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RESUMO

GIANELLI, CYRO DE A.; ESTUDO COMPARATIVO ENTRE CONTROLE
ADAPTATIVO E CONTROLE FUZZY. Trabalho de Concluséo de Curso — Escola de
Engenharia de S&o Carlos, Universidade de Sdo Paulo, 2013.

Motores de corrente continua tem grande aplicagdo em uma ampla gama de processos
industriais, residenciais, robdtica, entre outros. O controle de velocidade e posicdo do motor é
de extrema importancia nessas aplicacdes. Varias sdo as técnicas disponiveis para o controle de
tal processo, como controle classico, controle adaptativo, controle fuzzy, controle robusto, entre
outros. Controle classico é a escolha mais utilizada por ser robusta, eficiente e facilmente
desenvolvida, porém tem limitacGes. Variacbes na planta controlada podem ndo ser
acompanhadas pelo sistema de controle. Desta forma, surge a necessidade de um controle mais
preciso. Este trabalho trata da comparagdo entre dois métodos de controle inteligente, o sistema
de controle adaptativo por modelo de referéncia e o controle fuzzy. Ambos sdo mais robustos e
menos limitados que o controle classico. Este estudo tem como objetivo descrever
detalhadamente o processo de desenvolvimento de cada um dos controladores, assim como

compara-los perante sua eficiéncia e robustez.

Palavras-chave: Controle adaptativo, controle Fuzzy, controlador de motor de corrente continua.



ABSTRACT

GIANELLI, CYRO DE A.; COMPARATIVE STUDY BETWEEN ADAPTIVE
CONTROL AND FUZZY CONTROL. Undergraduate Final Project — Escola de Engenharia
de Sao Carlos, Universidade de S&o Paulo, 2013.

Direct current motors has large applications in a wide range of industrial and residential
processes, robotics, among others. The speed control and motor position is extremely important
in these applications. Several techniques are available to control this process, as classical
control, adaptive control, fuzzy control, robust control, among others.  Classic control is the
most used choise because is robust, efficient and easily developed, but has limitations.
Variations in the controlled plant may not be followed by the control system.  Thus, arises the
need for a more precise control. This work includes the comparison between two methods of
intelligent and adaptive control, adaptive control system by model reference and fuzzy control,
where both are more robust and less limited than the classical control. This comparative study
of adaptive control and fuzzy control aims to describe in details the development process of

each drivers, as well as compare them among their efficiency and robustness.

Key-words: Adaptive control, Fuzzy control, Direct current motor controller.
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1 Introducéo

A aplicacdo de melhorias continuas no processo de producdo, desenvolvimento e
manutencdo de sistemas tem levado as empresas a busca de novas tecnologias e aprimoramento
das ja existentes para aumentar sua eficiéncia e manter sua competitividade no mercado. A area
de controle tem grande papel na eficiéncia de sistemas e, portanto € muito estudada e

desenvolvida.

A maioria dos processos de controle industrial hoje no mundo opera com controladores
proporcional-integral-derivativo (PID). Isto se deve a sua simplicidade e robustez para a maioria
das aplicagdes. Porém, quando dispomos de processos que possuem ndo linearidades, atrasos de
transporte ou parametros variantes no tempo, estes controladores respondem de forma

insatisfatoria.

Desta forma, devemos recorrer a outros métodos de controle, como por exemplo, 0
controle adaptativo e o controle Fuzzy. Entretanto, esta é uma via de méo dupla, quanto mais

preciso o controlador, mais complexo é seu desenvolvimento.

Como o préprio nome diz, controlador adaptativo é aquele capaz de modificar sua
resposta em funcdo da dindmica dos parametros do processo e distirbios. Existem varios

métodos onde cada um apresenta vantagens e desvantagens em relagéo ao outro.

Um fato que merece destaque é o aumento da utilizagdo de recursos computacionais
para o controle de sistemas. Esses recursos permitem os mais diversos tipos de controle. Neste
contexto, o controle Fuzzy aparece como uma boa alternativa, se mostrando muito eficiente,
robusto e aplicavel a uma ampla gama de processos. O uso de controladores Fuzzy proporciona
a possibilidade de supervisdo inteligente usando apenas informacdes qualitativas sobre a

operacdo do sistema, ndo havendo necessidade de modelagem matematica.

Para o trabalho considerado, foi utilizado um motor de corrente continua devido a sua
ampla utilizacdo em varias aplicacles e sua tradicdo de uso como maquinas de velocidade e

posicdo controlavel.



1.1 Proposta do trabalho
A proposta deste trabalho é o controle da velocidade angular de um motor de corrente
continua, através do uso de controladores PID, adaptativo por modelo de referéncia e Fuzzy,

assim como o estudo comparativo de tais técnicas de controle.

O uso do controlador PID se deu pelo fato de ser uma das técnicas mais utilizadas e
estudadas. O sistema adaptativo por modelo de referéncia foi feito para contornar o problema
das ndo linearidades do sistema, como também as varia¢cBes dos pardmetros da planta. Ja o
controle Fuzzy foi desenvolvido para verificar a eficiéncia e robustez de um controle

relativamente novo e projetado via métodos computacionais.

Todo o trabalho foi desenvolvido no software Matlab - Simulink, realizando tanto os

calculos como as simulagdes dos sistemas.

1.2 Organizacao
No capitulo 2 temos a introdugdo do motor de corrente continua, explanando sua
configuracdo, vantagens e desvantagens, e seu funcionamento e dindmica, assim como seu

modelamento matematico e algumas simulacdes.

No capitulo 3 tratamos do controle PID, discutindo sua base tedrica, métodos para

desenvolvimento, calculo de parametros e desenvolvimento via software.

No capitulo 4 tratamos do controle adaptativo, definindo sua base teérica, discutindo

seus métodos de projeto, calculo das teorias e calculo dos ganhos de adaptacao.

No capitulo 5 temos a introducdo do controle Fuzzy, inicialmente tratando dos
fundamentos da teoria Fuzzy e suas operagdes. Posteriormente entramos no ambito do
controlador, discutindo suas etapas. Ao final demonstramos a sua utilizacdo via software
Matlab.

No capitulo 6 é feito o desenvolvimento dos controladores utilizados, demonstrando

pass0-a-passo Seus projetos.

No capitulo 7 temos as simulagdes e resultados obtidos, juntamente com a discusséo de

tais dados, assim como comparativo dos métodos de controle.

No capitulo 8, por fim, conclui-se o trabalho, retomando os principais pontos estudados

e principais conclusdes obtidas.



2 Motor de corrente continua

Motores de corrente continua apresentam alta confiabilidade, flexibilidade e baixo
custo, por isso tem sido amplamente utilizados em vérias aplicagdes industriais, aplicaces
residenciais, robdtica, carros elétricos, e situacdes onde a portabilidade é uma necessidade, uma

vez que baterias e células solares podem prover a energia necessaria para seu funcionamento.

Um motor de corrente continua utiliza eletricidade e o campo magnético para produzir o
torque necessario para rotacionar a parte movel do motor. A tensdo aplicada modifica a
velocidade, enquanto a corrente nos enrolamentos da armadura modificam o torque do motor.
Se aplicada uma carga ao eixo, a velocidade tenderd a diminuir ao passo que a corrente

aumentara para tentar contrapor esta variagao.

O desenvolvimento de controladores de alto desempenho de motores de corrente
continua é, portanto, muito importante para sua eficiéncia e uso. Geralmente, um controlador de
alto desempenho de motor deve ter uma boa dindmica de controle de comando de velocidade e

boa resposta de regulagem de carga.

Os motores de corrente continua tem uma longa tradicdo de uso como maquinas de
velocidade e posicdo controldvel e uma ampla variedade de opcbes que envolvem esta
caracteristica. Nestas aplicagdes, 0 motor necessita ser precisamente controlado para apresentar
0 desempenho requerido.

Algumas sdo as dificuldades do controle de motores de corrente continua, dentre elas:

e Na&o linearidade do motor;
e Propagacéo de oscilagdes provenientes de ruido;
e Parametros desconhecidos;

e VariagOes na dindmica dos parametros;

O maior problema na aplicacdo de algoritmos cléassicos de controladores é sem ddvida o
efeito da ndo linearidade do motor de corrente continua. A caracteristica ndo linear, como a

saturacao e a friccdo do motor, pode degradar o desempenho dos controladores convencionais.

Na figura (2.1), adaptada de: http://www.electrical-knowhow.com/2012/05/electrical-
motors-basic-components.html, temos em detalhes os componentes e sua disposigdo em um

motor de corrente continua, seguindo sua construcao.



Figura 2.1 - Esquema de um motor de corrente continua

2.1 Modelagem matemaética do motor de corrente continua
O modelo matematico utilizado nesta abordagem segue o proposto por Oliveira, Aguiar
e Vargas em [1]. O diagrama eletromecanico do motor é mostrado na figura (2.2).

Ra La Ia

o
o
vﬂ

3

Figura 2.2 - Diagrama eletromecanico do motor de corrente continua



Onde:

Ra = resisténcia de armadura (€2);

La = indutancia de armadura (H);

Va = tenséo da armadura (V);

la = corrente da armadura (A);

Eb = forga contra eletromotriz (V);

Tm = torque do motor (Nm);

w = velocidade angular (rad/s);

® = posicdo angular (rad);

Jm = inercia do rotor (kgm2);

Bm = coeficiente de atrito viscoso (Nms/rad);
Ke = constante contra eletromotriz (Vs/rad);

Kt = constante de torque (Nm/A)

Como equacdes que regem a dinamica do sistema, temos:
Va(t) = Ra = Ia(t) + La%la(t) + Ke *w(t)
Tm(t) = Kt = la(t)
Tm(t) =]%w(t) +bxw(t)

Eb(t) = Ke xw(t)

Realizando a transformada de Laplace:
Va(s) = Ra xia(s) + La * s * Ia(s) + Ke * w(s)
Tm(s) = Kt = la(s)

Tm(s) =] *w(s)*s+ b *w(s)

2.1)

(2.2)

(2.3)

(2.4)

(2.5)
(2.6)

2.7)
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Assim, de (2.7) em (2.6):

Ia(s) = Jrw(s)xs+bxw(s) (2.8)
Kt

Substituindo (2.8) em (2.5):

Va(s) = (La*s+ Ra) * ]*W(S)*;—:b*w(s) + Ke * w(s) (2.9)
Portanto:

w(s) _ Kt

va(s)  (Laxs+Ra)*(Jxs+b)+KexKt (2'10)
E como:

0(s) = < w(s) (2.11)
Segue que:

o(s) _ 1 Kt

va(s) s ((La*s+Ra)*(]*s+b)+Ke*Kt) (2'12)
Esquematicamente, o0 motor de corrente continua é mostrado na figura (2.3).

1 1
(13 ™ > 1)
Tensdo La.s*Ra ) 458 Velocidade
Transfer Fon Gain Transfer Fen
5
: Fosicdo
Integrator

Gaini

Figura 2.3 - Diagrama de blocos de um motor de corrente continua
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2.2  Simulacao do motor de corrente continua
O motor de corrente continua utilizado apresenta os parametros de construcéo da tabela
(2.1). Os valores dos parametros utilizados sdo os valores nominais do motor presente em [1].

O motor utilizado apresenta estabilidade natural, assim como a grande maioria dos

motores existentes.

Tabela 2.1 - Parametros de construcdo do motor de corrente continua

Resisténcia de armadura Ra=1,63Q
Induténcia de armadura La=0,003H
Inércia do motor J=3,67 x 1075 kgm?
Constante atrito viscoso B =1,1224 x 10~° Nms/rad
Constante contra eletromotriz Ke =0,0678 Vs/rad
Constante de torque Kt=0,0678 Nm/A

Temos resultante a seguinte funcéo transferéncia correspondendo ao motor:

G _ 0,0678
MOLOT ™ 1 101%10~7 $2+5,982+105 5+0,004599

(2.13)

De acordo com as equagOes acima desenvolvidas e com os pardmetros do motor de
corrente continua, utilizou-se o software Matlab para determinar a resposta dinamica de saida do
motor. De acordo com a equacdo (2.10) temos que a entrada do sistema é em V, dada por Va e a
saida em rad/s dada por w. O cddigo desenvolvido em Matlab esta no apéndice deste trabalho.
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Resposta do motor ao degrau unitario
........... R T E s [ TR R R R, [ W e )

10k -cee-- ......... ., ............ ............ ............

Velocidade (rad/s)

w

0 i i i i i i
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Tempo (s) (sec)

Figura 2.4 - Resposta do motor de corrente continua ao degrau unitario

As caracteristicas do motor estdo descritas na tabela (2.2), apds observacao das figuras
(2.4) e (2.5).

Tabela 2.2 - Caracteristicas do motor

Tempo de acomodacao 0,0447 s
Tempo de subida 0,0246 s
Regime de estado 14,7 rad/s

Impulze Response
1000 T T T T T T T T

800 |-

Ho00

oo

[10]

=00

Amplitude

400

300
200
100
. i i i i : ; ; i
1] 0.0 0.0z 0.03 0.04 0.05 0.06 no7 0.0s 003
Time (zec)

Figura 2.5 - Resposta ao impulso do motor de corrente continua
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Figura 2.6 - Resposta do motor de corrente continua a aplicacédo de carga
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Figura 2.7 - Carga aplicada

Notamos pelas figuras (2.6) e (2.7) que aplicando carga ao eixo do motor, temos uma

reducdo de sua velocidade, o que é indesejavel em aplicagdes que exijam resposta constante e

precisa.
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3 Controle PID

De acordo com Dorf e Bishop: “A popularidade dos controladores PID pode ser
atribuida parcialmente ao seu desempenho robusto sobre uma grande faixa de condicBes
operacionais e em parte a sua simplicidade funcional, que permite aos engenheiros opera-los de
maneira simples e correta. Para implementar um controlador destes, trés parametros devem ser

determinados para um dado processo: ganho proporcional, ganho integral e ganho derivativo”

[2].

O controle proporcional-integrativo-derivativo (PID) é de longe o algoritmo de controle
mais comumente utilizado. Seu principio de funcionamento é calcular o erro entre a resposta do
processo e um valor de referéncia, onde o controlador tenta minimizar este erro variando as suas

acoes de controle. A figura (3.1) demonstra um sistema com controle PID.

Sua grande robustez e larga utilizacdo em uma grande gama de aplicagdes sdo devidas a

interacdo de trés processos distintos e simples:

e Acdo proporcional: promove agdo de controle razoavel ao erro;

e Acdo integrativa: garante que a resposta do sistema seja igual ao valor de
referéncia, levando o erro a zero;

e Acdo derivativa: promove a estabilidade do sistema, diminuindo o tempo

necessario para atingir o regime de estado;

Saida y(t)

P kew
e(t) | K; [ e(r)dt z u(t) Processo

Figura 3.1 - Diagrama de blocos de um sistema com controle PID

Portanto temos que a agao de controle é dada por:

de(t)
dt

u(t) = Kye(t) + K; [ e(r)dr + K4 (3.1)
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Diante deste esquema geral de um controlador PID, podemos ter controladores
derivados desta familia, como por exemplo, o controlador P, onde Ki e Kd séo iguais a zero;
controlador PI, onde Kd é igual a zero; e controlador PD, onde Ki é igual a zero.

O uso da acgdo derivativa requer cuidado e deve ser evitada em situagdes em que 0 erro
varie bruscamente, em forma de degrau, uma vez gue neste instante a sua derivada sera infinita,
e em situacdes em que a medicdo esteja sujeita a ruidos, ja que o comportamento oscilante faz
com gue a derivada do erro varie continuamente. Estes casos causam um efeito negativo sobre o

desempenho do controlador.

Para que se obtenha o melhor desempenho para uma determinada aplicacdo deve-se
ajustar os pardmetros do controlador alterando seu comportamento. De acordo com Ogata: “Um
campo interessante da teoria de controle, com muita aplicag&o pratica, é a sintonia do algoritmo
PID. Hoje, dispde-se de um conjunto de regras empiricas e matematicas que permitem

sistematizar a busca de melhores desempenhos através da sintonia de parametros.” [3].

3.1 Meétodos de sintonia do PID

Vérios métodos de ajuste de controladores PID sdo conhecidos e utilizados na préatica de
sistemas de controle. Com o intuito de obter um método pratico de ajustes, deve-se obter
informacBes a partir de ensaios simples sobre o0 processo, a0 mesmo tempo que estas

informacdes devem ser suficientes para possibilitar um ajuste adequado do controlador.

Por se tratarem de métodos genéricos, muitas vezes os modelos de controladores nao
sdo suficientemente completos, podendo ser melhorados com o uso de um ajuste manual fino

dos parametros.
A tabela (3.1) mostra alguns métodos e cita algumas vantagens e desvantagens.

Tabela 3.1 - Comparativo entre métodos de sintonia PID

Método Vantagens Desvantagens
Ajuste manual N&o exige teoria matematica. Método Requer certa experiéncia.
online
Ziegler-Nichols Método comprovado. Método online Aplicacdo de distlrbio. Exige tentativa e

erro. Sintonia agressiva

Ajuste via Sintonia consistente. Pode ser online ou Exige um certo custo e treinamento
software off-line. Permite simulacéo. computacional.
Cohen-Coon Otimo método de processo Exige embasamento matematico.

Método off-line. Eficaz para processos

de primeira ordem.
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3.1.1 Método do ajuste manual
O método do ajuste manual é o0 método mais simples para a sintonia de um controlador
PID. E um método que ndo exige embasamento te6rico matematico, sendo necessario apenas a

variacao dos pardmetros por tentativa e erro a fim de se obter uma resposta satisfatoria.

Inicialmente deve-se aumentar 0 ganho proporcional até que a saida atinja o tempo
desejado, mantendo o ganho integrativo e derivativo nulos. Deve-se entdo aumentar o ganho
derivativo para estabilizar o sobre sinal. Por fim deve-se aumentar o ganho integrativo para que
a resposta atinja o regime de estado desejado. Deve-se repetir estes passos até que o ganho
proporcional seja 0 maior possivel. A tabela (3.2) auxilia na variacdo dos pardmetros

manualmente.

Tabela 3.2 - Efeito da varia¢do do aumento dos parametros

Aumento do | Tempo de Sobre Tempode | Erroderegime | Estabilidade
parametro subida tensao acomodacao de estado
(overshoot)
Kp Diminui Aumenta Pequena Diminui Diminui
variagao
Ki Diminui Aumenta Aumenta Diminui muito Diminui
Kd Diminui Diminui Diminui N&o altera Aumenta
pouco pouco pouco

3.1.2 Meétodo Ziegler-Nichols
Os métodos Ziegler-Nichols sdo considerados classicos e aplicados até hoje em sua
forma original ou com algumas modifica¢fes. Temos dois métodos bésicos de ajuste, que

diferem a respeito da natureza da informagao sobre a dindmica do processo.

3.1.2.1 Método da resposta ao degrau

Este método se limita a sistemas com resposta estavel a entrada degrau. Ele faz analise
da resposta do processo a um degrau de referéncia, tomando como base duas constantes, T e L,
obtidas no eixo de tempo através da reta tangente ao ponto de inflexdo da curva de saida, e a

constante de estabilizagdo do sistema, K. A figura (3.2) nos mostra as constantes T, L e K.
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Figura 3.2 - Curva de resposta ao degrau e parametros

Com a determinacdo destas trés constantes, através da tabela (3.3) conseguimos calcular
facilmente os pardmetros do controlador.

Tabela 3.3 - Parametros obtidos com o método resposta ao degrau - Ziegler-Nichols

Tipo de controlador Kp Ki Kd
P T - -
KL
Pl T 3L -
09—
KL
T
PID 124 2L 0,5L
KL

3.1.2.2 Método da oscilacéo critica

Este método aplica-se a sistemas instaveis ou oscilantes. Em malha fechada, deve-se
aumentar o ganho Kp gradativamente até que o sistema entre em oscilagdo permanente, nesta
condicdo, Kp corresponde ao ganho critico, Kcr. Determina-se também o periodo critico, Pcr.

Ambos demonstrados na figura (3.3). Com estes parametros, calcula-se através da tabela (3.4)
os valores dos parametros do controlador.

Tabela 3.4 - Parametros obtidos com o método da oscilacgdo critica — Ziegler-Nichols

Tipo de controlador Kp Ti Td
P 0,5 K, - -
Pl 0,45 K, Fer -
1,2
PID 0,6 K., 0,5P., Fer
8
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Figura 3.3 - Oscilagdo critica

3.1.3 Meétodo de Ajuste via software (lugar de raizes)

O software MATLAB dispde de alguns métodos para o projeto de controladores. Um
deles € o “root locus”, realizado através do comando rltool. Ele utiliza o principio do método do
lugar geométrico das raizes (LGR) que tem como objetivo representar graficamente o
deslocamento dos pdlos de um sistema em malha fechada devido a alteracdo de seus

parametros.

E uma técnica extremamente prética e intuitiva para a sintonia de controladores. Apds
selecionar o processo a ser controlado, escolhe-se a estrutura de controle. Feito isto, faz-se a

edicdo do controlador, adicionando zeros e polos, processo demonstrados na figura (3.4).

E Control and Estimation Tools Manager @M
File Edit Help
Sd|9 ©
QWD"GPME Architecture| Compensator Editor | Graphical Tuning | Analysis Plots | Automated Tuning
= SIS0 Design Task
.. Design History Compensator
= v | = [1e-006
Pole/Zero
Dynamics Edit Selected Dynamics
Type Location  Damping  Frequency

Add Pole/Zero ¥ Real Pole
Complex Pole

Integrator
ngle row to edit values

Real Zero
Complex Zero

Differentiator

Right-click to add or delete poles/zeros Lead
Lag

Show Architecture Notch lelp

Figura 3.4 - Adicao de pdlos e zeros do controlador na ferramenta Rltool

19



Ao adicionar os pdlos e zeros integrantes do controlador, alteram-se manualmente os
locais de todos os polos e zeros constituintes do sistema, como na figura (3.5), modificando
portanto a sua resposta, que pode ser conferida dentro da propria ferramenta Rltool, como na
figura (3.6). Desta forma, consegue-se alcancar as especificacbes estabelecidas para o

funcionamento do controlador.

1Bl SIS0 Design for SISO Design Task ol
fle Edit View Designs Analysis Took Window Help
Bxox s 8890

1000

-1000

- FMOEIOLIEE]

Figura 3.5 - Alteracao dos locais dos p6los e zeros do sistema

B0 LT Viewerfor S50 Design Task =3 il
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Figura 3.6 - Resposta do sistema de acordo com a variagdo do local de seus pélos e zeros
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4  Controle Adaptativo

Mecanismo
de
adaptacao
MALHA DE ADAPTACAO
Referéncia
Contrglador u Planta Y
MALHA CONVENCIONAL

Figura 4.1 - Diagrama de blocos de um sistema com controle adaptativo

A teoria de controle convencional lida predominantemente com aproximacdes de
sistemas lineares que possuem parametros constantes. Porém para alguns casos essa
aproximacao ndo é satisfatoria. Em casos onde as variagfes sao muito amplas, um ganho de
realimentacdo linear e com coeficientes constantes € incapaz de fornecer a flexibilidade
necessaria para atender as especificacdes de desempenho. Portanto surge a necessidade de um

controle ndo linear.

Outra questdo que merece destaque é o fato de muitas aplicagdes serem tdo complexas
que os principios classicos de controle sdo insuficientes, sendo necessario um controle mais

inteligente e eficiente.

O controle adaptativo é um tipo de controle ndo linear. E uma técnica na qual o
comportamento do sistema de controle é modificado de acordo com as variagdes do processo e
dos distarbios presentes. A figura (4.1) nos da o exemplo de um sistema de controle adaptativo.
De acordo com Karl Astrom e Bjorn Wittenmark, “Um sistema adaptativo é qualquer sistema
projetado sobre o conceito de adaptacdo. Desta forma, um controlador adaptativo é aquele capaz

de modificar sua resposta em funcdo da dinamica dos parametros do processo e distarbios” [4].

Os parametros podem variar devido a ndo linearidades de atuadores, mudancas de

condi¢des de operacdo do sistema, e disturbios ndo estacionarios que agem no processo.
Basicamente, todo sistema de controle adaptativo realiza trés etapas:

¢ Identificacdo da resposta do sistema;

e Comparagdo com a resposta desejada;
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e Regulagem dos parametros para obter a resposta desejada;

Sistemas com controle adaptativo possuem duas malhas de realimentacdo, a malha de
controle convencional, que € rapida, e a malha de adaptacdo dos pardmetros do controlador,

bem mais lenta e que introduz a n&o linearidade ao controle.

Atualmente a teoria de controle adaptativo esta em franco desenvolvimento, onde novas
técnicas surgem a cada dia. Antes do advento dos microprocessadores, sua utilizacdo era bem
restrita, mas apoés tal invento sua aplicacdo aumentou drasticamente, sendo muito utilizado em
controles industriais, aeroespaciais, roboticos, entre outros. Podemos citar alguns dos métodos

de sistemas adaptativos mais comuns:

e Escalonamento de ganho;
e Controlador auto-sintonizavel (STR);

e Sistema adaptativo por modelo de referéncia (MRAS);

4.1 Escalonamento de ganho
O método do escalonamento de ganho consiste em variaveis auxiliares independentes
que relacionam as alteracdes da dindmica do processo. A figura (4.2) demonstra 0 esquema

basico de um sistema adaptativo por escalonamento de ganho.

E assim chamado por alterar os ganhos de realimentac&o. O controlador ja possui uma
definicdo prévia das regides de operacdo do processo e seu algoritmo seleciona a resposta que

melhor se enquadra naquela condig&o especifica.

Por ser adaptado em malha aberta, alguns ndo consideram ser um sistema de controle
adaptativo, porém € inegavel que esta técnica reduz os efeitos da variacdo dos parametros

selecionando a melhor resposta.

Cscalonamento de Varigveis
ganho auxiliares
Referéncin
S
“| Contrglador u - Planta ¥

'y

/

Figura 4.2 - Diagrama de blocos de um sistema com escalonamento de ganho
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4.2  Controlador auto-sintonizavel

O método do controlador auto-sintonizavel (STR) é feito de forma on-line, onde 0s
parametros sdo estimados e entdo é projetado um novo controlador. Essa estimacéo se d& a cada
periodo amostrado.

Para a estimac&o, varias estruturas e técnicas podem ser utilizadas, dentre elas, minimos

quadrados, minimos quadrados estendido e generalizado e filtro estendido de Kalman.

A figura (4.3) demonstra o0 esquema basico de um controlador auto-sintonizavel.

Pardmetros estimaodos

!

Cesign
controlador Estimacao  |e
e
e
Referéncia
Contrglador L Planta ¥
T
- |

v

Figura 4.3 - Diagrama de blocos de um sistema com controlador auto-sintonizavel

4.3  Sistema adaptativo por modelo de referéncia

O sistema adaptativo por modelo de referéncia (MRAS) é uma das técnicas mais
utilizadas em controle adaptativo. Este método foi inicialmente proposto por Whitaker em 1958,
visando resolver problemas em que as especificagdes eram dadas em funcdo de um modelo de

referéncia, que respondia idealmente ao sinal de entrada.

Com o controle proposto por Whitaker, duas novas ideias foram introduzidas. Primeiro,
0 desempenho do sistema é especificado por um modelo, e segundo, os parametros do
controlador sdo ajustados com base no erro entre a resposta do modelo de referéncia e a resposta

do processo. Este sistema pode ser também implementado em sistemas de tempo discreto.

Os parametros do controlador sdo ajustados de acordo com a diferenca entre a saida do
modelo de referéncia e a saida do sistema, que corresponde ao erro. O objetivo é minimizar o
erro, tentando iguala-lo a zero. Este ajuste fara com que a fungdo transferéncia de malha fechada

do processo seja a mais proxima possivel do modelo de referéncia. Isto é chamado de modelo
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seguidor (model-following). A figura (4.4) demonstra 0 esquema basico de um sistema

adaptativo por modelo de referéncia.

~, Modelo rm
. W
Pardmetros
Mecanismo
T,
5 deajusie
Referéncia

- [ , v

Contrifador u Planta

Figura 4.4 - Diagrama de blocos de um sistema adaptativo por modelo de referéncia (MRAS)

A principal dificuldade desta técnica é obter o mecanismo de adaptagdo que mantenha o
sistema estavel e leve o erro a zero. Isto ndo é trivial e requer alguns mecanismos complexos e
extensos de analise e projeto do sistema. Os procedimentos mais utilizados e comentados na

literatura sdo trés:

e Método do gradiente;
e Teoria da estabilidade de Lyapunov;

e Teoria da passividade;

4.3.1 Meétodo do gradiente

Este método é regido pelo algoritmo conhecido como regra MIT, que é assim chamada
por ter sido desenvolvida na Massachusetts Institute of Technology (MIT). Ele é baseado no
pressuposto de que os parametros variam mais vagarosamente que as outras variaveis do
sistema. Isto admite um tratamento quase estacionario dos parametros, o que €é essencial para o

calculo das sensibilidades derivadas, as quais s&o necessarias para 0 mecanismo de adaptacao.

Considerando o erro e entre a resposta do processo e a resposta do modelo de referéncia,

temos:

€= Yp—Vm (4.1)

De acordo com a regra MIT, introduzimos o critério de fungo custo J(8) em fun¢do dos

parametros 0 do controlador. A escolha da fungdo custo € arbitraria, por exemplo:
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J(6) = ;e (42)

Devemos fazer com que J seja 0 menor possivel, desta forma, é razodvel variar os
pardmetros na direcdo negativa do gradiente de J, ou seja:

a6 _ _a] _ de

o= Vo= “Yeg, (4.3)

A equacdo (4.3) representa 0 mecanismo de ajuste e é a regra MIT propriamente dita.

Se assumirmos que os parametros variam mais lentamente que as outras variaveis do
. . a . .
sistema, podemos afirmar que £ pode ser calculado assumindo 6 como constante. A derivada

de , .. - . « . :
£ é dita sensibilidade derivada do erro em relagdo ao parametro 6. Ela caracteriza como o erro

se comporta com o ajuste do pardmetro. y representa a taxa de adaptagdo (ganho adaptativo).

A regra MIT desempenhard sua fungdo bem se a taxa de adaptagdo y for pequena em
comparagdo com a magnitude do sinal de referéncia e do ganho do processo, porém ndo é

possivel fixar um limite para que a estabilidade seja garantida.

Os trabalhos realizados por Gomes, Aradjo e Lima em [5] e Stefanello em [6],
evidenciam a eficécia, e principalmente a eficiéncia da utilizacdo do método gradiente para o
projeto de sistemas adaptativos por modelo de referéncia em vérias areas do controle,
velocidade de um motor de corrente continua; sistema de aquecimento para secagem de graos;

projeto de filtros ativos de poténcia, respectivamente.

Portanto, observa-se que a regra MIT é uma étima escolha para o ajuste de parametros
em MRAS.

Pontos que devem ser destacados:

e Nao € necessario um modelo perfeito do sistema;

e O método pode ser aplicado para sistemas parcialmente conhecidos;

e O procedimento pode ser usado em sistemas nao lineares;

e AproximacOes podem ser necessarias para se obter uma lei de ajuste de

parametros realizavel;

O método do gradiente ndo ira necessariamente resultar em um sistema de malha
fechada estavel. Deve-se entdo recorrer a outros métodos para modificar o mecanismo de

adaptacdo, como, por exemplo, a Teoria da estabilidade de Lyapunov e a Teoria da passividade

[4].
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4.3.2 Ganhos de adaptacéo
A grande dificuldade em se projetar um sistema adaptativo por modelo de referéncia se

d& em encontrar um bom valor para os ganhos de adaptacdo y da regra MIT.

Atualmente, esta ainda é uma area pouco conhecida, tendo poucas informacgbes a

respeito de métodos e sendo na maioria das vezes imprecisa.

Rurua prega que o primeiro passo para encontrar um bom valor para y, é encontrar uma

faixa de valores para 0s quais 0 sistema se mantém estavel [7].

Segundo este pensamento, uma das técnicas existentes é o segundo método de
Lyapunov. Nele, deve-se selecionar uma possivel fungdo de Lyapunov e verificar para quais
valores o sistema se mantém estavel. Normalmente, encontra-se uma faixa muito ampla,
limitando apenas os ganhos em positivo ou negativo, 0 que na pratica, se mostra ser uma
alternativa pouco viadvel, uma vez que sera necessario recorrer a tentativa e erro para encontrar o

melhor valor dentro da faixa.

Outra técnica difundida é a utilizacdo dos critérios de erro, através da minimizacéo de
indices de desempenho de erro. Varios sdo os critérios que podem ser utilizados, onde alguns se
demonstram mais eficientes que outros, porém os mais utilizados sdo ISE e ITSE. Estes critérios

tendem a minimizar o erro, encontrando, portanto o valor que produz o melhor resultado.

Utilizou-se do trabalho desenvolvido por Caroline Conti em [8] para o desenvolvimento

de tais critérios, assim como sua aplicacéo no software Matlab.

No caso de um sistema adaptativo por modelo de referéncia, queremos encontrar 0s
valores para os ganhos de adaptagdo que produzam o menor erro entre 0 modelo de referéncia e

a planta controlada.

O critério ISE e o critério ITSE sdo definidos como:
ISE = [ e?(t)dt (4.4)
ITSE = [t *e*(t)dt (4.5)

Em ambos os casos como queremos a minimizacéao do erro, calculamos o ponto minimo

de cada equacao.

Podemos estender este conceito para a minimizacdo entre os parametros do PID

identificados e os parametros do PID do modelo de referéncia.
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5 Fuzzy

“A operagdo destes sistemas inspira-Se, em geral, em sistemas bioldgicos. A capacidade
criativa dos seres humanos, de raciocinar de maneira incerta ou difusa contrasta com a forma de
operar de computadores e maquinas, regidos por raciocinio binario e preciso. No momento em
gue estas maquinas transcendessem a esta restricdo, tornar-se-iam inteligentes, podendo
‘raciocinar’ de forma difusa. Esta forma de raciocinio é conhecida em inglés por fuzzy, tendo

como traducdo em portugués nebuloso, difuso” [9].

5.1 Fundamentos da teoria Fuzzy

A teoria Fuzzy ndo se assemelha a teoria classica, ela se aproxima muito da

interpretacdo humana dos fatos, sendo nebulosa, difusa.

Em um conjunto classico, um elemento pertence a um conjunto ou ndo. Dado um
universo U e um elemento X, o grau de pertinéncia JA(x) com relagdo a um conjunto A c U é

dado por:

1,se x pertence a A
0,se x ndo pertence a A

A = |

Na teoria Fuzzy proposta por Lotfali Askar Zadeh, temos uma caracterizagdo mais
ampla, na medida em que alguns elementos sdo “mais membros” de um conjunto do que outros.
Desta forma, o grau de pertinéncia pode ser qualquer valor no intervalo entre 0 e 1, onde 0
indica total exclusédo e 1 indica completa pertinéncia. Esta generalizagdo aumenta muito o poder
de expressao da funcgdo caracteristica e torna algo mais préximo do pensamento humano. Assim

temos:

wA(x):U = [0,1]

Temos também na teoria Fuzzy a expressdo de conceitos via uso de elementos
qualitativos ao invés de valores quantitativos, por exemplo, temos: “muito”, “pouco”, “mais ou
menos”, entre outros. A estes conceitos damos o nome de variaveis linguisticas. Portanto, ao

invés de assumir instancias numeéricas, variaveis linguisticas assumem instancias linguisticas.

A principal utilidade das varidveis linguisticas é inserir uma maneira sistematica para a
caracterizacdo de fendmenos complexos ou ndo completamente conhecidos. A fundo, a
utilizacdo de variaveis linguisticas, como o0s seres humanos, e ndo de variaveis quantificadas,
como as maquinas, permite o tratamento de sistemas muito complexos para serem analisados

com teorias matematicas convencionais.
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A forma mais comum de expressar 0 conhecimento da teoria Fuzzy é por meio de regras
condicdo-acdo. Um conjunto de condi¢des descrevendo as entradas do processo € associado a
uma acdo de controle que levara o processo as condi¢Ges de operacdo desejadas. Temos como

exemplo de condigdo “erro grande positivo”, e exemplo de agdo “aumentar velocidade”.

As regras mais utilizadas em sistemas Fuzzy sdo as regras do tipo se-entdo. Elas séo

frequentemente chamadas de declaragdes condicionais Fuzzy, ou simplesmente regras Fuzzy.

5.1.1 Funcdes pertinéncia
As fungdes pertinéncia sdo curvas que representam o quanto determinado elemento é
membro de um conjunto Fuzzy. Vérias sdo as formas das fungdes pertinéncia, devendo o

projetista analisar a que melhor se encaixa em cada situacdo. Como exemplo, temos:
* Triangular

AAX

Figura 5.1 - Func¢éo de pertinéncia Triangular

A figura (5.1) demonstra uma funcdo pertinéncia triangular, e é representada por:
b 1—|x—al <x<a+
WA(x) = S ,sea—s<x<a+s

0, caso contrario
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* Trapezoidal

4 A

e=1,0

Figura 5.2 - Fungdo pertinéncia Trapezoidal

A figura (5.2) demonstra uma funcéo pertinéncia trapezoidal, e é dada por:

(x—a)e
b—a

e, seb<x<c

HA(X) - (d _ x)e
d—c

0, caso contrario

,sea<x<bh

,sec<x<d

» Gaussiana

Figura 5.3 - Fung¢do pertinéncia Gaussiana

A figura (5.3) demonstra uma funcdo pertinéncia gaussiana, e corresponde a:

(x-a)?

wA(x) =cxe B

As funcdes triangulares e trapezoidais sdo as mais populares devido a simplicidade e ao
fato de que o custo computacional adicional exigido pelos outros tipos de funcéo nédo refletem,

em geral, em uma melhoria significativa na qualidade dos valores de saida dos sistemas [10].
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5.1.2 Operagoes Fuzzy
Sejam A e B dois conjuntos Fuzzy no universo U, com funcdes pertinéncia pA e uB,
respectivamente. Temos definidas as seguintes operacoes:

Unido (AUB): wyyp = 1A & uB
Interseccédo (ANB): pynp = HA T UB
Complemento (CA): pcg =1 —pd
onde, & € uma co-norma triangular (norma-s) e T € uma norma triangular (horma-t).
Uma norma triangular é uma funcéo t: [0,1] x [0,1] — [0,1] tal que:

¢ XTWSyTz SeX=<y,w<=<z
e XTY=VYTX;
o (Xty)TZ=XT(YT2);

e X70=0ex7tl=Xx

Uma co-norma triangular é tal que &: [0,1] x [0,1] — [O0,1], satisfazendo as trés

primeiras condi¢Bes acima e ainda:
e X&0=xex&1l=1,

A tabela (5.1) trds exemplos de normas e co-normas, onde os mais utilizados s&o os
tipos Zadeh e Probabilistica. As figuras (5.4) e (5.5) demonstram graficamente as normas e as

CO-normas.

Tabela 5.1 - Principais hormas, co-normas e seus nomes

Norma Co-norma Nome
Min(a,b) Max(a,b) Zadeh
a.b adb Probabilistica
Max(a+b-1,0) Min(a+b,1) Lucasiewicz
a,seb=1 a,seb=0 Weber
{ b,sea=1 { b,sea=0
0, caso contrario 1, caso contrario
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a) Zadeh b) Probabilista ¢) Lukasiewicz d) Weber

Figura 5.4 - Principais normas

4 > > >
a) Zadeh b) Probabilista c) Lukasiewicz  d) Weber

Figura 5.5 - Principais co-normas

5.1.3 Defuzzyficacdo
A defuzzyficacéo é o processo de transformar o conjunto nebuloso decorrente das regras
fuzzy em um valor numérico para a saida. Existem varios métodos de defuzzyficacdo, porém os

principais séo:
e Centro de gravidade (COG):

Seu valor é calculado pela abscissa do centro de gravidade do conjunto fuzzy, como se

seqgue:

u _ J e (x)x;
0T Jue(x)

onde xi é um ponto do universo de conclusdo (i=1,2...) e pc(xi) € o valor resultante da

concluséo.
e Centro da area (BOA):

Seu valor é calculado pela abscissa da linha vertical que divide a area resultante em

duas areas iguais:

j imax
Ugpa = .[P-C(xi) - f el i <J < imax
i=1 i=j+1

Este método é computacionalmente complexo e custoso.
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e Média dos maximos (MOM):

Como o proprio nome diz, o valor é calculado pela média de todos os valores que

tenham o maior grau de pertinéncia:

J x;

Upom = I

onde | corresponde ao intervalo que contem todos os valores que tenham o maior grau de

pertinéncia.
e Menor dos méaximos (SOM):

Seu valor é calculado pelo menor valor que apresente 0 maior grau de pertinéncia:

Usom = Xmin (1)
e Maior dos maximos (LOM):

Seu valor é calculado pelo maior valor que apresente o maior grau de pertinéncia:

Usom = Xmax (1)

5.2 Controle Fuzzy

O uso de controladores baseados na légica Fuzzy proporciona a possibilidade de
supervisdo inteligente usando apenas informacdes qualitativas sobre a operacdo do sistema, nao
havendo necessidade de modelagem matematica. Ela prop6e uma analise diferente da analise

proposta pela logica cléssica.

Esta técnica foi proposta por Zadeh em 1965 e permite inferéncias intermedidrias entre
o0 falso (zero) e o verdadeiro (um). Zadeh analisou que, frequentemente, alguns objetos néo

podem ser definidos segundo um critério.

Por exemplo, a classe dos animais diferencia claramente os cachorros, peixes e
passaros. Porém, existem caracteristicas que possuem ambiguidades quando se trata de
diferenciagdo, como a altura de uma pessoa. Ela pode ser muito baixa, baixa, média, alta, muito
alta e outras defini¢des. Nestes casos, ha maioria das vezes, ndo se consegue classificar a pessoa
como somente alta ou baixa, havendo a necessidade de uma graduacdo. Segundo Zadeh, entre a

certeza de ser e a certeza de néo ser, existem infinitos graus de incerteza [11].
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O controle Fuzzy, ou controle nebuloso, tem sido utilizado como uma alternativa muito

interessante aos métodos classicos no controle de sistemas ndo lineares, com parametros

variaveis no tempo.

A ideia principal deste método é modelar as a¢des a partir de conhecimento especialista,

e ndo modelar o processo em si. Desta forma, a abordagem é diferente das técnicas classicas de

controle, onde 0s mesmos sdo desenvolvidos matematicamente, de modo que suas acdes de

controle sejam func¢do do estado do processo.

A motivacdo para esta abordagem diferente veio de casos nos quais 0 conhecimento

especialista de controle era presente, mas 0s modelos matematicos envolvidos eram complexos

demais ou ndo conhecidos totalmente.

Vérias sdo as vantagens da utilizacdo do controle Fuzzy, dentre elas:

N&o é necessario modelo matematico do sistema para criar o controle;

O mecanismo de ajuste pode modificar a caracteristica do controlador Fuzzy no
caso de perturbagdes e mudancas na dindmica do processo;

Conhecimento e experiéncia humana podem ser implantados utilizando regras
linguisticas;

Plantas ndo lineares podem ser controladas;

Pode ser utilizado em processos rapidos;

Apesar de sua crescente utilizagdo e sucesso, temos ainda algumas desvantagens:

Funcbes pertinéncias sdo complexas para se determinar;

Métodos de defuzzificacdo e de inferéncia sdo complexos de forma analitica;
VariagOes de grande amplitude nos parametros, alteracGes estruturais ou fortes
perturbacGes ambientais podem ndo ser revertidas pelo controlador,
apresentando desempenho inadequado;

Em operagdes complexas, fuzzyficagdo e defuzzyficacdo levam um grande

tempo;

O uso de uma grande faixa de operacdo no controle de um processo nao linear pode

levar o sistema a apresentar um desempenho indesejavel devido a dindmica variavel da planta

com controlador Fuzzy fixo. Ainda, as regras obtidas podem nédo ser validas para todos os

pontos de operacdo da faixa desejavel [12], [13] e [14].
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I Controlador Fuzzy I
: Base de Dados :
: Base de :
| Conhecimento |
| |
| |
| |
| |
I \ I
| |
: Interface de Procedimento de Interface de :
| Fuzzyficagio Inferéncia Defuzzyficacio |
| |
| |
| |

@ Processo e | Atuadores

Figura 5.6 - Estrutura de um controlador fuzzy

Na figura (5.6) temos um esquema da estrutura de um controlador Fuzzy. Vale ressaltar
seus componentes basicos: Interface de fuzzyficacdo, base de conhecimento, base de dados,
procedimento de inferéncia e a interface de defuzzyficagao.

A interface de fuzzyficagdo tem como funcdo receber os valores das varidveis de
entrada, condicionar estes valores a universos de discurso normalizado e fuzzyficar os valores,
ou seja, transformar determinado valor em determinado conjunto fuzzy, representado por uma

variavel linguistica.

A base de conhecimento é composta por uma base de regras, caracterizando a estratégia
de controle e suas metas. JA& a base de dados armazena as definicbes necessarias sobre
discretizacOes e normalizagbes do universo de discurso, particGes fuzzy dos espagos de entrada

e saida e as defini¢Oes das funcGes pertinéncia.

O procedimento de inferéncia processa os dados fuzzy de entrada, junto com as regras,
de modo a inferir as a¢des de controle fuzzy, aplicando o operador de implicagdo fuzzy e as

regras de inferéncia da logica fuzzy.

A interface de defuzzyficagdo transforma as agdes de controle fuzzy inferidas em agdes
de controle ndo-fuzzy. Compatibilizam-se os valores normalizados vindos do passo anterior

com valores dos universos de discurso reais das variaveis.

34



5.3 Fuzzy no Matlab

O software Matlab dispde de um toolbox proprio para a criacdo de logicas fuzzy. Esta
ferramenta chamada “Fuzzy Logic Toolbox” fornece meios computacionais para o0
desenvolvimento de controladores Fuzzy e apresenta uma interface grafica muito intuitiva e
amigavel. Ao final do projeto, pode-se verificar seu desempenho pela ferramenta Simulink, que
é atrelada ao software Matlab.

Para acessar o0 toolbox, é necesséario apenas digitar “fuzzy” na tela de comando do
Matlab. Desta forma, abre-se a 0 “FIS Editor”, “Fuzzy Inference System Editor”, demonstrado
pela figura (5.7).

y B

FIS Editor: Untitled = | B |t

File Edit View

Untitled

(mamdani}y
input1 outputi
FIS Marme: Lirtitled FIS Trype: mamclzani
And method min - Current “ariakle
Or method max L || Mame input1
Type inpat
Implication — - ot 2
Range [@1]
Aggregstion o -
Defuzzification e - Help Close
System "Untitled": 1 input, 1 output, and O rules

Figura 5.7 - FIS Editor

Nesta interface é possivel alterar o tipo de loégica Fuzzy, Mandani ou Sugeno,
acrescentar ou retirar variaveis de entrada ou saida, alterar os métodos de inferéncia utilizados e

outras funcoes.

Ao clicar-se duas vezes sobre a varidvel de entrada ou de saida, abre-se uma nova
interface, a “Membership Function Editor”, demonstrada pela figura (5.8). Nela é possivel
alterar todos os parametros das varidveis, incluindo ou excluindo fungdes pertinéncias,

definindo seus limites, suas formas, e também alterar os nomes de cada faixa da funcéo.
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e
n Membership Function Editor: Untitled

File Edit View

FIS Variables

Membership function plots  Plot points: 181

mif1 mf2
1

input1 outputi

input variable "input1”

Current Variakle Current Membership Function (click on MF to select)

hlamie inpLtt hame mf1

Type input R trimf -
Range 01 Params [-0.4 0 0.4]

Display Range [0 1] Help Close

Ready

Figura 5.8 - Membership Function Editor

Outra interface a ser conhecida é a “Rule Editor”, demonstrada pela figura (5.9). Ela é

acessada com um duplo clique sobre o quadrado branco central da tela “FIS Editor”. Nesta tela

deve-se configurar as regras do controlador. Basta selecionar a combinagdo das varidveis de

entrada, com uma relacdo AND ou uma relacéo OR e selecionar a saida correspondente.

n Rule Editor: one

~

=RREN X

File Edit View Options

1. If (angulo iz neg) and (velocidade is neg) then (output? is muitoneg) (1)
2. If (angulo is neg) and (velocidade is zero) then (output! is muitoneg) (1)
3. If (angule iz neg) and (velocidade is pos) then (output! is pouceneg) (1)
4. If (angulo iz zero) and (velocidade iz neg) then (cutput! is pouconeg) (1)
5. If (angulo iz zero) and (velocidade is zero) then (outputl is zero) (1)

§. If (angulo is zero) and (velocidade is pos) then (output! is poucopos) (1)
7. If (angule iz pes) and (velocidade is neg) then (output1 is poucopos) (1)
2. If (angulo iz pes) and (velocidade is zero) then (output! is muitopos) (1)
9. If (angulo iz pos) and (velocidade is pos) then (outputl is muitopos) (1)

It and

angulo is velocidade is

Then
outputt iz

|:| not |:| not
~ Connection Wieight:

(") or

@ and 1 Delete rule Add rule | Change rule | ﬂ ﬂ
FIS Mame: one ‘ Help | Close | ‘

Figura 5.9 - Rule Editor
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Apo0s estas etapas pode-se conferir como o controlador Fuzzy iré reagir a determinada
entrada. Basta acessar a interface “Rule Viewer”, figura (5.10) ou a interface “Surface Viewer”,
figura (5.11), dispostas no menu “options” do “FIS Editor”.

- -

Rule Viewer: ane = | |
File Edit View Options
angulo = 0.382 velocidade = -0.418 outputl = 1.2
e [ ] =L |
) I =N
e = | | [ [ _—] VAN
VAN = VAN
O] ] =N A ]
VAN [ [ _—] AN
T B VAN
o [ =N [
o [ [ [ —] ]
-0.8 0.8 -2 pid g
-20 20
Input: | 19 3817 -0.4182] Flat points: 494 e left | right | dnwn| up |
Opened system one, 9 rules Help | Close |
Figura 5.10 - Rule Viewer
rﬂ Surface Viewer: one =HECH X

File Edit VWiew Options

output]

velocidace - ' angulo
H (it angulo ~ | ¥ (inputy velocidade ~ | Z (autput): outputl -
W orids: 15 Y grids: 15 Evaluaic
Ret. Input: Plot points: 49 Help | Close |
Ready

Figura 5.11 - Surface Viewer
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6 Controladores

6.1 Controle PID
O controlador PID foi desenvolvido para a aplicagdo no sistema adaptativo por modelo

de referéncia.

Para o desenvolvimento do controlador PID, utilizou-se a ferramenta presente no

software Matlab, chamada de “ritool”.
O cddigo desenvolvido em Matlab pode ser visto no apéndice deste trabalho.

Inicialmente alterou-se o valor da realimentacdo, que representa o tacogerador. O
tacogerador utilizado € considerado um ganho, uma vez que converte a resposta do sistema, ou
seja, a velocidade em rad/s, em tensdo. Além dele, utilizamos um conformador de sinal, obtendo

assim a tensdo exata que corresponde a determinada velocidade.

Em seguida, para que o rltool ajustasse o controlador como um PID, acrescentou-se 0
polo real e os dois zeros reais. Feito isto, passou-se a alterar a posi¢cdo dos poélos e zeros,

modificando a resposta do sistema. Fez-se até que a resposta se encaixasse nas especificagoes.

O sugerido foi que o sistema com o controlador respondesse com metade do tempo de

acomodacdo da resposta de malha aberta do processo e um sobre sinal maximo de 7%.

Obteve-se, portanto a seguinte fungéo transferéncia para o PID:

—1.02557%10* s2+2.392886 s+231.098297 (6 0)

G =
PID s

Partiu-se para a implementacdo de tal controlador no software Matlab-Simulink. Seu
esquema é representado pela figura (6.1) abaixo.

y=

Scope

Sp— —{]

To Workspacs1 Scope

E i+ | FID(s) 44 7|!/—_ | Tenzdo
r elocidade J| velocidade

Step PIC Controller Saturaticn

Caras
Carga

To Workspace

Subsystem

_.—o—"""'d__k_;;_]a

Gain2

Figura 6.1 - Sistema com controle PID
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6.2 Sistema adaptativo por modelo de referéncia

6.2.1 Mecanismo de adaptacao

Como mostrado no capitulo 4, item (4.3.1), utilizaremos o método do gradiente para a
determinagdo do mecanismo de ajuste do modelo de referéncia, conhecido como regra MIT.
Desta forma faremos as seguintes considera¢des para o erro €, resposta do processo yp, resposta

do modelo de referéncia ym, fungao de custo J, vetor de parametros 0 ¢ o ganho de adaptacio y.

E=Yp— Ym (6.1)
J() = 3¢ (62)
0 = [Kp, Ki, Kd] (6.3)

De acordo com a regra MIT temos:

a_ _ 9 _ _ . 0e
ac. Yae~ "Yeo (64)

Portanto, aplica-la significa minimizar a funcdo custo, modificando os pardmetros do

controlador em dire¢éo ao gradiente negativo de J.

Substituindo os pardmetros na equacgéo (6.4), obtemos:

e gt n () (5) 32 69
== () () ) 6.7
Temos que:

U= e poisj(0) = ;e = (3e2) =2+1e = ;e

;TZ=1,poiSs= Vp — ymeg%z—%:=1—0= 1

Desta forma, as equacdes (6.5), (6.6) e (6.7) se tornam respectivamente:

W _ _, 9 _ _ 9
ac . Pox, T yP*g*(aKp) (6.8)
aKi _ _, 9 _ ., 9
at y‘am_ YL*S*(aKi) (69)
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da _ _,, 0] _ _ 9
= Vage = —varex(52) (6.10)

Considerando o modelo da planta como uma equacdo genérica de 22 ordem, o
controlador PID genérico, e 0 modelo de referéncia genérico, temos:

b

Gpianta(s) = Fr o (6.11)

Gpin(s) = Kp + -+ Kps (6.12)
bm15°+bmaS+bm

Gmodelo ref(s) = L5 ma Y Ty (6.13)

S +amS*+amaSs+ams

A funcéo transferéncia em malha fechada, onde R(s) representa o sinal de entrada, se

torna:

Gplanta (s) * Gpip(s) .
1+ Gpianta (s) * Gpp(s)

b

s?+a;s+a,

b K )
1+<52+a15+a2*KP+ s T Kps

b(Kps? + Kps + K;)
s(s?+a;s+ay)

Yp(s) = R(s)

*Kp+%+KDS

* R(s)

R
- s(s? 4+ a;s + ay) + b(Kps? + Kps + K;) *R(s)
s(s?+a;s+ay)
b(Kps? + Kps + K,
(Kp pS + K1) R(s) (6.14)

- s(s?+a;s+ay) + b(Kps? + Kps + K))
Realizando a decomposicéo da equagéo (6.14):

Yp(s) _ b(Kps?+Kps+Kj)
R(s)  s*+(ay+bKq)s*+(ay+bKy)s+bK;

(6.15)

Através da transformada inversa de Laplace e a da insercdo do simbolo D representando

%, obtemos em (6.16) a equacéo (6.15) em funcdo do tempo:

Yp(t) _ b(KpD?+KpD+Kj)
R(t)  D*+(a;+bKq)D*+(az+bK,)D+bK;

(6.16)

Retornando as equacdes (6.8), (6.9) e (6.10), resta-nos calcular %, segue que:
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(7]

oK,

_ (D3 + (ay + bKz)D? + (ap + bK,)D + bK;) * bD % R(t) — (b(KpD? + KpD + KR(t)) * bD
B (D* + (a; + bK;)D? + (a, + bK,)D + bK;)?

(b(KpD? + KpD + K)R(¢)) * bD
(D® + (a; + bK4)D? + (a, + bK,)D + bK;)
B bD
(D3 + (ay + bKy)D? + (a, + bK,)D + bK;)

=bD * R(t) —

* [R(t) — Yp(t)] (6.17)

oYy
0K;

(D3 + (ay + bKz)D? + (az + bK,)D + bK;) * b * R(t) — (b(KpD? + KpD + K)R(t)) * b
N (D* + (ag + bK)D? + (a + bK,)D + bK,)?

(b(KpD? + KpD + K))R(t)) * b
(D + (ay + bK4)D* + (a; + bK,)D + bK;)
b

=07+ (@ + bK)D? + (a + bK,)D + bK)) "\

=b*R(t) —

R(t) = Yp(®)] (6.18)

23

0K,

_ (D? + (ay + bK4)D? + (ap + bK,)D + bK;) * bD? * R(t) — (b(KpD? + KpD + K)R(t)) * bD?
B (D? + (ay + bK4)D? + (a, + bK,)D + bK;)?

(b(KpD? + KpD + K)R(t)) * bD?
(D + (ay + bKz)D* + (ay + bK,)D + bK;)
B bD?
(D3 + (ay + bK4)D? + (a, + bK,)D + bK;)

= bD?** R(t) —

* [R(t) — Yp(t)] (6.19)

Substituindo a equagéo (6.17) em (6.8), (6.18) em (6.9) e (6.19) em (6.10):

dkp _ 9] _ bD _

e T I oK, Yp*&x* (D3+(a1+bK4)D%+(ay+bKy)D+bK;) *[R(D) —Yp(®)]  (6.20)
aKi __, 0 _ _,, b -

ac © Vig T T VirE” (D3+(ay+bKq)D?+(ay+bKy,)D+bK;) *[RO -Yp®O]  (6.21)
ke _ 0] _ _ bD?* -

at Yk, T TVa T & F (035 (a, +bK D2+ (ay +bKy )DABKY) [R(®) - Yp(O] (622)

O codigo desenvolvido em Matlab para encontrar a funcdo de transferéncia do motor

pode ser visto no apéndice deste trabalho.
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Feitas as deducgbes, partiu-se para o desenvolvimento do sistema no software Matlab-
Simulink. O diagrama de blocos utilizado como base para tal desenvolvimento foi o da figura
(6.2).

Maodelo de referéncia

b5t b+ b, Ym.
£ tan s tan. s+ an,

Controlador PID Planta

R(t) K, +% +Eos

)
Y _

s?+a:s +a,

Mecanismo de ajuste

i ' [A(0) - 7a(0]
= 5 fe)— i
1 dr - P (pr(a, FEID + (o, + BEID FBE,) S TELE
s
aE; b . .
Gt T VT EU T (o, + BRLIDT F (o + BE, D + BE) «[7e) —¥p()]
- i [7(0) - ¥p(o)]
d V4D 4 (e, + bRIDT +a; TBE, D +BE,) TP

Figura 6.2 - Diagrama de blocos do sistema adaptativo por modelo de referéncia utilizado

No simulink, temos que as partes do mecanismo de ajuste do pardmetro proporcional,

integrativo, derivativo, sdo respectivamente demonstradas pelas figuras (6.3), (6.4) e (6.5).

7 Gai Productd
B{t)- Ypit) =i Integrater  Integratord .
—* .. 0.01s 1 1 Ll
™ gamap <
den|s) s 5
E[t} Froductt Transfer P
Figura 6.3 - Mecanismo de ajuste proporcional
Integrator3
P
hal I
R[t}—-'l'p[t} Gaini Product
ain Integrator o
> 0.01 i
ol | gamai 1 - N
den{s) 3
Product2 Transfer |
e(t)

Figura 6.4 - Mecanismo de ajuste integral
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| it
R{f) - Yp(t)
Derivative
. =
0.01s= A
o g gamad L S >
den{s) : : : Products
e(t) Froduct2 Transfer O Integrator? Integratord  Integrators -
Gain2

Figura 6.5 - Mecanismo de ajuste derivativo

Como resultado da unido destes trés mecanismos, juntamente com o modelo de

referéncia e a planta utilizada, temos o sistema adaptativo por modelo
demonstrado na figura (6.6).

de referéncia

43



“— By
EUIED
ZulED
gioyEsbs sojeibaiu) ZioyeiBau J FEjsuei
[ gioymiBaqu|  paoyesBaiu) geoyeiBa| = -
UV_ {sjusp
' ot - *
BAEAS]
winp [t
waIjsfsgng
=T )] | =ysuElL ZEnpoid
_H_ i} SOEDIDOES, {slusp
ogsuz) [ B =
Ejue|d SpEpLO|EA - Loo . ]

PR Enpoid LuED

ICIEBUSD
as|ng

-
|

o Bysus]

Lanpoid iy
{slusp

+
&

F 3

qeopesbagu)  sopesBaqu)
FRNPOI ureg)

s

ejue|d 3 o|3pow cajeEd

ry

E

100
BIOUSISISY 30 O[SPO) FBjsuB]

{slusp

il
-

{shunu

44

Figura 6.6 - Sistema adaptativo por modelo de referéncia



6.2.2 Ganhos de adaptacéo
Como dito anteriormente, a parte mais dificil do projeto de um sistema adaptativo por

modelo de referéncia € encontrar bons valores para os ganhos de adaptagéo y,,, y; e ¥q.

Com base na teoria dos critérios de minimizagdo de erro, utilizaram-se como base as
equacOes (4.4) e (4.5), fazendo alteracdes para que o erro fosse composto pelos trés pardmetros

pertinentes ao sistema, Kp, Ki e Kd.

Considerando Kp’, Ki’ ¢ Kd’ como os pardmetros presentes no modelo de referéncia,

temos que:
min, ISE = min, [, [(Kp — Kp)? + (Ki — Ki')? + (Kd — Kd')?] dt (6.23)
min, ITSE = min, fOTt * [(Kp —Kp)? + (Ki — Ki")? + (Kd — Kd")?]dt  (6.24)

Utilizou-se o software Matlab para realizar a minimizagdo destes critérios, através da
funcdo “fminsearch”. O codigo da rotina utilizada para o calculo é demonstrado no apéndice

deste trabalho, assim como o diagrama do Simulink utilizado.

Os valores encontrados para 0s ganhos de adaptacéo estdo descritos na tabela (6.1).

Tabela 6.1 - Valores encontrados para os ganhos de adaptacéo

Ganhos de adaptacio ISE ITSE
Vp -99,4583 -96,9402
Yi -9646,3516 -9472,2841
Ya —5,2502%107* —5.1476 x 10~*
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6.3 Controle Fuzzy

O modelo Fuzzy foi desenvolvido através do toolbox do software Matlab para este fim.
Desde o inicio se mostrou bem atraente devido a sua simplicidade e robustez. A principal
dificuldade encontrada nesta técnica foi encontrar as fungBes pertinéncia de cada variavel
linguistica, assim como os ganhos Kp, Ki e Kd, uma vez pretendia-se encontrar as que melhor

respondiam ao processo e suas variagoes.

Foram utilizadas trés varidveis linguisticas, duas de entrada: erro e variacdo do erro; e
uma de saida: acdo de controle. Cada uma foi dividida em cinco fungdes pertinéncia. As tabelas
(6.2), (6.3) e (6.4), assim como as figuras (6.7), (6.8) e (6.9) demonstram as variaveis e suas

fungdes pertinéncia.

Tabela 6.2 - Funcdes pertinéncia da variavel Erro

Variavel Erro

Valor linguistico Notacéo Faixa funcéo pertinéncia
Negativo Grande NG [-7,5 -5 -2,5]
Negativo Pequeno NP [-5 -2,5 0]

Zero z [-2,5 0 2,5]
Positivo Pequeno PP [0 2,5 5]
Positivo Grande PG [25 5 7,5]

_m Membership Function Editor: novo =afey )

File Edit View

FIS Variables Membership function plots  RIot points: 181

m m 1NS e z PP P

Erro Acao__controle

(")

Variacao__erro

input variable "Erro”

Current Yarizkble current Membership Function (click on MF to zelect)

hMame Erro Mame NP

Type input Type trimf b
Rangs ss Params [5-2.50]

Dizsplay Range [-5 5] Help Close
Selected variable "Erro”

Figura 6.7 - Variavel Erro no toolbox Fuzzy
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Tabela 6.3 - Funcdes pertinéncia da variavel Variacdo do Erro

Variavel Variacao do Erro

Valor linguistico

Notacéo

Faixa funcéo pertinéncia

Negativo Grande

NG

[-0,015 -0,01 -0,005]

Negativo Pequeno

NP

[-0,01 -0,005 0]

Zero

Z

[-0,005 0 0,005]

Positivo Pequeno

PP

[0 0,005 0,01]

Positivo Grande

PG

[0,005 0,01 0,015]

m Membership Function Editor: novo

|
File Edit View
X . . plot poinits:
FIS Variables Membership function plots 181
T T T T T T T
NG NP z PP PG
1
LN
Erro Acao__controle
e
o Ll i

Wariacao__ erro -

0 1 = T T ] T = 1 1

-0.0 -0.008 -0.004 -0.002 0 0.002 0.004 0.005 0.008 0.01

input variable ™Variacao__erro”
Current Yariskle Current Membership Function (click on MF to select)
Mame Wariacao_erro Mame 4
. Type trimf -
Type input rim
Params
[-0.005 0 0.005]

RETER [-0.01 0.01]
It (RETE = [0.01 0.01] Help Close
Renaming MF 5to "PG"

Figura 6.8 - Variavel Variacao do Erro no toolbox Fuzzy

Tabela 6.4 - Funcdes pertinéncia da variavel Acdo de Controle

Variavel Agédo de Controle

Valor linguistico Notacéo Faixa funcéo pertinéncia
Negativo Grande NG [-6 -4 -2]
Negativo Pequeno NP [-4 -2 0]

Zero z [-2 0 2]
Positivo Pequeno PP [0 2 4]
Positivo Grande PG [2 4 6]
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m Membership Function Editor: novo =REN X

File Edit View

FIS Variables Membership function plots  Flot points: 181

XX

Erro Acao__controle

XX

Variacao__erro

NG HP Fl PP PG

[
n
1

= 1 T | 1 | T 1
-4 3 2 1 0 1 2 3 4

output variable "Acac__ controle”

current Wariakble Current Membership Function (click on MF to select)

Mame Acao_controle Mame z

Tpeis autput Type trimf s
Range s Patams [202]

Dizplay Range 4 4] Help Close
Selected variable "Acao_contrale”

Figura 6.9 - Variavel A¢éo de Controle no toolbox Fuzzy

Partiu-se entdo para a determinagéo das regras utilizadas para a tomada de decisdes na
inferéncia. A ideia principal é de gque se a velocidade esta baixa, ou seja, se 0 erro esta positivo,
deve-se aumentar a acgéo de controle, se a velocidade esta alta, ou seja, se 0 erro esta negativo,
deve-se diminuir a acdo de controle. O uso da variagdo doerro é uma forma de antecipar o

comportamento do sistema, e assim se antecipar para gerar uma acdo de controle mais efetiva.

Como temos cinco valores linguisticos para cada variavel de entrada, temos entdo vinte

e cinco combinagdes de acdo de controle, todas mostradas na tabela (6.5).

Tabela 6.5 - Regras do controle Fuzzy

Variagédo do Erro
Acéo de NG NP z PP PG
controle
Erro NG NG NG NP NP Z

NP NG NP NP Z PP
Z NP NP Z PP PP
PP NP z PP PP PG
PG z PP PP PG PG
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O esquema montado no simulink para verificar a eficacia do método foi o demonstrado

na figura (6.10).

Gain7 Integrator

BN

Fuzzy Logic
Controller

Unit Delay

Saturation

controle

To Workspace3

Tensio
Velocidads

Caraa
Carga

To Workspacel2

Subsystem

=

Scope

Gain

Figura 6.10 - Sistema com controle Fuzzy

Como pode se notar, este esquema é um modelo de controle PID com otimizagéo Fuzzy.

Ele conta com uma parte proporcional, uma integrativa e uma derivativa. No bloco Fuzzy temos

como entrada o erro e a variacdo do erro, referente a diferenca entre o erro e o erro no instante

anterior, causado pelo bloco “delay”.

Os parametros Kp, Ki e Kd foram calculados seguindo o mesmo principio para o

calculo dos ganhos de adaptacdo do item (6.2.2) deste trabalho. O codigo desenvolvido em

Matlab para tal célculo, assim como o diagrama do Simulink utilizado é demonstrado no

apéndice deste trabalho.

Foi feita uma minimizacdo do erro entre o sistema Fuzzy e um modelo de referéncia,

calculando, portanto, os valores de Kp, Ki e Kd que minimizam esta diferenga. Assim como

para 0 ganho de adaptagdo do item (6.2.2) utilizou-se o critério ISE e ITSE, encontrando os

valores demonstrados na tabela (6.6).

Tabela 6.6 - Valores para Kp, Ki e Kd encontrados segundo métodos de minimizacao do erro

ISE ITSE
Kp 3,3741 3,3739
Ki 212,1844 211,9189
Kd 1,8225 %1073 1,8183 « 1073
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7 Simulag0es e resultados

Vérias simulacdes foram feitas via Simulink com o objetivo de verificar a eficiéncia dos

métodos de controle adotados, além de verificar a adaptacdo dos mecanismos. S&o elas:

e Degraus consecutivos;
e Trem de pulsos;
o Aplicagéo de carga;

e VariagOes paramétricas;

Na simulacdo degraus consecutivos, inicialmente aplica-se um degrau de 1V e apds
meio segundo, troca-se por um degrau de 2V. Esta simulacdo nos d& a eficiéncia dos métodos

em se estabilizar em diferentes set-points.

Em trem de pulsos utiliza-se um gerador de pulsos com periodo de 0,4 segundos, onde
metade do periodo temos amplitude de 1V e a outra metade temos amplitude nula. Esta
simulagdo é muito importante no caso do sistema adaptativo por modelo de referéncia, com ela
conseguimos verificar a acdo do mecanismo de ajuste, fazendo com que a resposta acompanhe o
modelo de referéncia. Conseguimos verificar a convergéncia dos métodos em alcancar a

resposta desejada ao longo do tempo.

Com a aplicagcdo de carga, verificamos como o sistema contorna uma situagéo
desfavoravel, que tende a tirar o processo de sua condicao de operacdo. Os métodos devem, em
um tempo breve, retornarem as condices de operacdo. Aplica-se uma carga no motor de 0,05

Nm apds meio segundo de funcionamento.

Na simulacdo de variacBes paramétricas, variamos alguns parametros do motor, e
verificamos se os métodos conseguem contornar estas situacdes e manter as condi¢Ges de
operacdo. Claramente as varia¢Ges aplicadas nas simulacbes sdo muito maiores que as que
realmente ocorrem na pratica, porém com elas, fica mais evidente o efeito de manutencéo das

condicOes de operacao.
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7.1 Degraus consecutivos

7.1.1 MRAS

35

30

25

Velocidade (rad/s)
i

Figura 7.1 - Comparativo entre resposta do modelo de referéncia e do sistema adaptativo

15

10

Yelocidade (rad/s)

-10

-15

Figura 7.2 - Erro da resposta do sistema adaptativo em relacdo ao modelo de referéncia

Comparativo Resposta Adaptativa

Planta [
Modelo
1 1 1 1 I 1 1 1 1

Tempo (s)

Erro da Resposta Adaptativa

SENENNENEN

Tempo (s)
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Armplitude )

35

Acdo de Controle Adaptativa

Tempo (s)

Figura 7.3 - Acdo de Controle do sistema adaptativo
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7.1.2 Fuzzy

Resposta Sistema Fuzzy

35 T T T T I T T T T
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Figura 7.4 - Resposta do sistema fuzzy
Acdo de Controle Fuzzy
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Figura 7.5 - Acéo de controle do sistema Fuzzy
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7.1.3 Comparativo

Comparativo Resposta Adaptativa e Fuzzy
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Figura 7.6 - Comparativo entre a resposta do sistema adaptativo e do sistema Fuzzy

Comparativo Agdo de Controle Adaptativa e Fuzzy
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Figura 7.7 - Comparativo entre a acdo de controle do sistema adaptativo e do sistema Fuzzy

Verificamos que para este tipo de aplicacdo, o controle fuzzy no primeiro degrau atingiu
0 regime mais rapido que o sistema adaptativo, que através do seu mecanismo de ajuste tentava
alcancgar o “’set-point”. Porém depois do mecanismo ja ajustado, ambos responderam de forma
bem semelhante. A acdo de controle de cada mecanismo ap6s 0 ajuste responde de forma

semelhante também, uma vez que queremos a mesma resposta.

54



7.2 Trem de pulsos

7.2.1 MRAS
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Figura 7.8 - Comparativo entre a resposta do modelo de referéncia e do sistema adaptativo
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Figura 7.9 - Detalhe do comparativo em seu inicio
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Figura 7.10 - Detalhe do comparativo ao longo da simulacéo

Erro da Resposta Adaptativa
15 T T T T T T T T T

10k - ........ T ........ ........ ....... i

Yelocidade (rad/s)

Tempo (s)

Figura 7.11 - Erro da resposta do sistema adaptativo em relacdo ao modelo de referéncia
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Figura 7.12 - Acéo de controle do sistema adaptativo
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Figura 7.13 - Comparativo evidenciando a convergéncia do parametro proporcional
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Figura 7.14 - Comparativo evidenciando a convergéncia do parametro integrativo
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Observa-se que 0 mecanismo de ajuste estd funcionando corretamente, uma vez que

apos passado um tempo, a resposta se mantém exatamente igual ao modelo de referéncia, ou

seja, na resposta desejada, assim como os parametros Kp, Ki e Kd se igualam aos do modelo de

referéncia, uma vez que ambos 0s processos séo idénticos.
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7.2.2 Fuzzy
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Figura 7.16 - Resposta do sistema Fuzzy
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Figura 7.17 - Detalhe da resposta do sistema Fuzzy
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Figura 7.18 - Acdo de controle do sistema Fuzzy
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Figura 7.19 - Detalhe da acdo de controle do sistema Fuzzy
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7.2.3 Comparativo
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Figura 7.20 - Comparativo entre a resposta do sistema adaptativo e do sistema Fuzzy
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Figura 7.21 - Detalhe do comparativo da resposta



Comparativo Agdo de Controle Adaptativa e Fuzzy

) T T T | T T T
: : Sistema Adaptativo
Y.t NN N —— Hrmsosrokes s — Fuzzy i
il sges 4 = 4 i
= : : : : :
ER .|,.....,..|..,.._.}.4,_.r,.L.,,Ar_-.,...,,.r_A,,.,.'.r, RIS 1 B G (et S
=
=
=L ok ;_.l,_.._..;_..l__,_.‘._.~ L r_.;_._..;_.l._.__ ;_.}__‘._.l_.._ ENE
i e 4
FoY S S SN N S S S
0 1 2 3 4 5 B 7 g 9 10
Tempo (s)

Figura 7.22 - Comparativo entre a a¢do de controle do sistema adaptativo e do sistema Fuzzy
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Figura 7.23 - Detalhe da acdo de controle dos sistemas

Notamos novamente que a resposta do sistema Fuzzy, no primeiro instante é mais
rapida, enquanto o sistema adaptativo ajusta seus parametros. Porém, ao longo do tempo, ndo
temos praticamente diferenca entre as respostas. Com relacdo a acdo de controle, temos uma
certa oscilagdo no sistema Fuzzy, porém, ainda assim, tanto a acdo do sistema adaptativo,

quanto a do sistema Fuzzy sdo relativamente parecidas ap6s o inicio da simulacéo.
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7.3 Aplicacdo de Carga
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7.3.1 MRAS
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Figura 7.25 - Resposta do sistema adaptativo
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Figura 7.26 - A¢do de controle do sistema adaptativo
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7.3.2 Fuzzy
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Figura 7.28 - Ac¢&o de controle do sistema Fuzzy
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7.3.3 Comparativo

Comparativo Resposta Adaptativa e Fuzzy
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Figura 7.29 - Comparativo entre a resposta do sistema adaptativo e do sistema Fuzzy
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Figura 7.30 - Comparativo entre a acdo de controle do sistema adaptativo e do sistema Fuzzy
A carga aplicada tende a diminuir a velocidade do motor, porém os sistemas de controle
impedem isso. A resposta do sistema adaptativo & essa carga € um pouco mais répida, o que

significa que o mecanismo de ajuste apés ajustado, responde melhor a variagdes. Em relagdo as

acoes de controle, ambas sdo muito parecidas.
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7.4 VariacOes Paramétricas
7.4.1 Variacao positiva de 10% na indutancia e 10% na resisténcia

7411 MRAS
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Figura 7.31 - Comparativo do inicio entre as resposta do modelo de referéncia e do processo alterado
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Figura 7.32 - Comparativo ao longo do tempo entre as respostas do modelo de referéncia e do processo
alterado
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74.1.2 Fuzzy

Figura 7.35 - Comparativo entre as respostas do processo sem alteracdo e do processo alterado
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7.4.2 Variacao positiva de 50% na inércia do motor (J) e 50% no coeficiente de

atrito estéatico (B)

7421 MRAS
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Figura 7.38 - Comparativo ao longo do tempo entre as resposta do modelo de referéncia e do processo alterado
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Figura 7.40 - Acéo de controle do processo alterado
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7.4.2.2 Fuzzy
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Figura 7.42 - Comparativo entre as a¢des de controle do processo sem alteracdo e do processo alterado

Como podemos observar, ambos 0s modelos conseguiram responder a essas variagoes

mantendo a resposta no “set-point”. Porém, observamos que no caso do sistema adaptativo,

qguanto maior a variagdo dos parametros, maior 0 tempo que 0 mecanismo de ajuste atua,

demorando mais para igualar a resposta com a do modelo de referéncia. No caso do sistema
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Fuzzy, notamos gque conforme temos uma variagcdo maior, seu tempo para atingir o regime €
mais longo, o que nos leva a concluir que ele apresenta uma certa limitacdo a variagdo dos
parametros. No caso de uma variacdo muito grande, o sistema ndo Fuzzy ndo conseguira

acompanhar, resultando uma resposta errada.
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8 Concluséao

Este Trabalho de Conclusdo de Curso propds o estudo comparativo de técnicas de
controle inteligente da velocidade de um motor de corrente continua. Utilizando como principio
o fato de controladores classicos serem limitados, ndo respondendo bem a ndo linearidades,
foram utilizadas duas técnicas relativamente novas para tal controle, o sistema adaptativo, com

base no método do sistema adaptativo por modelo de referéncia, e o sistema Fuzzy.

Ficou claro que ambos controles sdo complexos, muito precisos e robustos. Eles
respondem mais rapidamente que os controles classicos, sdo menos sensiveis a variacdes e

atingem sempre a resposta desejada, salvo exce¢bes pontuais.

O controle adaptativo se mostrou matematicamente complexo, onde a regra MIT e o

calculo dos ganhos de adaptacdo exigem uma matematica extensa e nao trivial.

Ja& o controle Fuzzy se mostrou muito amigavel e intuitivo, porém, necessita de métodos

computacionais para funcionamento.

Como diferencas principais entre as técnicas, ficou claro que o sistema Fuzzy é bem
mais simples de ser implementado, seja pela ndo necessidade de definicdo do modelo exato, seja
pela utilizagdo de caracteristicas mais proximas do pensamento humano e ndo de maquina, ou
seja pela ndo exigéncia matematica do método. Porém o sistema adaptativo se mostrou menos
limitado, uma vez que consegue contornar qualquer variagcdo imposta, coisa que o Fuzzy néo

consegue.

Vérias simulagdes foram realizadas a fim de comparar o comportamento dos dois
controles, como degraus consecutivos, trem de pulsos, aplicacdo de carga e variagdes
paramétricas. Com estas simulacdes, observou-se que os sistemas ao longo do tempo se
comportam de forma parecida, exceto no inicio onde o mecanismo de ajuste do controle
adaptativo ainda tenta buscar a convergéncia do método. Observou-se também que ap6s o0 ajuste
dos parametros do sistema adaptativo, este responde de forma um pouco mais rapida que o

sistema Fuzzy.

Com as simulagdes, comprovou-se de fato que ambos controles sdo adaptativos, uma
vez que sempre retornavam a resposta especificada, o que ndo ocorre com 0s controles

classicos.

Da insercdo de variagOGes paramétricas, notou-se que quanto maior a variagdo, ou seja,
quao mais distante do processo original estd o processo a ser controlado, mais tempo 0s

sistemas levam para alcangarem o regime. No caso do sistema adaptativo, mais tempo leva para
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0 mecanismo de ajuste se adaptar. No caso do sistema Fuzzy, mais tempo leva para obter-se o

regime.

Um fato a ser destacado é que caso as variagOes sejam elevadas demais, o sistema Fuzzy
pode ndo conseguir contornar este problema, levando a uma resposta inadequada. Porém nas
situacOes reais, essas variacdes dificilmente atingem tal patamar a ponto de o controle Fuzzy

ndo responder adequadamente.

Como conclusdo final, ambos os sistemas de controle utilizados apresentaram-se
suficientemente eficientes e robustos, podendo ser aplicados em qualquer situagdo pratica,

devendo o projetista analisar qual dos dois se desenvolve melhor com a situagéo utilizada.

Como trabalhos futuros, podemos sugerir a implementacao pratica de tais controladores,
a fim de verificar o real comportamento do sistema controlado. Sugere-se também simulagdes
mais “agressivas”, onde o desempenho do controlador seja realmente exigido, como no caso do

trem de pulsos, diminuir o periodo de cada pulso.
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Apéndice

Desenvolvimento via Matlab do Motor, PID e Modelo de Referéncia

%% UnlverSldade de Sdo Paulo - USP 5%
%% Escola de Engenharia de Sdo Carlos - EESC %%
%% Departamento de Engenharia Elétrica - SEL %%
%% Trabalho de conclusdo de curso %%
%% Desenvolvido por Cyro de Araujo Gianelli %%
%% Orientador Jerson Barbosa Vargas %%
99990000000900000092900000099002000990 6000000000

clear all;
close all;

%Parametros do motor Eletrocraft
R = 1.63;
L
J

3e-3;

= 3.67e-5;
Ke = 0.0678;
B = 1.1224e-6;
Kt = Ke;
Kconf = 0.445;
Ktg = 0.15242;

o\
o\

o°

Funcdo transferencia do motor
tfl = tf£(1, [L R]);

gl = Kt;
tf2 = t£(1, [J Bl);
g2 = Ke;

fprintf (' funcdo transferencia da planta: \n')
Gmotor = feedback(series(gl*tfl,tf2),qg2)

o
o

$Aplicando degrau e impulso na entrada em malha aberta
step (Gmotor)

figure;

impulse (Gmotor)

o
o

$Utilizando método lugar de raizes para construir o PID
rltool (Gmotor) ;

cdo do PID encontrada
= tf([-0.000102557097099405 2.39288588703584 231.098297124666], [1

%$Sistema em malha fechada - modelo de referéncia
fprintf ('Funcdo transferencia modelo de referencia: \n')
Gtotal = feedback(series (Gmotor,Gpid),Ktg*Kconf)

figure;
step (Gtotal)



Desenvolvimento via Matlab do método para encontrar os ganhos de adaptacéo,

diagrama de simulink para o mesmo

%% Universidade de S&o Paulo Usp 5%
%% Escola de Engenharia de Sdo Carlos - EESC %%
%% Departamento de Engenharia Elétrica - SEL %%
%% Trabalho de conclusdo de curso %%
%% Desenvolvido por Cyro de Araujo Gianelli %%
%% Orientador Jerson Barbosa Varga %%
00000000000000990900000000000000000000000000000000

clear all;
close all;
clc;

warning off;

%$Parametros do motor Eletrocraft
R = 1.63;

L = 3e-3;

J = 3.67e-5;

Ke = 0.0678;

B = 1.1224e-6;

Kt = Ke;

Kconf = 0.445;
Ktg = 0.15242;

o°
o°

o)

$Configuracédo para a utilizacdo da funcédo fminsearch
options = optimset ('display', 'iter');

global gamap gamai gamad kplinha kilinha kdlinha errototal tempo
gamap= —-100;

gamai= -10000;

gamad= -0.0005;

o
o

%Chamada da funcdo fminsearch
pmin = fminsearch ('desempenhonovo', [gamap gamai gamad], options)

o
o

$Equacdo a ser minimizada por fminsearch

function [erro] = desempenhonovo (x)

global gamap gamai gamad kplinha kilinha kdlinha errototal tempo
gamap = x(1);

gamai x(2);

gamad = x(3);

[T]=sim('adaptnovo', [0 101);

erro = sum(((kplinha-2.39288588703584)."2) .*tempo+ ((kilinha-
231.098297124666) ."2) .*tempo+ ( (kdlinha+0.000102557097099405)

.N2) JFtempo) ;
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Figura 1.0.1 - Diagrama utilizado para calculo dos ganhos de adaptacéo



Desenvolvimento via Matlab do método para encontrar Kp, Ki e Kd do sistema

Fuzzy, diagrama de simulink para o mesmo

3555%5%5%5%%%% 3555555555555 55%5%5%5%5%5%%%%%%%%%%%%%%
%% Universidade de S&o Paulo - USP %%
%% Escola de Engenharia de Sdo Carlos - EESC %%
%% Departamento de Engenharia Elétrica - SEL %%
%% Trabalho de conclusdo de curso %%
%% Desenvolvido por Cyro de Araujo Gianelli %%
%% Orientador Jerson Barbosa Vargas %%

clear all;
close all;
clc;

warning off;

%$Parametros do motor Eletrocraft
R = 1.63;

L = 3e-3;

J = 3.67e-5;

Ke = 0.0678;

B = 1.1224e-6;
Kt = Ke;

Kconf = 0.445;
Ktg = 0.15242;

o°
o°

$Configuracédo para a utilizacdo da funcédo fminsearch
options = optimset ('display', 'iter');

global Kp Ki Kd errototal tempo
gamap= -2.3;
gamai= -200;
gamad= -le-4;

o

%Chamada da funcdo fminsearch
pmin = fminsearch ('desempenho', [Kp Ki Kd], options)

o
o

©

$Equacdo a ser minimizada por fminsearch

function [erro] = desempenho (x)
global Kp Ki Kd errototal tempo

Kp = x(1);

Ki = x(2);

Kd = x(3);

[T]=sim('fuzzyteste', [0 11);

erro = sum( ((errototal).”2).*tempo);

80



controle

To Workspaced

Integrator

To Workspace2

Pulse
= Saturation PR
Generator Fuzzy Legic Carga
Controller

Subsystem

Unit Delay

\

A

[n]
-]
3

numis)
-
L

denis)
Transfer Modelo de Referéncis

Clock To Workspace1

Figura 1.0.2 - Diagrama utilizado para célculo de Kp, Ki e Kd
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