
UNIVERSIDADE DE SÃO PAULO
ESCOLA DE ENGENHARIA DE SÃO CARLOS

Vítor Mello de Araujo Lima

Proposta e implementação de novo projeto eletrônico
para o robô UARM-E

São Carlos

2018

Vítor Mello de Araujo Lima

Proposta e implementação de novo projeto eletrônico
para o robô UARM-E

Monografia apresentada ao Curso de Enge-
nharia Elétrica com Ênfase em Eletrônica,
da Escola de Engenharia de São Carlos da
Universidade de São Paulo, como parte dos
requisitos para obtenção do título de Enge-
nheiro Eletricista.

Orientador: Prof. Dr. Valdir Grassi Junior

São Carlos
2018

AUTORIZO A REPRODUÇÃO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalográfica elaborada pela Biblioteca Prof. Dr. Sérgio Rodrigues Fontes da
EESC/USP com os dados inseridos pelo(a) autor(a).

Lima, Vítor Mello de Araujo
 L732p Proposta e implementação de novo projeto eletrônico

para o robô UARM-E / Vítor Mello de Araujo Lima;
orientador Valdir Grassi Junior. São Carlos, 2018.

Monografia (Graduação em Engenharia Elétrica com
ênfase em Eletrônica) -- Escola de Engenharia de São
Carlos da Universidade de São Paulo, 2018.

1. Manipulador Espacial. 2. Arduino. 3. XBee. 4.
Robótica. I. Título.

Eduardo Graziosi Silva - CRB - 8/8907

Dedico a meus pais e meus avós.

AGRADECIMENTOS

Agradeço em primeiro lugar aos meus pais, Lauro e Silvana, que me dão suporte e
apoio em todos os momentos.

Agradeço a meu orientador, Professor Valdir Grassi, pelo tempo e conhecimento
partilhados comigo. Agradeço também a seu orientando José Nuno, pela grande ajuda em
várias etapas deste projeto.

Agradeço ao LASI, pela estrutura disponibilizada para que o projeto pudesse ser
executado.

Agradeço à Fundação para o Desenvolvimento Tecnológico da Engenharia, pelos
recursos cedidos ao projeto.

Agradeço aos meus amigos, pela paciência, ajuda, e pelos bons momentos.

“Sempre busque ser o melhor! Mas não melhor
que os outros, apenas o melhor de si!”

Marcílio Flávio Rangel de Farias

RESUMO

LIMA, V. Proposta e implementação de novo projeto eletrônico para o robô
UARM-E. 2018. 78p. Monografia (Trabalho de Conclusão de Curso) - Escola de
Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2018.

Neste trabalho foi proposto e implementado um novo sistema eletrônico e software em-
barcado para o robô UARM-E, uma plataforma para experimentação de algoritmos de
controle em manipuladores espaciais de base livre flutuante. O trabalho utiliza a plataforma
Arduino para controle do sistema, e o módulo XBee para comunicação. O sistema busca
comandar os motores elétricos nas juntas do robô e fazer o processamento e envio de dados
de posição para um computador remoto, onde o algoritmo de controle deve estar sendo
executado. Para este fim foi projetada e implementada uma placa de circuito impresso,
que faz a interface entre os componentes e deve ir embarcada na plataforma.

Palavras-chave: Manipulador Espacial. Arduino. XBee. Robótica.

ABSTRACT

LIMA, V. Propositon and implementation of a new electronic system for the
robot UARM-E. 2018. 78p. Monografia (Trabalho de Conclusão de Curso) - Escola de
Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2018.

In this work, a new electronic system and embedded software for the robot UARM-E was
proposed and implemented. This robot is an experimental platform for test and validation
of control algorithms that target free flying base spatial manipulators. The system was
implemented using an Arduino board and uses a XBee module for wireless communication.
The goal is to command the electrical motors in the joints, process the encoder feeedback
and send data position to a external computer, where a control algorithm must be running.
A printed circuit board was designed and implemented in order to interface the components.

Keywords: Spatial Manipulator. Arduino. XBee. Robotics.

LISTA DE FIGURAS

Figura 1 – Exemplos de sistemas robóticos para atividades com diferentes graus
de complexidade. 23

Figura 2 – Tipos mais usuais de juntas de manipuladores. 24
Figura 3 – Em (a) é exibido a representação simbólica de um manipulador de base

fixa com três juntas de rotação. Tem-se em (b) a representação das
velocidades no espaço de juntas e da velocidade do efetuador no espaço
cartesiano. 25

Figura 4 – Diagrama de controle realimentado para um sistema robótico. 28
Figura 5 – Plataforma para testes utilizando colchão de ar disponível no LASI. . . 29
Figura 6 – Esquema geral do sistema. 32
Figura 7 – Arduino Mega 2560, placa com microcontrolador utilizada no projeto. . 33
Figura 8 – Módulo RF XBee S1. 33
Figura 9 – Interface do programa XCTU utilizado para configurar os módulos XBee,

aqui é exibida a configuração do módulo que fica ligado ao computador. 34
Figura 10 – Placa XBee Explorer USB, utilizada no projeto para conversão de USB

para serial. 35
Figura 11 – Shield que realiza a interface entre Arduino e XBee. 35
Figura 12 – Interface entre Arduino e XBee utilizando o shield. 35
Figura 13 – Sistema óptico de um encoder incremental. 36
Figura 14 – Códigos Gray gerados pelos canais A e B. 36
Figura 15 – Diagram de blocos com conexões entre Arduino, decodificador de qua-

dratura e os sinais de saída dos encoders. 37
Figura 16 – Motor Maxon EC 90 flat. 38
Figura 17 – DEC 50/5. 38
Figura 18 – Interface do driver com Arduino e motores. 38
Figura 19 – Lógica implementada para supervisão da bateria utilizando o CI TL7705,

VBAT é a tensão da bateria. 40
Figura 20 – Lógica implementada com fusível e botão de emergência. 41
Figura 21 – Modelo de botão de emergência utilizado na placa. 41
Figura 22 – Fluxograma UML do programa executado pelo microcontrolador. . . . 42
Figura 23 – Modo CTC com inversão do pino de OCnA associada a overflow do

contador TCNTn. A variação de período é causada pela mudança do
valor escrito em OCR. 43

Figura 24 – Fluxograma da ISR implementada para leitura de posição e envio das
velocidades. 44

Figura 25 – Layout da parte superior da placa. 48

Figura 26 – Layout da parte inferior da placa. 48
Figura 27 – Parte superior da placa fabricada. 49
Figura 28 – Parte inferior da placa fabricada. 49
Figura 29 – Parte superior da placa já com os componentes soldados. 50
Figura 30 – Parte inferior da placa já com os componentes soldados. 50
Figura 31 – Montagem do sistema com 2 motores, 2 drivers e fonte de bancada. . . 51
Figura 32 – Sugestão de novo circuito para o supervisor que não envolve a lógica de

LEDs. 52
Figura 33 – Conexões Arduino Mega. 67
Figura 34 – Conexões do supervisor de tensão. 68
Figura 35 – Conexões módulo de sensoriamento e XBee. 68
Figura 36 – Conexões conectores de drivers e motores. 69
Figura 37 – Conexões da bateria e reguladores. 69

LISTA DE TABELAS

Tabela 1 – Configurações de comunicação utilizadas no projeto. 33
Tabela 2 – Configuração dos XBees utilizados no projeto. 34
Tabela 3 – Controle da saída de dados do CI HCTL-2017. 37
Tabela 4 – Protocolo de comandos enviados ao sistema. 46
Tabela 5 – Protocolo de comandos enviados do sistema. 46
Tabela 6 – Medição das tensões rebaixadas com o aumento da corrente exigida. . . 52
Tabela 7 – Valores de teste obtidos para decodificador 1. 53
Tabela 8 – Valores de teste obtidos para decodificador 2. 53
Tabela 9 – Valores de teste obtidos para decodificador 3. 53
Tabela 10 – Valores de teste obtidos para decodificador 3. 53
Tabela 11 – Teste de comunicação com 9600 bps. 54
Tabela 12 – Teste de comunicação com 19200 bps. 54
Tabela 13 – Teste de comunicação com 32400 bps. 55
Tabela 14 – Teste de comunicação com 57600 bps. 55
Tabela 15 – Especificações da placa Arduino Mega 2560. 63
Tabela 16 – Especificações do módulo XBee. 63
Tabela 17 – Especificações do decodificador de quadratura. 64
Tabela 18 – Especificações do supervisor de tensão. 64
Tabela 19 – Especificações do regulador LM7810CT. 64
Tabela 20 – Especificações do regulador LM2596 64
Tabela 21 – Especificação dos motores. 65

SUMÁRIO

1 INTRODUÇÃO . 21
1.1 Justificativa . 22
1.2 Objetivos . 22

2 ROBÔS MANIPULADORES . 23
2.1 Cinemática . 24
2.2 Dinâmica . 26
2.3 Controle . 27
2.4 Manipulador Espacial . 28

3 METODOLOGIA E DESENVOLVIMENTO 31
3.1 Projeto eletrônico . 31
3.1.1 Microcontrolador . 31
3.1.2 Módulo de Comunicação . 32
3.1.3 Módulo de Sensoriamento . 35
3.1.4 Drivers e Motores . 38
3.1.5 Módulo de Energia . 39
3.2 Projeto de Software . 41
3.2.1 Software embarcado . 41
3.2.1.1 Geração do sinal de sincronia para os decodificadores de quadratura 43
3.2.1.2 Leitura dos encoders e envio das velocidades 44
3.2.2 Protocolo de comandos . 46

4 RESULTADOS E DISCUSSÕES . 47
4.1 Implementação da placa . 47
4.2 Testes dos módulos . 51
4.2.1 Motores e drivers . 51
4.2.2 Módulo de energia . 52
4.2.3 Módulo de sensoriamento . 53
4.2.4 Módulo de comunicação . 54

5 CONCLUSÃO . 57
5.1 Trabalhos futuros . 57

REFERÊNCIAS . 59

APÊNDICES 61

APÊNDICE A – ESPECIFICAÇÕES DOS COMPONENTES 63

APÊNDICE B – ESQUEMÁTICOS 67

APÊNDICE C – CÓDIGOS IMPLEMENTADOS 71

21

1 INTRODUÇÃO

O estudo e desenvolvimento de robótica é de grande interesse para o campo
espacial. Nessa área, robôs desempenham tarefas como serviços de resgate e operações
de manutenção em órbita. Esses sistemas são usados desde atividades onde a habilidade
humana é limitada, até a atuação em áreas inacessíveis ou com grande risco à vida humana.
Nesse contexto, robôs manipuladores possuem grande importância.

Robôs manipuladores espaciais são projetados como estruturas leves, mas que
possuem longos braços. Esse design permite a economia de combustível e largo alcance
para trabalho. Outra característica desses sistemas é o acoplamento dinâmico entre base e
braço robótico. Os sistemas podem ser de base livre controlada, onde a orientação da base
espacial é ativamente controlada por jatos propulsores e/ou rodas da reação, ou de base
livre flutuante, onde a base se move livremente em resposta aos movimentos do braço.

Para o estudo de controladores e validação de técnicas de controle para robôs
espaciais de base livre flutuante, é necessário a montagem de plataformas experimentais
próprias para este fim. Uma característica importante dessas plataformas é a necessidade
de que nenhuma conexão física, cabos ou fios, exista entre robô e ambiente. Assim, é
possível que o sistema flutue sem interferências mecânicas. Em um sistema assim, toda a
eletrônica de controle e alimentação de componentes deve ser embarcada na base flutuante,
e a comunicação do sistema com um computador remoto deve ser feita utilizando um
padrão sem fio.

Nesse contexto que o presente trabalho se insere. Tendo a disposição a estrutura
mecânica e do robô UARM-E no LASI (Laboratório de Sistemas Inteligentes) e havendo a
necessidade de um novo sistema eletrônico para utilização do robô. O projeto visa imple-
mentar esse sistema, que deve permitir o envio de comandos a partir de um computador
remoto para a plataforma, atuação nos motores que geram o movimento do robô, e leitura
e processamento dos sinais elétricos advindos do sensoriamento, de forma a enviar as
informações para o computador externo.

Para controle do sistema eletrônico, será utilizado a plataforma Arduino. Trata-se
uma plataforma de prototipagem eletrônica de software livre, que possui como vantagens
sua acessibilidade, baixo custo e flexibilidade. Além disso, essa plataforma possui uma
gama de acessórios, que podem ser combinados em um sistema mais completo.

Entre esses acessórios encontra-se o Xbee Shield, que permite a comunicação sem fio
do Arduino utilizando padrão ZigBee. Ele é baseado no módulo Xbee da Digi, e permitirá a
troca de dados entre o sistema embarcado e o computador remoto. Consistindo no módulo
de comunicação.

22

1.1 Justificativa

O projeto se justifica pois se tem no LASI linhas de pesquisa na área de controle
de manipuladores espaciais, e se dispõe de uma plataforma para teste e validação dessas
estratégias, cuja eletrônica pode ser modernizada e sua complexidade reduzida, dessa
forma havia grande motivação para implementação de novo hardware.

1.2 Objetivos

O presente trabalho de conclusão de curso tem como objetivo a implementação um
sistema eletrônico moderno e de baixa complexidade em uma plataforma experimental
de manipulador espacial de base flutuante, utilizando a plataforma Arduíno Mega, e
comunicação sem fio usando padrão Zigbee, bem como o teste e validação da estrutura
implementada.

23

2 ROBÔS MANIPULADORES

O termo robô foi utilizado pela primeira vez pelo dramaturgo tcheco Karel Capek,
em sua peça Rossumovi Univerzální Roboti (Robôs Universais de Rossum), sendo "robota"a
palavra tcheca para trabalhador (SPONG, 2006). Na peça, os roboti são humanos artificiais
construídos para trabalhar no lugar dos humanos reais. Apesar dos robôs atuais não serem
construídos a partir de matéria orgânica sintética, como Capek imaginava, o objetivo de
utilizá-los para realização das mais diversas tarefas se mantém.

Segundo uma definição mais atual da palavra, da Robot Institution of America
(RIA): "Robô é um manipulador multifuncional, reprogramável projetado para mover
materiais, ferramentas, ou dispositivos especializados através de movimentos variáveis
programados para desempenhar uma variedade de tarefas". A definição chama a atenção
para as características "reprogramável"e "multifuncional", que evoluíram muito com o
passar do tempo.

Inicialmente robôs eram utilizados para substituição de mão de obra humana
em tarefas repetitivas, como moldagem por injeção de termoplástico ou estampagem
(Figura 1a), onde a programação se limitava a seguir sequências de movimentos predefinidos,
sem variação ou uso de sensores (SPONG, 2006). A evolução dos sistemas computacionais
tornou possível movimentos mais complexos e o uso de sensoriamento externo (como
visão, sensores de força e velocidade). Com isso os sistemas robóticos passaram a ser
mais conscientes de seu entorno, e a ser capazes de atividades como cirurgias, exploração
submarina e de outros planetas (Figura 1b).

Compõe o corpo dos robôs manipuladores corpos rígidos denominados elos, que

Figura 1 – Exemplos de sistemas robóticos para atividades com diferentes graus de com-
plexidade.

(a) Robô utilizado para moldagem por
injeção de termoplástico.

Fonte: Fanuc Robotics.

(b) Spirit, um dos rovers utilizados pela
NASA para exploração de Marte.

Fonte: NASA.

24

Figura 2 – Tipos mais usuais de juntas de manipuladores.

(a) Estrutura de elos e juntas com junta
de rotação.

Fonte: Teodoro e Augusto (2012).

(b) Junta de translação (3D e represen-
tação simbólica).

Fonte: Spong (2006).

são conectados por meio de juntas, que possibilitam a movimentação entre elos adjacentes
(LYNCH; PARK, 2017). Essa estrutura pode ser visualizada na Figura 2a. Existem vários
tipos de juntas, mas as mais comuns são as de rotação e prismáticas (Figura 2b). O
primeiro tipo permite o movimento de revolução, enquanto que o segundo tipo executa o
movimento de translação.

Ao final da cadeia de elos e juntas econtra-se o efetuador, que na prática pode
ser uma garra, uma ponta de solda, ou mesmo um eletroimã, dependendo da função
do manipulador (CRAIG, 2005). Problemas comuns envolvendo manipuladores são o
cálculo de velocidade ou posição do efetuador. Na outra extremidade encontra-se a base,
geralmente fixa, e tida como referência para o sistema.

Outros elementos que podem ser citados são atuadores e sensores. Os atuadores são
responsáveis por transformar energia em movimento (BENSON, 2010). É comum que a
energia em robótica seja elétrica, e podemos citar os motores elétricos como tipos comuns
de atuadores, que transformam a energia elétrica no movimento de rotação. Os sensores
são responsáveis por traduzir os eventos do ambiente para o programa que controla o robô.
Podem ser dispositivos simples, como sensores de força ou luminosidade, ou componentes
mais complexos, como câmeras digitais que fornecem vídeo e imagem para o robô.

2.1 Cinemática

A cinemática é a ciência que estuda o movimento sem se preocupar com as forças
que geram esse movimento (CRAIG, 2005). A aplicação de cinemática em manipuladores
visa o estudo de grandezas como posição, velocidade e aceleração, relacionado à suas juntas
ou ao efetuador. De forma geral, são estudadas as grandezas geométricas e as propriedades
do movimento que variam com o tempo.

Isso pode ser feito, por exemplo, colocando sensores de posição nas juntas do

25

Figura 3 – Em (a) é exibido a representação simbólica de um manipulador de base fixa
com três juntas de rotação. Tem-se em (b) a representação das velocidades no
espaço de juntas e da velocidade do efetuador no espaço cartesiano.

(a)
(b)

Fonte: Craig (2005)

manipulador. No caso das juntas de rotação, cada sensor proporcionaria o ângulo de rotação.
Já para juntas prismáticas, o dado obtido seria o deslocamento (offset). Apresentadas
essas variáveis, é possível introduzir o conceito de graus de liberdade, termo típico no
estudo de mecanismos. Este termo designa o número de variáveis de posição independentes
que devem ser especificadas para encontrar as partes do mecanismo (CRAIG, 2005). Nos
manipuladores, de forma geral, este número costuma ser igual ao de juntas.

Uma vez conhecidos os ângulos de rotação, os offsets das juntas prismáticas, e as
dimensões do manipulador, pode-se obter a posição do efetuador. Esse processo, onde
se utiliza as variáveis de posição das juntas para determinar a posição do efetuador, é
chamada de cinemática direta. A Figura 3a ilustra um sistema onde esse problema se
aplica. O conhecimento de θ1, θ2 e θ3, além das dimensões do sistema, permite determinar
a posição da garra em relação à base, utilizando relações geométricas.

Esse problema, todavia, não é o que se costuma enfrentar na prática. Em situações
reais, deseja-se mover o efetuador do manipulador para uma posição específica com
determinada orientação, para pegar um objeto ou manusear um material, por exemplo.
Nesse caso, o desafio é: Dado a posição e orientação de destino, que ângulo ou deslocamento
se deve impor nos atuadores do robô para levar o efetuador até lá.

Este problema se chama cinemática inversa, e sua resolução envolve maior comple-
xidade que o caso direto. Isso se deve ao fato de que os cálculos do caso inverso envolvem
equações não-lineares, e podem inclusive não possuir solução. A resolução do problema de
cinemática inversa permite definir o espaço de trabalho do manipulador, que é composto
pelos pontos onde existe solução para o problema. As posições onde não existe solução são

26

definidas como fora do alcance do espaço de trabalho.

Além dos problemas de posicionamento estático, também se pode fazer a análise do
movimento do manipulador. O objetivo pode requerer que o efetuador, em seu deslocamento,
mantenha certa velocidade angular e linear. Uma vez que os atuadores estão localizados
nas juntas, é necessário que se consiga, a partir da velocidade desejada no efetuador,
determinar as velocidades a serem aplicadas nas juntas (Figura 3b). Isso é feito por uma
matriz chamada Jacobiano do Manipulador, que especifica o mapeamento das velocidades
no espaço das juntas para o espaço cartesiano (CRAIG, 2005). Esse mapeamento é ilustrado
pela Equação 2.1, onde v e w são as velocidades linear e angular, respectivamente, J é o
Jacobiano para uma configuração q das juntas e q̇ é o vetor com as velocidades nas juntas.

v
w

 = J(q)q̇ (2.1)

Com relação à matriz Jacobiano, ela possui grau (número de colunas com variáveis
independentes) máximo igual ao número de juntas no manipulador. O termo "máximo"é
utilizado pois, em algumas configurações, o grau da matriz pode assumir valores menores.
As configurações em que isso ocorre são chamadas de singularidades, e na prática, essas
são configurações onde o manipulador perde a capacidade de se movimentar em certas
direções. Geralmente os pontos de singularidade pertencem à fronteira do espaço de
trabalho (SPONG, 2006). Este é um conceito bastante importante para projetistas e
usuários de manipuladores.

Outra aplicação do Jacobiano é na aplicação de forças estáticas em determinado
corpo. Além de movimentação, pode ser necessário ao manipulador que toque um objeto
ou superfície com uma força constante. Dado esse objetivo, é necessário traduzir isso em
torques que devem ser aplicados nas juntas. Nesse caso, obtemos a Equação 2.2, onde
utilizamos a matriz transposta do Jacobiano, o vetor de forças no efetuador F para obter
τ , que é o vetor de torques a ser aplicado nas juntas.

τ = J(q)TF (2.2)

2.2 Dinâmica

Em situações reais, para retirar o efetuador da posição de repouso, acelerá-lo até
determinada velocidade, e posteriormente freá-lo para que pare na posição desejada, é
preciso levar em consideração as forças que causam o movimento, que não são observadas
na análise cinemática. Nesse caso, é necessário recorrer à Dinâmica, que descreve as relações
entre força e movimento. Além de necessárias para o projeto de manipuladores e dos

27

algoritmos de controle aplicados a eles, as equações de movimento também são utilizadas
para simulações de comportamento e animações.

Elas levam em consideração não só os aspectos geométricos do sistema, mas
propriedades físicas também, como a massa e inércia dos componentes. O problema agora
passa a ser: Dado a movimentação desejada no efetuador, quais valores de torque devem
ser aplicados em cada uma das juntas? Há mais de uma maneira de resolver esse problema.

Um dos métodos que pode ser utilizado é através das Equações de Euler-Lagrange.
Primeiro é necessário conhecer o operador Lagrangiano, exibido na Equação 2.3, que
corresponde à diferença entre a energia cinética (K) e a energia potencial devido a
gravidade (P). Então, para um sistema com coordenadas (q1, ..., qn), onde n é o número de
graus de liberdade, a força (τ) para cada coordenada será encontrada aplicando a relação
descrita na Equação 2.4 (SPONG, 2006).

L = K − P (2.3)

d

dt

δL
δq̇k

− δL
δqk

= τk; k = 1, ..., n (2.4)

2.3 Controle

Quando em atividade, manipuladores podem se comportar como fontes de força,
movimento, ou mesmo ambos. Se o manipulador está realizando o polimento de um objeto,
ele deve responder com a força necessária para se manter estático durante o trabalho. Se
ele está realizando a pintura de uma superfície, deve operar em uma trajetória adequada,
que faça com que pinte a totalidade da supérficie. Se sua tarefa é realizar um desenho em
um quadro, o movimento é importante, mas a força direcionada à superfície do quadro
também é.

Em todos esses casos, o controlador deve traduzir o objetivo da tarefa em forças e
torques que devem ser aplicados aos atuadores. Deve-se escolher uma estratégia de controle
que seja compatível com o objetivo. Essa estratégia pode ser: controle de movimento, de
força, híbrido ou de impedância. No caso do controle híbrido, é importante ressaltar que,
por restrições inerentes à mecânica do sistema, não se pode controlar força e movimento
em uma mesma direção, ou seja, se o robô impõe uma força nessa direção, o ambiente
determinará o movimento, e se o controle impõe um movimento, caberá ao ambiente definir
a força (LYNCH; PARK, 2017).

Definida a estratégia, podemos implementá-la utilizando controle realimentado.
Esse método, utilizado em quase todos os sistemas robóticos, consiste em utilizar sensores
de posição, velocidade e força para obter o comportamento real do robô. Estes dados

28

Figura 4 – Diagrama de controle realimentado para um sistema robótico.

Fonte: Adaptado de Lynch e Park (2017)

são comparados com a referência do sistema, que é o comportamento desejado para o
manipulador. Com base no resultado dessa comparação, é decidido o valor dos sinais de
controle, que são aplicados nos atuadores. Um diagrama de blocos ilustrando esse sistema
pode ser visto na Figura 4.

2.4 Manipulador Espacial

Manipuladores robóticos são utilizados no ambiente espacial, realizando atividades
como inspeção de naves, posicionamento, acoplamento e transporte de materiais. Esses
manipuladores, por atuarem em órbita, possuem uma dinâmica diferenciada daqueles
que atuam na Terra. Existe neles um acoplamento dinâmico entre a base e o braço. Isso
significa que a movimentação do braço provocará movimentos na base.

Pode-se classificar estes manipuladores em duas categorias: Manipuladores de
base livre controlada e manipuladores de base livre flutuante (PAZELLI et al., 2011).
No primeiro caso, o uso de jatos propulsores e rodas de reação permite neutralizar os
movimentos da base, porém isso acarreta gastos com energia e combústivel ao sistema, o
que reduz sua longevidade. No segundo caso, esses gastos não ocorrem, se permite que a
base se mova livremente. Por essa razão, se justificam os estudos na área de manipuladores
de base livre flutuante.

Desenvolver plataformas de teste para estes manipuladores, na Terra, é um desafio.
Essas plataformas devem ser capazes de simular os efeitos da microgravidade, e permitir
que braço e base se movam livremente. Algumas possibilidades são realizar experimentos
em vôos parabólicos ou com estruturas submersas, porém uma maneira mais simples é
utilizar mesas com sistema de sustentação por colchão de ar. Utilizando robôs planares,
Esse método simula de maneira eficiente os efeitos da microgravidade em 2D (MENON;
BUSOLO, 2007).

O LASI possui uma plataforma para testes que utiliza o sistema de sustentação

29

Figura 5 – Plataforma para testes utilizando colchão de ar disponível no LASI.

Fonte: Pazelli et al. (2011).

por colchão de ar. O robô UARM-E (Figura 5), desenvolvido pela Profa. Dra. Tatiana
Pazzelli durante seu doutorado, visa permitir o teste e validação de algoritmos de controle
para manipuladores espaciais de base livre flutuante.

O robô é reconfigurável, podendo ser montado em diferentes configurações, com
um ou dois braços, mas com um limite de 6 juntas atuadas. O braço mecânico se conecta
a base, onde se localiza o sistema eletrônico e as baterias. O algoritmo de controle é
executado em um computador remoto, e a comunicação com a plataforma de testes é sem
fio.

O sistema eletrônico é baseado no microcontrolador Rabbit 4000. Foi observado
que, utilizando componentes mais novos, seria possível a implementação de um sistema
menos complexo e mais moderno. Sendo assim, foi proposto e implementado um novo
sistema eletrônico para o robô, que é detalhado no capítulo seguinte.

31

3 METODOLOGIA E DESENVOLVIMENTO

Esta seção trata do novo projeto eletrônico e de software embarcado proposto para
o robô UARM-E. Na Figura 6 pode-se ver a topologia do sistema proposto, que será
detalhada no decorrer deste capítulo.

Os blocos em verde fazem parte do projeto eletrônico e são discutidos na seção
3.1, enquanto que os blocos em cinza referenciam os programas implementados, e são
discutidos na seção 3.2. A linha tracejada se diferencia das demais para indicar que a
conexão do módulo de comunicação com a interface com o software de controle, que é
executado em uma máquina externa, é sem fio. Isso é feito pois a plataforma não pode ter
conexões físicas que insiram interferências mecânicas na flutuação (PAZELLI et al., 2011).
O bloco amarelo (software de controle) aparece em cor diferente para indicar que não será
discutido neste trabalho.

3.1 Projeto eletrônico

3.1.1 Microcontrolador

O Arduino é uma plataforma eletrônica open-source que busca prover um conjunto
de hardware e software fácil de se trabalhar, possibilitando que ele seja usado em vários
campos, como robótica, educação e arte (Arduino LLC, 2018).

Por possuir essa vasta gama de aplicações, a plataforma possui extensa documen-
tação, exemplos de projetos e fóruns de disscussão, o que facilita o trabalho e a troca
de informações, especialmente para aqueles que estão começando a trabalhar com micro-
controladores. Além disso, a plataforma possui uma linha com mais de vinte placas, que
possuem foco em diversos nichos, como educação, projetos em IoT, robótica e wearables
(Arduino LLC, 2018). Outro diferencial é a grande variedade de shields disponíveis, que
são elementos que podem ser encaixados nas placas Arduino e realizam a interface com
vários componentes, como cartões SD, módulos WiFi, bluetooth e Xbee. Este último foi
utilizado no projeto, sua funcionalidade é descrita na subseção 3.1.2.

Para o projeto, foi escolhido o Arduino Mega 2560 (Figura 7), que é uma placa
baseada no microcontrolador ATmega2560. Entre as particularidades que justificaram a
escolha dessa placa, está o grande número de pinos destinados à entrada e saída que essa
placa possui, qualidade necessária para este projeto, que exige do arduino a leitura de
dezenas de sinais. Outras vantagens são o grande número de saídas PWM, necessárias
para controle de motores, e a boa quantidade de memória disponível, que permite gravar
programas mais extensos. As especificações da placa podem ser vistas na tabela 15,
Apêndice A.

32

Figura 6 – Esquema geral do sistema.

Fonte: Autor.

3.1.2 Módulo de Comunicação

O XBee S1 (Figura 8) é um módulo RF desenvolvido pela Digi, que atende à
especificação de comunicação IEEE 802.15.4, também usada no padrão ZigBee, que busca
entregar módulos de baixo custo e consumo para redes de sensoriamento sem fio (Digi
International, 2018a). Conforme análise feita em Pazelli et al. (2011), a taxa de bits
necessária para comunicação no sistema é de 32 kbps, sendo a taxa de 250 kbps do XBee
S1 mais que suficiente para a tarefa. Esse dispositivo também apresenta baixo consumo de
energia, o que é importante já que o sistema é alimentado por baterias, e possui alcance
apropriado para projeto. As especificações do módulo podem ser visualizadas na Tabela 16,
Apêndice A.

Para utilizar o XBee, deve-se conectá-lo na interface UART do dispositivo que
irá se comunicar com ele, ou em um conversor, caso o dispositivo não possua a interface.

33

Figura 7 – Arduino Mega 2560, placa
com microcontrolador uti-
lizada no projeto.

Fonte: www.sparkfun.com.

Figura 8 – Módulo RF XBee S1.

Fonte: www.sparkfun.com.

Ambos devem possuir configurações compatíves de baud rate (velocidade da comunicação),
paridade (se a soma de bits 1 do pacote é par ou ímpar), número de bits de parada, e
número de bits que compõe o dado propriamente transmitido. No projeto, foram utilizados
os valores mais usuais para esses campos, de forma a simplificar o protocolo de comunicação,
e não causar atrasos desnecessários. Os valores são exibidos na Tabela 1.

Tabela 1 – Configurações de comunicação utilizadas no projeto.

Configuração Valor
Baud Rate 9600
Bits de dado 8
Bits de paridade Nenhum
Bits de parada 1

No microcontrolador, essas configurações são definidas no código que é compilado
e enviado à placa. No XBee, elas podem ser enviadas via comandos AT, mas a forma mais
simples é através do programa XCTU (Figura 9). Ele é uma aplicação disponibilizada
pela Digi que possui interface gráfica e permite a configuração de diversos módulos
XBee de maneira muito fácil (Digi International, 2018b). Pode-se com ele gerenciar vários
dispositivos, programá-los, enviar pacotes e visualizar pacotes recebidos, atualizar firmware,
entre outras funcionalidades.

Para fazer a interface entre o módulo e o computador no qual está instalado o
programa, deve-se utilizar um conversor USB para serial. No projeto, foi utilizado a placa
XBee Explorer USB (Figura 10). Além das configurações que devem ser feitas para que
os XBee se comuniquem com o microcontrolador e computador, é preciso configurá-los
também para que se comuniquem entre si.

34

Figura 9 – Interface do programa XCTU utilizado para configurar os módulos XBee, aqui
é exibida a configuração do módulo que fica ligado ao computador.

Fonte: Autor.

Para que os XBee se encontrem na rede, é necessário que ambos estejam programa-
dos para utilizar o mesmo canal, que o Personal Area Network ID (PAN ID) de ambos
seja o mesmo, e que cada um tenha como endereço de destino o outro. As configurações
feitas, via XCTU, em ambos estão disponíveis na tabela Tabela 2. Os valores escolhidos
são aleatórios, mas diferentes dos valores padrões, de forma a dificultar interferência de
outros dispositivos XBees que possam vir a funcionar nas proximidades do sistema.

Tabela 2 – Configuração dos XBees utilizados no projeto.

Configuração XBee no UARM-E Xbee no computador remoto
Canal C C
PAN ID AB12 AB12
Endereço de Destino 0x01 0x00
Endereço de Fonte 0x00 0x01

Como comentado na subseção 3.1.1, existe um shield (Figura 11) para a plataforma
Arduino que faz sua interface com o XBee. Esse elemento se faz necessário porque Arduino
e XBee usam níveis de tensão diferentes, o primeiro é alimentado e trabalha com sinais
em 5V, enquanto que o último funciona com tensões de 2,8 a 3,4V. Logo, é necessário um
circuito que abaixe a tensão de 5V do microcontrolador para alimentar o dispositivo RF e
converta os níveis lógicos dos sinais de comunicação para que o XBee não seja danificado
por altas tensões. O shield, que pode ser simplesmente encaixado no Arduino, torna esse

35

Figura 10 – Placa XBee Explorer
USB, utilizada no projeto
para conversão de USB
para serial.

Fonte: www.sparkfun.com.

Figura 11 – Shield que realiza a in-
terface entre Arduino e
XBee.

Fonte: www.filipeflop.com

Figura 12 – Interface entre Arduino e XBee utilizando o shield.

Fonte: Autor.

trabalho transparente para o usuário.

A interface entre Arduino e XBee, utilizando o shield, é ilustrada na Figura 12. O
pino de transmissão de dados do Arduino (TX) tem sua tensão rebaixada antes de ser
percebida pelo pino Data In (DI) do XBee. Os processo inverso ocorre com o pino de saída
de dados do XBee (DO) antes de ser percebido pelo pino de recepção (RX) do Arduino.

3.1.3 Módulo de Sensoriamento

Na placa, o sensoriamento dos motores é feito através de encoders de rotação,
que monitoram o giro do eixo do motor e possibilitam extrair informações de posição e
movimento. Mais especificamente, os encoders utilizados são ópticos e incrementais. Eles
são denominados incrementais porque sua saída consiste em duas ondas quadradas em
quadratura (defasadas de 90º), que correspondem à incrementos no movimento de rotação.
Essas ondas são geradas por um sistema óptico: Dois feixes de luz, defasados de 90°,
passam por um disco que possui segmentos opacos e transparentes. A passagem dos feixes
por estes segmentos cria padrões claro-escuro, que são capturados por sensores ópticos

36

Figura 13 – Sistema óptico de um encoder incremental.

Fonte: Adaptado de Eitel (2014).

Figura 14 – Códigos Gray gerados pelos canais A e B.

Fonte: Adaptado de Creative Robotics Ltd. (2018).

(em geral fotodiodos), que traduzem esses padrões em duas ondas quadradas, comumente
denominadas canais A e B (EITEL, 2014). A Figura 13 ilustra o funcionamento desse
sistema.

Os canais A e B geram uma sequência do tipo código Gray, onde de um dígito para
o outro apenas um bit varia. Analisando essa sequência, consegue-se identificar o sentido
em que o motor está girando, como pode ser visto nas Figura 14. Essa sequência também
descreve quatro posições bem definidas que se consegue perceber no período de um pulso.
Sabendo que a resolução do encoder é de 2 mil pulsos por volta, com a decodificação das
ondas em quadratura a resolução é expandida para 8 mil pulsos por volta.

Na placa, o trabalho de traduzir as ondas quadradas para direção e posição angular
fica a cargo do componente eletrônico HCTL-2017. Trata-se de um decodificador de
quadratura e contador de pulsos. Este circuito tem como entrada as ondas quadradas
referentes aos canais A e B, e, após a decodificação, fornece um número de 16 bits
correspondente à posição angular relativa do eixo. A Figura 15 exibe um diagrama de
blocos com as conexões entre Arduino, decodificador e encoder. Apesar de exibido apenas

37

para um encoder, o circuito se replica para os 4 decodificadores presentes na placa.

Sabendo que a resolução é de 8 mil pulsos por volta, para converter o número lido
em rad/s basta aplicar a equação 3.1, onde θ representa a posição angular em rad/s e N
representa o número de 16 bits retornado pelo decodificador.

θ = N

8000 × 2π (3.1)

Apesar de retornar um número de 16 bits, pode-se observar na Figura 15 que o
CI possui apenas 8 pinos para saída de dados (D0 à D7). Ocorre que é preciso fazer duas
leituras para obter o dado completo. Na primeira são lidos os 8 bits mais significativos
(MSB) e na segunda os 8 bits menos significativos (LSB). Os pinos de controle OE e SEL
são utilizados para fazer este controle, como mostrado na tabela 3, onde a saída Z indica
alta impedância. Estes sinais são compartilhados pelos 4 decodificadores, uma vez que os
dados dos 4 são lidos simultaneamente.

Outro detalhe que pode ser observado na Figura 15 é que o CI necessita de um
sinal de sincronização (CLK). Este sinal pode ser de até 14 MHz, conforme a Tabela 17.
Segundo Pazelli et al. (2011), a frequência mínima de relógio que deve ser fornecida, para
que a leitura funcione mesmo em velocidade máxima do motor, é de 600 kHz. Para o
projeto, utilizou-se 1 MHz de frequência.

Tabela 3 – Controle da saída de dados do CI HCTL-2017.

ŌE SEL Saída
1 X Z
0 0 MSB
0 1 LSB

Figura 15 – Diagram de blocos com conexões entre Arduino, decodificador de quadratura
e os sinais de saída dos encoders.

Fonte: Autor.

38

3.1.4 Drivers e Motores

O projeto utilizou os drivers e motores disponíveis no LASI que fazem parte do
UARM-E. O motor utilizado é o Maxon EC 90 flat (Figura 16), cujas especificações
estão disponíveis na Tabela 21, Apêndice A. Esse motor compõe as juntas rotativas
do manipulador, tendo como características interessantes sua base larga e distribuição
uniforme de massa, que facilita a flutuação.

Figura 16 – Motor Maxon EC 90 flat.

Fonte: Autor.

Figura 17 – DEC 50/5.

Fonte: Autor.

O driver utilizado é o dispositivo Maxon DEC 50/5 (Figura 17). Este componente
consiste em um amplificador para controle digital de motores CC. Ele realiza a interface
entre os sinais que partem do Arduino e os motores. A Figura 18 demonstra de que forma
essa interface é feita. Este esquema é repetido quatro vezes, já que a placa foi projetada
para controle de até 4 juntas atuantes.

Figura 18 – Interface do driver com Arduino e motores.

Fonte: Autor.

O sinal Desativar bloqueia o estágio de potência, encerrando o controle sobre o
motor. O sinal Direção controla o sentido (horário ou anti-horário) de giro do motor. O
sinal Freio faz com que o motor desacelere, e trava o eixo do motor, impedindo o giro até
que seja desabilitado. O sinal Velocidade é ligado a uma saída PWM do arduino. A tensão

39

média na saída PWM varia de 0 a 5V em 256 passos. A partir disso se pode definir o passo
de torque mínimo MBmin

através da Equação 3.2, onde ∆n/∆m representa o gradiente
de velocidade/torque do motor, Kn a constante de velocidade do motor e VCC o valor da
tensão de alimentação da placa. Para um dado torque MB, o valor de tensão médio Vin

que deve ser gerado pelo PWM do Arduino é dado pela Equação 3.3.

MBmin
[mNm] = VCCKn

256(∆n/∆M) (3.2)

Vin[V] = 5(∆n/∆M)
VCCKn

MB (3.3)

3.1.5 Módulo de Energia

Como mostrado na Figura 6, o módulo de energia deve fornecer alimentação para
os demais módulos. O sistema possui cerca de 4 níveis de tensão de alimentação diferentes,
que devem ser suportados pelo módulo de energia, são eles:

• 18 a 22,2V: Alimentação dos drivers.

• 7 a 12V: Alimentação do Arduino Mega.

• 3,3V: Alimentação do XBee.

• 5V: Demais componentes.

A estratégia utilizada foi alimentar o circuito com a maior tensão e inserir regula-
dores na placa para abaixar essa tensão nas regiões que demandam menor alimentação. A
maior tensão, de 22,2V, é obtida por meio de uma bateria recarregável de Lítio-íon. Essa é
a mesma bateria utilizada no projeto eletrônico original. Ela deve ser recarregável, pois
não se conhece o intervalo de tempo entre os experimentos que serão feitos. Além disso,
baterias de Lítio-ion se destacam pelo seu baixo peso, alta tensão e segurança (em relação
à explosões) por utilizarem eletrólito sólido em vez de líquido (PAZELLI et al., 2011).

Ao contrário do projeto original, no qual foram utilizados duas baterias, usou-se
apenas uma para alimentação do circuito descrito nesta tese. Com a redução do número
de motores, a demanda energética da placa caiu em cerca de um terço, já que o consumo
dos componentes eletrônicos é muito baixo e pode ser desprezado. Somado ao fato de que
os testes com essa plataforma costumam ser rápidos e envolver baixas cargas, optou-se
por essa simplificação no circuito, que também possibilitou descartar a lógica necessária
para chaveamento entre baterias.

Outro detalhe com relação à bateria é que a tensão por célula, normalmente de
3,7V, não pode ficar abaixo de 3V (PAZELLI et al., 2011). Para uma bateria de 6 células

40

isso implica que a tensão mínima de funcionamento é 18V, abaixo disso o sistema deve ser
desligado. Para isso, foi utilizado um supervisor de bateria, o CI TL7705. Como pode ser
visto na Figura 19, utiliza-se um divisor de tensão para obter o valor de um quarto da
tensão nos pinos Resin e Sense. Se este valor estiver abaixo da tensão de limiar (4,55V), o
sinal de RESET vai para alto. Este sinal está ligado ao microcontrolador, que desabilita
os motores para que se pare de drenar corrente.

Figura 19 – Lógica implementada para supervisão da bateria utilizando o CI TL7705,
VBAT é a tensão da bateria.

Fonte: Autor.

Na Figura 19 também pode-se observar a lógica com LEDs implementada: Quando
a tensão está acima do limiar acende-se o verde, e caso a tensão caia abaixo desse valor,
além de desabilitar os motores, o LED vermelho é acesso, para informar o usuário que
a bateria deve ser retirada para carregar. Outras proteções que o circuito tem são: Um
botão de emergência, caso o usuário detecte algum mal funcionamento e queira encerrar
de imediato o experimento (Figura 21) e um fusível, que corta a alimentação caso uma
corrente muito alta seja detectada (Figura 20).

Como dito anteriormente, a tensão da bateria de 22,2V é abaixada para os demais
componentes do circuito. Para alimentar o Arduino Mega, utiliza-se o regulador LM7810CT
(Tabela 19), que converte a tensão de entrada, de até 35V, para 10V. Já para o XBee
e demais componentes, utilizou-se dois reguladores LM2596 (Tabela 20), que possuem
saída ajustável. Um foi configurado para fornecer 5V e o outro 3,3V. Observa-se que com
o uso de reguladores, flutuações da tensão da bateria entre 22,2V e 18V não afetam a
alimentação dos componentes do sistema.

41

Figura 20 – Lógica implementada com
fusível e botão de emergên-
cia.

Fonte: Autor.

Figura 21 – Modelo de botão de
emergência utilizado na
placa.

Fonte: Autor.

3.2 Projeto de Software

3.2.1 Software embarcado

O software do módulo de comando foi desenvolvido para atender uma série de
funções que o microcontrolador deve realizar na plataforma, que são:

• Inicialização do sistema.

• Leitura dos encoders.

• Geração do clock do decodificador de quadratura.

• Desligar o sistema caso a tensão de bateria caia abaixo do limiar.

• Receber do computador externo a velocidade desejada para os motores e configurá-los
dessa forma.

• Envio da velocidade atual dos motores para o computador externo.

• Desativar o sistema.

Algumas das tarefas listadas acima devem ser feitas em paralelo. O programa
deve ficar na espera dos comandos que virão da máquina externa, mas, ao mesmo tempo,
deve estar fornecendo o sinal de clock para os decodificadores, e também deve realizar
a leitura dos encoders, fornecendo esses dados com frequência constante. O sistema foi
implementado de forma a paralelizar essas atividades, como mostrado na Figura 22, e para
isso utiliza interrupções do microcontrolador.

Interrupções são eventos que param o fluxo do programa principal e levam o
microcontrolador à executar outra tarefa. Geralmente, esta outra tarefa está definida em
um ISR (Interrupt Service Routine), que é um trecho de código, salvo em uma posição
de memória diferente, que o programa executa e então retorna para o fluxo principal

42

Figura 22 – Fluxograma UML do programa executado pelo microcontrolador.

Fonte: Autoria própria.

43

Figura 23 – Modo CTC com inversão do pino de OCnA associada a overflow do contador
TCNTn. A variação de período é causada pela mudança do valor escrito em
OCR.

Fonte: (Atmel, 2014)

(GRIDLING, 2007). No caso das interrupções utilizadas no programa, o evento que as
dispara é o overflow dos Contadores 1 e 3 do Arduino.

3.2.1.1 Geração do sinal de sincronia para os decodificadores de quadratura

Para geração do clock de 1MHz não foi preciso programar um ISR. O ATmega2560
possui as funcionalidades Output Compare (OC) e Clear Timer on Compare (Auto Reload)
(CTC). A primeira significa que se pode associar o overflow de seus contadores a eventos
em pinos específicos, como colocar nível de tensão alto (5V), baixo (0V) ou inverter sua
tensão (GRIDLING, 2007). A segunda permite que, quando o contador atinja o valor
programado como máximo, ele seja zerado automaticamente, sem necessidade codificar
uma ISR para este fim.

A frequência é controlada com base no valor carregado no registrador OCR (Output
Compare Register), a relação entre o valor desse registrador e a frequência observada no
pino de OC é descrita pela Equação 3.4, onde fOC designa a frequência no pino de OC,
fclk representa o sinal de relógio e N representa o valor do prescale factor, que pode ser
configurado caso se queira diminuir a frequência de clock utilizada. A Figura 23 ilustra o
processo, sendo que TCNT designa o registrador onde é armazenado o valor do contador,
que é comparado com o conteúdo de OCR.

fOC = fclk

2×N × (1 +OCR) (3.4)

Para gerar a onda de 1 MHz foi usado o contador 1, em modo CTC, com pino de
OC habilitado e inversão de tensão no pino quando TCNT equivale a OCR. Sabendo que o
sinal relógio do ATmega2560 tem frequência de 16 MHz e usando o fator de prescale como
1, o valor que é obtido para OCR, a partir da Equação 3.4, é 7. Assim é gerado o sinal

44

Figura 24 – Fluxograma da ISR implementada para leitura de posição e envio das veloci-
dades.

Fonte: Autoria própria.

de sincronia necessário para os decodificadores de quadratura. É interessante observar
que, após a programação incial dos registradores associados ao processo, ele é resolvido
inteiramente em hardware. Não há a necessidade de implementação de nenhuma subrotina
pelo programador, assim não há concorrência com o programa principal.

3.2.1.2 Leitura dos encoders e envio das velocidades

Para a leitura dos encoders foi escolhido um método que garantisse um tempo
de amostragem constante, e que não interferisse com as demais tarefas do módulo de
comando. A abordagem escolhida foi associar esta tarefa à interrupção do Contador 3. A
frequência com que a leitura é feita é definida em uma variável do programa denominada
sample_rate, onde o usuário dever inserir o valor em Hz desejado para o experimento. O
valor programado no registrador OCR do contador 3 é obtido pela Equação 3.5.

Observe que foi utilizado o valor máximo de prescale (N=1024). Isso foi feito
por duas razões. A primeira é que existe um limite para o número salvo no registrador
OCR. Para o contador 3 esse limite é de 16 bits. O aumento do fator, como observado na
Equação 3.5 diminui o valor salvo no registrador. A outra razão é que esse fator já nos
fornece uma resolução de tempo satisfatória. Cada incremento no contador é feito em 0,64
µs, enquanto que os períodos de amostragem usados são da ordem de milissegundos.

OCR3 = fclk

1024× sample_rate − 1 (3.5)

Assim como feito com o contador 1, o modo CTC foi utilizado, para automatizar
a limpeza do contador quando o valor máximo for atingido. Nesta etapa foi necessário a
implementação de uma ISR, já que a tarefa a ser realizada é mais complexa que a inversão
de tensão em um pino. O fluxo da ISR implementada pode ser observado na Figura 24. A
lógica de que orienta os valores dos pinos OE e SEL é exibida na Tabela 3.

Quando se entra na subrotina, a primeira ação é atribuir o valor da variável
posição_atual para a variável posição_anterior, pois o valor que se tem foi obtido na

45

última iteração. Isso é feito para cada junta. Após isso, altera-se os valores dos pinos de
controle do HCTL-2017 de forma a conseguir ler o byte mais significativo (MSB) e o menos
significativo (LSB) da posição de cada motor. Como já foi discutido, os dados de posição
possui 16 bits, e são necessárias duas leituras pois o decodificador fornece apenas 8 pinos
para leitura de dados.

Como mostrado na subseção 3.1.3, os pinos de dados dos decodificadores são
roteados de forma que cada um está ligado a uma porta específica do Arduino. Isso foi
feito para deixar a leitura dos pinos mais rápida e o código mais enxuto. Dessa forma,
para leitura de um byte de posição, em vez da leitura sequencial de cada pino, utilizando
a função digitalRead fornecida pela biblioteca arduino, utilizou-se um método mais baixo
nível.

Cada porta do arduino é controlada por três registradores, que também são variáveis
definidas na linguagem Arduino(Arduino LLC, 2018). Eles são DDR, PORT e PIN. O
primeiro define o sentido dos pinos da porta. O segundo possibilita a escrita e leitura
deles e o terceiro é um registro apenas de leitura. No código, faz-se uma leitura direta do
registrador PIN conectado a cada decodificador para obtenção de um byte de posição.

O Código 3.1 mostra como seria a leitura de um byte utilizando a função da
biblioteca Arduino, enquanto que o Código 3.2 mostra a leitura utilizando manipulação
de portas. Para o código implementado, que lê 8 bytes a cada instante de amostragem,
em vez de codificar 64 leituras, reduziu-se a operação a 4 leituras do registrador PIN.
Ainda que cada operação se dê em microssegundos, Haveria uma diferença de 64 vezes
esse intervalo entre a primeira e a última leitura.O método mais baixo nível garante uma
leitura praticamente instantânea dos decodificadores.

Código 3.1 – Leitura utilizando função digitalRead() da biblioteca Arduino.
p o s i t i o n = d ig i t a lRead (DA0) ;
p o s i t i o n |= d ig i ta lRead (DA1)<<1;
p o s i t i o n |= d ig i ta lRead (DA2)<<2;
p o s i t i o n |= d ig i ta lRead (DA3)<<3;
p o s i t i o n |= d ig i ta lRead (DA4)<<4;
p o s i t i o n |= d ig i ta lRead (DA5)<<5;
p o s i t i o n |= d ig i ta lRead (DA6)<<6;
p o s i t i o n |= d ig i ta lRead (DA7)<<7;

Código 3.2 – Leitura utilizando Registrador PIN.
p o s i t i o n = PINA;

46

3.2.2 Protocolo de comandos

Os comandos implementados que a plataforma consegue realizar são a imposição de
velocidade nas juntas rotativas, freio do sistema e desativação dos motores. Esses comandos
são feitos através de escritas nos drivers que interfaceiam microcontrolador e motores.

Os comandos de freio e desativação utilizam pinos de entrada e saída convencionais,
enquanto que a escrita de velocidade utiliza pinos de PWM do Arduino. Para escrever
neles se utiliza a função analogWrite da biblioteca arduino, onde se insere um valor de até
1 byte. A saída no pino de PWM é uma onda quadrada a qual se consegue controlar o
valor médio. O controle é feito com base no valor escrito na função. O argumento máximo,
de 255, implica uma onda de saída de 5V, enquanto que 127 gera na saída uma onda
quadrada com 2,5V de valor médio.

A Tabela 4 exibe como o protocolo de comandos enviados à placa deve funcionar.
No caso do comando de envio de velocidades, o loop entra em modo de espera para
receber os bytes referentes às velocidades. Os headers para os comandos foram escolhidos
arbitrariamente, mas com a atenção de diferirem em alguns bits, de forma a dificultar
erros.

Tabela 4 – Protocolo de comandos enviados ao sistema.

Byte comando
0x1F Envio de velocidade
0x4C Freio do sistema
0x7A Desligar sistema

Tabela 5 – Protocolo de comandos enviados do sistema.

Byte Comando
0xA9 Comando realizado
0xD6 Envio de posições

47

4 RESULTADOS E DISCUSSÕES

4.1 Implementação da placa

Nesta seção é mostrado o layout projetado para o sistema eletrônico, bem como a
placa fabricada e a versão final, já com os componentes soldados, que foi utilizada para os
testes.

Para o projeto de layout foi utilizado a ferramenta de Electronic Design Automation
(EDA) KiCad, que foi escolhida por ser gratuita, código aberto e também por ser uma
ferramenta com a qual já se tinha experiência. As Figuras 25 e 26 exibem as partes superior
e inferior, respectivamente, da placa projetada. A área negra na parte superior da placa
corresponde ao plano terra. Trata-se de uma estratégia utilizada no design de placas de
circuito impresso, onde se utiliza uma superfícide no mesmo potencial que os nós de Terra
para diminuir ruído e facilitar o roteamento.

Após o projeto de layout, encaminhou-se os arquivos no formato Gerber gerados
pelo programa para uma empresa especializada, para que a placa fosse fabricada. As
figuras 27 e 28 mostram a placa de circuito impresso resultante do layout.

Com a placa em mãos, começou-se a soldadem dos componentes, para que os
testes com o hardware pudessem ser feitos. As Figuras 29 e 30 mostram a placa já com os
componentes soldados. É interessante observar que ela foi projetada de forma que alguns
componentes pudessem continuar a ser utilizados em outros projetos, quando não se estiver
utilizando a placa. O Arduino não fica soldado na placa, ela foi projetada para funcionar
como um shield, onde o arduino pode ser encaixado, e retirado depois, quando não for ser
usado. Os decodificadores de quadratura também são encaixados em sockets, que ficam
soldados na placa. O botão de emergência não é soldado diretamente na placa, mas através
de um cabo. Dessa forma o usuário pode deixá-lo na placa ou manuseá-lo com as mãos,
caso o experimento permita.

48

Figura 25 – Layout da parte superior da placa.

Fonte: Autor.

Figura 26 – Layout da parte inferior da placa.

Fonte: Autor.

49

Figura 27 – Parte superior da placa fabricada.

Fonte: Autor.

Figura 28 – Parte inferior da placa fabricada.

Fonte: Autor.

50

Figura 29 – Parte superior da placa já com os componentes soldados.

Fonte: Autor.

Figura 30 – Parte inferior da placa já com os componentes soldados.

Fonte: Autor.

51

4.2 Testes dos módulos

Os testes foram realizados em bancada, utilizando dois motores que já estavam
com encoders acoplados e cabos montados. A Figura 31 exibe a montagem do sistema
para testes. O modelo da fonte utilizada para alimentação da placa é Ininipa MPL-3303.
O modelo do multímetro utilizado para medir tensões é Ininipa ET-2070.

Figura 31 – Montagem do sistema com 2 motores, 2 drivers e fonte de bancada.

Fonte: Autor.

4.2.1 Motores e drivers

Os motores e drivers do robô foram testados de forma a verificar o bom funcio-
namento das interfaces implementadas, bem como do software que comandaria as ações.
Neste teste o procedimento foi:

• Inicializar o sistema.

• Ligar os motores com rotação igual a 20% da velocidade máxima.

• Aumentar para 60% da velocidade máxima.

• Reduzir para 40% da velocidade máxima.

• Frear o motor.

• Desativar o motor.

A primeira etapa do teste visava confirmar o bom funcionamento das interfaces
e conexões elétricas do sistema, bem como correta inicialização de pinos e atuação do

52

software controlando a velocidade do sistema. Além disso, pode-se observar a dinâmica do
motor acelerando e reduzindo de velocidade quase instantâneamente.

No momento do freio o sistema apresentou parada brusca, e pode-se verificar que o
eixo manteve-se rígido quando se tentou forçar movimento. Quando ele foi desativado o
eixo perdeu a rigidez, podendo ser facilmente girado. Este procedimento foi repetido para
cada um dos 4 terminais, revezando-se os 2 motores e 2 drivers disponíveis. O experimento
foi satisfatório pois se pode verificar o comportamento esperado.

4.2.2 Módulo de energia

Neste teste o objetivo era verificar o correto funcionamento do módulo de energia
com variações na corrente demandada pelo sistema e com a queda da tensão de alimentação.
Primeiramente se manteve fixa a tensão de alimentação do sistema em 21,86V, e então
aumentou-se a velocidade dos dois motores em giro, medindo a corrente demandada pelo
sistema e as tensões rebaixadas pelo módulo de energia. Os dados colhidos encontram-se
na Tabela 6. Pode-se observar que as tensões não foram afetadas pelo aumento de corrente.
Porém, como os motores giravam em vazio, os valores de corrente exigidos foram pequenos.

Tabela 6 – Medição das tensões rebaixadas com o aumento da corrente exigida.

Velocidade Corrente Vin do Arduino Potencial de 5V Potencial de 3,3V
0, 2VMAX 0,17A 9,89V 5,06V 3,37V
0, 4VMAX 0,20A 9,89V 5,06V 3,37V
0, 6VMAX 0,24A 9,89V 5,07V 3,37V
0, 8VMAX 0,28A 9,89V 5,06V 3,36V

Figura 32 – Sugestão de novo circuito para o supervisor que não envolve a lógica de LEDs.

Fonte: Autor.

A segunda parte do teste consistiu em reduzir a tensão abaixo dos 18V para checar
se o sistema de resposta desligaria o motor. O sistema falhou nesse teste. Utilizando o
multímetro, verificou-se que a tensão supervisionada estava abaixo do previsto, com valor

53

de 1,15V. Notou-se que lógica implementada com o LED verde reduz o valor do divisor
resistivo.

Como resultado, observou-se que este circuito de LEDs deve ser substituído de
forma a não interferir com o divisor resistivo. Uma sugestão de circuito que pode ser
implementada e não utiliza a lógica de LEDs é exibida na Figura 32. Essa falha não causou
prejuízos pois se utilizou uma fonte de bancada nos testes, ao invés da bateria.

4.2.3 Módulo de sensoriamento

Neste teste, foi verificado a leitura de posição obtida pelo sistema. Para cada um
dos 4 decodificadores, foi fixado um ponto no eixo do motor para marcar uma volta, e 8
voltas foram dadas, cada volta com valor esperado de 8 mil pulsos. Os valores colhidos em
cada volta seguem abaixo, bem como média do experimento e desvio padrão.

Tabela 7 – Valores de teste obtidos para
decodificador 1.

Volta Nº de pulsos
1ª 8005
2ª 16001
3ª 23999
4ª 31998
5ª 40001
6ª 48000
7ª 55999
8ª 64001
Média 8000,125
Desvio padrão 19

Fonte: Autor.

Tabela 8 – Valores de teste obtidos para
decodificador 2.

Volta Nº de Pulsos
1ª 8003
2ª 15999
3ª 24000
4ª 31899
5ª 39901
6ª 47997
7ª 55998
8ª 63898
Média 7987
Desvio padrão 308

Fonte: Autor.

Tabela 9 – Valores de teste obtidos para
decodificador 3.

Volta Nº de Pulsos
1ª 7996
2ª 15993
3ª 23995
4ª 31994
5ª 39996
6ª 47997
7ª 55997
8ª 63995
Média 7999,4
Desvio padrão 15

Fonte: Autor.

Tabela 10 – Valores de teste obtidos para
decodificador 3.

Volta Nº de pulsos
1ª 7999
2ª 16003
3ª 24001
4ª 32002
5ª 40000
6ª 47997
7ª 56000
8ª 63998
Média 7999,8
Desvio padrão 18

Fonte: Autor.

54

Como pode ser visualizado nas tabelas, em média o valor de pulsos em uma volta
é muito próximo de 8 mil, a média que mais se afastou só divergiu em 0,16%. O desvio
padrão chegou a 3,85% ta Tabela 8, porém observa-se o valor mais alto apenas nela, e
devido a 3 das 8 medidas.

O objetivo do teste não era medir a precisão do sistema, já que não se utilizou ins-
trumentos de precisão, mas observar se os dados lidos fariam sentido, se não apresentariam
grandes discrepâncias ou tendências. Com base nisso, os resultados foram satisfatórios.

4.2.4 Módulo de comunicação

O teste de comunicação consistiu em avaliar diferentes taxas de bits com relação
à possíveis perdas de dados, erros de ordenamento, e tempo em que os dados seriam
processados pelo Matlab. Para cada taxa, o teste se divide em 5 etapas. Cada etapa
consiste no envio de 100 bytes para o Matlab, o script que processa os dados salva o tempo
em que cada byte é percebido. Este tempo é obtido utilizando as instruções tic e toc do
Matlab. O programa está disponível no Apêndice C.

Os dados eram enviados de forma ordenada, com valores variando entre 1 e 100,
de forma que se algum fosse perdido, ou a ordem trocada, seria percebido pelo teste.
Os resultados obtidos seguem nas tabelas 11, 12, 13 e 14. Para o teste, "processar"uma
amostra implica recebê-la e salvá-la em uma variável local. As instruções tic e toc são
usadas de forma a marcar o intervalo de tempo entre o processamento de duas amostras
consecutivas.

Tabela 11 – Teste de comunicação com 9600 bps.

Etapa Bytes perdidos Bytes desordenados Tempo de processamento
1ª 0 0 15,56 ms
2ª 0 0 16,82 ms
3ª 0 0 18,31 ms
4ª 0 0 16,28 ms
5ª 0 0 15,16 ms

Tabela 12 – Teste de comunicação com 19200 bps.

Etapa Bytes perdidos Bytes desordenados Tempo de processamento
1ª 0 1 15,48 ms
2ª 0 1 15,96 ms
3ª 0 1 16,03 ms
4ª 0 1 16,08 ms
5ª 0 1 16,01 ms

55

Tabela 13 – Teste de comunicação com 32400 bps.

Etapa Bytes perdidos Bytes desordenados Tempo de processamento
1ª 0 1 19,01 ms
2ª 0 1 19,11 ms
3ª 0 1 18,23 ms
4ª 0 1 16,26 ms
5ª 0 1 15,47 ms

Tabela 14 – Teste de comunicação com 57600 bps.

Etapa Bytes perdidos Bytes desordenados Tempo de processamento
1ª 0 1 17,40 ms
2ª 0 1 16,32 ms
3ª 0 1 15,27 ms
4ª 63 0 344,33 ms
5ª 0 1 15,57 ms

A partir dos dados, pode-se concluir primeiro que, para a abordagem utilizada,
aumentar a taxa de transmissão do XBee não surtiu efeito. O gargalo no processo não é a
taxa com que o módulo de rádio envia dados, mas pode estar na forma como o Matlab
processa os dados recebidos via porta serial no computador externo.

Com relação aos valores de tempo obtidos, considerando que se demora cerca de
15ms para o processamento de um byte, e que o loop de realimentação envolve a transmissão
de 2 bytes por junta, seriam necessários pelo menos 120ms para transmissão de todos os
dados de um laço de realimentação, o que restringiria a frequência de amostragem para
menos de 9Hz.

Outra conclusão que se pode tirar é que a comunicação é bastante confiável,
praticamente não apresentando perdas. Quanto ao byte desordenado que as taxas acima
de 9600 bps apresentaram (com exceção da 4ª Etapa da máxima velocidade), ele sempre
veio na primeira posição lida, mostrando-se um problema previsível.

57

5 CONCLUSÃO

O trabalho se propôs ao projeto e implementação de nova eletrônica para o robô
UARM-E, de forma que a plataforma experimental pudesse voltar a ser utilizada em
experimentos. Além de retomar o normal funcinamento, o projeto propôs uma arquitetura
mais simples, que pudesse ser implementada mais rapidamente e com mais facilidade.
Nesse quesito, as mudanças feitas permitiram que se descartasse alguns componentes,
como o CPLD, o circuito de chaveamento de baterias e a segunda bateria. O uso de menos
juntas também tornou o roteamento da placa menos complexo, contribuindo para que o
projeto pudesse avançar mais rapidamente.

O uso da plataforma Arduino, uma das mudanças com relação ao projeto antigo,
também rendeu bons frutos. Apesar de ser baseado em um microcontrolador mais limitado
que o Rabbit 4000, utilizado no projeto original, em nenhum dos testes realizados ele se
mostrou aquém das tarefas solicitadas. Além disso, o código desenvolvido para a plataforma
é bem mais compreensível, facilitando que futuros alunos possam usar e modificar conforme
as suas necessidades. Quando a interface com módulo XBee se mostrava mais complexa
do que o esperado, a disponibilidade de um shield específico para a placa permitiu que o
projeto continuasse sem maiores dificuldades na área de comunicação.

O módulo XBee, uma vez resolvido o problema da interface, se mostrou de fácil
configuração graças às ferramentas disponibilizadas pela Digi, como o XCTU. Além disso,
o modo de operação transparente, utilizado no projeto, faz com que a presença do módulo
se torne invisível para o software, de forma que pode-se utilizar o mesmo programa com
comunicação serial ou via XBee, o que contribuiu para um desenvolvimento mais rápido
do software embarcado. A comunicação também se mostrou confiável. Os testes não
mostraram haver necessidade de grande overhead no software para tratamento de erros na
comunicação. Porém a interface com Matlab merece maior investigação, uma vez que os
testes mostraram que o aumento na taxa de bits não implicava em maior velocidade.

De forma geral, o trabalho trouxe grandes desafios e requereu grande envolvimento.
Por incluir uma implementação real do sistema idealizado, foi necessário lidar com vários
problemas não previstos, como investigação de problemas elétricos na placa, adaptação de
conectores, cabos e componentes. Ao mesmo tempo que provocaram dificuldades e atrasos,
esses imprevistos agregaram ao aprendizado obtido no projeto.

5.1 Trabalhos futuros

Para futuras implementações de sistemas de mesmo tipo, é possível aproveitar
melhor a capacidade do Arduino Mega. Ainda que a implementação descrita no projeto

58

tenha utilizado grande parte de sua pinagem, contadores e PWMs, ele tem mais a oferecer.
O microcontrolador possui, por exemplo, cerca de 4 interfaces seriais, das quais apenas uma
foi utilizada. Implementações que busquem um uso mais pesado da comunicação podem
se aproveitar dessa arquitetura para diminuir a concorrência por recursos do controlador.

Outro aspecto que pode ser melhor explorado em outros projetos são as capacidades
do XBee. Além dos 4 pinos usados no projeto, o componente apresenta mais 16, entre os
quais se tem conversores AD e pinos para entrada e saída. Uma arquitetura que utilize
mais a capacidade de processamento deste componente, aliviando o microcontrolador,
pode render bons frutos.

Com relação ao módulo de energia, um novo circuito para o supervisor de tensão
foi proposto. Seria interessante que futuros trabalhos validassem a sugestão feita ou
propusessem seus próprios circuitos. Já em relação ao módulo de sensoriamento, ele
se limita à sensores de posição (encoders rotativos), porém seria possível um projeto
envolvendo sensores de força, para teste e validação de estratégias de controle mistas,
envolvendo força e movimento. Caso a adição de funcionalidades torne o roteamento da
placa muito complicado, pode-se utilizar placas de 4 camadas para viabilizar o projeto ou
torná-lo mais rápido.

59

REFERÊNCIAS

BENSON, C. Making Sense of Actuators. 2010. Disponível em: <https:
//www.robotshop.com/blog/en/how-to-make-a-robot-lesson-3-actuators-2-3703>.

CRAIG, J. J. Introduction to robotics: mechanics and control. [S.l.]:
Pearson/Prentice Hall Upper Saddle River, NJ, USA:, 2005. v. 3.

EITEL, E. Basics of rotary encoders: Overview and new technologies. Machine
Design Magazine, 2014. Disponível em: <http://www.machinedesign.com/sensors/
basics-rotary-encoders-overview-and-new-technologies-0>. Acesso em: 23 maio 2018.

GRIDLING, G. Introduction to microcontrollers. 2007.

LYNCH, K. M.; PARK, F. C. Modern Robotics: Mechanics, Planning, and
Control. [S.l.]: Cambridge University Press, 2017.

MENON, C.; BUSOLO, S. Issues and solutions for testing free-flying robots. Acta
Astronautica, Elsevier, v. 60, n. 12, p. 957–965, 2007.

PAZELLI, T. d. F. P. A. et al. Montagem e controle H Infinito não linear
de manipuladores espaciais com base flutuante. 2011. Tese (Doutorado) —
Universidade de São Paulo, 2011.

Arduino LLC. What is Arduino? 2018. Disponível em: <https://www.arduino.cc/en/
guide/introduction>.

Atmel. 8-bit Atmel Microcontroller with 16/32/64KB In-System Programma-
ble Flash. 2549q. ed. [S.l.], 2014.

Creative Robotics Ltd. What are Quadrature Encoders. 2018. Disponível em:
<http://www.creative-robotics.com/quadrature-intro>.

Digi International. XBee/XBee-PRO S1 802.15.4 (Legacy) User Guide. 90000982.
ed. 11001 Bren Road East, Minnetonka, MN 55343, 2018.

. XCTU: Next Generation Configuration Platform for XBee/RF
Solutions. 2018. Disponível em: <https://www.digi.com/products/xbee-rf-solutions/
xctu-software/xctu>.

SPONG, M. W. Robot modeling and control. [S.l.]: Wiley New York, 2006. v. 3.

TEODORO, D.; AUGUSTO, C. Reformulação do hardware do braço robótico ma2000
com emrprego de arquitetura arm para controle. 07 2012.

Apêndices

63

APÊNDICE A – ESPECIFICAÇÕES DOS COMPONENTES

Tabela 15 – Especificações da placa Arduino Mega 2560.

Microcontrolador Arduino Mega 2560
Frequência de Clock 16 MHz
Pinos de Entrada e Saída 54
Saídas PWM 16
Memória Flash 256 kB
Entradas Analógicas 16
Tensão de Alimentação 7-12V
Tensão de Operação 5V
Corrente por pino de E/S 20 mA
Peso 37g

Fonte: Arduino LLC (2018)

Tabela 16 – Especificações do módulo XBee.

Especificações XBee
Área Urbana 30 m
Área sem obstáculos 90m
Taxa de dados RF 250.000 bps
Potência transmitida 1 mW
Tensão de Alimentação 2,8V-3,4V
Frequência de Operação 7-12V
Tensão de Operação 5V
Corrente por pino de E/S 20 mA
Peso 37g

Fonte: Digi International (2018a)

64

Tabela 17 – Especificações do decodificador de quadratura.

Decodificador de quadratura HCTL2017
Tensão de alimentação 5 V
Nível alto de tensão de entrada > 3.5 V
Nível baixo de tensão de entrada < 1.5 V
Nível alto de tensão de saída 4.5 V
Nível baixo de tensão de saída 0.4 V
Resolução do contador 16 bits
Clock de operação ≤ 14 MHz
Interface de saída Tristate

Fonte: Datasheet do componente.

Tabela 18 – Especificações do supervisor de tensão.

Supervisor TL7705
Tensão de alimentação (VCC) 3,5V-10V
Tensão de threshold 4,55V

Fonte: Datasheet do componente.

Tabela 19 – Especificações do regulador LM7810CT.

Regulador LM7810C
Tensão de Entrada Até 35V
Tensão de saída 9,6-10,4
Fonte: Datasheet do componene.

Tabela 20 – Especificações do regulador LM2596

Regulador LM2596
Tensão de Entrada 3,2-40V
Tensão de saída 1,5-35V
Fonte: Datasheet do componene.

65

Tabela 21 – Especificação dos motores.

Motor EC 90 flat
Tipo Motor elétrico brushless
Fabricante Maxon
Potência 90 W
Tensão nominal 48 VCC
Corrente nominal (sem carga) 130 mA
Máxima corrente contínua (1640rpm) 2.12 A
Velocidade nominal (sem carga) 2080 rpm
Máxima velocidade permitida 5000 rpm
Máximo torque contínuo @1640rpm 0.494 Nm
Torque contínuo travado 4530 mNm
Constante de torque, KM 217 mNm/A
Constante de velocidade, Kn 44 rpm/V
Gradiente velocidade/torque, ∆n/∆M 0.466 rpm/mNm
Resistência de enrolamento 2.30 Ohm (entre fases)
Inercia do rotor 3060 gcm 2
Massa do motor 648 g

Fonte: Maxon.

67

APÊNDICE B – ESQUEMÁTICOS

Figura 33 – Conexões Arduino Mega.

Fonte: Autor

68

Figura 34 – Conexões do supervisor de tensão.

Fonte: Autor

Figura 35 – Conexões módulo de sensoriamento e XBee.

Fonte: Autor

69

Figura 36 – Conexões conectores de drivers e motores.

Fonte: Autor

Figura 37 – Conexões da bateria e reguladores.

Fonte: Autor

71

APÊNDICE C – CÓDIGOS IMPLEMENTADOS

Código C.1 – Teste de comunicação
% Close a l l s e r i a l po r t s
i n s t r r e s e t
% Set d i s p l a y format
format shor t
% Clear a l l l o c a l v a r i a b l e s
clear
% Define s e r i a l communication s e t t i n g s
s = s e r i a l (’ /dev/CURRENT_PORT’ , ’BaudRate ’ , CURRENT_BAUD) ;
fopen (s)
% I n i t i a l i z e v a r i a b l e s
i = 1 ;
time_ = zeros (1 0 0 , 1) ;
Data = uint8 (zeros (1 0 0 , 1)) ;
% Sta r t t imer
t ic
while (i <101)

% Check s e r i a l por t
i f (s . BytesAvai lable >0)

% Save t h i s sample va lue
Data (i) = fread (s , 1) ;
% Save proce s s ing time f o r t h i s sample
time_ (i) = toc ;
i=i +1;

end
end

% Disp lay samples va lue and time
Data
time_
% Close s e r i a l por t
fc lose (s)

72

Código C.2 – Software embarcado
#include <Arduino . h>
/∗
Exp l i cacao do codigo
∗/
//Program Def ines
// I f i t becomes too big , c r ea t e a d e f i n e f i l e f o r t h i s
#define SAMPLE_FREQUENCY 20
#define COM_CHECK 75
#define SEL 38
#define OE 39
#define RST 40
#define PWM_MOT4 6
#define PWM_MOT3 7
#define PWM_MOT2 8
#define PWM_MOT1 9
#define DISABLE1 A0
#define DISABLE2 A1
#define DISABLE3 A2
#define DISABLE4 A3
#define SW4 A4
#define SW3 A5
#define SW2 A6
#define SW1 A7
#define DIR_MOT1 A8
#define DIR_MOT2 A9
#define DIR_MOT3 A10
#define DIR_MOT4 A11
//Attent ion , break p ins are a c t i v e in LOW
#define BRK_MOT1 A12
#define BRK_MOT2 A13
#define BRK_MOT3 A14
#define BRK_MOT4 A15
// CLK 5 (Apenas para documentacao ,
// essa d e f i n i c a o eh f e i t a de maneira automatica .
#define pi 3 .14159

int V1 = 0 ;
int V2 = 0 ;

73

int V3 = 0 ;
int V4 = 0 ;
int l a s t_po s i t i on1 = 0 ;
int l a s t_po s i t i on2 = 0 ;
int l a s t_po s i t i on3 = 0 ;
int l a s t_po s i t i on4 = 0 ;
int cur r ent_pos i t i on1 = 0 ;
int cur r ent_pos i t i on2 = 0 ;
int cur r ent_pos i t i on3 = 0 ;
int cur r ent_pos i t i on4 = 0 ;
f loat current_speed1 = 0 ;
f loat current_speed2 = 0 ;
f loat current_speed3 = 0 ;
f loat current_speed4 = 0 ;
int inByte = 70 ;
int command=0;
// i n t i ;
byte speed1 [] ={0 ,0};
signed int t e s t = 34000 ;
f loat pos4_graus = 0 ;

unsigned char i ;
int j ;

unsigned char speeds [5] = {9 , 3 , 12 , 9 , 7} ; // , 20 , 13 , 2 , 5} ;

// the se tup func t i on runs once when you pre s s r e s e t
// or power the board
void setup () {

analogWrite (PWM_MOT1, 0) ;
analogWrite (PWM_MOT2, 0) ;
analogWrite (PWM_MOT3, 0) ;
analogWrite (PWM_MOT4, 0) ;
// s t a r t s e r i a l por t a t 9600 bps
S e r i a l . begin (57600) ;
de lay (1 0 0) ;

//Coloca os b i t s do por t D (2 a 7) como entradas , sem a l t e r a r
// o va l o r dos b i t s 0 e 1 , que sao RX e TX
// DDRD = DDRD & B00000011 ;

74

// Coloca o por t A como entrada
DDRA = 0b00000000 ;

// Seta pinos de con t r o l e do d e cod i f i c ado r como sa ida
pinMode (RST, OUTPUT) ;
pinMode (SEL , OUTPUT) ;
pinMode (OE, OUTPUT) ;
pinMode (41 , OUTPUT) ;
// Set d r i v e r s p ins modes
pinMode (BRK_MOT1, OUTPUT) ;
pinMode (BRK_MOT2, OUTPUT) ;
pinMode (BRK_MOT3, OUTPUT) ;
pinMode (BRK_MOT4, OUTPUT) ;

pinMode (DISABLE1 , OUTPUT) ;
pinMode (DISABLE2 , OUTPUT) ;
pinMode (DISABLE3 , OUTPUT) ;
pinMode (DISABLE4 , OUTPUT) ;

pinMode (DIR_MOT1, OUTPUT) ;
pinMode (DIR_MOT2, OUTPUT) ;
pinMode (DIR_MOT3, OUTPUT) ;
pinMode (DIR_MOT4, OUTPUT) ;

//Da um pu l so no pino r e s e t para zerar o d e cod i f i c ado r
d i g i t a lWr i t e (RST, LOW) ;
de lay (4 0 0) ;
d i g i t a lWr i t e (RST, HIGH) ;

// s e t d i r e c t i o n in motors
d i g i t a lWr i t e (DIR_MOT1,HIGH) ;
d i g i t a lWr i t e (DIR_MOT2,HIGH) ;
d i g i t a lWr i t e (DIR_MOT3,HIGH) ;
d i g i t a lWr i t e (DIR_MOT4,HIGH) ;
//Turn o f f break (t h i s s i g n a l i s a c t i v e in LOW)
d i g i t a lWr i t e (BRK_MOT1,HIGH) ;
d i g i t a lWr i t e (BRK_MOT2,HIGH) ;
d i g i t a lWr i t e (BRK_MOT3,HIGH) ;
d i g i t a lWr i t e (BRK_MOT4,HIGH) ;
//Chose which motors are d i s a b l e d

75

// (t h i s s i g n a l i s a c t i v e in LOW)
d i g i t a lWr i t e (DISABLE1 ,LOW) ;
d i g i t a lWr i t e (DISABLE2 ,LOW) ;
d i g i t a lWr i t e (DISABLE3 ,LOW) ;
d i g i t a lWr i t e (DISABLE4 ,LOW) ;
// Set the motors speed
// analogWrite (PWM_MOT1, 50) ;
// analogWrite (PWM_MOT2, 50) ;
// analogWrite (PWM_MOT3, 50) ;
// analogWrite (PWM_MOT4, 50) ;

//Conf iguracoes do Timer 1 ,
//usado para f a z e r a l e i t u r a cons tante do Encoder
// i n i t i a l i z e t imer1

noInte r rupt s () ; // d i s a b l e a l l i n t e r r u p t s
TCCR1A = 0 ;
TCCR1B = 0 ;
TCNT1 = 0 ;

OCR1A = (int)(16000000/1024/SAMPLE_FREQUENCY) ;
// compare match r e g i s t e r 16MHz/256/2Hz
TCCR1B |= (1 << WGM12) ;
// CTC mode (zera o t imer quando a t in ge o va l o r d e f i n i d o)
TCCR1B |= (1 << CS12) ; // 1024 p r e s c a l e r
TCCR1B |= (1 << CS10) ; // 1024 p r e s c a l e r
TIMSK1 |= (1 << OCIE1A) ; // enab l e t imer compare i n t e r r u p t
i n t e r r up t s () ; // enab l e a l l i n t e r r u p t s

//CLOCK DE 1MHZ
// U t i l i z a−se o t imer 3 para gerar um c l o c k de 1MHz
//no pino OC3A (No arduino mega , pino 5 ou PE3) do arduino .
DDRE = _BV(DDE3) ; // s e t OC3A
TCCR3A = _BV(COM3A0) ; // t o g g l e OC3A on compare match
OCR3A = 7 ; // top va lue f o r counter
TCCR3B = _BV(WGM12) | _BV(CS30) ;
//CTC mode , p r e s c a l e r c l o c k /1

//
delay (1000) ;

76

}

//∗∗∗∗∗∗∗∗∗∗∗FUNCTIONS∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗//

//Rotina de Interrupcao do t imer 1
ISR(TIMER1_COMPA_vect)
// t imer compare i n t e r r u p t s e r v i c e rou t ine
{

// Update l a s t p o s i t i o n
l a s t_po s i t i on1 = cur rent_pos i t i on1 ;
l a s t_po s i t i on2 = cur rent_pos i t i on2 ;
l a s t_po s i t i on3 = cur rent_pos i t i on3 ;
l a s t_po s i t i on4 = cur rent_pos i t i on4 ;
// Clear p o s i t i o n v a r i a b l e
V1 = 0 ;
V2 = 0 ;
V3 = 0 ;
V4 = 0 ;

//∗∗∗∗∗∗LEITURA DOS ENCODERS∗∗∗∗∗∗∗
//LEITURA DOS PINOS HIGH
//Contro le do Decod i f i cador
d i g i t a lWr i t e (OE, HIGH) ;
d i g i t a lWr i t e (SEL , LOW) ;
d i g i t a lWr i t e (OE, LOW) ;

//Uliza−se s h i f t de 8 b i t s para
// l e i t u r a do by t e mais s i g n i f i c a t i v o
//Using PORTA cause we ’ re us ing decoder 1
V1 = (PINA << 8) ;
V2 = (PINC << 8) ;
V3 = (PINL << 8) ;
V4 = (PINB << 8) ;
//LEITURA DOS PINOS LOW
//Comando no pino SEL, agora os b i t s
//menos s i g n i f i c a t i v o s serao l i d o s
d i g i t a lWr i t e (SEL , HIGH) ;
//Em caso de problemas , i n c l u i r de lay
V1 = V1 | PINA;

77

V2 = V2 | PINC;
V3 = V3 | PINL ;
V4 = V4 | PINB ;
//Update current p o s i t i o n s
cur r ent_pos i t i on1 = V1 ;
cur r ent_pos i t i on2 = V2 ;
cur r ent_pos i t i on3 = V3 ;
cur r ent_pos i t i on4 = V4 ;
S e r i a l . wr i t e (2 1 4) ;
S e r i a l . wr i t e (cur r ent_pos i t i on1) ;
S e r i a l . wr i t e (cur r ent_pos i t i on2) ;
S e r i a l . wr i t e (cur r ent_pos i t i on3) ;
S e r i a l . wr i t e (cur r ent_pos i t i on4) ;

}

void commandDone () ; {
S e r i a l . wr i t e (169)

}
void stopEngine (){

d i g i t a lWr i t e (BRK_MOT1,LOW) ;
d i g i t a lWr i t e (BRK_MOT2,LOW) ;
d i g i t a lWr i t e (BRK_MOT3,LOW) ;
d i g i t a lWr i t e (BRK_MOT4,LOW) ;
commandDone () ;

} ;

void se tSpeeds (){
int value ={0 ,0 ,0 ,0} ;
for (int i =0; i <4; i++){

value [i]= S e r i a l . read () ;
}
analogWrite (PWM_MOT1, va lue [0]) ;
analogWrite (PWM_MOT2, va lue [1]) ;
analogWrite (PWM_MOT3, va lue [2]) ;
analogWrite (PWM_MOT4, va lue [3]) ;
commandDone () ;

}

void of fSystem (){

78

d i g i t a lWr i t e (DISABLE1 ,LOW) ;
d i g i t a lWr i t e (DISABLE2 ,LOW) ;
d i g i t a lWr i t e (DISABLE3 ,LOW) ;
d i g i t a lWr i t e (DISABLE4 ,LOW) ;
commandDone () ;

} ;
void battery_check (){

i f (d i g i t a lRead (6)==HIGH) ;
o f fSystem () ;

}
unsigned char command ;
void loop () {

i f (S e r i a l . a v a i l a b l e ()) {
// ge t incoming by t e
command = S e r i a l . read () ;

switch (command) {
Command 1 re tu rn s communication ok
case 31 :

se tSpeeds () ;
break ;

case 76 :
stopEngine () ;
break ;

case 122 :
o f fSystem () ;
break ;

}
battery_check () ;

}

