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RESUMO

Dado uma grande amostra de dados, construir um histograma representando a fungéo densi-
dade de probabilidade (FDP) que permita extrair o maximo de informacao possivel ndo € uma
tarefa trivial. Fazé-lo de forma empirica pode ser muito trabalhoso, principalmente para mais de
um experimento. E interessante, ento, utilizar um algoritmo ja pronto que calcula o histograma

com uma quantidade de intervalos 6tima.

Para o caso de dados que obedecem a distribuicdo de Poisson, o algoritmo “A method for bin
size selection” (SHIMAZAKI; SHINOMOTO, 2007) ja permite fazer esse calculo automatico. O
resultado desse algoritmo é a selecdo de um intervalo de classe 6timo, mas a implementacéo
deste de maneira eficiente é crucial para processamento cientifico que utiliza enormes quanti-

dades de dados.

A linguagem Python, utilizada em conjunto com as bibliotecas Numpy e Scipy, possui um bom
desempenho. A utilizacdo da ferramenta para paralelizacdo IPython melhorou ainda mais a
performance do processamento do algoritmo. Foram feitos testes em serial e em paralelo. A

execucao em paralelo apresentou um ganho em torno de 50% sobre a execucéo serial.

Concluido os testes de funcionalidade e desempenho, o programa foi utilizado para estimar a
FDP de dados experimentais e como resultado foi obtido uma FDP préoxima de uma gaussiana,

como esperado.

A disponibilizacdo deste programa mostra-se uma promissora forma de facilitar a construcao de
histogramas nos mais diversos campos de pesquisa devido a linguagem Python ser uma fer-
ramenta padrédo dos sistemas derivados Unix e a ferramenta IPython estar disponivel, gratuita-

mente, para instalagdo nestas.

Palavras-chave: histograma, funcéo densidade de probabilidade, Python, Numpy, IPython,

paralelo.



Abstract

Given an amount of data, generate a histogram representing the probability density function
(PDF) that allows extract as much information as possible is not an easy task. Doing it empiri-
cally may be very painful, especially if there is more than one experimentation. So, it’s interest-
ing to use an already made algorithm that calculates the histogram with an optimal number of
bins.

For the case of data that obeys the Poisson distribution, the algorithm "A method for bin size
selection" (SHIMAZAKI; SHINOMOTO, 2007) already allows this automatic calculation. The
result of this algorithm is the selection of a range of great class, but implementing this efficiently

is crucial for scientific processing which uses huge amounts of data.

The Python language, used in conjunction with libraries Numpy and Scipy, has a good perfor-
mance. The use of the IPython tool for parallelization further improved the performance of the
processing algorithm. Tests were made in serial and in parallel. Running in parallel showed a

gain around 50% over the serial execution.

Completed the tests of functionality and performance, the program was used to estimate the

PDF of experimental data and was obtained a PDF next to a Gaussian distribution as expected.

The deployment of this software shows a promising way to ease the construction of histograms
in various fields of research due to the fact that the Python language is a standard for Unix-

derived systems and the IPython tool is available, free of charge, to install.

Keywords: histogram, probability density function, Python, Numpy, IPython, parallel.
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1 Introducéo e Objetivos

1.1 Introducéo

Nos diversos campos de pesquisa a andlise de quantidades cada vez maiores de da-
dos é, muitas vezes, algo crucial para chegar a uma conclusdo assertiva de um experimento.
Agrupar dados e construir histogramas que os representem corretamente pode ser algo bem
complexo em experimentos que geram milhdes de dados, tornando-se uma tarefa que consu-

me um precioso tempo da pesquisa.

Essa construcdo do histograma precisa ser cuidadosa, pois um intervalo de classe
muito grande ndo é capaz de representar a taxa basica do sinal corretamente e um intervalo de
classe muito pequeno faz o histograma flutuar muito, tornando muito dificil discernir a taxa ba-

sica do sinal.

Shimazaki e Shinomoto (2007) desenvolveram um algoritmo capaz de calcular compu-
tacionalmente o valor 6timo do intervalo de classe de um histograma gerado a partir de um con-
junto de dados cuja distribuicdo seja proxima a distribuicdo de Poisson. Isso foi possivel devido

a definicdo de uma funcéo Custo que minimiza o erro quadratico integrado médio de um sinal.

A implementacao deste algoritmo precisa de desempenho, pois as quantidades de
dados a serem analisados podem ser muito grandes. Linguagens compiladas como C/C++,
sdo as melhores neste quesito, mas o desenvolvimento e os testes dos codigos feitos nessas
linguagens ¢é mais trabalhoso. Contudo, testes realizados e apresentados em:

http://www.scipy.org/PerformancePython mostram que linguagem interpretada Python, com as

bibliotecas Numpy e Scipy, tem desempenho muito bom comparado a diversas outras lingua-
gens. Sendo gratuita e possuindo portabilidade nas plataformas Unix, unido a sua facilidade de
paralelismo através da ferramenta IPython, esta foi a linguagem escolhida para realizar este

trabalho.


http://www.scipy.org/PerformancePython

1.2 Objetivos

Com este trabalho, busca-se agilizar pesquisas que envolvem geracao de histogramas
a partir de grandes volumes de dados com a entrega da implementacéo do algoritmo de Shi-
mazaki e Shinomoto (2007) em Python em paralelo. Ir-se-4 através deste documento compro-
var a eficiéncia da implementagcdo e demonstrar ao leitor como utilizar o programa. Seré expli-
cado, ao longo do trabalho, os seguintes pontos:

= A teoria da qual é derivado o algoritmo computacional

= A implementacdo detalhada do algoritmo: uma breve explicacdo sobre o sistemas utili-

zado, a linguagem Python, a ferramenta IPython e a explicacdo da codificacéo.

= Testes realizados para garantir a funcionalidade da implementacéo

= Aplicacdo para dados de sinais neurais de gafanhotos

= Discussao dos resultados e conclusao
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2 Teoria

2.1 Histogramas e a Funcao Densidade de Probabilidade

Uma das formas mais antigas de se estimar a funcéo densidade de probabilidade é utilizar his-
togramas, apesar de ser vastamente conhecido, € importante realizar uma breve revisao do

conceito de histograma e fazer algumas definigdes.

Um histograma € uma representacdo grafica de um conjunto de dados que pode ser utilizado
para estimar a FDP de funcdes continuas (SILVERMAN, 1986). Em sua forma mais tradicional,
um histograma € um grafico em duas dimensdes (X, y) composto por retangulos justapostos,
cujas bases (de tamanhos fixos) definem o intervalo de classe e cuja area é proporcional a fre-
guéncia dos dados que se encontram num intervalo de classe do retangulo. A Figura 1 mostra

um histograma tradicional.

D_lllllll T T T T T T T T T T LU

2 4 5 8 10

Figura 1 — Histograma tradicional
Os intervalos de classe sao definidos como:

[xo + mh,xg + (m+ 1)h] (2.1)
Onde m é um inteiro positivo ou negativo, x, € a origem e h € a largura do intervalo de classe.
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A funcdo que descreve um histograma pode ser agora trivialmente definida como:

fe) =X (2.2)

Onde X; é a quantidade de dados que se encontram no mesmo intervalo de classe que x.
Contudo, para representar a funcéo densidade de probabilidade é necessario que:
too (2.3)
f f(x)dx=1
Isso é satisfeito dividindo a (Eq 2.2) por_nh, sendo n a quantidade total de dados do histogra-

ma. Assim um a fungcéo que define um histograma tradicional que descreve uma funcéo densi-
dade de probabilidade é dada por:

. X; (2.4)

Essa sera o histograma que representa a FDP que este trabalho ira calcular.
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2.2 Calculo do intervalo de classe do histograma

A parte mais dificil da construcdo de um histograma que represente corretamente a FDP de um
conjunto de dados é achar a melhor largura do intervalo de classe. A escolha errada deste po-
de levar a fungbes que ndo condizem com a realidade. A Figura 2 mostra a comparacao entre
histogramas construidos a partir de uma mesma base de dados, porém, com diferentes largu-

ras de intervalos.

A estimativa empirica além de, muitas vezes, ndo levar a uma largura de intervalo 6timo, pode

ser extremamente exaustivo para quantidades muito grandes de dados.

Muito pequeno ﬂ.

Otimo ﬁ*

Muito grande ﬁ

Figura 2 - Diferentes escolhas do intervalo de classe (SHIMAZAKI;SHINOMOTO, 2007)

O primeiro histograma da Figura 2 mostra como a escolha de um intervalo de classe (A) muito
pequeno pode gerar flutua¢cdes muito grandes e o terceiro histograma mostra que a escolha de
um intervalo de classe muito grande ndo permite identificar corretamente as variagbes mais

sutis da taxa basica do sinal. Utilizar o segundo grafico da Figura 2 permite extrair informacoes

13



bem melhores dos dados sendo, portanto uma estimativa melhor da funcdo densidade de pro-
babilidade.

Dado a importancia da escolha do A e de um possivel exaustivo trabalho para seu calculo ma-
nual, foi desenvolvido um algoritmo para calculo de A (SHIMAZAKI; SHINOMOTO, 2007). Se-

gue abaixo sua teoria:

Quanto menor o erro quadratico integral médio (EQIM), dado pela equacédo Eq 2.5, em periodo

de tempo T, melhor a estimativa.

1T 5 (2.5)
ER = —f EQA, —1)" dt
T 0

Sendo:
1, = Funcéo densidade de probabilidade estimada
A = Funcédo densidade de probabilidade ideal

E() refere-se a expectativa das diferentes realiza¢des dos eventos pontuais.

Comeca-se com uma FDP A, com um intervalo de classe pequeno e se explora um método que

minimize ER. O problema é que nao se conhece 4,.

Definindo-se:

A = Intervalo de classe do histograma

n = Quantidade de sequéncias de sinais

k; = Namero de sinais durante o i-ésimo intervalo de classe

0= :—2 = Altura estimada de i-ésimo intervalo de classe

Dado um intervalo de largura A, a altura esperada da barra, para t € [0,A] é dado pela média

temporal da equacéo 2.6:

12 p (2.6)
o= 1[0

E o numero total de pontos k que entram neste intervalo obedecem a distribuicdo de Poisson:

14



(nAg)* o6 (2.7)

p(k|nAg) = v ,

onde a expectativa € A. Uma estimativa razoavel para 6 é § = k/n A+ gue € a altura empirica

da barra do gréafico parat € [0, A].
Pode-se reescrever a Eq 2.5, segmentando o periodo T em N intervalos de tamanho A:

1 A 1 N (28)
R 2
ER = Zf NZ{E(Bi —)lt+(i—1)A) } dt
0 =

Redefinindo 4,,;-1)» para 4, definido para o intervalo t € [0, A] fica:

1 (2.9)
ER = ZJO (E(@i—)tt) ) dt

onde a expectativa E() refere-se & média sobre nimero de pontos, ou 8 = k/Ae dado a taxa
basica 4., ou seu valor médio 6.
Pode-se entdo decompor a equacédo do erro em duas partes:

: 2.10
ER = (50 -0) + 7 [ (EG,— 0 at (2.10)
A 0

O primeiro termo da Eq. 2.10 refere-se a variacéo estocastica do estimador  sobre a média
esperada 6. E o segundo termo refere-se a flutuagdo temporal de A, sobre sua média 6 no in-

tervalo A.

O segundo termo da equacao ainda pode ser decomposto em mais dois outros termos:
1t 1t (2.11)
3] EG= @+ @ -0 de= [ (G- + (-6

Como o primeiro termo da Eqg. 2.11 ndo depende da largura do intervalo A, pois

(2.12)

1 1"
Zfo (A — (8))?)dt = Tfo (4, —(6)? dt.

Define-se a fungéo custo sem este termo na equacdo, tal como na Eq 2.13
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C,(8) =(E(B-6)%) + ((6—(6)?) (2.13)

A média esperada 6, contudo, ndo é uma variavel observavel, portanto, deve-se retird-la da

equacao;

Considerando E@ = 6 e utilizando a regra da decomposicéo, pode-se escrever
(E(0—(E0)") = (E(B-8)") + (60— (o) (214)

Entdo a funcéo custo fica:

C.(8) = 2E(0 - 6)%) — (E(8—(ED))?) (2.15)

Assumindo que o processo em estudo obedece a distribuicdo de Poisson, a variancia do nume-

ro de pontos k em cada intervalo A € igual & média. Assim podemos expressar:

~ 1 .
E(@—e)z _ n_AEe (2.16)

Finalmente, chega-se a funcéo custo sem 6, definida na Eq 2.17

C.(4) = nZ—A(Eé) — (E(0 - (EB))?) (2.17)

O tamanho étimo do intervalo de classe pode ser entdo obtido, achando o que minimiza a fun-
¢do custo, tal como a Eq. 2.14

(2.18)
A* £ argmin C, (A)

Trocando a fungéo de expectativa E () pela contagem dos pontos, pode-se chegar ao algoritmo

computacional para selecdo do tamanho 6timo do intervalo de classe de um histograma.
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2.3

0w DN PR

Algoritmo para céalculo do intervalo 6timo

Ordenar os dados
Dividir o periodo T em N intervalos de largura A

Calcular a quantidade de dados k; dentro do i — ésimo intervalo.

Construir a média e a variancia dos dados k; como
ke 23V ke v ZYN (k — k)2
- N i=1"is - N i=1 4

Calcular a funcéo custo

Repetir passos um a quatro, modificando a quantidade de intervalos para achar A* que

minimizem a funcéo Custo.
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2.4 Python e computacéo cientifica

Python é uma linguagem de computagao concisa e utilizada para os mais diversos dominios de
aplicacdo. Entre suas vantagens esta sua sintaxe compacta, ser orientada a objetos e sua ma-
nipulacéo de alto nivel de tipos de dados. Isso tudo, aliado ao fato de ser uma linguagem inter-
pretada, permite a construgdo e testes de programas para realizacdo de tarefas nao triviais
rapidamente. Sendo a velocidade de desenvolvimento um fator importante, esta linguagem vem

sendo muito bem aceita atualmente.

Para desenvolvimento de aplicacdes cientificas com foco no processamento de dados, o de-
sempenho é um quesito que ndo pode ser deixado de lado. Por isso a linguagem C/C++ é mui-
to utilizada nessa area. Python, sozinho, ndo atenderia aos pré-requisitos deste dominio de
aplicacgéo, pois ndo possui desempenho tdo bom como esses concorrentes. Contudo, a utiliza-

cdo das bibliotecas Scipy e Numpy, permite a utilizacdo de Python para computacéo cientifica.

Numpy € uma biblioteca de Python fundamental para computacao cientifica. Ela possui ferra-
mentas para armazenamento e processamento de matrizes. E possivel estendé-la com cédigo
C e integrar codigo Fortran existente. Scipy utiliza Numpy como base para prover diversos mé-

dulos de alto nivel utilizados pela area cientifica em um Gnico pacote.

Um teste de desempenho é apresentado no web site oficial destas bibliotecas,

http://www.scipy.org. Nele é apresentado o desempenho de Python utilizando essas bibliotecas

contra diversas outras implementacdes. A Tabela 1 apresenta alguns resultados deste teste.

Tabela 1 - Comparacao de desempenho de linguagens e ferramentas computacionais

Tipo de Solucgéo Tempo (s)
Python + Numpy Expression 29.3
Matlab (estimate) 29.0
Python (estimate) 1500.0
Fast Inline 2.3
Python/Fortran 2.9
Pure C++ 2.16

18
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2.5 Computacéao paralela com IPython

Para processamento de grandes quantidades de dados, hoje é habitual utilizar clusters de
computadores para processamento em paralelo por razées de desempenho. Para a linguagem
Python, a ferramenta IPython (disponivel em: http://ipython.org) foi desenvolvido pela IPython

Development Team, para facilitar desenvolvimento de programas em paralelo.

IPython é uma ferramenta que prové dois principais componentes: um ambiente interativo me-
Ilhorado para Python, e uma arquitetura para computacao paralela. Com ele é possivel execu-
tar codigos escritos em Python paralelamente com pouca modificacdo do codigo fonte.

A Figura 3 mostra como um mesmo trecho de cédigo pode ser executado facilmente em serial

ou paralelo com IPython.

In [61]: dview.block = True
In [62]: serial result = map(lambda x:x**18, range(32))
In [63]: parallel result = dview.map(lambda x: x**10, range(32))

In [67]: serial result==parallel result
Out[67]: True

Figura 3 — Paralelizacdo rapida utilizando IPython (Retirado de: http://ipython.org)

Na linha de cddigo 62 da Figura 3, é executado o método map() da linguagem Python em serial
gue, neste caso, calcula o valor da variavel x elevado a dez, para x indo de 0 a 32, e retorna o
vetor o resultado para a variavel serial_result. Este mesmo calculo é feito em paralelo apenas
na linha de cédigo 63, bastando utilizar a instancia dview da interface Direct do IPython. A linha

67 compara os resultados em serial e paralelo para legitima-los.

Por essa facilidade de paralelismo, esta ferramenta € utilizada neste trabalho para o processa-

mento dos dados em paralelo.
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3 Configuracao e Implementacao

3.1 Configurando o ambiente computacional

Para utilizar o programa implementado neste trabalho ou refazé-lo é necessario instalar e con-
figurar as ferramentas Python, IPython e as bibliotecas. Este trabalho foi realizado no sistema
operacional (SO) Ubuntu Linux 12.04, portando as descri¢cbes que aqui seguem se aplicam a

esse ambiente. Para outras plataformas pode ser necessario consultar referéncias.

O interpretador Python j& vem instalado com o Ubuntu, mas é importante confirmar e se neces-
sario obter a versao mais atual. Para isso, basta utilizar o comando que segue abaixo no termi-

nal do Linux:
$sudo dpkg -p python

A versao utilizada neste trabalho foi a 2.7.3. Caso este pacote ndo esteja instalado, ou esteja

numa versao anterior a 2.7, é necessario instala-lo/atualiza-lo. Para instala-lo digite o comando:
$sudo apt-get install python2.7.3

E necessario também ter o pacote de desenvolvimento do Python que, pelo Ubuntu, pode ser

obtida pelo seguinte comando:
$sudo apt-get install python-dev.
Para instalar as bibliotecas Numpy e Scipy:
$sudo apt-get install python-scipy

Com o pacote Python e as bibliotecas para computacao cientifica corretamente instaladas de-
ve-se instalar o IPython. Este pacote, no entanto, depende da biblioteca zeromq disponivel em:

http://www.zeromg.org/. Esta é responsavel pelo transporte de mensagens na camada de apli-

cacgdo para ambientes clusterizados.

Para instalar a zeromq, é necessario ter pacotes libtool, autoconf e automake instalados. Para

instala-los, basta executar o comando:

20
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$sudo apt-get install libtool autoconf automake

Acesse 0 site http://www.zeromg.org/ e obtenha o arquivo para posix (ou para o outro sistema

operacional que estiver utilizando).

Descompacte o arquivo baixado e, dentro da pasta descompactada, execute 0s seguintes co-
mandos no terminal:

$ ./configure.sh
$make
ou
$sudo make install
para instalar para todos os usuarios.
E para criar os links e cache necessarios, execute o comando abaixo no terminal:
$sudo Idconfig

Com o python e zeromq instalados, resta instalar o IPython. Isto é mais simples de ser feito
utilizando a ferramenta distribute:

Acesse 0 site http://pypi.python.org/, procure e obtenha o pacote distribute.

Para instala-lo, na pasta onde o arquivo se encontra utilize o comando:
$python distribute_setup.py

Por ultimo, execute o comando easy_install do pacote distribute para instalar o IPython e suas

principais bibliotecas de uma vez s6:
$sudo easy_install ipython[zmg, test, gtconsole, notebook]

Com o ambiente configurado, é possivel fazer um teste simples para confirmar seu funciona-
mento. Iniciam-se quatro threads com o comando:

Sipcluster start -n 4 &

Depois se inicia o shell interativo do IPython com comando
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$ipython
E, dentro deste shell, executa-se os comandos mostrados em In[1], In [2] e In[3] abaixo:

In[l]: from IPython.parallel import Client

In[2]: rc Client()

In[3]: rc Client()

A saida out[3] , a seguir, mostra que as quatro threads estdo funcionando com os respectivos

ids: 0,1,2e 3:

Out[3]: [0,1,2,3]

22



3.2 Implementacgéo

A implementacao deste trabalho foi feita em varios modulos para permitir reutilizacado. Ao todo
foram trés modulos desenvolvidos: bin_methods_sc.py, bin_serial_sc.py e bin_parallelx2_sc.py.
Este modelo de programacdo em modulos foi utilizado porque facilita o entendimento e a re-
utilizacéo do cédigo.

O moddulo bin_methods.py € o médulo que contém os diversos métodos necessarios para a
execucao dos outros modulos. Este € escrito em Python, utilizando as bibliotecas de computa-

¢ao cientifica (Numpy e Scipy) para melhorar a eficiéncia do algoritmo.

Os modulos bin_serial_sc.py, e bin_parallelx2_sc.py sdo dois programa escrito em Python
prontos para serem executados. Estes utilizam os métodos do médulo bin_methods_sc.py. O
bin_serial_sc.py é uma implementacao serial e bin_parallelx2_sc.py € uma implementacao em

paralelo para executar em duas threads.

Para correto entendimento do codigo, segue abaixo a descricdo dos métodos do mddulo
bin_methods_sc.py, 0s quais serdo utilizados pelos outros modulos. A descricdo de cada mé-
todo apresenta 0 que é passado como parametro: Entrada, o que o método faz: Funcéo (caso
necessario), e o que ele retorna: Saida.

op(filestring)

Entrada: Este método aceita como entrada um string com o0 nome do arquivo que contém o0s
dados. Estes devem estar separados entre si por barra de espaco(" "). O programa nao aceita-

ra um arquivo com dados organizados de outra forma.

Funcao: Processa os dados que estéo salvos no arquivo e os transforma em um vetor de floats.
Saida: Retorna o vetor de floats.

bubble(theList)

Estrada: O parametro deste método, thelList, é o vetor de floats obtidos do método op().
Funcéo: Ordena o vetor passado como entrada.

Saida: Retorna o vetor de floats ordenado.
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mean_k(K,N)

Entrada: Este método tem como entrada um vetor de dados K e seu tamanho N.
Saida: Este método retorna a média aritmética (float) dos valores do vetor K.
variance_Kk(K, N, km)

Entrada: Este método tem como entrada um vetor de dados K, seu tamanho N e a média de

seus valores km.

Saida: Este método retorna a variancia (float) dos valores do vetor K.
cost(D,K)

Entrada: O tamanho do intervalo de classe D, do histograma dado pelo vetor K.
Saida: a fungdo Custo definida na segéo 2.2

delta(L,N)

Entrada: Vetor L com dados a partir do qual o histograma vai ser calculado. Numero de interva-

los de classe N em que o histograma sera dividido
Saida: Tamanho do intervalo de classe.
dist(N, L, D)

Entrada: Numero de intervalos de classe N em que o histograma sera dividido, vetor com da-

dos L e o tamanho do intervalo de classe D.
Saida: Vetor com valores correspondente aos valores de cada intervalo do histograma
min_cost(L)

Entrada: Matriz L[C, K] onde K é o vetor correspondente aos valores de cada intervalo do his-

tograma e C € a funcéo custo deste histograma K.
Saida: Retorna vetor dentro da matriz L que possui a menor fung¢éo custo

map_bins(List, N)
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Entrada: Vetor de dados ordenados List e numero de intervalos de classe do histograma a ser
calculado N

Saida: Matriz L[C,K] onde K é o vetor correspondente aos valores de cada intervalo do histo-
grama e C é a funcao custo deste.

3.2.1 Implementacgédo para execucéao serial

O programa bin_serial_sc.py , que implementa o algoritmo da seccdo 2.3 em serial, utiliza os
métodos definidos pelo arquivo bin_methods_sc.py, explicados anteriormente. Para isso, € ne-

cessario que ambos 0s arquivos estejam na mesma pasta.

Para executar o programa € necessario ter preparado o ambiente, como descrito na secao 3.1
até, pelo menos a instalacdo da biblioteca numpy. Feito isso e, com o0s arquivos
bin_methods_sc.py e bin_serial_sc.py no mesmo diretério, pode-se executar IPython no termi-

nal de sua preferéncia o comando:
Sipython

E, em seguida executar o comando abaixo para executar o programa:
$run bin_serial_sc.py data_example

Onde data_example é o caminho para arquivo que contém os dados a serem processados. E

necessario enfatizar que, para correto funcionamento do programa, os dados devem estar or-

ganizados separados apenas por barra de espaco entre si e numeros decimais devem utilizar

ponto, ndo virgula. Abaixo segue o exemplo de um arquivo com essa formatacgéo:

4.37 3.87 4.00 4.03 3.50 4.08 2.25 4.70 1.73 4.93 1.73 4.62 3.43
4.25 1.68 3.92 3.68 3.10 4.03 1.77 4.08 1.75 3.20 1.85 4.62 1.97
4.50 3.92 4.35 2.33 3.83 1.88 4.60 1.80 4.73 1.77 4.57 1.85 3.52
4.00 3.70 3.72 4.25 3.58 3.80 3.77 3.75 2.50 4.50 4.10 3.70 3.80
3.43 4.00 2.27 4.40 4.05 4.25 3.33 2.00
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Com essa condicdo satisfeita o programa deve rodar corretamente e retornara um vetor F que
representa o histograma. Para verifica-lo, basta digitar F, no shell IPython. Também ¢é possivel
checar seu grafico através do comando abaixo:

$plot()
Este comando apresenta o histograma normalizado obtido através da biblioteca matplotlib.
A trecho de cddigo abaixo mostra o cabecalho de bin_serial.sc.py:

1 import matplotlib.pyplot as plt
2 from bin methods import *

3 import sys

4 import numpy as np

Na linha 2 é onde bin_serial.sc.py importa os métodos de bin_methods.py. Também é necessa-
rio importar da biblioteca numpy e a biblioteca padrdo sys A primeira aumenta o desempenho
da implementacéo e a segunda sera utilizada para leitura dos argumentos passados pelo shell.
A biblioteca matplotlib.pyplot € importada, pois foi desenvolvido um método basico para visuali-
zacao dos dados. A proxima parte do cédigo, abaixo, carrega os dados e calcula os histogra-

mas:

8 L = op(sys.argv[l]);
9

10

11 #Calculate histograms and costs

12 1 = len (L)

13 M map (lambda n: map hists (L, n), range(l, 1));

14 C = map(lambda n: map costs(L,n, M[n-1]), range(l,1));

Na linha 8, no cddigo apresentado acima, é onde é chamado o método op() de bin_methods.py.
Esta linha passa como parametro o argumento que usuario escreve invocando bin_serial_sc.py
pelo console. Este argumento deve ser o caminho para o arquivo que contém os dados dos

guais sera obtido o histograma.
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As linhas 12 a 14, ainda sobre cddigo anterior, fazem o calculo da fungdo Custo definida na
secgdo 2.2 para larguras de intervalos de classe iterativamente decrementas. A linha 13 calcula
todos os histogramas com um intervalo de classe a | intervalos de classe, onde | € o quantida-
des de dados sendo analisados. Por ultimo, a linha 14 calcula a fungéo custo para esses histo-
gramas.

Com o vetor C contendo o custo de todos os histogramas e com a matriz M contendo todos os
histogramas calculados, o histograma de menor custo é trivialmente calculado encontrando o
indice do vetor C com o menor custo, e calculando a o histograma associado a este indice na
matriz M. Isto é feito pelo trecho de cddigo apresentado abaixo:

16 #Looking for minimum Cost

17 i = np.asarray(C) .argmin () ;

18 F = M[1i];

Neste, a variavel i recebe o argumento do menor valor do vetor C e depois F recebe o histo-

grama correspondente na matriz M.

Por dltimo, o proximo codigo apresenta o método definido para apresentar o histograma nédo
normalizado do resultado final. Este apenas faz uma chamada ao metdédo graph() de

bin_methods_sc.py passando os parametros ja calculados.

20 def plot():
21 graph (F, L) ;

22 return;
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3.2.2 Implementagcéo para execucdo em paralelo

A implementacdo em paralelo, como ja mencionado na secéo 2.4, difere pouco da implementa-
cdo serial em termos de codificacdo. Contudo, para executar o programa em paralelo € neces-
sario inicializar as engines do IPython e mapear as maquinas que farao parte do cluster.

Para execu¢do em uma maquina em paralelo, basta digitar o comando abaixo no shell do Li-

nux;
Sipcluster start --n 4

Este comando inicia quatro engines locais para executar o cédigo em threads diferentes. O
parametro start inicia as engines e o parametro —n especifica quantas serdo iniciadas. Neste
caso sao iniciadas quatro engines. Para utilizar mais ou menos threads, basta trocar o nimero

4 pela quantidade desejada de threads.

Com as engines corretamente inicializadas, executar o programa bin_parallel_sc.py é seme-
Ihante a executar bin_serial_sc.py. Com bin_methods_sc.py e bin_parallel_sc.py nho mesmo
diret6rio deve-se inicializar o IPython como descrito na secdo anterior e, em seguida executar o
comando abaixo:

$run bin_serial_sc.py data_example

Onde data_example, novamente, é o caminho para arquivo que contém os dados a serem pro-
cessados. E, novamente, os dados devem estar organizados separados apenas por barra de

espaco entre si e numeros decimais devem utilizar ponto, nao virgula.

A codificacao possui algumas mudancas em relacdo ao codigo serial, mas continua bem pare-
cido. O trecho abaixo apresenta as bibliotecas e os métodos que a programa importa:

1 from Ipython.parallel import Client

2 import matplotlib.pyplot as plt

3 from bin methods import *

4 import sys

5 import numpy as np
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Neste caso, além das bibliotecas importadas no programa serial, € necessério importar também
Client de IPython.parallel. Esta contém as interfaces para falar com as engines em execucao.

Com a biblioteca importada, é necessario instanciar uma interface DirectView do IPython que
permite passar comandos para serem executados nas engines inicializadas. Isso é feito no
cédigo abaixo:

8 ¢ = Client();

9 view = c[:];

10 view.block=True;

11

12 view.run('bin methods.py’);

Neste caso, na linha 8 do trecho anterior, uma instancia dos Clients() é criada na variavel c e
na linha 9, uma instancia da interface DirectView, view, é criada. Configura-se entédo a instan-
cia view para esperar o resultado na linha 10 e executa-se bin_methods.py em todas a engines

para que estas conhecam os métodos definidos nele.

O arquivo é aberto e armazenado como um vetor numpy em L da mesma forma que em
bin_serial_sc.py. A diferenca é que o vetor L deve ser armazenado nas engines, para posterior
processamento interno destas. Isso é feito na linha 18 do trecho de cédigo abaixo:

14 #open file and return array of data

15 L = op(sys.argv|[l]);

16

17 #Send variable L to the engines

18 view[‘'L’] = L;

19

20 #Calculate costs and histograms in parallel

21 1 = len(L);

22 M = view.map (lambda n: map hists(L,n),range(l,1));

23 view['M'] = M;

24 C = view.map (lambda n: map costs(L,n,M[n-1]),range(1l,1));
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O método map da instancia view funciona como um map tradicional, mas dividindo o a execu-
¢ao das iteragOes entre as diversas instancias visualizadas por view. Portanto, as linhas 22 e
24 do codigo acima fazem o célculo dos histogramas de das fun¢fes Custo destes em paralelo.

O resto do cédigo de bin_parallel_sc.py é idéntico a bin_serial_sc.py, pois nao foi utilizado pa-
ralelismo para achar o custo minimo na matriz C e nem para desenhar o grafico.

3.3 Geracgao de Dados de testes

Para realizar os testes foi necessario gerar dados pontuais que representassem um modelo de
Poisson. Para isso foi utilizado o processo de geracdo de dados ndo homogéneos (HEEGER,
2000).

Para um espaco de tempo t € [0, T], para qual queremos amostrar uma fungao r(t), divide-se
o tempo em varios intervalos §t, tal que r(t)8t « 1. Entdo se gera uma seqiiéncia de nimeros
randdmicos x[i], uniformemente distribuidos entre zero e um, para cada &t. Depois, deve-se
amostrar r(t), também para cada intervalo 6t, obtendo-se r[i]. Para cada intervalo de tempo

&t, caso x[i] < r[i]/(max(r[i])) , um ponto é gerado naquele instante.

Através deste método, foram gerados duas amostras de dados, uma para a funcdo e(t) =
(t+ 18 e para g(t) = cos (% + %t) para o calculo de suas respectivas fun¢des densidades de

probabilidade. Estas foram escolhidas, pois suas FDPs sdo bem conhecidas.

Depois de realizado os testes com estas funcdes conhecidas, foram utilizados dados do traba-
Iho feito por Maciel et al. (2012) para confirmar a utilidade deste método em dados empiricos.
Foi escolhida uma amostra de dados dentro do conjunto de dados recebidos e, s6 entao, foi

calculado a FDP dos dados.
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4 Metodologia

A fim de verificar a assertividade da implementacéo, foram utilizadas as duas diferentes distri-
buicbes geradas, de acordo com a sec¢édo 3.3, para construir os graficos das fun¢des densidade
de probabilidade. A primeira, foi a funcdo e(t) = (t + 1)8, para qual o gréafico é apresentado na
Figura 4.
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Figura 4— Grafico de e(t) = (t + 1)® por t em segundos
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E o gréafico da segunda funcéo g(t) = cos G + gt) € apresentado na Figura 5.

0.8
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0.4r

0.2

0.0

—0-8% 0.2 04 0.6 08 1.0
Figura 5 — Gréafico de g(t) = cos G + gt) por t em segundos

A partir dessas fungfes foram geradas cem mil amostras pontuais a partir do método descrito
na segdo 3.3 parat € [0,1], para calcular da fun¢do densidade de probabilidade com o algorit-

mo descrito na se¢éo 2.3.

Para ambas as funcdes foram, entdo, realizadas execu¢des em serial e em paralelo. Para cada
uma dessas quatro execugdes foram tomados dez tempos de execucdo e obtido a média para

posterior discussao sobre a eficiéncia em paralelo.
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4.1 Execucdo serial e(t) = (t + 1)%:

Custo minimo:  -646.660
Tamanho do intervalo de classe 6timo: 0,3014
Numero de intervalos de classe para custo minimo: 846

A Figura 6 mostra o gréfico da funcéo custo em fungéo to tamanho do intervalo de classe:

—300000

—400000 -

—=500000

—600000

Figura 6 - Grafico da fungao Custo, C(A), pelo intervalo de classe, A, para a fungéo e(t)
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A Figura 7 mostra o gréfico da funcéo densidade de probabilidade:
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Figura 7 — Gréafico do histograma 6timo que representa a FDP de e(t)
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A Tabela 2 mostra os tempos de execugédo tomados.

Tabela 2- Medigdo do célculo da densidade de probabilidade de e(t) = (1 + t)® em serial

N2 da Execugdo Real Time(s) User Time(s) Sys Time (s)
1 20.788 19.061 0.860
2 20.773 19.089 0.812
3 20.748 18.957 0.936
4 20.820 18.981 0.984
5 20.448 19.101 0.760
6 20.898 19.121 0.892
7 20.874 19.105 0.908
8 20.907 19.085 0.928
9 20.480 18.973 0.928
10 20.544 19.081 0.896
Média 20.728 19.055 0.890

A coluna Sys Time representa 0 tempo que o sistema operacional demorou executando as sys-
tem calls. O User Time refere-se ao tempo que o cddigo demorou para ser executado no termi-
nal do usuério. O Real Time representa o tempo total que o codigo leva para ser executado. No

caso da implementacédo para execuc¢do em serial, ele é equivalente & Sys Time + User Time.
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4.2 Execucdo serial g(t) = cos (§+gt):

Custo minimo: -48.806.116
Tamanho do intervalo de classe 6timo: 0,0707
NuUmero de intervalos de classe para custo minimo: 20

A Figura 8 mostra o gréfico da funcéo custo em fung&o to tamanho do intervalo de classe:

(108)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Figura 8 - Grafico da funcédo Custo, €(A), pelo intervalo de classe, A, para a funcéo g(t)
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A Figura 9 mostra o gréfico da funcéo densidade de probabilidade:
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Figura 9 — Gréafico do histograma 6timo que representa a FDP de g(t)

0.8
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A Tabela 3 mostra os tempos de execugédo tomados.

Tabela 3 - Medicéo do calculo da densidade de probabilidade de g(t) = cos G+§t) em

serial

N2 da Execugdo Real Time(s) User Time(s) Sys Time (s)
1 23.740 20.041 0.948
2 21.371 19.905 0.908
3 21.267 19.765 0.928
4 21.258 19.709 0.992
5 21.288 19.861 0.860
6 21.237 19.777 0.900
7 21.294 19.825 0.900
8 21.215 19.749 8.680
9 21.301 19.793 0.948
10 21.405 19.857 0.94
Média 21.537 19.828 1.700
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4.3 Execucdo paralelae(t) = (t + 1)&:

Custo minimo:  -646.660
Tamanho do intervalo de classe 6timo: 0,3014
Numero de intervalos de classe para custo minimo: 846

A Figura 10 mostra o gréfico da fung&o custo em fungao to tamanho do intervalo de classe:
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Figura 10 - Gréafico da funcdo Custo, €(A), pelo intervalo de classe, A, para a fungao e(t)
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A Figura 11 mostra o gréfico da funcéo densidade de probabilidade:
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Figura 11 — Gréfico do histograma 6timo que representa a FDP de e(t)
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A Tabela 4 mostra os tempos de execugao.

Tabela 4 - Medigcdo do calculo da densidade de probabilidade de e(t) = (1+t)® em

paralelo
N2 da Execugdo Real Time(s) User Time(s) Sys Time(s)
1 14.382 1.668 0.352
2 14.595 1.744 0.356
3 13.297 1.668 0.304
4 13.664 1.592 0.380
5 14.630 1.812 0.344
6 14.381 1.728 0.364
7 14.084 1.768 0.340
8 13.799 1.636 0.372
9 13.620 1.608 0.372
10 13.295 1.568 0.392
Média 13.974 1.679 0.357

Neste caso o Real Time néo é igual ao User Time + Sys Time, pois maior parte do codigo é

executado nas threads iniciadas do IPython.
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4.4 Execucdo paralela g(t) = cos G+§t):

Custo minimo: -48.806.116
Tamanho do intervalo de classe 6timo: 0,0707
NuUmero de intervalos de classe para custo minimo: 20

A Figura 12 mostra o gréfico da fungdo custo em fungdo to tamanho do intervalo de classe:

(108)
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Figura 12 - Grafico da fun¢ao Custo, C(A), pelo intervalo de classe, A, para a funcéo g(t)
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A Figura 13 mostra o gréfico da fun¢éo densidade de probabilidade:
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Figura 13 — Gréfico do histograma 6timo que representa FDP de g(t)
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A Tabela 5 mostra os tempos de execucao tomados.

Tabela 5 - Medicdo do célculo da densidade de probabilidade de g(t) = cos G+§t) em

paralelo
N2 da Execugdo Real Time(s) User Time(s) Sys Time(s)
1 13.704 1.624 0.376
2 13.511 1.600 0.388
3 13.653 1.676 0.320
4 13.562 1.608 0.400
5 13.706 1.724 0.336
6 13.763 1.652 0.348
7 13.547 1.64- 0.376
8 13.707 1.628 0.364
9 13.579 1.620 0.384
10 13.657 1.644 0.372
Média 13.639 1.642 0.366

44



4.5 Estimativa da FDP em dados obtidos experimentalmente

Para comprovar a utilidade deste método para dados obtidos na pratica, foi utilizado um conjun-
to de dados obtidos a experimentalmente (MACIEL et al. ,2012). Este conjunto de dados obti-
dos, apresentados na Figura 14, representa a resposta motora das patas de um gafanhoto a

um estimulo elétrico com distribuicdo gaussiana.

A partir deste conjunto, foram recortados quatro subconjuntos de dados a partir de 50s, com
intervalos de, respectivamente, 0.1s, 0.2s, 0.3s e 0.5s. Estes sub-recortes foram feitos para
verificar como o programa responde ao acréscimo de dados. A Figura 16 A, B, C, D mostra os
recortes feitos no conjunto inicial de dados relativos respectivamente, a 0.1s, 0.2s, 0.3s e 0.5s

40

30

201

10

_10 H

0 10 20 30 40 50 60 70

Figura 14 - Dados experimentais iniciais
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Figura 15 - Amostras A, B, C e D (entre delimitagcdo em vermelho)
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4.6 Execucdo para amostra A

Custo minimo:

Tamanho do intervalo de classe 6timo:

-18.653.658

0,0421

NuUmero de intervalos de classe para custo minimo: 42

A Figura 16 mostra o gréfico da fungdo custo em fungdo to tamanho do intervalo de classe:
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Figura 16- Gréfico da funcéo Custo, C(A), pelo intervalo de classe, A, para a amostra A
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A Figura 17 mostra o gréfico da funcdo densidade de probabilidade:

1.6

1.4F

1.2¢

1.01

0.81

0.6

0.41

0.2F

0975

Figura 17 — Grafico do histograma 6timo que representa a funcdo FDP da amostra A
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4.7 Execucgdo para amostra B

Custo minimo: -75.838.573
Tamanho do intervalo de classe 6timo: 0,0227
NuUmero de intervalos de classe para custo minimo: 95

A Figura 18 mostra o gréfico da fungdo custo em fungdo to tamanho do intervalo de classe:

le7

Figura 18 - Grafico da funcéo Custo, €(A), pelo intervalo de classe, A, para a amostra B
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A Figura 19 mostra o gréfico da fungéo densidade de probabilidade:
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Figura 19 — Grafico do histograma 6timo que representa a funcao FDP da amostra B
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4.8 Execucdo para amostra C

Custo minimo:  -175.317.349

Tamanho do intervalo de classe 6timo: 0,0013

Numero de intervalos de classe para custo minimo: 1611

A Figura 20 mostra o gréfico da fungdo custo em fungdo to tamanho do intervalo de classe:

le8
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Figura 20 - Grafico da funcéo Custo, €(A), pelo intervalo de classe, A, para a amostra C
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A Figura 21 mostra o gréfico da fungéo densidade de probabilidade:
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Figura 21 — Grafico do histograma 6timo que representa a funcdo FDP da amostra C

52



4.9 Execucdo para amostraD

Custo minimo:  -536.809.220

Tamanho do intervalo de classe 6timo: 0,0012

Numero de intervalos de classe para custo minimo: 1965

A Figura 22 mostra o gréfico da fungdo custo em fungdo to tamanho do intervalo de classe:

le8

Figura 22 - Grafico da funcéo Custo, €(A), pelo intervalo de classe, A, para a amostra D
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A Figura 23 mostra o gréfico da fun¢éo densidade de probabilidade:
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Figura 23 — Grafico do histograma 6timo que representa a funcdo FDP da amostra D

1.5
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5 Analise de Resultados

5.1 Validacéo tetrica do Algoritmo

O célculo da FDP das funcoes e(t) e g(t) foi muito préximo ao FDP te6rico destas funces. As
Figuras 24 e Figura 25 mostram uma superposicdo dos graficos das FDPs analiticas e
empiricas de e(t) e g(t), respectivamente. A linha em vermelho € a tedrica dada pelas

formulas abaixo:

=7
FDP(y =e(t)) = % Eq5.1
FDP(y =g(t)) = _r Eq5.2

Na implementacdo em paralelo, os resultados obtidos e apresentados nas secbes 4.3 e 4.4,
com excecao do tempo de execucdo, foram exatamente iguais aos obtidos em serial, confir-
mando a assertividade do paralelismo. Os graficos da fungcéo custo e o histograma final tam-

bém foram idénticos.
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Figura 24 - Grafico da FDP teorica de e(t) (vermelho) pelo histograma obtido pelo pro-

grama (preto)
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Figura 25 - Grafico da FDP teorica de g(t) (vermelho) pelo histograma obtido pelo pro-

grama (azul)
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5.2 Eficiéncia do Algoritmo

As Tabelas 6 e 7 mostram um comparativo dos resultados serial e paralelo.

Tabela 6 - Tempo de execucdo médio de e(t) e g(t)

Tempo de execucdo médio: Serial(s) Paralelo(s)

0 20.728  13.974
g(t) 21,537  13.638

Tabela 7 - Ganho de desempenho com utilizacdo de paralelismo

Ganho com Paralelismo

e(t) 1.48
g(t) 1.57
Ganho Médio 1.53

A utilizacdo do paralelismo permitiu, portanto, um ganho em torno de 50%. Apesar de razoavel,
nao chega proximo a duas vezes. A causa desta limitacdo pode ser atribuida a dois fatores
principais: a execucdo de uma parte do codigo em serial e & comunicac¢éo interna da ferramen-
ta IPython. Este trabalho utilizou dados que levaram um tempo curto para serem processados,
porém caso seja necessario mais tempo de processamento o ganho sera maior.
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5.3 Resultados com dados empiricos

Percebe-se, para os dados experimentais, que o algoritmo funcionou bem, construindo um his-
tograma razoavelmente proximo de uma distribuicdo gaussiana e sem grandes flutuacbes até a
amostra contendo 20.000 dados (amostra B). Com 30.000 dados em diante, nota-se que o al-
goritmo nao encontrou um custo minimo. A funcdo Custo deveria se comportar-se como na
Figura 26. Neste caso ideal a funcdo custo vai diminuindo de acordo com a diminuicdo com a
largura do intervalo de classe até chegar a um minimo e depois comec¢a a aumentar novamen-
te. Ja nos histogramas das Figuras 21 e 23 (amostras com 30.000 e 50.000 dados) a funcéo
Custo vai diminuindo, depois oscila uma pouco e comeca a descer abruptamente. Mesmo au-
mentando o ndamero de iteracdes do algoritmo a funcdo custo continuou descendo mais. Por-
tanto, ndo deve existir custo minimo neste caso e isso explica as grandes flutuacdes nos histo-

gramas encontrados.

Cn(A)

A"

0 0.05 0.1
Bin Size, A

Figura 26 — Comportamento ideal da fung&o Custo em relagdo a largura do intervalo (A)
(SHIMAZAKI; SHINOMOTO, 2007)
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6 Conclusao

Este método de célculo de um histograma 6timo provou-se viavel de ser utilizado, apesar de
possuir suas restricées. Ele ndo pode ser utilizado para todas as situacdes e quaisquer amos-
tras de dados. Saber escolher a quantidade certa de dados, amostrados de forma suficiente-
mente rapida (gerando boas quantidades de dados n&o repetidos) é crucial para conseguir a
resposta adequada.

Ademais, as ferramentas utilizadas neste trabalho (IPython e bibliotecas cientificas), mostra-
ram-se simples e eficientes, apesar de ser necessario uma configuracao inicial maior para ro-
dar em duas maquinas diferentes, os ganhos de uma computacdo paralela com c6digo enxuto

justificam sua utilizagao.

Vale ressaltar, também, que é importante saber se a FDP em questédo tende ao infinito em
algum ponto e se possui variagdes muito bruscas, pois neste caso a utilizacdo deste algoritmo
necessitara de dados amostrados ainda mais rapidamente e, mesmo assim, pode nao

apresentar o resultado esperado.
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