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Resumo

A previsao do Modelo Padrao (SM) para o momento magnético anémalo do muion, co-
nhecido por g, —2, depende crucialmente da contribui¢ao da chamada polarizagao hadronica
do vicuo (HVP). Resultados experimentais recentes, da colabora¢ao Muon g-2 do Fermi-
lab, publicados em 2023, mostram uma grande discrepancia com relagdo a determinacoes
anteriores de g, — 2 do SM obtidas da descricao baseada em dados para a contribuigao de
HVP. Por outro lado, resultados provenientes tanto de cédlculos obtidos via QCD na rede
para a HVP quanto de determinacoes baseadas em dados utilizando os resultados de 2023
do experimento CMD-3 levam a uma determinacao consistente com resultados experimen-
tais. Essa tensao entre determinacoes anteriores baseadas em dados e o valor experimental
é justamente o que motiva o interesse nesta contribuicao. Assim sendo, o propodsito deste
Trabalho de Conclusao de Curso ¢é estudar, utilizando ferramentas de teoria quantica de
campos, a HVP em ordem dominante com a intencao de estabelecer qual a relagao entre tal
fenémeno e g, — 2, bem como descrever a estratégia do experimento MUonE, recentemente
proposto no CERN, cujo objetivo ¢ obter as contribui¢oes da HVP para o g, — 2 de uma

maneira completamente independente — estudando o espalhamento elétron-mion elastico.

Palavras-chave: QED. Modelo Padrao. g, — 2. HVP. Teoria quantica de campos.

1 Introducao

Em 1928, o artigo “The Quantum Theory of the Electron” [1] foi publicado por Paul
Dirac. Nele, o autor apresenta sua famosa equacao, que unifica a Relatividade Restrita
com a Mecénica Quéantica no esforgo de explicar o comportamento quantico de particulas (e
antiparticulas) fermionicas. A partir da equagdo de Dirac, é possivel encontrar a expressao

do vetor momento magnético p de uma particula com spin[]:

ge
wn= %S, (1)

que é responsavel por dar o acoplamento da particula (através de seu spin, S) com o campo
eletromagnético. Inclusive, isso permite a analogia classica de que essas particulas — fun-

damentalmente quanticas — sdo como pequenas espiras com corrente.

E importante perceber que a Eq. contém, na constante de proporcionalidade, o fator
g, chamado de fator giromagnético, o qual é de especial relevancia no contexto da Fisica de
Particulas. Da equagao de Dirac, é possivel concluir que, para léptons, g, = 2. No entanto,

experimentos realizados posteriormente, como os de Kusch e Foley [2], de 1948, obtiveram

g ¥ = (2.00232 + 0.00010) (2)

I'Neste trabalho, vamos usar as unidades naturais, isto é, vamos fixar c=1e i = 1.
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Figura 1: Representacao em diagramas de Feynman dos tipos de corregoes ao g — 2 do
muon: QED, eletrofracas e hadrénicas (exemplificadas por polarizagao hadronica do vacuo
e interagao f6ton-foton), respectivamente.

Fonte: [4].

para o fator giromagnético do elétron, um valor aproximadamente 0,12% maior do que
aquele previsto pela equagao de Dirac, o que suscitou um esfor¢o tedrico para tentar com-
preender o que estava faltando. E a partir da nocdo de que existem correcoes a g, que se
convenciona escrever g, = 2(1 4 a;), em que a, representa a soma de todas elas, e que, por-
tanto, carrega a informacao sobre o desvio entre o valor previsto por Dirac e o verdadeiro
valor do momento magnético — é justamente esse desvio que motiva o termo "momento

magnético anomalo", ou g, — 2. Conclui-se entao que, do experimento de Kusch e Foley,
a®¥l = (0.00116 + 0.00005).

Foi também em 1948 que Julian Schwinger, utilizando teoria quantica de campos —
mais especificamente a Eletrodindmica Quéntica (QED) —, calculou a primeira corre¢ao a
ge, devida a troca de um féton virtual [3]. O valor encontrado por ele, de a3 = o /271 ~
0.0011614, em que « é a constante de estrutura fina, é compativel com os dados experimen-
tais de Kusch e Foley e mostra que a teoria quantica de campos é bem-sucedida em calculos
altamente precisos envolvendo observaveis fisicos — o que rendeu, inclusive, o Prémio Nobel

de 1965 para Schwinger, Feynman e Tomonaga por seus trabalhos fundamentais em QED.

A partir de entao, desenvolvimentos tedricos e experimentais da Fisica culminaram
na elabora¢ao do chamado Modelo Padrao (SM, do inglés), o qual descreve as interages
eletromagnética, fraca e forte em um tnico arcabougo tedrico. O Modelo Padrao da conta de
descrever o comportamento da matéria constituida por particulas fermionicas fundamentais
de spin 1/2 — os quarks e léptons —, que interagem entre si através dos chamados bdsons
de gauge, responsaveis por mediar as forcas fundamentais. O féton é o intermediador das
interagoes eletromagnéticas (descritas via QED), enquanto o glion e os bésons Z° e W+

tém papéis andlogos nas interagoes forte (descritas via QCD) e fraca, respectivamente.

Cada uma dessas interacoes gera corregoes ao momento magnético de léptons, o que
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onde o indice p indica que a andlise é feita para o muon, escolhido dentre os 1éptons por
ser suficientemente estavel e massivo para que a deteccao de eventuais contribuicoes além
do Modelo Padréﬂ seja otimizada. Na Eq. , aSED representa as corre¢oes de QED,
que surgem por conta da emissao e reabsor¢ao de fétons virtuais e que sdo dominantes em
comparagao as outras, além de representarem o tipo de contribuicao a g, — 2 com maior

precisao teorica associada; CLEW representa as correcoes eletrofracas, devidas ao acoplamento

had
n

hadronicas, que ocorrem por causa da interacao forte via loops hadronicos virtuais. Elas

entre férmions e bésons de gauge (Z° e W*) e com o Higgs; e a" representa as correces
sdo subdivididas — vide Figura |l|— em dois tipos: polarizacao hadronica do vacuo (HVP),
em que uma bolha hadrénica é inserida na linha do féton, e interagoes féton-foton (HLbL),
nas quais fétons interagem entre si via loops hadronicos. As corre¢des hadronicas, de forma
geral, sao dominadas pelas contribui¢oes de baixas energias, regiao em que resultados de
QCD tém de ser extraidos através de métodos nao-perturbativos, como o data-driven (ou
guiado por dados) e as simulagoes computacionais de QCD na rede. Isso faz com que essa

classe de contribuigoes tenha a maior incerteza teérica associada dentre as correcoes a g, —2.

Aqui, vale comentar que um dos motivos para g, —2 despertar tanto interesse atualmente
é por conta da existéncia de uma tensao entre resultados obtidos através do método guiado
por dados, de acordo com com o artigo de revisao de 2020 da g-2 Theory Initiative |5, e dados
experimentais — vide Figura [2l Essa discrepancia, que nao existe quando se comparam os
dados de experimentos com o que se obtém através da QCD na rede e com a versao do
resultado guiado por dados com a inclusdo da medidas recentes do experimento CMD-3 [6],
deve ser muito bem entendida antes que se possa presumir existéncia de fisica além do
SM. Uma boa maneira de compreender melhor essas tensdes é estudar as contribuigoes
hadronicas, pois, como ja citado, é nelas que se originam essas discrepancias, constituindo

a principal fonte de incerteza tedrica.

Sendo assim, neste trabalho, focaremos na polarizacao hadronica do vacuo, que sera
analisada em ordem dominante (LO). O objetivo é reproduzir os célculos, feitos pela primeira
vez em 1968 por Brodsky e de Rafael [7,8], utilizando métodos candnicos em QED, para
que se chegue numa expressdo matematica que coloque a corregdo da HVP ao momento

magnético do mion em termos de observaveis experimentais bem determinados.

20 momento magnético do muion é, de certa forma, um "laboratério" para a chamada Fisica além do
Modelo Padrao. Isso porque nela os efeitos escalam como mfc /m%, em que f indexa o férmion estudado e
X ¢é uma particula hipotética além do SM. Em quase todas as teorias, mx > my e, sendo assim, quanto
maior é my, mais facil fica detectar efeitos devidos a uma eventual nova fisica. Mas ¢é preciso ponderar esse
fator com a estabilidade do férmion — por isso, o tau, lépton de maior massa, mas o mais instavel, nao é
analisado.
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Figura 2: Comparagao entre os dados experimentais e os resultados obtidos a partir de
diferentes métodos de QCD nao-perturbativa para o g — 2 do mion.

Fonte: Physics World (2025), "Muon g — 2 achieves record precision, but theoretical tension
remains’. Figura de Alex Keshavarzi.

Além disso, pretende-se introduzir alguns aspectos no que diz respeito ao experimento
MUonE —atualmente em fase de testes no CERN —, que almeja determinar a contribuicao
a; VP9 de uma forma totalmente nova e independente: a partir do estudo do espalhamento

elétron-miion (ey) eldstico.

2 Principio de gauge e QED

Para cumprirmos com os objetivos apresentados na Segao [I], serd necessario discutir
alguns aspectos fundamentais em Eletrodindmica Quéntica, a QED. Por ser uma teoria
quantica de campos, ela tem seu formalismo baseado em lagrangianas de campos quantizados
(e suas derivadas), a partir das quais se determinam as interagoes, normalmente impondo
principios de simetria — diferentemente do que se faz em Mecanica Quantica, em que a
interagao entre particulas ¢ medida em termos de potenciais obtidos externamente a teoria.
Ja que neste trabalho estamos interessados nas corre¢oes quanticas ao momento magnético
de um férmion de spin 1/2, precisaremos construir a lagrangiana que rege o comportamento

de tais particulas.

Para tanto, vamos comegar introduzindo a lagrangiana do campo fermionico livre (tam-

bém chamada de lagrangiana de Dirac),

Lo = (@)1 9, (x) — mp(2)y(x), (4)
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a qual descreve o campo livre de particulas de spin 1/2. Nela, ¢ e ¢ = ¥4° sio, respecti-
vamente, o spinor e o spinor adjunto de Dirac — no escopo da QED, eles serao quantizados

e promovidos a operadores, capazes de criar e destruir estados de particulas.

Aplicando a equacao de Euler-Lagrange,

oL oL
na Eq. , obtém-se
(i —m)y =0, (6)

que é justamente a equacao de Dirac — onde utilizamos a convencao de notacao @ = ot
para a contracdo do operador de derivagao covariante, d,, com as matrizes de Dirac, v*.
Nota-se, entao, que a lagrangiana dada na Eq. leva a equacao que da a dinamica de
um férmion de spin 1/2 livre de interagoes. No entanto, como estamos interessados no
momento magnético dessas particulas fermionicas, precisaremos introduzir na lagrangiana
um termo que dé a interacao entre elas e o campo eletromagnético quantizado. Faremos
isso utilizando o importante principio da invariancia local de gauge, sobre o qual passamos

agora a discorrer.

Uma propriedade fundamental da Eletrodindmica Quéntica é que ela possui invariancia
por transformagao de fase U(1) global. Matematicamente, isso significa que a mudanca de

campos
U(w) = P () = e“(a), (7)

com 6 uma fase real constante, ndo promove qualquer alteragdo em Ly. O mesmo nao ocorre
se 0 for uma fungao das coordenadas do espago-tempo (ou seja, se § = 6(x)). Neste caso, a

lagrangiana L£{ do campo ¢/'(x) é

()7 (9, + 1€0,0(x) )¢ (x) — mip(x)e(x) # Lo, (8)

o que mostra que Ly nao é invariante pelo tipo de transformacao dado na Eq. quando o

parametro de fase é dependente das coordenadas espago-temporais.

Ha, no entanto, uma maneira de contornar esta situacao. Para isso, note que i0,0(x),
no interior dos parénteses da Eq. , ¢ o termo que impede a igualdade entre £y e £j. O
que podemos fazer é introduzir na lagrangiana um novo campo, A,(x), de spin 1, o qual se

transforma como

Au(x) > A (@) = Au(x) — 9,6(x) (9)

e que atuard de forma a absorver o termo problematico. A introdugao de A, (z) é feita

através da definicao de uma derivada covariante,

D,b(z) = (9, + ieA ) (x), (10)



simétrica por transformagoes de U(1) locais, afinal

D! () = [0 + e (A = 9,0(2))] (¥ ()’ ?) = U [0, + ieA ] d(x), (1)

de onde se vé que D, ¥'(z) e D,3p(z) diferem apenas por uma fase.

Assim, para obter uma lagrangiana que seja invariante por transformagoes U(1) locais,

fazemos 9, — D, na Eq. , e isso nos leva a
L = ip(2)y" D, (x) — mp () (x) = Lo — ep(x)y" A, (2)(x), (12)

em que Ly = —eh(z)y* A, ()1 (x) define um termo de interacdo, o que sugere que A, (z),
por ser um campo de gauge quantizado de spin 1, deve ser interpretado como o campo do
foton, enquanto que o termo lagrangiano L;,; representa a sua interacao com o férmion.
Para o campo A, (z) ser, de fato, um campo fisico, é necesséario introduzir na Eq. um
termo cinético do tipo

Lan =~ Ful) PP (2), (13)
com F,, = 0,A, —0,A, o tensor eletromagnético (também chamado de tensor de Faraday),

que também ¢é invariante por transformagoes U(1) locais.

Dessa forma, concluimos a construcao da lagrangiana da QED, invariante por transfor-

macoes locais de gauge:

Lo = S Fyule) FP(x) + (a1 0,06(x) — mib(e)u(e) — (@) Au(a)ola), (14

a qual, além de descrever as interacgoes entre férmions e fétons em teoria quantica de cam-
pos, permite a determinagao de corre¢oes de QED a g, — 2 (e a diversos outros processos).
Para tanto, seria necessario definir aqui o operador de evolugao temporal dos estados como
fun¢ao da lagrangiana de interagao — isso permitiria escrevé-los em termos de uma série ite-
rativa, a chamada série de Dyson —, bem como colocar os campos quantizados em termos
de operadores de criagao e aniquilacao de estados. Apods isso, encontrar o objeto funda-
mental para se determinar as almejadas corregdes, a amplitude do processo fisico, exigiria
manipulac¢des envolvendo a atuacao desses operadores na série de Dyson, o que pode vir a

ser muito trabalhoso.

Felizmente, ha um algoritmo que leva aos mesmos resultados, mas sem exigir todo esse
trabalho: desenham-se os chamados diagramas de Feynman representando o processo fisico
de interesse, e aplicam-se neles as regras de Feynman de QED, as quais associam cada
elemento do desenho feito a um fator ligado & amplitude do processo. E importante deixar
claro que essas regras, deduzidas a partir da Eq. , sao completamente equivalentes

a seguir os passos expostos no paragrafo anterior, mas sua aplicagdo acelera (e muito)



Figura 3: Representacao diagramatica da série perturbativa das correcoes de vértice em
QED.

Fonte: [10].

os calculos. Partindo-se da conservagao de quadrimomento em cada vértice do diagrama,

coloca-se em pratica a seguinte sequéncia de procedimentos [9:

1. Para as linhas externas, incluir

inicial :  u(p) inicial : v(p) inicial : €,(p)
férmion , antiférmion , féton
final . w(p) final . v(p/) final : € (p')

com u e v sendo os spinores para particulas e antiparticulas, respectivamente, e €, re-
presentando o vetor de polarizacao do féton. Além disso, p e p’ sdo os quadrimomentos

de entrada e de saida do diagrama, respectivamente;
2. Para cada vértice, incluir o termo (—iey*), o vértice fundamental da QED;

3. Para linhas internas de quadrimomento p, incluir

(p +m)

5 foton : —j—Im
p

férmion : 7 SR —
— m* + 1€ p°+ 1€

que sao os propagadores livres da teoria. O termo ie, com € — 0, nos denominadores

é a prescricao de Feynman para tratar singularidades;
4. Integrar sobre cada momento de loop interno do diagrama;

5. O resultado final corresponde a —iM, com M a amplitude do processo fisico repre-

sentado pelo diagrama.

Seguir a ordem dos passos colocados acima é essencial para que o que se obtenha no final
seja, de fato, a amplitude desejada. Além disso, vale comentar que a leitura dos diagramas
de Feynman deve ser feita de forma a percorrer a linha fermionica no sentido contrario ao
do fluxo da particula, ou seja, no sentido contrario ao dado pela direcao da seta, bem como

que o resultado obtido deve ser um invariante de Lorentz.

Por fim, é conveniente introduzir o conceito de fatores de forma. Para tanto, considere-
mos o diagrama a esquerda da igualdade na Figura |3 onde o circulo sombreado representa

a soma do vértice elétron-féton em ordem mais baixa com todas as corregoes de vértice.
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Utilizando as regras de Feynman anteriormente apresentadas, escreve-se a amplitude —iM*

desse diagrama como
—teu(p' )" (p, ' )u(p), (15)

em que —iel™(p, p’) representa a soma de todos os vértices mostrados a direita da igualdade
na Figura[3l E possivel encontrar qual é a relacio entre v e I'** colocando esse tltimo como

a combinacao linear
MM=A-A"+B-p"+p")+C- (" —p") (16)

e determinando A, B e C. O vetor I'* pode ser colocado na forma da Eq. porque 0s
unicos objetos com indice vetorial u disponiveis aqui sdo v* e os quadrimomentos p* e p'*.
Assim, contraindo cada termo da Eq. com g,, vé-se que, por conta da identidade de
Ward [10],

g " =0, (17)

apenas o termo de coeficiente C' ndao se anula, o que nos obriga a impor que C' = 0. Agora,

é possivel reescrever o que sobrou da Eq. utilizando a identidade de Gordon,

1

u(p )y u(p) = %ﬂ(p’)(p“ T "+ o™ g )u(p), (18)

que nos permite trocar (p* + p™) por ic*q,. Dessa forma, temos que

g,

om

I(p,p) = Fi(@® )" + Fa(q?) (19)

onde as fungoes F) e F5, a priori desconhecidas, sdo os chamados fatores de forma.

E possivel mostrar que os fatores de forma, em especial Fy(¢*), desempenham papel
fundamental na determinacgao das corre¢oes ao momento magnético do muon. A relagao
entre g, e Fy é dada por [10]

gu =2[1+ F2(0)], (20)

ou seja, podemos fazer a identificacao
a, = F5(0). (21)

Portanto, a determinagao das almejadas corregoes a g, —2 fica resumida a determinar qual é
a expressao de Fy(g?) para o caso em que ¢* = 0. Agora que expusemos as regras de Feynman
e a relagdo matematica entre o momento magnético anémalo e os fatores de forma, podemos

proceder propriamente a determinacao dessas corregoes.



(b) Corregao devida a polarizagao hadronica
(a) Correcao com a inserc¢ao de um f6ton vir- do vacuo, com a insercdo da bolha hadronica
tual. HVP no féton virtual.

Figura 4: Diagramas de Feynman utilizados no calculo da contribuicao de HVP ao g — 2 do
muon.
Fonte: Elaborado pelo autor.

3 Contribuicao da polarizacao hadroénica do vacuo ao

g — 2 do muon

Nesta secao, serda deduzida a formula seminal, obtida pela primeira vez em 1968 por

HVP,LO
o

dagem guiada por dados. Nela, associa-se tal observdvel a um outro, denominado R(s),

Brodsky e de Rafael [7,|8], que serve como base para a determinacao de a na abor-

que é medido com elevada precisao experimental. Isso possibilita estabelecer uma relacao

HVP,LO
"

digoes usando dados experimentais ao invés de calculos puramente tedricos, os quais nao

entre a e uma integral dispersiva sobre os dados de R(s), o que permite fazer pre-

sao factiveis, através de primeiros principios, na regiao de baixas energias. Sendo assim,

define-se fom s 1ad 5
R(s) = o(eTe” — hidrons) S o(ete” — héadrons), (22)
olete™ = putp)|Lo,m,—0  4ma?

onde o(eTe™ — pu* 17 )|Lo,m,—0 representa a secdo de choque do processo ete™ — putu”
em ordem dominante para o caso em que m, = 0, e vale 47ra?/3s, com s representando o
quadrado do momento transferido pelo féton virtual nos diagramas da Figura [4] — ou seja,
representa k2 > 0.

HVP,LO
I

procedimento serd o seguinte: primeiro, calcularemos a corre¢ao representada no diagrama
da Figura [dal que déd a contribui¢ao de O(r) em QED devida & troca de um féton virtual,

calculada em 1948 por Schwinger [3]. Na sequéncia, utilizando tal resultado como base,

Para chegarmos na almejada relacao entre a e uma integral dispersiva de R(s), o

iremos calcular a contribuigao do diagrama dado na Figura [Ab] onde uma bolha hadrénica,
representando o fenémeno de polarizacao hadronica do vacuo, é inserida na linha do féton,

de maneira que seu propagador é corrigido pela HVP.



10

3.1 Contribuicao em ordem dominante da QED ao g — 2 do muton

Antes de mais nada, é preciso diferenciar a natureza matematica dos objetos M e MH*:
o primeiro representa a amplitude de espalhamento escalar propriamente dita, enquanto que
o segundo representa um objeto quadrivetorial a ser contraido, por exemplo, com o vetor de
polarizagdo do féton externo (de quadrimomento indexado por q), €. E importante dizer

que o que obteremos dos dois diagramas da Figura [ sera M*.

Por conveniéncia, introduzimos a relagao

iMHt = —ieu(p" )T (p, p")u(p), (23)

onde u(p) e u(p') sdo os spinores associados respectivamente ao férmion de entrada, com
momento p, e de saida, com momento p’ — vide Figura[d] —, enquanto que T'* é uma estru-
tura geral que parametriza toda a informagcao das corregoes de vértice ligadas ao diagrama

que estamos analisando.

Conforme mencionado mais acima, vamos comegar analisando o diagrama que da a
correcao a g, — 2 devida a troca de um f6éton virtual, representada na Figura . Utilizando

regras de Feynman, tem-se que

u(p")oT* (p, p')u(p) =
_ / d'k u(p')(—iey?) (i — k +m)(—iex")(p — k +m)(—ig )7 u(p)
(2m)4 (k2 +ie) [(pf — k)2 — m? +i€| [(p — k)2 — m? + ie]
— —ie? / d'k )y — k4 m)y(p — K+ m)yulp)
(2m)* (k2 +de) [(p) — k)2 — m? +ie] [(p — k)2 — m? + ie]’

(24)

em que m representa a massa do férmion (no caso, o mion). Agora, precisamos solucionar
a integral dada na Eq. (24]). Para isso, vamos dividir a nossa anélise entre o numerador e o

denominador de seu integrando.

Aqui, vamos aplicar um truque matematico muito comum em calculos de integrais de
loop, a parametrizacao de Feynman. Tal truque consiste em reescrever o denominador da
Eq. (24) como uma integral — cujas varidveis de integragao sao os chamados parametros de

Feynman — do inverso de um polinémio quadratico em k, utilizando para isso [10]

1
A1 A A3

2
(ZL‘Al + yAg + ZA3)3 -

1
:/ dxdydzd(z +y+ 2 — 1)
0

" dzd 2
_/0 A A (1 — 2 — ) AP

(25)

Temos entao que

1 1
Rt i) [ — R —m2 1 id[p— kP —metid |, dody s (26)
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D =x(k* +ie) +y () — k)* —m* +ie) + 1 —x—y) ((p— k)* —m*+ie).  (27)

Precisamos agora manipular um pouco a Eq. (27)), considerando que, por construgao,
x+y+z=1,além de p?> = p? = m?, que vem do fato de os férmions estarem na camada

de massa. Fazendo a manipulagdo em D,

D=k +yp?—2yp k—ym*+(1 -2 —y)p* —2(1 —x —y)p-k — 2m? + ie
=k =2k - (y(p' — p) + (1 — x)p) + e, (28)

definindo a variavel [ ==k — (y(p' — p) + (1 — 2)p)) como o quadrimomento deslocado (per-

ceba que d*k = d*l) e lembrando a relacio p + ¢ = p/, temos a Eq. reescrita como
D=0F-m*1-2)+y(l—x—1y)g*+ic (29)

Vamos usar que ¢? = 0, afinal ¢ ¢ o momento do féton externo do vértice nos dois diagramas

da Figura[d Fazendo isso, temos
D =1%— A +ie (30)

onde A = m?(1 — z)?. Finalmente, o resultado final de nossa parametrizagao é obtido
levando a Eq. na Eq. (20)).

Agora, vamos proceder a manipulagdo do numerador do integrando da Eq. . Para
isso, utilizaremos a identidade de Gordon, dada na Eq. , e a relagao yPyty, = —29%,

uma identidade da algebra de Dirac, além dos resultados

d*l v
/ riDs (31)
justificado por argumentos de simetria, e
/ d*l 1M _ / d*l ig““l2 (32)
(2m)* D3 (2m)* D3 7

facilmente demonstravel utilizando que, em quatro dimensoes, g*g,,, = 4. Com isso, temos

que o numerador é dado por

Num. = —2@@')[—2%12 + (—yg +ap)” (1 —v)g +ap) +
+m2y* —2m (1 — 2y)g" + 2xp")|u(p). (33)

A Eq. (33) pode ser reescrita numa forma que fique mais conveniente para nossos calculos.
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Para tanto, usaremos os resultados da equagao de Dirac para os spinores u(p) e u(p’),

pu(p) = mu(p), a(p)y =mu(p), u(p)gu(p) =0, (34)

além das identidades de Ward, definida na Eq. , e de Gordon, dada na Eq. , para

termos finalmente o numerador expresso da seguinte forma:

w0t q,

_2u(y) {7“(—2[2 + (1= o + 22)m?) + (2m2a(1 — x))] w(p). (35)

m

Considerando todas as manipulagoes que fizemos até aqui, podemos reescrever a Eq.

CcOomo

Iy , d* 1 2

x u(p') [”y“(—;ﬂ + (1 — 4z + 2*)m?) +

g,

(2m*z(1 = 2))| u(p). (36)

Repare que, no interior dos colchetes da Eq. , existem termos proporcionais a ¥* e a
io"q,/2m. Como estamos interessados na contribuicdo que a troca de um féton virtual
gera para 0 momento magnético andémalo do muon (diagrama da Figura , precisamos do
fator de forma Fy(¢* = 0), que é — conforme discutido na Segdo [2| — justamente o termo
da Eq. proporcional a i0#”q, /2m,

d*l 1
(2m)* (12 — A +ie)®

Fy(¢® = 0) = 8im?e? /01 dxdy(l — x)x/ (37)

O resultado da segunda integral na Eq. ¢ bem conhecido e é finito em 4 dimensoes.
Isto é, para e — 0, temos [10]

d4l 1 e—0 —1
/ Cm)t (12— A+ieP  2(4m)2A° (38)

Colocando o resultado da Eq. na Eq. e ja substituindo A pela sua definicdo em
termos de parametros de Feynman, tem-se, com e = 47, sendo « a constante de estrutura

fina,

a 1 «
Fo(f? = :—/dd — |2
»(¢° =0) - ), drdyT = (39)

Portanto, devido a identificacdo dada na Eq. , concluimos que a, = o/27 ~ 0.0011614
em O(a) de QED, resultaddff encontrado por Schwinger em 1948 [3].

Agora que expusemos o calculo da correcao ao momento magnético do mion devido a

troca de um féton virtual, podemos partir propriamente a determinacao da correcao que a

3Repare que o resultado encontrado independe de qualquer propriedade intrinseca ao mion, ou seja, a
contribui¢do é a mesma ndo importa qual seja o lépton analisado.
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HVP promove no g — 2 do miion. Ficara claro que muitos passos sao analogos ao mostrados

nesta subsecao, de modo que alguns resultados ja obtidos serao reaproveitados.

3.2 Contribuicao da HVP ao g — 2 do mton

Nesta etapa, utilizaremos as regras de Feynman de QED para extrair a amplitude M*
— vide Eq. — referente ao diagrama da Figura Para tanto, o primeiro passo
é computar qual é o efeito da polarizacdo hadronica do vacuo no propagador do féton.

Sabemos que, no gauge de Feynman,

_Zg“y

AN, B o

Note, no entanto, que, no diagrama da Figura o propagador do féton esta vestido por
uma bolha hadrdnica, a qual representa justamente o nosso fenémeno de interesse. Sendo
assim, é natural que haja alguma correcao a Eq. por causa da HVP. Para determina-la,

considere a igualdade

AMAWVWW AW — (_igpa)(ingﬁvp) (ﬁ) (41)

em que H%@P é o tensor de polarizacdo hadronica do vacuo — ele carrega toda a informa-
¢ao sobre a HVP e da justamente a contribuicao deste fendémeno ao propagador do féton.
Por argumentos de invaridncia de Lorentz e de conservacao da corrente eletromagnética, é

possivel encontrar uma relagio entre o tensor II%5, e a funcio escalar Myyp(k2) [10],
e = (K97 — k) ave (k7). (42)

que, quando colocada na Eq. , fica escrita como

A1 1
(3 <k4]€pky — k}Qgpy> HHVP(II{ZQ). (43)

O primeiro termo da Eq. , proporcional a k,k,, devera ser anulado por conta da iden-
tidade de Ward, dada na Eq. . Portanto, chegamos a seguinte conclusao no que diz

respeito ao propagador do féton modificado pelo efeito de polarizagdo hadronica do vacuo:

a B

p v o
MV AN, — ( ;Zp”>Hva<k2). (44)
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S

Figura 5: Contorno de integracao utilizado para se chegar a Eq. . O corte ¢ feito no
eixo real do plano de s a partir de sy, = 4m?,.
Fonte: [11].

Tendo obtido o resultado da Eq. , estamos em condicoes de escrever a amplitude
do diagrama da Figura

w(p')oTsye (P, p’)U(p) =
_/ d4k u( ) —1eY”)(f — k +m)(—iey")(p — K+ mpyulp)
((pf — k)2 —m? +ie) ((p — k) — m? + ie)

. 2/ d4/<; u(p )y (W — K+ m)y*(p — k4 m)yIuyve (K*)u(p)
(2m)* (k2 +ie) () — k)2 —m?2 +i€) ((p — k)2 — m2 + ie)’

(45)

analogamente ao feito na Eq. para o diagrama da Figura .

Neste ponto do calculo, ja é possivel construir a associagao que levara a introducao de
R(s), observavel definido na Eq. , na amplitude dada na Eq. . Para fazer isso, vamos
precisar de uma relacao de dispersao para Ilyp. Considerando o fato de que essa funcao
é holomorfica sobre todo o plano complexo, a menos de um corte no eixo real, podemos

escrever sua representacao integral de Cauchy,

HHVP
il / ds 46
HVP( o . kQ ; (46)

e considerar o principio de reflexdo de Schwartz,
ave(s™) = iyp(s). (47)
Podemos, da Eq. , dizer que, para pontos logo acima e abaixo do corte, vale a relagao

Hpvp(s —i€) = Hfyp(s +i€) = Relgyp(s + i€) — ilm Hyyp (s + ie). (48)
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Y Y v
()
had

11 had(g2) ~ ot (q?)

Figura 6: Representagao ilustrativa do teorema 6ptico.
Fonte: [13].

A partir da Eq. , conclui-se que a descontinuidade através do corte é
HHVP(S + iE) — HHVP(S — iE) = 2tIm HHVP(S + iE). (49)

Podemos entdo escrever a relagao de dispersao como sendo [11}12]

kQ
HHVP(kZ) = 7/

™

o0 @ IHIHHVP(S)

2 _
mw S 8 — k2% —1e

(50)

em que Sy, ¢ identificado como sendo o limiar cinematico de produgao do estado hadronico
de menor energia, dado pelo canal 77—, de maneira que s, = 4m2.. E a partir deste
limiar que emana o corte no eixo real do plano s, representado na Figura [}l A introdugao
dessa relacao de dispersao é importante porque existe uma conexao essencial entre ImlIgyp
e R(s).

Além disso, é necessario apresentar uma outra ferramenta, oriunda da teoria quantica
de campos: o teorema Optico. Por causa dele, é possivel associar a secao de choque do

evento ete” — hadrons com a func¢ao ImIlyyp através de [13]

ImITgyp(s) = ﬁa(eﬁe_ — hadrons). (51)

Juntando as Eqgs. e (b1), temos

«

ImHHVP(S) == 3R(8), (52)

que ¢ justamente a relacao desejada. Apresentadas todas essas relagdes, podemos escrever

a Eq. como

- ie? o s
u(p') ol fyp (p, P )u(p) = —— — ImITgvp(s)x

2
T Jam?, s

y / d*k u(p )V — K +m)y(p — K +m)y.u(p)
(2m)* (k2 — s +ie) (pf — k)2 = m? +i€) (p — k)? — m? + ie)

(53)
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E interessante notar que o denominador da integral em k da Eq. é exatamente o
denominador da Eq. no caso em que k? — (k? — s), sendo que o que motivou essa

diferenca foi justamente a introducao da relagao de dispersao para Ilyyp, dada na Eq. .

Vamos agora, a maneira do que foi realizado na Eq. (26]), fazer a parametrizacao de

Feynman do denominador da Eq. ,

1 2
(k%2 — s +ie) [(p — k)2 —m? +ie] [(p — k)? — m? + i€] - /o dxdyﬁ, (54)
D=x(k*—s)+y ((p' — k) — m2) +(1—z—y) ((p —k)? — m2) + ie. (55)

Utilizando que p? = p”? = m?, sendo m a massa do mtion, somos capazes de obter
D=k —2k-(y( —p)+ (1 —2)p) — s + ic. (56)

Entao, com a defini¢do de | :== k — (y(p' — p) + (1 — x)p), que representa o quadrimomento

k deslocado, conseguimos, a partir de Eq. , que
D =1*— A +ie, (57)

onde A = zs +m?(1 — x)? — aqui, j4 foi feito uso de que ¢ = 0, algo que precisa ser feito

porque, como antes, buscamos Fy(¢* = 0).

Agora, partimos para analisar o numerador da integral em k da Eq. . Como ele
¢ igual ao numerador da Eq. , vamos adaptar o resultado dado na Eq. a situacao
fisica que estamos considerando aqui. Fazendo isso, e ja selecionando o termo proporcional

a ioc"q,/2m, temos que o fator de forma Fy(¢?> = 0) é dado por

Lie? oo d d4l 2 (1-

3
T Jam?, S —A)

Para solucionar a integral em [, faremos uso do resultado dado na Eq. . Das integrais
em x e em y, resolveremos uma, de modo que, ao final, teremos apenas uma integral em
pardmetro de Feynman. Dessa forma, utilizando que e? = 4w« e ja identificando Fy(¢? = 0)

HVP,LO

como sendo a,, , conforme a Eq. (21)), ficamos com

2

o 1 20(1 —
GHVPLO _ gé jImHHVP( )/O P r(l— ) (59)

# 72 Jam2, s s+ (1 —x)?m?

Utilizando o resultado dado na Eq. — para que consigamos colocar a expressao

de a;]V" em termos de R(s) —, especificando que m é a massa do mion através do uso do
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(a) Dados experimentais (em azul) do observavel (b) Grafico do kernel K(s) para valores entre
R(s). s=0es=3GeV>
Fonte: [14]. Fonte: Elaborado pelo autor.
Figura 7: Graficos importantes para anélise de aj,¥"©.

indice p e fazendo a substituigao  — (1 —z) na integral em z, temos finalmente o resultado

2 o 1 2(1 _ 2 o (d
JiveLo _ @ / ;R(s) /0 do : (1 — ) — | 4HVPLO _ o / —SR(S)K(S),
+

a 32 Jam? — )2y 4 2 # 3m2 Jam2, s
;4

K(s)
(60)

com K (s) uma fungao kernel — vide Figura [7b|— a partir da qual se constata que a regiao
de baixas energias tem mais peso no contexto desta contribuicao hadronica, o que explica a

necessidade da aplicacao de QCD nao-perturbativa para sua compreensao.

4 O experimento MUonE

Como mencionado no final da Secao 3} o estudo da contribuigdo da polarizagdo hadré-
nica do vacuo ao momento magnético do mion exige aplicacdo de métodos nao-perturbativos
de QCD, o que faz a)} """ ter a maior incerteza teérica dentre todas as contribuicdes a
g, — 2. Para contornar este problema, o experimento MUonE — atualmente em fase de tes-
tes no CERN — almeja obter tal contribuicao de forma independente, a partir da analise do
espalhamento elétron-mion eldstico. Esta secao objetiva expor alguns aspectos importantes

no que diz respeito a este experimento.

J& que a andlise ndo dependerd mais da secao de choque o(ete” — hadrons), vamos
escrever a Eq. em termos de ImIlgyp(s), usando para tanto a Eq . Teremos entao

x2 2
1 oo a—am ImII
aHVP,LO:g/ dw(l—a:)/ s (21 yMy Im HVP(S)7 (61)
K 7 Jo am?, S (fix)mi—i—s T

onde um rearranjo foi feito para que, com uso da relacao de dispersao dada na Eq. ,
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xTr
(a) Diagrama de Feynman do espalhamento (b) Integrando para se obter aHVP’LO através da
elétron-mion. O quadrado do momento que Eq. . A 4rea em cinza é€ a regiao prevista para
flui pela linha do féton é negativo. que o experimento MUonE cubra.
Fonte: Elaborado pelo autor. Fonte: [15].

Figura 8: Figuras importantes para discussao do experimento MUonE.

mas com k? — t(x) = —x*m? /(1 — x), possamos expressar a Eq. da seguinte maneira:
GVPLO O [ o s (1) (62)
u = 7/ Hvp(t).

No dominio euclidiano, ou seja, para t < 0, podemos, a partir da Eq. , escrever que

1
@WNDZQ/}MQ—@A%MWQL (63)
mJo
onde usamos a relacdo Hyyp(t) = —Aapaa(t) [13], sendo Aapag 0 chamado running do

acoplamento eletromagnético devido a contribui¢oes hadronicas.

O objetivo do experimento MUonE é medir a contribuicao que HVP-LO da a Aayaq(t)
a partir da andlise do espalhamento elétron-mion, dado no diagrama da Figura [8a] com
incerteza menor do que 1%. Esse grau de precisdo é necessario para que os resultados do

experimento possam ser capazes de trazer algum esclarecimento no que diz respeito a tensao

HVP
"

experimentos ja existentes. Para tanto, medidas precisas dos angulos de espalhamento do

entre a obtido através do método guiado por dados e os dados de QCD na rede e de
elétron e do muon devem ser feitas para que, a partir delas, possa ser possivel construir
a forma da secao de choque diferencial do espalhamento eu. A partir dela, determina-se
Acpaq(t) através de um ajuste dos dados experimentais seguido da subtragiao das contribui-

¢oes eletrofracas (EW na Figura a Aa(t), que sao conhecidas com alta precisao.

O experimento planeja fixar a energia do feixe de emissao de muons a 150 GeV, o
que limitara superiormente o valor de momento transferido pelo féton, t(z). Isso faz com
que aproximadamente 86% do intervalo de integracao da Eq. seja suprido com dados
experimentais [15] — vide Figura [8bl Os outros 14% exigirao a aplicagdo de métodos de
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extrapolagao, como por exemplo os aproximantes de Padé, explorados na Ref. [15].

5 Conclusao

O objetivo principal deste trabalho foi deduzir a férmula seminal que da o comporta-
mento da contribuicao da polarizacao hadronica do vacuo ao momento magnético anémalo
do miion em termos de uma integral dispersiva do observavel R(s). Além disso, expusemos
alguns detalhes tedricos que fundamentam o experimento MUonE, o qual almeja obter a

contribuicao aEVP O de forma independente, medindo o espalhamento ey eldstico.

Primeiramente, calculamos a corregdo de QED em O(«), dada pela troca de um féton
virtual, a g, — 2. Para isso, fizemos a aplicacao das regras de Feynman ao diagrama da
Figura [a de onde se obtém uma expressao para M*, dada em termos de uma integral de
loop. Através de manipulagoes que envolveram uso de técnicas e identidades consagradas em
teoria quantica de campos — como a parametrizacao de Feynman e as identidades de Ward
e de Gordon —, esse quadrivetor foi colocado em termos de uma combinacao linear de +* e
de io*q,/2m, para que se extraisse, de acordo com a Eq. , a expressao dos fatores de
forma Fi(¢*) e Fo(q?). Este tltimo é de especial importancia no contexto desta monografia
porque resulta, quando calculado para o féton em sua camada de massa, no valor de a,
associado ao diagrama em questdo. No caso da troca de um féton virtual, encontramos

Fy(¢* = 0) = a, = a/2m, resultado fundamental da Eletrodindmica Quéntica.

Em seguida, com a sequéncia de procedimentos para obtencao de a, ja tendo sido apre-
sentada, partimos para a andlise da polariza¢ao hadronica do vacuo em ordem dominante.
A amplitude do diagrama [4b| foi determinada de forma analoga ao feito no caso da troca de
um féton virtual a partir do emprego das regras de Feynman. Na analise deste diagrama,
no entanto, surgiu a necessidade de introduzir uma relagao de dispersao para a funcao de
polarizagao Ilgyp, visto que queriamos relacionéd-la com R(s) — observavel experimental-

mente conhecido —, a fim de que pudéssemos obter uma férmula guiada por dados. Com

HVP,LO
w

abordagem baseada em dados, determinamos uma importante propriedade da contribuicao

isso, além de termos encontrado a formula seminal que dé a determinacao de a na
HVP-LO: sua contribuicdo tem um peso maior na regiao de baixas energias, e isso obriga a

analise a ser feita com métodos nao-perturbativos de QCD.

Por fim, expds-se um pouco da fundamentacgao tedrica que envolve o experimento MU-
onkE, atualmente em fase de testes no CERN. Vimos que é possivel colocar o resultado da
Eq. em termos de Aapaqlt(z)], o qual é obtido com um ajuste da segdo de choque
diferencial do espalhamento ey elastico. Espera-se que nos proximos anos, os dados obtidos
de forma independente pelo experimento MUonE possam melhorar a precisdao tedrica no
que diz respeito as contribui¢des hadrénicas — a HVP-LO, em particular —, e, portanto,

ajudem a esclarecer questoes relativas a tensao existente entre o método guiado por dados
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e os atuais experimentos e resultados de QCD na rede no contexto do g, — 2.
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