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RESUMO 

FRONER, A. M.  Previsão de dose em planejamentos de radioterapia por intensidade 

modulada para pacientes com câncer de mama esquerda utilizando método de 

aprendizado profundo.   2024.  38 f.  Trabalho de conclusão de curso (MBA em Inteligência 
Artificial e Big Data) – Instituto de Ciências Matemáticas e de Computação, Universidade de 

São Paulo, São Carlos, 2024. 

 

Técnicas de alta tecnologia, como IMRT e VMAT, melhoram a conformação da dose de 

radiação entregue, mas ao mesmo tempo aumentam a complexidade do planejamento 

radioterápico, resultando em mais tempo dedicado pelo físico médico aos cálculos de 

distribuição de dose. Uma maneira de otimizar o tempo destinado ao planejamento e melhorar 

os aspectos dosimétricos envolve a utilização de algoritmos baseados em aprendizado de 

máquina para automação do processo por meio da predição de dose. O objetivo do presente 

estudo consiste descrever o estado da arte em previsão de dose em radioterapia e mostrar a 

implementação de modelos para extração e visualização de dados, visando uma futura aplicação 

em modelos de aprendizado profundo voltados para a previsão de dose em radioterapia para o 

tratamento de câncer de mama esquerda. 

 

Palavras-chave: aprendizado de máquina; predição de dose; radioterapia por intensidade 

modulada; câncer de mama. 

  



 
 

  



 
 

 

ABSTRACT 

FRONER, A. M. Dose prediction in intensity modulated radiotherapy planning for left 

breast cancer patients using deep learning method.   2024. 38 f. Trabalho de conclusão de 

curso (MBA em Inteligência Artificial e Big Data) – Instituto de Ciências Matemáticas e de 

Computação, Universidade de São Paulo, São Carlos, 2024. 

 

High-tech techniques, such as IMRT and VMAT, improve the conformation of the delivered 

radiation dose, but at the same time increase the complexity of radiotherapy planning, resulting 

in more time spent by the medical physicist on dose distribution calculations. One way to 

optimize the time allocated to planning and improve dosimetric aspects involves the use of 

machine learning-based algorithms to automate the process through dose prediction. The 

objective of this study is to describe the state of the art in dose prediction in radiotherapy and 

to show the implementation of models for data extraction and visualization, aiming at a future 

application in deep learning models aimed at dose prediction in radiotherapy for the treatment 

of left breast cancer. 

 

Keywords: machine learning; dose prediction; intensity modulated radiotherapy; breast 

cancer. 
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1 INTRODUÇÃO 

 

 A radioterapia é um dos pilares do tratamento do câncer de mama, sendo utilizada 

principalmente como adjuvância após a cirurgia (Kerr et al., 2022). Com os avanços de métodos 

de modulação da intensidade (fluência) do feixe de radiação, como as técnicas de radioterapia 

por intensidade modulada (IMRT, do inglês; Intensity Modulated Radiation Therapy) e terapia 

volumétrica em arco modulado (VMAT, do inglês; Volumetric Modulated Arc Therapy), houve 

uma melhora significativa na qualidade dos planejamentos radioterápicos, resultando em maior 

conformação da dose sobre o volume alvo e menor dose no tecido sadio adjacente (Cedric, 

1995). Consequentemente, houve o aumento da complexidade do planejamento, o que consome 

mais tempo do físico médico, que precisa realizar várias iterações manuais para ajustar os 

parâmetros do planejamento. Dependendo das características anatômicas do paciente e da 

experiência do físico médico, o aumento da complexidade pode resultar em limitações na 

qualidade do planejamento. Em casos de tratamento radioterápico de mama de lateralidade 

esquerda, essa complexidade pode ser ainda mais acentuada pela proximidade com estruturas 

adicionais como o pericárdio, músculos cardíacos e artérias coronárias (Kerr et al., 2022). 

 Tendo em vista estes fatores, uma maneira de otimizar o tempo destinado ao 

planejamento e de melhorar a sua qualidade envolve a utilização de algoritmos baseados em 

aprendizado de máquina para automação do processo de planejamento por meio da predição de 

dose. Vários estudos tem demonstrado progressos por meio da incorporação dessas novas 

tecnologias ao processo de planejamento, como, por exemplo, estudos envolvendo redes 

neurais convolucionais (CNNs, do inglês; Convolutional Neural Networks) (Soomro et al., 

2021), redes adversariais generativas (GANs, do inglês; Generative Adversarial Networks) 

(Murakami et al., 2020), florestas de regressão (McIntosh, Purdie, 2015), entre outros. Há 

também soluções comerciais já disponíveis no mercado, como, por exemplo, o RapidPlan®, 

fornecido pela empresa Varian Medical Systems (Palo Alto, CA). No RapidPlan, são estimados 

histogramas dose-volume (DVHs, do inglês; Dose-Volume Histograms) a partir do modelo 

treinado e depois traduzidos em objetivos de otimização que são usados pelo mecanismo de 

planejamento inverso (Fogliata et al., 2017). A Figura 1A apresenta um típico fluxo de 

planejamento com várias iterações manuais, e a Figura 1B apresenta este mesmo fluxo 

utilizando um modelo de predição de dose. 

 



 
 

Figura 1 - (A) Típico fluxo de planejamento. (B) Fluxo proposto com predição de dose baseada em 

inteligência artificial. As linhas pontilhadas azuis significam menos iterações. 

 

 

Fonte: Nguyen et al. (2019). 

 

Visando acelerar, automatizar e melhorar a qualidade do processo de planejamento 

radioterápico para tratamento de câncer de mama esquerda, o seguinte estudo tem como 

propósito implementar modelos para extração e visualização de dados, bem como apresentar 

uma revisão do estado atual das técnicas de previsão de dose em radioterapia. 

 

 

 

 

 

 



 

1.1 Objetivos 

 

1.1.1 Geral 

 

O objetivo central deste trabalho é descrever o estado da arte em previsão da dose em 

radioterapia por meio de aprendizado de máquina e os modelos computacionais neles 

envolvidos. 

 

1.1.2 Específico 

 

Mostrar a implementação de modelos para extração e visualização dos dados, visando uma 

futura aplicação de modelos de aprendizado profundo voltados para a previsão de dose em 

radioterapia para o tratamento de câncer de mama esquerda. 

 

2 FUNDAMENTOS TEÓRICOS 

 

2.1 O processo de planejamento radioterápico 

 

IMRT refere-se à técnica radioterápica em que a entrega de radiação ao paciente é feita 

por meio de campos com gantry estático com fluência não uniforme com o propósito de 

otimizar as distribuições de isodose (Khan, Gibbons, 2014). Os parâmetros para otimização do 

planejamento são determinados pelo físico médico e o perfil de fluência ótima é gerado para 

um dado conjunto de campos, formando, assim, o planejamento inverso (Khan, Gibbons, 2014). 

Em 1982, Brahme, Roos e Lax publicaram o primeiro estudo referente a planejamento 

inverso, no qual solucionaram a equação integral da distribuição de dose para um corpo 

cilíndrico utilizando feixe rotacional, sendo assim possível formar dose uniforme em um 

fantoma cilíndrico utilizando filtro não linear em forma de cunha (Webb, 2003). Em 1997, 

Woo, Butler e Grant possibilitaram a implementação do primeiro IMRT clínico utilizando o 

colimador multilâminas (MLC, do inglês; Multileaf Colimator) com movimento dinâmico. O 

sucessor do IMRT foi o VMAT, que, em adição à fluência não uniforme do feixe realizada pela 

modulação do MLC, também utiliza a rotação do gantry e a variação da taxa de dose durante a 

irradiação, possibilitando maior conformação do volume alvo (Khan, Gibbons, 2014). 



 
 

Com o advento do planejamento inverso e do MLC, foi possível estudos para 

automatização do processo de planejamento radioterápico em IMRT e VMAT através da 

criação de scripts em Python e scripts do próprio sistema de planejamento computadorizado 

(TPS, do inglês; Treatment Planning System) (Purdie et al., 2010; Xhaferllari et al., 2013). 

Outra solução disponível é o software AutoPlanning® presente no TPS Pinnacle® (Philips 

Radiation Oncology Systems, Fitchburg, WI), no qual ele captura as etapas do planejamento 

que um operador humano qualificado faria e depois as imita para um novo paciente (Gintz et 

al., 2016). Esses scripts e sistemas foram os precursores do uso de inteligência artificial com 

aprendizado de máquina que conhecemos atualmente em radioterapia. 

 

2.2 Planejamento radioterápico de mama 

 

A radioterapia é uma importante etapa do tratamento oncológico de pacientes com 

câncer de mama, especialmente como adjuvância no contexto pós-operatório (Kerr et al., 2022). 

Após cirurgia conservadora da mama, a radioterapia abrange a irradiação da mama toda, às 

vezes com irradiação do leito tumoral e/ou linfonodos regionais, ou irradiação parcial da mama, 

dependendo do prognóstico da doença (Kerr et al., 2022). Já pós mastectomia, é recomendado 

irradiação da parede torácica, com ou sem linfonodos regionais (Kerr et al., 2022). 

A técnica de tratamento convencional utilizada em radioterapia de mama é a técnica 

conformacional 3D, no qual utiliza um par de campos tangenciais, paralelo opostos e 

hemibloqueados (Chen, Ramachandran, Deb, 2020). A escolha dos ângulos de gantry e 

colimador são selecionadas para fornecer a melhor cobertura de dose do volume alvo de 

planejamento (PTV, do inglês; Planning Target Volume), minimizando ao máximo a dose 

absorvida nos órgãos em risco (OARs, do inglês; organs at risk) adjacentes (Chen, 

Ramachandran, Deb, 2020). Em alguns casos, é vantajoso rotacionar o ângulo da mesa para 

diminuir a dose na pele próxima a axila do paciente. Ângulos de filtro e ponderações em cada 

campo de tratamento são selecionados para fornecer a melhor cobertura e homogeneidade da 

dose no PTV (Chen, Ramachandran, Deb, 2020). Para os aceleradores lineares que fazem uso 

de MLC, é possível criar subcampos para remover pontos quentes. Porém, a técnica 

conformacional 3D não atinge uma alta conformação do PTV, principalmente dos linfonodos, 

e causa doses indesejadas na pele e órgãos adjacentes, resultando em toxicidades agudas e de 

longo prazo (Nantavithya et al., 2017; Chen, Ramachandran, Deb, 2020). 

Com o surgimento do IMRT e do VMAT, houve uma melhora significativa na 

conformação e homogeneidade da dose no volume alvo, e na dose em OARs. O IMRT possui 



 

a vantagem de ter uma configuração de campos parecida com a técnica conformacional 3D, 

possui poucas doses baixas espalhadas nos tecidos adjacentes e possui maior cobertura de dose 

do PTV (Ahmad et al., 2022). Porém, o IMRT possui a desvantagem de um maior número de 

unidades monitoras e maior tempo de feixe ligado (Yu et al., 2018), o que pode impactar na 

rotina clínica do serviço. Já o VMAT possui a vantagem de ter a melhor conformação do PTV, 

dentre as 3 técnicas citadas, e facilitar a cobertura de alvos difíceis de serem alcançados com 

campos tangentes, como linfonodos supraclaviculares e intra-mamários. Uma desvantagem da 

técnica VMAT é sua propensão a aumentar as doses para OARs em níveis de dose baixos 

(Prokofev, Salim, 2023). Apesar do VMAT oferecer melhor controle das doses intermediárias-

altas no OAR, ele resulta em um aumento das doses médias e baixas recebidas pelo OARs, 

especialmente em pulmão e mama contralaterais (Yu et al., 2018). A Figura 2 mostra uma 

comparação dosimétrica entre as três técnicas de tratamento. 

 

Figura 2 – Imagens tomográficas em corte axial exibindo a dose de 95% da prescrição (colorwash) 

para mama esquerda, para as técnicas 3D, IMRT e VMAT, respectivamente. 

 

Fonte: Liu et al. (2016). 

 

Mesmo com técnicas avançadas de planejamento radioterápico, alcançar a qualidade no 

planejamento de mama continua sendo um desafio, especialmente planejamento de mama 

esquerda, no qual o coração fica mais próximo do volume alvo. Os frutos do uso de inteligência 

artificial no planejamento radioterápico já vem sendo observados na melhora da qualidade dos 

planos e na rapidez na entrega dos tratamentos. 

 

2.3 Fundamentos em aprendizado de máquina 

 

Em 1943, Warren McCulloch e Walter Pitts iniciaram as pesquisas com Redes Neurais 

Artificiais (RNAs). RNAs são técnicas de aprendizado de máquina desenvolvidas para simular 



 
 

o processo de aprendizado e memória do cérebro humano (Aggarwal, 2018). Elas são formadas 

por unidades de processamento simples, chamadas de neurônios artificiais, conectados entre si 

e capazes de armazenar conhecimento por meio da experiência (treinamento). (Jenkins, 

Tanguay, 1995; Wu, Feng, 2017). Cada entrada para um neurônio é dimensionada com um 

peso, passa por uma soma ponderada, juntamente com um viés (bias), passa por uma função de 

ativação e resulta em uma saída (Figura 3). A função de ativação desempenha uma tarefa 

semelhante à sinapse do neurônio biológico, transmitindo ou bloqueando os impulsos nervosos 

(Martiniano et al., 2016). O viés é utilizado nos casos em que a distribuição da classe binária é 

altamente desequilibrada e sempre transmite o valor de 1, associado a um peso, para o nó de 

saída (Aggarwal, 2018). Os dados de saída fornecem um feedback sobre a correção dos pesos 

na rede neural, dependendo do quão bem foi a saída prevista, e uma nova iteração é feita 

(Aggarwal, 2018). O processo é repetido diversas vezes até o neurônio encontrar uma predição 

mais correta para o dado de saída. Assim, o aprendizado de uma RNA é caracterizado pelo 

ajuste sucessivo dos pesos, com o objetivo de minimizar os erros (Wu, Feng, 2017). 

 

Figura 3 – Representação do neurônio artificial. 

 

Fonte: Martiniano et al. (2016) modificado. 

  

A Figura 3 mostra os dados de entrada da rede (X1, ..., Xn), os neurônios da camada de 

entrada da rede (W1j, ..., Wnj), o viés (bj), a soma ponderada (Σ), a função de ativação (φ) e o 

neurônio de saída (YRNA).  

 Uma das primeiras RNAs propostas foi em 1958, por Frank Rosenblatt, chamada 

Perceptron, contendo uma única camada de entrada e um nó de saída, com objetivo de 



 

classificação binária. Porém, o Perceptron tinha o empecilho de funcionar somente para 

problemas linearmente separáveis. Em 1986, Rummelhart, Hinton e Williams resolveram esse 

obstáculo através do desenvolvimento do Perceptron de Múltiplas Camadas (MLPs, do inglês; 

Multi Layer Perceptron), no qual possui neurônios em paralelo e sequenciais, contendo uma ou 

mais camadas ocultas entre as camadas de entrada e de saída. O modelo de cada neurônio possui 

função de ativação não linear e diferenciável, o que não era possível com a função degrau 

presente no Perceptron. Além disso, as MLPs possuem alto grau de conectividade, visto que 

todos os neurônios de uma camada se conectam com todos da camada seguinte (Figura 4). A 

arquitetura das MLPs é chamada de redes feed-forward, pois camadas sucessivas alimentam 

umas às outras na direção direta, da entrada para a saída (Aggarwal, 2018). 

 

Figura 4 – Representação do Perceptron de Múltiplas Camadas. 

 

Fonte: Aggarwal (2018) modificado. 

 

 Para MLPs, a função perda é uma função de composições complicadas dos pesos das 

camadas anteriores, impossibilitando utilizar o somente o feedback para corrigir os pesos. Por 

isso, começou-se a utilizar o algoritmo de retropropagação, proposto inicialmente por Paul 

Werbos (1974). Este algoritmo computa os gradientes de erro em termos de somas de produtos 

de gradiente local sobre os vários caminhos de um nó para a saída (Aggarwal, 2018). Contém 

duas fases: forward e backward, respectivamente. A fase forward calcula os valores de saída e 

as derivadas locais em vários nós, e a fase backward acumula os produtos desses valores locais 



 
 

em todos os caminhos do nó para a saída (Aggarwal, 2018). O objetivo da fase backward é 

aprender o gradiente da função perda a partir do nó de saída atualizando os pesos de trás para 

frente (Aggarwal, 2018). Assim como na rede com uma única camada, os nós são atualizados 

repetidamente até alcançar a convergência, com os dados de treinamento sendo percorridos 

repetidamente em épocas. 

 Com o avanço dos hardwares, foi possível adicionar mais camadas às RNAs, tornando-

as mais profundas e complexas, aumentando a capacidade de aprendizado e de armazenamento. 

Assim, surgiram as redes neurais convolucionais, as redes adversariais generativas, dentre 

outras, que são citadas a seguir. 

 

3 PREVISÃO DE DOSE EM RADIOTERAPIA 

 Existem vários estudos na literatura sobre previsão de dose em radioterapia e estão 

classificados em duas grandes categorias: previsão de histogramas dose-volume (DVHs, do 

inglês; Dose Volume Histograms) e previsão de dose baseado em imagens e volumes. Neste 

estudo, é enfatizado a previsão de dose baseado em imagens e volumes, no qual utilizada redes 

neurais artificiais, como, por exemplo, CNNs, GANs e florestas de regressão. 

 Dentre as CNNs mais utilizadas, está a rede U-Net, usada originalmente para fins de 

segmentação de imagens (Ronneberger, Fischer, Brox, 2015), sendo capaz de incorporar 

características locais e globais para fazer a predição da rotulagem dos pixels de imagens em 

duas dimensões (Nguyen et al. 2018). Para utilizar a U-Net em previsões de dose de 

planejamentos radioterápicos em duas dimensões, pode haver alguns erros nas bordas superior 

e inferior do volume alvo, o que levou Nguyen et al. a progredirem em modelos 3D de 

aprendizagem profunda volumétrica (Nguyen et al. 2018). Consequentemente há maior gasto 

computacional com o aumento da dimensionalidade. A saída encontrada por Nguyen et al. para 

este problema foi unir a arquitetura U-Net às redes convolucionais densamente conectadas 

(DenseNet, do inglês; Dense Convolutional Network) (Figura 5) (Huang et al., 2017). A 

DenseNet conecta cada camada da rede com todas as outras camadas no sentido feed-foward. 

Cada camada obtém entradas adicionais de todas as camadas anteriores e passa seus features-

maps para todas as camadas subsequentes. Diferente das redes neurais residuais (RNNs, do 

inglês; Residual Neural Network), a DenseNet não soma os features antes de serem passadas 

para uma nova camada, ela as concatena (Huang et al., 2017). Dessa forma, alcançam um 

melhor desempenho ao mesmo tempo em que possuem menos parâmetros na rede neural 

(Nguyen et al. 2018). 



 

 

Figura 5 – Arquiteturas U-Net modificada, U-Net padrão e DenseNet, respectivamente. 

 

Fonte: Nguyen et al. (2018). 

 
Baseado na junção entre a arquitetura U-Net e a DenseNet, Lempart et al. (2021) 

modificaram a arquitetura U-Net densamente conectada para predizer as distribuições de dose 

em planejamentos radioterápicos de pacientes com câncer de próstata através de imagens 

volumétricas de tomografia computadorizada (CT, do inglês; Computed Tomography). A 

Figura 6 mostra a arquitetura do modelo, que consiste em um codificador e decodificador 

densamente conectados com camadas de normalização em batch, função de ativação 

retificadora (ReLU, do inglês Rectified Linear Unit) e blocos de transição para upsampling 

(sobre-amostragem) (Ioffe, Szegedy, 2015; Huang et al., 2017; Lempart et al., 2021). 

 

Figura 6 – Arquitetura U-Net densamente conectada. (a) Triplets consistindo em imagens de CT e suas 

correspondentes segmentações binárias são utilizadas como dados de entrada do modelo. (b) Camadas 

densamente conectadas na parte do codificador e decodificador são usadas para melhorar a propagação 



 
 

de features e evitar gradientes de desaparecimento. (c) Extração de features usando uma série de 

operações convolucionais e camadas de transição usadas para fins de redução da resolução. (d) 

Operações de aumento da resolução densamente conectadas transformam a representação do espaço 

latente em uma previsão final de distribuição de dose. 

 

Fonte: Lempart et al. (2021). 

 

Para o modelo aprender características volumétricas, o treinamento é feito utilizando 

imagens em triplets, que podem ser consideradas volumétricas, mas não totalmente 3D 

(Lempart et al., 2021). Um triplet combina três fatias de imagem consecutivas e suas 

segmentações binárias correspondentes (Benson et al., 2020; Lempart et al., 2021). A fatia da 

imagem e suas correspondentes segmentações binárias são combinadas em uma imagem com 

7 canais separados: CT, corpo, PTV, reto, bexiga, cabeça femoral direita e cabeça femoral 

esquerda. Para as outras duas fatias de imagem do triplet e suas correspondentes segmentações 

binárias, são adicionados mais 7 canais em cada fatia, resultando num triplet final de 21 canais 

(Figura 7). 

  

 

 

 

 



 

Figura 7 – Triplets gerados a partir de três fatias consecutivas de imagens tomográficas e suas 

correspondentes estruturas de segmentação (PTV, corpo e OARs). 

 

Fonte: Lempart et al. (2021). 

 

Para transformar as distribuições de dose preditas em planos clinicamente exequíveis, 

Lempart et al. utilizou o algoritmo K-vizinhos mais próximos (K-NN, do inglês; K-nearest 

neighbor) calculando o erro quadrático médio entre uma matriz de predição de dose e as 

matrizes de distribuição de dose clínica no conjunto de dados de treinamento. As predições de 

dose utilizando U-Net padrão resultaram em diferenças de dose entre CTV (Clinical Target 

Volume) e PTV, no qual foi reduzida quando utilizada a rede U-Net modificada e 

completamente removida quando transformada em planos clinicamente exequíveis (Lempart et 

al., 2021). Ambos, planos preditos e planos exequíveis apresentaram curvas de DVH similares 

aos planos de referência. A verificação da dose através de índice gamma global (3% 2mm) 

resultou em uma taxa de aprovação de 100% em todos os planos de teste (Lempart et al., 2021). 

 

Outro exemplo no qual a rede U-Net é utilizada para predição de dose em radioterapia 

é o artigo de Bakx et al. (2021). Eles avaliaram o desempenho de dois modelos de aprendizado 



 
 

de máquina para radioterapia de mama em relação à qualidade dos planos: CNN baseada na 

arquitetura U-Net com o atlas contextual de florestas de regressão (cARF, do inglês; contextual 

Atlas Regression Forest), comercialmente fornecido pela empresa RaySearch Laboratories AB 

(Stockholm, Suécia). Durante a etapa de mapeamento de atlas para imagem, os cARFs são 

treinados para modelar a relação entre as características da imagem e a distribuição da dose 

(McIntosh, Purdie, 2015). Na etapa de seleção do atlas, a estimativa de densidade das 

características de imagem observadas é utilizada para treinar um modelo que escolha o cARF 

mais adequado para um novo paciente (McIntosh, Purdie, 2015). Após essas etapas, um modelo 

de campo aleatório condicional é usado para encontrar a distribuição de dose mais provável. 

Após treinamento e validação cruzada dos dois modelos, Bakx et al. utilizaram mimetização de 

dose para transformar a dose predita em planos clinicamente exequíveis. As distribuições de 

dose dos planos preditos e mimetizados foram avaliadas seguindo os limites de dose do RTOG 

1005 (2011). Para a arquitetura U-Net, três planos excederam o volume permitido de 2% 

recebendo > 42,85 Gy. Para o modelo cARF, três planos falharam em todos os limites de dose 

do protocolo. Segundo Bakx et al., as diferenças encontradas entre os modelos não foram 

clinicamente relevantes, uma vez que as doses médias clinicamente aceitas não foram 

excedidas. Para ambos os modelos, os planos mimetizados possuem formato de segmento e 

unidades monitoras semelhantes aos planos de referência, mostrando serem planos clinicamente 

aceitáveis (Bakx et al., 2021). 

 

Em 2020, Song et al. utilizou a rede neural profunda DeepLabv3+ para predizer 

distribuições de dose em radioterapia para pacientes com câncer de reto. Eles avaliaram 

quantitativamente a rede neural e o custo de tempo de planejamento com e sem a rede neural. 

DeepLabv3+ utiliza Residual Network com 50 camadas (ResNet-50) como codificador, um 

módulo de pooling de pirâmide espacial Atrous como extrator de features e um operador de 

agregação de concatenação para integração de features de vários níveis para distribuição de 

dose, conforme mostra a Figura 8 (Song et al., 2020). O pooling de pirâmide espacial codifica 

informações contextuais multi-escala através do pooling de features em diferentes resoluções 

(Chen et al., 2018). Já a convolução Atrous atua produzindo feature maps mais densas através 

da remoção do operador de downsampling das últimas camadas de max pooling e colocação de 

upsampling dos filtros nas camadas convolucionais subsequentes, resultando em feature maps 

com uma taxa de amostragem mais alta (Chen et al., 2017). No estudo de Song et al. (2020), 

todos os planos feitos com DeepLabv3+ foram clinicamente aceitos e não foram encontradas 

diferenças significativas dos parâmetros dosimétricos entre os planos de referência e os planos 



 

com DeepLabv3+, exceto para o índice de conformidade. Além disso, o tempo utilizado para 

planejar reduziu para mais da metade com o uso da rede neural DeepLabv3+. Os planos feitos 

com a rede neural tiveram a vantagem de menor dose máxima, maior dose mínima e menor 

índice de homogeneidade, e a desvantagem de menor índice de conformidade e maior número 

de unidades monitoras (Song et al., 2020). 

  

Figura 8 – Arquitetura da rede neural profunda DeepLabv3+ usada para a tarefa de predição de dose. 

A caixa azul indica a feature extraída pela camada convolucional; a linha vertical indica o fluxo de 

informações no codificador e decodificador; a linha horizontal indica a conexão entre as partes do 

codificador e decodificador. Os números ao lado dos fluxos de informações são as escalas de 

amostragem ascendente e descendente dos recursos. Os contornos amarelo, ciano, verde e roxo 

indicam o PTV, a bexiga, as cabeças femorais direita e esquerda, respectivamente. 

 

Fonte: Song et al. (2020). 

 

Em 2022, Li et al. propuseram a rede adversarial de atenção multitarefa (MtAA-NET, 

do inglês; Multi-task Attention Adversarial Network) para previsão de distribuição de dose e 

segmentação que fornece informações anatômicas adicionais do PTV e OARs, necessitando 



 
 

apenas de imagens tomográficas como informação de entrada. A Figura 9 mostra a arquitetura 

do modelo, que consiste em 4 partes: (1) Codificador compartilhado; (2) Decodificador de 

segmentação para PTV e OARs, que utiliza a rede U-Net tradicional; (3) Decodificador de dose 

para a tarefa de previsão de dose; (4) Rede adversarial AdvNet como discriminador entre a 

distribuição de dose prevista e a distribuição de dose real (Li et al., 2022). As tarefas 2 e 3 

compartilham o mesmo codificador enquanto diferentes hiperparâmetros ou variáveis de rede 

são usados para os dois decodificadores independentes (Li et al., 2022). Em adição, o módulo 

de fusão de recursos de tarefa cruzada (CtFF, do inglês; Cross-task Feature Fusion) é 

introduzido em cada nível do decodificador de dose (3) para integrar as informações de 

conteúdo do codificador compartilhado (1), as informações anatômicas do decodificador de 

segmentação (2) e as informações dosimétricas do decodificador de predição de dose (3) (Li et 

al., 2022). Como resultado, para o modelo MtAA-NET, as curvas de DVH para PTV e OARs 

foram clinicamente aceitáveis, com diferença mínima entre os planos preditos e os planos de 

referência (Li et al., 2022). Além disso, o modelo proposto foi comparado com os modelos de 

predição de dose U-Net modificado, DoseNet, U-ResNet-D e DeepLabV3+ e o resultados 

quantitativos mostram superioridade do modelo MtAA-NET. 

 

Figura 9 – Arquitetura da rede MtAA-NET. 

 

Fonte: Li et al. (2022). 

 



 

4 METODOLOGIA 

 

4.1 Aspectos éticos 

O projeto de pesquisa foi aprovado do Comitê de Ética da Santa Casa de Caridade de 

Bagé. Os pesquisadores seguem as orientações da Resolução 466/12 do Conselho Nacional de 

Saúde que regulamenta as pesquisas com seres humanos. 

Os riscos associados a este projeto estão limitados à possibilidade de quebra da 

confidencialidade dos dados mantidos pelos pesquisadores. Os pesquisadores também se 

comprometem a usar essas informações exclusivamente para a realização deste estudo, 

garantindo que os resultados serão apresentados sem identificar os participantes. 

 

4.2 Infraestrutura física e recursos financeiros 

 

A pesquisa foi conduzida no Serviço de Radioterapia da Santa Casa de Caridade de 

Bagé, utilizando a sua infraestrutura para a aquisição e processamento dos dados.  

 Não houve a necessidade de recursos financeiros para custeio do projeto, visto que todas 

as informações foram obtidas de forma informatizada dos sistemas Aria® e Eclipse® (Varian 

Medical Systems, Palo Alto, CA). 

 

4.3 Descrição da amostra 

 

A amostra do estudo consiste em 80 planejamentos radioterápicos utilizando a técnica 

IMRT, com regime de dose hipofracionado (4005 cGy em 15 frações, 5 dias por semana) 

(RTOG 1005, 2011), de pacientes tratados para câncer de mama de lateralidade esquerda, entre 

2023 e 2024 no Serviço de Radioterapia da Santa Casa de Caridade de Bagé (SCCB). Pacientes 

que trataram linfonodos e/ou leito tumoral foram excluídos do estudo. Os pacientes foram 

anonimizados na inserção das informações clínicas no banco de dados utilizado para análise. 

Os planejamentos incluídos no estudo envolvem imagens tomográficas em formato DICOM, 

distribuições de dose e conjunto de estruturas contendo OARs e PTV. 

 

 

 

 



 
 

4.4 Pré-processamento das imagens tomográficas e dos planejamentos 

 

Para cada planejamento radioterápico, as imagens tomográficas, o conjunto de 

estruturas e as distribuições de dose foram exportadas do TPS Eclipse (Varian Medical Systems, 

Palo Alto, CA) de forma anonimizada. Para isso, os nomes dos pacientes e informações 

adicionais que possam identificá-los foram substituídos por códigos numerados. As estruturas 

utilizadas foram PTV, pulmão esquerdo, pulmão direito, coração, mama contralateral e corpo. 

 

5 RESULTADOS 

 

5.1 Banco de dados 

 

 O banco de dados utilizado no estudo consiste em planejamentos radioterápicos de 

mama esquerda, no qual é formado por arquivos DICOM e dividido em três componentes: CT, 

RD e RS. CT representa as imagens tomográficas, RD representa as distribuições de dose e RS 

representa as estruturas anatômicas delineadas (Figura 10). 

 

Figura 10 – Arquivos DICOM para planejamento radioterápico, contendo imagens tomográficas (CT), 

dose (RD) e estruturas anatômicas (RS). 

 

Fonte: o autor. 

 

Antes dos planejamentos serem feitos no TPS, foi realizado um pré-processamento nos 

dados. As imagens tomográficas foram padronizadas para matriz com 512x512 pixels e 



 

espessura da fatia de 3 mm. Para a realização dos planejamentos, no TPS, as estruturas foram 

delineadas na TC: corpo (body), CTV, PTV, pulmão esquerdo, pulmão direito, coração e mama 

contralateral (Figura 11). 

 

Figura 11 – Corte axial de imagem tomográfica de tórax com as estruturas delineadas: corpo (verde 

claro), CTV (laranja), PTV (vermelho), pulmão esquerdo (verde escuro), pulmão direito (azul), 

coração (rosa) e mama contralateral (rosa). 

 

Fonte: o autor. 

 

Após o delineamento, no TPS, foi feito o arranjo dos campos de radiação através da 

escolha da energia do feixe de radiação, dos ângulos de gantry, colimador e mesa, e das 

aberturas dos colimadores X e Y (Figura 12). Optou-se por utilizar de 2 a 5 campos tangentes 

dentre os 80 planejamentos, dependendo das características anatômicas do paciente. 

 

 

 

 

 

 

 

 



 
 

Figura 12 – Visões das tangentes internas (A) e externas (B) dos campos de radiação com suas 

respectivas angulações de gantry, colimador e mesa, e colimadores X1, X2, Y1 e Y2 (C). 

 

Fonte: o autor. 

 

Na fase de otimização do plano, as estruturas delineadas foram utilizadas para alcançar 

os objetivos de dose estipulados: 100% da dose prescrita no CTV e no PTV, e a menor dose 

possível nos OARs, respeitando os limites de dose sugeridos pelo RTOG 1005 (Figura 13). 

Após a otimização, o TPS faz o cálculo da dose absorvida em cada pixel das imagens 

tomográficas, no qual resulta nas distribuições de dose. É possível analisar quanto de dose cada 

órgão recebeu e se a cobertura do CTV e PTV está dentro dos padrões aceitáveis (Figura 14).  

 

 

 

 

 

 

 

 

 

 



 

Figura 13 – Objetivos de dose para um planejamento radioterápico de mama. 

 

Fonte: o autor. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Figura 14 – Resultado do cálculo de dose para um planejamento radioterápico de mama esquerda. (A) 

apresenta as distribuições de dose de 95% a 107,1% da dose de prescrição. (B) apresenta as 

distribuições de dose de 50% a 107,1% da dose de prescrição. (C) apresenta os objetivos de dose para 

PTV e OARs, de acordo com o RTOG 1005. 

 

Fonte: o autor. 

 

Se cobertura do volume alvo e/ou os limites de dose nos OARs não foram satisfeitos, 

deve-se ajustar os parâmetros do plano e fazer mais otimizações até tais objetivos serem 

satisfeitos. Após o planejamento estar dentro dos padrões aceitáveis, os arquivos DICOM TC, 

RD e RS (Figura 10) foram exportados do TPS para serem transformados em Numpy3D. Todo 

esse processo foi feito para os 80 pacientes da amostra. 

 

 

 

 



 

5.2 Transformação dos dados DICOM em Numpy3D 

  

A grande maioria dos trabalhos em previsão de dose em radioterapia utiliza dados 

DICOM. No entanto, o treinamento do modelo requer a transformação de tais dados em vetores 

Numpy em 3D, para os 3 tipos de informação relevantes para treinamento do modelo, a saber: 

a) o volume CT propriamente dito (CT); b) as máscaras (masks) binárias originadas do 

delineamento prévio das estruturas e c) as distribuições de dose previamente calculadas pelo 

TPS. Todo este código foi produzido neste trabalho, com o auxílio da biblioteca DicomRTTool 

(Anderson, Wahid, Brock, 2021). Uma amostra deste código está disponível no ANEXO 1.  

 

O processo realizado consiste em transformar os dados DICOM, de cada paciente, e 

gerar 3 vetores Numpy3D para os dados de CT, doses e estruturas. Vale salientar que as 

bibliotecas DicomRTTools (Anderson, Wahid, Brock, 2021) e createNumpyData (Lempart et 

al., 2021) tem por objetivo abstrair a complexidade do padrão DICOM, ao mesmo tempo que 

permite a identificação dos principais objetos de interesse (OARs e PTV) previamente 

delineados pelo médico radio-oncologista e pelo dosimetrista. Cabe, obviamente, ao 

implementador do modelo selecionar as estruturas de interesse que serão alimentadas ao 

modelo.  

 

5.3 Visualizador de dados Numpy3D 

 

Também foi criado um código para visualização dos arquivos NumPy 3D, para verificar 

se estavam corretos. O código do visualizador está disponível no ANEXO 2. A Figura 15 mostra 

as visões axial, coronal e sagital da TC (15A), da dose (15B) e das estruturas (15C) de um dos 

pacientes da amostra. A construção do visualizador foi importante pois permitiu verificar que 

a conversão dos dados originais DICOM foi feita na ordem correta.  

 

 

 

 

 

 

 



 
 

Figura 15 – Visões axial, coronal e sagital do visualizador criado para imagens NumPy 3D 

para (A) TC, (B) dose e (C) estruturas. 

 

Fonte: o autor. 

 

5.4 Considerações 

 

A partir dos dados numpy3D, tentou-se alimentar um modelo pré-existente cujo código 

fonte foi disponibilizado no Github (https://github.com/MLRadfys/Deep-Learning-Dose-

Prediction). Embora toda a documentação indicasse como entrada esperada os dados numpy3D 

produzidos, não foi possível executar o treinamento por incompatibilidade no modelo 3D 

produzido e um dado em 4 dimensões esperado. A documentação não esclarecia o problema e 



 

o contato com os autores do código não foi correspondido. Espera-se dar continuidade ao 

processo de predição de dose e resultar em planejamentos radioterápicos preditos com 

distribuições de dose eficientes, que respeitem os limites de dose dos OARs e a cobertura ideal 

do PTV, estabelecidos pelos protocolos. 

 

6 CONCLUSÃO 

 

Este trabalho contribuirá para futuras aplicações de modelos de aprendizado profundo 

focados na previsão de dose em radioterapia, utilizando os modelos desenvolvidos para 

extração e visualização de dados. O próximo passo será utilizar os dados pré-processados para 

treinamento de um modelo baseado na arquitetura U-Net e avaliar as distribuições de dose 

preditas para mama esquerda. No futuro, pretende-se adicionar os planejamentos radioterápicos 

de mama direita ao banco de dados e realizar a predição de dose independentemente da 

lateralidade do sítio de tratamento. 
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ANEXO 1 

 

Visita o diretório de dados (data) que contém subdiretórios de pacientes, cada qual com: 

imagens (CT), doses (RD) e estruturas (RS).  

 

import argparse 

from pathlib import Path 

import pydicom 

import os 

 

#import SimpleITK as sitk 

 

import numpy as np 

 

from DicomRTTool.ReaderWriter import DicomReaderWriter, ROIAssociationClass 

 

def createNumpyDataFromPacienteData(dir): 

 print('PACIENTE >>>>', dir) 

 # folder com os dados do paciente 

 DICOM_path = os.path.join(dir) 

 

 # passa por todos os arquivos do diretorio.  

 Dicom_reader = DicomReaderWriter(description='Exemplos', arg_max=True) 

 print('Isso pode levar algum tempo... Depende do seu computador...') 

 Dicom_reader.walk_through_folders(DICOM_path) 

 

 # retorna uma lista de todas as ROIs encontradas no paciente... 

 all_rois = Dicom_reader.return_rois(print_rois=True) 

 

 # Mostra a localizacao de todas as RTs com o ROI especificado no argumento 

 Dicom_reader.where_is_ROI(ROIName='BrAiNsTeM1') 

 

 Dicom_reader.which_indexes_have_all_rois() 

 Dicom_reader.which_indexes_lack_all_rois() 

 

 # 

 Contour_Names = ['orgaos'] 

 associations = [ROIAssociationClass('orgaos', ['pulmão e', 'pulmão d', 'canalmedular',      

'coração','mama contralateral', 'ptv'])] 

  

 Dicom_reader.set_contour_names_and_associations(contour_names=Contour_Names, 

associations=associations) 

 

 indexes = Dicom_reader.which_indexes_have_all_rois() 

 pt_indx = indexes[-1] 

 Dicom_reader.set_index(pt_indx)  # This index has all the structures, corresponds to 

pre-RT T1-w image for patient 011 



 

 #Dicom_reader.get_images_and_mask()  # Load up the images and mask for the 

requested index 

 Dicom_reader.get_mask() 

 Dicom_reader.get_images() 

 Dicom_reader.get_dose() 

 

 image = Dicom_reader.ArrayDicom # image array 

 mask = Dicom_reader.mask # mask array 

 dose = Dicom_reader.dose 

 

 return dose, mask, image 

 

if __name__ == '__main__': 

 

 parser = argparse.ArgumentParser(description="Cria os arquivos npy (mask,dose,ct) 

para o modelo de Predicao") 

 

 # Argumento de diretorio 

 parser.add_argument("directory", type=str, help="O diretorio de todos os  pacientes") 

 

 args = parser.parse_args() 

 

 # Prossegue somente se o diretorio for valido 

 directory = Path(args.directory) 

 if not directory.is_dir(): 

     print(f"{directory} nao é um diretorio válido.") 

 else: 

     # lista de todos os subdiretorios (pacientes) ali dentro 

     subdirectories = [d for d in directory.iterdir() if d.is_dir()] 

     print('SUBDIRECTORIES >>>>> ', subdirectories) 

 

     # Para cada paciente, cria os arquivos numpy3D das dose, mascaras e estruturas 

     print(len(subdirectories)) 

     for folder in subdirectories: 

         print('FOLDER >>>>>  ', folder) 

         # Separa os tokens presentes no folder. 

         tokens = list(folder.parts) 

         # nao processa o folder com os Dados numpy dos pacientes 

         # (resolvi coloca-lo no mesmo diretorio dos dados originais dos pacientes) 

         if (tokens[-1] == 'NumpyPacientesData'): 

             continue; 

         # o nome diretorio do paciente eh o ultimo token 

         novoFolder = str(directory) + '/' + 'NumpyPacientesData' + '/' + tokens[-1] 

         print(novoFolder) 

         # Cria o diretorio do paciente, caso ainda nao exista 

         os.makedirs(novoFolder, exist_ok=True) 

         #sub = str(folder) 

          

         #print(sub[len(subdirectories):]) 

         #print(folder[:len(subdirectories)]) 



 
 

         dose, mask, ct = createNumpyDataFromPacienteData(folder) 

 

         #cria o subdiretorio para a dose 

         os.makedirs(novoFolder + '/' + 'Dose', exist_ok=True) 

         # Grava o arquivo Numpy de Dose 

         np.save(os.path.join(novoFolder + '/' + 'Dose', 'dose'), dose) 

 

         #cria o subdiretorio para a Imagens (CT) 

         os.makedirs(novoFolder + '/' + 'CT', exist_ok=True) 

         # Grava o arquivo Numpy de Dose 

         np.save(os.path.join(novoFolder + '/' + 'CT', 'CT'), ct) 

 

         #cria o subdiretorio para a mask 

         os.makedirs(novoFolder + '/' + 'masks', exist_ok=True) 

         # Grava o arquivo Numpy de Dose 

         np.save(os.path.join(novoFolder + '/' + 'masks', 'masks'), mask) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

ANEXO 2 

 

Visualizador dos dados 3D NUMPY  

para ver se os dados aparentemente foram criados corretamente, a partir dos dados dos 

pacientes, mas agora convertidos e Array NumPy 3D (que é o que o modelo de IA usa para 

fazer o treinamento). 

 

 

import numpy as np 

import matplotlib.pyplot as plt 

import os 

import pydicom 

from matplotlib.widgets import Slider 

import argparse 

 

def visualize_3d_numpy_array_Axial(numpy_3d_array): 

 min = np.min(numpy_3d_array[0]) 

 max = np.max(numpy_3d_array[0]) 

 # Create a figure and axis 

 fig, ax = plt.subplots() 

 plt.subplots_adjust(bottom=0.25) 

 

 # Initial slice to display 

 initial_slice = 0 

 

 # Display the initial slice 

 img = ax.imshow(numpy_3d_array[initial_slice, :, :], vmin= min+max*0.85, vmax= 

max, cmap='gray', aspect = 1) 

 

 # Add a slider for changing the displayed slice 

 ax_slider = plt.axes([0.25, 0.1, 0.65, 0.03], facecolor='lightgoldenrodyellow') 

 slider = Slider(ax_slider, 'Slice', 0, numpy_3d_array.shape[0] - 1, valinit=initial_slice, 

valstep=1) 

 

 # Update the displayed slice when the slider value changes 

 def update(val): 

     slice_index = int(slider.val) 

     img.set_array(numpy_3d_array[slice_index, :, :]) 

     fig.canvas.draw_idle() 

 

 slider.on_changed(update) 

 

 # Show the plot 

 plt.show() 

 

 

def visualize_3d_numpy_array(numpy_3d_array): 

 n0, n1, n2 = numpy_3d_array.shape 

 axial_slice=0 

 coronal_slice= int(n1/2) 



 
 

 sagittal_slice=int(n2/2) 

 min = np.min(numpy_3d_array[int(n0/2)]) 

 max = np.max(numpy_3d_array[int(n0/2)]) 

 print('min = ', min, 'max = ', max) 

 

 # Create a figure and axis 

 fig, ax = plt.subplots(1, 3, figsize=(12,12)) 

 #plt.subplots_adjust(bottom=0.25) 

 

    

 img_x = ax[0].imshow(numpy_3d_array[axial_slice, :, :],   cmap='gray', aspect = 1.35) 

 img_y = ax[1].imshow(numpy_3d_array[:, coronal_slice,:],   cmap='gray', aspect = 6.7) 

 img_z = ax[2].imshow(numpy_3d_array[:, :, sagittal_slice], cmap='gray', aspect = 4.3) 

 

 

 ax[0].set_title('Axial (X-axis)') 

 ax[1].set_title('Coronal (Y-axis)') 

 ax[2].set_title('Sagittal (Z-axis)') 

 

 # Add a slider for changing the displayed slice 

 ax_slider1 = plt.axes([0.25, 0.01, 0.65, 0.03], facecolor='lightgoldenrodyellow') 

 slider_axial = Slider(ax_slider1, 'Axial', 0, n0 - 1, valinit=axial_slice, valstep=1) 

 ax_slider2 = plt.axes([0.25, 0.06, 0.65, 0.03], facecolor='lightgoldenrodyellow') 

 slider_coronal = Slider(ax_slider2, 'Coronal', 0, n1 - 1, valinit=coronal_slice, valstep=1) 

 ax_slider3 = plt.axes([0.25, 0.11, 0.65, 0.03], facecolor='lightgoldenrodyellow') 

 slider_sagittal = Slider(ax_slider3, 'Sagittal', 0, n2 - 1, valinit=sagittal_slice, valstep=1) 

 

 # Update the displayed slice when the slider value changes 

 def update(val): 

     x_slice = int(slider_axial.val) 

     img_x.set_array(numpy_3d_array[x_slice, :, :]) 

 

     y_slice = int(slider_coronal.val) 

     img_y.set_array(numpy_3d_array[:, y_slice, :]) 

 

     z_slice = int(slider_sagittal.val) 

     img_z.set_array(numpy_3d_array[:, :, z_slice]) 

 

     fig.canvas.draw_idle() 

 

 slider_axial.on_changed(update) 

 slider_coronal.on_changed(update) 

 slider_sagittal.on_changed(update) 

 

 # Show the plot 

 plt.show() 

 

 

if __name__ == '__main__': 

 



 

 parser = argparse.ArgumentParser() 

 parser.add_argument('-f', '--file', required=True, help='Arquivo Numpy 3D') 

 args = parser.parse_args() 

 

 numpyFile = args.file 

 print(numpyFile) 

 

 vol = np.load(numpyFile) 

 

 # The shape of the stacked images in each plane 

 # (Axial, Coronal, and Sagittal, respectively) 

 n0, n1, n2 = vol.shape 

 # Print the ouput 

 print("Number of Slices:\n\t", "Axial=", n0, "Slices\n\t", 

                             "Coronal=", n1, "Slices\n\t", 

                             "Sagittal=", n2, "Slices") 

 

 

 #visualize_3d_numpy_array_Axial(vol) 

 visualize_3d_numpy_array(vol) 

 

 


