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RESUMO

Este trabalho estuda a viabilidade de aplicação de técnicas de análise de dados para
fenômenos de poluição do ar no estado de São Paulo, com enfoque no munićıpio de Santa
Gertrudes, que possui maior taxa de poluentes particulados do estado. O objetivo é
compreender o perfil de poluição na cidade, que é fortemente marcado pela atividade de
cerâmica, e desenvolver ferramentas que auxiliem no tratamento desses dados. Para isso,
utilizam-se técnicas de regressão multivariadas, decomposição de séries históricas, análises
de estat́ıstica descritiva e de componentes principais. Os poluentes foco deste trabalho
foram MP10, MP2.5 e NOx, que são os maiores problemas da região.

Concluiu-se que a regressão multivariável pode ser utilizada para preenchimento de
vazios nos dados (imputação) e que a decomposição da série histórica é útil para identificar
dados anômalos. A análise de componentes principais reduziu em 50% a quantidade de
variáveis que precisamos para descrever o sistema.

Palavras-Chave – Poluição, MP10, MP2.5, NOx,Santa Gertrudes, CETESB, re-
gressão multivariável, machine learning, séries históricas.



ABSTRACT

This work consists in the evaluation of the applicability of data science techniques in
the field of air pollution, focused mainly in the city of Santa Gertrudes, the most polluted
city regarding level of particulates in the state of São Paulo, Brazil. The objective is to
understand the city’s unique pollution profile, strongly defined by the ceramic activity
in the region, and to develop tools to support further data analysis. A few techniques
were applied: multivariate regression, time series decomposition, descriptive statistics
and principal component analysis. The pollutants considered in this study were: PM10,
PM2.5 and NOx, which are the main pollutants observed in Santa Gertrudes.

It was concluded that multivariate regression may be used for data inputation pur-
poses, and that time series decomposition is useful for outlier detection. The principal
component analysis was able to reduce by half the number of variables needed to describe
the system.

Keywords – Air pollution, PM10, PM2.5, Santa Gertrudes, NOx, CETESB, multivariate
regression, machine learning, time series.
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1 INTRODUÇÃO

1.1 Contexto

O problema da poluição do ar no estado de São Paulo – e em todo o mundo – vem

se agravando há algumas décadas, tornando-se um dos principais problemas na capital e

em outros pontos do estado. A poluição é um problema grave pois induz à incidência de

doenças respiratórias e o número de mortes por câncer. Em escala global, a Organização

Mundial da Saúde (OMS) atribui mais de 4,2 milhões de mortes ao problema da poluição

do ar.

O efeito da poluição do ar também afeta zonas rurais. A Agência de Proteção Ambi-

ental dos Estados Unidos (EPA,2006) estimou perdas agŕıcolas anuais da ordem de 500

milhões de dólares causadas pelo ozônio, sem incluir os danos à folhagens de árvores e

outras plantas, que afetam a paisagem das cidades, áreas de recreação, parques urbanos

e áreas de vegetação natural.

A qualidade do ar que se respira é diretamente ligada à distribuição e à intensidade das

emissões de poluentes atmosféricos de origem veicular e industrial. Enquanto emissões

veiculares se destacam nas grandes cidades, atividades industriais espećıficas marcam

fortemente a qualidade do ar em regiões espećıficas.

Esse é o caso de Santa Gertrudes, pequena cidade na região de Rio Claro, a algumas

horas da capital. Santa Gertrudes é, atualmente, o munićıpio com maior taxa de material

particulado do estado, embora possua somente 25 mil habitantes. Trata-se de um polo

cerâmico, com concentração da atividade ceramista de fabricação de pisos a partir de

argila. A extração, a manipulação e o transporte da matéria prima constituem a principal

fonte de poluentes.

Embora detenha, atualmente, a maior concentração de poluentes no estado, a região

de Rio Claro e Santa Gertrudes ganhou mais atenção a partir de 2014, quando o problema

já tinha grandes dimensões. As grandes fábricas de cerâmica atuam com filtros para os
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particulados, mas a ampla movimentação de caminhões carregando argila por estradas

não pavimentadas representa uma fonte significativa.

De acordo com a Companhia Ambiental do Estado de São Paulo (CETESB), algumas

medidas já foram estabelecidas para diminuir o impacto da atividade na qualidade do ar.

Há um plano – o Plano de Redução de Emissão de Fontes Estacionárias – que possui um

conjunto de ações a serem implementadas pelos estabelecimentos, ligados à diminuição

da emissão e propagação de poluentes.

Algoritmos de classificação e regressão vem se tornando cada vez mais importantes

para diferentes áreas e setores da economia, seja no setor energético, na prevenção de

doenças ou no mercado financeiro. As aplicações são diversas: busca de padrões a partir

classificação em agrupamentos de observações semelhantes (clustering), previsão de séries

históricas, regressão multivariável para estimar dados faltantes ou futuros, entre outras

possibilidades.

A grande complexidade desses processos tem motivado, desde o final da década de

1990, estudos voltados à previsão da qualidade do ar na RMSP com base em modelos

estat́ısticos multivariados, em estudos conjuntos entre a USP e a CETESB, na forma de

programas espećıficos e em projetos maiores, com apoio da FAPESP (como o projeto

de pesquisa em poĺıticas públicas 1998/14157-7). Vários desses estudos objetivaram o

ajuste de correlações e associações entre poluentes utilizando modelos de redes neurais

(Guardani et al, 1999), identificação de fatores que afetam o comportamento observado

em estações medidoras (Guardani et al, 2003), desenvolvimento de modelos preditivos

para ozônio (Guardani e Nascimento, 2004, Borges et al, 2012) e, mais recentemente, a

aplicação de técnicas de classificação, incluindo diferentes configurações de redes neurais e

“random forests” (Paula e Guardani, 2016). Tais técnicas passaram a ser aplicadas pelas

equipes da USP e da CETESB em vários estudos sobre qualidade do ar.

Este estudo se insere no escopo do convênio existente entre a Escola Politécnica da

USP e a CETESB, coordenado pelo orientador deste trabalho.

1.2 Objetivo

O objetivo deste estudo é testar a aplicabilidade de diferentes algoritmos de classi-

ficação e discriminação, baseados em reconhecimento de padrões, na análise de variáveis

e grupos de variáveis medidas em estações monitoras selecionadas, assim como entre as

medidas dos ńıveis dos principais poluentes atmosféricos em Santa Gertrudes.
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Tais algoritmos serão aplicados com o objetivo de identificar cenários espećıficos as-

sociados a altos ńıveis dos seguintes poluentes atmosféricos: NOx e material particulado.

Assim, o objetivo geral do estudo é a identificação de algoritmos mais adequados para

aplicação na previsão de padrões de distribuição dos valores das variáveis a serem consi-

deradas no estudo.

Serão utilizadas técnicas estat́ısticas de decomposição de séries históricas, técnicas de

classificação e testes de hipótese. Os algoritmos computacionais necessários ao estudo

foram desenvolvidos e adaptados pelo departamento, com base em plataformas como

MATLAB, SCILAB e R. A implementação deverá ser feita em Python e R.

O projeto possui como objetivo, também, a aplicação de conceitos matemáticos já

aprendidos em curso, e apreensão de técnicas estat́ısticas e de reconhecimento de padrões

que se constituem em ferramentas de ampla aplicação em engenharia.
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2 MATERIAIS E MÉTODOS

Esta seção do trabalho apresenta os conceitos necessários à compreensão mais apro-

fundada do problema abordado, bem como as ferramentas utilizadas na modelagem e

análise dos dados obtidos.

2.1 Qúımica da troposfera e a dispersão de poluentes

A troposfera, a camada atmosférica mais próxima da superf́ıcie terrestre, possui uma

alta complexidade de reações qúımicas e dinâmicas de dispersão, influenciadas pelos com-

postos emitidos na superf́ıcie terrestre, pela quantidade de vapor d’água, pela atuação da

radiação e dos componentes meteorológicos.

Entre esses componentes estão os materiais particulados e os gases NOx, que serão

estudados no presente trabalho. Os particulados serão divididos em dois grupos, baseados

no tamanho.

MP10: São part́ıculas inaláveis, de material sólido ou ĺıquido que ficam suspensos

no ar, com tamanho menor ou igual a dez micras. As principais fontes desse material

particulado são: combustão (veicular e industrial) e aerossóis formados na atmosfera.

Os principais efeitos estão ligados à deterioração da visibilidade, danos à vegetação e ao

sistema respiratório.

MP2.5: Semelhante ao MP10, mas com tamanho menor, abaixo de 2.5 micras. É ainda

mais perigoso por ser mais fina, alcançando os tecidos pulmonares com maior facilidade.

As emissões e danos são os mesmos que o MP10.

NOx: São gases que podem ter odor forte e causar irritação. Também está associado

à formação de chuva ácida. As principais emissões são combustão e atividade industrial.

Vale ressaltar que, embora trabalhemos somente com MP10 e MP2.5, os aerossóis

primários (emitidos diretamente) e secundários (formados na atmosfera em conversão de

gás-part́ıcula) possuem uma distribuição de tamanho que varia de nanômetros a micro-
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metros, que pode variar durante dispersão.

O movimento destes poluentes ocorre através de três prinćıpios: transporte, dispersão

e deposição. Dependendo das condições, alguns poluentes podem se deslocar em ńıvel

regional (2000 km do local de emissão), embora a maior parte se concentre no campo

próximo (200 m do local de emissão) e campo urbano (até 20 km do local de emissão).

Contudo, os efeitos da dispersão regional ainda são notáveis, influenciando áreas rurais

com baixa emissão própria de poluentes. [1]

Esses poluentes se dispersam na atmosfera, como resultado de alguns fenômenos,

ligados à turbulência. Aqui, consideram-se movimentações de ar, flutuações na velocidade

do vento e difusão ligada ao gradiente de concentração. Essa turbulência pode estar ligada

a diferentes fatores, mecânicos ou térmicos.

Independentemente da distância percorrida pelo poluente, a variação da sua concen-

tração segue uma equação de conservação de massa [2]. Podemos expressá-la matemati-

camente como:

∂χ

∂t
+
∂(uχ)

∂x
+
∂(vχ)

∂y
+
∂(wχ)

∂z
= Q+R + S (2.1)

Onde X é a concentração em µg/m3, u, v e w são as componentes do vento, (leste-oeste,

norte-sul e vertical), dadas em m/s. Cada componente do vento pode ser representado

por uma média do vento e um efeito de turbulência. Q é a taxa de emissão, R é a taxa

de reação e S a taxa de remoção por deposição, todos em µg/m3/s.

As condições meteorológicas estão diretamente ligadas à tais condições de dispersão,

uma vez que temperatura, pressão atmosférica e umidade influenciam o vento, as taxas

de reações e a emissão.

De forma genérica, as condições meteorológicas servem para indicar ou refletir ins-

tabilidade atmosférica. A CETESB classifica os dias como favoráveis ou desfavoráveis à

dispersão de poluentes, onde os dias desfavoráveis são dias de atmosfera estável, baixa

ventilação e calmaria. Esses fatores tendem a concentrar os poluentes no campo da

emissão.

As duas principais formas de deposição, por gravidade (seca) ou pela chuva (molhada),

conseguem garantir que os particulados não possuam tempos de residência muito longos

no ar, variando de alguns dias a algumas semanas. Em termos de qúımica da troposfera,

considera-se esse peŕıodo como curto, uma vez que alguns gases podem ficar até um século
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antes de sua deposição.

A precipitação é um bom indicador de atmosfera favorável à dispersão de poluen-

tes, uma vez que realiza a deposição dos particulados e é, por si só, um indicador de

instabilidade atmosférica, o que aumenta a ocorrência dos fenômenos de turbulência. A

temperatura também é um fator cŕıtico no estudo dos poluentes, uma vez que dias frios

normalmente causam maiores taxas de emissão de poluentes. [2]

Outro poluente importante é o ozônio. Em regiões urbanas, a concentração de ozônio

(O3) encontrada pode ser extremamente elevada, pela presença dos poluente emitidos

pelos carros e outros meios. Essa concentração pode ser perigosa para a saúde, causando

problemas aos pulmões.

O ozônio na troposfera é gerado de dois precursores: os componentes voláteis orgânicos

(VOCs) e os óxidos de nitrogênio (NOx). Trata-se de uma reação complexa, iniciada pela

reação do radical OH com compostos orgânicos. O NOx serve de catalisador, e ainda há

influência da radiação solar, que pode causar a dissociação do O3 em outros compostos,

como a hidroxila.. A hidroxila (OH) é o principal oxidante na troposfera, pois não reage

com O2 .

A formação de O3 ainda possui grande complexidade por estar relacionada aos outros

ciclos da troposfera. A concentração de NOx afeta diretamente o comportamento do

monóxido de carbono, e a interação entre essas espécies altera o rendimento da produção

de ozônio. [3]

Em baixas concentrações de NOx, a taxa de produção do O3 aumenta linearmente

com o aumento de NO, e proporcionalmente à raiz quadrada da geração de HOx. Já

em altas concentrações de NOx, a taxa de produção de O3 aumenta linearmente com a

concentração de monóxido de carbono e a geração de HOx. A taxa de produção de ozônio

pode ser descrita por:

PO3 −→ KHO2 +NO[HO2][NO] (2.2)

O HO2 é uma espécie instável, um radical livre que reage rapidamente, e originado

pela oxidação do monóxido de carbono pela hidroxila.

CO +OH −→ CO2 +HO2 (2.3)

A concentração de NO é cŕıtica para determinar se a atmosfera de uma região é uma
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fonte de ozônio ou uma destruidora de ozônio. A figura 1 mostra como se comporta

a troposfera no Haváı, para determinadas concentraçoes de NOx em partes por trilhão.

Observa-se que, acima de 60 ppt, aproximadamente, o local torna-se uma fonte de O3,

visto que a produção supera a perda (Loss) nesse ponto.

Figura 1: Relação entre NOx e produção de ozônio.

Embora o ozônio apresente um grande potencial para ser estudado por técnicas mul-

tivariáveis, não se tornou o foco deste trabalho, pois em Santa Gertrudes não foram

realizadas medições desse poluente.

2.2 Conceitos básicos de Estat́ıstica descritiva e infe-

rencial

Ciências experimentais e, de maneira mais geral, análise de dados requerem o plane-

jamento otimizado e a execução cautelosa de uma série de experimentos, como forma de

obter a matéria-prima para o trabalho de análise propriamente dita. Uma parte desde

trabalho preparatório se baseia no conceito de Planejamento de Experimentos, proposto

inicialmente em [4].

Esta etapa, no entanto, está fora do escopo deste trabalho, uma vez que este esforço

já foi realizado pelas equipes da CETESB. Nosso ponto de partida são os dados sobre a

qualidade do ar no munićıpio de Santa Gertrudes, estado de São Paulo, provindos das

bases de dados da referida companhia.

O primeiro passo é a análise global dos dados quanto à presença de lacunas nas
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observações ou existência de dados aberrantes (outliers). Para tanto, é necessário que se

definam algum conceitos estat́ısticos usados nesse processamento de dados.

Um sistema f́ısico pode ser estudado pela observação de certas variáveis ligadas a ele

ao longo do tempo. A observação de uma variável consiste na medida de seu valor a

um dado instante de tempo. Sua notação é xi,k, que representa a i-ésima observação,

i = 1, . . . , N , da k-ésima variável, k = 1, . . . , p.

A medição das variáveis é sujeita a perturbações e apresenta exatidão e precisão

limitadas, pois não há aparelho de medida ideal. Assim, os valores das observações são

modelados por variáveis aleatórias e várias medições são realizadas, de modo a se estimar

a média (2.4) destas observações (estimativa do valor verdadeiro) e a variância (2.5) entre

as observações (devida à precisão do método de medição ou à flutuação do valor verdadeiro

entre as observações).

x̄ =
1

n

n∑
i=1

xi (2.4)

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 (2.5)

Estas definições correspondem à média e à variância amostrais, que são os estimadores

de máxima verossimilhança de seus equivalentes populacionais. Média (2.6) e variância

(2.7) populacionais são atributos do conjunto de todos os valores assumidos pela variável

de estudo. Ao realizar-se observações, o que se obtém é uma amostra da população, que

contém uma fração do conjunto completo.

µ =
1

N

N∑
i=1

xi (2.6)

σ2 =
1

N

N∑
i=1

(xi − µ)2 (2.7)

Outras caracteŕısticas de uma amostra da dados que podem ser úteis ao analisá-las

são:

• moda: valor que mais se repete em uma amostra, ou seja, que apresente a maior

frequência em um histograma;

• mediana (xmed): valor que divide a amostra, com seus elementos ordenados, em dois
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subconjuntos de mesmo tamanho. É equivalente ao segundo quartil da amostra.

2.2.1 Intervalos de confiança

A partir das observações feitas, há um interesse em se caracterizar a variável obser-

vada. Isso consiste em se estimar os parâmetros populacionais a partir dos amostrais.

Pode-se demonstrar que, para amostras aleatórias (de tamanho n) de uma população,

média e variância amostrais ”orbitam”em torno dos valores populacionais, respeitando

distribuições de probabilidade bem conhecidas.

A ligação entre as médias amostral e populacional se dá através da distribuição de

Student: a partir destas médias, calcula-se o parâmetro t (2.8), que segue esta distribuição.

t =
x̄− µ

s√
n

(2.8)

A variância amostral tem sua relação com a variância populacional mediada pela

distribuição qui-quadrado (χ2) (2.9).

χ2 = (n− 1)
s2

σ2
(2.9)

A partir destas relações, é posśıvel percorrer o caminho inverso e calcular-se intervalos

de confiança para média e variância populacionais. Para tanto, é necessário que se adote

um valor para a confiança do intervalo. Pelo fato de a dstribuição de Student, bem como

a Gaussiana, só se anularem no infinito, qualquer valor de t (ou z) tem probabilidade

positiva de ocorrer. No entanto, é posśıvel arbitrar limites mı́nimo e máximo para o

intervalo de confiança, considerando que a probabilidade residual de o valor verdadeiro

estar fora do intervalo (chamada significância e denotada α) é suficientemente baixa,

podendo ser admitida.

Deste racioćınio, reorganizando (2.8) e (2.9), decorrem as correlações apresentadas em

(2.10) e (2.11).

x̄− tν,α/2
s√
n
< µ < x̄− tν,1−α/2

s√
n

(2.10)

ν
s2

χ2
ν,1−α/2

< σ2 < ν
s2

χ2
ν,α/2

(2.11)

Com:

ν = n− 1 (2.12)
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Vale notar que as probabilidades de os valores populacionais serem maiores ou menores

que os valores amostrais foram consideradas iguais, fato expresso pelas probabilidades

cumuladas α/2 e 1 − α/2 dadas como parâmetro das distribuições de Student e qui-

quadrado. Além disso, o outro parâmetro destas distribuições, ν, é chamado de grau de

liberdade e é uma função do tamanho da amostra (2.12).

2.2.2 Testes de Hipótese

Ao estabelecermos intervalos de confiança para média e variância populacionais, in-

diretamente indicamos que a hipótese nula (H0) é o parâmetro populacional ser igual ao

amostral e fixamos valores a partir dos quais essa hipótese seria rejeitada. Estes valores

foram fixados ao admitirmos um valor máximo para a significância (ou probabilidade de

occorência do erro tipo I, que é aquele cometido ao rejeitarmos H0 sendo ela verdadeira).

Testes análogos podem ser estabelecidos com outras hipóteses nulas, admitindo-se por

exemplo que médias de uma amostra seja maior que aquela de outra amostra.

H0 : µ1 > µ2

H1 : µ1 ≤ µ2

(2.13)

A aceitabilidade ou não da hipótese nula é definida através da comparação do parâmetro

estat́ıstico relativo ao teste em questão (t de Student, χ2, etc.) e o valor limite, definido

pela significância do teste (α), que pode corresponder à probabilidade residual de uma

cauda única da função distribuição (para testes de superioridade/inferioridade) ou às duas

caudas (testes de igualdade).

2.2.3 Aquisição e apresentação dos dados

Os dados utilizados nesse estudo foram fornecidos pela CETESB, que adquire dados

sobre a qualidade do ar através de suas inúmeras estações medidoras (manuais ou au-

tomáticas), distribúıdas por todo o estado de São Paulo. As variáveis medidas por cada

estação variam, mas geralmente compreendem a temperatura, a concentração de material

particulado (MP10 e MP2,5), concentração de óxidos de enxofre, carbono e nitrogênio,

intensidade e direção do vento, dentre outras. Estes valores são aferidos continuamente e

uma média horária lhes é atribúıda. Portanto, as observações apresentadas correspondem

aos valores de média horária do peŕıodo indicado.
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Os dados são geralmente apresentados sob a forma de matrizes, cujas linhas apre-

sentam as observações ordenadas temporalmente e as colunas, as variáveis observadas.

Tais matrizes podem ser apresentadas sob a forma de séries temporais, nas quais uma

variável individualizada é apresentada no eixo das ordenadas, e o valor de suas diferentes

observações são apresentados no eixo das abscissas.

De uma maneira visual e intuitiva, esta representação permite ver a dispersão dos

dados ao longo das observações, assim como deduzir seu valor médio e eventuais pontos

aberrantes, chamados de outliers. Estes últimos podem ser devidos a erros grosseiros de

medida e devem ser tratados em análises preliminares, para que não haja propagação

deste erro sistemático não enviese análises posteriores.

À série temporal pode-se acrescentar duas retas, representando os limites superior e

inferior do intervalo de confiança para a média dos valores. Se este intervalo tiver uma

amplitude de 6σ, 99,73 % dos dados deveria estar entre estes limites, como exemplificado

na Figura 2. Note que a variável apresentada foi padronizada, ou seja, subtraiu-se de

todas as observações a média (centralização) e dividiu-se pelo desvio padrão.

Figura 2: Exemplo de série temporal de observações de uma variável padronizada, com
intervalo de confiança de 99,73%.

Nota-se que há um valor fora dos limites do intervalo de confiança no instante 18 deste

exemplo. Este valor pode ser um indicativo de um dado anômalo e deve ser observado

com atenção.

Para dados multivariados (observações que contenham mais de uma variável), a análise

de dados anômalos deve ser mais cautelosa.

Deve-se primeiramente analisar as correlações entre as variáveis observadas, ou seja,

a relação natural que eventualmente exista entre as duas. Esta etapa é importante pois
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evidencia variabilidades das variáveis que não são aleatórias, mas sim dependentes da

variação de outras variáveis do sistema, reduzindo assim os graus de liberdade do sistema.

Assim, dados que poderiam ser considerados anômalos em análises individualizadas podem

não o ser caso essa variabilidade seja explicada pela variação de uma segunda variável da

qual esta dependa.

Uma grandeza que revela posśıvel dependência entre variáveis observadas é sua co-

variância (2.14).

sjk =

∑n
i=1(xij − x̄j)(xik − x̄k)

ν

=

∑n
i=1XijXik

ν

(2.14)

Onde Xj é a variável xj centrada na média.

A matriz de covariância Cov (2.15) apresenta as covariâncias de todas as combinações

de variáveis, inclusive as variâncias de cada variável em sua diagonal principal.

Cov =


s21 s12 · · · s1p

s21 s22 · · · s2p
...

...
. . .

...

sp1 sp2 · · · s2p

 (2.15)

Para problemas cujas variáveis tenham ordens de grandeza muito distintas, costuma-

se preferir o emprego do coeficiente de correlação (2.16) e de sua matriz associada, análoga

à matriz de covariância.

rjk =
sjk
sjsk

(2.16)

Onde sj =
√
s2j é o desvio padrão amostral da variável j.

Vale notar que o coeficiente de correlação varia, em módulo, de 0 a 1. Quando a

correlação entre duas variáveis é nula, diz-se que são variáveis independentes.

Como citado anteriormente, a análise de correlações entre variáveis permite que se

identifiquem pontos anômalos multivariados que não seriam identificados em análises in-

dividualizadas, como exemplificado na Figura 3.

Esta figura apresenta o conjunto de observações de duas variáveis, cada uma em um
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Figura 3: Análise de correlação entre observações de duas variáveis

Fonte: Autoria Própria

dos eixos coordenados. Nota-se que os pontos se aglomeram em torno de uma reta de

coeficiente angular positivo, o que evidencia uma correlação positiva (r > 0).

Além disso, nota-se que há 2 pontos que destoam do comportamento geral, identifi-

cados como A e B. O ponto A distancia-se do aglomerado de pontos mas provavelmente

não seria considerado um outlier numa análise individualizada da variável do eixo das

abscissas, pois encontra-se entro da projeção do aglomerado neste eixo. O fator que o

diferencia é seu distanciamento com respeito à média da segunda variável, do eixo das

ordenadas. O ponto B, por outro lado, é um outlier identificável em ambas as análises.

Uma análise rigorosa de outliers multivariados requer a utilização da distribuição nor-

mal multivariada, que definem intervalos de confiança com a forma de hiperelipsoides em

espaços de p dimensões. A medida que permite avaliar o distanciamento entre observações

multivariadas é a distância estat́ıstica (statistical distance - SD - em inglês) (2.17) que,

diferentemente da distância euclideana clássica, leva em conta a variância de cada variável

do sistema, dado que diferentes variáveis admitem diferentes dispersões com respeito à

média.

SDih =

√√√√ p∑
j=1

(
xij − xhj

sj

)2

(2.17)
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2.3 Análise de Componentes Principais

Para sistemas em que se observam muitas variáveis, é posśıvel que algumas delas

expliquem melhor a variância total observada que outras. Além disso, em etapas subse-

quentes de modelagem, é de interesse que se otimize o número de variáveis levadas em

conta, no sentido de escolher o menor número de variáveis capaz de explicar a maior parte

de variância do sistema.

Um método que pode ser aplicado a esse tipo de problema é a Análise de Componen-

tes Principais (ou, em inglês, Principal Component Analysis - PCA). O prinćıpio deste

método é de combinar linearmente as variáveis originais de modo a encontrar combinações

independentes entre si para que se possa, a partir delas, descobrir qual nova variável é

responsável pela maior contribuição à variância total.

O problema de se encontrar componentes principais ej, j = 1, . . . , p, a partir das

variáveis originais Xj, j = 1, . . . , p, pode ser descrito da seguinte forma:



e1 = w11X1 + w12X2 + · · ·+ w1pXp

e2 = w21X1 + w22X2 + · · ·+ w2pXp

...

ep = wp1X1 + wp2X2 + · · ·+ wppXp

(2.18)

Onde wjk corresponde ao peso que a variável original k tem no componente j.

Impõe-se algumas condições suplementares, como a normalidade (2.19) e ortogonali-

dade (2.20) dos componentes.

w2
k1 + w2

k2 + · · ·+ w2
kp = 1

k = 1, ..., p
(2.19)

wk1wj1 + wk2wj2 + · · ·+ wkpwjp = 0

k = 1, ..., p

j = 1, ..., p

k 6= j

(2.20)
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Sucintamente, o problema de se encontrar combinações independentes das variáveis

originais é análogo a diagonalizar a matriz de covariância delas, umas vez que a matriz

diagonal apresentaria covariâncias nulas (novas variáveis independentes). Tem-se que a

nova matriz de covariância, diagonal e identificada por s2e, é calculada como em (2.21).

s2e = wTCovw = λ

=


λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λp


(2.21)

Logo, o primeiro passo desta análise é a identificação do polinômio caracteŕıstico da

matriz de covariância (2.22).

pCov(λ) = det(Cov − λI) (2.22)

A seguir, calcula-se as ráızes do polinômio caracteŕıstico, que são os autovalores da

matriz de covariância, bem como seu autovetor associado.

Os autovalores são as variâncias das novas variáveis. Para facilitar a análise, costuma-

se organizá-los em ordem decrescente, de modo a priorizar as variáveis que expliquem mais

a variância total.

λ1 ≥ λ2 ≥ ... ≥ λp ≥ 0 (2.23)

Os autovetores wk correspondem aos pesos que constituem os componentes principais

e são calculados a partir dos correspondentes autovalores como em (2.24).

(Cov − λkI)wk = 0 (2.24)

Assim, obtém-se como resultado desta análise a nova matriz de covariância (2.21), bem

como a matriz w de autovetores, correspondendo aos pesos dos componentes principais,

equivalente a uma matriz de mudança de base entre a base de variáveis originais e uma

base ortogonal (variáveis independentes).

A redução de variáveis do sistema pode ser realizada ao se comparar os valores das

novas variâncias. Pode-se fixar uma porcentagem mı́nima a da variância total a ser expli-

cada pelos componentes principais e calcula-se a variância acumulada ao se acrescentar
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sucessivamente os componentes principais ao modelo. Tão logo o valor mı́nimo é atingido,

os componentes subsequentes podem ser desprezados.

No entanto, ainda falta exprimir esses componentes escolhidos em termos das variáveis

originais. Para tanto, observa-se os autovetores desdes componentes e identifica-se a qual

variável corresponde o maior peso dele, e adiciona-se esta variável ao modelo. Prossegue-

se assim sucessivamente para todos os componentes escolhidos, acrescentando-se a cada

vez uma variável ao modelo.

2.4 Regressão Linear Multivariável

2.4.1 Introdução à Regressão

A regressão linear é uma das ferramentas de base da aprendizagem estat́ıstica super-

visionada, sendo amplamente utilizada para cálculo de sáıdas quantitativas. As técnicas

de regressão são fundamentais para compreender a aplicação de métodos mais complexos.

A regressão linear simples é amplamente conhecida, onde se tenta prever uma variável

dependente Y a partir de uma variável independente X, definindo-se um coeficiente an-

gular e um ponto de intercepto.

Y = β0 + β1x (2.25)

Assim, para um conjunto de pontos, busca-se encontrar a reta que minimize a distância

entre os valores previstos e os valores reais. O método mais comum baseia-se no Residual

Sum of Squares (RSS), ou soma quadrática dos reśıduos.

Com duas variáveis preditivas, ainda conseguimos ter uma percepção visual do fenômeno.

Aqui, busca-se reduzir a distância entre o plano e os pontos, como mostrado na figura 5 .

Entretanto, para problemas do mundo real, trabalhamos com uma série de variáveis

preditivas. Para se trabalhar com p variáveis, é necessário realizar alguns ajustes na

regressão. Podemos escrevê-la como:

Y = β0 + β1x1 + β2x2 + ...+ βpxp + u (2.26)

Onde β representam o intercepto (́ındice zero) e os coeficientes angulares. O valor u

é um reśıduo. Utiliza-se a mesma ideia de ajuste, reduzindo o RSS através da técnica de
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Figura 4: Exemplo de Regressão simples com distância aos pontos

Fonte: Wikipedia

Figura 5: Exemplo de Regressão bivariável com distância entre plano e pontos

Fonte: Towards Data Science

mı́nimos quadrados, ou OLS, exemplificada abaixo. [5]
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
y1

y2

...

yn

 =


1 x11 ... x1p

1 x21 ... x2p

... ... ... ...

1 xn1 ... xnp





β0

β1

β2

...

βp


+


u1

u2

...

un

 (2.27)

Isso nos permite escrever:

Y = Xβ + u (2.28)

A estratégia para minimizar o erro quadrático será de calcular a soma quadrática

residual e, em seguida, encontrar um estimador que minimize a soma. Podemos escrever

as seguintes transformações:

u′u = (Y −Xβ)′(Y −Xβ) (2.29)

u′u = Y ′Y − 2β′X ′Y ′ + β′X ′Xβ (2.30)

Resta derivar e igualar a zero para encontrar o estimador de mı́nimo erro quadrático.

d(u′u)

dβ
= −2X ′Y + 2X ′Xβ (2.31)

X ′Xβ = X ′Y (2.32)

β = (X ′X)−1X ′Y (2.33)

Esse resultado permite calcular os valores de βp respeitando o mı́nimo erro quadrático.

2.4.2 Métricas

Antes de se realizar um bom modelo de regressão múltipla, é fundamental entender

o que caracteriza um bom modelo. Para isso, existem diferentes métricas que podem ser

utilizadas. Para algoritmos de classificação, seria posśıvel utilizar a quantidade de acertos

sobre a quantidade de valores estimados. No caso da regressão, utilizam-se, majoritaria-

mente, quatro técnicas. [6]

MSE: Trata-se do erro médio quadrático. Como eleva ao quadrado a diferença entre o

valor previsto e o real, penaliza fortemente todos os erros. É utilizada por ser diferenciável

e, portanto, otimizável. Para N observações, o MSE é calculado através da fórmula

seguinte, onde yr é o valor real, e yp é o valor previsto.
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MSE =
1

n

N∑
i=1

(yr − yp)2 (2.34)

RMSE: Raiz do erro médio quadrático. É a métrica mais utilizada para problemas

de regressão, e penaliza principalmente erros grandes, uma vez que realiza primeiro a

potência e em seguida a raiz quadrada.

RMSE =

√∑N
i=1(yr − yp)2

n
(2.35)

MAE: Erro médio absoluto. É um método mais robusto a outliers, que não penaliza

erros de forma tão extrema quando MSE. É a métrica que utilizaremos, para que os

outliers não tenham um impacto tão grande no modelo.

MAE =

∑N
i=1 |yr − yp|

n
(2.36)

R2: É o coeficiente de determinação. Compara o modelo ajustado com um modelo

básico (a média) e mostrar quão melhor é o modelo. É um valor sempre menor que 1,

onde coeficientes maiores indicam que o modelo ajustado representa bem os dados.

R2 = 1− MSE(modelo)

MSE(base)
(2.37)

2.4.3 Seleção de variáveis

A seleção das variáveis preditivas é muito importante para que se obtenha uma boa

regressão. Incluir parâmetros desnecessários pode tornar o modelo mais complexo que

o necessário, aumentar seu viés ou sua variância. Nesses casos, dizemos que o modelo

está sendo “treinado” com parâmetros irrelevantes, o que normalmente resulta em pior

desempenho. Por isso, é necessário analisar quais parâmetros (ou features) realmente

ajudam a explicar a variável que se deseja estimar. A seleção de parâmetros também

evita overfitting, que será descrito em seguida.

Existem diferentes métodos de seleção de features. Neste trabalho, utilizaremos um

algoritmo de “backward elimination” que se baseia na relevância estat́ıstica de cada fator

− isto é, avaliando se determinado componente contribui ou não para explicar a variância

da variável desejada.
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A eliminação backward é um método stepwise, o que quer dizer que se retira uma

variável por vez, em vários passos consecutivos. Diz-se backward pois a eliminação é

realizada de trás para frente. Os passos de eliminação do algoritmo são os seguintes:

1. Um modelo de regressão é estimado usando todos os parâmetros dispońıveis.

2. Para cada variável, realiza-se um teste de hipótese no coeficiente angular. A

hipótese nula é de que o coeficiente angular real da variável testada é igual a zero, sendo

irrelevante no modelo.

3. Calcula-se o valor do teste t de Student (assumindo, portanto, normalidade dos

dados) e calcula-se o p-valor para cada uma das variáveis.

4. A cada iteração, elimina-se a variável com maior p-valor.

5. Termina-se quando todas as variáveis restantes possuem p-valor abaixo de um ńıvel

de confiança (p-valor menor que 0.05 ou 0.01).

Vale ressaltar que um p-valor pequeno indica que a probabilidade da hipótese nula

ocorrer é baixa, e por isso podemos descartá-la.

2.4.4 Multicolinearidade

A multicolinearidade é mais um ponto que deve ser levado em consideração quando

se realiza a seleção das variáveis para o modelo. De modo grosseiro, multicolinearidade

é redundância entre variáveis. Quando duas variáveis estão fortemente correlacionadas,

o modelo é prejudicado, uma vez que cada uma passa a fornecer menos informação inde-

pendente à regressão, diminuindo a significância de ambos parâmetros.

O resultado disso é a diminuição na confiabilidade da regressão, para os parâmetros

envolvidos e para os demais. Isso significa que, se o objetivo for realizar a análise da

influência individual de cada parâmetro, a multicolinearidade terá um impacto negativo

na análise. Se a análise individual não for objetivada, o resultado geral da regressão não

costuma ser afetado.

O modo mais simples para testar a multicolinearidade é identificando se as variáveis

possuem um coeficiente de correlação alto entre elas. Caso esse coeficiente seja superior

ao limite de 0.4 (variando de problema a problema), podemos considerar a exclusão de

uma dessas variáveis. Em geral, opta-se por guardar aquela que explica melhor a variável

que se deseja prever.
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2.4.5 Overfit, treino e teste

Nas técnicas de Machine Learning, os modelos costumam ser ajustados utilizando RSS

no conjunto de dados. Entretanto, uma parte do conjunto de dados deve ser separada,

para que o modelo possa ser testado contra novos dados, sobre os quais ele não foi treinado.

Chama-se isso de set de testes e set de treino. Aquelas métricas também são utilizadas

sobre os sets de teste, além da acurácia, em alguns casos.

Em outros casos, antes de passar para o set de testes, pode-se passar pelo set de

validação, que ajuda a identificar erros/viés no modelo, e corrige-os através de algumas

iterações com o set de treino. Em seguida, passa-se para o set de testes.

Figura 6: Divisão do dataset em três partes

Fonte: Towards Data Science Website

Ao ajustar o modelo, é necessário ser cauteloso com a ocorrência de overfitting, isto é,

quando o modelo se torna mais complexo e se ajusta exclusivamente aos pontos treinados,

tornando-se menos eficaz na previsão de novos pontos. Matematicamente, é equivalente a

realizar um ajuste polinomial de grau alto que obrigue seu polinômio a passar por todos

os pontos mostrados. Em seguida, ao incluir um novo ponto, esse ajuste deixa de ser útil.

Para evitar overfitting, a validação com o set de teste é essencial, assim como a seleção

de parâmetros. Outras técnicas também são posśıveis, como verificar se a reta ajustada

para o conjunto de testes está muito diferente da reta ajustada pelo treino. Caso esteja,

isso pode ser um ind́ıcio que a reta está ajustada demais para o set de treino. Outra

forma é alterando-se a função de custo do ajuste, através de técnicas de regressão como

Lasso ou Ridge.

2.4.6 Regressão Lasso

A regressão linear básica, tal como descrita até então, ajusta a reta baseada na RSS,

a mı́nima soma de quadrados. Chama-se isso de função de custo do modelo. Isso significa
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que, caso um parâmetro seja considerado relevante pelo modelo, receberá um coeficiente

angular. Como não há penalização nos coeficientes, o ajuste pode incluir parâmetros em

excesso, ou favorizar um certo parâmetro além do necessário para se ajustar melhor ao

set de treino. Isso favorece o overfit. A função de custo para essa regressão seria:

Custo(RSS) =
N∑
i=1

(yr − yp)2 (2.38)

A regressão Lasso é um modelo que penaliza a escolha dos coeficiente, incluindo-a na

função de custo, que passa a ser escrita como:

Custo =
N∑
i=1

(yr − yp)2 + α

p∑
i=0

|βi| (2.39)

Onde o α é um parâmetro de peso que o utilizador escolhe. A técnica padrão utiliza

0.

Na prática, isso implica que a regressão Lasso trabalhará para diminuir os coeficientes,

exceto se o aumento destes realmente seja compensado por uma explicação maior da

variável observada.

Por fim, a regressão Lasso também traz, por consequência, a seleção de features. Ao

penalizar os coeficientes, essa regressão também pode estabelecer coeficiente zero para

determinadas features, excluindo-as do modelo.

2.5 Decomposição de Séries Históricas

O tratamento de séries históricas é uma ferramenta útil quando se possui uma grande

quantidade de dados onde o eixo temporal é uma variável significativa. As séries históricas

são importantes para compreender o fenômeno estudado e possibilita a realização de

previsões. As séries históricas são amplamente utilizadas para modelização de fenômenos

estocásticos.

Para tratar uma série histórica de dados, costuma-se realizar a decomposição em três

componentes dos valores obtidos: tendência, sazonalidade e rúıdo. A tendência, como

o nome indica, mostra o comportamento geral da série, podendo mostrar crescimento,

decrescimento ou lateralização, onde o modelo já se encontra em um estado estacionário.

A sazonalidade traz à luz as questões ćıclicas do fenômeno, podendo ser aplicada por dia,
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por ano ou por estação, dependendo do que se observa. Finalmente, o rúıdo é tudo aquilo

que escapa da explicação da tendência e da sazonalidade.

Um outro parâmetro que se utiliza para descrever séries históricas é o ńıvel, que se

relaciona ao valor numérico observado para a variável. Isso significa que uma tendência

crescente, por exemplo, leva o ńıvel das observações de um ponto inferior para um ńıvel

superior. Na maioria das vezes, a observação do ńıvel é feita em conjunto com a ob-

servação da tendência, unificando os dois conceitos. Esses três componentes podem se

combinar de diferentes maneiras, sendo as mais conhecidas a decomposição multiplicativa

e a decomposição aditiva.

A decomposição aditiva é representada por:

Y = Tendencia+ Sazonalidade+Residuo (2.40)

Enquanto a multiplicativa traz:

Y = Tendencia ∗ Sazonalidade ∗Residuo (2.41)

O fator principal para a escolha é a sazonalidade. Se a sazonalidade tem a amplitude

aumentada com o aumento do ńıvel, o fenômeno é representado de forma mais precisa

pela decomposição multiplicativa. A figura abaixo representa essa relação. [7]

Figura 7: Comparação entre sazonalidade multiplicativa e aditiva

Fonte: Lancaster University - Time Series Decomposition
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Para realizar a decomposição, existem diferentes técnicas de identificar os compo-

nentes. Os dois principais modelos utilizados são o clássico e o STL. Neste trabalho,

utilizaremos e estudaremos o clássico. [8]

O método clássico é uma das primeiras técnicas de decomposição conhecidas, e é

utilizado até hoje para modelização de diferentes fenômenos. O método depende da

definição de um parâmetro de sazonalidade, que depende da distribuição dos dados (e.g.,

4 para dados trimestrais, 12 para dados mensais, entre outros). Existem outros métodos

que estimam esse parâmetro de sazonalidade a partir dos dados.

O método clássico assume que a sazonalidade se aplica de ano em ano de forma cons-

tante. A aplicação do método aditivo passa por cinco etapas. A componente tendência

(T) é calculada usando uma média móvel central baseada no parâmetro de sazonalidade

definido acima. Em seguida, calcula-se a série sem tendência, subtraindo-se a tendência

do Y. No caso de uma série multiplicativa, divide-se pela tendência.

Para passar para o componente sazonal, é necessário calcular a média para cada

peŕıodo de sazonalidade – no caso das observações de particulado, esse peŕıodo é anual.

Depois, replica-se o padrão encontrado para todo o peŕıodo observado. Isso fornece dire-

tamente a componente Sazonal.

Finalmente, o cálculo do rúıdo vem da subtração das observações pelas componentes

sazonalidade e tendência.

O procedimento é análogo para a decomposição multiplicativa, utilizando divisões em

vez de subtrações.

Uma das principais limitações do método clássico é que a média móvel centrada uti-

lizada para calcular a tendência fica limitada no final da série, o que pode implicar uma

aproximação mais grosseira nos extremos da série.

Além disso, assume-se que é posśıvel isolar a sazonalidade através da média daquela

estação através dos anos. Isso implica que, quanto maior a série, melhor essa aproximação,

por considerar mais peŕıodos e realizar uma aproximação mais confiável.

Por fim, pode-se analisar diretamente o residual ou a combinação do residual com a

tendência, sem o efeito da sazonalidade. Isso permite identificar pontos anômalos mesmo

em momentos de menor ńıvel, quando a estação possui valores mais baixos de poluentes.

O exemplo abaixo, retirado do livro “Applied Time Series Analysis for Fisheries and

Environmental Sciences” [9], ilustra bem os três componentes presentes nas séries tempo-

rais. Nesse caso, temos dados mensais de CO2 nos oceanos.
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Figura 8: Exemplo de decomposição

Fonte: Applied Time Series Analysis for Fisheries and Environmental Sciences

A tendência fica clara, sendo de aumento, e a sazonalidade anual também é bem

demarcada, com picos no ińıcio de cada ano. Por fim, o residual representa tudo aquilo

que não foi explicado pelos outros componentes da decomposição.
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3 ANÁLISES

3.1 Tratamento dos dados

Como citado anteriormente, todos os dados utilizados para as análises presentes neste

relatório foram obtidos através do banco de dados QUALAR. A CETESB coleta e dispo-

nibiliza no QUALAR os dados de todas as estações de medição do estado de São Paulo.

O acesso é público.

Os equipamentos da CETESB realizam medições de diferentes parâmetros, como ma-

terial particulado, direção do vento, velocidade do vento e concentração de nitrogênio.

A obtenção dos dados é feita em intervalos de 30 segundos a 5 minutos, dependendo do

parâmetro. Em seguida, os dados são condensados e publicados pela CETESB no for-

mato de médias horárias. Portanto, a estrutura do banco de dados é tal que cada linha

é uma observação horária, e cada dia será composto por 24 observações dos diferentes

parâmetros.

Para que a observação de uma hora seja considerada válida pela CETESB, é necessário

que 75% dos dados que compõem a média horário sejam válidos.

Embora o QUALAR disponha de dados referentes a vários anos para a cidade de

São Paulo, as medições de material particulado em Santa Gertrudes são mais recentes,

com medições iniciadas no segundo semestre de 2014 para MP10 e em 2018 para MP2.5.

As estações manuais realizavam medições antes desse peŕıodo, mas com menos de uma

medição por mês.

As variáveis trabalhadas foram a direção do vento (DV), que possui valores de 0 a 359

graus, a umidade relativa (UR), com valores de 0 a 100, a temperatura (Temp) indicada

em graus Celsius, os poluentes particulados, MP10 e MP2.5, medidos em µg/m3, e o NOx,

dado em partes por bilhão (ppb).

Assim, os bancos de dados trabalhados estão expostos na tabela 1.

As cidades de São Paulo e Araçatuba foram utilizadas como comparação, sendo ana-
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Refeência Peŕıodo Parâmetros
Santa Gertrudes 1 01/2015 a 12/2019 DV, MP10
Santa Gertrudes 2 01/2018 a 12/2019 DV, MP10, MP2.5,UR, Temp

São Paulo 01/2018 a 01/2019 DV, MP10
Araçatuba 01/2018 a 01/2019 DV, MP10

Tabela 1: Bancos de dados utilizados

lisadas somente para um ano completo.

Entretanto, as estações CETESB possuem peŕıodos de manutenção e falhas nos sen-

sores, o que compromete a qualidade dos dados, especialmente para a medição do mate-

rial particulado. A análise exploratória dos dados mostra certos peŕıodos com falhas de

medição – marcado como valor vazio – que passaram pelo tratamento de dados descrito

a seguir.

3.1.1 Tratamento de dados para poluentes e fenômenos meteo-
rológicos

O material particulado é um fenômeno que não é facilmente previśıvel, por depender,

além das condições atmosféricas, da interação do ser humano com a natureza, variando

muito de um dia para o outro. Portanto, optou-se por realizar a imputação de dados

estimados somente para pequenos intervalos de falhas (menores do que 12 horas), en-

quanto intervalos maiores, que chegam a mais de uma quinzena, tinham as observações

descartadas.

Ao preencher somente pequenos intervalos, consegue-se garantir maior coesão dos

dados e diminuir a quantidade de informação perdida. Esses intervalos eram preenchidos

combinando o perfil diário histórico e o intervalo de observações em que se encontra.

Por exemplo, uma observação faltante ao meio-dia de um dia qualquer em janeiro seria

preenchido considerando o perfil diário histórico dos dias de janeiro, indicando quanto

acima ou abaixo da média diária se espera que a observação de meio-dia fique, e a média

dos valores absolutos 12h antes e depois do vazio.

Vale ressaltar que se estudará, mais a frente, um método de imputar dados para MP10

através de regressão multivariável. O tratamento realizado aqui foi para obter o perfil dos

poluentes.

Para a direção do vento, temperatura e umidade relativa, considerou-se que o efeito

ćıclico, por ser um fenômeno natural, era notável, possibilitando a estimativa de seus

valores com base nas médias históricas para diferentes meses e horas do dia.
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A imagem abaixo ilustra a densidade de vazios para as diferentes variáveis. Observa-

se um peŕıodo sem observações para MP2.5, o primeiro semestre de 2018, que precisou ser

descartado. Existem alguns momentos em que temos a interrupção de todas as medições,

e outros de erros pontuais, como erros no MP2.5 e no NOx.

Figura 9: Vazios

Fonte: Autoria própria

Seguindo o tratamento de dados descrito, obtivemos a tabela 2.

Os dados anômalos para material particulado não foram examinados no tratamento

de dados, sendo analisados separadamente, uma vez que se consideraram válidos todos os

dados (seguindo a classificação da CETESB). Isso indica que os valores anômalos obser-

vados possuem natureza f́ısica, não sendo necessariamente oriundos de erros de medição,
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Refeência No de Observações No de Inputs Descartados
Santa Gertrudes 1 43.848 535 1723
Santa Gertrudes 2 17.544 830 5774

São Paulo 8760 0 0
Araçatuba 8760 0 0

Tabela 2: Resultado do tratamento de dados

mas sim de ocorrências f́ısicas.

3.2 Perfil dos poluentes em Santa Gertrudes

Para compreender a problemática da poluição do ar em Santa Gertrudes, buscou-se

analisar o perfil de poluição no munićıpio, para os três principais poluentes analisados:

MP10, MP2.5 e NOx.

As condições meteorológicas (temperatura e precipitação) em Santa Gertrudes se com-

portam tal como mostra a figura 10, com picos de precipitação no ińıcio e no final do ano,

e com peŕıodo de seca no meio do ano. A temperatura diminui durante os meses de

inverno.

3.2.1 MP10

A análise realizada busca identificar o comportamento diário dos poluentes acima,

nas diferentes estações do ano. A figura abaixo indica qual o valor esperado para um dia

qualquer em cada estação, divido por hora.

O gráfico revela que existe uma grande diferença entre as estações do ano, com alta na

concentração de poluentes durante inverno e outono, as estações mais frias e mais secas

na região. Além disso, em todas as estações, observa-se um perfil diário marcado por dois

picos, às 7h e às 19h.

Inicialmente, imaginou-se que tais picos poderiam estar ligados à hora de pico da

circulação de carros. Entretanto, ao comparar o perfil diário anual de Santa Gertrudes

com São Paulo, a cidade com maior frota veicular do páıs, observa-se que o comportamento

de picos é único ao munićıpio de Santa Gertrudes, indicando uma correlação com o forte

tráfego de caminhões carregando fontes de particulados na região, e a atividade econômica

em si.

O gráfico acima também serve para colocar em perspectiva a magnitude da poluição
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Figura 10: Precipitação e temperatura em Santa Gertrudes

Fonte: Climate Data Brasil

Figura 11: Perfil diário de MP10 em Santa Gertrudes

Fonte: Autoria própria

do munićıpio. Embora a população de Santa Gertrudes seja 500 vezes menor do que a de

São Paulo, contando com 24 mil habitantes – segundo censo IBGE de 2015 – o ńıvel de

poluição por particulados é 2,5 vezes maior.

Considerando os limites impostos pela Organização Mundial da Saúde (OMS), o valor

médio de concentração de MP10 apresentado em Santa Gertrudes é superior ao consi-
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Figura 12: Comparação entre Santa Gertrudes e São Paulo

Fonte: Autoria própria

derável saudável (40 µg/m3). Entre 2015 e 2020, o munićıpio de Santa Gertrudes obteve

uma média diária superior ao recomendado pela OMS em 57% dos dias. Ao mesmo

tempo, o pico diário superou o valor diário recomendado em 92% dos dias analisados. Se

considerarmos o valor de curto prazo limite, de 120 µg/m3, esse valor foi superado 32%

das horas.

A influência da atividade econômica da região no ńıvel de poluentes também fica

expĺıcita quando consideramos a distribuição de poluentes nos dias da semana. Em dias

úteis, onde as fábricas e a distribuição de argila e outras matérias primas da cerâmica.

O decrescimento em finais de semana é notável, contando como a maior parte dos dias

em que a média diária não supera o valor limite da OMS. Na imagem acima, cada conjunto

de dois picos representa um dia, sendo o maior pico no momento da noite, seguindo o

perfil diário estudado anteriormente.

O perfil anual está representado pela figura 14, indicando o comportamento de alta

durante os meses secos, e baixa durante os meses úmidos.

Julgou-se pertinente analisar a correlação entre a concentração média de material

particulado e a direção do vento. Para tanto, os dados de 2015 a 2019 foram separados
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Figura 13: Dias da semana (cinza) e final de semana (azul)

Fonte: Autoria própria

Figura 14: Perfil anual de MP10

em 24 classes, correspondendo a 24 subdivisões equivalentes da direção do vento, de 0◦

a 360◦. Esta direção indica a proveniência dos ventos, sendo 0◦ o norte. Em seguida,

calculou-se a média e o desvio padrão da concentração de MP10 de cada classe de direção

dos ventos.

A Figura 15 apresenta curvas relativas à média da concentração para cada direção do

vento, bem como uma margem de amplitude 2 σ. Nota-se que há um intervalo de ângulos

que apresenta um pico na concentração média de MP10, em torno de 100◦, entre leste e

lés-sudeste. Antes de se concluir que os ventos provenientes de tal direção induzam tal

aumento na concentração de MP10, deve-se avaliar a frequência de ocorrência de cada

direção ao longo do tempo, análise que é apresentada na Figura 16.
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Figura 15: Média das concentrações de MP10 em função da direção de origem dos ventos

Fonte: Autoria Própria

Figura 16: Distribuição da ocorrência de ventos em função da direção de proveniência

Fonte: Autoria Própria

Constata-se que, ao longo dos anos de 2015 a 2019, as direções do vento compreendidas

entre 100◦ e 160◦ apresentam a maior frequência de ocorrência, o que pode justificar em
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parte o fato de ventos provindos dessa direção representarem o pico na concentração de

MP10, devido a um efeito cumulativo.
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3.2.2 MP2.5

Realizando-se as mesmas análises para o material particulado de diâmetro de corte 2.5

µm, obtemos o gráfico abaixo. Tal como para o material particulado de maior diâmetro,

o inverno e o outono destacam-se com maior concentração do poluente. Além disso, o

perfil de menor concentração durante a tarde é comum aos dois.

Figura 17: Perfil de MP2.5 para Santa Gertrudes

Fonte: Autoria própria

Ao analisarmos o perfil pelos dias da semana, não se observa um comportamento

acentuado como no MP10. Nesse caso, a concentração aos sábados e domingos é muito

semelhante à concentração durante os dias de semana. Uma hipótese para justificar tal

diferença é o fato de que as part́ıculas menores tem tendência a ficar mais tempo em

suspensão, o que favorece a permanência de poluentes gerados durante os dias úteis.

Vale ressaltar que as part́ıculas de menor diâmetro são ainda mais perigosas que

as maiores, pois penetram nas vias respiratórias e atingem os alvéolos pulmonares. A

recomendação da OMS para esse poluente é de 10 µg/m3, embora as cidades em desen-

volvimento apresentem, em geral, médias superiores. A CETESB estabelece como padrão

anual 20 µg/m3. No caso de Santa Gertrudes, dias acima do recomendado são a regra:

80,5% dos dias estão acima da recomendação da OMS.

O perfil anual de MP2.5 está representado na figura 19. A concentração nos meses

secos também é notável, mas de forma menos acentuada que para o MP10.
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Figura 18: Perfil de MP2.5 para Santa Gertrudes

Fonte: Autoria própria

Figura 19: Perfil de MP2.5 anual para Santa Gertrudes

Fonte: Autoria própria

3.2.3 NOx

Como visto anteriormente, o NOx não é material particulado, trata-se um gás polu-

ente. O seu perfil é um pouco mais complexo que o do material particulado, uma vez

que pode passar por reações qúımicas com mais facilidade. Observamos dois picos, um

próximo das 7h da manhã e outro próximo das 19h, o que provavelmente está ligado

aos poluentes móveis na região (caminhões e carros). Além disso, é durante o inverno

que possúımos os valores mais altos observados de NOx, o que se justifica pela maior

quantidade de dias desfavoráveis a dispersão de poluentes e a maior emissão em dias frios.

A distribuição anual é representada de forma mais clara na figura 21.
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Figura 20: Perfil de NOx diário para Santa Gertrudes

Fonte: Autoria própria

Figura 21: Perfil de NOx anual para Santa Gertrudes

Fonte: Autoria própria

Observando os dias da semana, o comportamento do NOx se assemelha ao compor-

tamento do MP10, com diminuição abrupta no final de semana. Esse fenômeno está

representado na figura 22.
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Figura 22: NOx durante os dias da semana

Autoria própria

3.3 Decomposição de séries temporais para MP10

A técnica de detecção de outliers descrita neste trabalho não pode ser aplicada di-

retamente aos valores históricos de MP10. Uma vez que existe uma sazonalidade bem

demarcada, a técnica sem desconsiderar esse efeito seria enviesada, apontando anomalias

somente em momentos de maior concentração de poluentes, como no inverno e outono.

Entretanto, é do nosso interesse identificar, também, momentos em que existiram anoma-

lias dentro de estações com menor concentração de poluentes. [10]

Buscando compreender a distribuição histórica dos poluentes no tempo, estudou-se a

decomposição da série temporal em seus três componentes: a tendência, a sazonalidade e

o reśıduo. O reśıduo serve a entender melhor pontos de dados anômalos, uma vez que já

não está influenciado pela sazonalidade.

Optou-se por realizar a decomposição multiplicativa, uma vez que o modelo se ajustou

melhor aos dados, principalmente aos valores de 2016, onde uma pequena alteração na

tendência (foi um ano de menor taxa de poluentes), também se refletiu em uma alteração

da amplitude da sazonalidade. De todo modo, por ser uma variação muito pequena, os
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resultados da decomposição aditiva e multiplicativa convergiram. Como a multiplicativa

conseguiu identificar mais outliers, seguiu-se com esta.

Figura 23: Decomposição de série temporal de MP10

Fonte: Autoria própria

A aplicação foi feita atráves da ferramenta seasonal decompose, que faz parte do pa-

cote de modelos estat́ısticos do Python. A ferramenta baseia-se no método de média

móvel, seguindo o algoritmo clássico descrito neste trabalho.Utilizou como peŕıodo in-

tervalos de um ano. Cada ponto da figura 23 representa um dia, percorrendo o peŕıodo

completo dos dados, de 2015 a 2019.

A análise de tendência é limitada pela escassez dos dados. Enquanto séries históricas
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normalmente são compostas por mais de dez anos, dispomos somente de cinco anos de

dados, para somente um dos poluentes. Por essa razão, a ocorrência de um ano com

menor concentração (o segundo pico, ano de 2016) cria um grande impacto na tendência,

que tem um declive e em seguida volta a seguir, oscilando em torno da média, por volta

de 55 µg/m3.

Ao mesmo tempo, a análise de sazonalidade deixa bem claro o perfil estudado anteri-

ormente: o ano é marcado por um forte pico durante as estações secas e frias, entre abril

e setembro. Por fim, a análise de reśıduo representa quanto daquela variação não é expli-

cada pela sazonalidade nem pela tendência. Com os reśıduos analisaremos a ocorrência

de outliers.

Optou-se por utilizar os reśıduos para detecção de anomalias pois os reśıduos permi-

tem identificar outliers sem influência da tendência e sem influência da sazonalidade, o

que permite a identificação de anomalias intra-anuais. Se houvéssemos considerado a sa-

zonalidade, anomalias no verão não seriam identificadas. Se considerássemos a tendência,

o ano de 2016, que mostrou uma leve baixa, também não teria pontos detectados. Os ou-

tliers dos reśıduos mostram pontos que se sobressaem em relação ao esperado para aquele

instante.

Figura 24: Análise de Outliers

Fonte: Autoria própria

Na figura 24, as linhas pontilhadas em vermelho representam o intervalo de valores

que estão dois desvios padrões acima ou abaixo da média – representada pela linha central.

Em seguida, tratam-se os pontos considerando como outlier todos os valores superio-

res à linha da média com dois desvios padrões, e todos os valores inferiores à linha inferior

do gráfico. Esses são valores que tiveram comportamentos muito diferente do valor espe-

rado para determinado peŕıodo no munićıpio, podendo estar relacionado a uma variação
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meteorológica pontual combinada à atividade econômica da região, ou a acontecimentos

externos, como uma queimada na região.

Analisando os pontos identificados como anômalos, observa-se que a maioria deles

ocorreu durante dias de semana, com somente 4.9% das ocorrências aos sábados, e ne-

nhuma aos domingos. Há uma forte indicação, portanto, que ocorrências externas repre-

sentam uma parcela pouco significativa dos comportamentos anômalos, que são, em sua

maioria, ligados à atividade econômica que ocorre durante a semana.

O gráfico abaixo indica a distribuição de ocorrências por dia da semana.

Figura 25: Ocorrência de outlier por dia da semana

Fonte: Autoria própria

Além disso, a maior parte das ocorrências é durante a estação seca, quando há menor

dispersão de poluentes. O comportamento de dispersão colabora para justificar, também,

a menor taxa de ocorrência de outliers na segunda-feira: a quantidade de particulado

acumulada durante o final de semana não é alta suficiente para gerar um ponto anômalo.

A figura 26 mostra que a maior parte da ocorrência de extremos de particulados ocorre

em dias de baixa umidade, sendo todos os dias de ocorrência abaixo da média histórica

de umidade relativa. Os dados acima correspondem ao peŕıodo de 2 anos, limitados pela

medição da umidade relativa, de 2018 a 2020, com os dias sendo contados a partir de 2015

(ińıcio da série de MP10). Cada ponto vermelho corresponde a um outlier identificado

pelo tratamento da série residual.

É posśıvel perceber, também, que em momentos em que a baixa umidade se prolonga

por alguns dias, a ocorrência de extremos torna-se mais frequente, como ocorre entre os
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Figura 26: Ocorrência de outlier na série de Umidade Relativa

Fonte: Autoria própria

dias 1100 e 1200 no gráfico. Isso ocorre pois os dias secos dificultam a dispersão dos

poluentes.

Outra forma de identificação de dados anômalos para uma única variável é realizar

uma análise do diagrama de caixa (boxplot) que revela a distribuição dos pontos em

quartis, assim como os pontos que não se encaixam nos quartis.

Figura 27: Ocorrência de outlier na série de MP10

Fonte: Autoria própria

Como se observa, o corte para detecção de outliers foi maior no segundo caso, conside-

rando apenas os pontos residuais que superaram o ı́ndice 2.1. Vale ressaltar que esse ı́ndice

multiplica a sazonalidade e a tendência, fornecendo o valor final do poluente. Quanto mais

alto, maior em relação ao esperado para aquele momento.
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Nesse caso, os dados revelados foram iguais aos da análise residual, com exceção de

dois pontos que escaparam ao corte.

Como os dados para MP2.5 e NOx foram coletados somente a partir de 2018, não

há sentido em realizar uma análise de série histórica para esses dois parâmetros. Mesmo

para o MP10, observa-se que seria vantajoso dispor de mais alguns anos de dados para

ter análises de tendência e sazonalidade mais precisas.

3.4 Regressão multivariável para MP10

Com os dados do banco Santa Gertrudes 2, exclúıram-se os pontos faltantes e obteve-

se um dataframe onde cada linha é a observação de uma hora. As 5 primeiras observações

estão ilustradas na tabela 3.

Tabela 3: Observações banco de dados

ID Data Hora DV MP10 MP2.5 NOX UR Ano Temp
3764 2018-08-10 1 179.0 27.0 8.0 38.6 74.0 2018 14.2
3765 2018-08-10 2 218.0 23.0 7.0 17.0 73.0 2018 13.0
3766 2018-08-10 3 202.0 22.0 9.0 24.0 75.0 2018 12.0
3767 2018-08-10 4 258.5 23.0 7.0 33.0 79.0 2018 10.9
3768 2018-08-10 5 277.3 25.0 12.0 27.0 86.0 2018 10.0

Em seguida, realizamos a padronização das variáveis, para que as diferentes ordens

de grandeza não influenciem na escolha dos coeficientes angulares. O MP10, que é a

variável target que se deseja prever, não será padronizado. A padronização está descrita

na equação seguinte, e consiste em passar todas as variáveis para média 0 e desvio padrão

1.

z =
x− µ
σ

(3.1)

O próximo passo foi realizar a criação de novas variáveis que podem auxiliar na

regressão. Nesse caso, a partir da data, geraram-se três novas variáveis: mês, estação e

final de semana. A última é uma variável binária, que indica 1 se for final de semana e

0 se for dia de semana. As variáveis ’Ano’ e ’Data’ foram descartadas, pois não se pode

levar em consideração valores espećıficos a uma observação.

A tabela passa a ser como a mostrada abaixo, que traz apenas as 2 primeiras ob-

servações.
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Tabela 4: Dados após criação de novas features e padronização

ID Hora DV MP10 MP2.5 NOX UR Mês Temp Weekday Estação
0 1 0.14 27.0 -0.72 0.32 0.28 8 -1.60 0 3
1 2 0.57 23.0 -0.79 -0.47 0.24 8 -1.81 0 3

Realizou-se então a seleção de variáveis que seriam utilizadas no modelo. Para isso,

aplicaram-se os dois métodos estudados neste trabalho: Lasso e OLS.

A aplicação da técnica OLS indica que todas as variáveis, exceto ’Estação’ são signi-

ficativas na explicabilidade da variável que se deseja prever. A escolha dos coeficientes

por Lasso indicou que a variável ’Weekday’, binária, também poderia ser exclúıda, junto

com a estação do ano. Antes de passar para o ajuste do modelo de regressão, é preciso

verificar se essas variáveis escolhidas satisfazem o critério de multicolinearidade. Para

isso, olhamos a correlação entre as variáveis.

Tabela 5: Correlação entre variáveis

Hora DV MP2.5 NOX UR Mês Temp Weekday Estação
Hora 1.00 -0.04 -0.06 -0.05 -0.45 -0.00 0.42 -0.00 -0.00
DV -0.04 1.00 -0.09 -0.13 -0.01 -0.03 0.08 0.00 -0.03
MP2.5 -0.06 -0.08 1.00 0.54 -0.02 -0.01 -0.14 -0.07 -0.00
NOX -0.06 -0.12 0.54 1.00 0.17 -0.06 -0.41 -0.18 -0.05
UR -0.45 -0.01 -0.02 0.17 1.00 -0.06 -0.74 -0.02 -0.06
Mês -0.01 -0.03 -0.01 -0.06 -0.06 1.00 0.00 0.01 0.97
Temp 0.42 0.09 -0.15 -0.41 -0.75 0.00 1.00 -0.00 0.00
Weekday -0.00 0.00 -0.08 -0.18 -0.02 0.01 -0.00 1.00 -0.00
Estação -0.00 -0.03 -0.01 -0.05 -0.06 0.97 0.00 -0.00 1.00

Nota-se que a temperatura e a umidade relativa possuem correlação alta, e as duas

possuem correlação média com a hora. A temperatura possui maior correlação com a

variável que desejamos prever, portanto iremos descartar, inicialmente, a observação da

umidade relativa. O MP2.5 e NOx também possuem alta correlação. Iremos estudar

modelos com e sem o NOx (guardando o MP2.5 pois possui maior correlação com o

MP10).

Para realizar a comparação dos testes, utilizaremos o Mean Squared Error (MAE) e a

função score do Python, que fornece o valor R2. A configuração de treino seleciona valores

aleatórios, deixando 10% de não treinados que em seguida precisam ser previstos. Como

os valores são aleatórios, o modelo se ajusta de forma diferente a cada vez, retornando

acurácias diferentes a cada iteração. Por isso, para cada experimento, rodou-se mil vezes

o código, obtendo, no final, uma acurácia média e score médio.
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As tabelas a seguir descrevem os experimentos e os resultados obtidos.

Tabela 6: Descrição dos experimentos

Regressão OLS - Dados aleatórios
Experimento DV MP2.5 NOX UR Temp Weekday Estação Hora Mês
1 X X X X X X X
2 X X X X X X
3 X X X X X X X X

Tabela 7: Resultados

Experimento
Métrica 1 2 3
Score R2 0.68 0.56 0.71
MAE 15.19 17.19 14.41

Observa-se, com isso, que o melhor resultado foi obtido quando se ignorou os posśıveis

efeitos da multicolinearidade. Embora apresente um resultado melhor, com maior acurácia

e menor erro absoluto médio, não seria posśıvel se basear nos coeficientes dessa regressão

para entender o impacto individual de cada parâmetro.

A regressão Lasso forneceu resultado semelhante ao do experimento 3, com MAE

médio de 14.45 e score R2 de 0.70. Os ajustes fornecidos para as regressões foram:

Tabela 8: Coeficientes angularer da regressão

DV MP2.5 NOX UR Temp Weekday Hora Mês
OLS - Best -1.35 20.81 19.22 -10.90 -4.35 -1.166 0.28 0.19

Lasso -0.59 20.19 19.44 -7.13 -0.55 0.00 0.28 0.23

Como esperado, os maiores coeficientes, que influenciam mais na definição da variável

preditiva, são os outros dois poluentes, MP2.5 e NOx, que possúıam a maior correlação

com a variável que se desejava prever. Alguns pontos merecem ser discutidos: se a

sazonalidade é tão marcada, como explicar mês e hora com baixa influência no ajuste,

com coeficientes próximos de zero?

O que ocorre é que, embora esses dois parâmetros sejam importantes na definição do

MP10, as outras variáveis meteorológicas e poluente presentes no modelo já possuem, de

forma intŕıseca, o efeito da sazonalidade, que se reflete no ajuste final. Isso significa, de

outra perspectiva, que seria posśıvel estimar, a partir de uma medição qualquer, o mês e

a hora desta.

Para avaliar se a técnica multivariável é uma opção válida para imputar dados, com-

paramos esse método com o método inicial do tratamento de dados, onde utilizávamos a
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comparação com a média dos valores do dia. Esse método será identificado como ”Inter-

polação”, enquanto a regressão multivariável é a ”Predição”.

A técnica da interpolação utiliza uma matriz 12x24 para prever os valores. Cada

elemento da matriz representa a proximidade da média diária para um mês espećıfico.

Assim, para um valor faltante, a interpolação verifica os outros valores do dia, realiza

a média e em seguida multiplica pelo elemento correspondente da matriz 12x24. Não

se utilizou a média direta entre os pontos mais próximos do vazio pois muitas vezes se

observam vazios consecutivos.

Comparando os valores de MAE, a regressão apresentou um valor médio de erro 28%

menor do que a interpolação, que foi de 18.50 µg/m3.

Observou-se que tanto a interpolação quando a predição se aproximam do perfil real

de MP10, mas não conseguem realizar uma boa aproximação dos pontos de pico, onde

ocorrem mais outliers. Valores de MP10 acima de 200 µg/m3 começam a apresentar erros

maiores. É posśıvel observar, na primeira linha da figura 29, que a interpolação começa a

mostrar seus limites de predição mais cedo do que as predições, que apresenta um formato

eliptico mais alongado.
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Figura 28: Distribuição entre previsto e realizado

Fonte: Autoria própria
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Figura 29: Distribuição entre previsto, interpolado e realizado

Fonte: Autoria própria
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3.5 Análise de componentes principais

O objetivo dessa análise é estabelecer quais são os principais fatores que seriam levados

em conta para explicar a variabilidade do sistema como um todo, e realizar a fundação

do que seria necessário para uma análise de clusters.

Como explorado neste trabalho, a técnica PCA tem a hipótese de normalidade dos

componentes. Embora as variáveis tenham perfil próximo da normalidade, as distribuições

são assimétricas e não correspondem a condições ótimas para a aplicação do método. De

todo modo, a análise traz algumas informações importantes.

Realizando-se o PCA em Python, para as variáveis DV, MP10, MP2.5, NOX, UR e

Temperatura, todas agrupadas por dia (cada dia é representado pela média dos valores

observados de cada uma dessas variáveis) obteve-se que seriam necessários 3 componentes

principais para alcançar 90% da variabilidade do sistema explicada. O primeiro compo-

nente explica 50%, enquanto o segundo e o terceiro explica 23% e 17%, respectivamente.

Isso significa que conseguimos reduzir a dimensão da nossa análise de 6 variáveis para

3 variáveis, guardando a maior parte da informação, cumprindo o objetivo principal da

PCA. Diria-se que não houve ganhos com PCA se a análise resultasse no mesmo número

de variáveis para explicar a maior parte da variância,o que indicaria que as variáveis já

eram ortogonais entre si.

Observando-se os fatores (ou loadings) de cada componente, obtem-se o coeficiente

linear das variáveis iniciais que formam a nova variável. De um ponto de vista numérico, os

fatores são iguais às coordenandas das variáveis divididas pela raiz quadrada do autovalor

associado ao componente principal. A tabela a seguir indica os fatores para cada um dos

3 componentes principais encontrados.

Tabela 9: Tabela de fatores PCA

PC1 PC2 PC3
DV -0.14 -0.20 -0.95

MP10 0.55 0.05 -0.11
MP25 0.51 -0.09 -0.15
NOX 0.47 0.36 -0.13
UR -0.41 0.40 -0.15

Temp 0.02 -0.80 0.11

Como se pode observar, o MP10 é o de maior peso para o PC1, a temperatura é o de

maior peso para o PC2 e a direção do vento é a principal para a PC3. Os efeitos do NOX

e do MP2.5 são contabilizados majoritariamente no PC1, junto com o MP10.
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4 CONSIDERAÇÕES FINAIS

4.1 Conclusões

A análise de dados de ar obtidos pela CETESB se mostram úteis para modelizar e

compreender o perfil de poluição no munićıpio de Santa Gertrudes, em escala anual ou

diária. As análises de perfil de poluentes mostram grandes picos durante o dia, causados

pela maior circulação de véıculos leves e pesados em horário de pico. A comparação com

perfil de poluentes de São Paulo, que também possui horário de pico de circulação de

véıculos mas não possui picos tão marcados quanto Santa Gertrudes, mostra a unicidade

da região, com ńıvel de poluição muito maior que a capital, com picos nos horários de

entrada e de sáıda dos caminhões.

Vale ressaltar que há uma limitação a ńıvel de dados, pois embora conte com três

estações CETESB, o munićıpio de Santa Gertrudes só possui uma estação automática,

com alguns poluentes sendo medidos somente a partir de agosto de 2018. As outras

estações são manuais e contam somente com medições espaçadas de 1 semana ou 1 mês,

que não agregam valor à análise de dados.

A correlação da atividade econômica da região com a poluição também fica expĺıcita

ao examinar a poluição por dias de semana. Em finais de semana, os ńıveis de poluição

são significativamente menores, alcançando ńıveis aceitáveis para OMS. Isso é válido prin-

cipalmente para o MP10 e o NOX, enquanto o MP2.5 possui presença mais longa, sem

ter uma diminuição tão marcada nos finais de semana.

A decomposição da série histórica mostrou-se uma ferramenta útil para a detecção

de outliers, através da remoção da sazonalidade. Seria posśıvel realizar previsões ou

alertas a partir disso, informando a ocorrência de observação superior à esperada naquele

momento do ano. É importante ressaltar que as séries históricas ganham robustez com o

aumento do peŕıodo observado. Embora tenha sido posśıvel obter o perfil de sazonalidade

e a tendência, seria fundamental ter maior quantidade de anos para realizar métodos

confiáveis de predição (conhecidos como forecasting), como ARIMA.
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A regressão multivariável mostrou-se válida para predição de valores horários de

MP10, podendo se tornar uma ferramenta útil no preenchimento de dados faltantes. A

técnica mostrou-se mais eficaz do que a técnica inicial de imputação a partir de modulação

horária, sazonalidade e média das horas próximas ao ponto faltante. Ao mesmo tempo,

sua utilização está limitada aos momentos de falha do parâmetro MP10 mas funciona-

mento dos outros. O que se observou é que, na maior parte das falhas, é uma falha geral

do equipamento, perdendo-se todos os dados.

A análise de componentes principais estabelece uma base para aplicação de agrupa-

mentos, que pode ser tornar uma ferramenta na compreensão dos fenômenos de poluição.

As primeiras análises realizadas foram inconclusivas e, portanto, não fizeram parte desse

trabalho.

4.2 Próximos passos

Esse trabalho serve de ponto de partida para mais estudos no muńıcio de Santa Ger-

trudes. No escopo de aprofundamento dos estudos para o munićıpio, posśıveis próximos

passos seriam: realização de análises através de redes neurais, para substituir a regressão

multivariável e obter método mais robusto de previsão, técnicas de agrupamentos para os

dados coletados, utilização da série histórica para realizar previsões com meses de ante-

cedência e, por fim, técnica de manutenção preventiva que informasse quando o aparelho

da estação coletora possui maior chance de quebrar e perder observações.

No escopo geral, o campo é muito e existe uma série de testes a serem feitos. Algumas

análises realizadas nesse trabalho poderiam ser ampliadas para outras cidades e regiões.

Em locais sem medição de MP10, poder-se-ia estudar a estimativa desse parâmetro através

de regressões multivariáveis aplicadas nos outros parâmetros medidos, utilizando ajustes

de outros munićıpios com comportamentos semelhantes. Outros comparativos poderiam

ser traçados, como por exemplo a influência das condições meteorológicas e os perfis

diários entre cidades com diferentes atividades econômicas.
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