
17 

   
   Universidade de São Paulo 
  Escola de Engenharia de São Carlos 

Departamento de Engenharia Elétrica 

 
 

 
Trabalho de Conclusão de Curso 

 
 
 
 

TRATAMENTO DE MÚLTIPLOS 

SINAIS UTILIZANDO SISTEMA 

RTOS EMBARCADO 

 

 
Autor: 

Vitor Fressatti Mangueira 

 

 

Orientador: 

Prof. Dr. Carlos Dias Maciel 

 
 

 

 

 

 

 

 

 

São Carlos, Novembro de 2013 



18 

 

  



19 

VITOR FRESSATTI MANGUEIRA 
 

 

 

 

 

 

TRATAMENTO DE MÚLTIPLOS 

SINAIS UTILIZANDO SISTEMA 

RTOS EMBARCADO 

 
 
 
 
 

 

Trabalho de Conclusão de Curso  

apresentado à Escola de Engenharia de São 

Carlos da Universidade de São Paulo  

 

Curso de Engenharia Elétrica com ênfase em 

Sistemas de Energia e Automação 

 

ORIENTADOR: Prof. Dr. Carlos Dias Maciel 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

São Carlos 

2013 



20 

 

 

  



21 

  



22 

 

  



23 

DEDICATÓRIA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dedico este trabalho  

a minha esposa Camila que deu todo o incentivo e apoio possível  

assim como suportou todas as fases a que passamos. 

 

  



24 

 

  



25 

AGRADECIMENTOS 

 

Agradeço a todos meus familiares pelo apoio e incentivo na busca de meus 

objetivos.  

Ao meu orientador, Prof. Dr. Carlos Dias Maciel, pela compreensão e apoio 

durante a elaboração deste trabalho. Também, ao Laboratório de Processamento de 

Sinais (LPS) da Universidade de São Paulo (USP) pela colaboração durante este 

período. Em especial a Tales Santini por ceder parte do material usado e pelo auxílio 

prestado quanto ao conhecimento compartilhado. 

A todos os amigos com quem tive o prazer de conviver durante o período da 

graduação que foram muito importantes e todos que contribuíram de alguma forma 

direta ou indiretamente, fica aqui minha gratidão. 

  



26 

 

  



27 

Sumário 
 

 

Capítulo 1 - Introdução ..................................................................................... 15 

1.1 Motivação ............................................................................................ 15 

1.2 Objetivos ............................................................................................. 16 

1.3 Novos conhecimentos adquiridos ........................................................ 16 

1.4 Corpo do trabalho ................................................................................ 17 

Capítulo 2 – Referencial Teórico ...................................................................... 19 

2.1 Sistema Operacional de Tempo Real (RTOS) .................................... 19 

2.1.1 Definição .......................................................................................... 19 

2.1.2 Gerenciamento de tarefas ................................................................ 20 

2.1.3 Criticidade ........................................................................................ 21 

2.1.4 Escalonador ..................................................................................... 22 

2.1.5 Partilha de recursos ......................................................................... 24 

2.1.5.1 Mascaramento temporário (desabilitar interrupções) .................... 25 

2.1.5.2 Semáforos binários ....................................................................... 25 

2.1.5.3 Mensagens trocadas .................................................................... 26 

2.1.6 FreeRTOS ........................................................................................ 26 

2.2 Teorema de Nyquist ............................................................................ 28 

2.3 Conversores A/D e D/A ....................................................................... 31 

2.3.1 Conversores A/D .............................................................................. 31 

2.3.1.1 Paralelo......................................................................................... 32 

2.3.1.2 Aproximação sucessiva ................................................................ 35 

2.3.1.3 Contador ....................................................................................... 36 

2.3.1.4 Integrador ..................................................................................... 38 

2.3.2 Conversores D/A .............................................................................. 41 

2.3.2.1 Resistor ponderado ...................................................................... 41 

2.3.2.2 Rede R-2R .................................................................................... 42 

2.3.2.3 PWM ............................................................................................. 43 

Capítulo 3 - Materiais e métodos ...................................................................... 45 

3.1 Ferramentas ........................................................................................ 45 

3.1.1 Explorer16BR V1.1 ............................................................................ 46 

3.1.2 ICD2BR V1.1 ..................................................................................... 48 

3.1.3 PICTailPROTO V1.0 ............................................................................ 49 

3.1.4 Conversor USB-RS232 .................................................................... 50 

3.1.5 MPLAB ............................................................................................. 51 

3.1.6 RealTerm ......................................................................................... 53 



28 

 

3.1.7 LabVIEW .......................................................................................... 54 

3.1.8 Linguagem C .................................................................................... 55 

3.2 Casos de testes ................................................................................... 55 

3.2.1 1ª Etapa - Depuração ....................................................................... 55 

3.2.2 2ª Etapa – Sistema operacional ....................................................... 56 

3.2.3 3ª Etapa – Aplicação ........................................................................ 56 

Capítulo 4 – Resultados ................................................................................... 59 

4.1 1ª Etapa - Depuração .......................................................................... 59 

4.2 2ª Etapa – Sistema operacional de tempo real ................................... 60 

4.3 3ª Etapa – Aplicação ........................................................................... 62 

Capítulo 5 – Discussão e Conclusão ................................................................ 65 

Referências ...................................................................................................... 69 

 

 

  



29 

Índice de figuras 

 

Figura 1 - Camadas de interação de um sistema operacional intermediando o 
hardware do equipamento até a ação final do usuáio ...................................... 20 

Figura 2 - Função do sistema operacional no gerenciamento das tarefas para uso do 
processamento ................................................................................................. 21 

Figura 3 - Diferença do uso do resultado de uma tarefa após violar o tempo máximo 
para execução para sistemas de propósito geral, Crítico e Não-Crítico ........... 22 

Figura 4 – Atuação do escalonador no gerenciamento da fila de pronto.......... 23 

Figura 5 – Conceito básico sobre o Princípio da Amostragm mostrando a formação 
do sinal discreto gerado a partir de um análogico ............................................ 28 

Figura 6 – Demonstração de efeitos para diferentes frequências de amostragem
 ......................................................................................................................... 30 

Figura 7 - Conversor A/D tipo Paralelo ("Flash") .............................................. 33 

Figura 8 - Conversor A/D tipo Aproximação Sucessiva .................................... 35 

Figura 9 - Conversor A/D tipo contador ............................................................ 37 

Figura 10 - Conversor A/D tipo integrador com rampa simples ........................ 39 

Figura 11 - Conversor A/D tipo integrador com rampa dupla ........................... 40 

Figura 12 - Conversor D/A de 4 bits a resistores ponderados .......................... 42 

Figura 13 - Conversor D/A de 4 bits com rede R-2R ........................................ 42 

Figura 14 - Sinal PWM ..................................................................................... 43 

Figura 15 - Kit escolhido: Explorer16BR (A) e o programador ICD2BR (B), ambos da 
empresa Mosaico®. Conversor USB-RS232 da GigaWare® (C) ..................... 46 

Figura 16 - Explorer16BR V1.1 .......................................................................... 47 

Figura 17 - Plugin Explorer16BR PIC32MX460F512L-80I/PT USB ................. 47 

Figura 18 - Programador ICD2BR V1.1 ............................................................. 48 

Figura 19 - PICTailPROTO V1.0 .......................................................................... 49 

Figura 20 - Conversor USB-RS232 GIGAWARE ............................................. 50 

Figura 21 - MPLAB IDE v8.92 Utilizado apenas para programar o dispositivo . 51 

Figura 22 - MPLAB X IDE v1.90 Utilizado para desenvolver e compilar o código52 

Figura 23 - RealTerm: Serial Capture Program 2.0.0.70 .................................. 53 

Figura 24 - Exemplo de telas do LabVIEW....................................................... 54 

Figura 25 - Leitura 25 no A/D, comunicação serial e LED's ............................. 59 

Figura 26 - Leitura 156 no A/D, comunicação serial e LED's ........................... 60 

Figura 27 - Menu com FreeRTOS para valor mínimo do A/D........................... 61 

Figura 28 - Menu com FreeRTOS para valor de máximo do A/D ..................... 62 

Figura 29 - Sinal gerado por operação manual de um trimpot ......................... 63 

Figura 30 - Exemplo de comunicação utilizando o protocolo definido para 
identificação de múltiplos sinais ....................................................................... 63 

Figura 31 - Leitura de 3 sinais senoidais defasados entre si ............................ 64 
 

  

file:///D:/vitor/Vitor/USP/Disciplinas/SEL0442%20e%20SEL0444%20-%20Projeto%20de%20Formatura%20I%20e%20II/TCC%20Maciel/Texto/2013.11.25-1.docx%23_Toc373166141
file:///D:/vitor/Vitor/USP/Disciplinas/SEL0442%20e%20SEL0444%20-%20Projeto%20de%20Formatura%20I%20e%20II/TCC%20Maciel/Texto/2013.11.25-1.docx%23_Toc373166141
file:///D:/vitor/Vitor/USP/Disciplinas/SEL0442%20e%20SEL0444%20-%20Projeto%20de%20Formatura%20I%20e%20II/TCC%20Maciel/Texto/2013.11.25-1.docx%23_Toc373166142
file:///D:/vitor/Vitor/USP/Disciplinas/SEL0442%20e%20SEL0444%20-%20Projeto%20de%20Formatura%20I%20e%20II/TCC%20Maciel/Texto/2013.11.25-1.docx%23_Toc373166142
file:///D:/vitor/Vitor/USP/Disciplinas/SEL0442%20e%20SEL0444%20-%20Projeto%20de%20Formatura%20I%20e%20II/TCC%20Maciel/Texto/2013.11.25-1.docx%23_Toc373166143
file:///D:/vitor/Vitor/USP/Disciplinas/SEL0442%20e%20SEL0444%20-%20Projeto%20de%20Formatura%20I%20e%20II/TCC%20Maciel/Texto/2013.11.25-1.docx%23_Toc373166143
file:///D:/vitor/Vitor/USP/Disciplinas/SEL0442%20e%20SEL0444%20-%20Projeto%20de%20Formatura%20I%20e%20II/TCC%20Maciel/Texto/2013.11.25-1.docx%23_Toc373166144
file:///D:/vitor/Vitor/USP/Disciplinas/SEL0442%20e%20SEL0444%20-%20Projeto%20de%20Formatura%20I%20e%20II/TCC%20Maciel/Texto/2013.11.25-1.docx%23_Toc373166145
file:///D:/vitor/Vitor/USP/Disciplinas/SEL0442%20e%20SEL0444%20-%20Projeto%20de%20Formatura%20I%20e%20II/TCC%20Maciel/Texto/2013.11.25-1.docx%23_Toc373166145
file:///D:/vitor/Vitor/USP/Disciplinas/SEL0442%20e%20SEL0444%20-%20Projeto%20de%20Formatura%20I%20e%20II/TCC%20Maciel/Texto/2013.11.25-1.docx%23_Toc373166146
file:///D:/vitor/Vitor/USP/Disciplinas/SEL0442%20e%20SEL0444%20-%20Projeto%20de%20Formatura%20I%20e%20II/TCC%20Maciel/Texto/2013.11.25-1.docx%23_Toc373166146
file:///D:/vitor/Vitor/USP/Disciplinas/SEL0442%20e%20SEL0444%20-%20Projeto%20de%20Formatura%20I%20e%20II/TCC%20Maciel/Texto/2013.11.25-1.docx%23_Toc373166147
file:///D:/vitor/Vitor/USP/Disciplinas/SEL0442%20e%20SEL0444%20-%20Projeto%20de%20Formatura%20I%20e%20II/TCC%20Maciel/Texto/2013.11.25-1.docx%23_Toc373166148
file:///D:/vitor/Vitor/USP/Disciplinas/SEL0442%20e%20SEL0444%20-%20Projeto%20de%20Formatura%20I%20e%20II/TCC%20Maciel/Texto/2013.11.25-1.docx%23_Toc373166150
file:///D:/vitor/Vitor/USP/Disciplinas/SEL0442%20e%20SEL0444%20-%20Projeto%20de%20Formatura%20I%20e%20II/TCC%20Maciel/Texto/2013.11.25-1.docx%23_Toc373166151
file:///D:/vitor/Vitor/USP/Disciplinas/SEL0442%20e%20SEL0444%20-%20Projeto%20de%20Formatura%20I%20e%20II/TCC%20Maciel/Texto/2013.11.25-1.docx%23_Toc373166152
file:///D:/vitor/Vitor/USP/Disciplinas/SEL0442%20e%20SEL0444%20-%20Projeto%20de%20Formatura%20I%20e%20II/TCC%20Maciel/Texto/2013.11.25-1.docx%23_Toc373166153
file:///D:/vitor/Vitor/USP/Disciplinas/SEL0442%20e%20SEL0444%20-%20Projeto%20de%20Formatura%20I%20e%20II/TCC%20Maciel/Texto/2013.11.25-1.docx%23_Toc373166155
file:///D:/vitor/Vitor/USP/Disciplinas/SEL0442%20e%20SEL0444%20-%20Projeto%20de%20Formatura%20I%20e%20II/TCC%20Maciel/Texto/2013.11.25-1.docx%23_Toc373166155
file:///D:/vitor/Vitor/USP/Disciplinas/SEL0442%20e%20SEL0444%20-%20Projeto%20de%20Formatura%20I%20e%20II/TCC%20Maciel/Texto/2013.11.25-1.docx%23_Toc373166156
file:///D:/vitor/Vitor/USP/Disciplinas/SEL0442%20e%20SEL0444%20-%20Projeto%20de%20Formatura%20I%20e%20II/TCC%20Maciel/Texto/2013.11.25-1.docx%23_Toc373166157
file:///D:/vitor/Vitor/USP/Disciplinas/SEL0442%20e%20SEL0444%20-%20Projeto%20de%20Formatura%20I%20e%20II/TCC%20Maciel/Texto/2013.11.25-1.docx%23_Toc373166158
file:///D:/vitor/Vitor/USP/Disciplinas/SEL0442%20e%20SEL0444%20-%20Projeto%20de%20Formatura%20I%20e%20II/TCC%20Maciel/Texto/2013.11.25-1.docx%23_Toc373166159
file:///D:/vitor/Vitor/USP/Disciplinas/SEL0442%20e%20SEL0444%20-%20Projeto%20de%20Formatura%20I%20e%20II/TCC%20Maciel/Texto/2013.11.25-1.docx%23_Toc373166160
file:///D:/vitor/Vitor/USP/Disciplinas/SEL0442%20e%20SEL0444%20-%20Projeto%20de%20Formatura%20I%20e%20II/TCC%20Maciel/Texto/2013.11.25-1.docx%23_Toc373166161
file:///D:/vitor/Vitor/USP/Disciplinas/SEL0442%20e%20SEL0444%20-%20Projeto%20de%20Formatura%20I%20e%20II/TCC%20Maciel/Texto/2013.11.25-1.docx%23_Toc373166162
file:///D:/vitor/Vitor/USP/Disciplinas/SEL0442%20e%20SEL0444%20-%20Projeto%20de%20Formatura%20I%20e%20II/TCC%20Maciel/Texto/2013.11.25-1.docx%23_Toc373166163
file:///D:/vitor/Vitor/USP/Disciplinas/SEL0442%20e%20SEL0444%20-%20Projeto%20de%20Formatura%20I%20e%20II/TCC%20Maciel/Texto/2013.11.25-1.docx%23_Toc373166164
file:///D:/vitor/Vitor/USP/Disciplinas/SEL0442%20e%20SEL0444%20-%20Projeto%20de%20Formatura%20I%20e%20II/TCC%20Maciel/Texto/2013.11.25-1.docx%23_Toc373166165
file:///D:/vitor/Vitor/USP/Disciplinas/SEL0442%20e%20SEL0444%20-%20Projeto%20de%20Formatura%20I%20e%20II/TCC%20Maciel/Texto/2013.11.25-1.docx%23_Toc373166166
file:///D:/vitor/Vitor/USP/Disciplinas/SEL0442%20e%20SEL0444%20-%20Projeto%20de%20Formatura%20I%20e%20II/TCC%20Maciel/Texto/2013.11.25-1.docx%23_Toc373166167
file:///D:/vitor/Vitor/USP/Disciplinas/SEL0442%20e%20SEL0444%20-%20Projeto%20de%20Formatura%20I%20e%20II/TCC%20Maciel/Texto/2013.11.25-1.docx%23_Toc373166168
file:///D:/vitor/Vitor/USP/Disciplinas/SEL0442%20e%20SEL0444%20-%20Projeto%20de%20Formatura%20I%20e%20II/TCC%20Maciel/Texto/2013.11.25-1.docx%23_Toc373166169
file:///D:/vitor/Vitor/USP/Disciplinas/SEL0442%20e%20SEL0444%20-%20Projeto%20de%20Formatura%20I%20e%20II/TCC%20Maciel/Texto/2013.11.25-1.docx%23_Toc373166170
file:///D:/vitor/Vitor/USP/Disciplinas/SEL0442%20e%20SEL0444%20-%20Projeto%20de%20Formatura%20I%20e%20II/TCC%20Maciel/Texto/2013.11.25-1.docx%23_Toc373166170
file:///D:/vitor/Vitor/USP/Disciplinas/SEL0442%20e%20SEL0444%20-%20Projeto%20de%20Formatura%20I%20e%20II/TCC%20Maciel/Texto/2013.11.25-1.docx%23_Toc373166171


30 

 

  



31 

RESUMO 

 

MANGUEIRA, V. F. Tratamento de múltiplos sinais utilizando sistema RTOS 

embarcado. 2013. Trabalho de conclusão de curso – Escola de Engenharia de São 

Carlos, Universidade de São Paulo, São Paulo, 2013. 

 

Vários aplicações necessitam de uma análise de sinais mais apurada. Este trabalho 

propõe a elaboração de um dispositivo de aquisição de dados para tratamento de 

múltiplos sinais. Utilizando-se do sistema operacional FreeRTOS embarcado, novas 

vantagens são adicionadas aprimorando sua utilização, como: gerenciamento de uso 

do hardware, excelente algoritmo para o escalonador, facilidade de manutenção e 

portabilidade, inserção de novas tarefas adicionando  recursos ao dispositivo 

(operações, filtros, transformadas, etc), entre outras. Também o fácil manuseio na 

definição do número total de sinais a serem analisados e inclusão de protocolos para 

comunicação serial, se necessário.  

 

Palavras-chave: Aquisição de dados, FreeRTOS, Microcontrolador, RTOS, Sistema 

Operacional Embarcado. 

  



32 

 

  



33 

ABSTRACT 

 

MANGUEIRA, V. F. Treatment of multiple signals using embedded RTOS system. 

2013. Trabalho de conclusão de curso – Escola de Engenharia de São Carlos, 

Universidade de São Paulo, São Paulo, 2013.  

 

Several applications require a more refined signal analysis. This work proposes the 

development of a data acquisition device for processing multiple signals. Using the 

embedded operation system FreeRTOS, new benefits are added enhancing their use, 

such as: managing hardware usage, excellent algorithm for the scheduler, 

maintainability and portability, inserting new tasks by adding resources to the device 

(operations, filters, transformed functions, etc.), and more. Also, the easy handling in 

defining the total number of signals to be analyzed and inclusion of protocols for serial 

communication, if needed. 

 

Keywords: Data Acquisition, Embedded Operational System, FreeRTOS, 

Microcontroller, RTOS 

  



34 

 



15 

Capítulo 1 - Introdução 
 

 

Várias aplicações se destinam à leitura de sinais de diversos sensores, por 

exemplo um carro com recursos modernos, que precisa receber múltiplas informações 

ao mesmo tempo como temperatura e oxigenação do motor, mistura de combustível, 

rotação das rodas, velocidade, ângulo da direção, freios, entre outras. 

Estes sinais podem possuir características diversas como formatos de ondas 

distintos, amplitude, frequência, protocolos diferenciados, etc. Ao longo do 

desenvolvimento, durante uma manutenção ou mesmo em casos específicos da 

aplicação torna-se necessário analisar estes sinais com mais detalhes, criar um log 

(registro ao longo do tempo do histórico de atividades) ou filtrá-los e/ou tratá-los com 

algum algoritmo determinado. 

Um dispositivo de aquisição de dados que consiga ser genérico a ponto de 

tratar vários sinais independentemente de sua natureza e ainda garantir que, mesmo 

em situações limite, consiga não ter qualquer tipo de perda pode ter um custo elevado. 

Isto se dá pelo fato de ser obrigado a possuir um hardware poderoso que consiga 

garantir a aquisição de sinais com frequência muito alta e um armazenamento 

suficientemente grande. Também deve-se considerar um tempo de desenvolvimento 

e principalmente testes a ponto de assegurar sua generalização. 

 

 

1.1 Motivação 

 

 

Este trabalho propõe-se a elaborar um sistema capaz de capturar e tratar sinais 

com diferentes características, de forma eficiente, fazendo com que não necessite de 

um hardware muito robusto e que seja de fácil utilização. Desta forma é possível 

reduzir o custo da ferramenta. Também propõe-se a utilizar plataformas open source 

como base (tanto hardware quanto firmware) e disponibilizar o código criado para a 

aplicação visando possíveis futuras alterações ou melhorias no mesmo. 

Para auxiliar no desenvolvimento e principalmente na futura melhoria ou 

utilização, o dispositivo funcionará em cima de um sistema operacional de tempo real 



16 

 

(RTOS). Assim, os recursos do hardware serão administrados pelo sistema 

operacional assim como a portabilidade será facilitada. A inserção de novas funções 

será de fácil acesso no código e não implicará em riscos de alterar alguma função já 

pré-estabelecida. 

Para o desenvolvimento deste trabalho será utilizado um hardware difundido 

no mercado e de fácil aquisição, o kit PIC Explorer16BR da MOSAICO®, versão 

nacional e licenciada do kit original Explorer16 da Microchip®. Com o foco sendo a 

aplicação desenvolvida, ou seja, em sua maior parte o código em si, o mesmo terá 

que possuir a maioria das rotinas sem vínculo ao hardware, bastando alterar pontos 

específicos que os direcionam e configurações gerais. 

  

 

1.2 Objetivos 

 

 

Este projeto tem por objetivos principais: 

 Criar um sistema de captura dos sinais de modo a armazenar o dado 

presente em cada sinal analisado de forma cíclica, na maior velocidade 

necessária, para não haver riscos de perdas. 

 Enviar apenas os dados relevantes para um dispositivo externo, como 

no caso deste trabalho, um computador para análise de dados e geração 

de gráficos. Porém, estes dados poderão ser enviados a qualquer outro 

dispositivo desde que atenda o mesmo padrão de comunicação. 

 Todo o sistema será baseado no gerenciamento de tarefas pelo sistema 

operacional presente, o FreeRTOS. 

 

 

1.3 Novos conhecimentos adquiridos 
 

 

A conclusão deste trabalho propõe o aprendizado acadêmico e prático de 

novas habilidades ao autor que poderão trazer muitos benefícios.  

Para começar existe toda a parte do desenvolvimento acadêmico com as 

etapas necessárias ao desenvolvimento do mesmo, envolvendo pesquisa, disciplina, 



17 

desenvolvimento técnico, aquisição da prática na escrita para trabalhos acadêmicos 

e apresentação pública. 

Outro ponto de aquisição de conhecimento está em trabalhar com um Sistema 

Operacional de Tempo Real – RTOS que até então não tinha sido utilizado pelo autor 

e é um assunto de muito interesse para o mesmo. Também foi acrescido a experiência 

em se trabalhar com uma nova família de microcontroladores PIC. 

 

 

1.4 Corpo do trabalho 

 

 

Este trabalho está dividido em 5 capítulos, sendo que no capítulo 2, discorre-

se sobre RTOS (uma das ferramentas principais), Teorema de Nyquist para 

processamento de amostragem e como é feita a conversão de sinais analógicos para 

digitais e vice-versa. 

No capítulo 3, é descrito todo o ferramental utilizado, desde os equipamentos a 

softwares e linguagens utilizadas. Também são discutidos os métodos a serem 

seguidos com a descrição dos testes planejados. No capítulo 4 serão apresentados 

os resultados obtidos nos testes. 

No capítulo 5 é feita a discussão dos resultados, observações e conclusão do 

trabalho. Na sequência segue as referências. 

  



18 

 

  



19 

Capítulo 2 – Referencial Teórico 
 

 

2.1  Sistema Operacional de Tempo Real (RTOS) 

 

 

2.1.1 Definição 

 

 

A definição básica de um Sistema Operacional (SO) é que este tem por 

finalidade gerenciar os recursos de hardware (processamento, memória, entre outros) 

[1] e intermediar os usos dos mesmos com a camada de aplicação. Esta camada é 

onde está situado o código que se refere às funcionalidades. Assim, cada sistema 

possui tarefas específicas e determinadas para o equipamento em questão. Ainda 

podem existir, em alguns casos, uma camada superior, que é a do usuário, que 

corresponde à interação e tomada de ações externas pelo mesmo. 

Como exemplos temos o próprio sistema operacional mais difundido entre 

computadores, o Microsoft Windows® e também o MAC OS®. Nestes exemplos 

temos claramente as camadas, como ilustrado na Figura 1 (a), onde o equipamento 

corresponde ao hardware do computador, o sistema operacional é o Windows ou MAC 

OS propriamente dito, a aplicação são os softwares usados e a última camada são 

ações tomadas por usuários em sua interação, como digitação, cliques do mouse, etc.  

Porém, estes tipos de sistemas são desenvolvidos para atender uma demanda 

muito genérica, ou seja, são otimizados para executarem uma variedade de 

aplicações (não previstas pelo desenvolvedor) simultaneamente, garantindo que 

todas tenham seu direito de uso do processador por um tempo determinado. Deste 

modo, não são os mais indicados para executarem aplicações que necessitem de um 

desempenho determinístico, ou que ostentem um período maior sem ocorrência de 

falhas. Por fim, o sistema pode interromper tarefas com alta prioridade para executar 

novas tarefas mesmo que de baixa prioridade, tornando impossível assegurar um 

tempo de resposta constante em aplicações críticas. [1] 



20 

 

O fluxograma da Figura 1 (b) mostra a situação proposta por este trabalho no 

qual será elaborado um sistema que realiza a interface entre o hardware e o código 

de aplicação de forma autônoma e constante, sem contato com ações externas de 

usuários. 

Fonte: adaptado de [2] 

 

2.1.2 Gerenciamento de tarefas 
 

 

Um Sistema Operacional de Tempo Real (RTOS) também gerencia múltiplas 

tarefas, mas é projetado especialmente para rodar aplicações com extrema precisão 

e alto grau de confiabilidade [1].  A execução do sistema operacional destina-se a 

múltiplas tarefas onde o tempo é um elemento pré-definido e de alta relevância. 

Este tempo de resposta a um evento ou duração da resolução da tarefa é 

chamado de prazo da tarefa (ou em inglês, deadline). A perda deste prazo, ou seja, 

Figura 1 - Camadas de interação de um sistema operacional intermediando o hardware do equipamento até a 

ação final do usuáio 



21 

quando uma tarefa não é concluída no tempo proposto, indica uma falha no sistema, 

ora crucial, ora tolerável. 

Vale ressaltar um equívoco comum onde, pensa-se que um RTOS irá aumentar 

a velocidade de execução dos programas. Por mais que aconteça em alguns casos, 

o foco é a temporização precisa e previsível não importando se a velocidade da 

resposta é elevada ou não. 

São ambientes que não tem por prioridade a performance, mas sim o 

cumprimento das deadlines. Porém, mesmo com a ajuda no gerenciamento das 

tarefas, não necessariamente há garantia de cumprimento. A eficiência de um Sistema 

de Tempo Real – STR é analisada pela porcentagem de tarefas cumpridas dentro dos 

seus respectivos prazos determinados, não pela quantidade de dados que processa. 

 

2.1.3 Criticidade 

 

 

Os STR são classificados, basicamente, em: 

 Críticos (hard RTS) 

 Não-críticos (soft RTS) 

O STR Crítico é aquele que tem por obrigatoriedade o cumprimento do prazo 

para execução de uma tarefa (deadline). Caso violado este prazo, o resultado obtido 

Figura 2 - Função do sistema operacional no gerenciamento das tarefas para uso do processamento 

Tarefa 1 Tarefa 2 Tarefa 3 Tarefa 4 

Sistema Operacional 

CPU 



22 

 

pela tarefa torna-se obsoleto ou até inútil. “Todas as tarefas são provadas de executar 

no prazo” [3]. Como exemplo temos um freio ABS que necessita ser ultraconfiável, 

caso contrário poderá acarretar em acidentes. 

O STR Não-Crítico também tem a atenção focada nos prazos como algo 

fundamental, porém uma falha é aceitável. O não cumprimento do prazo para finalizar 

uma tarefa não causa danos irreversíveis, apenas um atraso. Nestes casos, o 

resultado de uma tarefa não torna-se inútil, mas pode perder sua validade ao longo 

do tempo. “A maioria das tarefas é executada no prazo” [3]. Como exemplo temos um 

leitor de DVD onde um atraso representa uma demora na aquisição dos dados, mas 

não necessariamente uma falha crítica. 

Fonte: traduzido e adaptado de [1] 

 

2.1.4 Escalonador 

 

 

“O elemento chave que diferencia um RTOS de um OS convencional é o 

escalonador.” [3]. Existem tipicamente dois tipos: 

Figura 3 - Diferença do uso do resultado de uma tarefa após violar o tempo máximo para execução para 

sistemas de propósito geral, Crítico e Não-Crítico 



23 

 Baseado na divisão do tempo, onde as tarefas se alternam de acordo 

com pulsos de clock do processador. 

 Baseado em eventos (escalonamento por prioridades), quando as 

tarefas são alternadas somente quando a necessidade de execução de 

uma prioridade mais alta sobrepõe a mais baixa. Tal fato denomina-se 

preemptividade. 

Também presente nos demais sistemas operacionais, os RTOS possuem uma 

fila para ser inseridas as tarefas que se encontram prontas para serem executadas, 

denominada de fila de prontos. Nota-se que não é executada qualquer tarefa 

indiscriminadamente, existem requisitos para tal e meios de informar sua prontidão 

quanto ao atendimento de requisitos. 

Fonte: adaptado de [4] 

 

Figura 4 – Atuação do escalonador no gerenciamento da fila de pronto 



24 

 

Os algoritmos de escalonamento podem ser classificados como estáticos ou 

dinâmicos. Estáticos tem como conceito as bases de divisão de tempo. Seus 

requisitos temporais tem que serem conhecidos previamente. O mais utilizado é o 

escalonamento por taxas monotônicas (rate monotonic scheduling – RMS). Este 

método é preemptivo e atribui prioridades fixas utilizando-se do número de vezes em 

um determinado tempo que uma tarefa é acionada, ou seja, quanto maior a frequência 

de execução, maior a prioridade. Com isto, gera-se um ciclo periódico de processos. 

Já os algoritmos dinâmicos não possuem prioridades fixas para as tarefas, 

alternando conforme a necessidade. O critério para decisão é o tempo de execução. 

O algoritmo mais comum é o “prazo mais curto primeiro” (Earliest Deadline First – 

EDF) que não necessita de periodicidade, ou seja, a cada ciclo podem haver número 

de tarefas prontas diferentes. 

A maior vantagem do EDF vem do fato de deixar a CPU sempre ocupada, mas 

em contrapartida torna o desenvolvimento do código mais trabalhoso e complexo. 

Para aumentar a taxa de sucesso do cumprimento das tarefas, é necessária a 

otimização dos escalonadores. É comum buscar a utilização direta dos recursos de 

hardware (clock, interrupções, etc) assim como dividir as tarefas em ações menores 

para facilitar a priorização. 

 

 

2.1.5 Partilha de recursos 

 

 

Existem recursos do sistema que podem ser utilizados por várias tarefas. Por 

exemplo, a leitura de um único sensor de temperatura interna de um forno que produz 

cerâmicas especiais pode ser usado por tarefas como determinar a intensidade do 

aquecedor ou a velocidade da esteira de produção, entre outras. Ainda mais crítico, 

aliado a isto, uma tarefa de alarme com alta prioridade que garante a segurança em 

caso de superaquecimento. 

“A partilha de recursos é delicada de se usar num ambiente multitarefas, (…) 

Quando uma tarefa está a utilizar um dado recurso, a ler, ou a escrever, convém 

bloquear as outras tarefas de utilizarem esse mesmo recurso” [5]. Existem alguns 

métodos para serem utilizados a fim de obter uma partilha eficiente dos recursos, 



25 

como: Mascaramento temporário (desabilitar interrupções), Semáforos Binários e 

Mensagens Trocadas. 

 

 

2.1.5.1 Mascaramento temporário (desabilitar interrupções) 

 

 

Este método consiste basicamente em desabilitar, temporariamente, os 

serviços de atendimento às interrupções por parte do processador. Assim, uma tarefa 

ignora algum estado crítico do sistema até o fim de sua execução, obtendo o 

monopólio temporário de um determinado recurso. 

Este método faz com que as interrupções demorem mais para serem atendidas, 

o que pode acrescer de um risco de falhas para sistemas que se baseiam no 

atendimento imediato. 

 

 

2.1.5.2 Semáforos binários 

 

 

Semáforos tem por função indicar o bloqueio e desbloqueio de algum 

determinado recurso. Quando uma tarefa necessita de um recurso que tem chance 

de ser compartilhado, esta pode bloqueá-lo. Todas as tarefas que se utilizam deste 

recurso devem primeiro verificar o estado de bloqueio para o mesmo, caso esteja 

bloqueado, a tarefa pode não se utilizar deste recurso e executar outras funções (caso 

não seja determinante), não ser executada (o uso do recurso é a função principal da 

tarefa) ou apenas esperar que o recurso seja desbloqueado. 

Alguns problemas podem surgir decorrente do método relacionado a semáforos 

tais como a prioridade invertida e o entrave. 

A prioridade invertida ocorre quando uma tarefa de baixa prioridade é acionada 

e bloqueia o uso do recurso. Em seguida, uma tarefa de alta prioridade é acionada, 

porém é obrigada a esperar até que o recurso seja desbloqueado pela tarefa de baixa 

prioridade. Uma alternativa é atribuir uma prioridade elevada, temporariamente, para 

a tarefa que está bloqueando o recurso. Isto faz com que a mesma seja resolvida mais 



26 

 

rapidamente, forçando então, o desimpedimento do recurso da forma mais rápida 

possível. 

O outro problema citado, o entrave, acontece quando há uma cadeia de 

semáforos em tarefas que se utilizam de mais de um recurso compartilhado, criando 

uma espera infinita pelos desbloqueios dos recursos. “Se uma tarefa A bloquear o 

semáforo F1 e depois esperar pelo desbloqueio do semáforo F2, e uma tarefa B 

estiver bloqueada no semáforo F1 para desbloquear o semáforo F2, cria-se um 

entrave” [5]. 

 

 

2.1.5.3 Mensagens trocadas 

 

 

Um recurso tem sua gestão feita apenas por uma tarefa capaz de responder a 

perguntas sobre o estado atual de sua utilização. Quando outras tarefas necessitam 

do mesmo recurso, são feitas perguntas sobre seu estado atual. As respostas podem 

ser binárias do tipo ocupado/desocupado ou mais elaboradas com estados 

intermediários prevendo um possível tempo para liberação das mesmas.  

Mensagens também podem ser enviadas solicitando o desbloqueio do recurso, 

para o caso de uma tarefa de maior prioridade requisitar seu uso. Utilizando de 

mensagens com indicações intermediárias dos processos, é possível criar um sistema 

que, através de cálculos estatísticos, preveja se o tempo restante necessário para a 

liberação do recurso é suficiente para não atrapalhar a deadline do processo de maior 

prioridade, fazendo com que ambas as tarefas sejam atendidas satisfatoriamente.  

Através deste método são evitados os problemas de não atendimento de 

tarefas como no método de mascaramento temporário e também os problemas de 

entrave que podem surgir com o uso de semáforos, tornando o sistema mais estável. 

 

 

2.1.6 FreeRTOS 

 

 

FreeRTOS é o RTOS líder de mercado atualmente e foi desenvolvido pela Real 

Time Engineers Ltd. É um sistema totalmente gratuito que pode ser usado em 



27 

produtos comerciais sem a necessidade de expor os códigos fonte proprietários 

desenvolvidos. Só tem por exigência a presença clara da referência nas 

documentações, assim segue o site para obtenção do mesmo: FreeRTOS.org. 

 

A principal característica é que o FreeRTOS é desenvolvido para ser pequeno 

o suficiente para rodar em microcontroladores. (…) Estes possuem recursos 

limitados em um processador que incorpora, em um único chip, o processador 

em si, memória de somente leitura (ROM – Read-Only Memory ou FLASH) 

para armazenar os programas que serão executados e memória de acesso 

aleatório (RAM – Random Access Memory) necessária para execução dos 

programas. [6 – Tradução direta] 

 

Microcontroladores geralmente são usados em aplicações embarcadas de 

baixo nível onde o usuário nunca de fato enxerga o processamento ou softwares 

sendo executados. São aplicações normalmente muito específicas. 

Aliado a isto e também devido a sua limitação de capacidade, raramente 

justifica-se a implementação de um sistema de tempo real completo (full RTOS) 

inclusive na maioria dos casos sendo até impossível. 

O FreeRTOS fornece o escalonamento de tempo real, comunicação entre as 

tarefas, temporização e sincronização. Funções adicionais podem ser incluídas 

através de complementos (add-on). O escalonador usado alcança o determinismo 

permitindo que o usuário atribua a prioridade para cada tarefa. 

O código fonte em C do sistema, possui um alto padrão de qualidade, sempre 

com uma supervisão estrita de seus desenvolvedores mantendo o padrão. Todos os 

códigos são extremamente testados antes de serem inclusos nos pacotes oficiais para 

download. 

É um sistema preparado para ser multi-plataforma, facilitando sua migração 

para famílias diferentes de microcontroladores. Assim, diminui os custos com novos 

desenvolvimentos ou esforço demasiado gasto para migração e mantém o código 

fonte útil por mais tempo. 

A Real Time Engineers Ltd. fornece um suporte gratuito, muita documentação 

com tutoriais e treinamentos, assim como disponibiliza códigos de exemplos para 

várias plataformas facilitando muito o início do projeto. 

 

 



28 

 

2.2 Teorema de Nyquist 

 

 

O Teorema de Nyquist é fundamental para a área que atua com teoria de 

informação, especialmente em processamento de sinais, como por exemplo, 

codificadores de sinais analógicos e aplicações em telecomunicações.  Tal 

importância se dá por ser um teorema que estabelece o critério adequado para a 

amostragem dos sinais. 

Amostrar significa transformar algum tipo de sinal (contínuo no tempo) em uma 

sequência numérica (discreto no tempo). O processo de amostragem é realizado 

medindo-se o valor do sinal contínuo em intervalos fixos de tempo T, que é chamado 

de intervalo de amostragem. O resultado é uma sequência de números (amostras) 

que representam o sinal original. 

Através do processo de amostragem, obtêm-se na saída um sinal com 

amplitude igual ao valor instantâneo do sinal de origem, chamados pulsos PAM 

(pulsos modulados em amplitude). 

Fonte: [8] 

Figura 5 – Conceito básico sobre o Princípio da Amostragm mostrando a 

formação do sinal discreto gerado a partir de um análogico 



29 

O teorema envolve duas etapas de processamento de sinais. Primeiro tem-se 

a amostragem para converter o sinal contínuo em discreto. Em seguida o processo de 

reconstrução do sinal original a partir da recuperação das informações discretas 

adquiridas na primeira etapa. 

 

"Seja um sinal, limitado em banda, e seu intervalo de tempo dividido em 

partes iguais, de forma que se obtenham intervalos tais que, cada subdivisão 

compreenda um intervalo com período T segundos, onde T é menor do que 

1/2*fm, e se uma amostra instantânea é tomada arbitrariamente de cada 

subintervalo, então o conhecimento da amplitude instantânea de cada 

amostra somado ao conhecimento dos instantes em que é tomada a amostra 

de cada subintervalo contém toda a informação do sinal original." [7 – 

Tradução direta] 

 

De acordo com o Teorema de Nyquist, a quantidade de amostras no tempo 

(frequência de amostragem) deve ser maior ou igual ao dobro da maior frequência 

contida no sinal a ser amostrado, para que possa ser reproduzido integralmente. 

Como não é possível garantir que o sinal não contenha sinais acima da 

frequência estipulada pelo teorema, é necessário aplicar uma filtragem no sinal com 

algum filtro do tipo passa-baixa ajustado para a frequência de corte igual (ou menor) 

que a Frequência de Nyquist. 

Todo meio de comunicação possui uma banda específica que por muitas vezes 

é bem limitada, o que força a transmissão de amostras de sinais ser restrita. Quanto 

maior for a frequência de amostragem, mais fácil será reproduzir o sinal, porém pode 

haver um desperdício de banda ocupada sem nenhuma melhoria na qualidade.  



30 

 

Fonte: [8] 

 

Na Figura 6 são mostrados os efeitos da amostragem quando se aplica taxas 

próximas ao limite previsto pelo teorema. Na parte superior a frequência de 

amostragem (fam) é maior que duas vezes a do frequência do sinal original (f). É 

possível notar que uma reconstrução ocorre sem erros pois possui amostras 

suficientes. 

No gráfico intermediário a fam é igual a duas vezes a frequência do sinal, tal 

fato não garante que possa ser realizada a reprodução pois, como no exemplo, 

existem casos que o sinal PAM vale zero. Esta importante exceção marca a 

contribuição de Shannon ao estudo que por muitos consideram como Teorema de 

Nyquist-Shannon. Assim, para Shannon a frequência de amostragem deve ser apenas 

maior que o dobro da maior frequência contida no sinal a ser amostrado 

Já na parte inferior, a fam é menor que o dobro de f. A reconstrução do sinal é 

errônea devido ao insuficiente número de amostras, como mostrado na curva em 

vermelho. Este erro é causado pelo fenômeno conhecido por aliasing. 

Figura 6 – Demonstração de efeitos para diferentes frequências de amostragem 



31 

 

 

2.3 Conversores A/D e D/A 

 

 

Conversor analógico/digital ou ADC (do inglês analog-to-digital converter) é um 

dispositivo eletrônico que, a partir de uma grandeza analógica, consegue gerar um 

sinal digital que o represente. 

Em sentido reverso temos os conversores digital/analógico que recompõem um 

sinal analógico a partir de um sinal digital discreto em amplitude com 2N níveis. Esse 

sinal gerado a partir do sinal discreto é considerado analógico quando tem-se um valor 

de N muito grande, ou seja, amostras suficientes para não descaracterizar o sinal. 

As principais características dos conversores que precisam ser levadas em 

conta são:  

 Tempo de conversão: duração do tempo necessário entre a chegada de 

um sinal na entrada e seu respectivo valor convertido na saída. 

 Taxa de conversão: valor que indica quantas vezes por segundo um 

sinal é convertido. 

 Resolução N: menor variação do sinal de entrada que causa um 

(de)incremento unitário no valor da saída. Quanto maior for a quantidade 

de níveis discretos de um sinal, melhor será a reprodução 

 

 

2.3.1 Conversores A/D 
 

 

São muito úteis na interface entre dispositivo digitais (microprocessadores, 

microcontroladores, DSPs, etc) e dispositivos analágicos [9]. Fundamental a 

importância em um projeto de interfaces para aquisição de dados, como este trabalho 

se propõe. 

Uma grande vantagem do tratamento de sinais na forma digital é a maior 

imunidade ao ruído, o que também deixa o armazenamento de dados com uma maior 

facilidade. 



32 

 

O primeiro passo para se realizar a conversão de um sinal analógico para um 

digital é a amostragem e retenção realizadas por circuitos SH (sample and hold). Estes 

circuitos garantem que a amostra não se altere até o fim da conversão. Vale lembrar 

que pelo critério de Nyquist, a frequência de amostragem deve ser igual ou maior do 

que o dobro da banda de frequência do sinal amostrado. 

Podem ser classificados em dois grandes grupos que são à Frequência de 

Nyquist e sobre-amostrados. Os mais utilizados se enquadram no primeiro grupo do 

qual serão explanados os principais tipos que são o paralelo, aproximações 

sucessivas, contador e integrador de rampa simples e dupla. 

 

 

2.3.1.1 Paralelo 

 

 

Consiste em comparar, simultaneamente, a tensão de entrada analógica com 

as tensões fixas de referências. O número de comparadores e referências necessárias 

são (2N -1), ou seja, para um conversor paralelo de 3 bits, são necessários sete 

comparadores e tensões de referência. 

 



33 

Fonte: [10] 

 

Cada comparador usa como entrada a tensão que irá ser convertida e uma 

tensão de referência única que é obtida a partir de uma malha de resistores. O objetivo 

Figura 7 - Conversor A/D tipo Paralelo ("Flash") 



34 

 

desta malha é determinar vários intervalos de tensões a fim de encontrar em quais o 

sinal está inserido. 

Com um determinado valor obtido do sinal a ser convertido, todos os 

comparadores que tiverem uma tensão de referência menor que a do sinal de entrada 

terão como saída um nível baixo, os demais nível alto. Assim temos na saída dos 

comparadores o chamado código termômetro. 

Podemos então utilizar um codificador na saída para obter o código binário 

correspondente como mostra a Tabela 1. 

 

Tabela 1 - Tabela código termômetro X binário 

Nível Código Termômetro Código Binário 

0 0000000 000 

1 0000001 001 

2 0000011 010 

3 0000111 011 

4 0001111 100 

5 0011111 101 

6 0111111 110 

7 1111111 111 

Fonte: [10] 

 

A maior vantagem do conversor A/D paralelo é sua rapidez de conversão. O 

fato de todas as comparações serem feitas simultaneamente o torna o mais rápido de 

todos os tipos conversores. Para fazer jus a vantagem, normalmente tenta-se sempre 

o manter atualizado quanto a versões mais novas e rápidas de uma determinada 

tecnologia. 

São comumente utilizados no processamento de sinais de alta frequência, 

como sinais de vídeo. É possível ter a conversão efetuada em apenas um ciclo de 

clock, porém é habitual efetuar em 2 ciclos, onde em um ciclo é amostrado o sinal, 

comparado e retido e no segundo ciclo é feita a operação de codificação. De qualquer 

forma, o conversor é extremamente rápido. 

A desvantagem deste conversor paralelo é o aumento do número de 

comparadores e a complexidade do codificador da saída conforme for necessária uma 



35 

resolução maior. O grande número de componentes aumenta o custo, a área de silício 

e o consumo de potência. 

 

 

2.3.1.2 Aproximação sucessiva 

 

 

Este tipo de conversor A/D é muito utilizado comercialmente, pois é o que mais 

se aproxima da velocidade do tipo paralelo, porém sem suas desvantagens em 

relação ao aumento de componentes citado anteriormente. Utiliza-se de uma técnica 

de realimentação para relacionar a entrada analógica a um código digital de saída. 

Fonte: [10] 

 

Figura 8 - Conversor A/D tipo Aproximação Sucessiva 



36 

 

No início do processo de conversão o Shift Register e o Holding Register são 

zerados. Atribui-se nível lógico 1 apenas no bit mais significativo do Holding Register 

e o restante em nível lógico 0. Realiza-se a comparação com o sinal de entrada. Se a 

saída ainda for menor que a entrada, este bit é mantido em nível lógico 1, caso 

contrário muda-se para nível lógico 0. O mesmo processo é feito agora para o segundo 

bit mais significativo. O processo continua até que todos os bits tenham sido 

verificados, de acordo com a resolução N desejada. 

Apesar de não ser tão rápido quanto a conversão quase instantânea do tipo 

parapelo, o conversor por aproximação sucessiva também é bem versátil onde o 

tempo de conversão necessário é fixo e de (N+2) ciclos de clock e permite maiores 

resoluções sem o aumento expressivo dos componentes. 

 

 

2.3.1.3 Contador 
 

 

Este tipo de contador é bastante simples, de baixo custo e fácil implementação. 

Porém exige um número maior de ciclos de clock para se chegar ao fim de cada 

conversão. 



37 

 

Figura 9 - Conversor A/D tipo contador 

Fonte: [10] 

 

 

A cada conversão, o valor do sinal de entrada armazenado no S/H é comparado 

com um valor que é incrementado unitariamente até que atinja o mesmo valor do sinal 

de entrada. O tempo é variável e pode ser demorado caso o valor da entrada esteja 

na outra extremidade da contagem do incrementador. 

Como citado anteriormente, apesar de sua simplicidade, a sua desvatangem 

encontra-se em ter que varrer um valor incremental a cada nova conversão e ter este 

tempo variável. Mas uma boa vantagem é a possibilidade de uma alta resolução, 

assim é indicado quando se precisa relacionar boa resolução com uma taxa de 

conversão moderada. 

 

 



38 

 

2.3.1.4 Integrador 

 

 

Para este tipo de conversor existem várias formas de implementação do circuito 

lógico, porém o conceito básico é sempre integrar a entrada e obter como saída o 

número de ciclos executados pelo processo, onde através de um contador binário 

consegue a saída digital. 

Não é o tipo mais rápido de conversor devido ao tempo necessário para 

completar a rampa (explicado posteriormente) mas permite uma alta resolução a um 

baixo custo, com uma característica importante que os diferenciam dos demais tipos 

de conversores, a boa rejeição a interferências ou ruído. 

O funcionamento é relativamente simples, com o contador e integrador 

zerados, a saída do comparador fica em nível lógico 0, habilitando os pulsos de clock. 

Liberando o pino de reset, o integrador começa a produzir a rampa linear em função 

de RC, também começa a ser incrementado o contador até que o valor da rampa se 

iguale a tensão de referência. Neste ponto o contador para de contar e tem-se no latch 

a saída digital correspondente ao número de pulsos acumulados no contador. 



39 

Fonte: [10] 

 

Este formato de rampa simples tem por desvantagem a dependência da 

constante de tempo RC e o offset do comparador. Para evitar estas desvantagens é 

utilizada uma aplicação ligeiramente diferente com um integrador de rampa dupla. 

O processo de conversão agora possui duas fases. Na primeira, idêntica ao 

método de rampa simples, o integrador fornece um sinal crescente linear em função 

de RC. Mas agora, ao atingir o mesmo valor do sinal de referência, o sinal de entrada 

do integrador passa a ser a referência, não mais o sinal a ser convertido. Assim, o 

Figura 10 - Conversor A/D tipo integrador com rampa simples 



40 

 

integrador agora fornece um sinal, também linear, mas desta vez decrescente até este 

sinal atingir o valor igual a zero. 

Com o método da rampa dupla, o tempo medido pelo contador não mais 

depende da constante de tempo RC do integrador, assim como também não sofre 

nenhum erro devido a algum offset presente. 

 

Fonte:[10] 

 

 

 

Figura 11 - Conversor A/D tipo integrador com rampa dupla 



41 

2.3.2 Conversores D/A 

 

 

Um sinal sendo originalmente digital ou quando provém de uma conversão 

prévia, depois de digitalizado, é processado e, na maioria das vezes, será utilizado 

para atuar sobre o circuito analógico que gerou o sinal original, ou até mesmo sobre 

outro circuito. Para tal, é necessário que o sinal seja previamente convertido (ou 

reconvertido) para a forma analógica. Quanto mais bits conter o sinal de entrada 

digital, ou seja, quanto maior a resolução N, melhor será o resultado do sinal analógico 

devido a maior precisão. 

Como exemplo, temos um tocador de CD que converte as informações digitais 

contida no disco para a forma analógica gerando o som nos falantes. Ou um sistema 

de controle realimentado, onde recebe uma informação analógica de um sensor, 

converte para digital para o processamento e, por fim, é reconvertido em analógico 

para atuar no mesmo sistema. Há três tipos comuns de conversores D/A: resistor 

ponderado, rede R-2R e PWM. 

 

 

2.3.2.1 Resistor ponderado 

 

 

Cada bit do sinal digital é ligado a uma respectiva chave associada a um resistor 

ponderado. A soma de todas as chaves acionadas compõe uma tensão proporcional 

ao seu valor. A ponderação do valor dos resistores equivale a significância de cada 

bit. 

A desvantagem deste conversor é a dificuldade em encontrar os valores ideais 

dos resistores, necessitando por várias vezes realizar associações dos resistores para 

alcançar os valores desejados. Isto faz com que não seja muito usado. 



42 

 

Fonte: [11] 

2.3.2.2 Rede R-2R 

 

 

Diferente dos resistores ponderados, este tipo utiliza apenas dois valores de 

resistores, ou até apenas um usando de uma associação se for possível. Tal fato torna 

este conversor bem versátil. A lógica de operação é semelhante ao tipo resistor 

ponderado. 

Fonte: [11] 

Figura 12 - Conversor D/A de 4 bits a resistores ponderados 

Figura 13 - Conversor D/A de 4 bits com rede R-2R 



43 

2.3.2.3 PWM 

 

 

São bastante usados em microcontroladores de fácil implementação por código 

alterando-se portas com pouca complexidade. Basicamente, gera-se um sinal com 

período constante T, amplitude constante E e duração de pulso programável 

digitalmente . 

O valor de tensão médio é correspondente ao valor digital programado em . A 

desvantagem é o tempo de resposta pois necessita sempre do período completo para 

se obter um valor médio. 

 

Figura 14 - Sinal PWM 

Fonte: [11] 

  



44 

 

  



45 

Capítulo 3 - Materiais e métodos 
 

 

3.1 Ferramentas 

 

 

A fim de economizar tempo de projeto, custo de produção e esforço para 

aprovar o pleno funcionamento do hardware, evitou-se desenvolver um projeto de 

específico para o trabalho. Além de contar com possíveis mudanças e/ou melhorias 

ao longo do trabalho que poderiam acarretar em novos tempos de produção de placas. 

Visto isto, foi escolhido o uso de um kit de desenvolvimento microcontrolado a 

fim de tornar o trabalho bem versátil e facilitar algumas aplicações pois disponibiliza 

de forma bem acessível a maioria dos recursos do microcontrolador, como por 

exemplo LED’s para facilitar a sinalização durante o desenvolvimento, botões, saída 

serial ou leitura de um canal de conversão análogico-digital (AD). 

Assim, há opções prontas e consolidadas de mercado que, durante o processo 

de aprendizado e desenvolvimento, tornam mais fáceis executar as primeiras 

configurações e testes de algo que será útil para aplicação final. 

O kit foi escolhido por ser bem completo, possuir boa documentação e haver 

alguns membros do laboratório com experiência na família de microcontroladores que 

poderiam auxiliar o autor quando necessário. 



46 

 

 

 

OBS: A impressão LabTools® nas placas representam a divisão de produtos 

didáticos da empresa Mosaico®, que atualmente foi novamente integrada junto com 

Hiware® (divisão tecnológica) e operadas somente por Mosaico®. Todas as placas  

são ferramentas licenciadas pela Microchip®, garantindo assim a compatibilidade com 

qualquer outro Plugin ou periférico produzido pela mesma. 

 

 

3.1.1 Explorer16BR V1.1 

 

 

O kit é composto de uma placa-mãe que recebe o nome de Explorer16BR V1.1, 

versão nacional da empresa Mosaico® para a placa Explorer16 original produzida pela 

empresa Microchip®. Também faz parte do kit a placa-filha, denominada de “plugin”, 

onde está de fato o microcontrolador.  

Figura 15 - Kit escolhido: Explorer16BR (A) e o programador ICD2BR (B), ambos da empresa Mosaico®. 

Conversor USB-RS232 da GigaWare® (C) 

A 

B 

C 



47 

 

 

 

Existem alguns modelos de plug-ins disponíveis, o escolhido foi o “Plugin 

Explorer16BR PIC32MX460F512L-80I/PT USB” da Mosaico®. Este placa conta com 

um microcontrolador de 32 bits PIC, modelo PIC32MX460F512L. Ideal para resolução 

de problemas complexos como execução de RTOS [12], que é o escopo deste 

trabalho. 

Fonte: [12] 

Figura 16 - Explorer16BR V1.1 

Figura 17 - Plugin Explorer16BR PIC32MX460F512L-80I/PT USB 



48 

 

O microcontrolador presente nesta CPU é o PIC32MX460F512L que pode 

trabalhar até 80Mhz/105GMIPS. Possui 512K de memória Flash e 32K de RAM. Uma 

característica importante são os rápidos e precisos conversores analógico-digital com 

16 canais de 10-bit. 

 

 

3.1.2 ICD2BR V1.1 

 

 

O programador que compõe o kit utilizado é o ICD2BR V1.1 da Mosaico® que 

segue o mesmo padrão das placas anteriores que é uma nova versão nacional gerada 

baseada na original ICD2 da Microchip®. Comunica-se com o computador através de 

uma conexão USB. 

 

  

Figura 18 - Programador ICD2BR V1.1 



49 

3.1.3 PICTailPROTO V1.0 

 

 

Esta é uma placa expansora que dá acessos a quase todas as portas do 

microcontrolador liberando seu uso independente do sistema didático ligado a mesma 

presente na placa-mãe. Assim, por mais que alguma porta esteja ligado a um LED na 

placa-mãe, por exemplo, é possível desativá-lo e ter livre acesso para qualquer outro 

fim que queira usando esta PICTail. 

O modelo utilizado foi o PICTail PROTO V1.0 também da Mosaico® licenciada 

pela Microchip®. Junto à pinagem, que é disponibilizada para acesso às portas, há 

também, uma área de pontos de encaixe e solda semelhantes a uma protoboard, 

facilitando pequenas montagens de circuitos que possam ser necessárias, evitando, 

assim, elaboração de placas externas ou outras protoboards interligadas. 

 

  

Figura 19 - PICTailPROTO V1.0 



50 

 

3.1.4 Conversor USB-RS232 

 

 

Esta é uma ferramenta útil para usos em que , por exemplo, o computador não 

possui uma porta serial com conector DB9. O kit Explorer16BR conta com uma porta 

serial RS232 que é usada no projeto para comunicar com o computador que irá montar 

os sinais. Para tal, utiliza-se este conversor para acessar a porta USB do computador. 

O modelo usado foi do fabricante GigaWare que possui chipset Prolific PL2303. 

É importante citar que houve uma certa dificuldade em encontrar os drivers corretos e 

fazer o dispositivo funcionar com o Windows 8 da Microsoft®, sistema operacional 

utilizado pelo autor. 

 

  

Figura 20 - Conversor USB-RS232 GIGAWARE 



51 

3.1.5 MPLAB 

 

 

Software indicado e desenvolvido pela Microchip® para programação e 

compilação de microcontroladores PIC. Inicialmente foi utilizado a versão MPLAB IDE 

v8.92 por ser compatível com os dispositivos utilizados. Assim, neste software é 

possível compilar o projeto e já programar o dispositivo ou depurar o código 

diretamente pelo mesmo. 

 

 

Figura 21 - MPLAB IDE v8.92 Utilizado apenas para programar o dispositivo 



52 

 

 

Posteriormente, foi necessário a migração para a versão MPLAB X IDE v1.90, 

por ser recente e possuir vários novos recursos que auxiliam no desenvolvimento, 

como uma interface remodelada, recursos de interação com o desenvolvedor e 

possibilidade de inserção de plug-ins e novos motores de compilação. A necessidade 

surgiu ao tentar rodar códigos de demonstrações do sistema operacional que exigiam 

esta nova versão.  

 

 

 

Figura 22 - MPLAB X IDE v1.90 Utilizado para desenvolver e compilar o código 



53 

Porém, essa versão não é compatível com o programador ICD2BR utilizado. Por 

consequência, foi preciso gerar um arquivo de saída no formato hexadecimal pelo 

compilador MPLAB X IDE 1.90 (mais novo). Após compilado, acessar o software 

MPLAB IDE v8.92 (mais antigo), importar este arquivo hexadecmal e gravar no 

dispositivo. 

 

 

3.1.6 RealTerm 

 

 

É um software que atua como um terminal para monitoramento de 

comunicações seriais. É possível escolher quais das portas disponíveis serão 

monitoradas e mostrar as informações de diversas formas como binário, hexadecimal 

ou ASCII, por exemplo.  

Também é possível enviar dados para o dispositivo conectado e criar logs. Este 

software foi bastante utilizado para testar toda a comunicação serial do projeto. A 

versão utilizada foi: RealTerm Serial Capture Program v2.0.0.70. 

 

  

Figura 23 - RealTerm: Serial Capture Program 2.0.0.70 



54 

 

3.1.7 LabVIEW 

 

 

LabVIEW (do inglês Laboratory Virtual Instrument Engineering Workbench) é 

uma plataforma de projeto gráfico e desenvolvimento para sistemas de medição, teste 

e controle, produzido pela empresa National Instruments. A programação é feita 

seguindo o modelo de fluxo de dados. 

Os “programas” em LabVIEW são denominados de instrumentos virtuais, ou 

VI’s (do inglês Virtual Instruments). Seu ambiente de desenvolvimento inclui o painel 

frontal, que contém a interface visível de operação do usuário, e o diagrama de blocos, 

onde é elaborado o código gráfico do programa por meios de blocos de funções e 

ligações. A linguagem gráfica do LabVIEW é conhecida como “G”. 

 

Figura 24 - Exemplo de telas do LabVIEW 



55 

3.1.8 Linguagem C 

 

 

A linguagem C é extremamente difundida quando se diz respeito a 

programação de microcontroladores. Isto se dá por ser uma linguagem de propósito 

geral que facilita interpretação e portabilidade dos códigos para diferentes 

plataformas, bastando apenas usar o compilador para cada caso, que será 

responsável por gerar o código adequado para cada dispositivo. 

Esta linguagem surgiu no centro de Pesquisas da Bell Laboratories criada por 

Dennis Ritchie em 1972 com o fim de reescrever o Sistema Operacional UNIX, que 

na época foi elaborado em Assembly. [13] 

 

 

3.2 Casos de testes 

 

 

Os testes planejados para o desenvolvimento do projeto vão desde simples 

códigos para familiarização com o ambiente e depuração do kit, passam por testes 

que serão base do funcionamento futuro até testes finais para validação da aplicação. 

 

 

3.2.1 1ª Etapa - Depuração 

 

 

Primeiramente, como já foi dito, serão realizados alguns testes básicos para 

familiarizar-se com o novo ambiente que envolve plataforma do microcontrolador 

(lógica interna do CI, forma de configuração dos registradores, etc), gravação do 

código, adaptação ao estilo da documentação, compilador, entre outros. 

Para os testes, será necessária instalação do ambiente de desenvolvimento e 

de todos os drivers relativos aos equipamentos. O primeiro passo é a configuração do 

microcontrolador e o teste inicial com LED’s, para verificar a configuração do timer e 

operação das portas. 

Após, configura-se uma leitura simples de um conversor AD ligado a um 

trimpot, presente no kit. Atribui-se o valor dos bits menos significativos a cada LED 



56 

 

(total de 8 disponíveis) verificando a contagem binária mostrada ao operar o trimpot, 

concluindo o sucesso da leitura analógica. 

O próximo passo será a comunicação serial, onde deve-se criar um menu que 

será enviado a um computador (utilizando o conversor USB-Serial) com o fim de 

receber comandos do mesmo. Quando solicitado deverá enviar mais informações 

contendo o valor atual da leitura AD previamente desenvolvida. 

Assim, tem-se os primeiros passos concluídos que, mesmo parecendo simples, 

são importantes pelo processo de familiarização, garantia de funcionamento do kit e 

preparação para a próxima etapa. 

 

 

3.2.2 2ª Etapa – Sistema operacional 

 

 

Nesta segunda etapa, deverá ser feita a implementação do FreeRTOS. 

Seguindo toda a documentação e com a junção de trechos de alguns exemplos, o 

microcontrolador deverá rodar alguma aplicação genérica que demostre o 

funcionamento correto do OS. Por exemplo, temporização visualizada por LED’s, 

resposta de botões, comunicação serial desde que garantida a funcionalidade advinda 

do OS. 

Com o FreeRTOS em pleno funcionamento, precisarão ser criadas tarefas 

relativas ao funcionamento antes do OS como na 1ª etapa, ou seja, temporizadores, 

LED’s, leitura AD e comunicação serial. 

 

 

3.2.3 3ª Etapa – Aplicação 

 

 

Para a terceira e última etapa, é necessário o pleno funcionamento de todos os 

testes anteriores. Neste ponto será criada a aplicação em si, pois serão executadas 

através do RTOS as tarefas de leitura múltipla de canais de AD, tarefas de cálculo 

para a otimização, tarefas de tratamento de código e, por fim, tarefas de envio destas 

leituras para o computador. 



57 

A validação desta etapa será complexa, pois envolverá teste com sinais 

diversos provindos de geradores de função, juntamente com análise das posições de 

memória e estudo minucioso da comunicação serial, para verificar se, de fato, a 

mesma está reduzida o suficiente sem repetir informações desnecessárias. 

Para analisar os sinais, deverá ser realizada a integração com o software 

LabVIEW. Os grupos de sinais a serem analisados seguem um padrão, como ter a 

forma de uma senoide ou aleatório, possuir baixa frequência (ordem de kHz) ou alta 

frequência (ordem de MHz), individuais ou simultâneos em canais diferentes. Devem 

ser analisados: 

 Uma senoide pura de baixa frequênciaverificar sua replicação no 

computador; 

 Uma senoide pura com alta frequência verificar o limite de frequência 

em que acontecem perdas; 

 Várias senoides puras iguais com baixa frequênciaverificar leitura e 

armazenamento dos sinais; 

 Várias senoides puras iguais com alta frequênciaverificar o limite de 

frequência em que acontecem perdas; 

 Várias senoides puras diferentes com baixa frequencia validação do 

método otimizado de armazenamento e leitura.  

  



58 

 

  



59 

Capítulo 4 – Resultados 
 

 

4.1 1ª Etapa - Depuração 
 

 

Após um tempo dedicado em aprender as novas formas de programação da 

família PIC, foi possível realizar a programação necessária para concluir a primeira 

etapa. 

 

 

 

Como mostra a Figura 25, tem-se o valor da variável obtida pela leitura do AD 

visualizada direto do terminal serial RealTerm. Nota-se que o valor mostrado é 25, o 

que em binário fica 00011001. Observando os LED’s do kit, acendem respectivamente 

de acordo com este valor. LED’s a direita são menos significativos e acendem com 

nível lógico alto. 

Figura 25 - Leitura 25 no A/D, comunicação serial e LED's 



60 

 

 

 

Seguindo o mesmo raciocínio, temos outro exemplo para o valor 156, que em 

binário fica 10011100. É importante dizer que, para a obtenção do valor, é preciso 

enviar a escolha do menu, representado pela opção 1. Somente ao receber esta opção 

é mostrado o valor atual. 

 

 

4.2 2ª Etapa – Sistema operacional de tempo real 

 

 

Esta etapa já era esperada que fosse a mais trabalhosa de todas e de fato, 

exigiu bastante empenho. Houve uma pesquisa muito grande sobre o entendimento 

de um RTOS, as particularidades do FreeRTOS e, por fim, o trabalho para funcionar 

no kit. 

Foi necessário buscar informações em vários fóruns, estudar muitos exemplos 

(a maioria para outros microcontroladores) para entender como é organizado o 

Figura 26 - Leitura 156 no A/D, comunicação serial e LED's 



61 

sistema operacional e assistir a muitos vídeos tutoriais sobre tarefas, semáforos, filas, 

etc. 

Por fim, com o sistema operacional funcionando no kit, foram desenvolvidas 

todas as tarefas para cumprir as mesmas funções da 1ª etapa. Nas figuras seguintes 

temos a mesma operação de leitura do A/D (agora com resolução total disponível de 

10 bits), comunicação serial com resposta de comando. As capturas de tela foram 

para os valores extremos da variável A/D. 

 

 

 

Nota-se que estes valores foram adquiridos utilizando um trimpot, presente no 

kit, ligado ao canal 1 do conversor A/D. Como a resolução é de 10 bits, teoricamente 

o valor da variável deveria excursionar entre 0 e 1023 (210 = 1024), mas na medida 

real alcançou apenas 1015, devido a resistência do próprio trimpot e limite de excursão 

física do mesmo. 

Da mesma forma da etapa anterior, o valor da variável solicitada da leitura do 

A/D só é mostrada após o envio do comando “1”. Uma observação a ser feita é sobre 

os símbolos CrLf que aparecem na mensagem que correspondem a Carriage Return 

Figura 27 - Menu com FreeRTOS para valor mínimo do A/D 



62 

 

e Line Feed, responsáveis por retornar ao início da linha e ir para a próxima linha, 

respectivamente. 

 

4.3 3ª Etapa – Aplicação 

 

 

Nesta etapa, foi realizado, primeiramente, a integração com o sistema 

LabVIEW. Assim, o primeiro teste realizado foi a captura de tempo real do valor do 

trimpot ligado ao canal 1 do conversor A/D (presente no kit) sendo operado de forma 

manual. 

Figura 28 - Menu com FreeRTOS para valor de máximo do A/D 



63 

 

Na sequência foi realizada a inserção de 3 sinais senoidais defasados de 

aproximadamente 120º entre si. Para evitar erros e organizar a transmissão, foi 

determinado um protocolo simples para poder identificar os sinais enviados.  

Seguindo o padrão da Figura 30 onde tem-se um cabeçalho para início de 

mensagem com valores que não poderão ser coincidentes em outros pontos da 

comunicação, seguido do byte identificador do sinal e por fim os dados. 

 

 

Nota-se que ao lado de cada gráfico da Figura 31 é mostrado o valor calculado 

para as fases, onde os valores obtidos são bem próximos dos desejados 

(0,0º;112,7º;236,9º). Foi tracejado a posição dos picos da onda para evidenciar a 

defasagem. 

Figura 29 - Sinal gerado por operação manual de um trimpot 

Figura 30 - Exemplo de comunicação utilizando o protocolo definido para identificação de múltiplos sinais 



64 

 

Devido a imprevistos ao longo do desenvolvimento deste trabalho, e intensa 

dedicação exigida para a implementação do sistema operacional, os demais testes 

previstos para conclusão e validação da aplicação proposta ficarão para um trabalho 

posterior, já em fase de planejamento, a ser desenvolvido pelo mesmo autor. 

Importante ressaltar que uma parte essencial para a continuação deste trabalho 

está concluída. Esta que será usada como base para o desenvolvimento futuro do 

algoritmo de otimização das posições de memória e os testes finais. 

  

Figura 31 - Leitura de 3 sinais senoidais defasados entre si 



65 

Capítulo 5 – Discussão e Conclusão 
 

 

A conclusão da 1ª etapa demonstra a viabilidade do projeto, pois, assim, foi 

garantida a parte correspondente do hardware escolhido para ser utilizada no projeto, 

assim como todas as ferramentas adjacentes (como por exemplo, ambiente de 

desenvolvimento, drivers compatíveis, etc). 

Nessa foi possível verificar aplicação dos conhecimentos prévios sobre 

microcontroladores necessários para se pensar no desenvolvimento de um projeto 

com tais características. 

Com as consultas a datasheets e documentação, junto com exemplos 

fornecidos pela Microchip® foi possível realizar a configuração do conversor A/D e 

comunicação serial sem muitos problemas, realizando as leituras e envio sem erros. 

O teste realizado consistiu em ler o valor atual de um canal do conversor A/D. 

Foi atribuído, também, seu valor binário a alguns LED’s presentes no kit, para 

confirmação visual junto com o valor mostrado no terminal que captava a comunicação 

serial. Com isto, foram válidos os testes previstos para a conclusão desta 1ª etapa. 

Para a 2ª etapa a fim de obter o efetivo funcionamento do FreeRTOS neste kit 

com este microcontrolador, foram necessárias várias tentativas e significativo tempo 

dedicado à pesquisa através de vídeos tutoriais, fóruns e a documentação fornecida 

pelo desenvolvedor do sistema operacional. 

Existem muitos conceitos prévios relacionados ao modo de operação deste 

sistema. Muitas regras precisam ser cumpridas ao se desenvolver as tarefas, 

classificar as prioridades, enviar parâmetros para outras tarefas, manusear a fila, etc. 

Porém, uma vez feitas essas configurações adequadamente, operar com um 

sistema operacional facilita aplicações complexas. São notáveis as facilidades que um 

escalonador próprio traz, não havendo a necessidade de se preocupar com 

temporização exata para captura de sinais, fila de envios na serial entre outras 

utilidades. 

Durante os testes, foi possível perceber um efeito negativo quanto ao 

escalonador ser preemptivo, exigiu atenção maior para classificar as prioridades das 

tarefas. O cuidado de não permitir certas tarefas de interromper outras é fundamental 

quando se trata de aquisição de dados. 



66 

 

Como exemplo temos a seguinte string capturada (em hexa): “0A 0B 0C 0D 0E 

0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 

2A 2B 2C 2D 30 36 3B 41 46 4B 51 56 5B 61 66 6C 71 76 7C 81 86 8C 91 97 9C A1 

A7 AC B2 B7 BC C2 C7 CC D2 D7 DB D6 D1 CB C6 C0 BB B6 B0 AB A6 A0 9B 95 

90 8B 85 80 7B 75 70 6A 65 60 5A 55 4F 4A 45 3F 3A 35 2F 2A 24 1F 19 14 0F 0A” 

Trata-se de um sinal triangular, com a rampa ajustada para condizer com as 

amostras a cada 1µs. A intenção foi capturar um sinal perfeito com incrementos 

unitários até o topo e depois decrementos unitários. A variação seria entre 10 (0A em 

hexa) e 220 (DC em hexa). 

No começo a captura está correta até o ponto 2D em hexa, onde devido a 

interrupções para envio e/ou conversões, a tarefa de captura começa a ser colocada 

em espera. Esta tarefa não era ativada por interrupção, logo, precisava obedecer a 

fila imposta pelo sistema operacional. A comunicação só era feita quando existia byte 

a ser enviado, o qual era obtido após a realização da tarefa de captura. 

Deste modo, com a tarefa em espera, acabava por ocorrer saltos nos valores, 

um vez que o sinal externo continuava sua excursão independentemente. Ao priorizar 

a tarefa de captura, não mais ocorreu este problema, pois, quando necessário era a 

tarefa de envio que aguardava. Como possui os bytes armazenados em um vetor de 

buffer, não era uma tarefa crítica e não ocorriam perdas. 

Observa-se que a espera da comunicação serial só foi possível porque não 

existia no teste um protocolo definido, onde um receptor aguarda por um tempo limite 

a recepção do próximo byte para validar a mensagem, assim como a transmissão não 

é síncrona, evitando qualquer disparidade com outro sinal ou com o receptor. 

Para a 3ª etapa houve a necessidade de se trabalhar com o software 

LabVIEW® que é uma ferramenta projetada para facilitar o desenvolvimento por parte 

do usuário. Porém, por possuir inúmeras ferramentas completas com o intuito de 

contemplar aplicações complexas, necessita de uma preparação prévia para seu uso. 

Diversos problemas surgiram durante a elaboração do diagrama de blocos e 

instalação de drivers até chegar ao funcionamento desejado. 

Em seguida, foi possível capturar sinais vindos da serial do kit através do 

conversor USB-RS232 e gerar gráficos dinâmicos em tempo real para análise. Antes, 

somente era capturado o valor instantâneo do conversor A/D ligado a um trimpot. Com 

este passo a mais realizado, foi possível visualizar em tempo real os valores do 

manuseio do trimpot em forma de um gráfico atualizado continuamente. 



67 

O grande destaque ao analisar este passo, se dá pelo fato do aprendizado 

sucinto porém efetivo do software e também por visualizar o poder desta nova 

ferramenta conhecida. 

A partir deste ponto, foram incluídas nas tarefas de captura, uma lógica de 

organização do vetor de armazenamento para envio pela serial, de forma que o valor 

de cada sinal fosse enviado sequencialmente. Sendo Vx o valor capturado do sinal x, 

o envio da serial conteria o padrão V1 V2 V3 V1 V2 V3 V1…e assim sucessivamente. 

De volta ao LabVIEW®, foi necessário criar uma lógica de blocos para separar 

estes bytes e enviá-los a seus respectivos gráficos. O sinal foi gerado a partir de uma 

única fonte e defasados utilizando capacitores e os gráficos mostraram que todo o 

processo de captura e envio dos 3 sinais estava funcionando. 

Assim, verificou-se a configuração de leitura de múltiplos canais no conversor 

A/D, os ajustes corretos quanto às prioridades das tarefas no FreeRTOS e também a 

criação dos blocos necessários para geração dos gráficos no LabVIEW®. 

Com tudo isto pronto, as próximas fases serão a criação das tarefas para 

identificar características dos sinais e o algoritmo de otimização da leitura das 

posições de memória. Na sequência a realização dos testes indicados, como por 

exemplo, a verificação da frequência máxima do sinal suportada sem perdas. 

Neste trabalho, não foi possível a realização destas últimas fases devido a 

imprevistos nas questões de tempo. No entanto, este trabalho deixa uma plataforma 

com toda base preparada para futuros desenvolvimentos de aplicações. O sistema 

está validado, o FreeRTOS está funcionando e as tarefas básicas estão criadas. 

Por fim, chega-se à conclusão que a ideia disposta neste trabalho terá grande 

utilidade. É possível ver a potencialidade desta ferramenta para aquisição de dados e 

análise dos sinais. Vale lembrar que com um sistema operacional, como o FreeRTOS, 

em funcionamento, é possível inserir novas tarefas que aprimorem o código já feito, 

assim como algoritmos de tratamento e quaisquer outras funções que venham a ser 

necessárias. Por exemplo, pode-se criar tarefas com uma Transformada de Fourier 

aplicando apenas em 2 canais, antes de ser enviado a outro dispositivo. 

  

 

  



68 

 

  



69 

Referências 
 

[1] Revista Mecatrônica Atual. O que é um sistema operacional de tempo real 

(RTOS)?. São Paulo: Editora Saber, n.60, ano 11, Jan/Fev, 2013. 

[2] Wikimedia Commons. (Consultado em Outubro, 2013). File:Operating system 

placement-pt.svg [Online]. Disponível em:  

http://commons.wikimedia.org/wiki/File:Operating_system_placement-

pt.svg?uselang=pt 

[3] COVACECIVE, A.V.T. Sistemas Operacionais de Tempo-Real. UNICAMP. Out, 

2007. 

[4] GONÇALVES, L.R.O. (Consultado em Outubro, 2013).  Apostila de SO On-line 

[Online]. Disponível em: http://lrodrigo.lncc.br/index.php/Apostila_de_SO_On-line 

[5] TANENBAUM, A. S. Sistemas Operacionais Modernos. 2ª ed. São Paulo, 

Pearson Prentice Hall, 2003. 

[6] FreeRTOS.org (Consultado em Outubro, 2013). What is an RTOS/FreeRTOS? 

[Online]. Disponível em: http://www.freertos.org/about-RTOS.html 

[7] OPPENHEIM, A., SCHAFER R., and BUCK, J. Discrete-Tme Signal Processing. 

3ª ed. Prentice Hall. 1999. 

[8] TATEOKI, G.T. (Consultado em Outubro, 2013). Teorema da Amostragem 

[Online]. Disponível em: 

http://getulio.eng.br/meusalunos/sad/Teorema_da_Amostragem.pdf 

[9] SICA, C. Sistemas Automáticos com Microcontroladores 8031/8051. Editora 

Novatec. 2006 

[10] FERREIRA, E.C. Conversão AD e DA – Técnicas. UNICAMP. 2009. 

[11] FREIRE, R.C.S. Conversão A/D e D/A. UFPI. 2010  

[12] Mosaico Produtos (Consultado em Outubro, 2013). Plugin Explorer16BR 

PIC32MX460F512L-80I/PT USB [Online]. Disponível em: 

http://www.mosaico.com.br/?canal=5&pg=showProduto&path=produtos&id=108 

[13] SILVA, N.C. Introdução à linguagem C. 2ª ed. Centro de Computação 

UNICAMP. 2011. 

http://commons.wikimedia.org/wiki/File:Operating_system_placement-pt.svg?uselang=pt
http://commons.wikimedia.org/wiki/File:Operating_system_placement-pt.svg?uselang=pt
http://lrodrigo.lncc.br/index.php/Apostila_de_SO_On-line
http://www.freertos.org/about-RTOS.html
http://getulio.eng.br/meusalunos/sad/Teorema_da_Amostragem.pdf
http://www.mosaico.com.br/?canal=5&pg=showProduto&path=produtos&id=108

