diagrama de contexto do Courribilidade.

76

Figura 14 - Diagrama de contexto do Courribilidade

Fonte: Do Autor

Nota-se que foi usada a denominação de classes para os casos de uso, o que

favorece o entendimento das funcionalidades que são executadas por cada um dos

atores e torna o diagrama mais sintético.

O diagrama de contexto fornece uma visão geral sobre o sistema, mas não fornece

detalhes sobre como as funcionalidades devem ser implementadas pelo programador

ou utilizadas pelo usuário. Isso é feito no detalhamento dos casos de uso, apresentado

abaixo. Mais uma vez, nem todos os casos de uso são detalhados neste documento,

pois isto tornaria o texto de difícil leitura.

3.4.2.1. Detalhamento dos casos de uso

 77

Detalhamentos seguem uma estrutura bem definida: primeiramente são expostas as

pré-condições para que o usuário possa ter acesso ao caso de uso, como possuir

certas permissões de uso ou estar em algum modo do sistema. Em seguida é

mostrado o passo a passo que o ator deve seguir para executar a função, e por fim

são detalhados sub-fluxos que podem estar contidos nos detalhes de execução da

função.

Abaixo são apresentados os detalhamentos para os casos de uso de inserção de

usuário no Courribilidade e de geo-referenciamento de entregas.

3.4.2.2. Detalhamento Caso de Uso Inserção de usuários

3.4.2.2.1. Pré-condições

1. O usuário deve estar registrado como administrador do sistema

3.4.2.2.2. Detalhamento do fluxo

1. O administrador clica no botão “Gestão de Usuários”, dentro do item “Usuários”

na barra de menu principal

2. O Courribilidade Exibe o painel de gestão de usuários, ocupando integralmente

a tela do sistema

3. O administrador clica no botão “Inserir usuário” da tela de gestão de usuários

4. O Courribilidade exibe a tela de inserção de usuários e bloqueia a execução de

outras funcionalidades do programa enquanto o usuário não finalizar o

processo de inserção

5. O administrador preenche os dados do novo usuário e clica no botão inserir

usuário

6. O Courribilidade verifica a validade de todas as informações; Caso haja pelo

menos uma informação incorreta, executa-se o subfluxo alerta de erro de dados

incorretos

7. Caso todas as informações estejam corretas, o Courribilidade cria na base de

dados o usuário com as informações dadas pelo usuário

78

8. O Courribilidade exibe uma mensagem de sucesso, fecha o formulário de

inserção de usuários e desbloqueia a tela de gestão de usuários.

3.4.2.2.3. Detalhamento do subfluxo alerta de dados incorretos

1. O Courribilidade exibe uma mensagem de erro com uma lista das informações

incorretamente digitadas ou faltantes

2. O usuário clica em OK

3. O usuário é redirecionado para a tela de inserção de usuários

3.4.2.3. Detalhamento do caso de uso Georeferenciamento de entregas

3.4.2.3.1. Pré-condições

1. O usuário deve possuir permissão para executar esta tarefa

3.4.2.3.2. Detalhamento

1. O gerente seleciona na barra de menu principal o botão “Georeferenciamento”

2. O Courribilidade exibe no painel esquerdo a tela de controle de

georeferenciamento e no painel direito o painel de geração de relatório de

georeferenciamento pelo banco de dados

3. Caso o gerente deseje um relatório com dados externos:

a. O gerente clica no botão correspondente no painel esquerdo

b. O Courribilidade exibe a tela correspondente à geração de relatórios

com dados externos

c. O gerente carrega o arquivo de dados externos

d. O Courribilidade exibe mensagem de erro ou sucesso conforme o

resultado da leitura do arquivo

e. Em caso de sucesso, o gerente clica no botão gerar relatório

f. O Courribilidade começa a gerar o relatório e exibe mensagem de

sucesso quando terminado

4. Caso o gerente deseje gerar relatório com dados de entregas do banco de

dados:

 79

a. O gerente preenche os campos de busca necessários para gerar seus

resultados

b. O Courribilidade executa a busca no banco de dados e mostra painel

com resultados no painel direito

c. O gerente clica em gerar relatório

d. O Courribilidade gera relatório e avisa o gerente quando do sucesso da

geração deste

Detalhamentos são construídos em comunicação com o usuário e são a base para a

implementação do sistema. Lendo-os com atenção, já é possível visualizar como será

o fluxo de execução de cada uma das funcionalidades pelo usuário e como deverão

ser dispostas as GUI para satisfazer cada um dos requisitos. É possível também

entender como o detalhamento é fundamental para uma construção de manual do

sistema.

3.5. Interfaces do sistema

Após a descrição dos casos de uso, o Praxis foca na definição das interfaces do

sistema. Interfaces são os canais através dos quais o sistema interage com seu

ambiente. As telas vistas pelo usuário quando do uso do programa são claramente

interfaces, assim como as funções que se comunicam com o programa Excel. O Praxis

prevê quatro tipos de interface: de usuário, de software e hardware.

Interfaces de usuário são os canais que o usuário usa para se comunicar com o

sistema, e são principalmente compostas pelas telas. Interfaces de software são

meios de comunicação com outros programas, como as funções de leitura e escrita

sobre arquivos do sistema operacional usadas para gerar relatórios Excel. Interfaces

de hardware são ligações com recursos como memória ou câmeras de vídeo, que não

se aplicam ao Courribilidade, enquanto que interfaces de comunicação são os

protocolos não-usuais de comunicação com o meio externo. Como o Courribilidade

não faz uso de interfaces não convencionais, estas não serão tratadas.

3.5.1. Interfaces de usuário

80

O quadro 6 mostra as interfaces de usuário do Courribilidade. É importante mencionar

que as interfaces foram agrupadas por benefício, para diminuir seu número e tornar

sua leitura mais fácil. Por exemplo, existem diversas telas ligadas à gestão de RH,

como edição de funcionários ou geração de relatórios, mas somente uma interface, a

tela de gestão de RH, foi mostrada aqui.

Quadro 6 - Interfaces de usuário do sistema (Continua)

Número de

ordem
Nome Ator Caso de uso Descrição

1 Tela inicial Todos Login de usuário

Interface para a

autenticação do

usuário

2
Tela de gestão de

entregas

Gerente e

controlador de

ciclistas

Gestão de vendas

Tela onde entregas

são cadastradas no

banco de dados

3

Tela de geração de

relatórios

gerenciais

Gerente,

sócio-

investidor e

sócio

Gestão de

resultados

Interface onde são

gerados relatórios de

resultados financeiros

4
Tela de gestão de

RH

Gerente de

RH e sócio
Gestão de RH

Interface onde são

cadastrados,

consultados e e

deletados os

funcionários da

5
Tela de gestão de

clientes

Gerente de

marketing,

sócio-

investidor e

sócio

Gestão de clientes

Interface onde são

cadastrados,

consultados e

deletados clientes

6
Tela de gestão

backup

Gerente do

sistema
Backup de dados

Interface onde o

backup de dados é

executado

7

Tela de geração de

relatório de

resultados

Gerente,

sócio-

investidor,

sócio

Geração de

relatórios

Interface onde são

gerados relatórios

gerenciais como

relatório de resultados

e relatório de clientes

 81

Número de

ordem
Nome Ator Caso de uso Descrição

8
Tela de emissão de

nota fiscal
Gerente

Emissão de nota

fiscal

Interface onde é

gerada nota fiscal

9
Tela de

georeferenciamento
Gerente Georeferenciamento

Tela onde são

gerados relatórios de

georeferenciamento

Fonte: Do autor

3.5.2. Interfaces de software

As interfaces de software são menos numerosas do que as de usuário, e são

mostradas no quadro 7.

Quadro 7 - Interfaces de software do Courribilidade

Número de ordem Nome Ator Caso de uso Descrição

1

Conexão com o

sistema

operecional

Sistema

operacional

Geração de

relatórios
A

2

Conexão com o

serviço de backup

de dados

Sistema de

backup de dados
Backup de dados

Tabelas do banco

de dados que

serão salvas no

sistema de

backup

3
Comunicação

com o aplicativo

Aplicativo

Courribilidade

Comunicação

com aplicativo

Dados em

formato JSON ou

XML

4

Comunicação

com o banco de

dados

SQL Server

Todos os casos

que envolverem

leitura/escrita do

banco de dados

Comunicação

através da

linguagem SQL-

Server

Fonte: Do autor

82

3.6. Requisitos não-funcionais

Requisitos funcionais, como mencionado na introdução desta seção, são as condições

de performance das funcionalidades. Mais claramente, são restrições que as funções

do sistema devem obedecer para serem aceitas pelo cliente.

As principais restrições em um sistema de informação são relativas à eficiência de

cálculo dos algoritmos, números máximo de transações aceitáveis por unidade de

tempo e tempo de resposta para uma dada requisição (estes dois últimos cruciais para

sistemas conectados à internet).

Como o Courribilidade não será um software web e não trabalhará com algoritmos de

computação complexos, as necessidades não-funcionais são poucas e simples, e são

mostrados no quadro 8. Estes foram levantados com o gerente financeiro, sr. André

Biselli, na primeira reunião de requisitos e mantiveram-se os mesmos até o final do

projeto.

Quadro 8 - Requisitos não-funcionais do sistema

Requisito Descrição

Query unitária ao banco de dados
Uma query com retorno de uma linha da tabela

não pode demorar mais do que 0,5 segundos

Query com retornos múltiplos ao banco de dados

Uma query com retorno de mais de uma linha da

tabela não pode demorar mais do que 5

segundos

Tempo de geração de um relatório qualquer

A geração e gravação em disco de um relatório

qualquer não pode demorar mais do que 30

segundos

Tempo de backup do banco de dados
O backup de dados para a nuvem não pode

demorar mais do que 2 minutos

Fonte: Do autor

Todas as restrições levantadas tratam de tempo de resposta ou de execução de

alguma funcionalidade do sistema. Foram definidas de maneira subjetiva, e

representam o maior tempo que o sr. Biselli disse estar disposto a esperar para cada

uma das operações. Não é sempre o caso para requisitos deste tipo: muitas vezes a

 83

não satisfação de um requisito não-funcional implica na perda de funcionalidade de

um caso de uso. Para sistemas web, por exemplo, se um website não responder

dentro de um certo intervalo de tempo definido pelo navegador, este envia um erro ao

usuário, que não consegue fazer uso da página desejada, mesmo que esta esteja

pronta para oferecer seus serviços.

84

 Análise

Esta seção trata da análise do projeto Courribilidade. O fluxo de análise no Praxis visa

três objetivos principais, segundo Pádua Paula (2003, p. 121): Primeiramente, busca-

se modelar os conceitos trazidos pelo levantamento de requisitos de forma precisa.

Em seguida, verificar se os requisitos determinados anteriormente possuem a

qualidade necessária. Por último, procura-se detalhar estes requisitos para torna-los

compreensíveis para os desenvolvedores.

De maneira mais clara, a análise busca modelar os conceitos do domínio do problema.

Como já foi visto antes, modelar é simplificar com um objetivo. Busca-se, portanto,

simplificar os requisitos de forma a tornar a sua implementação possível.

O fluxo de análise não é exclusivo do desenvolvimento de software, mas é

característico da engenharia de sistemas como menciona o Department of Defense

(DoD), o departamento de defesa americano (2001, p. 35). Ainda segundo o DoD,

existem diversos tipos de técnicas de análise. (2001, p. 38), cada uma adaptada para

o tipo de sistema em projeto. O Praxis utiliza a Análise Orientada a Objetos, ou Object-

oriented Analysis, muito comum para o projeto de softwares.

4.1. Objetos

Objetos em linguagens de programação a estes orientados são estruturas de dados

que contém informações, na forma de atributos, e código para manipular dados,

também chamados de métodos. Objetos podem controlar o acesso a seus atributos e

métodos através de permissões, e podem interagir entre si através de mensagens

emitidas por um de seus métodos. Linguagens de programação orientadas a objeto

consideram que todos os componentes de um programa são objeto, e o programa

funciona através da comunicação seus diversos objetos. (Booth et al., 2007, p. 29).

Objetos são, de maneira mais intuitiva, cápsulas de dados e métodos, que só expõe

ao mundo exterior o que decidem mostrar. Esse tipo de estrutura de dados permite

aos desenvolvedores criar programas altamente modularizados e escaláveis.

 85

4.2. Análise orientada a objetos

Grady Booch, um dos criadores da UML e guru da análise orientada a objetos, fornece

uma definição clara e concisa dessa (2007, p. 42):

A análise orientada a objetos é o método de análise que examina os requisitos do

ponto de vista das classes e objetos encontrados no vocabulário do domínio do

problema

Percebe-se, portanto, que a análise está intimamente ligada com o vocabulário usado

para definir o problema. Ora, no Praxis, o problema é definido no levantamento de

requisitos. Portanto, a análise se concentrará nos requisitos levantados, mais

especificamente no fluxo dos requisitos.

4.3. Análise no Praxis

A análise no Praxis é executada em seis atividades distintas, indicadas no quadro 9.

Mais uma vez, é importante mencionar que estas atividades não foram feitas na

sequência exata em que aparecem aqui. Cada uma é parte de uma iteração que

contém atividades de vários fluxos (como fluxo de Requisitos ou de Testes), mas para

tornar esta seção mais compreensível, o autor decidiu apresentar todas as etapas do

fluxo de análise na mesma seção, seguindo a ordem em que estas são apresentadas

no quadro 9.

86

Quadro 9 - Atividades da análise no Praxis

Número de ordem Atividade Descrição sucinta

1 Identificação das classes

Identifica as classes do produto

baseada no detalhamento dos

casos de uso

2 Organização das classes
Organiza as classes em

pacotes lógicos

3
Identificação dos

relacionamentos

Determina os relacionamentos

de vários tipos que podem

existir entre os objetos das

diversas classes identificadas

4 Identificação dos atributos

Levanta os atributos que

correspondem a propriedades

que fazem parte do conceito

expresso pela classe

5 Realização dos casos de uso

Verifica os fluxos dos casos de

uso, representando-os através

de diagramas de interação

6 Revisão da análise

Valida o esforço da análise e o

correspondente esforço dos

requisitos

Fonte: Pádua Filho (2003, p. 124)

4.4. Classes chave identificadas

Como foi dito de maneira superficial acima, a identificação de classes chave é feita

pela análise do detalhamento dos casos de uso, responsabilidade do fluxo de

requisitos. O Praxis sugere marcar o nome do produto no estilo negrito sublinhado,

o de atores em sublinhado e o de outros substantivos em sublinhado duplo. Todas as

palavras marcadas com sublinhado são potenciais classes.

O trabalho de identificação de classes é essencial para o sucesso do projeto, e pode

usar uma parte considerável dos recursos disponíveis para a empreitada, como afirma

Pádua Filho (2003, p. 120). Mesmo para um sistema simples como o Courribilidade,

consome-se quantidade considerável de tempo para sua execução. No corpo do texto

são apresentados os resultados da análise feita sobre os detalhes dos casos de uso

apresentados anteriormente.

 87

4.4.1. Substantivos em inserção de usuário

1. O administrador clica no botão “Gestão de Usuários”, dentro do item “Usuários”

na barra de menu principal

2. O Courribilidade exibe o painel de gestão de usuários, ocupando

integralmente a tela do sistema

3. O administrador clica no botão “Inserir usuário” da tela de gestão de usuários

4. O Courribilidade exibe a tela de inserção de usuários e bloqueia a execução

de outras funcionalidades do programa enquanto o administrador não finalizar

o processo de inserção

5. O administrador preenche os dados do novo usuário, a saber, nome de usuário,

senha e a identificação do funcionário (chave estrangeira) e clica no botão

inserir usuário

6. O Courribilidade verifica a validade de todas as informações; Caso haja pelo

menos uma informação incorreta, executa-se o subfluxo alerta de erro de dados

incorretos

7. Caso todas as informações estejam corretas, o Courribilidade cria na base de

dados o usuário com as informações dadas pelo administrador

O Courribilidade exibe uma mensagem de sucesso, fecha o formulário de inserção

de usuários e desbloqueia a tela de gestão de usuários.

4.4.2. Substantivos em georeferenciamento de entregas

1. O gerente seleciona na barra de menu principal o botão “Georeferenciamento”

2. O Courribilidade exibe no painel esquerdo a tela de controle de

georeferenciamento e no painel direito o painel de geração de relatório de

georeferenciamento pelo banco de dados

3. Caso o gerente deseje um relatório com dados externos:

a. O gerente clica no botão correspondente no painel esquerdo

b. O Courribilidade exibe a tela correspondente à geração de relatórios

com dados externos

c. O gerente carrega o arquivo de dados externos

88

d. O Courribilidade exibe mensagem de erro ou sucesso conforme o

resultado da leitura do arquivo

e. Em caso de sucesso, o gerente clica no botão gerar relatório

f. O Courribilidade começa a gerar o relatório e exibe mensagem de

sucesso quando terminado

4. Caso o gerente deseje gerar relatório com dados de entregas do banco de

dados:

a. O gerente preenche os campos de busca necessários para gerar seus

resultados

b. O Courribilidade executa a busca no banco de dados e mostra painel

com resultados no painel direito

c. O gerente clica em gerar relatório

d. O Courribilidade gera relatório e avisa o gerente quando do sucesso da

geração deste

4.5. Determinação das classes pelas classes candidatas

Uma vez determinadas as classes candidatas, executa-se analisa-se com mais

cuidado estas para determinar quais são potenciais classes. O resultado é mostrado

no quadro 10

Quadro 10 - Resultado da análise dos casos de uso para determinação de classes (Continua)

Classe candidata Análise

Barra de menu Provável classe

Usuário Provável classe

Dados Atributo da classe usuário

Alerta Provável classe

Botão Georeferenciamento Provável classe

Painel esquerdo/direito Provável classe

Georeferenciamento Operação

Senha Provável atributo da classe usuário

Funcionário Provável classe

Nome de usuário Provável atributo da classe usuário

 89

 Conclusão

Classe candidata Análise

Banco de dados

Entidade externa, não tratada (ao contrário dos

resultados de pesquisas e escritas, que serão

tratados)

Relatório Entidade de implementação

Tela Provável classe

Dados externos Entidade externa, não tratada

Mensagem de erro/sucesso Provável classe

Entrega Provável classe

Dados de entrega Atributo da classe candidata entrega

Fonte: Do autor

Vale a pena notar alguns fatos sobre a análise: Elementos de interface de usuário

aparecem com alta frequência. Como já estão implementados como classes na

linguagem C#, não é necessário se preocupar com eles por ora. Além disso, algumas

classes que são parte do projeto não são facilmente identificadas através da marcação

dos substantivos. São as classes de controle ou controladores, que tratam de

coordenar a execução de uma funcionalidade, e geralmente são associados a cada

caso de uso. Por se tratarem de classes muito abstratas, podem ser omitidas

Excluindo os itens de interface gráfica e os atores e adicionando os resultados das

outras análises obtemos as seguintes classes mostradas na figura 15 para o

Courribilidade:

90

Figura 15 - Classes do Courribilidade

Fonte: Do autor

O Praxis sugere também que sejam mostradas as classes de fronteira, i.e., aquelas

através das quais ocorre a comunicação do programa com o mundo exterior. Como o

Courribilidade possui muitas telas, isto não será mostrado no corpo do texto.

4.6. Relações entre as classes

Uma vez estabelecidas as classes, passa-se à determinação das relações entre elas.

Relacionamentos são conexões lógicas entre as classes do sistema. Podem ser de

diversos tipos, e os principais são os relacionamentos de associação e os de

agregação. Um exemplo claro de associação é a relação existente entre uma entrega

e um cliente. Não pode existir entrega sem haver cliente, então é possível que haja

uma relação de associação entre estas duas classes. Relacionamentos de agregação

são conexões do tipo “parte-todo” entre as classes. Por exemplo, é possível pensar

na classe endereço como propriedade da classe cliente. Um endereço é portanto parte

de um cliente em particular, e o relacionamento entre eles é do tipo agregação. No

Praxis, estas relações são representadas através de diagramas de classe. Como nas

seções anteriores, só são dois dos relacionamentos obtidos.

 91

Figura 16 - Relacionamento de Cliente-Entrega

Fonte: Do autor

Figura 17 - Relacionamento Entrega-Nota Fiscal

Fonte: Do autor

Relacionamentos na linguagem UML possuem diversos tipos de complexidade e nível

de detalhes. É possível, por exemplo, indicar a multiplicidade das associações, que

representa o número de elementos envolvidos na relação.

A figura 18 mostra as etiquetas de multiplicidade 0..* para as entregas e 0..1 para nota

fiscal. Deve-se ler o relacionamento assim: Da esquerda para a direita, uma entrega

gera zero ou uma nota fiscal (pode-se não gerar nota fiscal pois o recibo é emitido

manualmente ou por outro sistema); Da direita para a esquerda, uma nota fiscal pode

ser emitida por nenhuma ou várias entregas (uma nota fiscal não necessariamente é

referente a uma entrega, e uma nota pode conter várias entregas).

92

Figura 18 - Relacionamento com direção e multiplicidade

Fonte: Do autor

Pádua Filho (2003, p. 132) sugere que os detalhamentos de multiplicidade e direção

dos relacionamentos sejam deixados para a fase de desenho, e este trabalho segue

esta recomendação.

4.7. Realização dos casos de uso

A identificação das classes e dos relacionamentos deve permitir realizar os casos de

uso identificados no fluxo de requisito. Por realização, entende-se, no caso de

sistemas orientados a objetos, a tradução dos detalhamentos dos casos de uso em

interações entre os objetos encontrados na análise.

Os relacionamentos entre objetos se dão por mensagens, ou seja, invocação dos

métodos ou procedimentos da classe receptora por parte da classe emissora. Um

exemplo no contexto deste trabalho: O objeto Nota Fiscal pede ao objeto Entrega o

valor de sua propriedade Preço. Neste caso, o emissor é a Nota Fiscal e o receptor,

que possui o método, Entrega.

No Praxis, assim como em todos os métodos que utilizam a UML, representa-se os

casos de uso através dos diagramas de interação, que podem ser do tipo sequência

ou de colaboração. Diagramas de sequência enfatizam a ordem cronológica das

operações executadas sobre o sistema. Por isso, representam uma visão mais

próxima do sistema do detalhamento de casos de uso. O termo “mais próximo do

sistema” deve ser entendido aqui como representando maior proximidade as classes

que serão implementadas no sistema. Diagramas de colaboração dão ênfase aos

relacionamentos entres as classes existentes no sistema. Foi decidido mostrar o

 93

diagrama de sequência para o caso de uso escolhido pois este representa de maneira

mais inteligível as operações e a lógica da funcionalidade.

4.7.1. Diagramas de sequência

A figura 19 mostra o diagrama de sequência para o caso de uso de emissão de uma

nota fiscal. O diagrama da tem o objetivo de apresentar as operações necessárias

para a emissão de uma nota fiscal na ordem cronológica em que acontecem. Ele

permite também a visualização de todas as classes envolvidas e quando estas são

invocadas pelo sistema.

Os retângulos na parte superior representam as classes que participam do processo.

As linhas (pontilhadas ou cheias) que descem das classes até a parte baixa da figura

são as linhas de vida de cada classe, e representam o período de tempo pelo qual a

classe está presente na memória do programa. O usuário Controlador está presente

desde o início, como indica sua linha do tempo integralmente cheia. Já a classe Nota

Fiscal só é criada ao fim do processo, pela classe “Controlador de NF”, a classe que

é responsável pela coordenação do caso de uso em questão.

Figura 19 - Diagrama de sequência para inserção de cliente

Fonte: Do autor

94

É importante notar que alguns objetos são efêmeros, i.e., são criados somente para

efeito de realização do caso de uso, e são destruídos logo depois. É o caso do objeto

da classe cliente: Ele surge para fornecer seus dados, e uma vez que estes são

obtidos, a classe não é mais necessária e é inutilizada.

4.8. Identificação dos atributos

Como mencionado no início desta seção, atributos são propriedades que definem uma

classe. No escopo deste trabalho, uma entrega é definida por um endereço de retirada

e de entrega, horários para entrega e retirada, um cliente, um entregador e um preço.

Uma vez definidos estes sete valores, uma entrega está perfeitamente definida para

o Courribilidade. Assim como, para outros sistemas, um usuário pode ser definido

perfeitamente por sua senha e login, e talvez sua data de nascimento.

4.8.1. Método de identificação de atributos

O Praxis sugere a seguinte sequência de atividades para determinar os atributos de

uma classe (Pádua Filho, 2003, p. 143):

1. Listar as propriedades de uma classe que sejam relevantes para o problema

em questão. É importante manter em mente o tradeoff entre generalidade da

classe (e sua consequente facilidade para reuso em outros projetos e módulos

do mesmo sistema) e a objetividade dos atributos. No caso do sistema aqui

desenvolvido, atributos serão tão objetivos quanto possível, dada a baixa

probabilidade de redesenho do sistema.

2. Localizar nos documentos de requisitos atributos que possam ter sido

ignorados em “1.”

3. Evitar atributos que sejam relevantes somente para implementação, como

indicadores de capacidade de uma variável ou semelhantes.

4.8.2. Atributos de Funcionário, Cliente e Entrega

Para ilustrar o conceito de atributos foram escolhidas as classes Funcionário, Cliente

(Figura 21) e Entrega (Figura 20). Com estas será possível explicar o conceito de

 95

herança e de como uma classe pode ter como atributo elementos de outras classes,

o que é ligado à multiplicidade das relações de associação entre elas.

É interessante notar dois pontos: Primeiramente, os atributos de uma classe sempre

possuem um tipo de dado, e este tipo pode ser outra classe. Por exemplo, a classe

entrega possui preço como atributo, do tipo double, e um endereço de retirada do tipo

Endereço.

Em segundo lugar, nota-se que alguns atributos fundamentais da classe Funcionário

(Figura 21) não estão mostrados. Pode-se, à primeira vista, acreditar que há um erro,

dado funcionários parecem não ter nomes. Mas um exame mais cuidadoso do

diagrama mostra que a classe Funcionário herda alguns atributos de

PessoaFísicaOuJurídica, dentre eles, o string nome. A hereditariedade permite que

classes se especializem em certas funções enquanto guardam comportamentos mais

gerais herdados de suas mães.

Figura 20 - Atributos da classe Entrega

Fonte: Do autor

4.8.3. Identificação das heranças

A capacidade de herdar atributos de classes “pai” é um dos blocos construtores de

linguagens orientadas a objetos. Herança significa que uma classe mais geral gera

filhos mais especializados, que herdam de seus pais algumas características e

métodos fundamentais e possuem por sua parte algo que os torna diferentes de seus

genitores.

96

Um exemplo claro no contexto do Courribilidade é a classe Funcionário, que possui

atributos em comum com a classe Pessoa Física ou Jurídica. Mais claramente, a

classe Pessoa Física ou Jurídica é uma classe que possui os atributos Nome, Telefone

e Endereço, que podem ser atribuídos tanto a empresas (Clientes, no caso do

Courribilidade) quanto para pessoas físicas (Funcionários, neste contexto).

Algumas heranças relevantes para o Courribilidade são mostradas na figura 21. É

importante notar que a classe Pessoa Física ou Jurídica é abstrata, i.e., não pode ser

instanciada. Isso significa que não pode existir no sistema um objeto que pertença a

esta classe, pois esta não possui todos os atributos ou métodos necessários para

executar algum caso de uso. Já a classe Funcionário é perfeitamente completa para

os fins do sistema e pode portanto ser instanciada. Ela herda de sua mãe os atributos

desta e se especializa com propriedades como Salário e Posição, enquanto sua irmã

Cliente possui atributos como Setor Econômico ou CNPJ que não são cabíveis para

uma pessoa física.

Figura 21 - Exemplo de heranças no Courribilidade

 97

Fonte: Do autor

4.9. Conclusões da análise

O fluxo de análise do Praxis visa traduzir os elementos do sistema, identificados

durante as atividades de requisitos, para uma linguagem orientada a objetos. Este

modelo do sistema em termos de objetos é mais próximo da linguagem de

programação utilizada para implementação do sistema. Esta seção representa então

um passo em direção à implementação do sistema.

Se o sistema está mais próximo de tomar forma, ainda é preciso algum trabalho antes

de começar a codifica-lo. Mais especificamente, é preciso detalhar as interfaces e

classes do produto.

98

 Desenho

5.1. Introdução

O fluxo de desenho, em alguns processos chamado de design ou projeto, tem por

objetivo, segundo Pádua Filho, definir uma estrutura para o produto que possibilite

sua implementação, satisfazendo os requisitos definidos anteriormente.

É importante não confundir a fase de desenho com a fase de análise: a primeira é

centrada na descrição de uma solução, enquanto a última busca definir o problema

com uma linguagem mais adaptada à engenharia de software.

O quadro 11 nos mostra uma comparação feita por Pádua Filho entre os dois fluxos

do Praxis, o que esclarece os papéis e características de cada um deles.

Quadro 11 – Comparação Desenho x Análise

Modelo de Análise Modelo de desenho

Descreve o problema Descreve uma solução

Conceitual (não trata de implementação) Físico (base da implementação)

Suporta vários possíveis desenhos Específico em relação a uma implementação

Classes estereotipadas conceituais Pode conter classes estereotipadas

Pouco formal e pouco detalhado Muito formal e detalhado

Poucos pacotes lógicos Muitos pacotes lógicos

Fonte: Wilson Pádua Paula Filho (2003, p. 149)

5.2. Atividades do fluxo de Desenho no Praxis

O fluxo de desenho no Praxis é que contém o maior número de atividades. Começa-

se pelo desenho arquitetônico, que soluciona aspectos estratégicos do produto como

estrutura do sistema e escolha das tecnologias mais adequadas.

Passando pelo desenho das interfaces e o detalhamento definitivos dos casos de uso,

o Desenho do sistema termina com a realização destes últimos, i.e., como os objetos

das classes definidas colaborarão entre si par realizar as funcionalidades esperadas

 99

do sistema. O quadro 12 exibe as atividades na sequência em que estas são

realizadas nas interações do Praxis.

Quadro 12 - Atividades de Desenho no Praxis

Número de Ordem Atividade Descrição sucinta

1 Desenho arquitetônico

Resolve aspectos estratégicos

de desenho externo e interno

com

2 Desenho das interfaces

Desenha em detalhes as

interfaces de usuário em seu

ambiente definitivo de

implementação

3 Detalhamento dos casos de uso
Resolve os detalhes dos fluxos

anteriormente definidos

4 Desenho das entidades
Desenho das classes de

entidades

5 Desenho da persistência
Desenho das camadas de

persistência (Banco de Dados)

6 Realização dos casos de uso Já descrito na análise

 Fonte: Adaptado de Pádua Filho (2003, p.1)

5.3. Desenho arquitetônico

A primeira atividade de desenho é o desenho arquitetônico, como mostrado no quadro

12. Trata-se, fundamentalmente, de dividir o sistema em subsistemas e componentes

com menor nível de abstração, como indica Pádua Filho (2003, p. 152). O objetivo

desta modelagem é tornar a implementação e consequente satisfação dos requisitos

funcionais e não-funcionais mais simples e sistemática.

A UML modela sistemas como conjuntos de subsistemas, e estes são por sua vez

modelados por pacotes lógicos de desenho. Um pacote lógico nada mais é do que um

agrupamento de classes (tudo é uma classe em OOP) em conjuntos com alta coesão

interna e baixo acoplamento externo.

5.3.1. Arquitetura no Praxis

100

O Praxis utiliza uma arquitetura própria, comum a sistemas orientados a objetos,

mostrada na figura 22. A principal vantagem desta estrutura é a promoção da

separação entre a lógica da aplicação que será desenvolvida, a implementação e o

domínio de aplicação, o que permite a fácil reutilização das classes envolvidas no

programa, uma vez que estas estão segregadas de sua utilização efetiva. O quadro

13 torna o papel de cada uma das camadas mais claro.

Figura 22 - Arquitetura base do Praxis

Fonte: Adaptado de Pádua Filho (2003, p. 153)

É possível também definir naturezas para cada uma das camadas. A natureza nada

mais é do que maneira de agrupar camadas (que por si já são agrupamentos) de

acordo com o papel que cada uma desempenha na resolução do problema. O Praxis

 101

considera três tipos de natureza: De aplicação, de domínio e de implementação. Cada

uma destes é explicada em maiores detalhes nos parágrafos abaixo.

Classes de fronteira são aquelas que se comunicam com o ambiente do programa. As

mais comuns serão, portanto, as interfaces de usuário, mas podem existir canais de

troca de mensagens com o sistema operacional ou outros elementos do ambiente. A

camada de controle inclui os controladores definidos na fase de desenho, e são

normalmente ligadas à implementação de cada caso de uso. Tanto a camada de

fronteira quanto a camada de controle fazem parte do grupo chamado de “camadas

de aplicação”, pois são específicos do sistema que está sendo desenvolvido e não

podem ser reaproveitadas sem antes serem retrabalhadas.

Camadas de domínio incluem somente a camada de entidade, que, como o nome

sugere, contém as classes que representam as entidades ou elementos concretos do

sistema, como a classe Nota fiscal, Usuário ou Entrega. Por se tratarem de objetos

concretos que não possuem o viés forte de nenhuma aplicação específica, podem ser

reutilizados em outras soluções que as requeiram.

Por último, o Praxis define as camadas de implementação como aquelas que podem

ser reaproveitadas para resolver problemas de outros domínios, ou seja, são

logicamente independentes do problema que está sendo resolvido. Elas são a camada

de persistência, que garante que as informações de objetos das camadas de domínio

possam ser salvas na memória de maneira permanente (i.e., independentemente de

aplicação estar ativa ou não), e a camada de sistema, que contém os serviços

compartilhados por todas as outras camadas da aplicação. Como exemplo desta

última, pode-se citar bibliotecas matemáticas ou de conexão com a internet.

Quadro 13 - Classes do Praxis e suas naturezas (Continua)

Natureza Camada Descrição

Camadas de aplicação Camada de fronteira

Classes que implementam a

interface do produto; Ex.: Tela

de inserção de usuário

102

 Conclusão

Natureza Camada Descrição

Camadas de aplicação Camada de controle

Classes que implementam

aspectos específicos da lógica

da aplicação, como fluxos de

casos de uso; Ex.: Controlador

de inserção de entrega

Camadas de domínio Camada de entidade

Classes que implementam as

entidades concretas do

sistema; Ex.: Usuário, Entrega

Camadas de implementação Camada de persistência

Classes que garantem a

persistência de dados de

objetos da camada de entidade;

Ex.: Microsoft SQL Server

Camadas de implementação Camada de sistema

Classes que oferecem serviços

comuns a todas as classes do

programa. Ex.:

System.Net.HTTP,

System.Math para C#

Fonte: Adaptado de Pádua Filho, exemplos do autor (2003, p. 153)

5.3.2. Definição das camadas

Uma vez definida a estrutura das camadas, passa-se à definição dos pacotes lógicos

que as compõem, mostradas nas figuras 23 e 24. O Courribilidade, apesar de ser um

sistema relativamente simples, possui diversos pacotes e sua apresentação integral

no corpo deste trabalho tornaria o texto de leitura difícil e fastidiosa. Por isso, são

apresentados nesta subseção somente alguns conjuntos.

Figura 23 - Alguns pacotes das camadas de controle e entidade

 103

Fonte: Do autor

Figura 24 - Classes das camadas de sistema, fronteira e persistência

104

Fonte: Do autor

5.4. Desenho das interfaces

Esta atividade consiste do desenho externo e interno das interfaces de usuário. Por

desenho externo deve-se entender o layout gráfico das interfaces, ou seja, como o

usuário final enxergará o canal em questão. O desenho interno nada mais é do que o

código por trás do desenho externo. Mais claramente, trata-se da tradução em

linguagem de programação dos elementos presentes no desenho externo assim como

de suas funcionalidades esperadas.

Estes conceitos são exemplificados na figura 25 que mostra a tela de gestão de

Clientes, ou mais precisamente, o desenho externo desta. É através desta que o

 105

usuário do sistema executará todas as operações relacionadas a instâncias da classe

Cliente, como inserção (canto direito superior), edição (canto esquerdo) ou exclusão

(canto esquerdo).

Figura 25 - Tela de controle de relatórios

Fonte: Do autor

É importante mencionar que o desenho das interfaces pode consumir muito tempo se

não for feito com ferramentas especializadas, pois requer a definição manual da

posição de cada elemento da interface, além da implementação do tratamento de

eventos como cliques e cliques duplos. Felizmente, a Escola Politécnica da USP

disponibiliza para seus alunos a ferramenta Visual Studio Ultimate (VS), que permite

que o programador se preocupe com o desenho externo das telas enquanto o

programa gera automaticamente o código correspondente aos elementos da interface,

como posição dos botões e esqueletos dos métodos para tratar os eventos que cada

elemento pode trazer. O código da figura 26 foi totalmente gerado pelo VS, bastando

ao autor detalhar as funções criadas pelo software.

106

Figura 26 - Desenho interno da interface Tela de Gestão de Clientes

Fonte: Do autor

Assim como nas seções anteriores, mostrar o detalhamento de todas as interfaces

foge ao escopo do corpo do texto.

5.5. Detalhamento dos casos de uso

O detalhamento dos casos de uso para o fluxo de Desenho concentra-se em

descrever como cada funcionalidade será realizada em termos das interfaces

desenhadas anteriormente. Usa-se o modelo de análise como base da lógica dos

fluxos, mas desta vez estão presentes os elementos da camada de fronteira

relevantes para o caso de uso. Esta subseção apresenta o detalhamento do caso de

uso “Criação de cliente”.

5.5.1. Detalhamento da “Criação de cliente”

 107

5.5.1.1. Breve descrição do estado das interfaces

O acesso à funcionalidade de criação de clientes é feito através da barra de menu

principal. Para tal, o usuário deve clicar sobre o botão “Clientes” e, em seguida, sobre

o item “Cadastrar cliente” na barra que aparece. Se o painel esquerdo contiver o painel

de gestão de clientes, deve ser mantido em seu estado. Caso contrário, deve exibir

esta tela. O painel direito deve mostrar a tela de inserção de clientes, com os campos

em branco.

5.5.1.2. Fluxo principal de “Criação de clientes”

1. O gerente clica no botão “Gestão de Clientes”, dentro do item “Clientes” da

barra de menu principal

2. O Courribilidade exibe a tela de gestão de cliente (Figura 25)

3. O gerente clica no botão “Inserir Cliente” no canto superior direito da tela do

sistema

4. O Courribilidade exibe a tela de inserção de clientes com todos os campos

inicialmente em branco.

5. O Gerente de Vendas preenche os campos de Nome, CNPJ/CPF,

Endereço, Endereço de Retirada, Telefone e Setor Econômico do cliente

6. O Gerente clica sobre o botão Criar Cliente

7. O Courribilidade executa o subfluxo Inserir Cliente no Banco de Dados,

responsabilidade da classe GestorDeClientes

8. O Courribilidade exibe uma mensagem de sucesso de inserção no banco

de dados e o gerente é redirecionado para a tela de gestão de clientes

5.5.1.3. Subfluxo Inserir Cliente no Banco de Dados

1. Se algum dos campos contiver informações incompletas ou com formato

incorreto, ou estiver vazia, o Courribilidade emite mensagem de erro

pedindo para eu o usuário verifique os dados

2. Quando os dados estiverem corretos, o Courribilidade instancia um objeto

da classe ClientManager, que lida com operações de banco de dados da

classe cliente

108

3. O objeto instanciado chama seu método insertClient(data), com data

representado as informações inseridas no banco de dados do cliente

4. O sistema tenta inserir o novo cliente no banco de dados. Caso haja algum

erro na operação, o Courribilidade emite uma mensagem de erro com o erro

SQL no corpo

5. Caso haja sucesso, o sistema emite uma mensagem de sucesso com o

nome do cliente, fecha a janela de inserção de usuários e desbloqueia o

acesso à tela de gestão de clientes

5.6. Desenho das entidades

O desenho das entidades nada mais é do que um detalhamento e refinamento das

classes obtidas durante a Análise. Pode-se criar novas classes a partir das

anteriormente definidas, agrupar classes existentes em uma nova entidade, etc., como

afirma Pádua Filho (2003, p. 161).

Em particular, é necessário detalhar os relacionamentos obtidos no fluxo anterior. Isso

significa determinar a direção de alguns relacionamentos. Como mencionado na

seção anterior, a direção indica que é possível obter o elemento destino através do

elemento origem. A figura 27 ilustra o caso mais concretamente: É possível obter um

cliente através de uma entrega, mas para obter as entregas de um cliente é necessário

realizar uma pesquisa no banco de dados.

Figura 27 - Relacionamento direcional Entrega-Cliente

Fonte: Do autor

 109

5.7. Desenho da persistência

O desenho da persistência consiste em determinar o esquema do banco de dados

que será utilizado. Pode-se usar um banco de dados orientado a objetos, que torna o

trabalho de determinação da estrutura deste praticamente inexistente: Basta criar uma

coleção (termo para conjunto de objetos) por classe e preenche-la com os objetos

desejados.

O uso de bancos de dados não-relacionais (ou NoSQL, no jargão de programadores)

está se popularizando enormemente devido à sua alta performance para aplicativos

da web e sua capacidade de crescer em volume sem prejudicar a performance, como

afirma um paper da MongoDB (2015, p. 1). Este tipo de estrutura de dados é muito

simples, o que permite queries com altíssima eficiência. Além disso, não há

necessidade de tratar os resultados de uma busca nas coleções, uma vez que este já

vem formatado como objeto da linguagem desejada.

Porém, o uso de DBs relacionais ainda é predominante sobre seus concorrentes,

principalmente para sistemas empresariais, como afirma o mesmo paper em sua

introdução (2015, pág. 1). Juntando a isso o fato de o aluno possuir conhecimentos

prévios sobre este tipo de estrutura de armazenagem, esta foi a tecnologia esperada

para implementar a persistência do Courribilidade.

O Praxis sugere as seguintes práticas, a serem seguidas para o uso de banco de

dados SQL (relacionais):

 Cada classe da camada de entidades deve ser representada por uma tabela

 Atributos simples devem ser representados por uma coluna

 Atributos complexos por diversas colunas ou tabelas relacionadas adicionais

 A coluna da chave primária deverá ser um indicador do objeto salvo, que pode

ser

o Um atributo deste

o Um número designado pelo sistema e sem nenhum significado concreto

110

Como exemplo, é mostrada no quadro 14 uma representação da tabela de Clientes,

segundo o Praxis. Alguns atributos (como telefone) foram deixados de lado para

permitir sua representação no espaço de uma página. É importante notar que o

atributo endereço é em si uma classe, e é representado, portanto, por seu id na tabela

Endereços.

Quadro 14 - Representação da Tabela de Clientes no Banco de Dados

CNPJ: Id Nome Endereço Telefone
Setor

Econômico

Endereço

de retirada

principal

32494564312
Courri

Corp.
0xx1343 Elis 345 0xx32

32432352213 GreenDel 0xx3435 Maria 346 0xx1234

12345678909 EcoLiv 0xx4355 João 123 0xx123

Fonte: Do autor (sem significado prático)

5.8. Conclusão do Desenho

As atividades do fluxo de Desenho permitem que se chegue a um modelo da solução

na forma de um software programado em linguagem orientada a objetos. Falta, porém,

transformar esta simplificação em um programa que execute todas as suas

funcionalidades. Este é o papel da implementação, que toma como entrada o

documento construído no fluxo que a precede e o transforma em código-fonte e

consequentemente em software funcional. A seção 6, a última antes da conclusão do

trabalho, tratará das atividades deste fluxo.

 111

 Implementação

O fluxo de implementação possui 5 atividades definidas no Praxis: Desenho

detalhado, Codificação, Inspeção, Testes de unidade e Integração. Somente a

atividade de codificação será apresentada neste trabalho, pois as outras, excetuando-

se os testes de unidade, não produzem documentação relevante para o trabalho e

são executadas naturalmente durante a codificação.

6.1. Codificação

A codificação é a atividade central da implementação e consiste na transformação do

modelo de Desenho definido anteriormente em código-fonte que pode ser compilado

ou interpretado pelo sistema operacional e que resulta em software funcional. A figura

28 ilustra de maneira gráfica a ideia desta fase: Como entrada tem-se um diagrama

de classe e como saída uma classe em C#.

Figura 28 - Ideia fundamental da Implementação

Fonte: Do autor

6.1.1. Exemplo de codificação: Inserção de clientes

Para ilustrar o processo de implementação, será tomado como exemplo o caso de uso

de inserção de Clientes, pois a codificação deste é relativamente complexa e ilustra

bem o processo de construção do sistema. A sequência de interfaces enxergadas pelo

usuário é mostrada na figura 29.

112

Inicialmente, o usuário está na página inicial e clica em “Gestão de clientes” no menu

“Clientes”. O Courribilidade deve direcioná-lo para a tela de gestão correspondente.

Este redirecionamento é feito pelo método gestãoClientesMenuStrip_Click() da classe

MDIFrame, a tela principal. A implementação deste método é mostrada na figura 30.

O usuário pode agora visualizar todos os clientes do banco. Para prosseguir, deve

clicar em “Inserir cliente”. O sistema deve criar uma nova interface de inserção e exibi-

a. Isto é implementado pelo método insertBtn_Click(), membro da classe ClientViewer,

chamado quando do clique do botão “Inserir Cliente”.

Figura 29 - Sequência de interfaces do caso de uso "Inserção de usuário"

Fonte: Do autor

A seguir, após o preenchimento dos dados, o sistema deve validá-los e inserir o novo

cliente no banco de dados. Esta funcionalidade é responsabilidade do método

createClient_Click(), da classe insertClientForm, e de insertClient() da classe

clientManager. O primeiro reage ao clique validando os dados e o segundo chamando

a função de inserção de clientes no banco de dados.

 113

Sem erros de validação, o sistema deve mostrar uma mensagem de sucesso e

retornar à tela clientViewer, responsabilidades do método MessageBox.Show() e

this.Close(), ambos mostrados no códido do formulário insertClientForm (Figura 32).

Figura 30 - Código de direcionamento à página de Gestão de Clientes

Fonte: Do autor

Figura 31 - Código da aparência da tela de gestão de clientes

Fonte: Do autor

114

Figura 32 - Implementação dos comportamentos de inserção de clientes

Fonte: Do autor

 115

6.2. Conclusão da implementação

A implementação é a parte que mais consumiu recursos ao autor, devido

principalmente à falta de conhecimentos prévios sobre a linguagem C# e à dificuldade

de se desenhar interfaces de usuário que reajam bem a todos os tamanhos de janela.

Seus objetivos foram, porém, alcançados, e o produto final implementa com sucesso

os casos de uso considerados prioritários pelo cliente, em especial os referentes à

integridade e validação dos dados.

Antes de passar à conclusão do trabalho, é importante mencionar as atividades

propostas no Praxis e não executadas pelo autor.

Primeiramente, têm-se a atividade de testes unitários. Testes unitários visam

determinar se uma certa unidade de código (em geral uma função) satisfaz seus

requisitos. Este tipo de teste pode ser executado ao final da implementação de todas

as funções, caso em que requer planejamento e documentação, ou durante a criação

dos métodos, no estilo Test-driven Development (TDD). Neste caso, o programador

só avança para a implementação de uma outra unidade caso a anterior tenha passado

nos testes. Para acelerar a implementação e diminuir a documentação necessária, foi

adotada a técnica TDD, o que eliminou a necessidade de um plano formal de testes

de unidade.

Em seguida, a inspeção de código, que não foi executada de maneira formal pois

requer que os inspetores sejam diferentes dos programadores que escreveram o

código, o que é impossível no contexto deste trabalho. Pádua Filho ainda cita alguns

estudos que colocam em dúvida a eficácia e eficiência da inspeção como instrumento

de garantia de qualidade (2003, p. 209), o que contribuiu para que esta atividade fosse

totalmente ignorada.

Na sequência, o desenho detalhado foi totalmente relevado, pois considerou-se que

o modelo obtido na fase anterior possuía um grau de detalhe suficiente para permitir

a implementação.

116

Por último, a integração foi feita no estilo bottom-up, sem porém seguir um plano

formal de execução, dado que o sistema não possui grandes graus de complexidade.

 117

 Conclusão e análise crítica do trabalho

Esta seção comporta uma análise crítica dos resultados do trabalho, e é dividida em

três partes. Na primeira, analisa-se o programa desenvolvido com base no critério de

sucesso definido na introdução deste trabalho. Em seguida, é feita uma crítica do

método de escolha da metodologia aplicada, e por último o autor discorre sobre a

adaptação do método Praxis para problemas pouco complexos.

7.1. Sucesso do programa

No momento de redação desta seção, o software Courribilidade encontra-se

completamente finalizado, i.e., todas as suas funcionalidades foram implementadas e

testadas no ambiente de desenvolvimento do autor. Retornando aos problemas

encontrados pelo gerente financeiro André Biselli, pode-se analisar a real contribuição

do sistema para resolvê-los:

 Falta de confiabilidade e homogeneidade dos dados: Problema totalmente

resolvido pelo novo sistema. A validação de dados feita dentro do programa e

pelo gerenciador de banco de dados permite garantir que o formato dos dados

está correto, além de assegurar o fim do problema de referências incorretas

 Dificuldade ou impossibilidade de geração de relatórios: Problema parcialmente

resolvido. A geração de relatórios foi implementada no Courribilidade e permite

a criação de documentos gerenciais com rapidez e confiabilidade. Falta porém

um instrumento semelhante à Tabela Dinâmica, que permita maior flexibilidade

destes

 Falta de integração: Problema parcialmente resolvido. O controle de entregas

se faz de maneira muito mais rápida segura com o uso do Courribilidade, o que

facilita o processo de cobrança e cálculo de receitas. A ambição de integrar

todos os aspectos relevantes da empresa, como comunicação com o aplicativo

da empresa não foi implementada

A real medida de sucesso virá porém quando o sistema for completamente

implementado na empresa e for avaliado pelos funcionários, em especial quanto à

manutenção dos benefícios que a planilha de controle atual possui.

118

7.2. Crítica à escolha da metodologia

O processo de escolha da metodologia de desenvolvimento foi considerado pelo autor

como ineficaz, pois, analisando o andamento do processo de desenvolvimento uma

vez terminado este, acredita-se que um método ágil teria sido mais bem adaptado ao

problema.

Uma sugestão para trabalhos futuros por parte do autor é testar, durante uma semana,

ao menos dois métodos de escolas diferentes e só então tomar uma decisão. A

escolha feita para este trabalho foi tomada com base em conceitos puramente teóricos

que na prática se mostraram menos relevantes do que o imaginado. É importante

enxergar o funcionamento dos métodos na prática para poder fazer uma escolha mais

informada.

7.3. Crítica ao método Praxis

Na opinião do autor, métodos do estilo UP, quando aplicados a projetos de

complexidade relativamente baixa como o Courribilidade, dão ênfase exagerada na

documentação, tomando recursos que poderiam ser aplicados na implementação. Um

número considerável de atividades propostas por Pádua Filho foi deixado de lado para

acelerar o trabalho de implementação. O código-fonte, quando utiliza boas práticas de

formatação e nomeação de variáveis, pode ser em si uma documentação de grande

valor.

A documentação não gera valor suficiente na coordenação do projeto para compensar

pelo tempo e esforço que consome, pois a gestão do desenvolvimento é em si

relativamente simples para projetos com poucos casos de uso e poucas classes de

entidade, e pode portanto ser feita ser uso de metodologias especializadas.

É importante frisar que estas colocações só se aplicam para projetos simples e em

que não há necessidade de coordenar o trabalho de diversos programadores. Para

empreitadas de maior complexidade, o autor imagina que a documentação precisa e

a maior ênfase no planejamento dos métodos UP pode trazer valor ao trabalho.

 119

Referências bibliográficas

ABELSON, N. Accounting for startups: depoimento. Disponível em
https://www.xero.com/small-business-guides/cloud-accounting/accounting-for-
startups. Acesso: 15 de abr. 2015. [S.l.]. Entrevista concedida ao site Xero.

AGILE ALLIANCE. What is Agile Software Development? Disponível em
http://www.agilealliance.org/the-alliance/the-agile-manifesto. Acesso em 20 de março
de 2015.

AGILE ALLIANCE. The Agile Manifesto. Disponível em
http://www.agilealliance.org/the-alliance/the-agile-manifesto. Acesso em: 20 de março
2015.

ALBAHARI. A comparative overview of C#. Disponível em
http://genamics.com/developer/csharp_comparative.htm. Acesso em: 1° de junho de
2015.

ANGELES, S. Best Accounting Software. Disponível em:
http://www.businessnewsdaily.com/7543-best-accounting-software.html. Acesso em:
30 de março, 2015.

BARLOW, J. Overview and Guidance on agile development in large
organizations. Communications of the Association for Information Systems. [S.l], Vol.
29, No. 1, janeiro 2006, pp. 25-44

BOOCH, G. et al. Object-oriented analysis and design. 3rd Edition. Upper Saddle
River: Addison-Wesley, 2007.

CUSUMANO, M.; SELBY, R. How Microsoft Bulds Software. Communications of the
ACM. New York, Vol. 40, No. 6, junho de 1997, pp. 53-61

DEPARTMENT OF DEFENSE. Systems Engineering Fundamentals.
Supplementary text. Fort Belvoir, Virginia: Defense Acquisition University Press. Jan
2001.

GLASS, R. Matching methodology to problem domain. Communications of the
ACM. New York, Vol. 47, No. 5, maio de 2004, pp. 19-21

GRONINGER, T. Accounting chores: doing more with less, and yet… The
NonProfit Times. Morris-Plains, NJ, 2011, Vol. 25, No. 1, janeiro 2011, p. 19

KUHN, T. The structure of scientific revolutions. 2nd Edition, Enlarged. Chicago:
The University of Chicago Press. 1962

KRATOCHVIL, W. Windows Store C++ for C# developers. MSDN Magazine. [S.l.],
abril 2014.

https://www.xero.com/small-business-guides/cloud-accounting/accounting-for-startups
https://www.xero.com/small-business-guides/cloud-accounting/accounting-for-startups

120

KRIGE, Danie. Selection criteria for a development methodology. Disponível em
https://www.linkedin.com/grp/post/3774402-254265649. Acesso em: 27 de mar, 2015.

MARKS, G. And the best small business cloud accounting software is…
Disponível em http://www.forbes.com/sites/quickerbettertech/2014/05/05/and-the-
best-small-business-cloud-accounting-software-is/. Acesso em: 4 de maio de 2015.

THE MICROSOFT CORPORATION. Chapter 3: Choosing Windows develpment
technologies. Disponível em: https://msdn.microsoft.com/en-
us/library/windows/desktop/ff795785.aspx. Acesso em: 15 de abril de 2015.

THE MICROSOFT CORPORATION. Choosing the programming language.
Disponível em https://msdn.microsoft.com/en-
us/library/windows/apps/dn263221.aspx. Acesso em: 20 de mar 2015.

MONGODB. Top 5 considerations when evaluating NoSQL Databases. New York:
MongoDB, fevereiro de 2015.

NIXON, Jerry. Choosing between Visual Basic and C#. Disponível em
http://blog.jerrynixon.com/2014/01/choosing-between-visual-basic-and-c.html. Acesso
em 20 de maio de 2015.

PAULA FILHO, W. Engenharia de Software. 1ª Edição. Rio de Janeiro: LTC Editora,
2003.

PAULA FILHO, W. Engenharia de Software. 3ª Edição. Rio de Janeiro: LTC Editora,
2010.

PEPSICO BRASIL. Prêmio internacional Eco-Challenge reconhece equipe
brasileira por iniciativa sustentável. Disponível em
http://www.pepsico.com.br/premio-internacional-eco-challenge-reconhece-equipe-
brasileira-por-iniciativa-sustentavel. Acesso em: 20 de outubro de 2014.

RAJLICH, V. Changing the paradigm of software engineering. Communications of
the ACM. New York. Vol. 2, No. 8, agosto de 2006, pp. 67-70

SOUZA, A. et al. Custo do Trabalho no Brasil: Proposta de uma nova metodologia
de mensuração. São Paulo: FGV C-Micro, maio de 2012.

WILSON, J. The Best Free Small Business Accounting Software. Disponível em
http://www.pcmag.com/article2/0,2817,2382514,00.asp. Acesso em: 31 de maio,
2015.

http://www.pcmag.com/article2/0,2817,2382514,00.asp

