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RESUMO

FRONER, A. M. Previsdo de dose em planejamentos de radioterapia por intensidade
modulada para pacientes com céancer de mama esquerda utilizando método de
aprendizado profundo. 2024. 38 f. Trabalho de conclusao de curso (MBA em Inteligéncia
Artificial e Big Data) — Instituto de Ciéncias Matematicas e de Computacdo, Universidade de
Séo Paulo, S&o Carlos, 2024.

Técnicas de alta tecnologia, como IMRT e VMAT, melhoram a conformacdo da dose de
radiagdo entregue, mas ao mesmo tempo aumentam a complexidade do planejamento
radioterapico, resultando em mais tempo dedicado pelo fisico médico aos calculos de
distribuicdo de dose. Uma maneira de otimizar o tempo destinado ao planejamento e melhorar
0s aspectos dosimétricos envolve a utilizacdo de algoritmos baseados em aprendizado de
maquina para automacdo do processo por meio da predicdo de dose. O objetivo do presente
estudo consiste descrever o estado da arte em previsdo de dose em radioterapia e mostrar a
implementacao de modelos para extracdo e visualizacdo de dados, visando uma futura aplicacéo
em modelos de aprendizado profundo voltados para a previséo de dose em radioterapia para o
tratamento de cancer de mama esquerda.

Palavras-chave: aprendizado de maquina; predicdo de dose; radioterapia por intensidade

modulada; cancer de mama.






ABSTRACT

FRONER, A. M. Dose prediction in intensity modulated radiotherapy planning for left
breast cancer patients using deep learning method. 2024. 38 f. Trabalho de concluséo de
curso (MBA em Inteligéncia Artificial e Big Data) — Instituto de Ciéncias Matematicas e de
Computacdo, Universidade de S&o Paulo, Séo Carlos, 2024.

High-tech techniques, such as IMRT and VMAT, improve the conformation of the delivered
radiation dose, but at the same time increase the complexity of radiotherapy planning, resulting
in more time spent by the medical physicist on dose distribution calculations. One way to
optimize the time allocated to planning and improve dosimetric aspects involves the use of
machine learning-based algorithms to automate the process through dose prediction. The
objective of this study is to describe the state of the art in dose prediction in radiotherapy and
to show the implementation of models for data extraction and visualization, aiming at a future
application in deep learning models aimed at dose prediction in radiotherapy for the treatment
of left breast cancer.

Keywords: machine learning; dose prediction; intensity modulated radiotherapy; breast

cancer.
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1 INTRODUCAO

A radioterapia € um dos pilares do tratamento do céncer de mama, sendo utilizada
principalmente como adjuvancia apods a cirurgia (Kerr et al., 2022). Com os avangos de métodos
de modulacao da intensidade (fluéncia) do feixe de radiacdo, como as técnicas de radioterapia
por intensidade modulada (IMRT, do inglés; Intensity Modulated Radiation Therapy) e terapia
volumeétrica em arco modulado (VMAT, do inglés; Volumetric Modulated Arc Therapy), houve
uma melhora significativa na qualidade dos planejamentos radioterapicos, resultando em maior
conformacdo da dose sobre o volume alvo e menor dose no tecido sadio adjacente (Cedric,
1995). Consequentemente, houve o aumento da complexidade do planejamento, o que consome
mais tempo do fisico médico, que precisa realizar varias iteragdes manuais para ajustar os
pardmetros do planejamento. Dependendo das caracteristicas anatdmicas do paciente e da
experiéncia do fisico médico, 0 aumento da complexidade pode resultar em limitacdes na
qualidade do planejamento. Em casos de tratamento radioterapico de mama de lateralidade
esquerda, essa complexidade pode ser ainda mais acentuada pela proximidade com estruturas
adicionais como o pericardio, musculos cardiacos e artérias coronarias (Kerr et al., 2022).

Tendo em vista estes fatores, uma maneira de otimizar o tempo destinado ao
planejamento e de melhorar a sua qualidade envolve a utilizacdo de algoritmos baseados em
aprendizado de maquina para automacao do processo de planejamento por meio da predicédo de
dose. Varios estudos tem demonstrado progressos por meio da incorporacdo dessas novas
tecnologias ao processo de planejamento, como, por exemplo, estudos envolvendo redes
neurais convolucionais (CNNs, do inglés; Convolutional Neural Networks) (Soomro et al.,
2021), redes adversariais generativas (GANSs, do inglés; Generative Adversarial Networks)
(Murakami et al., 2020), florestas de regressdao (Mclintosh, Purdie, 2015), entre outros. Ha
também solucgdes comerciais ja disponiveis no mercado, como, por exemplo, 0 RapidPlan®,
fornecido pela empresa Varian Medical Systems (Palo Alto, CA). No RapidPlan, séo estimados
histogramas dose-volume (DVHs, do inglés; Dose-Volume Histograms) a partir do modelo
treinado e depois traduzidos em objetivos de otimizacdo que sdo usados pelo mecanismo de
planejamento inverso (Fogliata et al., 2017). A Figura 1A apresenta um tipico fluxo de
planejamento com vérias iteracbes manuais, e a Figura 1B apresenta este mesmo fluxo

utilizando um modelo de predicéo de dose.



Figura 1 - (A) Tipico fluxo de planejamento. (B) Fluxo proposto com predicdo de dose baseada em

inteligéncia artificial. As linhas pontilhadas azuis significam menos iteragdes.
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Fonte: Nguyen et al. (2019).

Visando acelerar, automatizar e melhorar a qualidade do processo de planejamento
radioterapico para tratamento de cancer de mama esquerda, o seguinte estudo tem como
propoésito implementar modelos para extracdo e visualizagdo de dados, bem como apresentar

uma revisao do estado atual das técnicas de previsdo de dose em radioterapia.



1.1 Objetivos

1.1.1 Geral

O objetivo central deste trabalho é descrever o estado da arte em previsdo da dose em
radioterapia por meio de aprendizado de maquina e 0s modelos computacionais neles

envolvidos.

1.1.2 Especifico

Mostrar a implementagdo de modelos para extracdo e visualizagdo dos dados, visando uma
futura aplicacdo de modelos de aprendizado profundo voltados para a previsdo de dose em

radioterapia para o tratamento de cancer de mama esquerda.

2 FUNDAMENTOS TEORICOS

2.1 O processo de planejamento radioterapico

IMRT refere-se a técnica radioterapica em que a entrega de radiacdo ao paciente é feita
por meio de campos com gantry estatico com fluéncia ndo uniforme com o propdsito de
otimizar as distribui¢des de isodose (Khan, Gibbons, 2014). Os parametros para otimizacao do
planejamento sdo determinados pelo fisico médico e o perfil de fluéncia 6tima € gerado para
um dado conjunto de campos, formando, assim, o planejamento inverso (Khan, Gibbons, 2014).

Em 1982, Brahme, Roos e Lax publicaram o primeiro estudo referente a planejamento
inverso, no qual solucionaram a equacdo integral da distribuicdo de dose para um corpo
cilindrico utilizando feixe rotacional, sendo assim possivel formar dose uniforme em um
fantoma cilindrico utilizando filtro ndo linear em forma de cunha (Webb, 2003). Em 1997,
Woo, Butler e Grant possibilitaram a implementacdo do primeiro IMRT clinico utilizando o
colimador multilaminas (MLC, do inglés; Multileaf Colimator) com movimento dindmico. O
sucessor do IMRT foi 0 VMAT, que, em adicdo a fluéncia ndo uniforme do feixe realizada pela
modulacdo do MLC, também utiliza a rotacdo do gantry e a variagdo da taxa de dose durante a
irradiacdo, possibilitando maior conformagéo do volume alvo (Khan, Gibbons, 2014).



Com o advento do planejamento inverso e do MLC, foi possivel estudos para
automatizacdo do processo de planejamento radioterapico em IMRT e VMAT através da
criacdo de scripts em Python e scripts do préprio sistema de planejamento computadorizado
(TPS, do inglés; Treatment Planning System) (Purdie et al., 2010; Xhaferllari et al., 2013).
Outra solucgdo disponivel é o software AutoPlanning® presente no TPS Pinnacle® (Philips
Radiation Oncology Systems, Fitchburg, WI), no qual ele captura as etapas do planejamento
que um operador humano qualificado faria e depois as imita para um novo paciente (Gintz et
al., 2016). Esses scripts e sistemas foram os precursores do uso de inteligéncia artificial com

aprendizado de maquina que conhecemos atualmente em radioterapia.

2.2 Planejamento radioterapico de mama

A radioterapia € uma importante etapa do tratamento oncolégico de pacientes com
cancer de mama, especialmente como adjuvancia no contexto pds-operatorio (Kerr et al., 2022).
Apds cirurgia conservadora da mama, a radioterapia abrange a irradiacdo da mama toda, as
vezes com irradiacdo do leito tumoral e/ou linfonodos regionais, ou irradiacdo parcial da mama,
dependendo do prognostico da doenga (Kerr et al., 2022). Ja pds mastectomia, é recomendado
irradiacdo da parede toracica, com ou sem linfonodos regionais (Kerr et al., 2022).

A técnica de tratamento convencional utilizada em radioterapia de mama é a técnica
conformacional 3D, no qual utiliza um par de campos tangenciais, paralelo opostos e
hemiblogueados (Chen, Ramachandran, Deb, 2020). A escolha dos angulos de gantry e
colimador séo selecionadas para fornecer a melhor cobertura de dose do volume alvo de
planejamento (PTV, do inglés; Planning Target Volume), minimizando ao maximo a dose
absorvida nos o6rgdos em risco (OARs, do inglés; organs at risk) adjacentes (Chen,
Ramachandran, Deb, 2020). Em alguns casos, é vantajoso rotacionar o angulo da mesa para
diminuir a dose na pele préxima a axila do paciente. Angulos de filtro e ponderacdes em cada
campo de tratamento s@o selecionados para fornecer a melhor cobertura e homogeneidade da
dose no PTV (Chen, Ramachandran, Deb, 2020). Para os aceleradores lineares que fazem uso
de MLC, é possivel criar subcampos para remover pontos quentes. Porém, a técnica
conformacional 3D n&o atinge uma alta conformagéo do PTV, principalmente dos linfonodos,
e causa doses indesejadas na pele e 6rgdos adjacentes, resultando em toxicidades agudas e de
longo prazo (Nantavithya et al., 2017; Chen, Ramachandran, Deb, 2020).

Com o surgimento do IMRT e do VMAT, houve uma melhora significativa na

conformacédo e homogeneidade da dose no volume alvo, e na dose em OARs. O IMRT possui



a vantagem de ter uma configuragdo de campos parecida com a técnica conformacional 3D,
possui poucas doses baixas espalhadas nos tecidos adjacentes e possui maior cobertura de dose
do PTV (Ahmad et al., 2022). Porém, o IMRT possui a desvantagem de um maior nimero de
unidades monitoras e maior tempo de feixe ligado (Yu et al., 2018), o que pode impactar na
rotina clinica do servigo. JA 0 VMAT possui a vantagem de ter a melhor conformacéo do PTV,
dentre as 3 técnicas citadas, e facilitar a cobertura de alvos dificeis de serem alcangados com
campos tangentes, como linfonodos supraclaviculares e intra-mamarios. Uma desvantagem da
técnica VMAT ¢é sua propensdo a aumentar as doses para OARs em niveis de dose baixos
(Prokofev, Salim, 2023). Apesar do VMAT oferecer melhor controle das doses intermediarias-
altas no OAR, ele resulta em um aumento das doses médias e baixas recebidas pelo OARs,
especialmente em pulmdo e mama contralaterais (Yu et al., 2018). A Figura 2 mostra uma

comparacdo dosimétrica entre as trés técnicas de tratamento.

Figura 2 — Imagens tomograficas em corte axial exibindo a dose de 95% da prescri¢do (colorwash)

para mama esquerda, para as técnicas 3D, IMRT e VMAT, respectivamente.

Fonte: Liu et al. (2016).

Mesmo com técnicas avancadas de planejamento radioterépico, alcancar a qualidade no
planejamento de mama continua sendo um desafio, especialmente planejamento de mama
esquerda, no qual o coracao fica mais proximo do volume alvo. Os frutos do uso de inteligéncia
artificial no planejamento radioterapico ja vem sendo observados na melhora da qualidade dos

planos e na rapidez na entrega dos tratamentos.

2.3 Fundamentos em aprendizado de maquina

Em 1943, Warren McCulloch e Walter Pitts iniciaram as pesquisas com Redes Neurais

Artificiais (RNAs). RNAs sdo técnicas de aprendizado de maquina desenvolvidas para simular



0 processo de aprendizado e memoria do cérebro humano (Aggarwal, 2018). Elas sdo formadas
por unidades de processamento simples, chamadas de neurdnios artificiais, conectados entre si
e capazes de armazenar conhecimento por meio da experiéncia (treinamento). (Jenkins,
Tanguay, 1995; Wu, Feng, 2017). Cada entrada para um neurdnio é dimensionada com um
peso, passa por uma soma ponderada, juntamente com um viés (bias), passa por uma funcdo de
ativacdo e resulta em uma saida (Figura 3). A funcdo de ativacdo desempenha uma tarefa
semelhante a sinapse do neurénio bioldgico, transmitindo ou bloqueando os impulsos nervosos
(Martiniano et al., 2016). O viés é utilizado nos casos em que a distribuicdo da classe binaria é
altamente desequilibrada e sempre transmite o valor de 1, associado a um peso, para 0 n6 de
saida (Aggarwal, 2018). Os dados de saida fornecem um feedback sobre a correcdo dos pesos
na rede neural, dependendo do qudo bem foi a saida prevista, e uma nova iteracdo é feita
(Aggarwal, 2018). O processo € repetido diversas vezes até o neurdnio encontrar uma predicao
mais correta para o dado de saida. Assim, o aprendizado de uma RNA € caracterizado pelo
ajuste sucessivo dos pesos, com o0 objetivo de minimizar os erros (Wu, Feng, 2017).

Figura 3 — Representacéo do neurdnio artificial.
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Fonte: Martiniano et al. (2016) modificado.

A Figura 3 mostra os dados de entrada da rede (X4, ..., Xn), 0s neurdnios da camada de
entrada da rede (W4, ..., Wh;), 0 Viés (bj), a soma ponderada (%), a fungdo de ativagdo (¢) e o
neurdnio de saida (Yrna).

Uma das primeiras RNAs propostas foi em 1958, por Frank Rosenblatt, chamada

Perceptron, contendo uma Unica camada de entrada e um nd de saida, com objetivo de



classificacdo binaria. Porém, o Perceptron tinha o empecilho de funcionar somente para
problemas linearmente separaveis. Em 1986, Rummelhart, Hinton e Williams resolveram esse
obstaculo através do desenvolvimento do Perceptron de Maltiplas Camadas (MLPs, do inglés;
Multi Layer Perceptron), no qual possui neurénios em paralelo e sequenciais, contendo uma ou
mais camadas ocultas entre as camadas de entrada e de saida. O modelo de cada neurénio possuli
funcdo de ativagdo ndo linear e diferencidvel, o que ndo era possivel com a funcdo degrau
presente no Perceptron. Além disso, as MLPs possuem alto grau de conectividade, visto que
todos os neurbnios de uma camada se conectam com todos da camada seguinte (Figura 4). A
arquitetura das MLPs é chamada de redes feed-forward, pois camadas sucessivas alimentam
umas as outras na dire¢do direta, da entrada para a saida (Aggarwal, 2018).

Figura 4 — Representacdo do Perceptron de Mdltiplas Camadas.
Sentido forward
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X3 Y
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Fonte: Aggarwal (2018) modificado.

Para MLPs, a funcdo perda é uma funcdo de composi¢des complicadas dos pesos das
camadas anteriores, impossibilitando utilizar o somente o feedback para corrigir os pesos. Por
isso, comecou-se a utilizar o algoritmo de retropropagacédo, proposto inicialmente por Paul
Werbos (1974). Este algoritmo computa os gradientes de erro em termos de somas de produtos
de gradiente local sobre os varios caminhos de um né para a saida (Aggarwal, 2018). Contém
duas fases: forward e backward, respectivamente. A fase forward calcula os valores de saida e

as derivadas locais em varios nds, e a fase backward acumula os produtos desses valores locais



em todos os caminhos do no para a saida (Aggarwal, 2018). O objetivo da fase backward é
aprender o gradiente da funcdo perda a partir do nd de saida atualizando os pesos de trés para
frente (Aggarwal, 2018). Assim como na rede com uma unica camada, 0s nos sdo atualizados
repetidamente até alcancar a convergéncia, com os dados de treinamento sendo percorridos
repetidamente em épocas.

Com o avango dos hardwares, foi possivel adicionar mais camadas as RNAs, tornando-
as mais profundas e complexas, aumentando a capacidade de aprendizado e de armazenamento.
Assim, surgiram as redes neurais convolucionais, as redes adversariais generativas, dentre

outras, que sdo citadas a seguir.

3 PREVISAO DE DOSE EM RADIOTERAPIA

Existem varios estudos na literatura sobre previsdo de dose em radioterapia e estdo
classificados em duas grandes categorias: previsdo de histogramas dose-volume (DVHs, do
inglés; Dose Volume Histograms) e previsdo de dose baseado em imagens e volumes. Neste
estudo, é enfatizado a previsdo de dose baseado em imagens e volumes, no qual utilizada redes
neurais artificiais, como, por exemplo, CNNs, GANs e florestas de regressao.

Dentre as CNNs mais utilizadas, estd a rede U-Net, usada originalmente para fins de
segmentacdo de imagens (Ronneberger, Fischer, Brox, 2015), sendo capaz de incorporar
caracteristicas locais e globais para fazer a predicdo da rotulagem dos pixels de imagens em
duas dimensbes (Nguyen et al. 2018). Para utilizar a U-Net em previsdes de dose de
planejamentos radioterapicos em duas dimens@es, pode haver alguns erros nas bordas superior
e inferior do volume alvo, o que levou Nguyen et al. a progredirem em modelos 3D de
aprendizagem profunda volumétrica (Nguyen et al. 2018). Consequentemente ha maior gasto
computacional com o aumento da dimensionalidade. A saida encontrada por Nguyen et al. para
este problema foi unir a arquitetura U-Net as redes convolucionais densamente conectadas
(DenseNet, do inglés; Dense Convolutional Network) (Figura 5) (Huang et al., 2017). A
DenseNet conecta cada camada da rede com todas as outras camadas no sentido feed-foward.
Cada camada obtém entradas adicionais de todas as camadas anteriores e passa seus features-
maps para todas as camadas subsequentes. Diferente das redes neurais residuais (RNNs, do
inglés; Residual Neural Network), a DenseNet ndo soma os features antes de serem passadas
para uma nova camada, ela as concatena (Huang et al., 2017). Dessa forma, alcangam um
melhor desempenho a0 mesmo tempo em que possuem menos parametros na rede neural
(Nguyen et al. 2018).



Figura 5 — Arquiteturas U-Net modificada, U-Net padrdo e DenseNet, respectivamente.
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Fonte: Nguyen et al. (2018).

Baseado na juncdo entre a arquitetura U-Net e a DenseNet, Lempart et al. (2021)
modificaram a arquitetura U-Net densamente conectada para predizer as distribuicdes de dose
em planejamentos radioterapicos de pacientes com cancer de préstata através de imagens
volumétricas de tomografia computadorizada (CT, do inglés; Computed Tomography). A
Figura 6 mostra a arquitetura do modelo, que consiste em um codificador e decodificador
densamente conectados com camadas de normalizacdo em batch, funcdo de ativagédo
retificadora (ReLU, do inglés Rectified Linear Unit) e blocos de transi¢do para upsampling

(sobre-amostragem) (loffe, Szegedy, 2015; Huang et al., 2017; Lempart et al., 2021).

Figura 6 — Arquitetura U-Net densamente conectada. (a) Triplets consistindo em imagens de CT e suas
correspondentes segmentacdes binarias séo utilizadas como dados de entrada do modelo. (b) Camadas

densamente conectadas na parte do codificador e decodificador sdo usadas para melhorar a propagacao



de features e evitar gradientes de desaparecimento. (¢) Extracdo de features usando uma série de

operacdes convolucionais e camadas de transicdo usadas para fins de reducéo da resolucéo. (d)

Operacdes de aumento da resolucdo densamente conectadas transformam a representacdo do espaco

latente em uma previsao final de distribui¢do de dose.
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Fonte: Lempart et al. (2021).

Para 0 modelo aprender caracteristicas volumétricas, o treinamento é feito utilizando
imagens em triplets, que podem ser consideradas volumétricas, mas ndo totalmente 3D
(Lempart et al., 2021). Um triplet combina trés fatias de imagem consecutivas e suas
segmentacdes binarias correspondentes (Benson et al., 2020; Lempart et al., 2021). A fatia da
imagem e suas correspondentes segmentagdes binérias sdo combinadas em uma imagem com
7 canais separados: CT, corpo, PTV, reto, bexiga, cabeca femoral direita e cabeca femoral
esquerda. Para as outras duas fatias de imagem do triplet e suas correspondentes segmentacdes
binarias, sdo adicionados mais 7 canais em cada fatia, resultando num triplet final de 21 canais
(Figura 7).



Figura 7 — Triplets gerados a partir de trés fatias consecutivas de imagens tomogréaficas e suas

correspondentes estruturas de segmentacdo (PTV, corpo e OARS).
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Fonte: Lempart et al. (2021).

Para transformar as distribuicdes de dose preditas em planos clinicamente exequiveis,
Lempart et al. utilizou o algoritmo K-vizinhos mais proximos (K-NN, do inglés; K-nearest
neighbor) calculando o erro quadratico medio entre uma matriz de predicdo de dose e as
matrizes de distribuicdo de dose clinica no conjunto de dados de treinamento. As predi¢des de
dose utilizando U-Net padrdo resultaram em diferencas de dose entre CTV (Clinical Target
Volume) e PTV, no qual foi reduzida quando utilizada a rede U-Net modificada e
completamente removida quando transformada em planos clinicamente exequiveis (Lempart et
al., 2021). Ambos, planos preditos e planos exequiveis apresentaram curvas de DVH similares
aos planos de referéncia. A verificagdo da dose através de indice gamma global (3% 2mm)

resultou em uma taxa de aprovagao de 100% em todos os planos de teste (Lempart et al., 2021).

Outro exemplo no qual a rede U-Net € utilizada para predicdo de dose em radioterapia

é o artigo de Bakx et al. (2021). Eles avaliaram o desempenho de dois modelos de aprendizado



de méaquina para radioterapia de mama em relacdo a qualidade dos planos: CNN baseada na
arquitetura U-Net com o atlas contextual de florestas de regresséo (CARF, do inglés; contextual
Atlas Regression Forest), comercialmente fornecido pela empresa RaySearch Laboratories AB
(Stockholm, Suécia). Durante a etapa de mapeamento de atlas para imagem, os CARFs séo
treinados para modelar a relagdo entre as caracteristicas da imagem e a distribuicdo da dose
(Mclntosh, Purdie, 2015). Na etapa de selecdo do atlas, a estimativa de densidade das
caracteristicas de imagem observadas é utilizada para treinar um modelo que escolha o CARF
mais adequado para um novo paciente (Mclntosh, Purdie, 2015). Apos essas etapas, um modelo
de campo aleat6rio condicional é usado para encontrar a distribuicdo de dose mais provével.
Apos treinamento e validacéo cruzada dos dois modelos, Bakx et al. utilizaram mimetizacéo de
dose para transformar a dose predita em planos clinicamente exequiveis. As distribuicdes de
dose dos planos preditos e mimetizados foram avaliadas seguindo os limites de dose do RTOG
1005 (2011). Para a arquitetura U-Net, trés planos excederam o volume permitido de 2%
recebendo > 42,85 Gy. Para 0 modelo cARF, trés planos falharam em todos os limites de dose
do protocolo. Segundo Bakx et al., as diferencas encontradas entre os modelos ndo foram
clinicamente relevantes, uma vez que as doses médias clinicamente aceitas ndao foram
excedidas. Para ambos os modelos, os planos mimetizados possuem formato de segmento e
unidades monitoras semelhantes aos planos de referéncia, mostrando serem planos clinicamente
aceitaveis (Bakx et al., 2021).

Em 2020, Song et al. utilizou a rede neural profunda DeeplLabv3+ para predizer
distribuicfes de dose em radioterapia para pacientes com cancer de reto. Eles avaliaram
quantitativamente a rede neural e o custo de tempo de planejamento com e sem a rede neural.
DeepLabv3+ utiliza Residual Network com 50 camadas (ResNet-50) como codificador, um
maodulo de pooling de piramide espacial Atrous como extrator de features e um operador de
agregacao de concatenacdo para integracdo de features de varios niveis para distribuicdo de
dose, conforme mostra a Figura 8 (Song et al., 2020). O pooling de piramide espacial codifica
informagdes contextuais multi-escala através do pooling de features em diferentes resolucdes
(Chen et al., 2018). Ja a convolugdo Atrous atua produzindo feature maps mais densas atraves
da remocé&o do operador de downsampling das ultimas camadas de max pooling e colocagéo de
upsampling dos filtros nas camadas convolucionais subsequentes, resultando em feature maps
com uma taxa de amostragem mais alta (Chen et al., 2017). No estudo de Song et al. (2020),
todos os planos feitos com DeepLabv3+ foram clinicamente aceitos e ndo foram encontradas

diferencas significativas dos parametros dosimétricos entre os planos de referéncia e os planos



com DeepLabv3+, exceto para o indice de conformidade. Além disso, o tempo utilizado para
planejar reduziu para mais da metade com o uso da rede neural DeepLabv3+. Os planos feitos
com a rede neural tiveram a vantagem de menor dose maxima, maior dose minima e menor
indice de homogeneidade, e a desvantagem de menor indice de conformidade e maior nimero

de unidades monitoras (Song et al., 2020).

Figura 8 — Arquitetura da rede neural profunda DeepLabv3+ usada para a tarefa de predicdo de dose.
A caixa azul indica a feature extraida pela camada convolucional; a linha vertical indica o fluxo de
informacdes no codificador e decodificador; a linha horizontal indica a conexdo entre as partes do
codificador e decodificador. Os nimeros ao lado dos fluxos de informagGes séo as escalas de
amostragem ascendente e descendente dos recursos. Os contornos amarelo, ciano, verde e roxo

indicam o PTV, a bexiga, as cabecas femorais direita e esquerda, respectivamente.
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Fonte: Song et al. (2020).

Em 2022, Li et al. propuseram a rede adversarial de atencdo multitarefa (MtAA-NET,
do inglés; Multi-task Attention Adversarial Network) para previsdo de distribuicdo de dose e

segmentacdo que fornece informacGes anatdmicas adicionais do PTV e OARs, necessitando



apenas de imagens tomogréaficas como informacéo de entrada. A Figura 9 mostra a arquitetura
do modelo, que consiste em 4 partes: (1) Codificador compartilhado; (2) Decodificador de
segmentacdo para PTV e OARs, que utiliza a rede U-Net tradicional; (3) Decodificador de dose
para a tarefa de previsdo de dose; (4) Rede adversarial AdvNet como discriminador entre a
distribuicdo de dose prevista e a distribuicdo de dose real (Li et al., 2022). As tarefas 2 e 3
compartilham o mesmo codificador enquanto diferentes hiperparametros ou variaveis de rede
sdo usados para os dois decodificadores independentes (Li et al., 2022). Em adic¢do, 0 médulo
de fusdo de recursos de tarefa cruzada (CtFF, do inglés; Cross-task Feature Fusion) é
introduzido em cada nivel do decodificador de dose (3) para integrar as informacdes de
contetdo do codificador compartilhado (1), as informagdes anatdmicas do decodificador de
segmentacdo (2) e as informacdes dosimétricas do decodificador de predicéo de dose (3) (Li et
al., 2022). Como resultado, para o modelo MtAA-NET, as curvas de DVH para PTV e OARs
foram clinicamente aceitaveis, com diferenga minima entre os planos preditos e os planos de
referéncia (Li et al., 2022). Além disso, 0 modelo proposto foi comparado com os modelos de
predicdo de dose U-Net modificado, DoseNet, U-ResNet-D e DeepLabV3+ e o resultados

quantitativos mostram superioridade do modelo MtAA-NET.

Figura 9 — Arquitetura da rede MtAA-NET.
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4 METODOLOGIA

4.1 Aspectos éticos

O projeto de pesquisa foi aprovado do Comité de Etica da Santa Casa de Caridade de
Bageé. Os pesquisadores seguem as orientagdes da Resolucéo 466/12 do Conselho Nacional de
Saude que regulamenta as pesquisas com seres humanos.

Os riscos associados a este projeto estdo limitados a possibilidade de quebra da
confidencialidade dos dados mantidos pelos pesquisadores. Os pesquisadores também se
comprometem a usar essas informacdes exclusivamente para a realizacdo deste estudo,

garantindo que os resultados serdo apresentados sem identificar os participantes.

4.2 Infraestrutura fisica e recursos financeiros

A pesquisa foi conduzida no Servico de Radioterapia da Santa Casa de Caridade de
Bagé, utilizando a sua infraestrutura para a aquisicao e processamento dos dados.

N&o houve a necessidade de recursos financeiros para custeio do projeto, visto que todas
as informag6es foram obtidas de forma informatizada dos sistemas Aria® e Eclipse® (Varian
Medical Systems, Palo Alto, CA).

4.3 Descricdo da amostra

A amostra do estudo consiste em 80 planejamentos radioterapicos utilizando a técnica
IMRT, com regime de dose hipofracionado (4005 cGy em 15 fracOes, 5 dias por semana)
(RTOG 1005, 2011), de pacientes tratados para cancer de mama de lateralidade esquerda, entre
2023 e 2024 no Servico de Radioterapia da Santa Casa de Caridade de Bagé (SCCB). Pacientes
que trataram linfonodos e/ou leito tumoral foram excluidos do estudo. Os pacientes foram
anonimizados na insercdo das informaces clinicas no banco de dados utilizado para analise.
Os planejamentos incluidos no estudo envolvem imagens tomograficas em formato DICOM,

distribuicdes de dose e conjunto de estruturas contendo OARs e PTV.



4.4 Pré-processamento das imagens tomogréficas e dos planejamentos

Para cada planejamento radioterapico, as imagens tomograficas, o conjunto de
estruturas e as distribuicdes de dose foram exportadas do TPS Eclipse (Varian Medical Systems,
Palo Alto, CA) de forma anonimizada. Para isso, 0os nomes dos pacientes e informagoes
adicionais que possam identifica-los foram substituidos por cddigos numerados. As estruturas

utilizadas foram PTV, pulmao esquerdo, pulmao direito, coracdo, mama contralateral e corpo.

5 RESULTADOS

5.1 Banco de dados

O banco de dados utilizado no estudo consiste em planejamentos radioterapicos de
mama esquerda, no qual é formado por arquivos DICOM e dividido em trés componentes: CT,
RD e RS. CT representa as imagens tomogréaficas, RD representa as distribui¢fes de dose e RS
representa as estruturas anatomicas delineadas (Figura 10).

Figura 10 — Arquivos DICOM para planejamento radioterapico, contendo imagens tomograficas (CT),
dose (RD) e estruturas anatdmicas (RS).

En CT.1.2.246.352.221.5711953599929717843.... DICOM File (RAB4) 578 KB
CT.1.2.246.352.221.5719333496350543371.... DICOM File (RAB4) 578 KB
En CT.1.2.246.352.221.5726059214996062425....  07/06/2024 13:35 DICOM File (RAGB4) 578 KB
CT.1.2.246.352.221.5727954467928183940....  07/06/2024 13:35 DICOM File (RAG4) 578 KB
CT.1.2.246.352.221.5730499591172224377.... DICOM File (RAB4) 578 KB
CT.1.2.246.352.221.5739596612833907051.... DICOM File (RAB4) 578 KB
En CT.1.2.246.352.221.5741445638811498590.... DICOM File (RAB4) 578 KB
CT.1.2.246.352.221.5756754770073428877.... DICOM File (RAB4) 578 KB
En CT.1.2.246.352.221.5762713995757064037....  07/06/2024 13:35 DICOM File (RAB4) 578 KB
RD.1.2.246.352.221.5037332744179546511.... DICOM File (RAB4) 6.145 KB
RD.1.2.246.352.221.5151239302120991321.... DICOM File (RAGB4) 6.145 KB
RD.1.2.246.352.221.5660491331680591956.... DICOM File (RAB4) 6.145KB
RD.1.2.246.352.221.5721220955172972817.... DICOM File (RAB4) 6.145 KB
RS.1.2.246.352.221.5322194373472380847.... DICOM File (RAB4) 2.835KB

Antes dos planejamentos serem feitos no TPS, foi realizado um pré-processamento nos

Fonte: o autor.

dados. As imagens tomograficas foram padronizadas para matriz com 512x512 pixels e



espessura da fatia de 3 mm. Para a realiza¢do dos planejamentos, no TPS, as estruturas foram
delineadas na TC: corpo (body), CTV, PTV, pulméo esquerdo, pulmao direito, coragdo e mama

contralateral (Figura 11).

Figura 11 — Corte axial de imagem tomografica de térax com as estruturas delineadas: corpo (verde
claro), CTV (laranja), PTV (vermelho), pulmé&o esquerdo (verde escuro), pulmédo direito (azul),

coracdo (rosa) e mama contralateral (rosa).
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Fonte: o autor.

Apbs o delineamento, no TPS, foi feito o arranjo dos campos de radiacdo através da
escolha da energia do feixe de radiacdo, dos angulos de gantry, colimador e mesa, e das
aberturas dos colimadores X e Y (Figura 12). Optou-se por utilizar de 2 a 5 campos tangentes

dentre os 80 planejamentos, dependendo das caracteristicas anatdbmicas do paciente.



Figura 12 — Visdes das tangentes internas (A) e externas (B) dos campos de radiacdo com suas

respectivas angulacdes de gantry, colimador e mesa, e colimadores X1, X2, Y1e Y2 (C).
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Fonte: o autor.

Na fase de otimizacdo do plano, as estruturas delineadas foram utilizadas para alcancar
0s objetivos de dose estipulados: 100% da dose prescrita no CTV e no PTV, e a menor dose
possivel nos OARs, respeitando os limites de dose sugeridos pelo RTOG 1005 (Figura 13).
Apbs a otimizacdo, o TPS faz o célculo da dose absorvida em cada pixel das imagens
tomograficas, no qual resulta nas distribuicdes de dose. E possivel analisar quanto de dose cada
Orgao recebeu e se a coberturado CTV e PTV esté dentro dos padrdes aceitaveis (Figura 14).




Figura 13 — Objetivos de dose para um planejamento radioterapico de mama.

Dose real Prioridad gEUD
[cGy] e a

ID/Tipo cm? Vol [%] Dose[cGy]

CTV 789.8
Inferior 7891
PTV 10209
Superior 0.0
Superior 102
Inferior 10199
Inferior 969.8
BODY 268492
Superior 0.0
Coracao 644.0
Superior
Mama contralateral
Superior
Pulmao E
Superior
Superior

Pulmao D

Fonte: o autor.



Figura 14 — Resultado do calculo de dose para um planejamento radioterapico de mama esquerda. (A)

apresenta as distribuicdes de dose de 95% a 107,1% da dose de prescricdo. (B) apresenta as

distribuicdes de dose de 50% a 107,1% da dose de prescricdo. (C) apresenta os objetivos de dose para
PTV e OARs, de acordo com o RTOG 1005.

(A) (B)

C Objetivos de prescricio
( ) PTV Pelo menos 95.0| % recebe mais que 253.6 3804.7 38873
PTV No maximo 30.0| 9% recebe mais que 320.0 4800.0 4161.7
PTV No maximo 50.0| % recebe mais que 288.0 43200 41242
PTV_Boost Pelo menos 95.0| % recebe mais que 304.0 4560.0 N/A
PTV_Boost No maximo 5.0| % recebe mais que 352.0 5280.0 N/A
PTV Pelo menos 90.0| % recebe mais que 240.0 3600.0 3967.0
Objetivos clinicos X
Plano ‘ Mama E
Dose total ‘ 4005.0 cGy
Resumo dos objetivos clinicos 0 ‘ 9
R Indice de conformidade > 0... N/A
@rv B
R D 0.0 cm® < 4800 cGy 4281.07 cGy
P3  |Dméd. < 320 cGy 266.48 cGy
@ Coracdo P3 V 800 cGy < 30.0 % 810%
P3  |D5.0% < 1600 cGy 1206.48 cGy
- P3  |D5.0 %< 144 cGy 81.66 cGy
{_ Mama contralate...
P3| Dmax < 240 cGy
@ Pulmio D P3  |V400cGy < 10.0% 0.00 %
P2 |V 1600cGy < 15.0 % 1221 %
@ PulmioE P2 |V 800cGy<350% 2314 %
P3  |V400cGy < 50.0 % 3045 %

Fonte: o autor.

Se cobertura do volume alvo e/ou os limites de dose nos OARs né&o foram satisfeitos,
deve-se ajustar os parametros do plano e fazer mais otimizagdes até tais objetivos serem
satisfeitos. Apds o planejamento estar dentro dos padrdes aceitaveis, 0s arquivos DICOM TC,
RD e RS (Figura 10) foram exportados do TPS para serem transformados em Numpy3D. Todo

esse processo foi feito para os 80 pacientes da amostra.



5.2 Transformacao dos dados DICOM em Numpy3D

A grande maioria dos trabalhos em previsdo de dose em radioterapia utiliza dados
DICOM. No entanto, o treinamento do modelo requer a transformacao de tais dados em vetores
Numpy em 3D, para os 3 tipos de informacéo relevantes para treinamento do modelo, a saber:
a) o volume CT propriamente dito (CT); b) as mascaras (masks) binérias originadas do
delineamento prévio das estruturas e c) as distribuicdes de dose previamente calculadas pelo
TPS. Todo este cédigo foi produzido neste trabalho, com o auxilio da biblioteca DicomRTTool
(Anderson, Wahid, Brock, 2021). Uma amostra deste codigo estéa disponivel no ANEXO 1.

O processo realizado consiste em transformar os dados DICOM, de cada paciente, e
gerar 3 vetores Numpy3D para os dados de CT, doses e estruturas. Vale salientar que as
bibliotecas DicomRTTools (Anderson, Wahid, Brock, 2021) e createNumpyData (Lempart et
al., 2021) tem por objetivo abstrair a complexidade do padrdo DICOM, ao mesmo tempo que
permite a identificacdo dos principais objetos de interesse (OARs e PTV) previamente
delineados pelo médico radio-oncologista e pelo dosimetrista. Cabe, obviamente, ao
implementador do modelo selecionar as estruturas de interesse que serdo alimentadas ao

modelo.

5.3 Visualizador de dados Numpy3D

Também foi criado um cddigo para visualizacdo dos arquivos NumPy 3D, para verificar
se estavam corretos. O cddigo do visualizador esta disponivel no ANEXO 2. A Figura 15 mostra
as visoes axial, coronal e sagital da TC (15A), da dose (15B) e das estruturas (15C) de um dos
pacientes da amostra. A construcdo do visualizador foi importante pois permitiu verificar que

a conversao dos dados originais DICOM foi feita na ordem correta.



Figura 15 — Visdes axial, coronal e sagital do visualizador criado para imagens NumPy 3D
para (A) TC, (B) dose e (C) estruturas.
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Fonte: o autor.

5.4 Consideragdes

A partir dos dados numpy3D, tentou-se alimentar um modelo pré-existente cujo codigo
fonte foi disponibilizado no Github (https://github.com/MLRadfys/Deep-Learning-Dose-
Prediction). Embora toda a documentagéo indicasse como entrada esperada os dados numpy3D
produzidos, ndo foi possivel executar o treinamento por incompatibilidade no modelo 3D

produzido e um dado em 4 dimens@es esperado. A documentacao ndo esclarecia o problema e



0 contato com os autores do cddigo nao foi correspondido. Espera-se dar continuidade ao
processo de predicdo de dose e resultar em planejamentos radioterapicos preditos com
distribuictes de dose eficientes, que respeitem os limites de dose dos OARs e a cobertura ideal

do PTV, estabelecidos pelos protocolos.

6 CONCLUSAO

Este trabalho contribuira para futuras aplicaces de modelos de aprendizado profundo
focados na previsdo de dose em radioterapia, utilizando os modelos desenvolvidos para
extracao e visualizacdo de dados. O proximo passo sera utilizar os dados pré-processados para
treinamento de um modelo baseado na arquitetura U-Net e avaliar as distribui¢fes de dose
preditas para mama esquerda. No futuro, pretende-se adicionar os planejamentos radioterapicos
de mama direita ao banco de dados e realizar a predicdo de dose independentemente da

lateralidade do sitio de tratamento.
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ANEXO 1

Visita o diretorio de dados (data) que contém subdiretérios de pacientes, cada qual com:
imagens (CT), doses (RD) e estruturas (RS).

import argparse

from pathlib import Path
import pydicom

import 0s

#import Simplel TK as sitk
import numpy as np
from DicomRTTool.ReaderWriter import DicomReaderWriter, ROlAssociationClass

def createNumpyDataFromPacienteData(dir):
print(PACIENTE >>>>', dir)
# folder com os dados do paciente
DICOM_path = os.path.join(dir)

# passa por todos os arquivos do diretorio.

Dicom_reader = DicomReaderWriter(description="Exemplos', arg_max=True)
print('lsso pode levar algum tempo... Depende do seu computador...")
Dicom_reader.walk_through_folders(DICOM _path)

# retorna uma lista de todas as ROIls encontradas no paciente...
all_rois = Dicom_reader.return_rois(print_rois=True)

# Mostra a localizacao de todas as RTs com o ROI especificado no argumento
Dicom_reader.where_is_ROI(ROIName="BrAiNsTeM1")

Dicom_reader.which_indexes_have_all_rois()
Dicom_reader.which_indexes_lack_all_rois()

#

Contour_Names = ['orgaos’]

associations = [ROIAssociationClass(‘orgaos’, ['pulméo €', ‘pulmao d', ‘canalmedular’,
‘coracdo’,'mama contralateral’, 'ptv'])]

Dicom_reader.set_contour_names_and_associations(contour_names=Contour_Names,
associations=associations)

indexes = Dicom_reader.which_indexes_have_all_rois()

pt_indx = indexes[-1]

Dicom_reader.set_index(pt_indx) # This index has all the structures, corresponds to
pre-RT T1-w image for patient 011



#Dicom_reader.get_images_and_mask() # Load up the images and mask for the
requested index

Dicom_reader.get_mask()

Dicom_reader.get_images()

Dicom_reader.get_dose()

image = Dicom_reader.ArrayDicom # image array
mask = Dicom_reader.mask # mask array
dose = Dicom_reader.dose

return dose, mask, image

if _name__ =='_ main__"

parser = argparse.ArgumentParser(description="Cria os arquivos npy (mask,dose,ct)
para 0 modelo de Predicao")

# Argumento de diretorio
parser.add_argument(“directory”, type=str, help="0 diretorio de todos os pacientes")

args = parser.parse_args()

# Prossegue somente se o diretorio for valido

directory = Path(args.directory)

if not directory.is_dir():

print(f"{directory} nao é um diretorio valido.")

else:

# lista de todos os subdiretorios (pacientes) ali dentro
subdirectories = [d for d in directory.iterdir() if d.is_dir()]
print(SUBDIRECTORIES >>>>> ", subdirectories)

# Para cada paciente, cria 0s arquivos numpy3D das dose, mascaras e estruturas
print(len(subdirectories))
for folder in subdirectories:
print((FOLDER >>>>> ', folder)
# Separa os tokens presentes no folder.
tokens = list(folder.parts)
# nao processa o folder com os Dados numpy dos pacientes
# (resolvi coloca-lo no mesmo diretorio dos dados originais dos pacientes)
if (tokens[-1] == 'NumpyPacientesData’):
continue;
# 0 nome diretorio do paciente eh o ultimo token
novoFolder = str(directory) +'/' + 'NumpyPacientesData' + '/' + tokens[-1]
print(novoFolder)
# Cria o diretorio do paciente, caso ainda nao exista
os.makedirs(novoFolder, exist_ok=True)
#sub = str(folder)

#print(sub[len(subdirectories):])
#print(folder[:len(subdirectories)])



dose, mask, ct = createNumpyDataFromPacienteData(folder)

#cria o subdiretorio para a dose

os.makedirs(novoFolder + /' + 'Dose’, exist_ok=True)

# Grava o arquivo Numpy de Dose
np.save(os.path.join(novoFolder + /' + 'Dose’, 'dose’), dose)

#cria o subdiretorio para a Imagens (CT)
os.makedirs(novoFolder +'/' + 'CT', exist_ok=True)
# Grava o arquivo Numpy de Dose
np.save(os.path.join(novoFolder + /' +'CT", 'CT"), ct)

#cria o subdiretorio para a mask

os.makedirs(novoFolder + /' + 'masks', exist_ok=True)

# Grava o arquivo Numpy de Dose
np.save(os.path.join(novoFolder + '/ + 'masks’, 'masks'), mask)



ANEXO 2

Visualizador dos dados 3D NUMPY

para ver se os dados aparentemente foram criados corretamente, a partir dos dados dos
pacientes, mas agora convertidos e Array NumPy 3D (que é o que o modelo de IA usa para
fazer o treinamento).

import numpy as np

import matplotlib.pyplot as plt

import 0s

import pydicom

from matplotlib.widgets import Slider
import argparse

def visualize_3d_numpy_array_Axial(humpy_3d_array):
min = np.min(numpy_3d_array[0])
max = np.max(numpy_3d_array[0])
# Create a figure and axis
fig, ax = plt.subplots()
plt.subplots_adjust(bottom=0.25)

# Initial slice to display
initial_slice =0

# Display the initial slice
img = ax.imshow(numpy_3d_array[initial_slice, :, :], vmin= min+max*0.85, vmax=
max, cmap='gray’, aspect = 1)

# Add a slider for changing the displayed slice

ax_slider = plt.axes([0.25, 0.1, 0.65, 0.03], facecolor='lightgoldenrodyellow")

slider = Slider(ax_slider, 'Slice', 0, numpy_3d_array.shape[0] - 1, valinit=initial_slice,
valstep=1)

# Update the displayed slice when the slider value changes
def update(val):

slice_index = int(slider.val)
img.set_array(numpy_3d_array[slice_index, :, :])
fig.canvas.draw_idle()

slider.on_changed(update)

# Show the plot
plt.show()

def visualize_3d_numpy_array(numpy_3d_array):
n0, n1, n2 = numpy_3d_array.shape
axial_slice=0
coronal_slice= int(n1/2)



sagittal_slice=int(n2/2)

min = np.min(numpy_3d_array[int(n0/2)])
max = np.max(numpy_3d_array[int(n0/2)])
print('min ="', min, 'max ="', max)

# Create a figure and axis
fig, ax = plt.subplots(1, 3, figsize=(12,12))
#plt.subplots_adjust(bottom=0.25)

img_x = ax[0].imshow(numpy_3d_array[axial_slice, :, :], cmap='gray’, aspect = 1.35)
img_y = ax[1].imshow(numpy_3d_array[:, coronal_slice,:], cmap='gray’, aspect = 6.7)
img_z = ax[2].imshow(numpy_3d_array[:, :, sagittal_slice], cmap="gray’, aspect = 4.3)

ax[0].set_title("Axial (X-axis)")
ax[1].set_title("Coronal (Y-axis)")
ax[2].set_title('Sagittal (Z-axis)")

# Add a slider for changing the displayed slice

ax_sliderl = plt.axes([0.25, 0.01, 0.65, 0.03], facecolor="lightgoldenrodyellow")
slider_axial = Slider(ax_sliderl, 'Axial’, 0, n0 - 1, valinit=axial_slice, valstep=1)
ax_slider2 = plt.axes([0.25, 0.06, 0.65, 0.03], facecolor="lightgoldenrodyellow")
slider_coronal = Slider(ax_slider2, 'Coronal’, 0, n1 - 1, valinit=coronal_slice, valstep=1)
ax_slider3 = plt.axes([0.25, 0.11, 0.65, 0.03], facecolor="lightgoldenrodyellow")
slider_sagittal = Slider(ax_slider3, 'Sagittal’, 0, n2 - 1, valinit=sagittal_slice, valstep=1)

# Update the displayed slice when the slider value changes
def update(val):

x_slice = int(slider_axial.val)
img_x.set_array(numpy_3d_array[x_slice, :, :])

y_slice = int(slider_coronal.val)
img_y.set_array(numpy_3d_array[:, y_slice, :])

z_slice = int(slider_sagittal.val)
img_z.set_array(numpy_3d_array[:, :, z_slice])

fig.canvas.draw_idle()
slider_axial.on_changed(update)
slider_coronal.on_changed(update)
slider_sagittal.on_changed(update)
# Show the plot

plt.show()

if _name__ =='_main__"



parser = argparse.ArgumentParser()
parser.add_argument(’-f', '--file', required=True, help="Arquivo Numpy 3D’)
args = parser.parse_args()

numpyFile = args.file
print(numpyFile)

vol = np.load(numpyFile)

# The shape of the stacked images in each plane

# (Axial, Coronal, and Sagittal, respectively)

n0, n1, n2 = vol.shape

# Print the ouput

print("Number of Slices:\n\t", "Axial=", n0, "Slices\n\t",
"Coronal=", n1, "Slices\n\t",
"Sagittal=", n2, "Slices")

#visualize_3d_numpy_array_Axial(vol)
visualize_3d_numpy_array(vol)



