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Resumo

A previsão do Modelo Padrão (SM) para o momento magnético anômalo do múon, co-
nhecido por gµ−2, depende crucialmente da contribuição da chamada polarização hadrônica
do vácuo (HVP). Resultados experimentais recentes, da colaboração Muon g-2 do Fermi-
lab, publicados em 2023, mostram uma grande discrepância com relação a determinações
anteriores de gµ − 2 do SM obtidas da descrição baseada em dados para a contribuição de
HVP. Por outro lado, resultados provenientes tanto de cálculos obtidos via QCD na rede
para a HVP quanto de determinações baseadas em dados utilizando os resultados de 2023
do experimento CMD-3 levam a uma determinação consistente com resultados experimen-
tais. Essa tensão entre determinações anteriores baseadas em dados e o valor experimental
é justamente o que motiva o interesse nesta contribuição. Assim sendo, o propósito deste
Trabalho de Conclusão de Curso é estudar, utilizando ferramentas de teoria quântica de
campos, a HVP em ordem dominante com a intenção de estabelecer qual a relação entre tal
fenômeno e gµ − 2, bem como descrever a estratégia do experimento MUonE, recentemente
proposto no CERN, cujo objetivo é obter as contribuições da HVP para o gµ − 2 de uma
maneira completamente independente — estudando o espalhamento elétron-múon elástico.

Palavras-chave: QED. Modelo Padrão. gµ − 2. HVP. Teoria quântica de campos.

1 Introdução

Em 1928, o artigo “The Quantum Theory of the Electron” [1] foi publicado por Paul
Dirac. Nele, o autor apresenta sua famosa equação, que unifica a Relatividade Restrita
com a Mecânica Quântica no esforço de explicar o comportamento quântico de partículas (e
antipartículas) fermiônicas. A partir da equação de Dirac, é possível encontrar a expressão
do vetor momento magnético µ de uma partícula com spin1:

µ = ge

2mS, (1)

que é responsável por dar o acoplamento da partícula (através de seu spin, S) com o campo
eletromagnético. Inclusive, isso permite a analogia clássica de que essas partículas — fun-
damentalmente quânticas — são como pequenas espiras com corrente.

É importante perceber que a Eq. (1) contém, na constante de proporcionalidade, o fator
g, chamado de fator giromagnético, o qual é de especial relevância no contexto da Física de
Partículas. Da equação de Dirac, é possível concluir que, para léptons, gℓ = 2. No entanto,
experimentos realizados posteriormente, como os de Kusch e Foley [2], de 1948, obtiveram

g[KF]
e = (2.00232 ± 0.00010) (2)

1Neste trabalho, vamos usar as unidades naturais, isto é, vamos fixar c = 1 e ℏ = 1.
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Figura 1: Representação em diagramas de Feynman dos tipos de correções ao g − 2 do
múon: QED, eletrofracas e hadrônicas (exemplificadas por polarização hadrônica do vácuo
e interação fóton-fóton), respectivamente.
Fonte: [4].

para o fator giromagnético do elétron, um valor aproximadamente 0, 12% maior do que
aquele previsto pela equação de Dirac, o que suscitou um esforço teórico para tentar com-
preender o que estava faltando. É a partir da noção de que existem correções a gℓ que se
convenciona escrever gℓ = 2(1 + aℓ), em que aℓ representa a soma de todas elas, e que, por-
tanto, carrega a informação sobre o desvio entre o valor previsto por Dirac e o verdadeiro
valor do momento magnético — é justamente esse desvio que motiva o termo "momento
magnético anômalo", ou gℓ − 2. Conclui-se então que, do experimento de Kusch e Foley,
a[KF]

e = (0.00116 ± 0.00005).

Foi também em 1948 que Julian Schwinger, utilizando teoria quântica de campos —
mais especificamente a Eletrodinâmica Quântica (QED) —, calculou a primeira correção a
ge, devida à troca de um fóton virtual [3]. O valor encontrado por ele, de a[Schw]

e = α/2π ≈
0.0011614, em que α é a constante de estrutura fina, é compatível com os dados experimen-
tais de Kusch e Foley e mostra que a teoria quântica de campos é bem-sucedida em cálculos
altamente precisos envolvendo observáveis físicos — o que rendeu, inclusive, o Prêmio Nobel
de 1965 para Schwinger, Feynman e Tomonaga por seus trabalhos fundamentais em QED.

A partir de então, desenvolvimentos teóricos e experimentais da Física culminaram
na elaboração do chamado Modelo Padrão (SM, do inglês), o qual descreve as interações
eletromagnética, fraca e forte em um único arcabouço teórico. O Modelo Padrão dá conta de
descrever o comportamento da matéria constituída por partículas fermiônicas fundamentais
de spin 1/2 — os quarks e léptons —, que interagem entre si através dos chamados bósons
de gauge, responsáveis por mediar as forças fundamentais. O fóton é o intermediador das
interações eletromagnéticas (descritas via QED), enquanto o glúon e os bósons Z0 e W±

têm papéis análogos nas interações forte (descritas via QCD) e fraca, respectivamente.

Cada uma dessas interações gera correções ao momento magnético de léptons, o que
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nos permite escrever a soma

aµ = aQED
µ + aEW

µ + aHVP
µ + aHLbL

µ︸ ︷︷ ︸
ahad

µ

, (3)

onde o índice µ indica que a análise é feita para o múon, escolhido dentre os léptons por
ser suficientemente estável e massivo para que a detecção de eventuais contribuições além
do Modelo Padrão2 seja otimizada. Na Eq. (3), aQED

µ representa as correções de QED,
que surgem por conta da emissão e reabsorção de fótons virtuais e que são dominantes em
comparação às outras, além de representarem o tipo de contribuição a gµ − 2 com maior
precisão teórica associada; aEW

µ representa as correções eletrofracas, devidas ao acoplamento
entre férmions e bósons de gauge (Z0 e W±) e com o Higgs; e ahad

µ representa as correções
hadrônicas, que ocorrem por causa da interação forte via loops hadrônicos virtuais. Elas
são subdivididas — vide Figura 1 — em dois tipos: polarização hadrônica do vácuo (HVP),
em que uma bolha hadrônica é inserida na linha do fóton, e interações fóton-fóton (HLbL),
nas quais fótons interagem entre si via loops hadrônicos. As correções hadrônicas, de forma
geral, são dominadas pelas contribuições de baixas energias, região em que resultados de
QCD têm de ser extraídos através de métodos não-perturbativos, como o data-driven (ou
guiado por dados) e as simulações computacionais de QCD na rede. Isso faz com que essa
classe de contribuições tenha a maior incerteza teórica associada dentre as correções a gµ−2.

Aqui, vale comentar que um dos motivos para gµ−2 despertar tanto interesse atualmente
é por conta da existência de uma tensão entre resultados obtidos através do método guiado
por dados, de acordo com com o artigo de revisão de 2020 da g-2 Theory Initiative [5], e dados
experimentais — vide Figura 2. Essa discrepância, que não existe quando se comparam os
dados de experimentos com o que se obtém através da QCD na rede e com a versão do
resultado guiado por dados com a inclusão da medidas recentes do experimento CMD-3 [6],
deve ser muito bem entendida antes que se possa presumir existência de física além do
SM. Uma boa maneira de compreender melhor essas tensões é estudar as contribuições
hadrônicas, pois, como já citado, é nelas que se originam essas discrepâncias, constituindo
a principal fonte de incerteza teórica.

Sendo assim, neste trabalho, focaremos na polarização hadrônica do vácuo, que será
analisada em ordem dominante (LO). O objetivo é reproduzir os cálculos, feitos pela primeira
vez em 1968 por Brodsky e de Rafael [7, 8], utilizando métodos canônicos em QED, para
que se chegue numa expressão matemática que coloque a correção da HVP ao momento
magnético do múon em termos de observáveis experimentais bem determinados.

2O momento magnético do múon é, de certa forma, um "laboratório" para a chamada Física além do
Modelo Padrão. Isso porque nela os efeitos escalam como m2

f /m2
X , em que f indexa o férmion estudado e

X é uma partícula hipotética além do SM. Em quase todas as teorias, mX ≫ mf e, sendo assim, quanto
maior é mf , mais fácil fica detectar efeitos devidos a uma eventual nova física. Mas é preciso ponderar esse
fator com a estabilidade do férmion — por isso, o tau, lépton de maior massa, mas o mais instável, não é
analisado.
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Figura 2: Comparação entre os dados experimentais e os resultados obtidos a partir de
diferentes métodos de QCD não-perturbativa para o g − 2 do múon.
Fonte: Physics World (2025), "Muon g− 2 achieves record precision, but theoretical tension
remains". Figura de Alex Keshavarzi.

Além disso, pretende-se introduzir alguns aspectos no que diz respeito ao experimento
MUonE —atualmente em fase de testes no CERN —, que almeja determinar a contribuição
aHVP,LO

µ de uma forma totalmente nova e independente: a partir do estudo do espalhamento
elétron-múon (eµ) elástico.

2 Princípio de gauge e QED

Para cumprirmos com os objetivos apresentados na Seção 1, será necessário discutir
alguns aspectos fundamentais em Eletrodinâmica Quântica, a QED. Por ser uma teoria
quântica de campos, ela tem seu formalismo baseado em lagrangianas de campos quantizados
(e suas derivadas), a partir das quais se determinam as interações, normalmente impondo
princípios de simetria — diferentemente do que se faz em Mecânica Quântica, em que a
interação entre partículas é medida em termos de potenciais obtidos externamente à teoria.
Já que neste trabalho estamos interessados nas correções quânticas ao momento magnético
de um férmion de spin 1/2, precisaremos construir a lagrangiana que rege o comportamento
de tais partículas.

Para tanto, vamos começar introduzindo a lagrangiana do campo fermiônico livre (tam-
bém chamada de lagrangiana de Dirac),

L0 = iψ̄(x)γµ∂µψ(x) −mψ̄(x)ψ(x), (4)



5

a qual descreve o campo livre de partículas de spin 1/2. Nela, ψ e ψ̄ ≡ ψ†γ0 são, respecti-
vamente, o spinor e o spinor adjunto de Dirac — no escopo da QED, eles serão quantizados
e promovidos a operadores, capazes de criar e destruir estados de partículas.

Aplicando a equação de Euler-Lagrange,

∂L
∂ψ

− ∂µ

(
∂L

∂(∂µψ)

)
= 0, (5)

na Eq. (4), obtém-se
(i/∂ −m)ψ = 0, (6)

que é justamente a equação de Dirac — onde utilizamos a convenção de notação /∂ = ∂µγ
µ

para a contração do operador de derivação covariante, ∂µ, com as matrizes de Dirac, γµ.
Nota-se, então, que a lagrangiana dada na Eq. (4) leva à equação que dá a dinâmica de
um férmion de spin 1/2 livre de interações. No entanto, como estamos interessados no
momento magnético dessas partículas fermiônicas, precisaremos introduzir na lagrangiana
um termo que dê a interação entre elas e o campo eletromagnético quantizado. Faremos
isso utilizando o importante princípio da invariância local de gauge, sobre o qual passamos
agora a discorrer.

Uma propriedade fundamental da Eletrodinâmica Quântica é que ela possui invariância
por transformação de fase U(1) global. Matematicamente, isso significa que a mudança de
campos

ψ(x) 7→ ψ′(x) = eieθψ(x), (7)

com θ uma fase real constante, não promove qualquer alteração em L0. O mesmo não ocorre
se θ for uma função das coordenadas do espaço-tempo (ou seja, se θ = θ(x)). Neste caso, a
lagrangiana L′

0 do campo ψ′(x) é

iψ̄(x)γµ(∂µ + ie∂µθ(x))ψ(x) −mψ̄(x)ψ(x) ̸= L0, (8)

o que mostra que L0 não é invariante pelo tipo de transformação dado na Eq. (7) quando o
parâmetro de fase é dependente das coordenadas espaço-temporais.

Há, no entanto, uma maneira de contornar esta situação. Para isso, note que i∂µθ(x),
no interior dos parênteses da Eq. (8), é o termo que impede a igualdade entre L0 e L′

0. O
que podemos fazer é introduzir na lagrangiana um novo campo, Aµ(x), de spin 1, o qual se
transforma como

Aµ(x) 7→ A′
µ(x) = Aµ(x) − ∂µθ(x) (9)

e que atuará de forma a absorver o termo problemático. A introdução de Aµ(x) é feita
através da definição de uma derivada covariante,

Dµψ(x) = (∂µ + ieAµ)ψ(x), (10)
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simétrica por transformações de U(1) locais, afinal

D′
µψ

′(x) = [∂µ + ie (Aµ − ∂µθ(x))] (ψ(x)eieθ(x)) = eieθ(x) [∂µ + ieAµ]︸ ︷︷ ︸
Dµ

ψ(x), (11)

de onde se vê que D′
µψ

′(x) e Dµψ(x) diferem apenas por uma fase.

Assim, para obter uma lagrangiana que seja invariante por transformações U(1) locais,
fazemos ∂µ 7→ Dµ na Eq. (4), e isso nos leva a

L = iψ̄(x)γµDµψ(x) −mψ̄(x)ψ(x) = L0 − eψ̄(x)γµAµ(x)ψ(x), (12)

em que Lint = −eψ̄(x)γµAµ(x)ψ(x) define um termo de interação, o que sugere que Aµ(x),
por ser um campo de gauge quantizado de spin 1, deve ser interpretado como o campo do
fóton, enquanto que o termo lagrangiano Lint representa a sua interação com o férmion.
Para o campo Aµ(x) ser, de fato, um campo físico, é necessário introduzir na Eq. (12) um
termo cinético do tipo

Lcin = −1
4Fµν(x)F µν(x), (13)

com Fµν = ∂µAν −∂νAµ o tensor eletromagnético (também chamado de tensor de Faraday),
que também é invariante por transformações U(1) locais.

Dessa forma, concluímos a construção da lagrangiana da QED, invariante por transfor-
mações locais de gauge:

LQED = −1
4Fµν(x)F µν(x) + iψ̄(x)γµ∂µψ(x) −mψ̄(x)ψ(x) − eψ̄(x)γµAµ(x)ψ(x), (14)

a qual, além de descrever as interações entre férmions e fótons em teoria quântica de cam-
pos, permite a determinação de correções de QED a gµ − 2 (e a diversos outros processos).
Para tanto, seria necessário definir aqui o operador de evolução temporal dos estados como
função da lagrangiana de interação — isso permitiria escrevê-los em termos de uma série ite-
rativa, a chamada série de Dyson —, bem como colocar os campos quantizados em termos
de operadores de criação e aniquilação de estados. Após isso, encontrar o objeto funda-
mental para se determinar as almejadas correções, a amplitude do processo físico, exigiria
manipulações envolvendo a atuação desses operadores na série de Dyson, o que pode vir a
ser muito trabalhoso.

Felizmente, há um algoritmo que leva aos mesmos resultados, mas sem exigir todo esse
trabalho: desenham-se os chamados diagramas de Feynman representando o processo físico
de interesse, e aplicam-se neles as regras de Feynman de QED, as quais associam cada
elemento do desenho feito a um fator ligado à amplitude do processo. É importante deixar
claro que essas regras, deduzidas a partir da Eq. (14), são completamente equivalentes
a seguir os passos expostos no parágrafo anterior, mas sua aplicação acelera (e muito)
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Figura 3: Representação diagramática da série perturbativa das correções de vértice em
QED.
Fonte: [10].

os cálculos. Partindo-se da conservação de quadrimomento em cada vértice do diagrama,
coloca-se em prática a seguinte sequência de procedimentos [9]:

1. Para as linhas externas, incluir

férmion

inicial : u(p)

final : ū(p′)
, antiférmion

inicial : v̄(p)

final : v(p′)
, fóton

inicial : ϵµ(p)

final : ϵ∗
µ(p′)

,

com u e v sendo os spinores para partículas e antipartículas, respectivamente, e ϵµ re-
presentando o vetor de polarização do fóton. Além disso, p e p′ são os quadrimomentos
de entrada e de saída do diagrama, respectivamente;

2. Para cada vértice, incluir o termo (−ieγµ), o vértice fundamental da QED;

3. Para linhas internas de quadrimomento p, incluir

férmion : i
(/p+m)

p2 −m2 + iϵ
, fóton : −i gµν

p2 + iϵ
,

que são os propagadores livres da teoria. O termo iϵ, com ϵ → 0, nos denominadores
é a prescrição de Feynman para tratar singularidades;

4. Integrar sobre cada momento de loop interno do diagrama;

5. O resultado final corresponde a −iM, com M a amplitude do processo físico repre-
sentado pelo diagrama.

Seguir a ordem dos passos colocados acima é essencial para que o que se obtenha no final
seja, de fato, a amplitude desejada. Além disso, vale comentar que a leitura dos diagramas
de Feynman deve ser feita de forma a percorrer a linha fermiônica no sentido contrário ao
do fluxo da partícula, ou seja, no sentido contrário ao dado pela direção da seta, bem como
que o resultado obtido deve ser um invariante de Lorentz.

Por fim, é conveniente introduzir o conceito de fatores de forma. Para tanto, considere-
mos o diagrama à esquerda da igualdade na Figura 3, onde o círculo sombreado representa
a soma do vértice elétron-fóton em ordem mais baixa com todas as correções de vértice.
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Utilizando as regras de Feynman anteriormente apresentadas, escreve-se a amplitude −iMµ

desse diagrama como
−ieū(p′)Γµ(p, p′)u(p), (15)

em que −ieΓµ(p, p′) representa a soma de todos os vértices mostrados à direita da igualdade
na Figura 3. É possível encontrar qual é a relação entre γµ e Γµ colocando esse último como
a combinação linear

Γµ = A · γµ +B · (p′µ + pµ) + C · (p′µ − pµ) (16)

e determinando A, B e C. O vetor Γµ pode ser colocado na forma da Eq. (16) porque os
únicos objetos com índice vetorial µ disponíveis aqui são γµ e os quadrimomentos pµ e p′µ.
Assim, contraindo cada termo da Eq. (16) com qµ, vê-se que, por conta da identidade de
Ward [10],

qµΓµ = 0, (17)

apenas o termo de coeficiente C não se anula, o que nos obriga a impor que C = 0. Agora,
é possível reescrever o que sobrou da Eq. (16) utilizando a identidade de Gordon,

ū(p′)γµu(p) = 1
2mū(p′)(pµ + p′µ + iσµνqν)u(p), (18)

que nos permite trocar (pµ + p′µ) por iσµνqν . Dessa forma, temos que

Γµ(p, p′) = F1(q2)γµ + F2(q2)iσ
µνqν

2m , (19)

onde as funções F1 e F2, a priori desconhecidas, são os chamados fatores de forma.

É possível mostrar que os fatores de forma, em especial F2(q2), desempenham papel
fundamental na determinação das correções ao momento magnético do múon. A relação
entre gµ e F2 é dada por [10]

gµ = 2 [1 + F2(0)] , (20)

ou seja, podemos fazer a identificação

aµ ≡ F2(0). (21)

Portanto, a determinação das almejadas correções a gµ −2 fica resumida a determinar qual é
a expressão de F2(q2) para o caso em que q2 = 0. Agora que expusemos as regras de Feynman
e a relação matemática entre o momento magnético anômalo e os fatores de forma, podemos
proceder propriamente à determinação dessas correções.
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(a) Correção com a inserção de um fóton vir-
tual.

(b) Correção devida à polarização hadrônica
do vácuo, com a inserção da bolha hadrônica
HVP no fóton virtual.

Figura 4: Diagramas de Feynman utilizados no cálculo da contribuição de HVP ao g− 2 do
múon.
Fonte: Elaborado pelo autor.

3 Contribuição da polarização hadrônica do vácuo ao
g − 2 do múon

Nesta seção, será deduzida a fórmula seminal, obtida pela primeira vez em 1968 por
Brodsky e de Rafael [7, 8], que serve como base para a determinação de aHVP,LO

µ na abor-
dagem guiada por dados. Nela, associa-se tal observável a um outro, denominado R(s),
que é medido com elevada precisão experimental. Isso possibilita estabelecer uma relação
entre aHVP,LO

µ e uma integral dispersiva sobre os dados de R(s), o que permite fazer pre-
dições usando dados experimentais ao invés de cálculos puramente teóricos, os quais não
são factíveis, através de primeiros princípios, na região de baixas energias. Sendo assim,
define-se

R(s) = σ(e+e− → hádrons)
σ(e+e− → µ+µ−)|LO, mµ=0

= 3s
4πα2σ(e+e− → hádrons), (22)

onde σ(e+e− → µ+µ−)|LO, mµ=0 representa a seção de choque do processo e+e− → µ+µ−

em ordem dominante para o caso em que mµ = 0, e vale 4πα2/3s, com s representando o
quadrado do momento transferido pelo fóton virtual nos diagramas da Figura 4 — ou seja,
representa k2 > 0.

Para chegarmos na almejada relação entre aHVP,LO
µ e uma integral dispersiva de R(s), o

procedimento será o seguinte: primeiro, calcularemos a correção representada no diagrama
da Figura 4a, que dá a contribuição de O(α) em QED devida à troca de um fóton virtual,
calculada em 1948 por Schwinger [3]. Na sequência, utilizando tal resultado como base,
iremos calcular a contribuição do diagrama dado na Figura 4b, onde uma bolha hadrônica,
representando o fenômeno de polarização hadrônica do vácuo, é inserida na linha do fóton,
de maneira que seu propagador é corrigido pela HVP.
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3.1 Contribuição em ordem dominante da QED ao g − 2 do múon

Antes de mais nada, é preciso diferenciar a natureza matemática dos objetos M e Mµ:
o primeiro representa a amplitude de espalhamento escalar propriamente dita, enquanto que
o segundo representa um objeto quadrivetorial a ser contraído, por exemplo, com o vetor de
polarização do fóton externo (de quadrimomento indexado por q), ϵµ. É importante dizer
que o que obteremos dos dois diagramas da Figura 4 será Mµ.

Por conveniência, introduzimos a relação

iMµ = −ieū(p′)Γµ(p, p′)u(p), (23)

onde u(p) e ū(p′) são os spinores associados respectivamente ao férmion de entrada, com
momento p, e de saída, com momento p′ — vide Figura 4 —, enquanto que Γµ é uma estru-
tura geral que parametriza toda a informação das correções de vértice ligadas ao diagrama
que estamos analisando.

Conforme mencionado mais acima, vamos começar analisando o diagrama que dá a
correção a gµ − 2 devida à troca de um fóton virtual, representada na Figura 4a. Utilizando
regras de Feynman, tem-se que

ū(p′)δΓµ(p, p′)u(p) =

= −
∫ d4k

(2π)4
ū(p′)(−ieγρ)(/p′ − /k +m)(−ieγµ)(/p− /k +m)(−igρν)γνu(p)

(k2 + iϵ) [(p′ − k)2 −m2 + iϵ] [(p− k)2 −m2 + iϵ]

= −ie2
∫ d4k

(2π)4
ū(p′)γρ(/p′ − /k +m)γµ(/p− /k +m)γρu(p)

(k2 + iϵ) [(p′ − k)2 −m2 + iϵ] [(p− k)2 −m2 + iϵ] , (24)

em que m representa a massa do férmion (no caso, o múon). Agora, precisamos solucionar
a integral dada na Eq. (24). Para isso, vamos dividir a nossa análise entre o numerador e o
denominador de seu integrando.

Aqui, vamos aplicar um truque matemático muito comum em cálculos de integrais de
loop, a parametrização de Feynman. Tal truque consiste em reescrever o denominador da
Eq. (24) como uma integral — cujas variáveis de integração são os chamados parâmetros de
Feynman — do inverso de um polinômio quadrático em k, utilizando para isso [10]

1
A1A2A3

=
∫ 1

0
dxdydzδ(x+ y + z − 1) 2

(xA1 + yA2 + zA3)3 =

=
∫ 1

0
dxdy

2
[xA1 + yA2 + (1 − x− y)A3]3

. (25)

Temos então que

1
(k2 + iϵ) [(p′ − k)2 −m2 + iϵ] [(p− k)2 −m2 + iϵ] =

∫ 1

0
dxdy

2
D3 , (26)
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com

D := x(k2 + iϵ) + y
(
(p′ − k)2 −m2 + iϵ

)
+ (1 − x− y)

(
(p− k)2 −m2 + iϵ

)
. (27)

Precisamos agora manipular um pouco a Eq. (27), considerando que, por construção,
x + y + z = 1, além de p2 = p′2 = m2, que vem do fato de os férmions estarem na camada
de massa. Fazendo a manipulação em D,

D = k2 + yp′2 − 2yp′ · k − ym2 + (1 − x− y)p2 − 2(1 − x− y)p · k − zm2 + iϵ

= k2 − 2k · (y(p′ − p) + (1 − x)p) + iϵ, (28)

definindo a variável l := k− (y(p′ − p) + (1 − x)p)) como o quadrimomento deslocado (per-
ceba que d4k = d4l) e lembrando a relação p+ q = p′, temos a Eq. (28) reescrita como

D = l2 −m2(1 − x)2 + y(1 − x− y)q2 + iϵ. (29)

Vamos usar que q2 = 0, afinal q é o momento do fóton externo do vértice nos dois diagramas
da Figura 4. Fazendo isso, temos

D = l2 − ∆ + iϵ, (30)

onde ∆ = m2(1 − x)2. Finalmente, o resultado final de nossa parametrização é obtido
levando a Eq. (30) na Eq. (26).

Agora, vamos proceder à manipulação do numerador do integrando da Eq. (24). Para
isso, utilizaremos a identidade de Gordon, dada na Eq. (18), e a relação γργµγρ = −2γµ,
uma identidade da álgebra de Dirac, além dos resultados

∫ d4l

(2π)4
lµ

D3 = 0, (31)

justificado por argumentos de simetria, e

∫ d4l

(2π)4
lµlν

D3 =
∫ d4l

(2π)4

1
4g

µνl2

D3 , (32)

facilmente demonstrável utilizando que, em quatro dimensões, gµνgµν = 4. Com isso, temos
que o numerador é dado por

Num. = −2ū(p′)[−1
2γ

µl2 + (−y/q + x/p)γµ
(
(1 − y)/q + x/p

)
+

+m2γµ − 2m ((1 − 2y)qµ + 2xpµ)]u(p). (33)

A Eq. (33) pode ser reescrita numa forma que fique mais conveniente para nossos cálculos.
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Para tanto, usaremos os resultados da equação de Dirac para os spinores u(p) e ū(p′),

/pu(p) = mu(p), ū(p′)/p′ = mū(p′), ū(p′)/qu(p) = 0, (34)

além das identidades de Ward, definida na Eq. (17), e de Gordon, dada na Eq. (18), para
termos finalmente o numerador expresso da seguinte forma:

−2ū(p′)
[
γµ(−1

2 l
2 + (1 − 4x+ x2)m2) + iσµνqν

2m (2m2x(1 − x))
]
u(p). (35)

Considerando todas as manipulações que fizemos até aqui, podemos reescrever a Eq. (24)
como

ū(p′)δΓµu(p) = 2ie2
∫ d4l

(2π)4

∫ 1

0
dxdy

2
(l2 − ∆ + iϵ)3 ×

× ū(p′)
[
γµ(−1

2 l
2 + (1 − 4x+ x2)m2) + iσµνqν

2m (2m2x(1 − x))
]
u(p). (36)

Repare que, no interior dos colchetes da Eq. (36), existem termos proporcionais a γµ e a
iσµνqν/2m. Como estamos interessados na contribuição que a troca de um fóton virtual
gera para o momento magnético anômalo do múon (diagrama da Figura 4a), precisamos do
fator de forma F2(q2 = 0), que é — conforme discutido na Seção 2 — justamente o termo
da Eq. (36) proporcional a iσµνqν/2m,

F2(q2 = 0) = 8im2e2
∫ 1

0
dxdy(1 − x)x

∫ d4l

(2π)4
1

(l2 − ∆ + iϵ)3 . (37)

O resultado da segunda integral na Eq. (37) é bem conhecido e é finito em 4 dimensões.
Isto é, para ϵ → 0, temos [10]

∫ d4l

(2π)4
1

(l2 − ∆ + iϵ)3
ϵ→0= −i

2(4π)2∆ . (38)

Colocando o resultado da Eq. (38) na Eq. (37) e já substituindo ∆ pela sua definição em
termos de parâmetros de Feynman, tem-se, com e2 = 4πα, sendo α a constante de estrutura
fina,

F2(q2 = 0) = α

π

∫ 1

0
dxdy x = α

2π . (39)

Portanto, devido à identificação dada na Eq. (21), concluímos que aµ = α/2π ≈ 0.0011614
em O(α) de QED, resultado3 encontrado por Schwinger em 1948 [3].

Agora que expusemos o cálculo da correção ao momento magnético do múon devido à
troca de um fóton virtual, podemos partir propriamente à determinação da correção que a

3Repare que o resultado encontrado independe de qualquer propriedade intrínseca ao múon, ou seja, a
contribuição é a mesma não importa qual seja o lépton analisado.
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HVP promove no g− 2 do múon. Ficará claro que muitos passos são análogos ao mostrados
nesta subseção, de modo que alguns resultados já obtidos serão reaproveitados.

3.2 Contribuição da HVP ao g − 2 do múon

Nesta etapa, utilizaremos as regras de Feynman de QED para extrair a amplitude Mµ

— vide Eq. (23) — referente ao diagrama da Figura 4b. Para tanto, o primeiro passo
é computar qual é o efeito da polarização hadrônica do vácuo no propagador do fóton.
Sabemos que, no gauge de Feynman,

= −igµν

k2 . (40)

Note, no entanto, que, no diagrama da Figura 4b, o propagador do fóton está vestido por
uma bolha hadrônica, a qual representa justamente o nosso fenômeno de interesse. Sendo
assim, é natural que haja alguma correção à Eq. (40) por causa da HVP. Para determiná-la,
considere a igualdade

=
(−igρα

k2

)
(iΠαβ

HVP)
(−igβν

k2

)
, (41)

em que Παβ
HVP é o tensor de polarização hadrônica do vácuo — ele carrega toda a informa-

ção sobre a HVP e dá justamente a contribuição deste fenômeno ao propagador do fóton.
Por argumentos de invariância de Lorentz e de conservação da corrente eletromagnética, é
possível encontrar uma relação entre o tensor Παβ

HVP e a função escalar ΠHVP(k2) [10],

Παβ
HVP = (k2gαβ − kαkβ)ΠHVP(k2), (42)

que, quando colocada na Eq. (41), fica escrita como

i

(
1
k4kρkν − 1

k2 gρν

)
ΠHVP(k2). (43)

O primeiro termo da Eq. (43), proporcional a kρkν , deverá ser anulado por conta da iden-
tidade de Ward, dada na Eq. (17). Portanto, chegamos à seguinte conclusão no que diz
respeito ao propagador do fóton modificado pelo efeito de polarização hadrônica do vácuo:

=
(−igρν

k2

)
ΠHVP(k2). (44)
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Figura 5: Contorno de integração utilizado para se chegar à Eq. (50). O corte é feito no
eixo real do plano de s a partir de sth = 4m2

π± .
Fonte: [11].

Tendo obtido o resultado da Eq. (44), estamos em condições de escrever a amplitude
do diagrama da Figura 4b,

ū(p′)δΓµ
HVP(p, p′)u(p) =

=
∫ d4k

(2π)4
ū(p′)(−ieγρ)(/p′ − /k +m)(−ieγµ)(/p− /k +m)γνu(p)

((p′ − k)2 −m2 + iϵ) ((p− k)2 −m2 + iϵ) ×

×
(

−igρν

(k2 + iϵ)ΠHVP(k2)
)

= ie2
∫ d4k

(2π)4
ū(p′)γρ(/p′ − /k +m)γµ(/p− /k +m)γρΠHVP(k2)u(p)
(k2 + iϵ) ((p′ − k)2 −m2 + iϵ) ((p− k)2 −m2 + iϵ) , (45)

analogamente ao feito na Eq. (24) para o diagrama da Figura 4a.

Neste ponto do cálculo, já é possível construir a associação que levará à introdução de
R(s), observável definido na Eq. (22), na amplitude dada na Eq. (45). Para fazer isso, vamos
precisar de uma relação de dispersão para ΠHVP. Considerando o fato de que essa função
é holomórfica sobre todo o plano complexo, a menos de um corte no eixo real, podemos
escrever sua representação integral de Cauchy,

ΠHVP(k2) = 1
2πi

∫
C
ds

ΠHVP(s)
s− k2 , (46)

e considerar o princípio de reflexão de Schwartz,

ΠHVP(s∗) = Π∗
HVP(s). (47)

Podemos, da Eq. (47), dizer que, para pontos logo acima e abaixo do corte, vale a relação

ΠHVP(s− iϵ) = Π∗
HVP(s+ iϵ) = Re ΠHVP(s+ iϵ) − iIm ΠHVP(s+ iϵ). (48)
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Figura 6: Representação ilustrativa do teorema óptico.
Fonte: [13].

A partir da Eq. (48), conclui-se que a descontinuidade através do corte é

ΠHVP(s+ iϵ) − ΠHVP(s− iϵ) = 2iIm ΠHVP(s+ iϵ). (49)

Podemos então escrever a relação de dispersão como sendo [11,12]

ΠHVP(k2) = k2

π

∫ ∞

sth

ds

s

ImΠHVP(s)
s− k2 − iϵ

, (50)

em que sth é identificado como sendo o limiar cinemático de produção do estado hadrônico
de menor energia, dado pelo canal π+π−, de maneira que sth ≡ 4m2

π± . É a partir deste
limiar que emana o corte no eixo real do plano s, representado na Figura 5. A introdução
dessa relação de dispersão é importante porque existe uma conexão essencial entre ImΠHVP

e R(s).

Além disso, é necessário apresentar uma outra ferramenta, oriunda da teoria quântica
de campos: o teorema óptico. Por causa dele, é possível associar a seção de choque do
evento e+e− → hádrons com a função ImΠHVP através de [13]

ImΠHVP(s) = s

4πασ(e+e− → hádrons). (51)

Juntando as Eqs. (22) e (51), temos

ImΠHVP(s) = α

3R(s), (52)

que é justamente a relação desejada. Apresentadas todas essas relações, podemos escrever
a Eq. (45) como

ū(p′)δΓµ
HVP(p, p′)u(p) = −ie2

π

∫ ∞

4m2
π±

ds

s
ImΠHVP(s)×

×
∫ d4k

(2π)4
ū(p′)γµ(/p′ − /k +m)γρ(/p− /k +m)γµu(p)

(k2 − s+ iϵ) ((p′ − k)2 −m2 + iϵ) ((p− k)2 −m2 + iϵ) . (53)
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É interessante notar que o denominador da integral em k da Eq. (53) é exatamente o
denominador da Eq. (24) no caso em que k2 7→ (k2 − s), sendo que o que motivou essa
diferença foi justamente a introdução da relação de dispersão para ΠHVP, dada na Eq. (50).

Vamos agora, à maneira do que foi realizado na Eq. (26), fazer a parametrização de
Feynman do denominador da Eq. (53),

1
(k2 − s+ iϵ) [(p′ − k)2 −m2 + iϵ] [(p− k)2 −m2 + iϵ] =

∫ 1

0
dxdy

2
D3 , (54)

com
D = x(k2 − s) + y

(
(p′ − k)2 −m2

)
+ (1 − x− y)

(
(p− k)2 −m2

)
+ iϵ. (55)

Utilizando que p2 = p′2 = m2, sendo m a massa do múon, somos capazes de obter

D = k2 − 2k · (y(p′ − p) + (1 − x)p) − xs+ iϵ. (56)

Então, com a definição de l := k − (y(p′ − p) + (1 − x)p), que representa o quadrimomento
k deslocado, conseguimos, a partir de Eq. (56), que

D = l2 − ∆ + iϵ, (57)

onde ∆ = xs+m2(1 − x)2 — aqui, já foi feito uso de que q2 = 0, algo que precisa ser feito
porque, como antes, buscamos F2(q2 = 0).

Agora, partimos para analisar o numerador da integral em k da Eq. (53). Como ele
é igual ao numerador da Eq. (24), vamos adaptar o resultado dado na Eq. (35) à situação
física que estamos considerando aqui. Fazendo isso, e já selecionando o termo proporcional
a iσµνqν/2m, temos que o fator de forma F2(q2 = 0) é dado por

F2(q2 = 0) = 4ie2

π

∫ ∞

4m2
π±

ds

s
ImΠHV P (s)

∫ 1

0
dxdy

∫ d4l

(2π)4
2m2x(1 − x)

(l2 − ∆)3 . (58)

Para solucionar a integral em l, faremos uso do resultado dado na Eq. (38). Das integrais
em x e em y, resolveremos uma, de modo que, ao final, teremos apenas uma integral em
parâmetro de Feynman. Dessa forma, utilizando que e2 = 4πα e já identificando F2(q2 = 0)
como sendo aHVP,LO

µ , conforme a Eq. (21), ficamos com

aHVP,LO
µ = α

π2

∫ ∞

4m2
π±

ds

s
ImΠHVP(s)

∫ 1

0
dx

m2x(1 − x)2

xs+ (1 − x)2m2 . (59)

Utilizando o resultado dado na Eq. (52) — para que consigamos colocar a expressão
de aHVP

µ em termos de R(s) —, especificando que m é a massa do múon através do uso do
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(a) Dados experimentais (em azul) do observável
R(s).
Fonte: [14].

(b) Gráfico do kernel K(s) para valores entre
s = 0 e s = 3 GeV2.
Fonte: Elaborado pelo autor.

Figura 7: Gráficos importantes para análise de aHVP,LO
µ .

índice µ e fazendo a substituição x 7→ (1−x) na integral em x, temos finalmente o resultado

aHVP,LO
µ = α2

3π2

∫ ∞

4m2
π±

ds

s
R(s)

∫ 1

0
dx

x2(1 − x)
(1 − x) s

m2
µ

+ x2︸ ︷︷ ︸
K(s)

⇒ aHVP,LO
µ = α2

3π2

∫ ∞

4m2
π±

ds

s
R(s)K(s) ,

(60)
com K(s) uma função kernel — vide Figura 7b — a partir da qual se constata que a região
de baixas energias tem mais peso no contexto desta contribuição hadrônica, o que explica a
necessidade da aplicação de QCD não-perturbativa para sua compreensão.

4 O experimento MUonE

Como mencionado no final da Seção 3, o estudo da contribuição da polarização hadrô-
nica do vácuo ao momento magnético do múon exige aplicação de métodos não-perturbativos
de QCD, o que faz aHVP,LO

µ ter a maior incerteza teórica dentre todas as contribuições a
gµ − 2. Para contornar este problema, o experimento MUonE — atualmente em fase de tes-
tes no CERN — almeja obter tal contribuição de forma independente, a partir da análise do
espalhamento elétron-múon elástico. Esta seção objetiva expor alguns aspectos importantes
no que diz respeito a este experimento.

Já que a análise não dependerá mais da seção de choque σ(e+e− → hádrons), vamos
escrever a Eq. (60) em termos de ImΠHVP(s), usando para tanto a Eq (52). Teremos então

aHVP,LO
µ = α

π

∫ 1

0
dx(1 − x)

∫ ∞

4m2
π±

ds

s

x2

(1−x)m
2
µ

x2

(1−x)m
2
µ + s

ImΠHVP(s)
π

, (61)

onde um rearranjo foi feito para que, com uso da relação de dispersão dada na Eq. (50),
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(a) Diagrama de Feynman do espalhamento
elétron-múon. O quadrado do momento que
flui pela linha do fóton é negativo.
Fonte: Elaborado pelo autor.

(b) Integrando para se obter aHVP,LO
µ através da

Eq. (63). A área em cinza é a região prevista para
que o experimento MUonE cubra.
Fonte: [15].

Figura 8: Figuras importantes para discussão do experimento MUonE.

mas com k2 7→ t(x) = −x2m2
µ/(1 − x), possamos expressar a Eq. (61) da seguinte maneira:

aHVP,LO
µ = −α

π

∫ 1

0
dx(1 − x)ΠHVP(t). (62)

No domínio euclidiano, ou seja, para t < 0, podemos, a partir da Eq. (62), escrever que

aHVP,LO
µ = α

π

∫ 1

0
dx(1 − x)∆αhad[t(x)], (63)

onde usamos a relação ΠHVP(t) = −∆αhad(t) [13], sendo ∆αhad o chamado running do
acoplamento eletromagnético devido a contribuições hadrônicas.

O objetivo do experimento MUonE é medir a contribuição que HVP-LO dá a ∆αhad(t)
a partir da análise do espalhamento elétron-múon, dado no diagrama da Figura 8a, com
incerteza menor do que 1%. Esse grau de precisão é necessário para que os resultados do
experimento possam ser capazes de trazer algum esclarecimento no que diz respeito à tensão
entre aHVP

µ obtido através do método guiado por dados e os dados de QCD na rede e de
experimentos já existentes. Para tanto, medidas precisas dos ângulos de espalhamento do
elétron e do múon devem ser feitas para que, a partir delas, possa ser possível construir
a forma da seção de choque diferencial do espalhamento eµ. A partir dela, determina-se
∆αhad(t) através de um ajuste dos dados experimentais seguido da subtração das contribui-
ções eletrofracas (EW na Figura 8a) a ∆α(t), que são conhecidas com alta precisão.

O experimento planeja fixar a energia do feixe de emissão de múons a 150 GeV, o
que limitará superiormente o valor de momento transferido pelo fóton, t(x). Isso faz com
que aproximadamente 86% do intervalo de integração da Eq. (63) seja suprido com dados
experimentais [15] — vide Figura 8b. Os outros 14% exigirão a aplicação de métodos de
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extrapolação, como por exemplo os aproximantes de Padé, explorados na Ref. [15].

5 Conclusão

O objetivo principal deste trabalho foi deduzir a fórmula seminal que dá o comporta-
mento da contribuição da polarização hadrônica do vácuo ao momento magnético anômalo
do múon em termos de uma integral dispersiva do observável R(s). Além disso, expusemos
alguns detalhes teóricos que fundamentam o experimento MUonE, o qual almeja obter a
contribuição aHVP,LO

µ de forma independente, medindo o espalhamento eµ elástico.

Primeiramente, calculamos a correção de QED em O(α), dada pela troca de um fóton
virtual, a gµ − 2. Para isso, fizemos a aplicação das regras de Feynman ao diagrama da
Figura 4a, de onde se obtém uma expressão para Mµ, dada em termos de uma integral de
loop. Através de manipulações que envolveram uso de técnicas e identidades consagradas em
teoria quântica de campos — como a parametrização de Feynman e as identidades de Ward
e de Gordon —, esse quadrivetor foi colocado em termos de uma combinação linear de γµ e
de iσµνqν/2m, para que se extraísse, de acordo com a Eq. (19), a expressão dos fatores de
forma F1(q2) e F2(q2). Este último é de especial importância no contexto desta monografia
porque resulta, quando calculado para o fóton em sua camada de massa, no valor de aµ

associado ao diagrama em questão. No caso da troca de um fóton virtual, encontramos
F2(q2 = 0) = aµ = α/2π, resultado fundamental da Eletrodinâmica Quântica.

Em seguida, com a sequência de procedimentos para obtenção de aµ já tendo sido apre-
sentada, partimos para a análise da polarização hadrônica do vácuo em ordem dominante.
A amplitude do diagrama 4b foi determinada de forma análoga ao feito no caso da troca de
um fóton virtual a partir do emprego das regras de Feynman. Na análise deste diagrama,
no entanto, surgiu a necessidade de introduzir uma relação de dispersão para a função de
polarização ΠHVP, visto que queríamos relacioná-la com R(s) — observável experimental-
mente conhecido —, a fim de que pudéssemos obter uma fórmula guiada por dados. Com
isso, além de termos encontrado a fórmula seminal que dá a determinação de aHVP,LO

µ na
abordagem baseada em dados, determinamos uma importante propriedade da contribuição
HVP-LO: sua contribuição tem um peso maior na região de baixas energias, e isso obriga a
análise a ser feita com métodos não-perturbativos de QCD.

Por fim, expôs-se um pouco da fundamentação teórica que envolve o experimento MU-
onE, atualmente em fase de testes no CERN. Vimos que é possível colocar o resultado da
Eq. (60) em termos de ∆αhad[t(x)], o qual é obtido com um ajuste da seção de choque
diferencial do espalhamento eµ elástico. Espera-se que nos próximos anos, os dados obtidos
de forma independente pelo experimento MUonE possam melhorar a precisão teórica no
que diz respeito às contribuições hadrônicas — a HVP-LO, em particular —, e, portanto,
ajudem a esclarecer questões relativas à tensão existente entre o método guiado por dados
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e os atuais experimentos e resultados de QCD na rede no contexto do gµ − 2.
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