
ÁTILA DA VEIGA

APLICAÇÃO DE ALGORITMOS HEURÍSTICOS
NA OTIMIZAÇÃO DOS PARÂMETROS DE
TRADING COM PARES COINTEGRADOS

São Paulo
2022

ÁTILA DA VEIGA

APLICAÇÃO DE ALGORITMOS HEURÍSTICOS
NA OTIMIZAÇÃO DOS PARÂMETROS DE
TRADING COM PARES COINTEGRADOS

Trabalho apresentado à Escola Politécnica

da Universidade de São Paulo para obtenção

do T́ıtulo de Engenheiro Financeiro – MBA.

São Paulo
2022

ÁTILA DA VEIGA

APLICAÇÃO DE ALGORITMOS HEURÍSTICOS
NA OTIMIZAÇÃO DOS PARÂMETROS DE
TRADING COM PARES COINTEGRADOS

Trabalho apresentado à Escola Politécnica

da Universidade de São Paulo para obtenção

do T́ıtulo de Engenheiro Financeiro – MBA.

Área de Concentração:

Engenharia Financeira

Orientador:

Bruno Augusto Angélico

São Paulo
2022

AGRADECIMENTOS

Aos amigos da Sole Capital, por toda sua valiosa ajuda e parceria; desde
a influência no tema deste trabalho, passando pelas lições sobre prática de
mercado e sobre programação e até na cessão da base de dados, sem a qual a
Parte 3 teria sido imposśıvel. Espero que este trabalho possa lhes ser útil de
alguma forma.

À minha mãe Gilda Mª S. do Carmo e a meu pai Lintney N. da Veiga por
todo seu esforço e sacrif́ıcio dedicados à minha formação e àquilo que não se
traduz em palavras.

E a minha companheira Julia, pela incansável dose de motivação diária que me
faz continuar sempre que posśıvel e recomeçar quando necessário, mas sempre
juntos.

RESUMO

Como consequência da expansão do trading algoŕıtmico nos mercados financeiros glo-
bais; maximizar a eficiência dessas estratégias se tornou uma tarefa indispensável e de-
safiadora. Em paralelo, com a grande evolução do campo de machine learning, novos e
sofisticados algoritmos estão à disposição para as mais variadas aplicações. Inserido neste
contexto, este trabalho, busca analisar se a aplicação desses algoritmos de otimização
heuŕıstica na definição dos parâmetros de negociação da popular estratégia de pairs tra-
ding é capaz de consistentemente melhorar o seu retorno, versus o uso de parâmetros
arbitrários e genéricos. Para atingir tal objetivo, fazemos a análise de cointegração com
vários pares de ativos e selecionamos alguns dos melhores. Também constrúımos 4 va-
riações de algoritmos de otimização baseados no PSO e no Algoritmo Genético. Por fim,
fazemos a otimização dos parâmetros de montagem, reversão e stop-loss desses pares,
usando dados históricos por meio de um backtest. Os resultados dos experimentos apre-
sentam evidências inconclusivas; sugerindo que este problema é sujeito a um grande risco
de sobreajuste na otimização, exigindo maiores cuidados e futuros estudos.

Palavras-Chave – cointegração, pairs trading, particle swarm optimization (PSO),
otimização heuŕıstica.

ABSTRACT

As consequence of algorithmic trading expansion throughout global financial markets;
maximizing the efficiency of those strategies has become an indispensable and challenging
endeavor. Concurrently, great advances in the field of machine learning are making avai-
lable newer and more sophisticated algorithms that can be applied to a diverse range of
problems. In this context, this work tries to analyze if the application of heuristic optimi-
zation algorithms to the definition of the trading parameter of the popular pairs trading
strategy is capable of consistently improve its profitability against arbitrary and generic
parameters. To achieve that, we analyzed for cointegration several pairs of equities and
selected the best. We also built 4 versions of optimization algorithms based on PSO and
Genetic Algorithm. Finally, we optimized the inception, reversion, and stop-loss parame-
ters of those pairs, using historical price data with a backtest. The experimental results
were mixed, suggesting that this problem is prone to overfitting issues as result of the
optimization, which require increased caution and future investigation.

Keywords – cointegration, heuristic optimization, pairs trading, particle swarm op-
timization (PSO).

LISTA DE FIGURAS

1 Exemplo esquemático dos tipos de estratégia 5

2 Indicador de bandas de Bollinger . 7

3 Gráfico de rúıdo branco gaussiano, ACF e PACF 13

4 Gráfico de série AR(1) e seus ACF e PACF 14

5 Gráfico de série MA(1) e seus ACF e PACF 15

6 Gráfico da série random walk . 16

7 Gráfico da série random walk com drift. 17

8 Gráfico da série tendência estacionária. 17

9 Série random walk vs. série I(1) . 18

10 Posição esquemática das part́ıculas em cada fase 30

11 Classificação da fase em função do estado f 31

12 Roleta . 34

13 Seleção Estocástica Universal . 34

14 Operadores de crossover. Fonte: [1] . 35

15 Tamanho da população e performance. Fonte: [2] 36

16 Distribuição Uniforme (pseudo-aleatória) 37

17 Distribuição da sequência de Sobol (quasi-aleatória) 37

18 Métodos de reparo das posições das part́ıculas. Fonte (adaptado): [2] . . . 39

19 Gráfico das funcões teste para d = 2 . 43

20 Resumo dos testes de cointegração . 49

21 Séries temporais dos pares selecionados . 53

21 Séries temporais dos pares selecionados . 54

21 Séries temporais dos pares selecionados . 55

21 Séries temporais dos pares selecionados . 56

22 Fluxo simplificado do algoritmo de backtest 72

23 Fluxo geral dos experimentos (Parte 3) . 75

24 Fluxo da otimização dos parâmetros de pairs trading 76

25 Resultados backtest com pares otimizados 78

LISTA DE TABELAS

1 Perturbações dos coeficientes de acordo com a fase 31

2 Funções teste . 42

3 Pares Selecionados . 51

4 Resultado dos testes de cointegração – Janela de 504 dias úteis 52

5 Intervalo dos coeficientes no PSO-Linear 57

6 Resultados dos otimizadores por função teste 61

6 Resultados dos otimizadores por função teste 62

6 Resultados dos otimizadores por função teste 63

6 Resultados dos otimizadores por função teste 64

7 Média dos resultados dos otimizadores . 64

8 Taxa de acerto média em todas as funções 65

9 Resultados PSO-Linear – população: 64, iterações: 125 67

10 Comparativo com Abbas et al. 68

11 Resultado dos pares com parâmetros otimizados 77

12 Resultado no conjunto de testes t1 da carteira otimizada 78

13 MWRR t1 dos benchmarks . 80

14 Resultado no conjunto de testes t1 da carteira benchmark 81

15 Diferenças de MWRR t1 entre otimizados e benckmarks 82

16 Frequência dos resultados em t1 comparados 82

17 Frequência dos resultados em t0 comparados 82

LISTA DE SÍMBOLOS

ACF Função de autocorrelação
ADF Teste de Dickey–Fuller aumentado
ARIMA Modelo autorregressivo integrado de médias móveis
BOVA11 Ishares Ibovespa Fundo de Indice (ETF)
BOVB11 Bradesco Ibovespa Fundo de Indice (ETF)
CMIG4 Companhia de Energia de Minas Gerais PN
ENGI11 Energisa Unit
ENGI4 Energisa PN
ESE/ELS Variação do algoritimo PSO, desonvolvida por Zhan, Zhi-Hui et al.
ETF Fundos de investimento negociados em bolsa
FIND11 Fundo Itaú replicação do IFNC (ETF)
gbest Part́ıcula com melhor resultado global do PSO
GA Algoritmo Genético
GGBR3 Gerdau ON
GOAU3 Metalúrgica Gerdau ON
GOAU4 Metalúrgica Gerdau PN
MWRR Money Weighted Rate of Return
ON/PN Papéis ordinários e preferenciais da mesma empresa
PACF Função de autocorrelação parcial
PETR3 Petrobrás ON
PETR4 Petrobrás PN

PIBB11 Fundo Itaú replicação do Índice Brasil 50 (ETF)
PSO Particle swarm optimization
SANB11 Banco Santander Brasil Unit
SANB4 Banco Santander Brasil PN
SAPR11 Companhia de Saneamento do Paraná (SANEPAR) Unit
SAPR4 Companhia de Saneamento do Paraná (SANEPAR) PN
SFFE Quantidade de chamadas da função objetivo até 1º sucesso
SMAC11 Fundo Itaú de Small Caps (ETF)
SMAL11 Fundo iShares de Small Caps (ETF)
TA/kSFFE Taxa de acerto dividido por SFFE
TAEE11 Transmissora Aliança de Energia Elétrica Unit
TAEE3 Transmissora Aliança de Energia Elétrica ON
TAEE4 Transmissora Aliança de Energia Elétrica PN

SUMÁRIO

1 Introdução 1

1.1 Objetivo . 1

1.2 Estrutura do trabalho . 2

2 Referencial Teórico 3

2.1 Pairs Trading . 3

2.1.1 Estratégia de trading . 4

2.1.1.1 Modelo CAPM . 4

2.1.1.2 Neutralidade de mercado 4

2.1.1.3 Reversão à média . 5

2.1.1.4 Arbitragem estat́ıstica . 5

2.1.2 Fundamentação econômica . 7

2.1.3 Trading design . 8

2.1.3.1 Parâmetros do trade . 9

2.1.4 Considerações para aplicação prática 10

2.2 Cointegração . 11

2.2.1 Séries estacionárias . 11

2.2.1.1 Séries temporais e estacionariedade 11

2.2.1.2 Rúıdo branco . 12

2.2.1.3 Autocorrelação e modelo AR(p) 12

2.2.1.4 Modelo MA(q) . 14

2.2.2 Séries não-estacionárias . 16

2.2.2.1 Random Walk . 16

2.2.2.2 Raiz unitária . 17

2.2.3 Teste de Engle & Granger . 19

2.2.3.1 Definição e intuição . 19

2.2.3.2 Metodologia do teste . 20

2.2.4 Cointegração vs. correlação . 21

2.3 Algoritmos de otimização . 22

2.3.1 História . 22

2.3.2 Visão geral . 22

2.3.2.1 Definição . 22

2.3.2.2 Classificações . 23

2.3.2.3 Métodos de otimização natural ou populacional 24

2.3.2.4 Teorema NFLT . 25

2.3.3 Particle Swarm Optimization . 26

2.3.3.1 Modelo básico . 26

2.3.3.2 Modelos Adaptativos - Linear 28

2.3.3.3 Modelos Adaptativos - ESE/ELS 29

2.3.4 Algoritmo Genético . 32

2.3.4.1 Genoma e seleção . 33

2.3.4.2 Crossover . 34

2.3.4.3 Mutação . 34

2.3.4.4 População . 35

2.3.5 Tópicos sobre implementação dos algoritmos 36

2.3.5.1 Inicialização . 36

2.3.5.2 Restrições no espaço de busca 37

2.3.5.3 Critério de parada . 39

2.3.5.4 Funções de teste . 40

3 Resultados Experimentais 45

3.1 Metodologia . 45

3.2 Seleção dos pares . 46

3.2.1 Análise de cointegração . 46

3.2.2 Resumo descritivo da análise de cointegração 48

3.2.3 Pares selecionados para os experimentos 50

3.3 Otimizadores . 57

3.3.1 Construção e caracteŕısticas . 57

3.3.2 Teste dos otimizadores . 58

3.3.3 Resultados dos testes . 59

3.3.4 Análise e seleção dos parâmetros de otimização 65

3.3.5 Comparativo de performance com literatura 68

3.4 Backtest . 69

3.4.1 Função objetivo do problema de pairs trading 69

3.4.2 MWRR . 70

3.4.3 Conjunto de treino e conjunto de teste 70

3.4.4 Diagrama do funcionamento . 71

3.4.5 Limitações e problemas do backtest 72

3.4.5.1 Vieses . 72

3.4.5.2 Limitações . 74

3.5 Aplicação do otimizador no pairs trading 74

3.5.1 Rotina de otimização . 75

3.5.2 Resultados da otimização . 76

3.5.3 Benchmark . 80

3.5.4 Comparação dos resultados com benchmark 81

3.5.4.1 Comparação no ńıvel dos pares 81

3.5.4.2 Comparação no ńıvel da carteira 83

3.5.5 Discussão dos resultados . 84

4 Considerações Finais 86

4.1 Contribuições do trabalho . 86

4.2 Tópicos para investigação futura . 87

Referências 89

Anexo A – Backtests 91

A.1 Parâmetros otimizados . 91

A.2 Benchmark – Conservador . 94

A.3 Benchmark – Moderado . 95

A.4 Benchmark – Agressivo . 96

Anexo B – Códigos em Python 98

B.1 Cointegração . 98

B.2 Algoritmo Genético . 104

B.3 PSO . 113

1

1 INTRODUÇÃO

1.1 Objetivo

Ainda que o campo das “finanças quantitativas” tenha se desenvolvido desde a pri-

meira metade do século XX – com obras seminais como a teoria moderna de portfólio

de Harry Markowitz, o cálculo estocástico de Itô ou a precificação de derivativos com

Black&Scholes entre tantos outros – foi somente no final desse mesmo século que o mundo

viu a aplicação direta e sistemática das finanças quantitativas no mundo do trading.

A chamada “Revolução Quant”1 – que teve entre seus protagonistas figuras como

Jim Simons e Robert Mercer, um matemático e o outro cientista da computação – foi a

profunda transformação dos mercados resultante da união das finanças quantitativas com

a execução sistemática no mercado por meio de sistemas computacionais.

Estima-se2 que abordagem de trading algoŕıtmico responda por algo em torno de 85%

do volume financeiro negociados nos mercados globais. Dentre os agentes que operam

desta forma há toda sorte de investidores institucionais como bancos e corretoras globais,

fundos de investimento e até clubes de investimento e pessoas f́ısicas. Esses agentes

dispõe dos mais diferentes ńıveis de tecnologia, recursos e patrimônio sob gestão. Uma

das consequências diretas dessa grande presença do trading algoŕıtmico é a dificuldade de

se encontrar estratégias rentáveis e eficientes ao longo do tempo. Ou seja, é preciso ser

cada vez mais eficiente, ágil e preciso no desenvolvimento e parametrização dos algoritmos.

Inserido nesse contexto, esse trabalho tem como objetivo investigar se a aplicação de

otimizadores heuŕısticos para definição dos parâmetros de montagem, reversão e stop-loss

da estratégia de pairs trading são capazes de torná-la mais eficiente e lucrativa. Como

se trata apenas de um trabalho de conclusão de curso, nossos objetivos são modestos.

Iremos fazer uma revisão teórica seguida de alguns experimentos com objetivo puramente

1Do livro de autoria do jornalista Gregory Zuckerman a sobre a vida de Jim Simons, entitulado “The
Man Who Solved the Market: How Jim Simons Launched the Quant Revolution”.

2 [3]

2

exploratório e de alcance restrito à implementação feita neste trabalho.

1.2 Estrutura do trabalho

O trabalho está organizado em quatro partes. Na primeira parte temos apenas a

presente introdução. Na Parte 2, temos a revisão dos principais conceitos e teorias que

são importantes para o tema deste trabalho e que serão, direta ou indiretamente, utilizados

na parte experimental.

Os conceitos abordados na Parte 2 pertencem aos três campos que o tema deste

trabalho pertence: pairs trading, análise de cointegração de séries temporais e algoritmos

de otimização heuŕıstica.

A Parte 3 aborda a implementação constrúıda para este trabalho dos algoritmos de

otimização e de um backtest, que simula a estratégia de pairs trading com alguns ativos

listados na B3. É também na Parte 3 que fazemos a aplicação do otimizador no pairs

trading e analisamos os resultados obtidos.

Por fim, a Parte 4 contém as considerações finais, as sugestões de tópicos para inves-

tigação futura, bem como anexos com alguns dados e códigos utilizados na Parte 3.

3

2 REFERENCIAL TEÓRICO

Nesta Parte 2 trazemos uma śıntese da teoria necessária para se construir os modelos

e algoritmos empregados na Parte 3 e se delinear as conclusões apresentadas na Parte 4.

Os tópicos abordados aqui são (i) a estratégia de pairs trading, (ii) cointegração de séries

temporais e (iii) PSO e GA, ambos algoritmos de otimização heuŕıstica.

2.1 Pairs Trading

Pairs trading ou como é vulgarmente chamada de Long&Short1 é , a grosso modo, uma

estratégia que consiste em se tomar uma posição comprada em um ativo simultaneamente

a uma posição vendida em outro, visando lucrar com uma distorção do preço relativo de

ambos ativos. Veremos mais em detalhe esses conceitos mais adiante; porém antes vejamos

um pouco do histórico desta estratégia.

Estratégias desse tipo estão presentes desde o ińıcio dos mercados de ações. Uma

evidência disso é a estratégia com ações irmãs de Jesse Livermore no ińıcio do século

XX2. Porém, foi somente com a expansão dos hedge funds na segunda metade do século

passado e desenvolvimentos nas áreas de tecnologia da informação e comunicações que

essa estratégia se popularizou. Em sua forma moderna, geralmente é atribúıdo à Nunzio

Tartaglia e sua equipe no banco Morgan Stanley em 1987 a primeira implementação

sistemática de pairs trading3. Desde então, a estratégia de popularizou sendo comum

encontrá-la nas lâminas de vários fundos de investimento em operação.

1Rigorosamente, a estratégia Long&Short é uma espécie da qual pairs trading é gênero. Porém, diante
do fato que coloquialmente os termos são empregados como sinônimo e que não é objetivo deste trabalho
abordar as demais estratégias; faremos uso intercambiável dos termos neste trabalho.

2 [4, p.21]
3 [5, p.73]

4

2.1.1 Estratégia de trading

As principais caracteŕısticas do pairs trading são as de que ele é: (i) market-neutral,

(ii) de reversão à média e (iii) do tipo arbitragem estat́ıstica.

2.1.1.1 Modelo CAPM

Para definir de maneira mais formal o que é a caracteŕıstica de neutralidade de mer-

cado do pairs trading, precisamos antes dos conceitos do CAPM, Capital Asset Pricing

Model, proposto por William Sharpe. No CAPM o retorno esperado rω de um portfólio

ω é modelado como um somatório de componentes de retorno:

E[rω] = βω(E[rm]− rf) + rf + E[θω] (2.1)

O termo (rm − rf) que representa o prêmio de risco de mercado, ou seja, o excedente de

retorno esperado do mercado com relação ao retorno livre de risco. Geralmente, como

ativo livre de risco é considerado um t́ıtulo público que remunera à taxa básica de juros rf .

Já o θω pode ser interpretado como componente residual de retorno, descorrelacionado

dos demais componentes e cujo valor teórico esperado é igual a zero4. Por fim, β é a

sensibilidade do portfólio ao retorno esperado de mercado; definido como:

βω =
cov(rω, rm)

var(rm)
= ρω,m

σω
σm

(2.2)

Esta formulação implica que, se o mercado tiver retorno positivo, o retorno esperado do

portfólio será também positivo por um fator β, ∀β > 0. Dito de forma mais coloquial, o

β indica o quão “correlacionado” um portfólio é com relação ao mercado.

2.1.1.2 Neutralidade de mercado

Agora podemos definir que as estratégiasmarket neutral são aquelas cujo portfólio tem

βω = 0. Para se obter isto, é preciso comprar uma unidade do ativo 1 e simultaneamente

vender x unidades do ativo 2 gerando:

E[rω] =β1(E[rm]− rf) + rf + E[θ1]− x (β2(E[rm]− rf) + rf + E[θ2]) =⇒

E[rω] =(β1 − xβ2)(E[rm]− rf) + rf (1− x) + E[θ1 − xθ2]

Para que o portfólio fique descorrelacionado com os movimentos de mercado, ou seja

βω = 0, é necessário que x = β1
β2
. A estratégia de pairs trading implica uma cuidadosa

4 [5, p.4]

5

escolha de x. Note que, uma vez que βω = 0 o que resta é o termo rf (1− x), cujo retorno

esperado é conhecido e o termo do retorno residual E[θ1 − xθ2]. As estratégias de pairs

trading devem buscar prever o comportamento deste termo residual, de modo a obter

lucro com a operação.

2.1.1.3 Reversão à média

Visto que o valor esperado E[θ] = 0; logo devemos esperar que E[θ1 − xθ2] = 0. Ou

seja, o termo residual deve apresentar forte comportamento de reversão à média. O termo

residual pode ser equiparado ao que é popularmente conhecido como spread, ou seja a série

temporal da relação dos preços dos dois ativos, ponderados por suas quantidades. Veremos

em detalhes na seção 2.2 como encontrar pares de ativos que satisfaçam esta condição; bem

como comparar essas estratégias às suas contrapartes, chamadas de direcionais ou trend

following usando séries temporais. Por ora, vejamos apenas um exemplo esquemático do

trading design de ambas modalidades na Fig.1.

Figura 1: Exemplo esquemático dos tipos de estratégia

(a) reversão à média (b) direcional

A linha laranja representa o preço ou retorno do ativo. As setas verdes representam sinal
hipotético de compra. As setas vermelhas, sinal hipotético de venda. Note que no paradigma de
reversão à média, a montagem da operação se faz quando o preço se afasta da média – linha
pontilhada em (a); e no direcional, busca-se acompanhar a evolução da linha de tendência –

linha pontilhada em (b).

2.1.1.4 Arbitragem estat́ıstica

Agora, conhecendo o que é o spread e sua relação com o termo de retorno residual,

podemos partir para a última caracteŕıstica da definição de pairs trading utilizada neste

trabalho – a arbitragem estat́ıstica. Nessa modalidade de pairs trading se faz uso de

ferramental estat́ıstico e de séries temporais sobre a série formada pelo spread para se

definir quais pares realizar a operação e se prever o momento adequado para montá-la.

6

Isto explica a parte da “estat́ıstica” na arbitragem estat́ıstica. Convém fazer algumas

observações sobre a parte da “arbitragem”.

A definição de livro-texto de arbitragem é aquela situação cuja distorção nos preços de

dois ativos é tal que é posśıvel montar uma posição capaz de auferir lucro – ou no mı́nimo

não sofrer prejúızo – incorrendo risco zero. A estratégia de pairs trading definitivamente

não é livre de risco e, portanto, não se enquadra nesta definição canônica. O termo é

empregado aqui no sentido de arbitragem de preços relativos, ou seja, busca-se explorar

distorções nos preços que apresentam certa relação histórica ou matemática ao longo do

tempo.

Abordagens alternativas de pairs trading A arbitragem estat́ıstica não é a

única abordagem de pairs trading e talvez sequer seja a mais comum. Ela difere, por

exemplo, da arbitragem de risco de pares ; abordagem que busca explorar os desvios de

preço que podem surgir entre os papéis de duas empresas num contexto de aquisição de

controle societário5. A fundamentação econômica neste caso, reside em eventuais desvios

na paridade das quantidades das ações na empresa consolidada. Num caso hipotético

onde não há riscos, incertezas e especulação sobre o processo de aquisição, deve se esperar

que não haverá desvios, portanto o termo residual de retorno é zero e nenhum lucro pode

ser auferido com esse trade.

Uma outra abordagem importante é a abordagem fundamentalista. Neste caso, me-

diante o criterioso estudo dos balanços financeiros, planos de investimento e direção das

empresas de um determinado setor ou atividade o analista projeta um intervalo de spread

entre os preços das empresas que seja coerente com suas projeções. Na eventualidade do

mercado desviar-se desse intervalo, monta-se a posição na expectativa de que o mercado

revise suas estimativas e os preços relativos retornem ao patamar previsto.

Há ainda a abordagem da análise técnica. Essa se refere aos métodos de análise

dos gráficos dos preços em conjunto com uma variedade de indicadores que acusam ao

analista as oportunidades de se montar a operação. Esses indicadores são baseados nas

séries históricas: (i) dos preços ou do spread ; (ii) nos volumes financeiros e (iii) em padrões

visuais formados pelo gráfico.

Um indicador muito utilizado para se montar estratégias de Long&Short pela análise

técnica são as bandas de Bollinger (Fig.2). Não vamos aprofundar este tema, mas apenas

apontar que o setup deste indicador consiste: (i) numa média móvel da razão dos preços

5 [5, p.139-149]

7

(geralmente 21 dias); (ii) duas médias móveis afastadas da média central por dois desvios-

padrão. Quando a média central encontra-se estacionada e o preço ”rompe”uma das

linhas superior ou inferior, é uma indicação para montar a operação. Devido a sua ampla

utilização; na Parte 3 utilizaremos este critério de 2 desvios para construir um benchmark

contra o qual nosso modelo será testado.

Figura 2: Indicador de bandas de Bollinger

Gráfico do Ibovespa de nov-21 a abr-22 mostrando as bandas de Bollinger. A linha preta
representa a (i) média móvel de 21 dias e (ii) a linhas azuis, a média móvel espaçada por dois

desvios da média central. Fonte: captura de tela de www.investing.com.

2.1.2 Fundamentação econômica

No item anterior, já mencionamos a fundamentação econômica das estratégias de

arbitragem de risco e da arbitragem fundamentalista; que é a paridade das ações em um

evento corporativo no primeiro caso e a performance das empresas, no segundo. Iremos

brevemente observar a fundamentação econômica da estratégia de arbitragem estat́ıstica

e da análise técnica, que são muito parecidas; se não idênticas.

A simples tendência de reversão à média, ainda que estabelecida por cuidadosa análise

estat́ıstica, não se basta como racional econômico para explicar esta tendência, tampouco

o porquê se espera que o termo θ1−xθ2 seja zero. É a hipótese de eficiência dos mercados

que estabelece a conexão da arbitragem estat́ıstica com sua fundamentação econômica.

Segundo esta hipótese toda a informação conhecida sobre a realidade dos ativos em questão

está refletida em seus preços. Porém, por vezes no curto prazo, pequenas flutuações ou

desvios podem surgir e essas são o foco dos arbitradores estat́ısticos. O movimento em

conjunto desses agentes, reforça a eficiência dos mercados, eliminando rapidamente estes

8

desvios6.

Essa dependência da hipótese de mercado eficiente pode não ser segura o suficiente

para vários agentes no mercado. Por esta razão eles procuram restringir o universo de

combinações posśıveis de ativos para aqueles que ofereçam um rationale econômico adi-

cional. Alguma das restrições dos ativos pareados são:

Mesma empresa No mercado brasileiro, uma empresa pode emitir papéis com direito

a voto (ações ordinárias ou ON) e papéis que recebem dividendos com preferência,

porém sem voto (ações preferenciais ou PN). É posśıvel encontrar casos onde o termo

residual é grande o suficiente para se obter lucro com uma operação de Long&Short

envolvendo as ON e PN da mesma empresa. Pode-se dizer que neste caso a funda-

mentação econômica é absoluta.

ETF’s Vários EFT’s e ı́ndices buscam replicar uma mesma carteira, com mı́nimas dife-

renças de portfólio. Ou ainda, ı́ndices que refletem movimentos econômicos corre-

lacionados, como por exemplo ETFs de empresas exportadoras e o câmbio.

Intra-setorial Nesta modalidade, o universo de combinações é restrito às empresas

que operam num mesmo setor ou que estão sujeitas aos mesmo fatores de risco

sistêmico. Esta é uma maneira de comparar diretamente no que diferem duas em-

presas, isolando-se os demais efeitos sistêmicos. Esta modalidade carrega mais risco

que as anteriores; pois através das suas atividades as empresas podem se diferen-

ciar, modificar sua condições de competitivade, desconfigurando o comportamento

estacionário do spread.

2.1.3 Trading design

Já sabemos que a estratégia de pairs trading requer um par de ativos cujo termo de

retorno residual apresente tendência à média E[θ1 − xθ2] = 0 e que um portfólio deste

tipo é construido com dois ativos, sendo que para cada unidade do ativo 1 devemos ter

x unidades do ativo 2 de modo a satisfazer x = β1
β2
. Para completarmos a visão geral

sobre a execução dessa estratégia devemos tecer alguns comentários sobre sua montagem,

reversão e desafios práticos envolvidos.

6 [4, p.77-79]

9

2.1.3.1 Parâmetros do trade

O desafio de definir os parâmetros do trade é o tema central deste trabalho e é assunto

da maior importância para a execução prática desta estratégia.

Montagem O desafio da montagem do trade implica definir a magnitude do desvio

que o spread precisa apresentar para se abrir uma posição com boa expectativa de lucro.

Vimos um exemplo disso na seção 2.1.1.4 quando mencionamos as bandas de Bollinger.

Naquela técnica, uma posição de Long&Short é aberta assim que o preço romper a faixa de

dois desvios-padrão da média, seja para baixo ou para cima. Não há nada intrinsecamente

especial com relação aos dois desvios; porém é um ńıvel amplamente aceito e utilizado no

mercado.

A definição de quantos desvios se utilizar suscita um trade-off entre (i) uma entrada

mais tardia (mais desvios) com potencial de lucro maior, porém menos frequente ou (ii)

uma entrada mais próxima à média, mais frequente e com ganhos menores. Esta decisão

tem grande impacto no retorno total que esta estratégia pode entregar; bem como afeta

sobremaneira o risco do portfólio.

Reversão A reversão diz respeito ao atingimento do objetivo do trade. Este parâmetro

pode ser definido como um valor financeiro, o atingimento da média do spread ou mesmo

uma “distância percorrida” em termos de desvio-padrão. Neste trabalho utilizamos como

parâmetro uma fração da volatilidade histórica do spread em direção à média. Optamos

por esta abordagem devido a facilidade de implementação.

Stop-loss Diferente dos dois parâmetros anteriores, o stop-loss não é um parâmetro

fundamental do trade; mas sim, uma técnica de gestão de risco. Ele significa encerrar

uma posição que não está convergindo para a média conforme as expectativas, com vistas

a evitar um eventual agravamento das perdas geradas por este erro. Neste trabalho

utilizamos como stop-loss uma fração da volatilidade histórica do spread em direção oposta

à média.

Designs alternativos Pode-se dizer que o desenho para montagem da estratégia

que apresentamos aqui é um das alternativas mais simples e diretas dentre as quais se vê

no mercado. Optamos por seguir desta maneira, dado que nosso objetivo focal é analisar

a contribuição dos algoritmos de otimização na definição desses parâmetros ou mesmo na

10

otimização de outros quaisquer.

Convém apenas mencionar algumas alternativas mais sofisticadas, dentre a imensa

diversidade que se pratica no mercado. Por exemplo, o uso de previsão em séries tem-

porais, onde se modela a evolução do spread com modelos ARIMA, GARCH, etc. Há

também o uso de trailing stops ; em que o encerramento da posição é feito por um ńıvel

que “acompanha” a alta do ativo, permitindo que um erro na expectativa de convergência

que favoreça o trade não seja prematuramente encerrado. Há também abordagens não-

paramétricas, que prescindem que o modelo arbitre ńıveis espećıficos, como aquela pro-

posta por Vidyamurthy7. Numa interseção com a análise técnica, há estratégias que usam

vários indicadores gráficos simultaneamente que geram um “́ındice de força” a medida que

mais instrumentos acusam favoravelmente ao trade. Por fim, vale mencionar o uso conju-

gado destas técnicas com a análise fundamentalista das empresas; o que, por óbvio, deixa

de ser uma estratégia totalmente automatizada e estat́ıstica, mas pode trazer grandes

benef́ıcios em termos de assertividade e retorno.

2.1.4 Considerações para aplicação prática

Para encerrar esta seção, vamos enumerar alguns dos desafios práticos que surgem

na implementação das estratégias de pairs trading. O objetivo disso é já antecipar e dar

transparência das escolhas feitas no desenvolvimento da metodologia dos experimentos na

Parte 3.

Liquidez É de extrema importância que ambos os papéis tenham volume de negociação

diária suficiente para se permitir tanto a entrada, quanto a sáıda da totalidade da

posição sem afetar excessivamente o mercado. A este fenômeno de impacto no preço

devidao a baixa liquidez, chama-se price slippage.

Custos A lei dos grande números joga a favor das estratégias baseadas em estat́ıstica.

Porém, isso implica fazer várias operações no mercado, o que, por sua vez, joga a

favor da rentabilidade das corretoras em detrimento do seu portfólio. Por esta razão,

deve-se dar especial atenção aos custos de corretagem, emolumentos, impostos etc

e preferencialmente inclúı-los na modelagem.

Venda a descoberto A parte “short” do Long&Short requer cuidados adicionais. Sendo

um mercado de balcão (OTC), é preciso garantir que há contratos suficientes dis-

pońıveis para se alugar antes de se montar a operação. Além dos custos normais de

7 [5, p.118-138]

11

operação, há a taxa de aluguel – que remunera o cedente do aluguel – e as taxas de

corretagem espećıficas para operações de venda a descoberto.

Garantias Ainda como consequência da parte “short” a B3 exige depósito de garantia

de no mı́nimo 90% 8 do valor financeiro da operação descoberta.

Tamanho da posição O tamanho de cada posição de pairs trading com relação ao

portfólio como um todo, ou mesmo, a decisão sobre qual financeiro fazer cada

operação de Long&Short é, por si só, um tópico que merece muitas páginas a res-

peito; mas foge ao nosso escopo. Como sugestão de leitura a quem possa interessar,

o critério de Kelly determina estatisticamente o tamanho da “aposta” que maximiza

o retorno global após grande número de rodadas.

2.2 Cointegração

Como vimos na seção anterior, para que um par de ativos seja eleǵıvel à estratégia

de pairs trading é indispensável que seu spread apresente a caracteŕıstica de reversão à

média. Na presente seção, apresentaremos os fundamentos teóricos da cointegração de

séries temporais e um dos métodos para obtê-la, desenvolvido por Engle & Granger9. No

entanto, antes, precisamos apresentar superficialmente alguns conceitos básicos de séries

temporais, indispensáveis para a formulação desse método.

2.2.1 Séries estacionárias

2.2.1.1 Séries temporais e estacionariedade

Uma série temporal discreta é definida como uma sequência ordenada no tempo de

uma dada variável aleatória; formalmente chamado de um processo estocástico definido

como10:
{y(z, t), z ∈ ζ, t ∈ τ}

{y}Tt=1 = {y1, y2, ..., yT−1, yT}
(2.3)

Onde t representa o ı́ndice que indica o tempo, pertencente ao intervalo temporal τ . Já

y(∗, t) representa a variável aleatória associada ao instante t e z representa o processo

estocástico de formação desta variável aleatória, que pertence um dado espaço ζ. O

8Valor do deságio válido em outubro-22, aplicados às LFT emitidas pelo Tesouro Federal. Outros
tipos de ativo tem deságios distintos.

9 [6]
10 [7, p.3]

12

estudo das séries temporais se ocupa de modelar este processo estocástico z, seus padrões

e sua estrutura interna de modo a explicar e prever o comportamento de y.

Uma série temporal é dita estacionária em covariância11 se apresenta as seguintes

caracteŕısticas:
E [yt] =µ <∞, ∀t ∈ τ

E [(yt − µ)(yt−j − µ)] =γj, ∀t, j ∈ τ e j ∈ Z
(2.4)

Isto significa, para qualquer t que se escolha, a série sempre terá uma média finita igual

a µ e uma covariância igual γj; ou seja, para qualquer janela de duração j a série terá a

mesma média e uma covariância que depende apenas de j.

2.2.1.2 Rúıdo branco

A série estacionária mais simples que há, se chama rúıdo branco e é um processo ϵt

caracterizado pelas condições descritas pelas equações (2.5). Frequentemente ϵt é uma

variável aleatória extráıda de uma distribuição normal N ∼ (0, σ2), sendo então chamada

de rúıdo branco Gaussiano. Na Fig.3 o gráfico12 da série oscila em torno de sua média

zero e em ambos os gráficos de ACF13 e PACF14 indicam que não há qualquer tipo de

autocorrelação significativa.

E[ϵt] = 0

E[ϵ2t] = σ2

E[ϵt1ϵt2] = 0, ∀ t1 ̸= t2

(2.5)

2.2.1.3 Autocorrelação e modelo AR(p)

A autocorrelação ou correlação serial é uma propriedade que algumas séries tem-

porais apresentam de que a série se parece com uma versão de si própria defasada

por alguns instantes de tempo. A covariância de duas variáveis aleatórias é dada por

11Também chamada de estacionariedade em sentido amplo, é a caracteŕıstica mais utilizada na ma-
nipulação de séries temporais. Há também a chamada estacionariedade em sentido estrito, na qual a
distribuição conjunta das probabilidades de duas sequencias diferentes da série são iguais, independen-
temente de qual seja o tempo escolhido. A estacionariedade em sentido estrito implica necessariamente
a estacionariedade em sentido amplo. Neste trabalho, nos referimos à estacionaridade no sentido amplo
sempre que mencionarmos que uma série é estacionária.

12os gráficos nesta seção foram constrúıdos a partir de séries artificiais geradas por números pseudo-
aleatórios. Essas séries utilizam o algoritmo de séries aleatórias do pacote numpy do Python, com
seed=42, portanto elas podem ser comparadas entre si no sentido de que o termo estocástico ϵt é idêntico.

13ACF ou função de autocorrelação. Veja seção 2.2.1.3
14PACF ou função de autocorrelação parcial. Veja seção 2.2.1.3

13

Figura 3: Gráfico de rúıdo branco gaussiano, ACF e PACF

cov(X, Y) = E [(X − E[X])(Y − E[Y])]. Para se comparar a covariância de um mesmo

processo estocástico que seja estacionário, basta aplicarmos um atraso j na série; resul-

tando em cov(yt, yt−1) = E [(yt − µ)(yt−1 − µ)] = γj.

ACF Como vimos que, para séries estacionárias, a média é constante e independe

do tempo; pudemos substituir os valores esperados das janelas de y por µ. Portanto, ao

se substituir o termo de autocovariância γ na equação geral para correlação, derivamos a

equação de autocorrelação ou ACF, conforme (2.6)15. Por fim, dado que em casos práticos

dispomos apenas de uma amostra da série, a autocorrelação amostral se dá pela equação

(2.7). A função de ACF desempenha papel fundamental na identificação do q das séries

que tenham caracteŕısticas que possam ser modeladas com MA(q).

corr(X, Y) =
cov(X, Y)√

σ2
Xσ

2
Y

=⇒ γj
γ0

= ρj (2.6)

ρ̂j =

∑T
t=j+1(yt − µ̂)(yt−j − µ̂)∑T

t=1(yt − µ̂)2
(2.7)

PACF A função de autocorrelação parcial é constrúıda a partir da ACF, e explicita

correlação condicional para cada termo adicionado. O PACF é útil para se determinar a

15 [8, p.51-52]

14

ordem q de um modelo AR(p).

AR(q) Na sua forma mais simples – autocorrelação de primeira ordem ou AR(1) –

a modelagem da série é dada pela equação (2.8). O valor assumido por ϕ é de especial

interesse; pois além de indicar a “persistência” do termo AR, a estacionariedade do modelo

AR(1) depende que a condição |ϕ| < 1 seja verdadeira16. Se |ϕ| > 1 é fácil perceber

que, num longo peŕıodo de tempo, a série diverge para |y∞| = ∞ devido ao acúmulo

dos choques estocásticos. Um caso especial, chamado de random walk acontece quando

|ϕ| = 1, que veremos em detalhe na seção 2.2.2.1. O modelo AR(1) pode ser generalizado

para um modelo de ordem p, chamado de AR(p), conforme descrito em (2.9).

yt = ϕyt−1 + ϵt (2.8)

yt = ϕ1yt−1 + ϕ2yt−2 + ...+ ϕp−1yt−p+1 + ϕpyt−p + ϵt (2.9)

Figura 4: Gráfico de série AR(1) e seus ACF e PACF

2.2.1.4 Modelo MA(q)

Um processo de média móvel de primeira ordem MA(1) é definido conforme a equação

(2.10). Diferentemente do modelo AR, o modelo MA sempre será estacionário, para

16As condições para estacionariedade de modelos de ordem superior são mais complexas e exigem maior
formulação, que foge ao escopo deste trabalho.

15

quaisquer valores que o coeficente θ possa assumir. Na (2.11) vemos a generalização para

o modelo com q atrasos.

yt = θϵt−1 + ϵt (2.10)

yt = θ1ϵt−1 + θ2ϵt−2 + ...+ θq−1ϵt−q+ + θqϵt−q + ϵt (2.11)

Ao passo que uma série AR(p) é identificada por p atrasos relevantes no PACF e um

padrão decrescente ou alternante no ACF; uma série MA(q) apresenta q peŕıodos com

autocorrelação significativa na ACF e por um padrão decrescente ou alternante em seu

PACF17.

Figura 5: Gráfico de série MA(1) e seus ACF e PACF

Modelo ARMA(p,q) Para fechar a discussão sobre modelos de séries estacionárias

mencionaremos o modele ARMA(p,q); que nada mais é que um modelo AR de ordem p

combinado com um modelo MA de ordem q. A equação que descreve este processo pode

ser obtida somando as equações (2.9) e (2.11).

17 [7, p.12]

16

2.2.2 Séries não-estacionárias

2.2.2.1 Random Walk

O processo estocástico definido pela equação (2.12) é chamado de random walk. Note

que ele é idêntico a uma modelo AR(1) com ϕ = 1, violando a condição de estacionarie-

dade, conforme dito acima. Sabendo que ϵt tem uma distribuição simétrica em torno da

média, yt tem 50% de chances de aumentar ou de diminuir, o que se reflete no longo prazo

como uma série que evolui sem nenhuma tendência ou padrão discerńıvel (ver Fig.6).

yt = yt−1 + ϵt (2.12)

O processo random walk, também chamado de difference-stationary é amplamente uti-

Figura 6: Gráfico da série random walk

lizado em finanças para se modelar uma série temporal de preços sujeitas a choques de

log retornos que não tem comportamento de reversão à média nem tem previsibilidade

prática18.

Random walk com drift Uma variação do modelo de random walk é obtida

introduzindo-se uma constante d na equação (2.12) resultando em: yt = d + yt−1 + ϵt

(ver Fig.7). Esse termo adiciona uma tendência que evolui com o tempo t · d; muito di-

ferente do que acontece quando adicionamos uma constante qualquer no modelo ARMA.

No caso do ARMA, a constante tem o efeito de redefinir a média da série.

18 [9, p.72]

17

Série de tendência estacionária Convém mencionar aqui as diferenças do random

walk com drift para um modelo estacionário com tendência do tipo: yt = β0 + β1t + ϵt.

Neste caso, o termo de rúıdo branco é estacionário em torno da média β0+β1t, que evolui

com tempo. E a variância é constante, idêntica à variância do rúıdo branco (2.3). Esta

série pode ter o termo de tendência eliminado através de uma regressão linear, resultando

em uma série estacionária. O mesmo não pode ser obtido com o random walk com drift,

que precisa ter sua raiz unitária removida, como veremos adiante.

Figura 7: Gráfico da série random walk
com drift.

Figura 8: Gráfico da série tendência esta-
cionária.

Linha pontilhada representa o termo de tendência d no modelo random walk e β no modelo de
tendência estacionária; ambos -0.1.

2.2.2.2 Raiz unitária

Como vimos, a presença de um coeficiente ϕ = 1 no modelo AR é suficiente para

torná-lo não-estacionário. Quando se reescreve a equação (2.9) na forma da equação

caracteŕıstica do modelo, encontraremos pelo menos uma raiz fora do ćırculo unitário19,

dáı advém o nome raiz unitária. O modelo random walk é o protótipo mais simples de

um modelo que contém uma raiz unitária. Obviamente que que não podemos utilizar

um modelo ARMA para modelar uma série não-estacionária; no entanto há uma técnica,

chamada de diferenciação que permite eliminar a raiz unitária tornando-a apta a ser

modelada com ARMA.

A técnica de diferenciação consiste em se subtrair a série yt de uma versão atrasada de

si própria yt−1. É posśıvel que a série contenha múltiplos de ráızes unitárias, o que requer

sucessivas diferenciações até se obter um modelo estacionário. Nomeia-se esse modelo com

diferenciação de ARIMA(p,d,q) onde o “I” significa integrado20 e o parâmetro d significa

19Diz respeito ao ćırculo unitário inscrito num plano complexo que mapeia as ráızes da equação carac-
teŕıstica.

20O termo integrado é utilizado, pois é o inverso da operação de diferenciação.

18

a ordem de integração, ou seja, a quantidade de diferenciações aplicadas à série. Em

finanças, o procedimento de calcular os retornos de uma série de preços – série esta não-

estacionária – pela diferença dos logaritmos dos preços, se assemelha ao procedimento de

eliminação a raiz unitária.

Figura 9: Série random walk vs. série I(1)

Teste de raiz unitária Para se detectar a presença de uma raiz unitária em uma série

– e portanto se ela é estacionária ou não – é amplamente utilizado o teste de Augmented

Dickey-Fuller (ADF). O teste de ADF tem a capacidade de determinar a presença de

raizes unitárias mesmo em modelos com ordem de diferenciação d > 1.

Imagine uma série AR(p) que pode conter tanto drift quanto tendência estacionária

para a qual se deseja testar a presença de ráızes unitárias. Usando regressão (equação

2.1321) é posśıvel construir um estimador ψ sobre o qual são montadas seguintes hipóteses

do teste:

 H0 : ψ = 1

H1 : ψ ̸= 1
. Aos rejeitar-se a hipótese nula, pode-se dizer que a série não

contém nenhuma raiz unitária e é, portanto, estacionária.

Dickey e Fuller calcularam as distribuições deste estimador ψ para diferentes restrições

(cada uma representando um dado cenário i) aplicadas à regressão, onde o termo ci pode

ser: (i = 1) sem drift e sem tendência, (i = 2) com drift e sem tendência e (i = 3) com

drift e com tendência. A hipótese nula é rejeitada quando a estat́ıstica de interesse τi

(2.14) para o tipo de série i é menor que um dado valor cŕıtico de τi∗ , conforme cálculos

21 [9, p.76-77]

19

elaborados por Dickey e Fuller para cada intervalo de confiança e tamanho da amostra22

xt = ci + ψxt−1 +

p−1∑
i=1

ϕixt−q + ϵt (2.13)

τi =
ψ̂ − 1

σψ̂
(2.14)

Procedimento de teste O teste de ADF requer como parâmetro o tipo de modelo que

melhor descreve a série, aquilo que chamamos de cenários i na seção anterior. Isto requer

um conhecimento prévio sobre a existência desses termos constantes ou de tendência; o

que em situações práticas geralmente não é posśıvel. Além disso, a qualidade do teste

ADF é prejudicada a cada restrição que é exclúıda do termo ci. Por este motivo, como

guia prático, a seguinte sequência é recomendada23.

1. Inicia-se o teste assumindo o modelo mais amplo, com drift e com tendência. Se

rejeitada H0, conclui-se que a série é estacionária e o teste está encerrado.

2. Caso contrário, testa-se o modelo apenas com a tendência. Se rejeitadaH0 conclui-se

que a série é estacionária e encerra-se o teste.

3. Por fim, anula-se o termo do drift e repete-se o teste. Caso H0 permanece válida,

conclui-se que a série tem definitivamente uma raiz unitária.

2.2.3 Teste de Engle & Granger

2.2.3.1 Definição e intuição

Agora temos a fundamentação teórica mı́nima para abordarmos o teste de cointegração

de séries temporais. Duas séries yt e xt são ditas cointegradas se (i) ambas são são processos

estocásticos não-estacionários, ou seja, integradas de ordem I(1); e (ii) que exista uma

relação linear do tipo ut = yt − βxt onde a série resultante ut é estacionária24

Uma noção intuitiva de cointegração é a de que mesmo que duas séries se pareçam com

random walk variando aleatoriamente, a “distância” entre essas duas séries apresenta certo

22James MacKinnon apresentou valores alternativos para os valores cŕıticos, no seu paper de 2010 pela
Queen’s University, Critical Values for Cointegration Tests. Na parte 3, utilizamos estes valores para se
determinar o p-value do teste ADF.

23 [10]
24Numa definição mais ampla que permite incluir ordens de cointegração d; é posśıvel de dizer que

séries cointegradas apresentam uma relação linear que resulte numa série que tenha ordem de integração
d′ < d.

20

padrão de estabilidade ou, mais rigorosamente, um padrão estacionário. A cointegração

indica uma relação de longo prazo entre as séries, e portanto, que os choques estocásticos

tem origem num fenômeno que afeta ambas variáveis de alguma forma.

Existem várias técnicas diferentes para se testar a cointegração. Dentre elas destaca-

se o método de “duas etapas” de Engle&Granger e o método de Johansen. A principal

diferença entre eles é que o primeiro funciona exclusivamente para sistemas bivariados,

ou seja, só pode testar a cointegração entre duas séries, ao passo que Johansen pode

fazê-lo para sistemas multivariados. Apesar da superioridade do teste Johansen com

respeito ao número de variáveis e, segundo alguns autores25 também apresenta vantagens

na performance emṕırica; para o os objetivos deste trabalho o método de Engle&Granger

se faz suficiente – dado que a estratégia de pairs trading se basta na análise de pares

de séries. A importância do teste de cointegração para nossos objetivos está clara agora.

Conforme vimos na seção 2.1.1 a estratégia de pairs trading tem como condição a reversão

à média e exatamente esta informação é obtida quando dois ativos, cujos preços são séries

não-estacionárias, passam num teste de cointegração.

2.2.3.2 Metodologia do teste

O método de Engle&Granger consiste de duas etapas. A primeira é estimar o coefici-

ente β da relação linear entre as séries não-estacionárias yt e xt, conforme equação 2.15.

Isto é feito mediante uma regressão linear de mı́nimos quadrados onde β é o coeficiente

linear e c é o intercepto26. Os reśıduos desta regressão dão origem à série ut. Caso a

regressão seja aceitável para o intervalo de confiança do coeficiente β e o R2 desejados, se

procede à segunda etapa.

ut = yt − βxt + c (2.15)

A premissa sobre a qual o teste se baseia é a que se ut ∼ I(0) então a relação linear

2.15 implica relação de cointegração entre as séries. Caso ut ∼ I(d ≥ 1), então não há essa

relação. Dáı derivam-se as hipóteses do teste de Engle&Granger que podem ser testadas

por meio da aplicação do teste ADF sobre os reśıduos ut para se determinar se a série

ut não possui uma raiz unitária. No caso da série não ter raiz unitária, diz-se que yt e

xt são séries cointegradas. Vale notar que o valor de τi obtido pelo teste ADF deve ser

comparado com a tabela elaborada por MacKinnon, dado que β foi estimado, por não ser

25 [11]
26É recomendável adicionar-se o intercepto nas aplicações em finanças, dado que a priori não há

nenhuma garantia de que a série obtida tenha média zero.

21

conhecido a prinćıpio27. Além disso, o cenário i de τi deve respeitar o modelo empregado

na equação (2.15); no caso proposto aqui, deve-se tomar o cenário (i = 2) com drift e sem

tendência28.

2.2.4 Cointegração vs. correlação

É comum presenciar entre os traders o debate acerca das vantagens de usar cointe-

gração ou correlação como métodos para seleção de pares de ativos. Essa disputa foi

inclusive objeto de estudo da dissertação de mestrado de Ana Rayes; onde a autora con-

cluiu mediante estudo emṕırico do mercado brasileiro que em termos de retorno financeiro

bruto o método de correlação se mostrou superior. Porém, em termos de rentabilidade, o

método de cointegração se destaca, devido à sua maior taxa de acerto29. Aqui, abordare-

mos brevemente os aspectos teóricos envolvidos neste debate, que sugerem a inadequação

da correlação para a seleção dos pares.

Imagine uma regressão linear do tipo yt = βxt + ut, para qual as variáveis podem ser

não-estacionárias. Caso não exista um β que resulte em reśıduos I(0), então o método

dos mı́nimos quadrados pode dar origem a uma dita regressão espúria30, cujos resultados

não são confiáveis. Geralmente as regressões espúrias apresentam coeficientes com p-value

baixo e com R2 muito alto. Isto é fácil de se perceber devido ao fato do denominador do

R2 ser computado31 como
∑T

t=1(yt − yt). Se yt é uma série random walk, erroneamente

se assume que tenha uma média constante e, à medida que o tamanho da amostra cresce

o denominador aumenta muito; o que resulta: lim
T→∞

R2 = 1. Existem vários métodos

para se corrigir este problema32, no entanto, não sem evocar outros problemas. Por este

motivo, os métodos de cointegração são mais indicados quando as variáveis apresentam

comportamento não-estacionário.

27 [12, p.54]
28Não obstante, o método sequencial descrito na seção 2.2.2.2 pode ser empregado como uma medida

de cautela adicional.
29 [13]
30A demonstração matemática completa pode ser encontrada em [14, p.557-561]

31R2 = 1−
∑T

t=1 ϵ̂
2
t∑T

t=1(yt − yt)
32 [14, p.561]

22

2.3 Algoritmos de otimização

2.3.1 História

Historicamente33 o conceito de otimização sempre foi central em matemática. Desde

a Antiguidade, problemas de geometria apresentavam oportunidades para aplicação de

técnicas de otimização, tais como o problema da rainha Dido de Cartago que desejava

maximizar a área de sua cidade para um dado peŕımetro. Este problema – cuja solução é

um semićırculo – foi estudado pelo matemático grego Zenodoro (200 a.C. - 140 a.C.). Os

conceitos de cálculo também tem papel importante no estudo de otimização e convergência

de séries infinitas a valores bem definidos.

Porém, foi com o desenvolvimento da computação em meados do século XX que o uso

de algoritmos de otimização numérica experimentou grandes avanços, tanto no escopo de

aplicação quanto na diversidade de ferramentas. Um marco importante em programação

linear foi a introdução do método Simplex por George Dantzig (1914–2005). Com a

expansão da capacidade computacional, novas aplicações de algoritmos de otimização

patrocinam uma grande revolução em curso nas áreas de engenharia e de inteligência

artificial.

2.3.2 Visão geral

2.3.2.1 Definição

Genericamente, um problema de otimização pode ser definido como:

min
x

f(x)

sujeito a x ∈ χ
(2.16)

Sendo que f(x) é a função objetivo que se busca otimizar – nesta formulação, se busca

encontrar o valor mı́nimo de f(x). As variáveis desta função são descritas por x, que

é um vetor n-dimensional que contém os valores que estas n-variáveis podem assumir

x = [x1, x2, . . . , xn]. E χ representa o conjunto de soluções posśıveis que as xn variáveis

podem assumir, em outras palavras, é o espaço de busca do otimizador. As soluções

contidas em χ que satisfazem o problema de otimização são representadas por x∗.

33 [15, p.2-5]

23

2.3.2.2 Classificações

Quando χ não pode assumir qualquer valor, dito de outra forma, que o conjunto de

soluções posśıveis é restrito a um dado intervalo de valores, dizemos que o problema é

restrito.

Quando a função f(x) possui apenas um único vetor x∗, dizemos que a função é

unimodal. Ao contrário, quando mais de dois vetores distintos são solução para o problema

de otimização, dizemos que a função é multimodal.

Quando for posśıvel diferenciar a função f(x) podemos lançar mão de uma série al-

goritmos chamados de determińısticos. Nestes casos, o processo de otimização segue uma

série de passos em que o valor da próxima iteração é inteiramente definido pela formulação

do algoritmo. Geralmente o estudo da primeira e da segunda derivada permitem anali-

ticamente concluir se a otimização atingiu um ponto de mı́nimo (ainda que um mı́nimo

local) quando as seguintes condições forem satisfeitas:

f ′(x) = 0

f ′′(x) > 0

A primeira condição assegura que uma pequena perturbação em x não afetará o resultado

de f(x). Já a segunda condição estabelece que o ponto em questão encontra-se em um

“vale” ou região côncava. Em conjunto, estas condições asseguram que o ponto em análise

trata-se de um ponto de mı́nima. Alguns exemplos deste tipo de algoritmo são:

� Método de Newton

� Método do gradiente descendente

� Momentum

� Adam

Porém, quando não for posśıvel diferenciar f(x), seja pela complexidade anaĺıtica en-

volvida ou pela impossibilidade de formulá-la devido a complexidade do fenômeno real

envolvido; um outro tipo de algoritmo de otimização deve ser empregado, esses são cha-

mados heuŕısticos 34 Neste tipo de algoritmo, a precisão e a certeza em torno da condição

de minimização é substitúıda por um resultado aproximado. Em muitos casos, é intro-

34Otimizadores heuŕısticos são a escolha ideal quando um problema é considerado não ter solução em
tempo polinomial (NP-completo). [16, p.10]

24

duzido um elemento estocástico no processo de otimização. Alguns exemplos deste tipo

são:

� Métodos estocásticos

� Métodos diretos

� Métodos populacionais ou naturais

A seguir, vamos aprofundar nos métodos populacionais ou naturais que serão empregados

neste trabalho.

2.3.2.3 Métodos de otimização natural ou populacional

A grande diferença entre os métodos de otimização natural versus os demais métodos

é que eles tem uma probabilidade muito maior de encontrar um ponto de mı́nimo global

ao invés de ficar preso em um mı́nimo local35. Isto se dá, porque ao invés de iniciar o

processo de otimização partindo de um único ponto no espaço de busca, os algoritmos

naturais simulam uma “população” de soluções posśıveis com posição inicial estrategica-

mente dispersa; cobrindo um espaço maior na busca, já na primeira iteração. Geralmente

esses algoritmos tem elementos estocástico que produzem variações aleatórias cuidadosa-

mente controladas para ampliar sua capacidade de encontrar soluções ótimas.

Muitos desses algoritmos buscam inspiração em fenômenos da natureza, que é pródiga

em otimizar seus recursos.36 Dáı surge a denominação de métodos naturais. Alguns

exemplos desse tipo são:

Simulated Annealing Inspirado em termodinâmica, este algoritmo simula o processo

de variação da temperatura – representada pela amplitude do termo estocástico

– na formação de cristais – estes representam o conjunto das melhores soluções.

Iterativamente as soluções sub-ótimas são substitúıdas por soluções melhores, à

medida que a “temperatura” é reduzida.

Ant colony É inspirado na capacidade das formigas de encontrar o caminho mais curto

em direção ao alimento através de feromônios. Nesta aplicação, a intensidade dos

35Obviamente que essa probabilidade depende do ponto de partida escolhido para iniciar-se o algoritmo.
Caso a região onde se encontra o mı́nimo global seja conhecida, a afirmação feita não procede.

36A t́ıtulo de ilustração deste ponto, é o teorema elaborado por Thomas C. Hales em 1999, que de-
monstra que o formato hexagonal – encontrado nas colmeias de abelhas – é o formato que minimiza o
peŕımetro das subdivisões internas para uma dada área. Assim as abelhas otimizam o uso de cera.

25

feromônios são representados pela distância (qualidade da solução avaliada pela

função objetivo) até o ponto ótimo através de um grafo ou árvore de possibilidades.

Este design é bastante utilizado para solucionar o problema do “caixeiro viajante”

ou para otimizar mecanismos de roteirização.

Algoritmo Genético A inspiração deste vem do processo de seleção natural. Às me-

lhores soluções para o problema é dado o direito de gerarem descendentes para a

próxima iteração. Perturbações aleatórias simulam os efeitos da mutação genética

que, se melhorarem o resultado da função objetivo, irão se perpetuar nas próxima

gerações.

Particle Swarm Neste método, cada solução individual tem uma velocidade e memória

do espaço de busca do problema, bem como conhecimento do melhor resultado

encontrado pelo “cardume”. Quando as iterações são graficadas, os movimentos dos

indiv́ıduos se parece com o movimento de um cardume de peixes, ou de um grupo

de pássaros.

Neste trabalho, iremos aprofundar teoricamente sobre estes dois últimos métodos nas

seções 2.3.3 e 2.3.4.

2.3.2.4 Teorema NFLT

Dados os objetivos deste trabalho, cabe fazer menção ao teorema NFLT ou no free

lunch teorem; nas palavras dos autores:

“Roughly speaking, we show that for both static and time dependent optimi-

zation problems, the average performance of any pair of algorithms across all

possible problems is identical. This means in particular that if some algo-

rithm’s performance is superior to that of another algorithm over some set of

optimization problems, then the reverse must be true over the set of all other

optimization problems.”37

Poder-se-ia argumentar que diante do teorema NFLT, não faz sentido comparar-se

a performance de dois algoritmos, especialmente quanto mais gerais sejam as funções

objetivos ou tipos de problemas a que esses algoritimos sejam aplicados. Porém, como

observado por Eberhart et al.38, a condição do teorema – de que a média de todas as

37 [17]
38 [18, p. 299-302]

26

funções objetivo são iguais – não é uma condição trivial. Isto significa dizer que uma

infinidade de funções objetivo sem qualquer relação com fenômenos reais ou qualquer

aplicação útil precisa ser considerada com mesma importância. Ou seja, se se retirassem

essas “funções inúteis” o teorema não se manteria verdadeiro, mantendo aberto o caminho

para se buscar aperfeiçoar e desenvolver otimizadores cada vez mais eficientes.

2.3.3 Particle Swarm Optimization

2.3.3.1 Modelo básico

Introdução O algoritmo de Particle Swarm Optmization foi introduzido por Kennedy

e Eberhart em 199539. O algortimo é inspirado na interação social de indiv́ıduos vivendo

em grandes aglomerados como cardumes de peixes ou grupo de aves. O movimento apa-

rentemente sincronizado desses animais quando buscam comida ou fogem de predadores

se assemelha ao comportamento das part́ıculas ao longo das iterações deste algoritmo.

Cada part́ıcula é uma posśıvel solução para a função objetivo e seu movimento ao longo

do espaço de busca é definido pelos seguintes prinćıpios, que sintetizam a mecânica desse

otimizador40:

� Avaliação Cada indiv́ıduo avalia sua situação atual através do resultado da função

objetivo.

� Comparação Cada indiv́ıduo compara o seu resultado atual com a sua melhor

avaliação individual, ou seja, as part́ıculas detém memória.

� Mimetização Cada indiv́ıduo imita o indiv́ıduo que obteve o melhor desempenho

de todos, convergindo para a melhor solução encontrada pelo grupo.

Essas caracteŕısticas estão refletidas no movimento de cada part́ıcula, a que se denomina

velocidade. A velocidade de cada part́ıcula é atualizada a cada iteração, na forma descrita

pela equação 2.17.

39 [19]
40 [18]

27

Formulação Na formulação mais básica deste otimizador o vetor velocidade vi,j de

uma part́ıcula j na iteração i é dada por:

−→v i,j = ω · −→v i−1,j + c1 · −→r 1 i,j ⊙ (−→p i−1 −−→x i−1,j) + c2 · −→r 2 i,j ⊙ (−→g i−1 −−→x i−1,j) (2.17)

Onde:

ω é a constante inercial.

c1 e c2 são os coeficientes cognitivo e social, respectivamente.

r1 i,j e r2 i,j são vetores estocásticos extráıdos de uma distribuição uniforme com

intervalo [0, 1].

xi−1,j é a posição da part́ıcula j na iteração i− 1, ou seja, o vetor que comporta os

valores para uma dada solução da função objetivo.

pi−1,j é o vetor que representa a melhor solução encontrada por esta part́ıcula,

também chamado de pbest.

gi−1 é o vetor que representa a melhor solução encontrada por todo o grupo de

indiv́ıduos, também chamado de gbest.

Note que os elementos dessa soma vetorial representam as três caracteŕısticas apresentadas

acima; bem como os três padrões de comportamento que marcam o funcionamento do

PSO:

� ω·−→v i−1,j representa o elemento inercial que, quando assume valores grandes, favorece

a exploração de novas regiões do espaço de solução, ou exploration.

� c1·−→r 1 i,j⊙(−→p i−1−−→x i−1,j) representa o elemento cognitivo ou a memória da part́ıcula.

Quando este termo é grande, se favorece a exploração de regiões próximas ao pbest,

ou exploitation.

� c2 · −→r 2 i,j ⊙ (−→g i−1 − −→x i−1,j) representa o elemento social das part́ıculas. Quando

este termo é grande, se favorece a convergência das part́ıculas em direção ao gbest.

A subtração vetorial envolvendo pi−1, gi−1 e a posição da part́ıcula em i−1 determina a

magnitude da velocidade com a qual a part́ıcula se deslocará em direção a estes respectivos

pontos. Tão mais distante uma part́ıcula esteja destes pontos, mais rapidamente ela

tenderá a voltar a eles. Note que quando pi−1 ≃ gi−1 ≃ xi−1 a part́ıcula terá velocidade

28

próxima de zero e tenderá a permanecer no mesmo ponto, ou seja, terá convergido para

uma solução; exceto se o termo inercial for grande.41

Parâmetros Geralmente, nessa versão básica do PSO, os valores dos coeficientes são

definidos como c1, c2 ∈ [1.49, 2] e o ω ∈ [0.9, 0.4].42; já nos modelos adaptativos esses

valores são iterativamente calculados, como veremos em 2.3.3.2 e 2.3.3.3.

A partir de análises de convergência elaboradas por Shi and Eberhart in 199843 se

definiu uma relação entre os três parâmetros largamente utilizada nos modelos de PSO:

c1 = c2 =
(ω + 1)2

2
(2.18)

Com relação ao tamanho da população, costuma-se defini-la a partir do número de

dimensões do espaço de procura, de acordo com a relação: m = 10 + 2
√
2d onde m é o

tamanho da população e d o número de dimensões. Experimentalmente44, demonstrou-

se que a performance do PSO é menos senśıvel ao tamanho da população que outros

algoritmos populacionais. Este resultado foi obtido para m ∈ [20, 100].

2.3.3.2 Modelos Adaptativos - Linear

Na formulação básica do PSO, os três coeficientes são constantes ao longo de toda a

iteração. A literatura apresenta inumeráveis modificações e adições à formulação apresen-

tada na seção anterior. Muitas dessas alternativas se diferem por adotar valores dinâmicos

para os coeficientes ao longo da iteração; modulando o comportamento do algoritmos en-

tre as fases de exploration, exploitation e convergência. Neste trabalho abordaremos duas

dessas alternativas: a linear e a ESE/ELS.

No modelo linear, cada um dos três coeficientes c1, c2 e ω é restrito um intervalo,

geralmente pertencente aos R+ e a cada iteração o valor de um coeficiente qualquer x é

calculado segundo uma relação linear na forma:

xi =


g
G
(xmax − xmin) + xmin, para x decrescentes

g
G
(xmin − xmax) + xmax, para x crescentes

(2.19)

Sendo que g é o ı́ndice da atual iteração, G é o valor máximo de iterações e que x ∈
41Isto exemplifica a importância da correta seleção dos coeficientes. Neste caso um ω excessivamente

grande pode impedir que o algoritmo convirja para qualquer solução.
42 [20, p.4]
43 [21]
44 [21, p. 14]

29

[xmin, xmax]. Vale notar que o modelo exige um parâmetro adicional G que define exata-

mente o valor de iterações necessárias para o algoritmo concluir sua busca.

A performance do modelo linear depende de uma cuidadosa seleção dos intervalos

de cada coeficiente, bem como se eles crescem ou decrescem ao longo do processo de

otimização. Usualmente faz-se que c1 decresça e c2 cresça; forçando as part́ıculas a inici-

almente explorarem diferentes regiões, próximas ao seu pbest antes de iniciarem um movi-

mento de convergência. Isto aumenta a capacidade do algoritmo de encontrar o mı́nimo

global, escapando de regiões sub-ótimas. Também é comum fazer ω decrescer, facilitando

a convergência.

2.3.3.3 Modelos Adaptativos - ESE/ELS

O modelo ESE/ELS aqui descrito foi baseado no modelo proposto por Zhan, Zhi-Hui

et al. em seu artigo de 201045. O objetivo dos autores é construir um modelo de PSO

que reduza o problema de convergência prematura a um mı́nimo local – muito comum no

PSO tradicional – e que seja computacionalmente eficiente; dois objetivos que tem relação

inversa entre si.

Uma diferença importante entre o modelo linear e o modelo ESE/ELS é que a adaptação

nos coeficientes feita pelo primeiro é (i) dependente do tempo e (ii) o estado/fase da oti-

mização é definida exogenamente. No modelo ESE/ELS os coeficientes são (i) automati-

camente ajustados de acordo com a fase da otimização e (ii) a fase é definida como uma

função do estado interno das part́ıculas num dado instante.

ESE - adaptação dos coeficientes Os coeficientes c1 c2 e ω são controlados ao

longo da iteração pelo mecanismo ESE. Vamos abordá-lo na mesma sequencia de passos

que o algoritmo percorre:

Definição do estado do otimizador O primeiro passo é identificar em qual

estado o otimizador se encontra, ou seja, se as part́ıculas estão em regime de explora-

tion, exploitation, convergencia ou jumping out.46 Esta definição é feita calculando-se a

45 [22]
46A fase jumping out é uma fase introduzida pelo autor para permitir às part́ıculas escaparem de um

mı́nimo local, inclusive em funções objetivo cujo ponto de mı́nimo global evolui com o tempo. Esta fase
é caracterizada quando a gbest está distante do algomerado de part́ıculas.

30

distância média de todas as dimensões de cada part́ıcula segundo a fórmula:

di =
1

1−N

N∑
j=1,j ̸=1

√√√√ D∑
k=1

(xk,i − xk,j)2 (2.20)

Onde N é o número de part́ıculas, D as dimensões do espaço de busca, i e j são ı́ndices

para duas part́ıculas distintas e di é distância média da i-ésima part́ıcula. Denotando-se

o di da part́ıcula com a melhor solução nesta iteração como dg, podemos definir o fator

evolucionário f :

f =
dg − dmin
dmax − dmin

(2.21)

A configuração espacial desses estados pode ser vista esquematicamente na Fig.10 para

um χ de D = 2.

Figura 10: Posição esquemática das part́ıculas em cada fase

Distribuição das part́ıculas conforme fator evolucionário: (a)dg ≈ didpi exploration, (b)
dg << dpi convergência ou exploitation, (c) dg >> dpi jumping out. Fonte: [22]

O fator evolucionário serve para informar o estado interno em que o otimizador se

encontra. A classificação desse estado em fases é feita com uma lógica de classificação

fuzzy, esquematicamente demonstrada na Fig. 11

Ajustes nos coeficientes Uma vez conhecido a fase na qual o otimizador se

encontra, é posśıvel fazer ajustes nos coeficientes de modo a tornar o algoritmo mais

eficiente. Para o coeficiente inercial é feito um mapeamento em uma sigmóide que varia

monotonicamente com f :

ω(f) =
1

1 + 1.5e−2.6f
(2.22)

Dessa forma, enquanto estivermos na fase de convergência ou exploitation o fator inercial

será pequeno e não impedirá a busca com passos pequenos por melhorias marginais no

31

Figura 11: Classificação da fase em função do estado f

Membership representa a probabilidade de um determinado estado ser escolhido segundo uma
lógica fuzzy para cada valor de f . Fonte: [22]

resultado. Ao contrário, nas fases de exploration e jumping out, um ω grande favorecerá

o algoritmo escapar de mı́nimos locais. Na inicialização, ω = 0.9

Os coeficientes social e cognitivo são ajustados com pequenas perturbações δ a cada

iteração definidas a partir da fase do otimizador. δ é uma variável aleatória extráıda de

uma distribuição uniforme cujo intervalo é definido pelo estado do otimizador, conforme

a Tabela 1.

Tabela 1: Perturbações dos coeficientes de acordo com a fase

Fase c1 c2

exploration δ ∈ [0.05, 0.1] δ ∈ [−0.05,−0.1]
exploitation δ ∈ [0.01, 0.05] δ ∈ [−0.01,−0.05]
convergência δ ∈ [0.01, 0.05] δ ∈ [−0.01,−0.05]
jumping out δ ∈ [−0.05,−0.1] δ ∈ [0.05, 0.1]

Por fim, é imposto aos coeficientes os limites: (i) ci ≥ 1.5, i = 1, 2 e (ii) 3 ≤
c1 + c2 ≤ 4. Caso em alguma iteração (i) e/ou (ii) sejam violadas, os coeficientes devem

ser normalizados utilizando:

ci =
ci

c1 + c2
, i = 1, 2 (2.23)

ELS - Aprendizagem elitista Enquanto o mecanismo de ESE atua diretamente

nos coeficientes do otimizador, o ELS provê uma forma de simultaneamente melhorar o

resultado do gbest ou saltar de um mı́nimo local durante a fase de convergência mediante

correção feita diretamente na posição. Esta adaptação é chamada de elitista, pois promove

uma perturbação – calculada conforme a equação (2.24) – em uma das dimensões que

compõe a posição da melhor part́ıcula. Esta perturbação só será mantida caso o resultado

da função objetivo seja menor após a perturbação. Caso contrário, o novo valor PdESE

é utilizado na part́ıcula com a pior performance, aumentando assim as chances dela se

32

aproximar de uma região mais promissora.

PdESE
= Pd + (χd,max − χd,min) ·N(µ, σ2) (2.24)

Na equação do ELS (2.24), d corresponde ao ı́ndice da dimensão aleatoriamente se-

lecionada para sofrer a perturbação. Pd é a posição da melhor part́ıcula com respeito à

dimensão d, χd,max, χd,min são os limites do intervalo de valores posśıveis para a dimensão

d. E o N representa uma variável aleatória extráıda de uma distribuição normal com

média µ = 0 e desvio padrão σ, chamado de ”taxa de aprendizado elitista”. Esta taxa é

parametrizada linearmente com a evolução das iterações na forma:

σ =
g

G
(σmin − σmax) + σmin (2.25)

Deste modo, o tamanho da perturbação elitista é grande no ińıcio do processo, favorecendo

a part́ıcula a escapar de um mı́nimo local, e menor ao final, favorecendo o refinamento do

resultado encontrado pela part́ıcula gbest.

2.3.4 Algoritmo Genético

O algoritmo genético (GA), da mesma forma que o PSO, é um otimizador heuŕıstico,

estocástico e inspirado na natureza. Porém, ao invés de mimetizar o comportamento

social de grupos de animais, o GA busca inspiração no processo de seleção natural ; onde

aos indiv́ıduos mais adaptados é permitido procriar, passando adiante seus genes. Este

processo de seleção do indiv́ıduo mais adaptado é o véıculo no qual o algoritmo encontra

a solução que soluciona o problema de otimização.

Em geral, o GA consiste em uma população – que é um conjunto de soluções do

problema – e cada individuo possui um genoma – um vetor contendo as variáveis do

problema. A primeira etapa do processo – seleção – é a avaliação da função objetivo para

cada indiv́ıduo. Os indiv́ıduos com as melhores soluções passam para a fase seguinte,

chamada de crossover, onde os melhores indiv́ıduos tem seus genomas mesclados, dando

origem a novos indiv́ıduos. Na sequência, os indiv́ıduos passam por pequenas perturbações

nos seus genomas; na fase conhecida por mutação. Feito isso, volta-se a avaliar o resultado

na nova população, dando continuidade a uma nova iteração. Veremos cada uma dessas

fases mais em detalhes abaixo.

33

2.3.4.1 Genoma e seleção

Como dissemos, um genoma é uma solução posśıvel para o problema de otimização. O

genoma contém d genes, que correspondem às d dimensões do espaço de soluções viáveis,

χ. Algumas versões do GA fazem um processo de decodificação dos genes; convertendo

os valores pertencente aos R para uma sequência binária sobre a qual serão aplicados os

processos de crossover e mutação. Outras pulam esta etapa, trabalhando sempre com

valores R ∈ χ.47

O processo de seleção consiste em atribuir a cada indiv́ıduo o resultado obtido pela

função objetivo; tomando-se seus genes como valores para a função. É feito um ranking

dos indiv́ıduos, geralmente com valores padronizados por uma funçãomini-max. Com base

nesse ranking, é performada a escolha de uma fração da população que será submetida

à próxima etapa. Esta escolha pode ser feita utilizando uma variedade de operadores

distintos. Alguns deles são:

Elitista Os indiv́ıduos selecionados são escolhidos ordenadamente, daquele que tem o

melhor resultado para o pior; até se chegar na quantidade de “pais” – geralmente

igual a metade da população total. Este método tem a caracteŕıstica de favorecer

rápida convergência ao custo de se perder diversidade nas soluções, aumentando o

risco de ficar preso em um mı́nimo local.

Competição Dentre a população total, são selecionados aleatoriamente k indiv́ıduos;

e dentro deste subgrupo, os indiv́ıduos com melhor fitness são escolhidos para o

crossover. Este método, ao contrário do anterior, tem capacidade de manter a

diversidade alta, ao custo de uma convergência mais lenta e até eventualmente a

perda do melhor indiv́ıduo na iteração.

Roleta Este método atribui uma probabilidade de seleção proporcional ao fitness de cada

indiv́ıduo. A “roleta” é constrúıda a partir da probabilidade cumulativa de todos

os indiv́ıduos. Por fim, uma variável aleatória é extráıda do intervalo [0, 1] que

corresponderá ao indiv́ıduo selecionado. Este método pode ser interpretado como

um meio termo entre os anteriores em termos da manutenção da diversidade. (Ver

Fig.12).

Seleção Estocástica Universal Visto como um aprimoramento da Roleta, pois esse

47O emprego do processo de decodificão pode ser prof́ıcuo quando as universo das variáveis é ele próprio
binário. Nos demais casos a decodificação pode inserir uma complexidade indesejada para a manutenção
das soluções dentro do espaço válido de busca. [15, p.150]

34

método ao invés de retirar aleatoriamente o valor que indica o selecionado48; os

indiv́ıduos são extráıdos por intervalos igualmente espaçados, assegurando ainda

mais a manutenção da diversidade.

Figura 12: Roleta Figura 13: Seleção Estocástica Universal

2.3.4.2 Crossover

Da mesma forma que na seleção uma variedade de operadores pode ser empregada,

no crossover há várias maneiras de se gerar novas combinações de genes a partir dos

indiv́ıduos selecionados. Mencionamos duas mais comuns:

Ponto único Imagine o genoma como um vetor com os valores das variáveis em oti-

mização. No método do ponto único, uma variável aleatória indica em qual ı́ndice

deve ser feito um recorte nesse vetor. Os indiv́ıduos “filhos” terão a primeira parte

do vetor originada de uma dos “pais” e a segunda parte do outro “pai”.

Múltiplos Pontos Opera da mesma maneira que o método do ponto único, porém ao

invés de um único ı́ndice que gera dois vetores menores, são feitos vários recortes

do vetor original, e cada parte atribúıda a um “filho”.

Convém notar que algumas aplicações do GA – especialmente aquelas que fazem o

processo de decodificação dos genes descrito acima – adicionam um parâmetro chamado de

taxa de crossover que consiste em um ensaio de Bernoulli para determinar se o crossover

deve ocorrer naquele ponto ou não.

2.3.4.3 Mutação

Dentre todos os parâmetros do processo do GA, é à mutação que sua performance é

mais senśıvel49. É principalmente a esta etapa que o GA deve sua classificação como um

48A seta representada na figura 12
49 [23]

35

Figura 14: Operadores de crossover. Fonte: [1]

otimizador estocástico. Nesta fase os genes sofrem uma perturbação que ajuda a gerar

diversidade de genomas, sem a qual o algoritimo rapidamente convergiria para uma das

soluções encontradas pela população inicial. Geralmente a mutação de um dado gene

(uma dimensão do espaço de procura de um indiv́ıduo) é dada por:

gmutated = B(1, p) · [1 +N(0, 1)] · goriginal (2.26)

Onde g é o valor da variável, N(0, 1) é uma variável aleatória extráıda de uma normal; em

alguns casos utiliza-se uma distribuição PERT50 ou mesmo distribuição uniforme. B(1, p)

é uma variável aleatória extráıda de uma distribuição binomial, mais especificamente um

experimento de Bernoulli. O parâmetro p é chamado de taxa de mutação. Após a fase

de mutação, a iteração está completa e repete-se o processo; fazendo-se nova avaliação da

função objetivo e seleção das melhores soluções.

2.3.4.4 População

Mencionamos a importância da taxa de mutação (e da taxa de crossover) por isso cabe

também mencionar que o GA também é senśıvel ao tamanho da população. É evidente

que uma população muito pequena tenderá a convergir para um mı́nimo local dada a

pouca diversidade que existe entre suas alternativas de solução, porém uma população

muito grande também prejudica a performance do algoritmo; como pode-se ver na Fig.15.

Isto se deve ao fato de que boas soluções encontradas por um indiv́ıduo levam muitas

iterações para se “espalhar” através de toda a população. Infelizmente, assim como para

os demais parâmetros do GA, não existe um tamanho de população ótimo ou ideal51. A

correta seleção dos parâmetros depende do tipo de problema e também das interações

50Foi a opção que utilizamos para ter maior controle sobre a dispersão da mutação. Mas resultados
similares à normal podem ser obtidos utilizando-se λ = 4 na distribuição PERT.

51 [2, p.29]

36

Figura 15: Tamanho da população e performance. Fonte: [2]

entre os parâmetros escolhidos.

2.3.5 Tópicos sobre implementação dos algoritmos

Nesta seção abordaremos alguns tópicos sobre a implementação dos algoritmos, que

pode ser interpretada como um complemento das seções 2.3.3 e 2.3.4. Estes temas são

relevantes tanto para a performance e funcionamento dos algoritmos, quanto para funda-

mentar alguns dos critérios e testes apresentados na Parte 3.

2.3.5.1 Inicialização

A etapa de inicialização (definição da posição inicial no PSO e dos genes da população

inicial no GA) é a etapa individual de maior impacto na performance dos algoritmos. Esta

conclusão é intuitiva; pois, em essência, o que um algoritmo faz é “explorar” o espaço de

soluções viáveis em busca do mı́nimo global. Perceba que se todas as part́ıculas iniciarem

em um único ponto, a quantidade de informação obtida já na primeira iteração sobre o

espaço de busca fica limitada a esse único ponto.

Por esta razão que geralmente a inicialização é feita extraindo-se variáveis aleatórias de

uma distribuição uniforme – utilizando séries pseudo-aleatórias geradas em computador

– com intervalo igual ao espaço de busca. Esta medida já aumenta drasticamente a

informação obtida na iteração inicial pelo conjunto de indiv́ıduos.

Algumas abordagens, como a proposta por Jamil, M. et al.52 buscam melhorar ainda

mais a diversidade inicial substituindo a extração de números pseudo-aleatórios por séries

de números quasi-aleatórios, que apresentam baixa discrepância. A discrepância é defi-

52 [24]

37

Figura 16: Distribuição Uniforme
(pseudo-aleatória)

Figura 17: Distribuição da sequência de
Sobol (quasi-aleatória)

nida como o desvio que uma variável aleatória tem da distribuição de probabilidade real.

Segundo os autores supracitados, mesmo os geradores de series pseudo-aletória mais mo-

dernos, tem uma discrepância maior do que os geradores quasi-aleatórios, como aquele

que extrai números de uma sequência de Sobol53. Na Fig.16 e Fig.17 é posśıvel comparar

a inicialização utilizando uma distribuição uniforme vs. Sobol. Fica evidente que a última

é capaz de extrair informação de uma área maior, dado o maior “afastamento” inicial das

posições; melhorando significativamente o resultado dos algoritmos54.

2.3.5.2 Restrições no espaço de busca

Na formulação básica de um problema de otimização (2.16) vimos que o vetor com

as variáveis deve pertencer a χ para ser considerada uma solução viável. A forma como

o algoritmo lida com essas restrições tem enorme impacto na performance do otimizador.

Isto porque, dada a natureza estocástica do GA e do PSO, é extremamente provável que

uma part́ıcula ou indiv́ıduo se afaste do espaço definido por χ afetando o funcionamento

normal do algoritmo55

Helwig et al. demonstraram56 que a probabilidade das part́ıculas aleatoriamente inici-

alizadas estarem muito próximas às regiões limı́trofes de χ cresce exponencialmente com o

número de dimensões. Isto significa que em problemas com espaço de busca hiperdimen-

53A sequência de Sobol é uma sequência de baixa discrepância. De modo simplista, a sequencia de
Sobol usa potências de base 2 para gerar partições de um intervalo unitário e posteriormente reordena
esses números aleatoriamente.

54 [24, p.6]
55Como veremos ao longo desta seção, o PSO exige mais cuidados com relação ao tratamento das

restrições do que o GA. Porque no primeiro, existem vários fatores estocásticos que podem levar uma
part́ıcula a explorar regiões não fact́ıveis, dado o seu funcionamento baseado em soma vetorial. Já no
GA devemos nos preocupar apenas com a etapa de mutação.

56 [21, p.56-57]

38

sional o mecanismo de tratamento das restrições é tão importante quanto os parâmetros

fundamentais do otimizador. Existem várias abordagens para lidar com as restrições; aqui

abordaremos apenas duas:

Penalidade Os métodos de penalidade – um dos mais comuns – lançam mão do

próprio mecanismo de avaliação do resultado da função objetivo para dirigir o algoritmo

de volta para região de busca. Esta abordagem consiste em substituir o resultado obtido

pela função objetivo para valores inaceitáveis ou mesmo o infinito quando x conter pelo

menos uma variável não contida em χ.

Reparo A abordagem de reparo atua diretamente na posição ou na velocidade da

part́ıcula (PSO) ou no valor do gene (GA) para “recolocá-lo” dentro do espaço de busca.

Citamos aqui alguns dos métodos de reparo aplicáveis ao PSO – esquematizados na Fig.18:

Proximidade A part́ıcula é “reinicializada” exatamente sobre o ponto limite (lbd para

limite inferior e ubd para limite superior) com relação àquela dimensão d da qual ela

evadiu o espaço57:

xi,j,d =


lbd, se xi,j,d < lbd

ubd, se xi,j,d > ubd

xi,j,d ∀x ∈ χd

(2.27)

Encolhimento Neste método o vetor de velocidade inteiro é reduzido de modo que a

part́ıcula “pare” sobre o ponto de limite. Note que neste método o vetor é alterado

em todas as dimensões e não só naquela que teve seus limites ultrapassados.

Aleatório Utilizando-se uma distribuição uniforme dentro do intervalo χ, define-se um

novo valor para x, desprezando-se o anterior. Este método também é empregado no

GA.

Reflexo O vetor de velocidade é recalculado para se obter sua versão refletida com relação

ao limite da dimensão evadida.

Ponto médio Neste método é calculado o ponto médio interno entre a posição xi−1,j,d e

o limite evadido.

57Este método pode ser usado no processo de mutação de GA, sendo inclusive o utilizado por este
trabalho na Parte 3.

39

Figura 18: Métodos de reparo das posições das part́ıculas. Fonte (adaptado): [2]

No caso do PSO, após o reparo na posição, também pode fazer sentido reparar a

velocidade da part́ıcula, para que ela não retorne a pontos fora do espaço. Os principais

métodos de reparo de velocidade são:

Ajuste A velocidade é ajustada de modo que: −→v i,j =
−→x i,j −−→x i−1,j.

Zero A velocidade é forçada para zero: −→v i,j = [0, ..., 0].

Inversão O sentido do vetor velocidade é invertido, forçando a part́ıcula a retornar para

regiões mais centrais.

2.3.5.3 Critério de parada

Os critérios de parada dependem da aplicação concreta que se faz do algoritmo e pre-

cisam ter significado dentro do contexto do problema. Não obstante, geralmente arbitra-

se que um otimizador deve interromper seu processo diante de quaisquer das seguintes

condições satisfeitas:

� Quando o número de iterações exceder um valor máximo previsto.

� Quando o resultado encontrado está suficientemente próximo de um critério de qua-

lidade informado pelo problema. Este critério só é posśıvel quando se conhece de

antemão o valor que f(x) assume próximo de condições ótimas.

40

� Quando a média dos resultados da função objetivo f(x) de cada uma das soluções/

indiv́ıduos m não variou mais do que um dado limite58 δ ao longo de g iterações pas-

sadas desde a útlima geração G. Isto indica que o algoritmo encontra-se estacionado

em algum mı́nimo da função, não trazendo melhoras relevantes:

1

g

g+1∑
k=1

[
1

m

m∑
i=1

f(xi,G−k)

]
≤ δ (2.28)

Chamamos de critérios de parada ao invés de critérios de convergência, porque como

visto na seção 2.3.2.2 algoritmos heuŕısticos não permitem comprovar que a solução en-

contrada é ótima; como por exemplo através da análise da matriz Hessiana da função.

Por esta razão que os critérios de parada buscam avaliar a tendência de melhora do al-

goritmo. Cabe ainda notar que nos casos onde a primeira condição é atingida; porém

a última, ainda não, é indicativo de que o valor máximo de iterações é excessivamente

pequeno ou de que o algoritmo está mal desenhado para o problema.

2.3.5.4 Funções de teste

As funções teste ou funções benchmark são funções especialmente constrúıdas para

testar e comparar sob mesmo critério a performance de algoritmos de otimização. Existe

uma enorme variedade de funções teste, que buscam recriar as condições e desafios à oti-

mização que os problemas do mundo real podem oferecer. Assume-se que se um algoritmo

performar bem em uma função teste, cujo valor mı́nimo global é conhecido, pode-se se

esperar que ele também tenha bom desempenho nas suas aplicações práticas. Existem

algumas classificações usadas frequentemente quando se trata de funções teste. Vejamos

algumas delas:

Continuidade Funções cont́ınuas são aquelas em que o limite da função quando ela se

aproxima de um dado valor a, tem o mesmo resultado quando esta mesma função é

avaliada em a. Geralmente, funções descont́ınuas apresentam dificuldade adicional

para otimizadores.

Modalidade Modalidade diz respeito à presença ou não de mı́nimos locais. Funções

ditas unimodais tem um único mı́nimo, que é também o mı́nimo global. São con-

sideradas mais fáceis de se resolver e são úteis para se testar a capacidade de re-

finamento/precisão do algoritmo. Geralmente algoritmos de gradiente descendente

costumam ter performance muito superior ao algoritmos populacionais. Funções

58Na Parte 3, para os teste realizados, utilizamos δ = 10−6

41

multimodais são aquelas que apresentam mı́nimos locais. São consideradas mais

dif́ıceis e são úteis para avaliar a capacidade do algoritmo de analisar todo o espaço

de busca e discernir a região onde se encontra o mı́nimo global.

Separabilidade Funções separáveis são aquelas em que é posśıvel se otimizar a função

objetivo isolando-se cada uma de suas dimensões (2.29). Já nas funções inseparáveis

há uma interdependência entre as dimensões do problema, obrigando-se a avaliar a

função como um todo, com as interações entre variáveis. As primeiras são conside-

radas mais dif́ıcieis de se otimizar.

∂f(−→x)
∂xi

= g(xi) · h(−→x) (2.29)

Platô Algumas funções multimodais podem apresentar platôs – regiões sub-ótimas onde

o gradiente da função é muito próximo ou igual a zero – circundados por regiões com

resultados piores59. Dado que a região de platô não oferece nenhuma informação

útil para qual direção o algoritmo deve se mover, esse tipo de função é desafiadora

para alguns algoritmos

Dimensionalidade Quanto maiores forem as dimensões do vetor x mais dif́ıcil, e até

imposśıvel, para se solucionar o problema; especialmente se a função for não linear60.

Na Tabela 2 apresentamos as 14 funções que selecionamos para testar os otimizadores na

Parte 3 deste trabalho. Escolhemos um conjunto de diversas funções que apresentam as

diferentes propriedades descritas acima de modo a construir algoritmos versáteis.

59A função f8 “Matyas”, descrita na Tabela 2 apresenta esta propriedade.
60 [25, p.5]

42

Tabela 2: Funções teste

fn. Nome Class. Fórmula Domı́nio Mı́nimo

f1 Ackley C,M,N,2 fx = −20e
−0.2

√
1
n

∑n
i=1 x

2
i − e

1
n

∑n
i=1 cos(2πxi) + 20 + e xi ∈ [−32, 32] f(0, 0) = 0

f2 Cross-in-tray C,M,N,2 f(x) = −0.0001


∣∣∣∣∣∣∣e

∣∣∣∣∣100−
√

x21+x22
π

∣∣∣∣∣
sin (x1) sin (x2)

∣∣∣∣∣∣∣+ 1


0.1

xi ∈ [−10, 10] f(1.34,−1.34)∗ = −2.06

f3 Degrau D,U,S,2 f(x) =
∑n

i=1 (⌊|xi|⌋+ 0.5)2 xi ∈ [−100, 100] f(0, 0) = 0

f4 Drop-wave C,M,N,2 f(x) = −1+cos 12
√∑n

i=1 x
2
i

2+0.5
∑n

i=1 x
2
i

xi ∈ [−5.12, 5.12] f(0, 0) = −1

f5 Eggholder C,M,N,2 f(x) = −x1 sin
(√

|x1 − x2 − 47|
)
− (x2 + 47) sin

(√∣∣1
2x1 + x2 + 47

∣∣) xi ∈ [−512, 512] f(512, 404.2) ≈ −959.64

f6 Esférica C,U,S,2 f(x) =
∑d

i=1 x
2
i xi ∈ [−5.12, 5.12] f(0, 0) = 0

f7 Esférica-5D C,U,S,5 f(x) =
∑d

i=1 x
2
i xi ∈ [−5.12, 5.12] f(0, ..., 0) = 0

f8 Griewank C,M,N,2 fx = 1 + 1
4000

∑n
i=1 x

2
i −

∏n
i=1 cos

(
xi√
i

)
xi ∈ [−600, 600] f(0, 0) = 0

f9 Holder table C,M,S,2 f(x) = −

∣∣∣∣∣∣∣e
∣∣∣∣∣1−

√
x21+x22
π

∣∣∣∣∣
sin (x1) cos (x2)

∣∣∣∣∣∣∣ xi ∈ [−10, 10] f(8.05, 9.66)∗ ≈ −19.2

f10 Matyas C,U,N,2 f(x) = 0.26(x21 + x22)− 0.48x1x2 xi ∈ [−10, 10] f(0, 0) = 0

f11 Rastrigin C,M,S,2 f(x) = 10n
∑n

i=1

[
x2i − 10 cos(2πxi)

]
xi ∈ [−5.12, 5.12] f(0, 0) = 0

f12 Rastrigin-5D C,M,S,5 f(x) = 10n
∑n

i=1

[
x2i − 10 cos(2πxi)

]
xi ∈ [−5.12, 5.12] f(0, ..., 0) = 0

f13 Schaffer#2 C,M,N,2 f(x) = 0.5 +
cos2(sin(x21−x22))−0.5

1+0.001(x21+x
2
2)

2 xi ∈ [−100, 100] f(0, 0) = 0

f14 Tripé D,M,N,2 f(x) = p(x2)[1 + p(x1)] + x1 + 50p(x2)[1− 2p(x1)] + x2 + 50[1− 2p(x2)], xi ∈ [−100, 100] f(0,−50) = 0

sendo que p(xi) = 1 ∀xi ≥ 0, p(xi) = 0 ∀xi < 0

Legenda das classificações. Continuidade: Cont́ınua(C), Descont́ınua(D); Modalidade: Unimodal(U), Multimodal(M); Separabilidade: Separável(S), Não-separável(N); Dimensionalidade:
de dimensões. * Funções que apresentam mais de um ponto mı́nimo global. Fonte: [25]

43

Figura 19: Gráfico das funcões teste para d = 2

(a) f1 (b) f2

(c) f3 (d) f4

(e) f5 (f) f6

44

(g) f8 (h) f9

(i) f10 (j) f11

(k) f13 (l) f14

45

3 RESULTADOS EXPERIMENTAIS

Nesta Parte 3, fazemos a aplicação dos conceitos vistos na Parte 2 em um estudo de

caso. Para atingir o objetivo deste trabalho esta Parte está estruturada, em linhas gerais,

da seguinte forma: (i) é conduzida análise de equities na Bolsa de Valores brasileira

- B3 com objetivo de identificar pares de equities que apresentem a caracteŕıstica de

cointegração; (ii) é constrúıdo um modelo de backtest para a análise da performance da

estratégia de Long&Short dos pares selecionados em (i); e (iii) construção de algoritmos de

otimização do tipo GA e PSO e testados contra as funções benchmark e por fim (iv) esses

algoritmos são aplicados no modelo de backtest da estratégia e seus resultados analisados.

3.1 Metodologia

Como se trata apenas de um trabalho de conclusão de curso, sem a pretensão de ser

um trabalho cient́ıfico, tomamos a liberdade de prescindir de um minucioso dissecamento

das justificativas de cada uma das decisões envolvendo a modelagem desses experimentos.

Não obstante, faremos breves comentários ao longo das próximas seções sobre as decisões

mais importantes, dando a devida transparência e permitindo a replicação, ainda que

precária, dos experimentos por quem assim eventualmente desejá-lo.

Implementação Toda a implementação foi elaborada pelo autor, utilizando Python

3.8 e algumas bibliotecas populares, entre elas: matplotlib, numpy, pandas, scipy e stats-

models. No Anexo B estão transcritos os código-fonte das partes mais relevantes. Não

apresentaremos pseudo-código das implementações, dado que a intuição pode ser obtida

analisando-se o código em Python – linguagem essa que tem como caracteŕıstica a faci-

lidade de leitura. O critério para seleção de quais trechos do código foram inclúıdos no

anexo são: (i) o código representa implementação dos conceitos discutidos na Parte 2; (ii)

o código pode ser utilizado sem grandes ajustes, sendo portanto útil ao leitor. Com este

critério, obviamos toda a parte de boiler-plate, preparação e limpeza de dados, conexão

46

com banco, geração de gráficos e visualizações, gerenciamento de rotinas e etc. Quando

necessário, explicamos no corpo do texto funções e transformações realizadas pelos códigos

não transcritos.

Base de dados Os dados utilizados1 são basicamente dados de mercado das ações

ou ETF’s negociadas na B3, coletados diretamente dos serviços de live trading. Em

resumo: (i) preços de fechamento de setembro de 2019 até outubro de 2022 – usados

para as análises de cointegração; (ii) preços de negociação intraday coletados a cada 60

minutos entre março de 2022 e outubro de 2022 – usados nas análises de cointegração e

no backtesting ; (iii) volumes de negociação diária (do ativo e do seu aluguel) de 2018 até

2022; (iv) taxas médias de aluguel e (v) classificação dos ativos por setores, elaborado pela

B32 – os três últimos itens, utilizados para seleção de pares. Importante observar que as

séries de preço foram ajustadas pelos seus eventos corporativos, tais como: (i) pagamento

de dividendos e JCP3; (ii) splits e implits e (iii) bonificações.

3.2 Seleção dos pares

3.2.1 Análise de cointegração

Método A análise de cointegração que implementamos aqui é o método de duas

etapas de Engle&Granger, conforme discutimos na seção 2.2.3. No Anexo B.1 estão os

principais códigos dessa implementação. Vale adicionar ao que foi discutido, que nesta

implementação cada par é testado para cointegração duas vezes. A diferença entre essas

duas rodadas é a ordem em que as séries de preço são tomadas como variável dependente e

independente na estimação do regressor β. Esta inversão é recomendável, pois os reśıduos

podem ser diferentes dependendo da ordem das séries, o que afeta a “qualidade” do

regressor supramencionado.

Construção dos pares A formação dos pares foi feita mediante a combinação de um

conjunto de 224 equities – entre elas ações, units e ı́ndices negociados na B3 – tomados dois

a dois. Isto resultou em pouco mais de 24 mil pares submetidos individualmente ao teste

de Engle&Granger. Com vistas a analisar a efetividade das restrições setoriais aplicadas

1Esses dados de mercado foram coletados, organizados e tratados pela Sole Capital, para uso interno
nas suas atividades, e foram gentilmente cedidos para realização deste trabalho.

2Listagem dispońıvel em: https://www.b3.com.br/pt_br/produtos-e-servicos/negociacao/

renda-variavel/-empresas-listadas.html
3Juros sobre Capital Próprio.

47

à formação de pares – abordadas na seção 2.1.2 – classificamos os pares de acordo com a

proximidade setorial dos papéis. Ou seja, a B3 classifica o setor de atividade da empresa

em três ńıveis (i) grande setor econômico, (ii) setor econômico e (iii) sub-setor econômico.

Nossa classificação dos pares corresponde ao mais alto ńıvel de congruência setorial entre

os dois papéis. Aqueles pares que não tem nenhum ńıvel em comum, marcamos como

“Nenhum”. Ademais, os papéis que pertencem a uma mesma empresa, classificamos4

como “ON/PN”.

Análise em janelas de tempo Cada um dos pares foi testado independentemente

para cointegração com suas séries temporais recortadas em seis janelas distintas: (i) 5

anos (1260 dias úteis); (ii) 3 anos (756 dias úteis); (iii) 2 anos (504 dias úteis); (iv) 1 ano

(252 dias úteis); (v) 6 meses (126 dias úteis); (vi) um mês (147 horas de negociação) e (vii)

uma semana (35 horas de negociação). Todas as janelas partem do dado mais recente t0 e

avançam n peŕıodos em direção ao passado até t−n. Para as cinco primeiras janelas foram

usados preços de fechamento diários e para as duas últimas, preços a cada 60 minutos de

negociação; assegurando-se dessa forma quantidade de dados razoável para cada teste.

O intuito de se recortar em várias janelas é avaliar a “estabilidade” da relação de

cointegração. Por exemplo, um par que apresente várias janelas cointegradas sugere haver

uma forte relação; ao passo que outro onde apenas uma janela resultou cointegrada, pode

estar passando apenas por uma relação momentânea; especialmente se for nas janelas de

mais curto prazo. Em modelos de trading mais sofisticados, o uso combinado das janelas

cointegradas mais curtas, inseridas dentro de janelas cointegradas mais longas, permite

definir vários ńıveis distintos para execução com diferentes relações de risco retorno para

um mesmo par. Em nosso caso, utilizaremos as janelas apenas para avaliar a “força” da

cointegração medindo a frequência de janelas cointegradas.

4Essa identificação foi feita comparando-se a igualdade dos primeiros quatro d́ıgitos do śımbolo de
negociação dos papéis.

48

Ranking dos resultados Dado o grande número de análises que resultam desses

pares e de suas várias janelas de tempo, fez-se necessário elaborar um ranking dos resul-

tados. Para tal, criamos um critério arbitrário, que chamamos de coint score, para medir

a “qualidade” de cada cointegração. O critério é calculado conforme equação 3.1.

cscore = R2 · f(βp−value) · (1− ADFp−value) · g(ADFτ) ,

sendo que a função f(βp−value) =

0, quando βp−value > α

1, quando βp−value ≤ α

sendo que a função g(τ) =



1, quando τ ≤ τ99%

0.95, quando τ99% ≤ τ ≤ τ95%

0.9, quando τ95% ≤ τ ≤ τ90%

0 quando τ ≥ τ90%

(3.1)

O intuito é representar a performance do teste de Engle&Granger em seus dois passos.

Primeiro, aqueles testes cuja estimação do coeficiente linear β seja estatisticamente signi-

ficativa e tenha apresentado um R2 alto5 terá um coint score maior, dado pelos primeiros

dois fatores do produtório. Já a segunda etapa do teste é representada pelos dois últimos

fatores da expressão 3.1, indicando a confiança acerca da inexistência de raiz unitária

na série do spread. Dessa forma, quanto mais próximo de 1 for o coint score maior a

“qualidade” da cointegração do par. Um coint score igual a zero pode ser interpretado

como uma proxy para falha no teste de Engle&Granger.

3.2.2 Resumo descritivo da análise de cointegração

Com base nos testes de cointegração realizados, com todas as janelas de tempo, ela-

boramos algumas estat́ısticas descritivas dos resultados conforme os gráficos a seguir. De

maneira geral, podemos extrair algumas observações:

� A frequência de pares cointegrados é baixa: apenas 7.3% dos testes foram capazes

de rejeitar a hipótese nula para um α =0.5%.

� Dentre os pares cointegrados, 88% tem apenas uma ou duas janelas; o que pode

sugerir uma cointegracão circunstancial, especialmente se forem janelas mais curtas.

O número absoluto de pares com mais de cinco janelas cointegradas também chama

5Como deve se esperar que o R2 seja muito alto, dado que se trata de uma regressão de dois processos
estocásticos, tal como vimos na seção 2.2.4.

49

Figura 20: Resumo dos testes de cointegração

(a) Frequência de cointegração por janelas de
tempo

(b) Quantidade de janelas cointegradas do
mesmo par

(c) Percentual de cointegração por setor (d) Coint score dos pares cointegrados por setor

a atenção: 112 pares, ou seja, 0.45% dos pares testados (Fig.20b). Dentre os pares

com 7 ou 8 janelas, há uma grande dominância dos ETF’s de ı́ndices.

� As proporções de cointegrações não variam significativamente em função do tamanho

da janela. Quando se compara o valor absoluto de cointegrações, a janela mais curta,

de 5 dias, tem uma frequência menor (Fig.20a). No entanto isso poderia ser reflexo

de um conjunto de dados menor. Uma afirmação mais contundente a este respeito

requereria avaliar estas mesmas janelas com dados de frequência menor – 15 minutos,

por exemplo.

� Analisando o dado agrupado por proximidade setorial; pode-se perceber a frequência

muito maior (53.9%) de janelas cointegradas dentre pares formados por papéis da

mesma empresa (Fig.20c). Por outro lado, também não é desarrazoado argumentar

que essa frequência deveria ser muito maior uma vez que se trata da mesma empresa.

� Ainda sobre os dados por setor; pode se notar uma aparente tendência de aumento da

frequência de cointegração a medida que o par tenha papéis cada vez mais próximos

setorialmente – o que é consonante com a intuição. No entanto, a magnitude com

que essa frequência cresce é digna de nota. Poder-se-ia esperar um salto entre os

50

pares que não tem nenhuma relação setorial com aqueles que tem pelo menos um

ńıvel e, no entanto, não é o que acontece. Isto sugere que dentre os fundamentos

econômicos para cointegração, há outros fatores relevantes além da proximidade

setorial.

� Quanto a qualidade da cointegração das janelas, podemos observar também que

nos casos de ON/PN a mediana é claramente superior aos demais agrupamentos,

inclusive com certo skweness em direção aos coint score mais altos (Fig.20d). Já

nos demais grupos; a distribuição da qualidade dos pares é indistinta. O mesmo

ocorre no agrupamento dos dados por janelas de tempo; ou seja, não há distinção

quanto à qualidade em função da duração da janela de tempo.

3.2.3 Pares selecionados para os experimentos

Critérios Para seguir à etapa dos experimentos com os otimizadores; selecionamos

12 pares dentre aqueles criados e testados, conforme seção anterior. A seleção foi feita

aplicando-se os seguintes critérios sequencialmente: (i) exclusão de pares com condições

desfavoráveis à negociação em situações reais; (ii) ordenamento por coint score e seleção

dos 30 pares com os maiores valores; (iii) seleção arbitrária de 12 pares, dentre esses 30, de

modo a buscar o equiĺıbrio na representação de exemplares de diferentes setores e também

de diferentes classes de proximidade setorial. Os critérios (ii) e (iii) são simples, porém o

(i) merece pouco mais de comentários.

Exclusão de pares por critérios de realismo Com vistas a tornar a aplicação

experimental, que se seguirá, um pouco mais realista6 ou próxima do que seria um con-

texto de negociação real; exclúımos da seleção os pares que não atenderam quaisquer dos

seguintes critérios:

Liquidez Ambos papéis devem ter no mı́nimo R$ 250,000.00 de volume negociado diari-

amente, de modo reduzir o impacto de price slippage.

Liquidez de aluguel O volume negociado de contratos de aluguel não pode ser inferior a

R$ 100,000.00 diários. Esta restrição, aplicada simultaneamente a ambos os papéis,

assegura que o par pode ser montado tanto numa posição “comprada no spread”

quanto numa posição “vendida no spread”.

6Ver também seção 3.4.5 sobre as limitações da implementação do backtest.

51

Volatilidade Volatilidade do spread deve estar no intervalo de 5% a 70% ao ano. Esta

medida pode ser interpretada como uma medida de mitigação de risco.

Janelas cointegradas Pares precisam ter, no mı́nimo, 4 janelas aprovadas no teste de

cointegração.

É óbvio que esses parâmetros de “realismo” são totalmente arbitrários e dependem

enormemente das condições reais de operacionalização da estratégia. Elementos como o

valor financeiro das ordens, custos operacionais, método de envio do lote, entre outros

fariam os valores acima variar radicalmente. Buscamos aqui, tão somente, eliminar pares

flagrantemente inviáveis.

Tabela 3: Pares Selecionados

Ticker 1 Ticker 2 Prox. Setorial Coint score Janelas cointegradas

BOVA11 PIBB11 ETF’s 0.886 8
TAEE4 TAEE3 ON/PN 0.665 6
SAPR11 SAPR4 ON/PN 0.660 6
ENGI11 ENGI4 ON/PN 0.646 7
GGBR3 GOAU3 Sub setor 0.629 6
GOAU3 GOAU4 ON/PN 0.607 6
FIND11 BOVB11 ETF’s 0.513 5
CMIG4 TAEE11 Sub setor 0.456 4
SANB4 SANB11 ON/PN 0.443 4
PETR3 PETR4 ON/PN 0.433 4
BOVB11 BOVA11 ETF’s 0.357 4
SMAC11 SMAL11 ETF’s 0.341 4

Resultados de cointegração Na Tabela 3 trazemos os 12 pares selecionados for-

mados a partir de 21 ativos distintos, juntamente da quantidade de janelas cointegradas

que esses pares possuem e da média dos seus respectivos coint scores nas oito janelas de

tempo testadas.

52

Já na Tabela 4, trazemos os resultados detalhados do teste de cointegração da janela

de tempo de 2 anos (504 dias úteis). Nela, os papéis estão identificados como “Var

dep” (variável dependente) e “Var indep” (variável independente) denotando a ordem em

que foram utilizados na regressão linear. Consequentemente, o β representa o fator –

também chamado de hedge ratio – que deve ser aplicado sobre o valor financeiro do papel

identificado como “variável independente”.

Tabela 4: Resultado dos testes de cointegração – Janela de 504 dias úteis

Var dep Var indep Coint score β R2 ADF p-value ADF τcrit

SMAC11 SMAL11 0.899 0.520 0.999 0.000 10%
BOVB11 BOVA11 0.899 1.038 0.999 0.000 10%
TAEE4 TAEE3 0.899 0.991 0.999 0.000 10%
PETR3 PETR4 0.892 1.178 0.997 0.006 10%
SAPR11 SAPR4 0.891 5.500 0.990 0.000 10%
SANB4 SANB11 0.886 0.502 0.984 0.000 10%
BOVA11 PIBB11 0.878 0.522 0.980 0.004 10%
GOAU3 GOAU4 0.798 0.998 0.924 0.040 10%
GGBR3 GOAU3 0.786 1.821 0.901 0.030 10%
FIND11 BOVB11 0.760 1.034 0.854 0.010 10%
CMIG4 TAEE11 0.674 0.236 0.770 0.027 10%
ENGI11 ENGI4 0.658 4.156 0.746 0.020 10%

Por fim, na Fig.21 temos, para cada um dos 12 pares, a série do logaritmo dos retornos

diários de ambos papéis na janela de 2 anos. Mostramos também a série da razão entre

os dois preços e o spread, calculado utilizando-se o β ou hedge ratio.

53

Figura 21: Séries temporais dos pares selecionados

54

Figura 21: Séries temporais dos pares selecionados

55

Figura 21: Séries temporais dos pares selecionados

56

Figura 21: Séries temporais dos pares selecionados

57

3.3 Otimizadores

3.3.1 Construção e caracteŕısticas

Constrúımos quatro versões diferentes de otimizadores heuŕısticos. Um baseado no

GA e os outros três, no PSO. Descrevemos as principais caracteŕısticas de implementação

de cada um deles:

GA Algoritmo genético constrúıdo conforme seção 2.3.4. A seleção é feita com método

de seleção estocástica universal; o crossover utiliza método de ponto único aleato-

riamente selecionado ao longo do vetor dos genes. Já a mutação é se dá de acordo

com a equação 2.26; porém a distribuição utilizada é uma distribuição PERT. Im-

portante assinalar que optamos por aplicar a mutação apenas sobre os descendentes

e não sob a totalidade da população7.

PSO-Simples Modelo de PSO básico, sem nenhum tipo de adaptação dos coeficientes.

PSO-Linear Modificação do PSO onde os coeficientes vão variando linearmente em

função da iteração g em que o modelo se encontra, da forma descrita pela equação

2.19. Os intervalos do ińıcio até a última iteração g = G foram definidos conforme

Tabela 5. Pode-se notar os coeficientes favorecem o comportamento exploratório

das part́ıculas no ińıcio da otimização. Já mais ao final, a convergência predomina,

facilitando o refinamento do resultado.

Tabela 5: Intervalo dos coeficientes no PSO-Linear

Coeficiente g = 0 g = G

ω 0.9 0.4
c1 2.5 1.0
c2 1.0 2.5

PSO-ESE/ELS Nesta variante, implementamos o algoritmo da forma mais próxima

posśıvel ao elaborado por Zhan, Zhi-Hui et al.8. O detalhamento do processo de

adaptação dos coeficientes (ESE) e do processo de seleção elitista (ELS) foram

abordados na seção 2.3.3.3.

7O motivo desta escolha não tem relação com a eficiência do algoritmo em si, mas como uma tentativa
de reduzir o tempo de processamento; fazendo com que a função objetivo seja chamada para apenas
metade da população a cada iteração. Esta escolha pode ter afetado negativamente a precisão do algoritmo
genético em comparação com o PSO.

8 [22]

58

Com relação à inicialização da população, todos os quatro modelos iniciam com ex-

tração da série quasi-aleatória de Sobol9. E, no caso do modelos de PSO, o vetor velocidade

é inicializado aleatoriamente10 dentro do espaço de busca.

Com relação ao método para lidar com as restrições do espaço de busca, adotamos

o método da proximidade. Porque foi o que melhor resultado ofereceu nos testes de

desenvolvimento – especialmente na função f5 – que tem seu mı́nimo global colocado

justamente sobre um dos seus limites. No caso espećıfico dos modelos baseados em PSO,

a velocidade da part́ıcula é sempre reiniciada em zero para evitar persistir na evasão do

espaço de busca.

Optamos por não impor critérios de parada da otimização. O único parâmetro li-

mitando a evolução do algoritmo é o número máximo de iterações G. Isto é importante

para mantermos as condições de comparação semelhantes entre todas as versões do algo-

ritmo e permitir observar sua evolução sem interrupções potencialmente indevidas. Não

obstante, monitoramos o custo computacional de cada convergência nos testes a seguir,

dando intuição sobre eventuais paradas do algoritmo. Evidente que nas aplicações práticas

é desejável a implementação de critérios de parada mais sofisticados11.

3.3.2 Teste dos otimizadores

Para testar a performance das quatro versões de otimizadores acima, realizamos bate-

ria de testes utilizando como função objetivo cada uma das 14 funções de teste descritas

na Tabela 2. Foram rodadas 50 rotinas de otimização independentes, para cada conjunto

de parâmetros de otimização. Os resultados apresentados nas tabelas a seguir são a média

dos resultados dessas 50 repetições; tanto para o resultado obtido pelo melhor indiv́ıduo

de cada repetição (Melhor resultado), quanto pela média de todos indiv́ıduos de cada re-

petição (Média população). A seguir, discorremos os indicadores apresentados nas tabelas

adiante:

Mı́nimo É a média dos resultados da função objetivo ao final de todas as 50 repetições.

O retorno das funções testes foi ajustado para que todas tenham seu mı́nimo global

igual a zero; permitindo assim a comparação direta entre elas.

9Vide seção 2.3.5.

10Inicialização do vetor velocidade: −→v 0,j =
1

2
(−→x random −−→x 0,j)

11Ver comentários finais na seção 4.2

59

Taxa de sucesso É considerado bem sucedido o teste cujo resultado encontrado pelo

algoritmo seja menor que a precisão mı́nima exigida, arbitrada em 10−6, na média

ao longo de 5 iterações12. A taxa de sucesso representa quantas vezes foi atingido o

mı́nimo global nas 50 repetições, expresso em percentual.

SFFE Indica a média de quantas vezes a função objetivo precisou ser computada –

Fitness Function Evaluations (FFE) – para que o algoritmo obtivesse sucesso (S)

(com precisão de 10−6 na média de no mı́nimo 5 iterações). É um indicador de custo

computacional, especialmente relevante para nossa aplicação que tem uma função

objetiva pesada computacionalmente.

TA/kSFFE É ı́ndice calculado por
taxa acerto

SFFE · 10−3
e indica uma relação entre a taxa de

acertos e o custo computacional associado a esta taxa. Note que só é computado

para os testes que encontraram o mı́nimo global, de modo que o SFFE ̸= 0. Este

indicador pode ser interpretado como um ı́ndice de “eficiência” computacional do

algoritmo.

3.3.3 Resultados dos testes

Testamos cada um dos algoritmos com os parâmetros sendo a combinação dos seguin-

tes valores: (i) a iteração máxima G foi avaliada com 125, 250, 500 e 1000 iterações e (ii)

as populações testadas foram 16, 32, 64, 128 e 256.

A Tabela 6 traz a média dos resultados obtidos em cada uma destas combinações de

parâmetros para cada função de teste. E na Tabela 7, todas as funções teste agregadas

por otimizador. Analisando esses resultados, podemos pontuar algumas conclusões sobre

esta implementação13 dos algoritmos:

(a) A performance do GA foi substancialmente inferior às três versões do PSO; especi-

almente nos problemas multimodais não-separáveis.

(b) Especificamente nos dois problemas hiperdimensionais com d = 5, a performance

do GA contraria o que dissemos no item (a); superando todos as versões do PSO,

especialmente na função mais complexa f12. Possivelmente isto se explica pela

12Essa condição do mı́nimo de 5 iterações foi acrescentada porque observamos que o Algortimo Genético
por vezes “perde” o melhor indiv́ıduo devido ao mecanismo de Seleção Estocástica Universal, especial-
mente quando se trata de um gene único na população.

13Vale realçar que estas conclusões só tem validade a respeito das implementações desses algoritmos
feitas neste trabalho; não sendo posśıvel generalizá-las para as classes de algoritmos.

60

necessidade de maiores iterações no método PSO, conforme evidência que veremos

mais adiante.

(c) O GA apresentou consistentemente14 a menor dispersão entre o melhor indiv́ıduo e a

média da população. Essa melhor convergência pode ser explicada pelo mecanismo

de seleção e crossover, que faz com que as melhores soluções se “propaguem” entre

vários indiv́ıduos da população.

(d) Exceto na f1 e f12 a variante linear do PSO obteve as melhores taxas de acerto

dentro das variantes de PSO; conseguindo também o maior taxa de acerto global –

87%. A variante ESE/ELS vem logo em seguida com 84%.

(e) A PSO básico foi superado pelas versões com coeficientes adaptáveis em todas as

funçoes teste. As vezes por uma larga margem, caso das funções f11 e f12. Isto é

uma evidência de que os mecanismos de adaptação trazem significativa melhora à

performance dos otimizadores.

(f) Como era esperado, a performance foi excelente nas funções unimodais. Todos os

algoritmos alcançaram 100% de acerto, ressalvado a f7 com o que foi dito no item

(b).

(g) Apesar do PSO linear ter tido a melhor taxa de acerto, isso veio a um alto custo

computacional – média de 9.9 mil chamadas da função objetivo até o primeiro acerto

(SFFE). Neste aspecto, o PSO básico foi o melhor de todos: quando encontrou o

mı́nimo, o fez chamando a função objetivo 2.8 mil vezes em média.

(h) Em termos gerais, pode-se dizer que a PSO-ESE/ELS é a alternativa mais equili-

brada; no sentido de que teve a segunda melhor taxa de acertos ao mesmo tempo

que registrou a segunda maior eficiência computacional com uma diferença mı́nima

para o primeiro colocado.

14A única – e dramática – exceção é a f2. Uma hipótese para este oulier é que a função cross-in-tray
possui vários mı́nimos locais próximos do mı́nimo global tanto em termos do valor do resultado quanto
em termos da localização. Isso pode ter feito com que o processo de seleção estocástica universal se
tornasse ineficiente ao discernir entre indiv́ıduos com fitness muito próximo, povoando continuamente os
mı́nimos locais próximos.

61

Tabela 6: Resultados dos otimizadores por função teste

Melhor resultado Média população

Taxa acerto SFFE TA/kSFFE Mı́nimo Taxa acerto SFFE TA/kSFFE Mı́nimo

fn Algoritmo Adaptação

f1

GA - 96.0 3939.67 39.59 4.288542e-05 95.0 4179.99 37.66 5.979355e-05

PSO

Simples 100.0 5053.30 41.64 4.127884e-03 100.0 7881.53 30.80 4.127886e-03

ESE/ELS 100.0 5052.97 38.83 7.685727e-11 81.0 10429.41 19.63 1.066739e-05

Linear 91.0 16727.63 11.59 7.021830e-07 60.0 34045.74 8.10 1.148339e-03

f2

GA - 84.0 3166.50 26.89 1.450794e-06 1.0 NaN NaN 5.259661e-03

PSO

- 100.0 1758.44 108.97 -2.037478e-08 92.0 8886.40 40.87 7.029870e-07

ESE/ELS 100.0 1812.67 101.09 -2.037478e-08 80.0 12054.72 25.49 3.376491e-06

Linear 100.0 6538.42 29.31 -2.037434e-08 54.0 28462.78 7.51 2.361783e-05

f3

GA - 100.0 606.20 258.49 0.000000e+00 72.0 10038.64 97.85 5.332031e-03

PSO

- 100.0 741.80 240.51 0.000000e+00 100.0 3592.95 77.61 6.250000e-05

ESE/ELS 100.0 737.36 239.49 0.000000e+00 100.0 5399.41 54.78 2.187500e-05

Linear 100.0 1152.83 115.36 0.000000e+00 99.0 17322.79 19.07 2.250000e-04

f4

GA - 23.0 4275.93 6.75 4.921436e-02 23.0 4523.63 6.34 7.681788e-02

PSO

- 76.0 2881.20 35.52 1.519911e-02 74.0 8566.28 15.78 1.522994e-02

ESE/ELS 80.0 3437.77 28.62 1.278358e-02 62.0 11946.42 9.80 1.310132e-02

Linear 93.0 10139.82 17.33 3.826012e-03 59.0 26714.64 7.48 4.593823e-03

Continua na próxima página

62

Tabela 6: Resultados dos otimizadores por função teste

Melhor resultado Média população

Taxa acerto SFFE TA/kSFFE Mı́nimo Taxa acerto SFFE TA/kSFFE Mı́nimo

fn Algoritmo Adaptação

f5

GA - 1.0 44625.28 0.11 4.433933e+01 0.0 NaN NaN 1.451413e+02

PSO

Simples 51.0 3471.25 18.61 5.478762e+01 37.0 12902.22 5.30 5.639322e+01

ESE/ELS 68.0 3085.88 28.67 2.814813e+01 43.0 15635.36 6.15 3.072690e+01

Linear 85.0 7795.06 18.53 1.156424e+01 51.0 27039.17 5.79 1.363932e+01

f6

GA - 100.0 1563.32 108.14 3.433170e-12 100.0 1813.00 99.23 3.979908e-12

PSO

Simples 100.0 1807.62 107.48 5.257476e-25 100.0 4090.36 61.31 1.078578e-17

ESE/ELS 100.0 1764.48 104.65 5.375433e-21 100.0 6263.19 42.16 5.630371e-09

Linear 100.0 6665.11 29.52 7.841933e-14 96.0 19562.42 15.50 4.230050e-07

f7

GA - 100.0 1572.75 107.24 1.789689e-14 100.0 1820.01 98.45 3.197533e-14

PSO

Simples 87.0 2919.09 42.86 1.317106e-04 87.0 4479.03 34.08 1.317144e-04

ESE/ELS 89.0 3307.78 35.13 4.529706e-05 89.0 7064.85 22.81 4.673190e-05

Linear 96.0 11255.31 16.70 1.318413e-06 86.0 20291.52 11.29 3.889881e-06

f8

GA - 7.0 6066.68 9.40 6.634306e-03 7.0 6314.52 8.86 6.809868e-02

PSO

Simples 68.0 3050.85 35.02 2.346740e-03 49.0 13522.39 11.91 2.536779e-03

ESE/ELS 70.0 3843.46 28.35 2.125001e-03 33.0 20717.26 6.25 2.740402e-03

Linear 86.0 7325.94 18.57 9.852338e-04 36.0 37300.54 4.04 1.662876e-03

Continua na próxima página

63

Tabela 6: Resultados dos otimizadores por função teste

Melhor resultado Média população

Taxa acerto SFFE TA/kSFFE Mı́nimo Taxa acerto SFFE TA/kSFFE Mı́nimo

fn Algoritmo Adaptação

f9

GA - 4.0 27422.47 0.35 4.101489e-03 0.0 NaN NaN 1.032915e+00

PSO

Simples 94.0 2174.98 76.39 1.189009e-01 81.0 10409.29 35.43 1.200630e-01

ESE/ELS 97.0 2346.95 57.62 1.253712e-02 78.0 10990.16 21.60 1.672865e-02

Linear 98.0 7047.58 26.72 4.298202e-02 50.0 25532.64 9.93 5.500643e-02

f10

GA - 86.0 4618.73 24.63 6.784936e-05 84.0 5216.53 22.45 9.328886e-05

PSO

Simples 100.0 1709.64 113.04 1.153752e-24 100.0 4024.03 62.13 1.239533e-17

ESE/ELS 100.0 1674.27 109.32 3.743163e-21 100.0 6120.68 43.14 9.155726e-10

Linear 100.0 6047.94 31.51 1.736327e-14 96.0 19267.66 15.79 5.267797e-07

f11

GA - 76.0 2512.92 33.58 2.890039e-01 75.0 2760.48 31.08 5.138457e-01

PSO

Simples 77.0 3040.57 36.21 2.646276e-01 74.0 8203.81 17.21 2.649681e-01

ESE/ELS 95.0 3743.44 32.79 3.276760e-02 73.0 11923.12 12.03 4.899042e-02

Linear 98.0 10804.82 18.89 1.689788e-02 62.0 26774.84 8.47 3.097409e-02

f12

GA - 75.0 2551.38 33.97 2.931947e-01 75.0 2789.93 31.59 5.241393e-01

PSO

Simples 0.0 7616.00 0.34 5.676193e+00 0.0 13888.00 0.25 5.676867e+00

ESE/ELS 28.0 30182.46 1.35 1.280727e+00 18.0 35391.28 0.86 1.462307e+00

Linear 16.0 23671.17 0.82 2.274595e+00 14.0 36143.84 0.72 2.347904e+00

Continua na próxima página

64

Tabela 6: Resultados dos otimizadores por função teste

Melhor resultado Média população

Taxa acerto SFFE TA/kSFFE Mı́nimo Taxa acerto SFFE TA/kSFFE Mı́nimo

fn Algoritmo Adaptação

f13

GA - 44.0 9935.35 4.45 1.324285e-03 44.0 10739.42 4.35 2.778792e-02

PSO

Simples 98.0 1951.08 79.02 8.343604e-05 98.0 6270.92 39.13 9.204035e-05

ESE/ELS 99.0 2150.42 69.33 8.511566e-06 94.0 9315.91 26.72 4.529518e-05

Linear 100.0 6332.79 28.12 5.220266e-11 80.0 20889.29 12.34 6.000044e-05

f14

GA - 0.0 NaN NaN 1.139550e+00 0.0 NaN NaN 3.414779e+00

PSO

Simples 46.0 5621.40 16.16 7.327441e-01 40.0 12252.08 10.04 7.433937e-01

ESE/ELS 48.0 7519.34 13.48 5.929568e-01 25.0 20403.54 5.74 6.925869e-01

Linear 55.0 20314.93 5.12 4.225981e-01 17.0 48084.32 2.11 5.787498e-01

Tabela 7: Média dos resultados dos otimizadores

Melhor resultado Média população
Taxa acerto SFFE TA/kSFFE Mı́nimo Taxa acerto SFFE TA/kSFFE Mı́nimo

Algoritmo Adaptação

GA - 57.0 5138.91 57.35 3.294462 48.0 4956.76 44.89 10.772172

PSO
Simples 79.0 2856.40 72.08 4.400141 74.0 8171.13 33.46 4.515764
ESE/ELS 84.0 4756.51 64.20 2.148720 70.0 12478.48 22.12 2.354535
Linear 87.0 9863.39 26.80 1.023295 61.0 26215.59 10.06 1.189977

65

3.3.4 Análise e seleção dos parâmetros de otimização

Agora, vamos analisar o impacto da escolha dos parâmetros de otimização – população

e número de iterações. A Tabela 8 mostra a média das 14 funções teste com a abertura

nos parâmetros supracitados. Como era de se esperar, a taxa de acerto cresce com o

aumento das iterações e com o aumento populacional de maneira assintótica.

É posśıvel notar que a performance de todos os algoritmos é mais senśıvel ao tamanho

da população do que à quantidade de iterações15, pelo menos, dentro do intervalo tes-

tado. Podemos concluir que nesse intervalo ainda que usássemos os parâmetros máximos

(256x1000) nem o modelo PSO básico nem o GA seriam capazes de alcançar 90% de

acerto. Com base nessa observação, descartamos esses dois modelos como opções para a

aplicação em pairs trading que faremos a seguir.

Tabela 8: Taxa de acerto média em todas as funções

(a) GenAlgo

Iterações 125 250 500 1000
População

16 28.1 39.9 47.1 52.1
32 40.4 49.7 56.0 60.1
64 49.4 59.9 62.3 65.4
128 58.7 61.7 64.7 67.9
256 63.7 67.6 70.4 72.6

(b) PSO-Simples

Iterações 125 250 500 1000
População

16 60.9 60.1 65.0 61.9
32 72.9 75.7 75.1 75.9
64 82.0 79.4 80.7 80.7
128 85.3 86.6 87.0 86.3
256 88.6 88.4 89.6 89.3

(c) PSO-ESE/ELS

Iterações 125 250 500 1000
População

16 64.7 71.7 72.3 72.7
32 76.1 81.1 83.0 85.4
64 83.6 86.9 86.6 91.0
128 87.9 89.0 91.9 95.4
256 90.0 92.3 94.7 97.1

(d) PSO-Linear

Iterações 125 250 500 1000
População

16 73.4 79.3 83.0 83.3
32 82.4 87.0 88.3 91.7
64 87.6 88.6 90.4 92.7
128 89.9 90.4 92.7 95.4
256 91.1 93.3 96.0 98.4

Caso o critério para a escolha entre os dois algoritmos restantes fosse puramente a

taxa de acerto, claramente o escolhido seria o modelo linear com 256 de população e 1000

iterações, ou até valores maiores que esses. Porém, a aplicação prática requer levar em

consideração a eficiência computacional (TA/kSFFE)16. Neste critério, o PSO-ESE/ELS

15A razão de 1 p.p. de acerto para cada 20 indiv́ıduos ou 128 iterações adicionais. Estimativa obtida
por regressão linear com os resultado do PSO-Linear.

16O PSO-ESE/ELS é mais eficiente segundo o indicador TA/kSFFE, que mede as chamadas da função
objetivo. Porém cabe notar que, devido a maior complexidade do algoritmo, o tempo de processamento

66

levaria vantagem se o modelo estivesse equipado com um critério de parada; o que não é

o caso, conforme discutimos anteriormente.

Diante dessas condições, o critério adotado para escolha foi o algoritmo que tiver a

maior taxa de acerto com no máximo 8 mil avaliações da função objetivo17. Isto significa

escolher a combinação de parâmetros na diagonal superior formada pelas combinações

64x125 e 16x500 que resulte na maior taxa de acerto. Portanto o modelo escolhido é o

PSO-linear com população de 64 e 125 iterações. A Tabela 9 traz os resultados com as

funções teste obtido especificamente com estes parâmetros de otimização. Vale pontuar

que a taxa de acerto desta seleção sobre para 93.3%; se exclúıdas as funções hiperdimen-

sionais dado que o problema que iremos aplicar não requer tantas dimensões.

real da variante ESE/ELS é maior que o do PSO-Linear, operando sob os mesmos parâmetros. Essa
desvantagem se agrava com o aumento dos parâmetros de otimização.

17O que significa aproximadamente 9 horas de processamento na máquina utilizada para rodar os
algoritmos com a função objetivo do backtest para cada par.

67

Tabela 9: Resultados PSO-Linear – população: 64, iterações: 125

Melhor resultado Média população
Taxa acerto SFFE TA/kSFFE Mı́nimo Taxa acerto SFFE TA/kSFFE Mı́nimo

fn

f1 100.0 7068.16 14.15 2.067879e-08 0.0 NaN NaN 8.256683e-04
f2 100.0 3594.24 27.82 -2.037478e-08 2.0 7872.00 0.25 3.483941e-05
f3 100.0 935.68 106.87 0.000000e+00 100.0 6210.56 16.10 0.000000e+00
f4 100.0 5145.60 19.43 5.479386e-12 4.0 7680.00 0.52 6.582672e-04
f5 84.0 4397.71 19.10 1.040988e+01 8.0 7872.00 1.02 1.260812e+01
f6 100.0 3613.44 27.67 2.654110e-18 100.0 7089.63 14.11 4.019820e-08
f7 100.0 5304.32 18.85 1.165285e-12 98.0 7301.45 13.42 1.119235e-07
f8 74.0 3881.51 19.06 1.791406e-03 0.0 NaN NaN 2.958754e-03
f9 100.0 3866.88 25.86 -1.867492e-10 26.0 6935.27 3.75 2.969024e-02
f10 100.0 3488.00 28.67 2.115381e-18 96.0 6905.33 13.90 5.644054e-07
f11 98.0 5216.65 18.79 1.989918e-02 4.0 7872.00 0.51 3.151169e-02
f12 6.0 7061.33 0.85 2.965626e+00 0.0 NaN NaN 3.042284e+00
f13 100.0 3587.84 27.87 0.000000e+00 82.0 7482.35 10.96 1.167528e-05
f14 64.0 7324.00 8.74 3.647531e-01 0.0 NaN NaN 6.094070e-01

Média fn 87.6 37.14

68

3.3.5 Comparativo de performance com literatura

Apesar dos resultados obtidos pelo do PSO-Linear nas funções teste aparentarem ser

suficientes para o uso desse algoritmo no problema de otimização de pairs trading ; convém

antes compará-lo com os resultados obtidos por referências na área de otimização, com

emprego de algoritmos de PSO que representem o estado da arte no campo. Para isto,

vamos comparar nossos resultados com aqueles apresentados por Abbas et al.18.

Abbas et al. desenvolve no artigo referido por este trabalho um modelo de PSO que

emprega uma técnica mais avançada de inicialização das part́ıculas. Ele compara esse

modelo com outros cinco modelos de PSO; incluindo entre esse alguns que fazem uso de

topologia das part́ıculas para ajustar os coeficientes ou que usam estratégias de aprendi-

zagem de máquina em coordenação com o processo de PSO. Na Tabela 10 apresentamos

o melhor resultado obtido por Abbas dentre todos os 6 algoritmos na coluna “Mı́n” e

o pior dos 6, na coluna “Min”. Na coluna “PSO-Linear” está a média dos resultados

obtidos pelo algoritmo desenvolvido para este trabalho em 50 repetições, com os mesmos

parâmetros de otimização utilizados por Abbas et al.

Tabela 10: Comparativo com Abbas et al.

fn∗ Dimensões População Iterações PSO-Linear Mı́n Máx

f1 10 20 40000 3.172600e-04 2.720000e-15 3.850000e-01
f6 10 20 40000 8.689117e-09 5.550000e-153 9.010000e-10
f8 10 20 40000 1.904741e-02 2.930000e-03 1.310000e-02
f12 10 20 40000 2.190857e-01 0.000000e+00 9.280000e+00
f14 2 20 40000 3.600000e-01 2.450000e-03 6.020000e-01

* Deve-se atentar que o ı́ndice das funções aqui se refere à formulação genérica da função,
com as dimensões indicadas acima. No restante do trabalho, utilizamos número de dimensões

conforme Tabela 2.

Das 5 funções teste que foram usadas em simultaneidade por este trabalho e por Abbas

et al.; o PSO-Linear entregou em 4 delas resultados dentro do intervalo de performance

desses algoritmos mais sofisticados. As duas funções que não conseguimos bater a perfor-

mance de nenhum das 6 variações de PSO foram f6 e f8 por uma diferença de 7.8e-09 e

5.94e-03 respectivamente.

Interessante notar que o PSO-Linear conseguiu performar bem inclusive na f14, que

como observou Abbas19 é uma função especialmente dif́ıcil para algortimos que tendem

a cair em mı́nimos locais. Foi justamente a f14 que PSO-Linear apresentou seu pior

18 [26]
19 [26, p. 289]

69

resultado entre os problemas de duas dimensões20.

Outro aspecto importante de observar, é que a performance do PSO-Linear nesses

problemas hiperdimensionais, requer um número muito maior de iterações do que estamos

utilizando nos testes da seção anterior. Por exemplo a função Rastrigin com 5 dimensões

(f12) e 125 iterações teve mı́nimo médio de aproximadamente 3.0. Porém a mesma função

com 10 dimensões, muito mais dif́ıcil, o resultado foi 0.21; obtido com 40 mil iterações.

3.4 Backtest

3.4.1 Função objetivo do problema de pairs trading

Até aqui, utilizamos como função objetivo do problema de minimização o conjunto

das 14 funções teste apresentadas na seção 2.3.5. Agora que já constrúımos e testamos

o algoritmo que usaremos para otimizar os parâmetros de trading da estratégia de pares

cointegrados; precisamos apresentar a função objetivo do problema central deste trabalho.

Diferentemente das funções teste, o problema de otimização dos parâmetros de trading

de pares cointegrados não tem um mı́nimo global conhecido ou uma formulação anaĺıtica.

É imposśıvel conhecer o seu comportamento, suas caracteŕısticas e eventuais mı́nimos de

forma permanente. Isto acontece, por que o que buscamos é otimizar uma atividade –

trading – cujo processo fundamental é estocástico e, portanto, seu comportamento só é

conhecido no passado.

Isto posto, o melhor que se pode fazer é simular as rotinas de trading usando as

séries estocásticas do passado para modelar – e otimizar – a rotina de trading real. A

esse exerćıcio de simulação, chama-se de backtest. A estratégia de trading simulada nessa

sub-rotina de backtest foi constrúıda conforme discussão da seção 2.1.3.1.

O backtest, porém, não é a função objetivo da otimização, mas sim um algoritmo (sub-

rotina) que toma como entrada os parâmetros que estamos buscando otimizar (z, g, p) e

retorna as variáveis C de entrada21 na função objetivo f(C) propriamente dita. A função

objetivo f da otimização é o MWRR (3.2) que discutiremos a seguir.

20Vide Tabela 9
21Ver detalhe na seção 3.4.2.

70

3.4.2 MWRR

Existem inúmeros candidatos para a função objetivo f . Essa escolha depende do que

o usuário almeja maximizar no seu portfólio. A t́ıtulo de exemplo; poder-se-ia querer ma-

ximizar o retorno financeiro calculado em moeda ou então maximizar o retorno ajustado

pelo risco (volatilidade) medido através do sharpe ratio ou ainda a minimizar a correlação

dos retornos do portfólio com um dado benchmark.

Nossa escolha foi a de buscar maximizar a taxa interna de retorno (TIR) do trading,

levando em consideração o tempo e o volume financeiro das posições envolvidas. O indica-

dor ideal para isto é a taxa de retorno ponderada pelo dinheiro, ou como é mais conhecida

– Money Weighted Rate of Return. O MWRR é definido conforme equação (3.2). Por ela,

conclui-se que, à taxa de desconto MWRR, o somatório de todos os fluxos de caixa Cn

no intervalo de duração do trade N , tem valor presente ĺıquido igual a zero. O MWRR é

uma função dos fluxos de caixa C obtidos através de backtesting, que retorna a taxa de

desconto que iguala a zero o somatório dos fluxos à valor presente.

N∑
n=0

Cn
(1 +MWRR)n

= 0 (3.2)

O MWRR será a nossa função objetivo f . Simbolizando o algoritmo gerador de

fluxos de caixa C (backtest) como Ψ e retomando a definição de otimização da equação

(2.16) podemos definir o nosso problema na forma da expressão 3.3. Onde z, g, p são os

parâmetro de trading que queremos otimizar22 respectivamente: z é o parâmetro para

montagem da operação, g é o parâmetro para a reversão e p é o parâmetro para stop-loss.

Os intervalos de procura, definidos pelas restrições a que está sujeito o problema foram

arbitradas de modo a gerar uma espaço de busca grande, porém não permitindo resultado

excessivamente distantes das práticas de mercado.

min
z,g,p

f (Ψ(z, g, p, t0)) = −MWRR

sujeito a

{
z ∈ [0.1, 4.0]

g, p ∈ [0.01, 5.0]

(3.3)

3.4.3 Conjunto de treino e conjunto de teste

A variável t0, na expressão (3.3), não faz parte da otimização; mas é uma entrada

muito importante da função Ψ (backtest). Pois é ela quem representa o intervalo de tempo

22Vide seção 2.1.3.1 para maior discussão sobre esses parâmetros.

71

no qual o backtest será calculado; ou seja, t0 deve representar o intervalo de tempo referente

ao conjunto de treino. Dessa forma, o algoritmo de otimização tem “conhecimento” apenas

de uma parte da série estocástica. É fundamental que os indexadores de tempo t0 e t1

das séries estocásticas obedeçam à condição t0 ∩ t1 = Ø. Além disso, t0 < t1, ou seja,

o conjunto de treino precisa representar uma porção mais antiga dos dados do que o

conjunto de teste. Desta forma, é posśıvel utilizar os parâmetros ótimos retornados pelo

otimizador – denotados por * – no conjunto de teste t1 da série e avaliar o resultado

que seria obtido com f (Ψ(z∗, g∗, p∗, t1)), sem incorrer no viés de look-ahead. Em nossa

implementação, t0 se refere ao peŕıodo entre 1º de abril e 15 de julho de 2022 e t1 está

entre 16 de julho e 26 de outubro também de 2022.

Comparação dos resultados Idealmente, o resultado obtido no conjunto de teste

deve ter mesma ordem de grandeza e mesmas caracteŕısticas no conjunto de treino. Evi-

dentemente que, em se tratando de processos estocásticos, flutuações irão ocorrer. Definir

em que magnitude essas flutuações podem ser consideradas normais é uma decisão que

pertence mais à gestão de (e apetite ao) risco do que ao modelo de otimização ou a

modelagem do backtest.

3.4.4 Diagrama do funcionamento

A Figura 22 mostra o fluxo simplificado do backtest implementado. A análise do

fluxo já se basta, mas queremos destacar três pontos. Primeiro, que a cada dia (d) uma

nova avaliação de cointegração é feita, calculando-se os indicadores utilizados na análise

de acionamento dos parâmetros, como por exemplo desvio padrão e volatilidade da série.

Esse cálculo é feito com os dados dispońıveis até d-1. Feito isso, procede-se à análise

dos preços (ratio) propriamente ditas com os dados em frequência horária. Na próxima

iteração, os dados da análise avançam um dia útil, assim como o dia de simulação também

avança mais um dia. Esse método de ir se “movendo” em direção ao futuro com janelas

de tempo sincronizadas é chamado de walk-foward.

Em segundo lugar, destacamos que o carregamento dos parâmetros de trading é feito

no ińıcio do backtest e permanecem constantes ao longo de todo backtest. Seria posśıvel

– e provavelmente proveitoso – repetir a otimização usando d-1, em paralalelo com a

análise de cointegração. Não o fizemos devido ao alto custo computacional que traria.

Durante o processo de otimização, cada indiv́ıduo do PSO-linear carrega uma combinação

de parâmetros e roda um backtest. Isto é feito para toda a população em cada iteração do

72

Figura 22: Fluxo simplificado do algoritmo de backtest

otimizador. Já na fase de testes (onde t = t1), os parâmetros já otimizados são carregados

e o algoritmo de backtest roda apenas uma vez.

Por fim, para evitar dúvidas; os ı́ndices d representados na Figura correspondem aos

dias dentro do intervalo definido por t. Por exemplo, para o conjunto de treino, d ∈ t0; já

para o conjunto de testes d ∈ t1. E dmax corresponde ao último dia do conjunto t.

3.4.5 Limitações e problemas do backtest

3.4.5.1 Vieses

Convém brevemente mencionar os problemas e dificuldades que existem quando se

usa modelos de backtest para ex-ante a performance de uma dada estratégia de trading.

73

À parte da obviedade de que não há garantias de que o que ocorreu no passado voltará a

acontecer no futuro; o emprego do backtest reside na expectativa de que os processos de

formação dos preços futuros irão refletir os fundamentos econômicos da estratégia – como

vimos na seção 2.1.2, consequentemente, certos padrões, devem se reproduzir. Vários

cuidados devem ser tomados para evitar algumas armadilhas no processo de identificação

desses padrões. Listamos abaixo alguns dos vieses mais comuns juntamente das medidas

mitigatórias eventualmente adotadas por nossa implementação:

Sobreajuste Esse é sem dúvida o viés mais perigoso do procedimento de otimização.

Uma das principais causas de sobreajuste é a grande quantidade de parâmetros oti-

mizáveis no modelo. Por isto, limitamos à apenas três dimensões, os três parâmetros

mais essenciais. Além disso, separamos a base de dados em dois conjuntos, conforme

discorremos na seção 3.4.3 com vistas à identificar eventual sobreajuste.

Look-ahead Esse viés ocorre sempre e quando a simulação faz uso de uma informação

que é conhecida hoje, mas que estaria indispońıvel nesse mesmo instante em uma

situação real. Eliminamos este problema do modelo ao constrúı-lo orientado como

walk-foward, tanto no caso da (i) análise de cointegração, constrúıda sempre com um

dia de atraso; (ii) quanto no caso dos parâmetros otimizados, fixados no conjunto

de treino e mantido constantes ao longo do backtest de teste; e (iii) no tocante à

seleção dos pares em si, nos baseamos majoritariamente nos resultados dos testes

de cointegração, conforme descrevemos na seção 3.2.3 e não na performance desses

pares no backtest.

Viés do sobrevivente Consiste em desconsiderar da base de dados aqueles ativos que

não estão mais em negociação; seja porque as empresas faliram, foram adquiridas

ou fecharam capital. Em nosso caso, não tomamos nenhuma medida de mitigação

espećıfica. No entanto, o fato de (i) se processar a análise de cointegração repetida-

mente antes de se iniciar um trade ao invés de uma única vez e (ii) a curta duração

da operação da estratégia pairs trading, acabar por minimizar esse viés.

Profundidade do book A disponibilidade de volume no book de ofertas é um grande

desafio para os modelos de backtest. Dois erros podem surgir deste problema: ignorar

o price slippage causado pela operação ou assumir equivocadamente que o valor

financeiro da ordem teria sido integralmente executado. A mitigação que adotamos

foi no momento da seleção dos pares23. No entanto é uma medida t́ımida e; logo

23Vide menção ao price slippage na seção 3.2.3.

74

esse é um viés relevante no nosso modelo e deve ser interpretado como umas das

suas limitações.

3.4.5.2 Limitações

Além dos vieses descritos acima a que nosso modelo de backtest está sujeito; há

também importantes limitações adicionais decorrentes de decisões em sua implementação

que aqui as deixamos transparentes:

� Estamos desconsiderando os custos envolvidos nas operações24. Embora isso afete

os valores absolutos e a frequência das operações descritas aqui; não se trata de

uma limitação da otimização em si. Se inclúıssemos os custos, o otimizador buscaria

igualmente maximizar o retorno sob essas novas condições resultando em parâmetros

também ótimos, porém com retornos mais modestos.

� Como a frequência dos preços utilizados é horária; caso uma movimentação de preços

condizente com os ńıveis de montagem, reversão ou de stop-loss ocorresse entre dois

desses intervalos, ela não seria considerada.

� Não consideramos no retorno da estratégia otimizada o impacto dos custos ou dos

retornos associados às garantias financeiras exigidas para a montagem das posições

vendidas.

� Não foram considerados os impactos dos tributos incidentes sobre as operações nem

sobre os retornos.

� O procedimento de otimização é feito para cada par de forma individual. Portanto,

o modelo aqui descrito não otimiza o retorno do portfólio de pares. Relacionado a

isso está o fato de que a otimização implementada não influi no dimensionamento

dos valores financeiros de cada operação.

3.5 Aplicação do otimizador no pairs trading

Agora, finalmente, podemos juntar todas peças constrúıdas ao longo desta Parte 3.

Vamos aplicar o PSO-Linear na otimização do retorno calculado pelo MWRR no backtest

com os 12 pares selecionados por cointegração. Primeiro faremos um resumo esquemático

da rotina de otimização. Segundo, mostraremos os resultados da otimização; na sequência

24Vide seção 2.1.4 com a listagem dos principais custos.

75

iremos comparar estes resultados com os benchmarks e, ao final, as conclusões obtidas com

os experimentos.

3.5.1 Rotina de otimização

Apresenta-se aqui um resumo esquemático de como todas essas “peças” se encaixam

nesta rotina de otimização dos parâmetros de trading. Começamos com a Fig.23 que

mostra a visão global dos experimentos apresentados em toda a Parte 3 deste trabalho.

A primeira etapa – da análise de cointegração – foi completamente coberta na seção 3.2.

Já as duas últimas são descritas na presente seção e na anterior. A etapa central – de

otimização dos parâmetros – exige melhor detalhamento, que pode ser encontrado na

Fig.24.

Figura 23: Fluxo geral dos experimentos (Parte 3)

Na Fig.24 a representação dos bancos de dados “A” e “B” indicam a entrada dos

dados que foram gerados ou coletados na etapa de análises de cointegração. O processo

de otimização propriamente dito começa na etapa “C” onde a população do PSO-Linear

é inicializada, conforme já discutimos na seção 3.3.1.

O ı́ndice “i” indica o número da iteração do otimizador que, como já vimos, escolhemos

imax = 125. Já a etapa “D” representa a função Ψ de backtest. Note que o algoritmo do

backtest, detalhado na Fig.22, está representado de forma abstráıda pela etapa “D” da

Fig.24. Na sequência a função objetivo (3.2) é calculada na etapa “E” a partir dos fluxos

de caixa gerados pelo backtest.

Já as rotinas do PSO – como por exemplo o cálculo da velocidade, adaptação de

coeficientes, nova posição [zi+1, gi+1, pi+1], etc. – estão completamente abstráıdas dentro

da etapa “F”. O resultado de todo este processo são os parâmetros otimizados, descritos

na Tabela 11.

76

Figura 24: Fluxo da otimização dos parâmetros de pairs trading

3.5.2 Resultados da otimização

Na Tabela 11 estão os parâmetros de otimização obtidos pelo algoritmo PSO-Linear e

o resultado do backtest tanto para o conjunto de treino t0 quanto para o conjunto de teste

t1. A Figura 25 traz gráfico dos resultados no conjunto de teste t1 obtidos pela carteira

dos 12 pares otimizados. Com base nesses dados, elaboramos as seguintes observações.

Conjunto de treino A performance dos pares no conjunto de treino é ind́ıcio de que

o otimizador foi capaz de encontrar as regiões ótimas no espaço de busca. Com uma média

de 5.0% de retorno entre os pares e com casos como o de SMAC11-SMALL11 trazendo

10.2%; são resultados bastante positivos. Ainda que não seja posśıvel assegurar-se de que

se tratam de mı́nimos globais; os altos retornos são ind́ıcio de que o otimizador cumpriu

77

Tabela 11: Resultado dos pares com parâmetros otimizados

z∗ g∗ p∗ MWRR t0 MWRR t1

BOVA11-BOVB11 1.4332 0.0794 4.1294 0.0750 -0.0084
BOVA11-PIBB11 0.8792 2.4743 0.4000 0.0062 0.0194
BOVB11-FIND11 0.6241 0.1741 0.8617 0.0822 0.0504
CMIG4-TAEE11 2.6942 3.2198 2.9491 0.0000 0.0000
ENGI11-ENGI4 1.2662 2.0921 1.2610 0.0000 0.0318
GGBR3-GOAU3 1.8278 0.0100 1.9611 0.0791 0.0107
GOAU3-GOAU4 1.8591 0.0619 2.7231 0.0886 0.0217
PETR3-PETR4 1.5535 0.4356 2.6655 0.0335 0.0000
SANB11-SANB4 1.8356 2.4650 2.0661 0.0000 0.0000
SAPR11-SAPR4 0.3093 0.0747 3.0434 0.0631 -0.0021
SMAC11-SMAL11 0.6193 0.0356 2.1619 0.1021 0.0713
TAEE3-TAEE4 0.3575 0.1106 0.5710 0.0715 0.0407

seu papel.

Outro indicativo desse bom desempenho no conjunto de treino é a ausência de pares

com retornos negativos. Se isso ocorresse, significaria que o otimizador falhou em abster-

se de montar posição em um par que não oferece oportunidades de lucro. Exemplo disso

são os pares CMIG4-TAEE11 e SANB11-SANB4.

E por fim, após uma repetição da rotina de otimização, não houve variações significa-

tivas entre as diferentes rodadas. Diante dessas evidências, conclúımos por indução que

o PSO-Linear foi capaz de explorar e otimizar satisfatoriamente no conjunto de treino.

Parâmetros de trading Os parâmetros otimizados apresentam grande diversidade;

com exemplares que, em conjunto, cobrem quase todo o espaço de busca. Houve apenas

um caso – g de GGBR3-GOAU3 – onde o parâmetro ótimo está exatamente sobre valor

limı́trofe imposto pelas restrições.

Alguns casos o z apresentou valores excessivamente baixos, menores que 0.5; o que

poderia se reproduzir num excesso de operações em situações reais. É provável que, se

inclúıdos os custos operacionais no backtest, o otimizador buscaria regiões mais elevadas

para o parâmetro.

Um último ponto que chama a atenção, e que mereceria posterior aprofundamento,

é relação risco-retorno formada pelos coeficientes g e p. O que seria intuitivo é que p

sempre fosse menor ou igual a g, mantendo relação risco retorno saudável. No entanto,

na média, a relação entre g e p é de 0.45; ou seja, para cada unidade de lucro; arrisca-se a

pouco mais que duas de prejúızo. Uma hipótese é que, como o otimizador está buscando

78

maximizar o retorno total, ele acabe por evitar quaisquer situações onde o stop-loss seja

acionado; uma vez que isso faria o retorno médio ser sempre menor. É posśıvel que ele

esteja “compensando” esse p muito grande com os outros dois parâmetros.

Tomadas em conjunto, as observações acima podem pode ser interpretadas como

sugestão de que uma seleção mais cuidadosa e restritiva dos limites do espaço de procura

podem tornar a performance da otimização melhor e, eventualmente, dos resultados no

conjunto de treino.

Figura 25: Resultados backtest com pares otimizados

Tabela 12: Resultado no conjunto de testes t1 da carteira otimizada

MWRR t1 Vol Dias de exposição Hit ratio Resultado R$

0.03312 0.0257 5.37 94.19% 11120.87

Conjunto de teste e sobreajuste Os resultados obtidos no conjunto de testes,

em termos absolutos, não foram ruins. O retorno total da carteira no peŕıodo foi de

3.3% – equivalentes a 12.45% anualizados, acima do retorno livre de risco do mercado –

com uma volatilidade anualizada de 2.57% e taxa de acerto entre os trades encerrados

de 94.2%. Discutiremos os resultados relativos ao benchmark na próxima seção; aqui nos

concentraremos na comparação entre os resultados no conjunto de treino e o de teste.

79

É inescapável a conclusão de que a vários pares sofrem com sobreajuste25. Os ca-

sos de BOVA11-BOVB11 e SAPR11-SAPR4 são os mais representativos deste problema;

apresentando uma dispersão de 8.3 p.p. e 6.5 p.p. entre treino e teste respectivamente.

Curiosamente, ENGI11-ENGI4 e BOVA11-PIBB11 contam a história oposta, com o con-

junto de teste performando acima do treino; mas numa proporção muito inferior aos dois

primeiros. Ao se comparar a carteira otimizada em t0 com t1 também se observa uma

dispersão relevante de 4.6 p.p.

Sem dúvida que, para se ter mais certeza sobre a gravidade do problema de sobrea-

juste, seria necessário repetir os experimentos com uma quantidade maior de pares e com

janelas de tempo mais longas no backtest. Na ausência desses aprofundamentos, prevalece

a cautela ao avaliar os resultados apresentados.

Coint score e performance da otimização Embora a intenção da ferramenta que

utilizamos para ordenar e selecionar os pares pela “qualidade” da cointegração – ocoint

score – seja apenas isto, uma ferramenta de ordenação; ela apresentou uma capacidade

– limitada é verdade, mas não despreźıvel – de prever a performance do otimizador no

conjunto de treino.

Fizemos uma regressão linear entre o MWRR t0 (dependente) e o coint score (in-

dependente) dos pares. O resultado foi estatisticamente significante com um p-value de

0.001; estat́ıstica F superior ao F-cŕıtico e o um R2 = 66.7%. O R2 não é expressivo,

mas julgamos de interesse fazer esta observação assim mesmo. Um tópico que poderia

ser investigado é estabelecer se o coint score ou uma versão aprimorada dele seria capaz

de estimar uma relação26 entre a qualidade da cointegração e o resultado obtido pelo oti-

mizador no conjunto de treino. Isso poderia ser útil na avaliação se um dado otimizador

foi capaz de encontrar mı́nimos eficientemente e apontar casos divergentes onde potenci-

almente o otimizador não teve boa performance; como por exemplo SANB11-SANB4 –

alto em coint score porém o MWRR de treino igual a zero.

Fazendo o mesmo exerćıcio para o conjunto de testes, o R2 = 38%, bem inferior ao

que vimos para o conjunto de treino. Sabendo que neste caso está havendo interferência

do sobreajuste, pouco pode-se concluir a respeito da relação de coint score e performance

em t1.

25Vide discussão na seção 3.4.5.
26O que provavelmente não seria uma relação linear como fizemos de maneira pouco rigorosa aqui, mas

uma dada distribuição das dispersões “aceitáveis”.

80

3.5.3 Benchmark

A escolha de um benchmark contra o qual se compara uma estratégia de Long&Short

é sempre uma escolha bastante arbitrária e, em certa medida, depende dos objetivos de

quem faz a comparação. Em nosso caso, queremos analisar se uma carteira com pares cujos

parâmetros de trading foram otimizados performa melhor que essa mesma carteira com

o parâmetros padronizados e idênticos para todos os pares. Para tal, buscamos manter

todas as condições idênticas; variando apenas o que estamos interessados em observar –

os parâmetros do trading.

Tabela 13: MWRR t1 dos benchmarks

Conservador Moderado Agressivo

BOVA11-BOVB11 0.0033 0.0050 -0.0004
BOVA11-PIBB11 0.0000 0.0000 0.0046
BOVB11-FIND11 0.0000 0.0000 0.0155
CMIG4-TAEE11 0.0000 0.0000 -0.0029
ENGI11-ENGI4 0.0000 0.0092 0.0074
GGBR3-GOAU3 0.0000 0.0107 0.0100
GOAU3-GOAU4 0.0000 -0.0005 0.0271
PETR3-PETR4 0.0000 0.0000 0.0204
SANB11-SANB4 0.0000 0.0000 0.0000
SAPR11-SAPR4 0.0000 0.0294 0.0104
SMAC11-SMAL11 0.0181 0.0478 0.0883
TAEE3-TAEE4 0.0000 0.0040 0.0209

Para atingir este objetivo, os benchmarks foram constrúıdos utilizando-se os mesmos

pares, no mesmo conjunto de teste t1, com a mesma análise de cointegração informando

os ńıveis do par e através do mesmo algoritmo de backtest. Criamos três cenários, que

podem ser interpretados como três benchmarks distintos. O ńıvel de reversão g e stop-loss

p são iguais a 1.0 e são idênticos entre os três cenários; note que eles guardam uma relação

risco-retorno de 1:1. O que os difere é o ńıvel do z-score em que a posição é montada.

No cenário “Conservador” a montagem é feita com 2.75 desvios-padrão27; no cenário

“Moderado”, com 2.0 e no “Agressivo”, com 1.25. A Tabela 13 mostra o desempenho dos

benchmarks para cada par e na Tabela 14 os desempenho deles vistos como uma carteira

composta pelos 12 pares.

27Os desvios disparam a montagem tanto se estiverem acima da média, quanto se estiverem abaixo
dela.

81

Tabela 14: Resultado no conjunto de testes t1 da carteira benchmark

MWRR t1 Vol Dias de exposição Hit ratio Resultado R$

Conservador 0.02458 0.0945 0.50 100.00% 734.42
Moderado 0.05146 0.0367 3.54 91.67% 4303.96
Agressivo 0.02964 0.0286 4.43 79.52% 8987.61

Benchmarks não considerados Convém explicar brevemente porque deixamos de

lado alguns dos benchmarks que costumeiramente se utilizam. Em primeiro lugar, pode-

se-ia comparar com o CDI. Porém, essa comparação não é muito útil dado que, numa

aplicação real de Long&Short, a garantia depositada junto à B3 pode ser um T́ıtulo

Público, que remunera à taxa Selic. Dessa forma, à performance que reportamos aqui,

bastaria adicionar-se o retorno dos ativos em garantia. Dito de outra forma, quando

reportamos aqui que o MWRR foi zero, equivale dizer que o retorno foi 100% do CDI.

Outra opção seria um ı́ndice de mercado, como por exemplo o iBovespa. Porém, com

base no que discorremos na seção 2.1.1 o Long&Short é uma estratégia neutra de mercado

e o iBovespa é o próprio mercado; portanto, uma comparação imprópria.

Por fim, poder-se-ia comparar com uma carteira de fundos de investimento que tenham

como estratégia principal o pairs trading. Neste caso, embora haja a congruência entre as

estratégias, não seria posśıvel controlar os demais fatores. Além de que, as limitações do

backtester poderia dar injusta vantagem ao par otimizado.

3.5.4 Comparação dos resultados com benchmark

3.5.4.1 Comparação no ńıvel dos pares

A Tabela 15 mostra a diferença entre o retorno obtido pelos pares otimizados e cada

um dos três cenários de benchmark. A partir dela, foi elaborada uma segunda tabela: a

Tabela 16 mostra a contagem dos pares otimizados que tiveram retorno melhor, pior ou

“empatados” em zero.

Nela podemos avaliar que a frequência com que os parâmetros otimizados superaram o

benchmark foi de 52.8%; pouco mais que o dobro das vezes em que o benchmark foi melhor.

Os resultados são favoráveis à otimização; porém são desanimadores. Era esperado que a

otimização superasse o benchmark em todos os casos, ressalvados os eventuais empates;

tal como ocorreu no conjunto de treino t0 – conforme Tabela 17. Lá, os parâmetros

82

Tabela 15: Diferenças de MWRR t1 entre otimizados e benckmarks

Conservador Moderado Agressivo

BOVA11-BOVB11 -0.0117 -0.0134 -0.0080
BOVA11-PIBB11 0.0194 0.0194 0.0148
BOVB11-FIND11 0.0504 0.0504 0.0349
CMIG4-TAEE11 0.0000 0.0000 0.0029
ENGI11-ENGI4 0.0318 0.0226 0.0244
GGBR3-GOAU3 0.0107 0.0000 0.0007
GOAU3-GOAU4 0.0217 0.0222 -0.0054
PETR3-PETR4 0.0000 0.0000 -0.0204
SANB11-SANB4 0.0000 0.0000 0.0000
SAPR11-SAPR4 -0.0021 -0.0315 -0.0125
SMAC11-SMAL11 0.0532 0.0235 -0.0170
TAEE3-TAEE4 0.0407 0.0367 0.0198

otimizados venceram em 28 casos, contra apneas 2 do benchmark.28.

Em termos de magnitude das diferenças: das 19 vezes em que a otimização superou o

benchmark ; na média o fez com 1.4 p.p. de vantagem. Das 9 vezes que foi pior, a média

foi -0.3 p.p. Outra vez, vemos uma t́ımida superioridade dos parâmetros otimizados.

Em termos dos cenários, a superioridade dos otimizados foi diminuindo à medida que

os cenários ficaram mais agressivos. No cenário “Agressivo” há quase um empate na

frequência dos pares que foram melhores. Inclusive, é nesse cenário de benchmark que o

par com o maior retorno dentre todos foi obtido – SMAC11-SMALL11 com 8.8%.

Tabela 16: Frequência dos resultados em t1 comparados

Otimização Conservador Moderado Agressivo Total % do Total

Melhor 7 6 6 19 52.8%
Pior 2 2 5 9 25.0%
Empate 3 4 1 8 22.2%

Tabela 17: Frequência dos resultados em t0 comparados

Otimização Conservador Moderado Agressivo Total % do Total

Melhor 9 9 10 28 77.8%
Pior 0 1 1 2 5.5%
Empate 3 2 1 6 16.7%

28Some-se a evidência que resutlada desta comparação da contagem entre os dois conjuntos às outras
já apresentadas que indicam ter havido sobreajuste na otimização.

83

3.5.4.2 Comparação no ńıvel da carteira

Conclusões amb́ıguas são obtidas também quando comparamos os resultados agrega-

dos em uma carteira formada pelos 12 pares. Quanto ao MWRR, a otimização superou

os cenários “Conservador” e “Agressivo”; porém perdeu por uma margem relevante de

1.8 p.p. para o cenário “Moderado”. Objetivamente, do ponto de vista do que se bus-

cava otimizar, pode-se concluir que o resultado foi adverso à otimização; tendo ela sido

superada pelo benchmark “Moderado”.

No entando, ao se avaliar os demais indicadores da carteira; alguns pontos à favor

da otimização devem ser considerados. A volatilidade de todos os cenários de benchmark

foi maior que a volatilidade da carteira otimizada – especialmente no cenário Moderado.

Quanto ao resultado financeiro simulado29, os parâmetros otimizados tiveram larga van-

tagem.

Quanto ao “Hit ratio30” o resultado é favorável a otimização; com 94.2% de acerto

em 91 trades contra 91.7% em 24 trades do benchmark Moderado. Embora o cenário

conservador tenha 100% de acerto; apenas 2 operações foram abertas.

Simulação de Monte Carlo Uma hipótese que poderia ser aventada é que, devido

a maior volatilidade do benchmark Moderado, as médias dos retornos poderiam não ser

diferentes estatisticamente. Para testar esta hipótese, rodamos uma simulação de Monte

Carlo comparando a carteira otimizada contra o cenário Moderado. Nessa simulação,

usamos 5 mil trajetórias e 100 passos para cada carteira. A média de retorno anual da

carteira otimizada foi de 13.45% e do benchmark Moderado foi 21.8%. Aplicando teste-

t de duas caudas a hipótese nula foi rejeitada com p − value = 0.0; tanto na versão

paramétrica do teste, quanto na não-paramétrica. Conclui-se que a maior volatilidade do

benckmark Moderado não é suficiente para admitir que a média dos retorno seja indistinta

entre eles.

29Todas as posições foram abertas com financeiro simulado de R$ 25,000.00; sem um limite para
abertura de posições em simultâneo.

30Percentual de quantos trades foram encerrados com lucro dentre todos os trades encerrados. É um
indicador da taxa de acertos da estratégia.

84

3.5.5 Discussão dos resultados

Analisados em conjunto, os resultados dos experimentos não permitem elaborarmos

nenhuma conclusão mais assertiva sobre a pergunta central deste trabalho que é avaliar

se a otimização dos parâmetros de trading melhora a performance da estratégia. Vamos

primeiro partir das conclusões que são posśıveis e que nos levaram a pensar dessa forma.

Primeiro, dado que o PSO-Linear que constrúımos foi validado por uma bateria de

funções teste e também pela comparação com os sofisticados modelos presentes na litera-

tura especializada sabemos, portanto, que o otimizador funciona. Segundo, some-se a isto

todas as evidências apresentadas de que a performance desse otimizador no conjunto de

treino excede a performance todos os benchmarks ; assim como supera a si próprio, quando

comparado com o conjunto de teste. A conclusão que se obtém desses resultados é que

provavelmente houve sobreajuste do otimizador no conjunto de treino, minando sua ca-

pacidade de generalização para conjuntos de dados desconhecidos do modelo. Terceiro, os

resultados obtido no conjunto de teste não foram completamente adversos; pelo contrário,

trouxeram alguns resultados interessantes que merecem investigação mais aprofundada.

O problema que enfrentamos aqui é um problema comum em machine learning : o

dilema entre variância e viés do modelo. Sem nos aprofundarmos, é posśıvel dizer que o

erro total E de um modelo é dado pelo somatório E = εvies + εvariancia + ξ. O εvies é alto

quando os modelos “super simplificam”, incapazes de capturar a complexidade subjacente

ao problema. Já o εvariancia é alto nos modelos que se especializam em excesso no conjunto

de dados de treino “aprendendo” os rúıdos ali presentes – em outras palavras, sobreajuste.

Por fim, o ξ representa o erro irredut́ıvel, ou seja, o erro que é resultante da natureza do

problema e sempre existirá, independente da qualidade do modelo.

No fundo, nosso objetivo inicial neste trabalho era saber se o ξ é irremediavelmente

grande a ponto de não ser posśıvel aplicar otimizadores na definição dos parâmetros de

trading e obter bons resultados práticos. Portanto, duas hipóteses são posśıveis:

(i) Nosso modelo de otimização sofreu de sobreajuste (εvariancia grande) e precisa de

correções de modo a “aumentar seu viés” e – possivelmente – melhorar sua perfor-

mance geral.

(ii) Nosso modelo está bem especificado e não sofre de sobreajuste; sendo que a perfor-

mance que vimos no conjunto de testes é resultado de um ξ que é naturalmente

grande como consequência da natureza estocástica do nosso problema.

85

Assumir que a segunda hipótese é correta encerraria a investigação por concluir que os

otimizadores não podem ser usados para os propósitos aqui descritos. No entanto, temos

evidências suficientes para não rejeitarmos a primeira hipótese. Na Parte 4 sugerimos

alguns tópicos de investigação futura que tem como ponto de partida a hipótese (i).

86

4 CONSIDERAÇÕES FINAIS

Parece não ser incomum que, na busca por responder uma pergunta, cheguemos ao

final da jornada com mais perguntas do que começamos. Este trabalho acrescenta mais

um exemplo a essa realidade. Nosso objetivo inicial era avaliar se o uso de otimizadores

na configuração dos parâmetros de trading poderia melhorar a performance da estratégia.

Como vimos, há mais evidências em favor de uma resposta afirmativa à pergunta feita

por este trabalho; porém as evidências contrárias são numerosas e fortes o bastante para

não serem desprezadas. Essas evidências são um convite a novas investigações que enu-

meraremos mais adiante nestas considerações finais.

4.1 Contribuições do trabalho

Cointegração e pairs trading No tocante aos objetivos educacionais de um trabalho

de conclusão de curso; a discussão feita na Parte 2 satisfaz como uma introdução ao

ponto de conexão entre as estratégias de trading de reversão de média e o conceito de

cointegração em séries temporais.

A baixa frequência de cointegração, observada na aplicação do teste de Engle&Granger

em um grande universo de ativos na bolsa brasileira, é uma evidência de como são escassas

as oportunidades de arbitragem estat́ıstica. Também vimos como a proximidade setorial

dos papéis é um bom precursor da qualidade e da força da cointegração; corroborando

com a teoria sobre a fundamentação econômica do pairs trading.

Otimizadores Na discussão sobre os otimizadores, talvez a maior contribuição seja a

implementação dos algoritmos1, especialmente o PSO em suas duas versões com adaptação

dos coeficientes – linear e ESE/ELS. A má performance comparativa do algoritmo genético

deve ser vista apenas no contexto deste trabalho e não deve ser extrapolada para toda

classe de algoritmos genéticos.

1Códigos dispońıveis nos Anexo B.2 e B.3.

87

Otimização de pairs trading Como dissemos, no tema central do trabalho os

resultados não foram conclusivos. Porém algumas conclusões ainda assim são posśıveis.

Primeiro, diante da complexidade da implementação do algoritmo de otimização e – espe-

cialmente – do alto esforço computacional que esse processo requer, certamente essa não é

a abordagem com melhor custo-benef́ıcio para se iniciar o refinamento de uma estratégia

de pairs trading. Com isso queremos dizer que investigar diferentes partes do design da

estratégia do trading – como por exemplo criar novas regras para a montagem e reversão,

ou ainda sofisticar a análise de cointegração, aplicação de filtros, etc – pode trazer me-

lhoras de performance a um esforço menor. Os otimizadores parecem ser mais adequados

nos estágios finais de algoritmos de trading já maduros e avançados.

A segunda conclusão é a de que o dilema entre viés e variância é o grande antago-

nista na epopeia da otimização de trading algoŕıtmico. Qualquer tentativa de otimizar

parâmetros cujo processo subjacente seja uma processo estocástico precisa ter mecanismos

para identificar e mitigar os efeitos desse problema. Dentre os tópicos para investigação

futura que mencionaremos adiante o mais importante é, sem dúvidas, a detida análise das

causas do posśıvel sobreajuste e a construção das ferramentas para corrigi-lo.

4.2 Tópicos para investigação futura

Listamos aqui alguns dos assuntos que, partindo das novas perguntas encontradas

encontradas neste trabalho, podem motivar futuras investigações e o avanço do conheci-

mento sobre o tema.

� A investigação e o desenvolvimento de critérios de parada que sejam eficazes; no

sentido de interromper a iteração o mais rápido posśıvel sem prejudicar da qualidade

da convergência do algoritmo. Aplicações reais dessa otimização precisam ser feitas

em tempo hábil para serem aplicadas e não podem consumir recursos computacionais

em excesso.

Uma ideia para este critério poderia utilizar da comparação do resultado obtido no

conjunto de teste para determinar um ponto de parada que contribua para minimizar

o efeito do sobreajuste, numa espécie de mecanismo de early-stopping.

� Repetir o procedimento de otimização utilizado aqui, porém com um backtest que cu-

bra um hiato temporal mais longo. A nossa escolha por utilizar dados com frequência

horária – com intuito de registrar operações de daytrade – ao longo de poucos meses

pode ter contribúıdo para o problema de sobreajuste.

88

� Elaborar uma modificação no PSO seguindo a hipótese de que o sobreajuste pode ter

sido provocado devido à natureza estocástica do problema; ou seja, que a otimização

acaba por encontrar um ponto mı́nimo que é fruto de uma flutuação estocástica e

não de um padrão que se repete ao longo do processo.

Esta modificação deveria capacitar o otimizador a encontrar “regiões” de mı́nimo e

não exatamente o “ponto” de mı́nimo. Deixamos aqui uma sugestão, como ponto de

partida: para cada part́ıcula do PSO, quando chamada a função objetivo, ela deve

ser avaliada para o vetor da posição desse ponto, mas também para outros n pontos

deslocados desse ponto central. Por exemplo, num problema de três dimensões,

a part́ıcula do PSO é inserida no centro de um tetraedro e a função objetivo é

calculada para ele e para os quatro vértices desse tetraedro. A média do resultado

desses cinco pontos é utilizada pelo PSO para calcular a próxima iteração.

� Testar o resultado da otimização substituindo o MWRR como função objetivo por

algum outro indicador que reflita melhor a performance de carteiras ou mesmo rodar

a otimização para a carteira como um todo. Vimos que o Hit ratio está muito alto.

É posśıvel montar estratégias rentáveis mesmo com taxa de acertos mais próximas

à 50%; desde que a relação risco retorno seja ajustada equivalentemente.

89

REFERÊNCIAS

[1] KAYA, Y.; UYAR, M.; TEKIN, R. A novel crossover operator for genetic algorithms:
Ring crossover. CoRR, abs/1105.0355, 01 2011.

[2] HASSANAT, A. et al. Choosing mutation and crossover ratios for genetic algo-
rithms—a review with a new dynamic approach. Information, MDPI, v. 10, n. 12,
p. 390, 2019.

[3] GLANTZ, M.; KISSELL, R. L. Multi-asset risk modeling: techniques for a global
economy in an electronic and algorithmic trading era. [S.l.]: Academic Press, 2013.

[4] EHRMAN, D. S. The handbook of pairs trading: strategies using equities, options, and
futures. [S.l.]: John Wiley & Sons, 2006.

[5] VIDYAMURTHY, G. Pairs Trading: quantitative methods and analysis. [S.l.]: John
Wiley & Sons, 2004. v. 217.

[6] ENGLE, R. F.; GRANGER, C. W. Co-integration and error correction: represen-
tation, estimation, and testing. Econometrica: journal of the Econometric Society, p.
251–276, 1987.

[7] PFAFF, B. Analysis of integrated and cointegrated time series with R. [S.l.]: Springer
Science & Business Media, 2008.

[8] BISGAARD, S.; KULAHCI, M. Time series analysis and forecasting by example. [S.l.]:
John Wiley & Sons, 2011.

[9] TSAY, R. S. Analysis of financial time series. [S.l.]: John wiley & sons, 2005.

[10] DOLADO, J. J.; JENKINSON, T.; SOSVILLA-RIVERO, S. Cointegration and unit
roots. Journal of economic surveys, Wiley Online Library, v. 4, n. 3, p. 249–273, 1990.

[11] BILGILI, F. Stationarity and cointegration tests: Comparison of engle-granger and
johansen methodologies. Erciyes Üniversitesi İktisadi ve İdari Bilimler Fakültesi Der-
gisi, n. 13, p. 131–141, 1998.

[12] HARRIS, R. I. Using cointegration analysis in econometric modelling. Prentice Hall,
1995.

[13] RAYES, A. C. R. W. Análise de estratégias de pairs tranding através dos métodos de
cointegração e correlação aplicados ao mercado acionário brasileiro. Dissertação (Mes-
trado) — Faculdades Ibmec, 2012.

[14] HAMILTON, J. D. Time series analysis. [S.l.]: Princeton University press, 1994.

[15] KOCHENDERFER, M. J.; WHEELER, T. A. Algorithms for optimization. [S.l.]:
MIT Press, 2019.

90

[16] YANG, X. Introduction to mathematical optimization. from linear programming to
metaheuristics. [S.l.]: Cambridge international science publishing, 2008.

[17] WOLPERT, D. H.; MACREADY, W. G. No free lunch theorems for optimization.
IEEE transactions on evolutionary computation, IEEE, v. 1, n. 1, p. 67–82, 1997.

[18] EBERHART, R. C.; SHI, Y.; KENNEDY, J. Swarm intelligence. [S.l.]: Elsevier,
2001.

[19] KENNEDY, J.; EBERHART, R. Particle swarm optimization. In: IEEE. Proceedings
of ICNN’95-international conference on neural networks. [S.l.], 1995. v. 4, p. 1942–1948.

[20] KIRANYAZ, S.; PULKKINEN, J.; GABBOUJ, M. Multi-dimensional particle swarm
optimization in dynamic environments. Expert Systems with Applications, Elsevier,
v. 38, n. 3, p. 2212–2223, 2011.

[21] HELWIG, S. Particle Swarms for Constrained Optimization. Dissertação (Mestrado)
— Der Technischen Fakultat der Üniversitat Erlangen-N ürnberg, 2010.

[22] ZHAN, Z.-H. et al. Adaptive particle swarm optimization. IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), IEEE, v. 39, n. 6, p. 1362–1381,
2009.

[23] UYAR, S.; ERYIGIT, G.; SARIEL, S. An adaptive mutation scheme in genetic al-
gorithms for fastening the convergence to the optimum. In: Proceedings of 3rd APIS:
Asian Pacific international symposium on information technologies. [S.l.: s.n.], 2004.

[24] UY, N. Q. et al. Initialising pso with randomised low-discrepancy sequences: the
comparative results. In: IEEE. 2007 IEEE Congress on Evolutionary Computation.
[S.l.], 2007. p. 1985–1992.

[25] JAMIL, M.; YANG, X.-S. A literature survey of benchmark functions for global
optimization problems. Int. Journal of Mathematical Modelling and Numerical Optimi-
sation, v. 4, n. 2, p. 150–194, 2013.

[26] DOR, A. E.; CLERC, M.; SIARRY, P. A multi-swarm pso using charged particles
in a partitioned search space for continuous optimization. Computational Optimization
and Applications, Springer, v. 53, n. 1, p. 271–295, 2012.

91

ANEXO A – BACKTESTS

Detalhamento dos resultados obtidos no conjunto de testes t1

A.1 Parâmetros otimizados

Par Montagem MWRR Resultado R$ Dias de exp.

BOVA11 BOVB11 20220720 0.9558 0.004153 240.455517 0

BOVA11 BOVB11 20220720 0.9567 0.001299 75.287103 0

BOVA11 BOVB11 20220728 0.9523 0.003265 162.736142 0

BOVA11 BOVB11 20221020 0.9564 0.002397 110.513360 0

BOVA11 PIBB11 20220816 0.5509 0.003456 150.589758 59

BOVB11 BOVA11 20220715 1.0371 0.001501 85.289863 0

BOVB11 BOVA11 20220721 1.0367 0.002481 144.106328 0

BOVB11 BOVA11 20220728 1.0369 -0.028528 -1165.774806 57

BOVB11 FIND11 20220908 1.0564 0.008895 393.803310 43

ENGI11 ENGI4 20220824 5.7225 0.010193 547.283421 53

FIND11 BOVB11 20220715 0.901 0.014846 779.379148 4

FIND11 BOVB11 20220725 0.9078 0.034409 1877.556727 30

GGBR3 GOAU3 20220726 2.0158 0.010742 533.157765 8

GOAU4 GOAU3 20220715 1.0541 0.004440 222.580934 0

GOAU4 GOAU3 20220715 1.0583 0.005040 248.136319 2

GOAU4 GOAU3 20220719 1.053 0.005016 248.610145 1

GOAU4 GOAU3 20220719 1.0581 0.004037 200.693910 0

GOAU4 GOAU3 20220720 1.0544 0.004681 231.434151 42

SAPR11 SAPR4 20220715 4.9469 0.002027 100.621436 13

SAPR11 SAPR4 20220803 4.9714 -0.007827 -389.703518 68

SMAC11 SMAL11 20220809 0.5158 0.005029 244.256506 0

SMAC11 SMAL11 20220922 0.5201 0.002702 122.269606 1

SMAC11 SMAL11 20221003 0.5202 0.003060 139.327104 1

SMAL11 SMAC11 20220718 1.9127 0.000226 12.355681 2

SMAL11 SMAC11 20220720 1.9131 0.002746 151.385038 3

SMAL11 SMAC11 20220726 1.9084 0.000623 32.022643 0

SMAL11 SMAC11 20220726 1.9128 0.003743 202.815417 4

SMAL11 SMAC11 20220801 1.9126 0.000583 31.444411 0

SMAL11 SMAC11 20220802 1.9107 0.005247 294.704131 2

SMAL11 SMAC11 20220804 1.913 0.000637 30.053254 0

SMAL11 SMAC11 20220805 1.9114 0.002096 99.829732 0

SMAL11 SMAC11 20220808 1.9129 0.003240 157.886715 0

Continua

92

Par Montagem MWRR Resultado R$ Dias de exp.

SMAL11 SMAC11 20220809 1.9119 -0.002715 -120.897488 1

SMAL11 SMAC11 20220810 1.9093 0.000423 18.619826 0

SMAL11 SMAC11 20220810 1.9118 0.001406 61.107042 1

SMAL11 SMAC11 20220811 1.902 -0.001074 -48.475865 1

SMAL11 SMAC11 20220815 1.9113 0.003328 147.739127 1

SMAL11 SMAC11 20220817 1.9048 0.001902 85.659813 0

SMAL11 SMAC11 20220817 1.9133 0.002441 109.748398 0

SMAL11 SMAC11 20220818 1.9099 0.002328 104.087286 0

SMAL11 SMAC11 20220819 1.9116 0.002892 132.032983 1

SMAL11 SMAC11 20220822 1.9118 -0.001026 -46.187449 1

SMAL11 SMAC11 20220824 1.9111 0.003360 148.412784 0

SMAL11 SMAC11 20220825 1.9131 0.001120 49.709255 1

SMAL11 SMAC11 20220826 1.9114 0.001170 51.982220 1

SMAL11 SMAC11 20220829 1.9124 0.003868 170.294328 2

SMAL11 SMAC11 20220831 1.9086 0.001049 45.245070 1

SMAL11 SMAC11 20220902 1.908 0.000410 18.164541 0

SMAL11 SMAC11 20220902 1.9124 0.003265 146.148060 0

SMAL11 SMAC11 20220905 1.9107 0.001255 56.052264 0

SMAL11 SMAC11 20220905 1.913 0.001053 46.312869 2

SMAL11 SMAC11 20220909 1.9128 0.002683 119.920417 0

SMAL11 SMAC11 20220912 1.9052 0.001319 59.551657 0

SMAL11 SMAC11 20220912 1.913 0.003477 154.203683 2

SMAL11 SMAC11 20220915 1.9103 0.000887 39.507655 2

SMAL11 SMAC11 20220919 1.9125 0.000282 12.431325 0

SMAL11 SMAC11 20220920 1.9115 0.002542 112.348921 0

SMAL11 SMAC11 20220921 1.905 0.001504 66.436475 0

SMAL11 SMAC11 20220921 1.9131 0.000556 24.237675 1

SMAL11 SMAC11 20220923 1.9104 0.000946 41.168846 1

SMAL11 SMAC11 20220926 1.9114 0.004039 182.539771 1

SMAL11 SMAC11 20220928 1.9053 0.001403 67.516595 0

SMAL11 SMAC11 20220928 1.9124 0.004413 197.227849 1

SMAL11 SMAC11 20220929 1.912 0.000922 43.459612 0

SMAL11 SMAC11 20220930 1.9129 -0.000724 -34.754310 0

SMAL11 SMAC11 20221003 1.9105 0.000092 4.070805 0

SMAL11 SMAC11 20221005 1.9078 0.000880 39.625821 0

SMAL11 SMAC11 20221005 1.9107 0.000295 13.150965 2

SMAL11 SMAC11 20221007 1.9115 0.000679 31.040749 0

SMAL11 SMAC11 20221010 1.9086 0.000906 41.282812 0

SMAL11 SMAC11 20221011 1.9113 0.002141 95.916297 0

SMAL11 SMAC11 20221014 1.91 0.001699 74.430295 1

SMAL11 SMAC11 20221017 1.9122 0.002356 102.397333 2

SMAL11 SMAC11 20221020 1.9101 0.001975 86.331410 3

SMAL11 SMAC11 20221025 1.9125 -0.000893 -38.882708 11

TAEE3 TAEE4 20220715 0.997 0.002355 118.363592 11

TAEE3 TAEE4 20220808 0.9958 0.002135 109.148825 1

TAEE3 TAEE4 20220812 0.9965 0.003386 171.859564 1

TAEE3 TAEE4 20220816 0.9949 0.002230 110.428155 2

TAEE3 TAEE4 20220819 0.9971 0.002938 146.168581 11

TAEE3 TAEE4 20220928 0.9955 0.003516 176.019223 3

TAEE3 TAEE4 20221004 0.997 0.002361 119.048579 0

TAEE3 TAEE4 20221005 0.997 0.002393 119.303003 2

Continua

93

Par Montagem MWRR Resultado R$ Dias de exp.

TAEE3 TAEE4 20221010 0.997 0.002735 138.410644 6

TAEE4 TAEE3 20220801 0.9949 0.003378 165.568428 0

TAEE4 TAEE3 20220802 0.9957 0.002228 110.316909 3

TAEE4 TAEE3 20220809 0.9986 0.002470 120.163801 2

TAEE4 TAEE3 20220816 0.9985 0.002960 146.817517 0

TAEE4 TAEE3 20220905 0.9979 0.003955 201.030738 15

TAEE4 TAEE3 20221019 0.9962 0.002041 100.939063 1

TAEE4 TAEE3 20221020 0.9985 0.003177 157.263861 3

94

A.2 Benchmark – Conservador

Par Montagem MWRR Resultado R$ Dias exp.

BOVA11 BOVB11 20220728 0.9523 0.003265 162.736142 0

SMAC11 SMAL11 20220809 0.5158 0.005029 244.256506 0

SMAL11 SMAC11 20220829 1.8968 0.004026 176.534331 1

SMAL11 SMAC11 20220913 1.8959 0.003499 150.897941 1

95

A.3 Benchmark – Moderado

Par Montagem MWRR Resultado R$ Dias exp.

BOVA11 BOVB11 20220728 0.9523 0.003265 162.736142 0

BOVB11 BOVA11 20220720 1.0356 0.001827 105.453972 0

BOVB11 BOVA11 20220728 1.0346 -0.000093 -4.650644 0

ENGI11 ENGI4 20220922 5.66 0.009223 488.455597 1

GGBR3 GOAU3 20220726 2.0158 0.010742 533.157765 8

GOAU4 GOAU3 20220715 1.0541 0.007523 379.355866 2

GOAU4 GOAU3 20220719 1.053 -0.008114 -403.420426 36

SAPR11 SAPR4 20220726 4.8937 0.003662 183.852354 1

SAPR11 SAPR4 20220727 4.8915 0.003299 169.795700 2

SAPR11 SAPR4 20220805 4.8942 0.002986 154.537341 13

SAPR11 SAPR4 20220829 4.8849 0.002754 137.395378 2

SAPR11 SAPR4 20220908 4.8835 0.003323 170.070026 1

SAPR11 SAPR4 20220913 4.8799 0.003233 158.452877 7

SAPR11 SAPR4 20220927 4.8817 0.003572 174.089637 2

SAPR11 SAPR4 20221018 4.877 0.002931 146.450816 2

SMAC11 SMAL11 20220809 0.5158 0.005029 244.256506 0

SMAL11 SMAC11 20220811 1.902 0.000055 2.492719 1

SMAL11 SMAC11 20220829 1.8968 0.004026 176.534331 1

SMAL11 SMAC11 20220830 1.8984 0.007197 310.778454 1

SMAL11 SMAC11 20220913 1.8982 0.007043 306.665148 1

SMAL11 SMAC11 20220921 1.9024 0.003322 144.303598 1

SMAL11 SMAC11 20221010 1.9023 0.004778 213.668053 1

SMAL11 SMAC11 20221014 1.902 0.003461 148.826867 1

TAEE3 TAEE4 20220816 0.987 0.004052 200.697000 1

96

A.4 Benchmark – Agressivo

Par Montagem MWRR Resultado R$ Dias exp.

BOVA11 BOVB11 20220718 0.9575 0.002029 114.888141 1

BOVA11 BOVB11 20220720 0.9558 0.004153 240.455517 0

BOVA11 BOVB11 20220720 0.9567 0.002103 120.529681 1

BOVA11 BOVB11 20220722 0.9571 0.001706 98.329150 3

BOVA11 BOVB11 20220728 0.9523 0.003265 162.736142 0

BOVA11 BOVB11 20221020 0.9564 0.002397 110.513360 0

BOVA11 PIBB11 20221014 0.548 0.004548 190.000801 0

BOVB11 BOVA11 20220715 1.0371 0.002318 132.912862 1

BOVB11 BOVA11 20220721 1.0367 0.002481 144.106328 0

BOVB11 BOVA11 20220728 1.0369 -0.027994 -1143.928284 57

BOVB11 FIND11 20220920 1.0336 0.007392 331.134854 8

BOVB11 FIND11 20221003 1.0363 0.008044 370.910962 4

ENGI11 ENGI4 20220824 5.7225 0.006963 369.766859 2

ENGI11 ENGI4 20220830 5.8165 0.007848 403.386768 1

ENGI11 ENGI4 20220902 5.7877 0.010251 526.756043 1

ENGI11 ENGI4 20220905 5.7884 -0.007949 -416.677796 10

ENGI11 ENGI4 20220920 5.7255 -0.008559 -459.844150 4

ENGI11 ENGI4 20220929 5.8132 -0.013107 -651.392985 10

ENGI11 ENGI4 20221014 5.6897 0.006492 334.925303 0

ENGI11 ENGI4 20221014 5.7187 0.007291 384.755343 1

ENGI11 ENGI4 20221018 5.8254 0.008511 401.107332 1

ENGI11 ENGI4 20221020 5.8112 -0.010985 -510.208050 3

GGBR3 GOAU3 20220726 2.0 0.014766 728.231414 8

GGBR3 GOAU3 20220726 2.0456 -0.008310 -419.978717 0

GGBR3 GOAU3 20220805 2.0509 0.006907 335.619931 1

GGBR3 GOAU3 20220808 2.0749 -0.008753 -431.101109 2

GGBR3 GOAU3 20220810 2.0586 0.007568 376.887890 3

GGBR3 GOAU3 20220816 2.0642 0.006554 336.905731 1

GGBR3 GOAU3 20220818 2.0681 -0.008378 -407.868131 1

GGBR3 GOAU3 20220823 2.0671 -0.011406 -548.918129 39

GGBR3 GOAU3 20221019 2.0254 0.010597 546.577143 4

GOAU4 GOAU3 20220715 1.0541 0.007523 379.355866 2

GOAU4 GOAU3 20220719 1.0581 -0.008882 -437.535463 13

GOAU4 GOAU3 20220808 1.051 0.006471 320.342330 29

GOAU4 GOAU3 20220919 1.067 -0.008352 -415.752105 4

GOAU4 GOAU3 20220923 1.0559 0.005694 283.776829 5

GOAU4 GOAU3 20220930 1.0586 0.006874 342.703180 0

GOAU4 GOAU3 20221014 1.0608 0.010376 523.007377 1

GOAU4 GOAU3 20221019 1.0584 0.007813 387.776129 4

PETR4 PETR3 20220819 0.8971 0.004091 206.260586 2

PETR4 PETR3 20220823 0.8961 0.001272 60.171671 4

PETR4 PETR3 20220830 0.895 0.004201 218.874170 17

PETR4 PETR3 20220929 0.8925 0.006112 319.345196 1

PETR4 PETR3 20221004 0.8915 0.003995 204.570963 7

SAPR11 SAPR4 20220718 4.9333 -0.005118 -254.590901 6

SAPR11 SAPR4 20220726 4.9103 0.002801 141.645312 4

SAPR11 SAPR4 20220802 4.9147 0.004676 239.770279 1

SAPR11 SAPR4 20220804 4.916 -0.004578 -230.104014 4

Continua

97

Par Montagem MWRR Resultado R$ Dias exp.

SAPR11 SAPR4 20220810 4.9024 0.002890 146.384893 10

SAPR11 SAPR4 20220824 4.9151 -0.006187 -310.532518 4

SAPR11 SAPR4 20220830 4.8842 0.002967 145.076061 1

SAPR11 SAPR4 20220831 4.9124 -0.004751 -231.800847 9

SAPR11 SAPR4 20220915 4.8949 0.004042 208.549332 6

SAPR11 SAPR4 20220926 4.8895 0.002578 127.934098 3

SAPR11 SAPR4 20220929 4.8988 0.004516 228.966505 2

SAPR11 SAPR4 20221006 4.9011 0.002887 144.301458 9

SAPR11 SAPR4 20221020 4.9096 0.004182 209.616471 3

SMAC11 SMAL11 20220808 0.5187 0.002132 110.253416 1

SMAC11 SMAL11 20220816 0.5187 0.005019 227.664963 1

SMAC11 SMAL11 20220824 0.5186 0.003219 144.105827 1

SMAL11 SMAC11 20220718 1.9068 0.006741 360.316209 5

SMAL11 SMAC11 20220726 1.9084 0.012610 686.526631 7

SMAL11 SMAC11 20220811 1.902 0.000055 2.492719 1

SMAL11 SMAC11 20220829 1.8968 0.004026 176.534331 1

SMAL11 SMAC11 20220830 1.8984 0.007197 310.778454 1

SMAL11 SMAC11 20220831 1.9086 0.003835 164.734162 2

SMAL11 SMAC11 20220906 1.9073 0.003769 162.403514 2

SMAL11 SMAC11 20220912 1.9052 0.005630 250.129519 2

SMAL11 SMAC11 20220916 1.9077 -0.000178 -7.886342 2

SMAL11 SMAC11 20220921 1.905 0.003304 144.177931 1

SMAL11 SMAC11 20220923 1.9066 0.003824 165.591169 2

SMAL11 SMAC11 20220928 1.9053 0.007066 317.104242 1

SMAL11 SMAC11 20221004 1.9075 0.003527 157.527966 5

SMAL11 SMAC11 20221014 1.902 0.003461 148.826867 1

TAEE11 CMIG4 20220817 3.2413 -0.013883 -694.990893 5

TAEE11 CMIG4 20220824 3.1541 0.010796 530.915042 2

TAEE3 TAEE4 20220720 0.9909 0.002020 100.645497 1

TAEE3 TAEE4 20220721 0.9917 0.002774 138.195362 1

TAEE3 TAEE4 20220816 0.9899 0.002610 128.808246 1

TAEE3 TAEE4 20220927 0.9918 0.003094 156.833297 1

TAEE3 TAEE4 20220930 0.9894 0.002023 100.547642 1

TAEE4 TAEE3 20220919 0.9927 0.002615 129.141984 1

TAEE4 TAEE3 20220920 0.9928 0.002947 146.595024 1

98

ANEXO B – CÓDIGOS EM PYTHON

B.1 Cointegração

main packages

import statsmodels as sm

from statsmodels.tsa.stattools import adfuller

local packages

#N/A

cointegration modules

#N/A

class EngleGranger():

_r2_min = 0.60

def __init__(self, series_1, series_2, pvalue=0.05):

self.series_1 = series_1

self.series_2 = series_2

self._pvalue_max = pvalue

self._null_h = True

self.criteria = {} # criteria to reject the null hyposthesis (True==passed, favours H0 rejection)

def run(self):

self.lr_model = self._linear_regression(self.series_1, self.series_2)

self.residuals = self.lr_model.resid

self.lr_intercept = self.lr_model.params[0]

self.lr_beta = self.lr_model.params[1]

self.adf_results = self._adfuller_on_resid()

self._tests()

def _linear_regression(self, series_1, series_2):

independent_var = sm.tools.tools.add_constant(series_2)

lr_model = sm.regression.linear_model.OLS(endog=series_1, exog=independent_var)

lr_model = lr_model.fit(cov_type='HC0', fit_intercept=True) # entender o pq do HC0

return lr_model

def _adfuller_on_resid(self):

return adfuller(self.residuals, regression='c', maxlag=1) # lag=1 accordint to CQF lecture

def _tests(self):

self._test_coeffs_pvalues()

99

self._test_lr_r2()

self._test_adf_pvalue()

self._test_coint()

self._get_critical_level()

def _test_coeffs_pvalues(self):

self.criteria['lr_coeff_pvalue'] = True

for p in self.lr_model.pvalues:

if p >= self._pvalue_max:

self.criteria['lr_coeff_pvalue'] = False

def _test_lr_r2(self):

if self.lr_model.rsquared_adj < self._r2_min:

self.criteria['lr_r2'] = False

else:

self.criteria['lr_r2'] = True

def _test_adf_pvalue(self):

self.adf_pvalue = self.adf_results[1]

if self.adf_pvalue <= self._pvalue_max:

self.criteria['adf_pvalue'] = True

else:

self.criteria['adf_pvalue'] = False

def _test_coint(self):

if all(self.criteria.values()):

self.criteria['cointegrated'] = True

self.cointegrated = 1

else:

self.criteria['cointegrated'] = False

self.cointegrated = 0

def _get_critical_level(self):

self.adf_critical_level = None

for level, crit_value in self.adf_results[4].items():

if self.adf_results[0] < crit_value:

self.adf_critical_level = level

100

main packages

import numpy as np

import pandas as pd

import math

import matplotlib.pyplot as plt

import matplotlib.gridspec as gs

import matplotlib.dates as mdates

local packages

#N/A

cointegration modules

from cointegration.analysis.englegranjer import EngleGranger

from cointegration.tools.pairs_maker import BuildUniquePairID

class Cointegration_Analysis():

_pvalue_max = 0.1

def __init__(self, data, pair_inversion=False, method='engle_granjer'):

self.method = method

self.tseries = data['pair']

self._qry_data = data['qry_data']

self.results = None

self.timestamp = self.tseries.index

self.symb_1 = self.tseries.columns[0]

self.symb_2 = self.tseries.columns[1]

self.raw_series_symb_1 = self.tseries[self.symb_1].to_list()

self.raw_series_symb_2 = self.tseries[self.symb_2].to_list()

self.base100_symb_1 = self.tseries[self.symb_1] / (self.tseries[self.symb_1][0]/100)

self.base100_symb_2 = self.tseries[self.symb_2] / (self.tseries[self.symb_2][0]/100)

def get_results(self):

if self.results is None:

self._run_analysis()

self._get_basic_pair_tseries()

self.results = self._store_basic_results()

return self.results

def _run_analysis(self):

if self.method == 'engle_granjer':

self.model = EngleGranger(self.raw_series_symb_1, self.raw_series_symb_2, pvalue=self._pvalue_max)

self.model.run()

elif self.method == 'johansen':

pass

def _store_basic_results(self):

res = {}

res['dep_var'] = self.symb_1

res['indep_var'] = self.symb_2

res['pair_id'] = res['dep_var'] +' / '+ res['indep_var']

res['unique_pair_id'] = BuildUniquePairID(res['indep_var'], res['dep_var'], form='single_pair_from_symbol').build()

res['period_days_real'] = self._get_analysis_period_days()

101

res['period_days'] = self._get_analysis_period_days_adj(res['period_days_real'])

res['lr_beta'] = round(self.model.lr_beta, 4)

res['lr_r2'] = round(self.model.lr_model.rsquared_adj, 4)

res['coint_pvalue'] = round(self.model.adf_pvalue, 4)

res['cointegrated'] = self.model.cointegrated

if self.model.adf_critical_level is None:

res['adf_critical'] = 1

else:

res['adf_critical'] = int(self.model.adf_critical_level[:-1])/100

res['coint_score'] = res['lr_r2'] * (1 - res['coint_pvalue']) * int(self.model.criteria['lr_coeff_pvalue']) * (1-res['adf_critical'])

res['dep_var_last_price'] = round(self.tseries[self.symb_1][-1], 4)

res['indep_var_last_price'] = round(self.tseries[self.symb_2][-1], 4)

res['ratio_last'] = round(self.tseries['ratio'][-1], 4)

res['ratio_vol'] = self._ratio_vol

res['ratio_mean'] = round(self.tseries['ratio'].mean(), 4)

res['ratio_std'] = round(self.tseries['ratio_std'][-1], 4)

res['ratio_last_zscore'] = round(self.tseries['ratio_zscore'].iloc[-1], 3)

res['ratio_mean_plus_2std'] = round(self.tseries['ratio_mean_plus_2std'].iloc[0], 4)

res['ratio_mean_minus_2std'] = round(self.tseries['ratio_mean_minus_2std'].iloc[0], 4)

res['last_update'] = self._last_update_timestp()

return res

def _get_basic_pair_tseries(self):

''' Create the timeseries with calculations'''

self.tseries[self.symb_1] = self.raw_series_symb_1

self.tseries[self.symb_2] = self.raw_series_symb_2

self.tseries['ratio'] = self.tseries[self.symb_1] / self.tseries[self.symb_2]

self.tseries['ratio_chg'] = self.tseries['ratio'].pct_change() # check if its not the same

self.tseries['ratio_mean'] = self.tseries['ratio'].mean()

self.tseries['ratio_std'] = self.tseries['ratio'].std()

self.tseries['ratio_vol'] = round(self._get_ratio_vol(), 4)

self.tseries['ratio_zscore'] = (self.tseries['ratio'] - self.tseries['ratio_mean']) / self.tseries['ratio_std']

def _get_complement_pair_tseries(self):

self.tseries['ratio_mean_minus_2std'] = self.tseries['ratio_mean'] - 2*self.tseries['ratio_std']

self.tseries['ratio_mean_plus_2std'] = self.tseries['ratio_mean'] + 2*self.tseries['ratio_std']

deprecate it since moved to signals

self.tseries['log_dep_var'] = np.log(self.tseries[self.symb_1])

self.tseries['log_indep_var'] = np.log(self.tseries[self.symb_2])

self.tseries['log_return_dep_var'] = self.tseries['log_dep_var'].pct_change()

self.tseries['log_return_indep_var'] = self.tseries['log_indep_var'].pct_change()

self.tseries['acc_log_return_dep_var'] = self.tseries['log_return_dep_var'].cumsum()

self.tseries['acc_log_return_dep_var'].fillna(value=0, inplace=True)

self.tseries['acc_log_return_indep_var'] = self.tseries['log_return_indep_var'].cumsum()

self.tseries['acc_log_return_indep_var'].fillna(value=0, inplace=True)

log of standard prices (used for cointegration analysis ans residuals)

self.tseries['dep_var_stdp'] = self.base100_symb_1

self.tseries['indep_var_stdp'] = self.base100_symb_2

self.tseries['log_dep_var_stdp'] = np.log(self.tseries['dep_var_stdp'])

self.tseries['log_indep_var_stdp'] = np.log(self.tseries['indep_var_stdp'])

self.tseries['log_stdratio'] = self.tseries['log_dep_var_stdp'] / self.tseries['log_indep_var_stdp']

self.tseries['log_stdratio_chg'] = self.tseries['log_stdratio'].pct_change() # checi if any calc need real ratio change

102

series pondered by beta

self.tseries['spread_beta_hedge'] = self.tseries[self.symb_1] - self.tseries[self.symb_2] * self.model.lr_beta - self.model.lr_intercept

self.tseries['spread_std'] = self.tseries['spread_beta_hedge'].std()

self.tseries['spread_mean'] = self.tseries['spread_beta_hedge'].mean()

def _get_analysis_period_days(self):

return math.ceil(len(self.timestamp) / (self._get_timestamps_interval()/252))

def _get_analysis_period_days_adj(self, real_p):

array = np.array([[1260, 756, 504, 252, 126, 63, 21, 5], [1260, 756, 504, 252, 126, 63, 21, 5]])

array[1,:] = np.abs(real_p - array[0])

index = np.where(array[1, :]==min(array[1, :]))[0][0]

return array[0,index]

def _get_timestamps_interval(self):

'''Divide 1 year on negotiation seconds by the negotiation seconds of the given interval'''

timeframe = pd.DataFrame(self.timestamp, columns=['timestamp'])

timeframe['gap'] = timeframe.timestamp.diff()

most_common_interval = timeframe.groupby('gap').count()['timestamp'].idxmax()

timeframe_secs = (60*60*9*252) / (most_common_interval.days*9*60*60+(most_common_interval.total_seconds()-((60*60*24)*most_common_interval.days)))

return timeframe_secs

def _get_ratio_vol(self):

unit_ratio_vol = self.tseries['ratio_chg'].std()

self._ratio_vol = unit_ratio_vol * self._get_timestamps_interval() **0.5

return self._ratio_vol

def _last_update_timestp(self):

'''Manages cases where live=False and returns the correct last timestamp update'''

if self._qry_data['live_qry_time'] is None:

return str(self.tseries.index[-1])

else:

return str(self._qry_data['live_qry_time'])

def plot(self):

DATEFORMAT = mdates.DateFormatter('%Y-%m')

plt.rcParams['lines.linewidth'] = 0.65

plt.rcParams['xtick.labelsize'] = 7

plt.rcParams['ytick.labelsize'] = 7

self._get_complement_pair_tseries()

tseries = self.tseries

plt.rcParams.update({'font.size': 6})

fig, ((ax1), (ax2, ax4)) = plt.subplots(nrows=2, ncols=2, figsize=(11.7, 8.3), dpi=350, constrained_layout=True)

fig.suptitle(tseries.columns[0] + ' / ' + tseries.columns[1], fontsize=18)

fig = plt.figure(dpi=300, constrained_layout=True)

GS = gs.GridSpec(nrows=2, ncols=2, figure=fig,

width_ratios = [0.5, 0.5],

height_ratios = [0.45, 0.55])

ax1 = fig.add_subplot(GS[0, 0:2])

ax2 = fig.add_subplot(GS[1 , 0])

ax3 = fig.add_subplot(GS[1 , 1])

103

ax1 = prices

ax1.plot(tseries['acc_log_return_dep_var'], c='b', label=tseries.columns[0])

ax1.plot(tseries['acc_log_return_indep_var'], c='m', label=tseries.columns[1])

ax1.set_ylabel('Log acc change')

ax1.axhline(y=0, c='grey')

ax1.set_title('Log returns')

ax1.legend(prop={'size': 5})

ax 2 = ratio

ax2.plot(tseries['ratio'], c='olivedrab')

ax2.axhline(y=tseries['ratio_mean'].iloc[0], c='grey', linestyle='-', label='Média')

ax2.axhline(y=tseries['ratio_mean_plus_2std'].iloc[0], c='grey', linestyle='--', label=r'$+2\sigma$')

ax2.axhline(y=tseries['ratio_mean_minus_2std'].iloc[0], c='grey',linestyle='--', label=r'-2σ')

ax2.set_title('Ratio: '+ tseries.columns[0] + '/' + tseries.columns[1])

ax2.legend(prop={'size': 5})

ax2.set_xticklabels(self.timestamp, rotation=45)

ax2.xaxis_date()

ax2.xaxis.set_major_formatter(DATEFORMAT)

ax 3 = pondered beta

ax3.plot(self.timestamp, tseries['spread_beta_hedge'], c='goldenrod')

ax3.axhline(y=0, linestyle='-', c='grey', label='Média')

ax3.axhline(y=2*tseries['spread_std'].iloc[0], c='grey', linestyle='--', label=r'$+2\sigma$')

ax3.axhline(y=-2*tseries['spread_std'].iloc[0], c='grey', linestyle='--', label=r'$+2\sigma$')

ax3.set_title(r'Spread - $ \beta $ Weighted')

ax3.legend(prop={'size': 5})

ax3.set_xticklabels(self.timestamp, rotation=45)

ax3.xaxis_date()

ax3.xaxis.set_major_formatter(DATEFORMAT)

plt.suptitle(self.results['unique_pair_id'], fontsize=12)

return fig

104

B.2 Algoritmo Genético

main packages

import numpy as np

local packages

N/A

cointegration modules

from cointegration.optimizer.geneticalgo.specie import Specie

from cointegration.optimizer.geneticalgo.params import ParamsInterpreter

from cointegration.optimizer.geneticalgo.survival import Survival

from cointegration.optimizer.geneticalgo.crossover import Crossover

from cointegration.optimizer.geneticalgo.mutation import Mutation, AdaptiveMutation

from cointegration.optimizer.pso.initiator import ParticlesInitiator

class GenAlgoOptimizer():

def __init__(self, population=None, max_iter=None, fitness_func=None, params=None, adaptation=None, **kwargs):

self._max_iter = max_iter

self._pop_size = self._assert_pop_size(population)

self._fit_func = fitness_func

self.fitness_history = {'best': [], 'average': []}

self._pinterpreter = ParamsInterpreter(**params)

self._instance_mutation(adaptation)

self._population_initialization()

def optimize(self):

for iter_ in range(self._max_iter):

self._run_fitness(iter_)

self.survivors = Survival(method='best_half').select(self.population)

offspring = Crossover(self.survivors, method='one_point').mate()

self.offspring = self._mutation.mutate(offspring.copy())

self._reinstanciate_population()

self._update_adaptive_mutation_params(iter_, offspring)

def _assert_pop_size(self, pop_size):

if pop_size % 4 != 0:

raise ValueError('[GenAlgo Optimizer]: Population size must be in multiples of 4')

else:

return pop_size

def _population_initialization(self):

initiator = ParticlesInitiator(params_interp=self._pinterpreter, particles=self._pop_size)

initiator.calc_initial_position()

genomes = initiator._initial_position_vector

self.population = []

for i in range(self._pop_size):

genome = [genomes[0][i], genomes[1][i]]

individual = Specie()

individual.genome = genome

self.population.append(individual)

105

def _instance_mutation(self, adaptation):

self._adaptive_mutation = AdaptiveMutation(method='rank', max_gen=self._max_iter, adapt=adaptation, pop_size=self._pop_size)

self._adaptive_mutation_params = self._adaptive_mutation.get_params(generation=0)

self._mutation = Mutation(pinterpreter=self._pinterpreter)

self._mutation.update_adaptive(self._adaptive_mutation_params)

def _run_fitness(self, iter_):

self.pop_fitness = self._run_real_fitness(iter_)

self._run_std_fitness(iter_, self.pop_fitness)

self.fitness_history['average'].append(np.mean(self.pop_fitness))

self.fitness_history['best'].append(min(self.pop_fitness))

def _run_real_fitness(self, iter_):

for individual in self.population:

result = self._fit_func.run(individual.genome)

individual.fitness = result

pop_fitness = []

for individual in self.population:

pop_fitness.append(individual.fitness)

return pop_fitness

def _run_std_fitness(self, iter_, pop_fitness):

self._std_result = self._calc_std_fitness(pop_fitness)

for i, individual in enumerate(self.population):

individual.std_fitness = self._std_result[i]

def _calc_std_fitness(self, real_fitness):

max_ = max(real_fitness)

min_ = min(real_fitness)

std_results = []

if (max_ - min_) == 0:

return np.linspace(0, 1, num=len(real_fitness))

else:

for res in real_fitness:

z = (max_-res) / (max_ - min_)

std_results.append(z)

return std_results

def _update_adaptive_mutation_params(self, iter_, offspring):

self._adaptive_mutation_params = self._adaptive_mutation.get_params(iter_, avg_fit=self.pop_fitness)

self._mutation.update_adaptive(self._adaptive_mutation_params)

def _reinstanciate_population(self):

self.population = self.survivors.copy()

self.population.extend(self.offspring)

106

cointegration modules

#N/A

main packages

import numpy as np

import random

local packages

#N/A

class Survival():

def __init__(self, method='sus'):

methods = {'best_individual': self._absolute_best_individual, # select the best individual among pupulation

'best_half': self._absolute_best_half,

'roulette_wheel': self._roulette_wheel,

'sus': self._stochastic_universal_sampling,

}

self._method = methods[method]

def select(self, population):

self._pop = population

self._pop_size = len(population)

self._std_fitness = [individual.std_fitness for individual in self._pop]

survivors_index = self._method()

survivors = []

for index in survivors_index:

survivors.append(self._pop[index])

return survivors

def _roulette_wheel(self):

wheel = self._build_wheel()

pointers = [random.random() for i in self._pop_size]

indexed = np.array([np.arange(self._pop_size), self._std_fitness, wheel])

prior_selection = self._select_in_wheel(indexed, pointers)

selection = self._enforce_unique_survivors(prior_selection, indexed)

return self._order_selection(selection, indexed)

def _stochastic_universal_sampling(self):

wheel = self._build_wheel()

pointers = np.linspace(0.01, 0.99, num=int(self._pop_size/2))

indexed = np.array([np.arange(self._pop_size), self._std_fitness, wheel])

prior_selection = self._select_in_wheel(indexed, pointers)

selection = self._enforce_unique_survivors(prior_selection, indexed)

return self._order_selection(selection, indexed)

def _build_wheel(self):

cum_prob = []

sum_ = sum(self._std_fitness)

for res in self._std_fitness:

probability = res / sum_

try:

cum_prob.append(probability + cum_prob[-1])

except IndexError:

107

cum_prob.append(probability)

return cum_prob

def _select_in_wheel(self, indexed, pointers):

selected = []

i = 0

for point in pointers:

for col_ind, wheel_mark in zip(indexed[0, i:], indexed[2, i:]):

if wheel_mark >= point:

selected.append(int(col_ind))

i = int(col_ind)

break

return selected

def _enforce_unique_survivors(self, prior_selection, indexed):

'''When wheel techniques selecte repeated survivors, this methodes re-select based odn best performer

to reduce excessive selective pressure, if no repetitions, than pior wheel selection returned'''

offspring_len = len(prior_selection)

unique_prior = len(set(prior_selection))

if offspring_len == unique_prior:

return prior_selection

else:

selected = list(set(prior_selection))

ordered_best = indexed[0,indexed[1].argsort()]

while True:

for i in range(ordered_best.shape[0]):

candidate = int(ordered_best[-i-1])

if not candidate in selected:

selected.append(candidate)

break

if len(selected) == len(prior_selection):

break

return selected

def _order_selection(self, selection, indexed):

ordered = []

ordered_indexed = list(indexed[:, np.argsort(indexed[1,:])][0].astype(int))

for i in range(len(ordered_indexed)):

candidate = ordered_indexed[-i-1]

if candidate in selection:

ordered.append(candidate)

return ordered

def _absolute_best_half(self):

indexed = np.array([np.arange(self._pop_size), self._std_fitness])

best = indexed[-1:,].argsort()

return best[-1, -int(self._pop_size/2):]

def _absolute_best_individual(self):

indexed = np.array([np.arange(self._pop_size), self._std_fitness])

best = indexed[-1:,].argsort()

return best[-1, -1]

108

main packages

import numpy as np

import random

local packages

#N/A

cointegration modules

#N/A

class Mutation():

def __init__(self, pinterpreter=None):

self._pinterpreter = pinterpreter

def update_adaptive(self, adapt_par):

self._list_child_params = adapt_par

def mutate(self, offspring):

for i, child in enumerate(offspring):

self._set_individual_adaptive_params(i)

for g, gene in enumerate(child.genome):

if self._skip_mutation():

continue

gene_name = self._pinterpreter.get_name(g)

type_ = self._pinterpreter.parameters[gene_name]['types']

if type_ == list:

offspring[i].genome[g] = self._mutate_list(gene_name)

elif type_ == float:

offspring[i].genome[g] = self._mutate_float(gene, gene_name)

elif type_ == int:

offspring[i].genome[g] = int(self._mutate_float(gene, gene_name))

elif type_ == bool:

offspring[i].genome[g] = self._mutate_bool(gene)

return offspring

def _set_individual_adaptive_params(self, child_index):

dict_ = self._list_child_params[child_index]

self._randomize_mutation = dict_['randomize_mutation']

self._rate = dict_['rate']

self._lambda = dict_['lamb']

def _skip_mutation(self):

if self._randomize_mutation:

return bool(np.random.binomial(1, 1-self._rate))

else:

return False

def _mutate_list(self, gene_name):

return np.random.choice(self._pinterpreter.parameters[gene_name]['group'])

def _mutate_float(self, gene, gene_name):

while True:

109

var = self._pert_dist(lamb=self._lambda)

new_value = gene * (1+ var)

new_value = self._enforce_boundaries(gene_name, new_value)

if len(self._pinterpreter.parameters[gene_name]['invalid'])==0:

return new_value

elif not new_value in self._pinterpreter.parameters[gene_name]['invalid']:

return new_value

def _enforce_boundaries(self, gene_name, new_value):

'''If value is outside limits, return the limit value (shrink method) '''

if new_value > self._pinterpreter.parameters[gene_name]['ub']:

return self._pinterpreter.parameters[gene_name]['ub']

elif new_value < self._pinterpreter.parameters[gene_name]['lb']:

return self._pinterpreter.parameters[gene_name]['lb']

else:

return new_value

def _pert_dist(self, low=-1, mode=0, high=1, lamb=4):

if mode is None:

mode = abs

r = high - low

alpha = 1 + lamb * (mode - low) / r

beta = 1 + lamb * (high - mode) / r

return low + random.betavariate(alpha, beta) * r

def _mutate_bool(self, gene):

if bool(np.random.binomial(1, self._rate)):

return not gene

else:

return gene

class AdaptiveMutation():

_fixed = {'rate': 0.15, 'lamb': 4, 'randomize_mutation': True}

def __init__(self, max_gen=None, adapt=True, method='linear', pop_size=None):

self._max_gen = max_gen

self._offspring_size = int(pop_size / 2)

self._adapt = adapt

self._load_adapt_method(method)

def _load_adapt_method(self, method):

methods = {'linear': self._linear, 'phased': self._phased, 'rank': self._rank}

self._method = methods[method]

def _linear(self, generation=int, **kwargs):

rate_boundaries = [0.01, 0.5]

lambda_boundaries = [0, 50]

randomize = True

factor = generation / self._max_gen

rate = factor * (rate_boundaries[0] - rate_boundaries[1]) + rate_boundaries[1]

lamb = factor * (lambda_boundaries[1] - lambda_boundaries[0]) + lambda_boundaries[0]

return {'rate': rate, 'lamb': lamb, 'randomize_mutation': randomize}

110

def _rank(self, generation=int, avg_fit=None, **kwargs):

rate_boundaries = [0.01, 0.5]

lambda_boundaries = [0, 50]

if avg_fit is None:

return self._fixed

else:

sigma = np.std(avg_fit)

params = []

print(sigma)

for i in range(self._offspring_size):

if avg_fit == float('inf'):

return {'rate': rate_boundaries[1], 'lamb': lambda_boundaries[1], 'randomize_mutation': True}

else:

par = self._fixed

params.append(par)

return params

def _phased(self, generation=int, **kwargs):

self._calc_era(generation)

rate = self._rates[self._current_era]

randomize = self._randomize[self._current_era]

lamb = self._calc_lamb(generation)

return {'rate': rate, 'lamb': lamb, 'randomize_mutation': randomize}

def _calc_evolution_eras(self):

expansion / consolidation / specialization / eugeny

self._eras_duration = [0.15, 0.35, 0.35, 0.15] # must add up to 1

self._eras_duration = [0.3, 0.25, 0.30, 0.15] # must add up to 1

self._lambda_min = [0, 4, 10, 0]

self._lambda_max = [0, 4, 100, 0]

self._rates = [1, 0.25, 0.35, 0] # note that last phase has no mutation

self._randomize = [True, True, True, True] # All true since were controling randomization through rate

self._gen_boundaries = []

for interval in self._eras_duration:

try:

self._gen_boundaries.append(int(round(self._max_gen * interval + self._gen_boundaries[-1], 0)))

except IndexError:

self._gen_boundaries.append(int(round(self._max_gen * interval, 0)))

def get_params(self, generation, **kwargs):

if self._adapt:

params = self._method(generation, **kwargs)

else:

params = self._fixed

ans = []

if isinstance(params, dict):

for i in range(int(self._offspring_size)):

ans.append(params)

else:

ans = params

return ans

def _calc_era(self, generation):

111

previous = 0

for i, upper_boundary in enumerate(self._gen_boundaries):

if previous <= generation and generation <= upper_boundary:

self._current_era = i

break

def _calc_lamb(self, generation):

lower = self._lambda_min[self._current_era]

upper = self._lambda_max[self._current_era]

if self._current_era == 0:

interval = self._gen_boundaries[self._current_era]

lamb_line = np.linspace(lower, upper, num=interval+1)

return lamb_line[generation]

else:

interval = self._gen_boundaries[self._current_era] - self._gen_boundaries[self._current_era-1]

lamb_line = np.linspace(lower, upper, num=interval+1)

return lamb_line[generation - self._gen_boundaries[self._current_era-1]]

112

main packages

import numpy as np

local packages

#N/A

cointegration modules

from cointegration.optimizer.geneticalgo.specie import Specie

class Crossover():

def __init__(self, survivors=None, method='one_point'):

self._method = method

self._parents_genome_pairs = self._parent_random_selection(survivors)

self.parent_2 = parent_2.genome.copy()

def _crossover_methods(self, *args):

methods = {'one_point': self._one_point,}

return methods[self._method](*args)

def mate(self):

childs = []

for genomes in self._parents_genome_pairs:

childs_genome = self._crossover_methods(genomes[0], genomes[1])

child_1 = Specie(childs_genome[0])

child_2 = Specie(childs_genome[1])

childs.extend([child_1, child_2])

return childs

def _parent_random_selection(self, survivors_list):

survivors = survivors_list.copy()

parents_pairs_genome = []

for i in range(int(len(survivors_list)/2)):

rand_1 = np.random.randint(0, len(survivors))

parent_1 = survivors.pop(rand_1)

genome_1 = parent_1.genome.copy()

rand_2 = np.random.randint(0, len(survivors))

parent_2 = survivors.pop(rand_2)

genome_2 = parent_2.genome.copy()

parents_pairs_genome.append([genome_1, genome_2])

return parents_pairs_genome

def _one_point(self, parent_gen_1, parent_gen_2):

c1, c2 = [], []

section_point = np.random.randint(1, len(parent_gen_1))

c1.extend(parent_gen_1[:section_point])

c1.extend(parent_gen_2[section_point:])

c2.extend(parent_gen_2[:section_point])

c2.extend(parent_gen_1[section_point:])

return c1, c2

113

B.3 PSO

main packages

import numpy as np

local packages

N/A

cointegration modules

from cointegration.optimizer.pso.particle import Particle

from cointegration.optimizer.pso.initiator import ParticlesInitiator

from cointegration.optimizer.pso.params import ParamsInterpreter

from cointegration.optimizer.pso.ese import AdaptiveESE

from cointegration.optimizer.pso.els import AdaptiveELS

from cointegration.optimizer.pso.linear import AdaptiveLinear

class PSOOptimizer():

def __init__(self, max_iter=100, particles=50, fitness_func=None, params=None, adaptation=None, time_weighted=False, **kwargs):

''' fitness function must be object already instanciated, called with methos named 'run' This run must receive as 1st positional

arguments teh arguments with the parameters to be optimized. Other custom arguments can be passed as kwargs' '''

self._max_iter = max_iter

self._particles_qty = particles

self._fit_func = fitness_func

self._adapt_method = adaptation

self._time_weighted = time_weighted

self._pinterpreter = ParamsInterpreter(**params)

self._particles_initialization()

self._instance_adaptation(adaptation)

self._gbest_fitness = np.inf

self._gbest = None

def _particles_initialization(self):

inital_coefs = self._initialize_adaptation_coefs()

initiator = ParticlesInitiator(params_interp=self._pinterpreter, particles=self._particles_qty)

initiator.get_initial_pos_velo()

self._swarm = []

for i in range(self._particles_qty):

part = Particle(id_=i, params_interp=self._pinterpreter)

part.set_initial_pos(initiator.get_initial_pos_particle(i))

part.set_initial_velocity(initiator.get_initial_velocity_particle(i))

part.update_opt_coefs(inital_coefs)

self._swarm.append(part)

def _instance_adaptation(self, adaptation):

if adaptation is None:

self._adapt = False

else:

self._adapt = True

if adaptation =='dynamic':

self._evo_state_history = {}

self._ese = AdaptiveESE(swarm=self._swarm, dimensions=self._pinterpreter.dimensions, max_iter=self._max_iter, adapt=self._adapt, time_weighted=self._time_weighted)

self._els = AdaptiveELS(swarm=self._swarm, params_interp=self._pinterpreter, max_iter=self._max_iter)

elif adaptation == 'linear':

114

self._linear = AdaptiveLinear(swarm=self._swarm, max_iter=self._max_iter)

def _initialize_adaptation_coefs(self):

if self._adapt_method is None:

coef = {'inertia_w': 0.5, 'personal_coef': 1.5,'social_coef': 1.5}

elif self._adapt_method =='dynamic':

coef = AdaptiveESE.get_initial()

elif self._adapt_method == 'linear':

coef = AdaptiveLinear.get_initial()

return coef

def optimize(self, **fit_func_kwargs):

for iter_ in range(self._max_iter):

self._move_particles(iter_=iter_, **fit_func_kwargs)

self._update_gbest()

self._register_hist_convergence(iter_)

if self._adapt:

self._adapter_manager(iter_, **fit_func_kwargs)

def _move_particles(self, iter_=None, **fit_func_kwargs):

for particle in self._swarm:

if iter_ != 0:

particle.new_position()

position_in_original_param_format = self._pinterpreter.convert_array_todict(particle.get_position())

result = self._fit_func.run(position_in_original_param_format, **fit_func_kwargs)

particle.update_best_personal(result)

if result < self._gbest_fitness:

self._gbest_fitness = result

self._gbest = particle.get_position()

def _adapter_manager(self, iter_, **fit_func_kwargs):

if self._adapt_method =='dynamic':

self._ese_adapter(iter_)

self._els_adapter(iter_, **fit_func_kwargs)

elif self._adapt_method == 'linear':

self._linear_adapt(iter_)

def _ese_adapter(self, iter_):

current_coefs = self._swarm[0].opt_coefs.copy()

opt_coefs = self._ese.adapt(iter_=iter_,

gbest_fitness=self._gbest_fitness,

coefs=current_coefs)

self._evo_state = self._ese.evo_state

self._evo_state_history[iter_] = self._ese.evo_state_index

for particle in self._swarm:

particle.update_opt_coefs(coefs=opt_coefs)

def _els_adapter(self, iter_, **fit_func_kwargs):

if self._evo_state == 'convergence':

new_position = self._els.get_gbest_new_position(iter_=iter_)

position_in_original_param_format = self._pinterpreter.convert_array_todict(new_position)

new_fitness = self._fit_func.run(position_in_original_param_format, **fit_func_kwargs)

if new_fitness < self._gbest_fitness:

self._gbest_fitness = new_fitness

115

self._gbest = new_position

self._update_gbest()

def _linear_adapt(self, iter_=None):

opt_coefs = self._linear.adapt(iter_)

for particle in self._swarm:

particle.update_opt_coefs(coefs=opt_coefs)

def _phased_adapt(self, iter_=None):

opt_coefs = self._phased.adapt(iter_)

for particle in self._swarm:

particle.update_opt_coefs(coefs=opt_coefs)

def _update_gbest(self):

print('\nres: ', self._gbest_fitness)

print(self._gbest)

for particle in self._swarm:

particle.update_best_social(self._gbest)

def _register_hist_convergence(self, iteration):

if iteration == 0:

self.fitness_history = {'best': [], 'average': []}

else:

self.fitness_history['best'].append(self._gbest_fitness)

sum_ = 0

for particle in self._swarm:

if particle.pbest_fitness != np.inf:

sum_ += particle.pbest_fitness

self.fitness_history['average'].append(sum_/len(self._swarm))

def get_result(self, output='array'):

if output == 'array':

return self._gbest_fitness, self._gbest

elif output == 'dict':

return self._gbest_fitness, self._pinterpreter.convert_array_todict(self._gbest)

116

main packages

import numpy as np

from scipy.stats.qmc import Sobol

local packages

N/A

cointegration modules

N/A

class ParticlesInitiator():

def __init__(self, params_interp=None, particles=None):

self._pinterp = params_interp

self._particles_qty = particles

self._identify_numeric_bounded_variables()

def _identify_numeric_bounded_variables(self):

self._valid_float, self._valid_int, self._other_param = [], [], []

for name, params in self._pinterp.parameters.items():

has_lb = not self._pinterp.parameters[name]['lb'] is None

has_ub = not self._pinterp.parameters[name]['ub'] is None

if has_lb and has_ub:

if params['types'] == float:

self._valid_float.append(name)

elif params['types'] == int:

self._valid_int.append(name)

else:

self._other_param.append(name)

def get_initial_pos_velo(self):

self.calc_initial_position()

self.calc_initial_velocities()

POSITION

def calc_initial_position(self):

init_position = []

n_bounded = self._draw_sobol_for_numeric_bounded()

other_random = self._draw_random_for_unbounded()

for i in range(self._pinterp.dimensions):

try:

init_position.append(n_bounded[self._pinterp.get_name(i)])

except KeyError:

init_position.append(other_random[self._pinterp.get_name(i)])

self._initial_position_vector = init_position

def _draw_sobol_for_numeric_bounded(self):

num_params = {}

sobol_matrix = self._build_sobol_matrix()

for i, name in enumerate(self._numeric_bounded_params):

num_params[name] = self._rescale_sobol(sobol_matrix, name, i)

return num_params

def _build_sobol_matrix(self):

117

self._numeric_bounded_params = self._valid_float

self._numeric_bounded_params.extend(self._valid_int)

numeric_bounded_dimension = len(self._numeric_bounded_params)

sobol_gen = Sobol(d=numeric_bounded_dimension)

return sobol_gen.random(self._particles_qty)

def _rescale_sobol(self, matrix, name, i):

self._lb = self._pinterp.parameters[name]['lb']

self._ub = self._pinterp.parameters[name]['ub']

vec = matrix[:, i]

rescaled = list(map(self._min_max, vec))

return np.array(rescaled)

def _min_max(self, x):

return self._lb + ((x - 0) * (self._ub - self._lb) / 1)

def _draw_random_for_unbounded(self):

other = {}

for name in self._other_param:

other[name] = self._random_initializer(name)

return other

def _random_initializer(self, name):

values = []

for i in range(self._particles_qty):

values.append(self._pinterp.new_random()[name])

return np.array(values)

def get_initial_pos_particle(self, particle_index):

particle_pos = []

for d in range(self._pinterp.dimensions):

particle_pos.append(self._initial_position_vector[d][particle_index])

return np.array(particle_pos)

VELOCITY

def calc_initial_velocities(self):

init_velo = []

random_pos = self._draw_random()

velocities = self._half_diff(random_pos)

for i in range(self._pinterp.dimensions):

init_velo.append(velocities[self._pinterp.get_name(i)])

self._initial_velocity = init_velo

def _draw_random(self):

random_pos = {}

for name in self._pinterp.param_names:

random_pos[name] = self._random_initializer(name)

return random_pos

def _half_diff(self, random_pos):

velo = {}

for name in random_pos.keys():

col = self._pinterp.get_index(name)

velo.append(1/2* (random_vec[d] - self._initial_position_vector[d]))

118

velo[name] = 1/2 * (random_pos[name] - self._initial_position_vector[col])

return velo

def get_initial_velocity_particle(self, particle_index):

particle_pos = []

for d in range(self._pinterp.dimensions):

particle_pos.append(self._initial_velocity[d][particle_index])

return np.array(particle_pos)

119

main packages

import numpy as np

local packages

N/A

cointegration modules

from cointegration.optimizer.pso.repair import Repairer

class Particle():

def __init__(self, id_=None, params_interp=None):

self._id = id_

self.pbest_fitness = np.inf

self._dimensions = params_interp.dimensions

Alternatives for constrain

self._constrain_repair = Repairer(position_method='random_shrink', velocity_method='zero', params_interp=params_interp)

self._constrain_repair = Repairer(position_method='reflect', velocity_method='zero', params_interp=params_interp)

self._constrain_repair = Repairer(position_method='random_method', velocity_method='zero', params_interp=params_interp)

self._constrain_repair = Repairer(position_method='shrink', velocity_method='zero', params_interp=params_interp)

def update_opt_coefs(self, coefs):

self.opt_coefs = {}

self.opt_coefs['inertia_w'] = coefs['inertia_w']

self.opt_coefs['personal_coef'] = coefs['personal_coef']

self.opt_coefs['social_coef'] = coefs['social_coef']

def set_initial_pos(self, init_pos):

self.pos = init_pos

self.pbest = init_pos

self.gbest = init_pos

def set_initial_velocity(self, init_velo):

self._curr_velocity = init_velo

def _new_velocity(self):

inertia = self.opt_coefs['inertia_w'] * self._curr_velocity

cognitive = self.opt_coefs['personal_coef'] * np.random.uniform(0,1) * (self.pbest - self.pos)

social = self.opt_coefs['social_coef'] * np.random.uniform(0,1) * (self.gbest - self.pos)

self._curr_velocity = inertia + cognitive + social

return self._curr_velocity

def new_position(self):

new_pos = self.pos + self._new_velocity()

if self._constrain_repair.evaluate(new_pos):

self.pos = new_pos

else:

self.pos, self._curr_velocity = self._constrain_repair.repair(new_pos, self._curr_velocity)

return self.pos

def update_best_personal(self, new_fitness):

self.current_fitness = new_fitness

if new_fitness < self.pbest_fitness:

self.pbest_fitness = new_fitness

120

self.pbest = self.get_position()

def update_best_social(self, gbest):

self.gbest = np.array(gbest)

def get_position(self):

return self.pos

121

main packages

import numpy as np

local packages

N/A

cointegration modules

N/A

class AdaptiveELS():

_elitist_learnr_max = 1

_elitist_learnr_min = 0.01

def __init__(self, swarm=None, dimensions=None, params_interp=None, max_iter=None):

self._swarm = swarm

self._max_iter = max_iter

self._pinterpreter = params_interp

self._dimensions = params_interp.dimensions

def get_gbest_new_position(self, iter_=None):

gbest_position = self._swarm[0].gbest.copy()

new_value, dimension = self._nudge_one_dimension(gbest_position, iter_)

gbest_position[dimension] = self._enforce_boundaries(new_value, dimension)

return gbest_position

def _get_worst_positioned(self):

worst_fitness = -np.inf

worst_index = None

for i, particle in enumerate(self._swarm):

if particle.current_fitness > worst_fitness:

worst_index = i

worst_fitness = particle.current_fitness

return worst_index

def _nudge_one_dimension(self, position, iter_):

dim = np.random.randint(0, self._dimensions)

lb = self._pinterpreter.lb(dim)

ub = self._pinterpreter.ub(dim)

elitist_rate = self._calc_elitist_learning_rate(iter_)

perturbation = np.random.normal(loc=0, scale=elitist_rate)

return position[dim] + (ub-lb) * perturbation, dim

def _calc_elitist_learning_rate(self, iter_):

epoch = iter_ / self._max_iter

return self._elitist_learnr_max - epoch * (self._elitist_learnr_max-self._elitist_learnr_min)

def _enforce_boundaries(self, new_value, dimension):

if new_value < self._pinterpreter.lb(dimension):

new_value = self._pinterpreter.lb(dimension)

elif new_value > self._pinterpreter.ub(dimension):

new_value = self._pinterpreter.ub(dimension)

return new_value

main packages

122

import numpy as np

local packages

N/A

cointegration modules

N/A

class EvolutionaryState():

_exploration_max = 0.4

_convergence_min = 0

def __init__(self, swarm=None, dimensions=None, time_weighted=False, max_iter=None):

self._dimensions = dimensions

self._swarm = swarm

self._max_iter = max_iter

self._time_weighted = time_weighted

def get_state(self, gbest_fitness, iter_):

self._gbest_fitness = gbest_fitness

self.factor = self._get_factor()

if self._time_weighted:

self.factor = self._time_weighted_factor(iter_)

return self._fuzzy_classifier()

def _get_factor(self):

distances = self._calc_distance()

best_index = self._get_best_positioned()

dg = distances[best_index]

dmax = max(distances)

dmin = min(distances)

if (dmax - dmin) == 0:

return 0

else:

return (dg - dmin) / (dmax - dmin)

def _time_weighted_factor(self, iter_):

phase = iter_ / self._max_iter

hyper = (np.tanh(8*phase-2.5)+1) /2

time_dep_factor = self._linear(iter_)

weighted_factor = time_dep_factor * (1 - hyper) + self.factor * hyper

return weighted_factor

def _linear(self, iter_):

phase = 1 - iter_ / self._max_iter

return self._convergence_min + (self._exploration_max - self._convergence_min) * phase

def _calc_distance(self):

improve speed with cuda

self.distances = []

for i_particle in self._swarm:

i_part_distances = 0

for j_particle in self._swarm:

if id(i_particle) == id(j_particle):

123

continue

else:

for k in range(self._dimensions):

i_k_pos = i_particle.get_position()[k]

j_k_pos = j_particle.get_position()[k]

i_part_distances += (i_k_pos - j_k_pos)**2

d_i = (1 / (len(self._swarm) -1)) * np.sqrt(i_part_distances)

self.distances.append(d_i)

return self.distances

def _get_best_positioned(self):

best_fitness = np.inf

best_index = None

for i, particle in enumerate(self._swarm):

if particle.current_fitness < best_fitness:

best_index = i

best_fitness = particle.current_fitness

return best_index

def _fuzzy_classifier(self):

classes = {'exploration': 1, 'exploitation':2, 'convergence': 3, 'jumping-out': 4}

index_classes = {1: 'exploration', 2: 'exploitation', 3: 'convergence' , 4: 'jumping-out'}

mu_func = {'exploration': self._mu_exploration, 'exploitation': self._mu_exploitation, 'convergence': self._mu_convergence, 'jumping-out': self._mu_jumping}

num, den = 0, 0

for phase, value in classes.items():

num += mu_func[phase](self.factor) * classes[phase]

den += mu_func[phase](self.factor)

self.evo_state_index = int(num/den)

return index_classes[self.evo_state_index]

def _mu_convergence(self, factor):

if factor <= 0.1:

return 1

elif factor <= 0.3:

return -5 * factor + 1.5

else:

return 0

def _mu_exploitation(self, factor):

if factor <= 0.2:

return 0

elif factor <= 0.3:

return 10 * factor - 2

elif factor <= 0.4:

return 1

elif factor <= 0.6:

return -5 * factor +3

else:

return 0

def _mu_exploration(self, factor):

if factor <= 0.4:

return 0

elif factor <= 0.6:

124

return 5 * factor - 2

elif factor <= 0.7:

return 1

elif factor <= 0.8:

return -10 * factor + 8

else:

return 0

def _mu_jumping(self, factor):

if factor <= 0.7:

return 0

elif factor <= 0.9:

return 5 * factor - 3.5

else:

return 1

class AccelerationCoefs():

_coefs_initialization = 2

_inertia_initialization = 0.9

_min_value_acc = 1.5

_low = 0.01

_mid = 0.05

_upp = 0.1

_chg_size = {'jumping-out': {'personal_coef': [-_mid, -_upp], 'social_coef': [_mid, _upp]},

'exploration': {'personal_coef': [_mid, _upp], 'social_coef': [-_mid, -_upp]},

'exploitation': {'personal_coef': [_low, _mid], 'social_coef': [-_low, -_mid]},

'convergence': {'personal_coef': [_low, _mid], 'social_coef': [_low, _mid]}}

@classmethod

def get_initial(cls):

initial = {'inertia_w': cls._inertia_initialization,

'personal_coef': cls._coefs_initialization,

'social_coef': cls._coefs_initialization}

return initial

@classmethod

def adjust_coefs(cls, evo_state=None, evo_factor=None, older_coefs=None):

new_coef = {}

new_coef['inertia_w'] = cls._weight_adapter(evo_factor)

new_coef['personal_coef'] = cls._coef_change(evo_state=evo_state, coef='personal_coef') + older_coefs['personal_coef']

new_coef['social_coef'] = cls._coef_change(evo_state=evo_state, coef='social_coef') + older_coefs['social_coef']

new_coef = cls._enforce_coefs_bounds(new_coef)

return new_coef

@classmethod

def _enforce_coefs_bounds(cls, new_coef):

if new_coef['personal_coef'] < cls._min_value_acc:

new_coef['personal_coef'] = cls._min_value_acc

if new_coef['social_coef'] < cls._min_value_acc:

new_coef['social_coef'] = cls._min_value_acc

if (new_coef['personal_coef']+new_coef['social_coef']) > 4.0:

new_coef = cls._renormalize(new_coef)

return new_coef

125

@classmethod

def _coef_change(cls, evo_state=None, coef=None):

lower = cls._chg_size[evo_state][coef][0]

upper = cls._chg_size[evo_state][coef][1]

return np.random.uniform(low=lower, high=upper)

@classmethod

def _renormalize(cls, new_coef):

new_coef['personal_coef'] = 4* (new_coef['personal_coef'] / (new_coef['personal_coef'] + new_coef['social_coef']))

new_coef['social_coef'] = 4* (new_coef['social_coef'] / (new_coef['personal_coef'] + new_coef['social_coef']))

return new_coef

@classmethod

def _weight_adapter(cls, evo_factor):

return 1 / (1 + 1.5 * np.e**(-2.6 * evo_factor))

class MixedAdaptation():

_exploration_max = 0.65

@classmethod

def adjust_factor(cls, factor, iter_, max_iter):

time_dep_factor = cls._exploration_max * (1 - iter_ / max_iter)

weighted_factor = (time_dep_factor + factor)/2

return weighted_factor

class AdaptiveESE():

def __init__(self, swarm=None, dimensions=None, max_iter=None, adapt=True, time_weighted=False):

self._swarm = swarm

self._dimensions = dimensions

self._adapt = adapt

self._max_iter = max_iter

self._time_weighted = time_weighted

self.coef_history = {}

@classmethod

def get_initial(cls):

return AccelerationCoefs.get_initial()

def adapt(self, iter_=None, gbest_fitness=None, coefs=None):

if self._adapt:

evo = EvolutionaryState(swarm=self._swarm, dimensions=self._dimensions, max_iter=self._max_iter, time_weighted=self._time_weighted)

self.evo_state = evo.get_state(gbest_fitness, iter_)

self.evo_factor = evo.factor

self.evo_state_index = evo.evo_state_index

self.coef_history[iter_] = AccelerationCoefs.adjust_coefs(evo_state=self.evo_state, evo_factor=evo.factor, older_coefs=coefs)

return self.coef_history[iter_]

else:

return coefs

126

main packages

import numpy as np

import random

local packages

N/A

cointegration modules

class ParamsInterpreter():

'''Parameter interpreter is an objcted to extract and deal with the optmization

parameters. It must receive a dict the parameters to be optmized using the

following structure:

params = {

types = {<param_name> : python built-in type},

--> informs what is the type of the param; Can be int, float, list or boolean

>>>IF type is float or integer:

ub = {<param_name> : value},

--> informs the UPPER BOUNDARY.

lb = {<param_name> : value},

--> informs the LOWER BOUNDARY.

step = {<param_name> : value}, [optional]

--> informs the step of allowed change in the value.

invalid = {<param_name> : [value]}, [optional]

--> informs a list, with a set of values that are NOT allowed to exist;

>>>IF type is set:

goup = {<param_name> : [value]},

--> informs a list, with a set of values that are allowed to exist; only possible with list type

>>>IF type is boolean:

No additional info must be passed.

IMPORTANT: parameter names (keys) must be identical across different dictionaries

}'''

def __init__(self, **kwargs):

'''Can pass a single dictionary, or many kwords as desired'''

self._register_params(**kwargs)

def _register_params(self, types=None, ub=None, lb=None, step=None, invalid=None, group=None, boolean=None):

self.parameters = {}

for name in types.keys():

self.parameters[name] = {'types': None, 'ub': None, 'lb': None, 'step': None, 'invalid': [], 'boolean': None}

self._add_parameter(types, 'types')

self._add_parameter(ub, 'ub')

self._add_parameter(lb, 'lb')

self._add_parameter(step, 'step')

self._add_parameter(invalid, 'invalid')

self._add_parameter(group, 'group')

self._build_ref()

self.param_names = list(self.parameters.keys())

self.dimensions = len(self.parameters)

def _add_parameter(self, dict_, data):

if dict_ is None:

return None

127

for name, value in dict_.items():

self.parameters[name][data] = value

def _build_ref(self):

self.params_id = {'index':{}, 'name': {}}

for i, name in enumerate(self.parameters.keys()):

self.params_id['index'][i] = name

self.params_id['name'][name] = i

def _get_ref(self, value, asname=False):

if isinstance(value, str):

if asname:

return value

else:

return self.get_index(value)

elif isinstance(value, int):

return self.get_name(value)

def get_name(self, index):

return self.params_id['index'][index]

def get_index(self, name):

return self.params_id['name'][name]

def convert_array_todict(self, params):

pos = {}

for i, key in self.params_id['index'].items():

pos[key] = params[i]

return pos

def convert_dict_toarray(self, params):

pos = []

for i, (key, value) in enumerate(params.items()):

pos.append(value)

return np.array(pos)

RANDOM PARAMETER VALUE GENERATION

def new_random(self, output='dict'):

'''Generates and entry of random values for the parameters, obeying restrictions'''

new = {}

for name in self.param_names:

new[name] = {}

if self.parameters[name]['types']==int:

new[name] = self._random_int(self.parameters[name])

elif self.parameters[name]['types']==float:

new[name] = self._random_float(self.parameters[name])

elif self.parameters[name]['types']==bool:

new[name] = self._random_bool(self.parameters[name])

elif self.parameters[name]['types']==list:

new[name] = self._random_list(self.parameters[name])

if output == 'dict':

return new

elif output == 'array':

return self.convert_dict_toarray(new)

128

@staticmethod

def _random_int(param):

if param['step'] is None:

param['step'] = 1

if len(param['invalid'])==0:

num = random.randrange(start=param['lb'], stop=param['ub'], step=param['step'])

else:

while True:

num = random.randrange(start=param['lb'], stop=param['ub'], step=param['step'])

if not num in param['invalid']:

break

return num

@staticmethod

def _random_float(param):

if len(param['invalid'])==0:

num = random.uniform(param['lb'], param['ub'])

else:

while True:

num = random.uniform(param['lb'], param['ub'])

if not num in param['invalid']:

break

return num

@staticmethod

def _random_bool(param):

num = random.randint(0, 1)

return bool(num)

@staticmethod

def _random_list(param):

index = random.randint(0, len(param['group'])-1)

return param['group'][index]

GETTERS AND SETTERS

def ub(self, value):

name = self._get_ref(value, asname=True)

try:

ans = self.parameters[name]['ub']

if ans is None:

ans = np.inf

except KeyError:

ans = np.inf

return ans

def lb(self, value):

name = self._get_ref(value, asname=True)

try:

ans = self.parameters[name]['lb']

if ans is None:

ans = -np.inf

except KeyError:

ans = -np.inf

129

return ans

def step(self, value):

print('Not implemented')

def invalid(self, value):

print('Not implemented')

def group(self, value):

name = self._get_ref(value, asname=True)

ans = self.parameters[name]['group']

return ans

main packages

N/A

import numpy as np

local packages

N/A

cointegration modules

N/A

class BaseRepair():

def evaluate(self, position):

self.index_outside_search_space = []

for i, param in enumerate(position):

ub = param <= self._pinterp.ub(i)

lb = param >= self._pinterp.lb(i)

if all([lb, ub]):

continue

else:

self.index_outside_search_space.append(i)

return not bool(self.index_outside_search_space)

class PositionRepair(BaseRepair):

def _load_pos_methods(self, method):

pos_methods = {'reflect': self._reflect, 'shrink': self._shrink, 'random_shrink': self._random_shrink, 'random_method': self._random_method}

self._pos_method = pos_methods[method]

def _repair_pos(self, position):

while True:

repaired_pos = self._pos_method(position)

if self.evaluate(repaired_pos):

break

return repaired_pos

def _reflect(self, position):

for i in self.index_outside_search_space:

130

if position[i] > self._pinterp.ub(i):

position[i] = 2 * self._pinterp.ub(i) - position[i]

elif position[i] < self._pinterp.lb(i):

position[i] = 2 * self._pinterp.lb(i) - position[i]

else:

print('WARNGIN DEV: CASO NAO TRATADO')

return position

def _shrink(self, position):

for i in self.index_outside_search_space:

if position[i] > self._pinterp.ub(i):

position[i] = self._pinterp.ub(i)

elif position[i] < self._pinterp.lb(i):

position[i] = self._pinterp.lb(i)

else:

print('WARNGIN DEV: CASO NAO TRATADO')

return position

def _random_shrink(self, position):

for i in self.index_outside_search_space:

if position[i] > self._pinterp.ub(i):

position[i] = self._pinterp.ub(i) * (1- np.random.uniform(0, 0.2))

elif position[i] < self._pinterp.lb(i):

position[i] = self._pinterp.lb(i) * (1- np.random.uniform(0, 0.2))

else:

print('WARNGIN DEV: CASO NAO TRATADO')

return position

def _random_method(self, position):

methods = {0: self._shrink, 1: self._random_shrink}

rand_method = np.random.randint(0, 2)

return methods[rand_method](position)

class VelocityRepair(BaseRepair):

def _load_velo_methods(self, method):

velo_methods = {'zero': self._zero, 'half_invert': self._half_invert}

self._velo_method = velo_methods[method]

def _repair_velo(self, velocity):

repaired_velo = self._velo_method(velocity)

return repaired_velo

def _zero(self, velocity):

for i in self.index_outside_search_space:

velocity[i] = 0

return velocity

def _half_invert(self, velocity):

for i in self.index_outside_search_space:

velocity[i] = velocity[i] * 1/2

return velocity

131

class Repairer(PositionRepair, VelocityRepair):

def __init__(self, position_method=None, velocity_method=None, params_interp=None):

self._pinterp = params_interp

self._load_methods(position_method, velocity_method)

def _load_methods(self, position_method, velocity_method):

self._load_pos_methods(position_method)

self._load_velo_methods(velocity_method)

def repair(self, position, velocity):

rep_velocity = self._repair_velo(velocity) # must come before adjusting position

rep_position = self._repair_pos(position)

return rep_position, rep_velocity

