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RESUMO

Martins, Sofia de F. Aspectos fisicos e matematicos da Fisica de Particulas. 2024.
20 p. Monografia (Trabalho de Conclusdo de Curso) - Instituto de Fisica de Sao Carlos,
Universidade de Sao Paulo, Sao Carlos, 2024.

Pretende-se realizar um estudo envolvendo alguns aspectos matematicos e fisicos impor-
tantes para a Fisica de Particulas Elementares. Para tal, comega-se com uma descri¢ao
geral das Teorias Cléssicas de Gauge (calibre), em especial a invaridncia de Gauge local,
que esta na base da construcao de modelos para a Fisica de Particulas sob transformagcoes
locais geradas por Grupos de Lie compactos. Isso permite associar, na versao quantica
correspondente, as particulas fundamentais como representacoes dos grupos de Gauge.
Compreendendo a teoria classica e a derivagao das Equacoes de Maxwell a partir da
Eletrodinamica Quéntica (a teoria de Gauge associada ao grupo U(1) ) a nivel classico,
procede-se para a teoria quantica, utilizando a férmula de Feynman-Kac e tomando-a
como justificativa para a definicao de um modelo quantico de Gauge via o formalismo de
integrais funcionais. Esta féormula permite construir e usar a teoria de semi-grupos e o
teorema espectral para compreender como determinar a evolugao temporal no sistema.
Neste formalismo, o operador Hamiltoniano (energia) é o gerador da dindmica, essencial
para a determinacao da evolucao temporal. Pela abordagem de Feynman-Kac, tem-se
uma integral de caminho que leva em conta todas as possiveis trajetorias de um sistema
fisico, com fungoes complexas exponenciais das agoes associadas, o que é compativel com

a interpretacao probabilistica da descricdo quantica dos sistemas fisicos.

E importante ressaltar que, embora o trabalho aborde diversos objetos de estudo, o projeto
teve como objetivo fornecer a estudante uma introdugao aos temas, complementando sua
formacao. Por isso, os topicos serao apresentados de forma concisa, oferecendo uma visao

geral sem entrar em detalhes extensivos.

Palavras-chave: Grupos de Lie. Teorias de Gauge. Férmula de Feynman-Kac.
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1 INTRODUCAO

O conceito de campos na fisica comecou a ser utilizado explicitamente no século
XIX, quando Michael Faraday descreveu os fend6menos magnéticos por meio de linhas
de campo tracadas ao redor de um material magnetizado para indicar sua influéncia em
outros corpos. Tal ideia desafiava a nocao tradicional aristotélica da impossibilidade de
uma agao sem um meio fisico direto entre os corpos. Pelo contrario, Faraday acreditava que
as interagoes poderiam ser mediadas por um campo fisico nao visivel, que permeia o espago
e atua entre os objetos, carregando a influéncia de um corpo a outro sem a necessidade de

entrarem em contato.

Mais tarde, com o auxilio desse conceito, James Clerk Maxwell conseguiu unificar
as interagoes elétricas e magnéticas em um conjunto de equagoes diferenciais, consolidando
dessa forma o campo como uma entidade fundamental. No inicio do século XX surgiu
a teoria da relatividade restrita, expandindo dessa forma a teoria classica de campos ao

constatarem que as equagoes de Maxwell eram compativeis com a relatividade especial.

Ap6s o desenvolvimento da mecanica quéntica no século XX, mostrou-se necessario
reformular a teoria cldssica de campos para incluir efeitos quanticos. Em 1928, Paul
Dirac chegou na sua famosa formula que descreve o comportamento relativistico dos
férmions, como os elétrons, sendo compativel tanto com a mecanica quantica quanto com

a relatividade restrita.

Este trabalho introduz brevemente alguns aspectos da Fisica de Particulas, que
usa a teoria de campos como uma ferramenta fundamental para descrever as particulas.
Inicialmente, sao apresentados os Grupos e as Algebras de Lie e como eles sao utilizados
para descrever invariancias de Gauge locais, que sao simetrias presentes nas teorias de
campos conhecidas como teorias de Gauge. Também nessa parte inicial aborda-se a
Eletrodinamica Quantica a nivel classico, e como obter dela as equagdes de Maxwell. Por
fim, é exposta a proposta de Feynman para a quantizagao de teorias cldssicas de campos

por meio de integrais de caminho.



2 GRUPOS E ALGEBRAS DE LIE

2.1 Grupos de Lie

Seja G um conjunto nao vazio munido de uma operacao bindria * :

x:GxG—=G

(a,b) = axb 21)

Em (2.1), essa operagao toma dois elementos de G (par ordenado (a,b)) e mapeia-os para
um elemento também em G, sendo portanto uma operacgao fechada por definicao, em que
o conjunto dos operandos e do resultado é o mesmo. Diz-se que (G, *) é um grupo se as

propriedades abaixo sao validas para Va,b,c € G (1).

axb=c (2.2)

deeGtgexa=axe=a, YVa€ G (2.3)
paraVa € G,23a ' €eGtqg axa ' =axa=¢ (2.4)
(axb)xc=ax(bxc) (2.5)

onde (2.2) é a propriedade de fechamento, (2.3) elemento neutro, (2.4) elemento inverso e
(2.5) associatividade. Um exemplo de grupo sao os ntimeros inteiros sob adi¢ao (Z, +)*. Se
G é uma variedade diferenciavel, isto é, um espago topologico que se assemelha localmente
a um espaco euclidiano, possuindo uma estrutura que permite definir funcoes suaves, cujas
derivadas sao continuas e existentes em toda a variedade, entao G ¢ um grupo de Lie.
Especificamente, para um Grupo de Lie complexo, todo elemento é conexo a identidade,
isto é, sempre existe um caminho continuo que conecta Vg € G a identidade e. Essa
conectividade permite usar o espaco tangente na identidade para descrever a estrutura do
grupo em torno de e, pois qualquer elemento do grupo pode ser entendido em termos da
informacao infinitesimal contida neste espaco, que forma um espaco vetorial dotado de

uma operagao adicional, o colchete de Lie.

2.2 Algebras de Lie

Seja g um espago vetorial com aplicacao bilinear [X,Y] : g X g — g denominada

comutador ou colchete de Lie. Deve valer (2):

I A soma de niimeros inteiros é associativa e sempre resulta em outro niimero inteiro, possui o

numero 0 como elemento neutro e —a como o inverso do nimero a.



(X + BY, Z] = a|X, Z] + BY. Z] 2.6)
[X,Y]+[V,X] =0= [X,Y] = -]V, X] (2.7)
X[, Z)] + Y, [Z, X]] + [Z.[X, Y]] = 0 (2.8)

Sendo X, Y e Z € g e a e [ escalares. Se g obedecer (2.6) bilinearidade, (2.7) anticomuta-
tividade e (2.8) identidade de Jacobi, entdo g constitui uma Algebra de Lie. Quando o

comutador [ X, Y] estd definido em algebras de matrizes e de operadores, ele vale XY —Y X

2.3 Mapa Exponencial

O mapa exponencial associa uma algebra de Lie a seu grupo de Lie correspondente.
Dado um grupo de Lie G e sua algebra de Lie g, o mapa exponencial é uma fungao que

leva um elemento da algebra X € g a um elemento do grupo g € G (3):

exp:g— G, X — exp(X) (2.9)

Para uma matriz X, o exponencial é definido pela série de poténcias:

9] k 2 XS
exp(X)=) —=I+X+—+——+.. (2.10)

L 21 3!

i k! ! !
Esse mapeamento é extremamente importante para a compreensao da interacao entre
as particulas fundamentais, que sao relacionadas a representacoes de grupos de Lie
sob simetrias denominadas invariancias de Gauge. Em alguns sistemas, estas simetrias
decorrem de transformagoes no sistema fisico que garantem a invariancia das leis da fisica

sob mudancas de configuragoes.

2.4 Representacoes

No contexto da Teoria de Grupos, a representacao de um grupo de Lie é a estrutura
que permite associar o grupo de Lie, até entao visto como entidade abstrata, a operadores
lineares em um espaco vetorial. Em outras palavras, diz-se que a representacao é a acao
de um grupo em um espaco vetorial. Formalmente, uma representacao de um grupo G em

um espago vetorial V' é um homomorfismo ? de grupos, dado por (3):

I:G — GL(V) (2.11)

O grupo GL(V) representa o conjunto de todas as transformagoes lineares inver-

tiveis (ou matrizes) em V. Isso significa que cada elemento de G é mapeado para uma
2

Na 4lgebra abstrata, o homomorfismo é um mapa que preserva a estrutura entre duas
estruturas algebricas do mesmo tipo, como dois anéis, dois grupos ou dois espacos vetoriais.



transformacao linear (ou matriz) que age em V, respeitando todas as propriedades de
grupos explicitadas na secao 2.1. A representacao entao permite ver como o grupo, que €

abstrato, atua sobre vetores em um espago concreto.

Na Fisica de Particulas, representagoes distintas de um mesmo grupo sao tuteis
para descrever diferentes aspectos de particulas e campos. Isso ocorre porque uma tnica
estrutura de simetria pode ter varias formas de ser representada no espago matematico,
fornecendo visoes alternativas de uma mesma simetria. Diferentes particulas podem se
transformar de forma distinta sob a acao dos elementos de um grupo. Cada representacao
¢é responsavel entao por associar a cada tipo de particula um espaco de representagao no
qual o grupo de Gauge age. Por exemplo, no caso do elétron, o campo do elétron v esta
associado a um espago unidimensional complexo. Nesse espago, o grupo U(1) age aplicando
uma transformagao de fase em . Essa acao caracteriza a representagao fundamental de

U(1). Além da representacao fundamental, existe a conjugada e a adjunta.

A representacao obtida diretamente da definicdo de um grupo de matrizes é chamada
de representagao fundamental. Por exemplo, a representacao fundamental 3 de SU(3), que
é da forma de matrizes 3 x 1, representando os quarks (particulas elementares submetidas

a forga forte).

A representacao obtida ao tomar a transposta conjugada das matrizes da representa-
¢ao fundamental é denominada de representacao conjugada. Por exemplo, a representacao
conjugada 3 de SU(3), da forma de matrizes 1 X 3, que representa os antiquarks, as

antiparticulas dos quarks.

A representacao adjunta do grupo é usada para descrever as transformagoes do
préprio grupo sobre seu proprio espago de Lie. Para SU(3), esta representagao é formada
por matrizes 3 x 3 de traco nulo, representando os gliions, que sao as particulas mediadoras

da interacao forte.

Os quarks, antiquarks e gliions sao particulas que estao inseridas na Cromodinamica
Quéntica (QCD). Para o grupo de simetria U(1), que descreve a Eletrodindmica Quéantica
(QED), os elétrons, que carregam uma carga ¢, estao na representacao fundamental, em
que a acao de U(1) sobre estas particulas ¢ uma multiplicagio por uma fase €', em que i
¢ o niimero imagindrio e & uma funcao escalar real. O grupo de Lie da QED ¢ abeliano 3 e
consiste em todas as rotacoes complexas de fase €'®. J4 os pésitrons estdo na representacio

conjugada, com carga —¢q e multiplicados por uma fase e~.

Por fim, os fotons estao na representagao adjunta de U(1) , sendo a representa-
¢ao trivial. Isso ocorre porque esse grupo possui apenas um unico gerador (o operador
carga elétrica, no eletromagnetismo), que se comporta como a identidade na &lgebra

do grupo. Assim, a representacao adjunta é trivial, ndo introduz cargas e age de forma

3 Em um grupo abeliano (ou comutativo), a * b = b * a.



idéntica em qualquer direcao. Logo, os fotons sao neutros e nao interagem entre si no vacuo.

3 INVARIANCIA DE GAUGE NA TEORIA CLASSICA DE CAMPOS

3.1 Derivacao das equacoes de Maxwell a partir da QED

A Eletrodindmica Quéantica é uma teoria de campos que descreve a interacao entre
luz e matéria. Como explicado anteriormente na se¢ao 2.4, as estruturas matematicas
dos grupos e das algebras de Lie permitem formalizar as simetrias que governam as
interagoes entre particulas elementares. Ao considerar o grupo de simetria U(1) como o
grupo de gauge da QED, as representacoes desse grupo fornecem uma forma de associar
elementos do grupo a transformagoes especificas dos campos de particulas, como o campo
do elétron. Essas transformagoes especificas sao conhecidas como transformacoes de Gauge
4 ¢ garantem que as leis da fisica permanecam inalteradas sob a mudanca do sistema fisico,
pois asseguram a invariancia da lagrangiana, que descreve a dinamica das particulas e ¢é

definida como a diferenca entre a energia cinética e a energia potencial do sistema.

Ao contrario da Mecanica Cléssica que trata particulas como pontos, na teoria
de campos as particulas sao analisadas como campos que podem interagir entre si no
espaco-tempo. Logo, nesse contexto a lagrangiana L precisa ser descrita por uma densidade
lagrangiana £. O formalismo lagrangiano segue o principio da minima agao (ou principio
de Hamilton) (4), enunciando que o caminho que um sistema segue entre dois pontos é

aquele que minimiza a ac¢ao S, dada por:

S = [ d's £((x). () (3.1)

A expressao da acao na QED ja é dada com a finalidade de focar em como as equagoes de
Maxwell podem ser obtidas por ela. Esta acao é composta pela acao de Maxwell Sy, e de
Dirac Sp (5):

SQED = SM + SD = /d4l' (;C]\,[ + ;CD) (32)

Sqen = [ d's {—EF“”FMV + ()6 — m)v() (3.3)

em que m é a massa da particula, ) = 4*D,,, D, a derivada covariante e (), (¢ (z))
o campo de Dirac da particula, (antiparticula) fermionica ®, com () = ¥'(z)7° sendo

seu adjunto. O tensor do campo eletromagnético vale F},, = 9,4, — 9,A,, onde A, é o

As transformacoes de Gauge serdo detalhadas nas secoes 3.2 e 3.3.

°  Férmions sdo particulas de spin semi-inteiro, por exemplo o elétron de spin 1/2.



potencial eletromagnético. As matrizes de Dirac v* sdo um conjunto de matrizes 4 x 4 que
satisfazem a relagao de anticomutagao {v*, 7"} = y#4" 4+ v¥~y* = 2n* 14, com n"” sendo o

tensor métrico de Minkowski n = diag(+1, -1, -1, -1).

IQ 0 ; 0 0;
= , V= l 3.4
v (0 _[2) ¥ (_Ui 0) (3.4)

em que i = 1,2, 3, 0; sdo as matrizes de Pauli (6) e I, a matriz identidade 2 x 2. Expandindo

os termos da densidade lagrangiana de Dirac, Lopp pode ser expresso por:

Logp = —iFwa + z@(m)ﬁ/“@uw(fc) - q@(m)v‘%m(az) - m@(ﬂf)w(l’) (3.5)

sendo, da esquerda para direita, respectivamente, o termo eletromagnético, o termo cinético
do campo fermionico, a interacao entre férmion e campo de Gauge, e o termo de massa. E
importante ressaltar que em todo o trabalho estao sendo adotadas as unidades naturais,

isto é, com h=c=1.

As Equacoes de Maxwell podem ser obtidas no contexto da QED ao se aplicar as
Equacoes de Euler-Lagrange ao campo de Gauge, que nesse caso é o potencial eletromag-
nético. Inicialmente, as equagoes de movimento serao aplicadas na densidade lagrangiana

do eletromagnetismo, que no presente trabalho foi denominada de densidade lagrangiana
de Maxwell:

O . [ 0Ly \
o~ (gt = .

Repare que L£); depende apenas das derivadas do campo de Gauge, e nao diretamente
de A, em si, fazendo com que o primeiro termo de (3.6) seja nulo. Quanto ao segundo
termo, é possivel aplicar a regra da cadeia, uma vez que a densidade lagrangiana depende

implicitamente de 0,4, pela expressao do tensor eletromagnético:

0Ly OLu  OFaug
9(0,4,)  0F.; 0(0,A,)

(3.7)

Sabendo a derivada de uma funcao quadratica e que ggﬁif; = 1oy, isto é, vale 1 se v =
e B = v, caso contrario vale 0, chega-se em:
O F" =0 (3.8)

que sao simplesmente as equacoes de Maxwell homogéneas na formulacao do eletromagne-

tismo classico dadas por:

V.E-0 VXB:%—f (3.9)
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correspondendo as equagoes de Maxwell no vacuo, isto é, com auséncia de fontes carregadas
na regiao do espaco considerada. O tensor eletromagnético segue a identidade de Bianchi
(3.10) e a partir dela é possivel encontrar outras duas equagoes de Maxwell (3.11) que

permanecem verdadeiras mesmo na presenca de particulas carregadas.

a)\Fw, + a#F,,)\ + a,,F)\H =0 (310)
B
V.-B=0 , VXE:—%—t (3.11)

que correspondem, da esquerda para direita, a Lei de Gauss para o magnetismo e a Lei de
Faraday-Lenz. A fim de se obter as equacoes de Maxwell ndo homogéneas, basta aplicar as
equagoes de Euler-Lagrange em Lggp, de forma analoga ao feito anteriormente. Define-se
j* = ¥(x)y*4(x) como sendo a corrente de Dirac © associada a um campo de férmions, no

caso da QED os elétrons. O resultado sera:

O P = gt (3.12)

que enuncia a Lei de Gauss para o campo elétrico e a Lei de Ampere-Maxwell em regioes

na presenca de cargas elétricas 7.

OE
V-E=q . VxB=g+ (3.13)

3.2 Transformacoes locais: caso abeliano

No estudo da teoria de campos, existem simetrias que resultam em uma invariancia
do sistema fisico sob transformacoes, as chamadas invariancias de Gauge. Quando a
simetria é global, a transformacao aplicada ao campo é a mesma em todos os pontos do
espaco-tempo, sendo denominada transformacao global. Ja nas teorias mais fundamentais
da natureza, como na QED e na QCD, as transformagoes variam diferentemente em cada

ponto do espago-tempo, gerando transformagoes locais.

No caso do eletromagnetismo, descrito pela QED, trabalha-se com o grupo abeliano
U(1), formado pelas matrizes unitarias unidimensionais. Como ja visto na se¢ao 2.4, o
campo do elétron, representado por uma fungdo de onda v (z), é multiplicado por uma
fase complexa @) em que a(z) é uma funcio escalar real que depende de um ponto z

do espago-tempo de Minkowski ou sua versao euclideana com tempo imaginario (7):

6 Nao serd detalhado, mas a simetria de Gauge leva & conservacio da corrente e consequente-

mente, da carga elétrica, pelo Teorema de Noether.

7 p=34°¢é a densidade de carga.
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d(w) = ¢ (x) = @y (x) (3.14)

com forma infinitesimal 8 :

0 (z) = ia(x)ih(x) (3.15)
Para manter a invariancia do sistema sob esta transformacao local, a derivada parcial
0, = 0/0z* (com zt = 0,1, 2, 3 representando as coordenadas espago-temporais) deve ser
substituida pela derivada covariante ¥, denotada por D,,. Ela inclui o campo de Gauge A,,,

que na QED é o campo do féton:

D, =0, +iqA,(z) (3.16)

em que ¢ ¢ a carga elétrica. Para D, (x) se transformar como (3.14), tem-se D, (z) —

e @) D ab(z), logo é necessario que:

(O + ig AL () (€D (2)) = €O, + igA, ())(x) (3.17)

Expandindo o lado direito de (3.17) e dividindo toda a equagdo por €@ obtém-se:

O (x) + iq Ay, (2 () + i(Ou(a(@))P(x) = 0u)(x) +igAu ()Y (z) (3.18)

cuja solucao vale:

1

A (x) — A;L(:c) =A,(z) — 58#04(3:) (3.19)
Por fim, o tensor dos campos F),, ¢, por definigao:
|D,,D,] :=iqF,, (3.20)

Aplicando o comutador, encontra-se:

(O +iqAu(2)) (0 + 1qAu(2))) — (O + 1q AL (2)) (O + iqAp(2)))
=iq(0,A, — 0,A,) — ¢*[A,, A (3.21)

sendo [A,, A,] = 0 porque U(1) ¢ abeliano, obtendo portanto F,, = 9,4, — 9, A, que é

justamente o tensor do campo eletromagnético.

8 Aqui foi aplicado o mapa exponencial em (2.10), onde €®) representa um elemento do grupo

de Lie U(1) e ia(x) o elemento correspondente na algebra de Lie u(1).

Repare que se niio houvesse a substituicio, 9,1 (x) — €@ (9, + (I, a(x)))y(x), violaria a
invaridncia. Em transformacoes globais, nao é preciso introduzir D, uma vez que nesse caso
a nao depende de x.
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Conforme dito na segao 3.1, as transformagoes de Gauge asseguram a invariancia
da lagrangiana da Eletrodindmica Quéntica. Pode-se notar isso aplicando (3.14) ao termo

de Dirac de Lggp € (3.19) ao termo do tensor eletromagnético:
(@)@ — m)(x) = e Y(x) (i — m)e Y (x) (3.22)

1 1
0y = 0y Ay = Ouy =~ 0,0 = DAy + 0,00 (3.23)

Repare que em (3.22) os termos exponenciais multiplicados valem 1 e em (3.23), por
a se tratar de uma funcao suave, as derivadas parciais comutam. Logo, chega-se em

Loep — Loep. Por simplificagdo, adota-se a = a(r) e 4, = A,(z).

3.3 Transformacdes locais: caso nao abeliano

Nas teorias abelianas, como na QED, o campo de Gauge interage apenas com
particulas carregadas, como o elétron. Todavia, para descrever interacoes mais complexas,
como a forca forte, em que os campos de Gauge nao interagem apenas com os campos de
matéria, mas também entre si !°, precisa-se adotar as teorias de gauge com grupos nao
abelianos de simetria SU(N). O grupo SU(N) é o grupo especial unitario de ordem N,
composto por matrizes complexas unitarias de dimensao N X N com determinante igual
a 1. A dimensao do grupo é N? — 1, que corresponde ao niimero de graus de liberdade

destas matrizes 1'. A transformacao de Gauge local em grupos nao abelianos é dada por:

P(x) = () = U(x)y(x) (3.24)
onde U(z) = €@t em que a(x) é uma funcio vetorial dependente de um ponto = do
espago-tempo, com componente a®(z) associado a seu respectivo gerador t* da algebra de
Lie do grupo correspondente, sendo que a = 1,2,..., N?> — 1. A algebra de Lie do grupo
SU(2) é gerada pelas matrizes hermitianas 2 x 2, de trago nulo, que sao as 3 matrizes de
Pauli, tendo o seu equivalente nas 8 matrizes de Gell-Man (8) para a algebra de Lie do

grupo SU(3). Os geradores da algebra de Lie verificam a relagdo de comutagio:

[t9, %] = 4 fobete (3.25)

10" Os campos de matéria 1/(z) descrevem particulas que constituem a matéria, como elétrons

e quarks, enquanto os campos de Gauge A, (x) descrevem particulas mediadoras de forgas,
como fétons e glions.

A condicdo de unitariedade impde N? graus de liberdade, e a restricio adicional do determi-
nante igual a um, que faz o grupo ser especial, elimina um grau.

11
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em que f% sdo as constantes de estrutura antissimétricas, isto é, f%¢ = — fba¢. Tem-se
entdo um conjunto de campos auto-adjuntos A, () = A} (x)t* que sofrerdo transformacoes

de Gauge ao serem inclusos na derivada covariante, definida como:

D, =0, +igA,(x) (3.26)

em que g ¢ a carga de Gauge ou constante de acoplamento. De maneira analoga a se¢ao
3.2, para que D, (z) se transforme da mesma forma que (3.24), impoe-se D,y (x) —

U(x)D,(z), chegando na condi¢ao abaixo:

(O + g AL (2))U (2)h(x) = U(2) (9 + ig Ap(x)) () (3.27)
Ao expandir os termos, tem-se:

0 U(x)(x) + U(z)0p(x) + igA;L(x)U(x)l/)(x)
= U()0,0 () + Ula)ig A () () (3.25)

que resulta na transformacao do campo de Gauge:
/ - i -
Au(r) = AL(r) = U(z) Au(a)U™ () + 5(3HU($))U () (3.29)

O comutador das derivadas covariantes possui a mesma defini¢ao de (3.20), porém com
a constante de acoplamento g no lugar da carga elétrica ¢, resultando portanto em um

tensor de campo F),, igual a:

F = 0,A, — 0,4, +ig[A,, A)] (3.30)

em que por se tratar de um grupo nao abeliano SU(N), o termo do comutador nao é nulo.

4 QUANTIZACAO VIA INTEGRAIS DE CAMINHO

4.1 Operador Energia e Teorema Espectral

A acdo na Eletrodindmica Quantica fornece uma descricao completa das interagoes
entre as particulas carregadas e o campo eletromagnético no formalismo classico, todavia,
ela ndo é uma teoria quantizada quando assume somente a forma de (3.3). A formulacao
classica da acao representa apenas o comportamento médio ou esperado dos campos sem
capturar as propriedades quanticas intrinsecas, como a probabilidade e a natureza discreta
das interagoes a niveis microscopicos. Na Fisica Moderna, quantizar significa incorporar

uma estrutura que possibilite a definigdo de operadores, estados e integragoes funcionais,
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seguindo de fato a Mecanica Quantica, que é descrita por vetores complexos no espago de
Hilbert fisico.

Estes vetores complexos, também chamados de estados ¢ = (¢, 7) sdo elementos
do espago de Hilbert H, com norma associada ao produto interno tal que ||u||y = +/(u, ).
Os observaveis O sao representados por operadores auto-adjuntos (ou hermitianos), isto
é O = OF, sendo O* o operador adjunto, que por definicao satisfaz a propriedade
(O, Y )y = (¢Y,O0¢")y. Logo, considerando a hermiticidade dos observaveis, tem-se
(O, ")y = (1, OY')3, 0 que significa que o operador O é simétrico em relagao ao produto
interno. Esta simetria é importante, pois assegura que os valores esperados dos obser-
vaveis sao reais, garantindo medigoes que possam ser fisicamente validadas por meio de

experimentos.

Uma ideia fundamental da Mecanica Quantica ¢ a translacdo temporal ' atuando
sobre qualquer estado fisico, sendo o Hamiltoniano o operador que gera esta translacao.
Denotado por A , esse operador também é chamado de operador energia, e é dado pela
soma do operador energia cinética H, e do operador potencial V' (7), que é um operador

de multiplicacao:

H=Hy+ V() =—— + V(7 (4.1)

onde A = Y%, 8%2_; ¢ o Laplaciano. O Teorema Espectral afirma que qualquer operador
5

auto-adjunto em um espago de Hilbert de dimensao finita pode ser diagonalizado, ou seja,

existe uma base de autovetores na qual o operador assume uma forma diagonal, com os

autovalores sendo os coeficientes da matriz diagonal. Aplicando esse teorema ao operador

energia, tem-se uma decomposicao espectral, com H sendo decomposto em termos de seus

autovetores |¢,), que sdo os estados estacionarios (estados com densidade de probabilidade

independente do tempo), tal que:

H=Y"E,|v) (4] (4.2)

onde F, sao os autovalores, correspondentes as energias dos estados estacionarios do sistema.
Se o operador tiver autovalores miiltiplos, a base de autovetores pode nao ser ortonormal

de imediato, mas pode ser ortogonalizada utilizando o processo de Gram-Schmidt.

4.2 Semigrupo de evoluciao temporal

A equagao de Schrodinger é responsavel por descrever a evolugao temporal do

estado quantico de um sistema. Com A = 1, tem-se:

12 A translacdo temporal pode ser entendida como a evolucdo de um sistema no tempo conforme

ele passa. A partir disso se define o operador de evolucao temporal, na secéo 4.2.
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0 .
1—1 = Hi 4.3
=AY (4.3
A evolucao temporal é deterministica, pois dado o estado inicial 1/(0, 7'), a equacao determina
o estado (t,7) para qualquer tempo ¢. A solugao geral da equacao de Schrodinger

dependente do tempo pode ser expressa como uma combinagao linear das solugoes dos

estados estacionarios:

(7)) = cae 10t 7) = 37 e 0y (8, ) (4.4)

onde ¢, sao os coeficientes determinados pelas condigoes iniciais do sistema. Nesse caso, a
fun¢ao de onda é uma superposicao de estados que oscilam em uma frequéncia proporcional
aos autovalores de H. Repare que, por conveniéncia, foi feita a transformacao ¢t — it, isto é,
o tempo real foi transformado em tempo imaginério (euclideano) **. Essa mudancga faz com
que, se H é limitado inferiormente, a evolucao temporal tenha um decaimento exponencial
ao invés de oscilatério, facilitando a formulagdo de métodos matematicos. Por exemplo, no
tempo real, a equacao de Schrédinger envolve niimeros complexos devido a presenca de ¢
no expoente, complicando fazer a analise matematica dos sistemas. Por sua vez, no tempo
imagindario, para que a interpretacao probabilistica da funcao de onda seja preservada, a
evolugao temporal deve ser feita de tal forma que a norma do estado (fun¢ao de onda)
nao aumente com o tempo. Isso s6 é possivel com H> 0, ou seja, com o Hamiltoniano
limitado inferiormente, de tal forma que nao seja possivel "voltar no tempo". Tem-se entao

—H(t=t0) & definido apenas para tempos

que o operador de evolugao temporal U(t, o) = e
futuros (¢ > ty), sendo uma contragao e garantindo a positividade e irreversibilidade, tendo

portanto um semigrupo cujo Hamiltoniano é o gerador da dindmica (9).

4.3 Foérmula de Feynman-Kac

Fazendo 2m = 1 e utilizando o tempo imagindrio, a equagao de Schrodinger (4.3)

fica na forma:

0 A L
S =~ = ~(A+ V()G = —(H+ V(7)) (1.5)
Essa equacao ¢ do tipo difusdo, podendo ser representada por um processo de Wiener 4.
O operador de evolucao temporal pode ser interpretado como uma média sobre todas as

possiveis trajetérias de uma particula sujeita a esse processo de Wiener. Desse modo, a

13 Essa transformacao foi feita por uma rotacdo de Wick, que converte integrais de caminho

em integrais de caminho euclidianas, semelhantes a integrais usadas em estatistica e teoria
de probabilidades.

Processo que descreve variacoes aleatorias ao longo do tempo, também chamado de movi-
mento browniano.

14
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funcao de Green associada a propagacgao de uma particula entre os pontos e ¢ em um

espago tridimensional é dada por (10):

S 1 —|7 —g?

Ho+V)t

Para solucionar e~ isto é, o operador de evolucao temporal com uma perturbacao
b b

potencial, utiliza-se o Teorema de Lie Trotter (11):

6—(H0+V)t — lim (e—HOt/ne—Vt/n) (47)

Esse teorema pode ser utilizado nesse caso porque segue as condi¢oes de convergéncia no
limite: os operadores sdo autoadjuntos, limitados inferiormente, apresentam um dominio
em comum (as fungoes de onda 1) que sao quadrado-integraveis e satisfazem condigoes de
suavidade e de contorno, garantindo que os operadores estejam bem definidos) e ¢ funciona
para intervalos de tempos finitos, onde a contribuicao de cada passo é pequena para que o
limite n — oo possa ser tomado. Em seguida, deve-se calcular a evolugao da funcao de
onda, que sera expressa como uma integral sobre todas as possiveis trajetorias da particula
no intervalo de tempo t. Denota-se essas trajetérias pelos pontos intermedidrios v1, ..., Yn

em que a particula pode estar nos tempos t/n,2t/n,...,t (12).

Essa integral sobre todas as possiveis trajetorias pode ser visualizada de maneira

analoga a integral de Riemann, ilustrada abaixo:

~

flx)

h

>

X
Xg X1 X2 Xi-1 X

Figura 1 — A fungao f(x) é aproximada pela soma de areas de retdngulos com largura h
em intervalos [z;_1,z;]. Essa soma se aproxima do valor da integral da fungao

no intervalo considerado a medida que h — 0.

Fonte: Elaborada pela autora.

A drea A abaixo da curva da figura 1 pode ser aproximada pela soma das areas
dos retangulos construidos em intervalos discretos ao longo do eixo . Em cada intervalo
I = [z;_4, ], forma-se um retdngulo cuja altura é dada pelo valor da fungdo f(z) em
um ponto dentro de I e cuja largura é o comprimento do proprio intervalo, que vale
h = x;_1 — z;. Um conjunto finito de pontos nao tem uma representacao completa do

continuo, no entanto, conforme aumenta-se o niimero de pontos e reduz-se a distancia entre



17

eles, isto é, h — 0 e, por conseguinte, n — 0o, o conjunto se torna uma aproximacao cada
vez mais proxima do continuo. Neste sentido, tem-se a integral de Riemann que calcula a

area:

n b
A= lim 3 flai) - :/a Fla)da (4.8)

n—00

Na integral de caminho, o processo ¢ similar, mas em vez de calcular a area sob
uma curva, somam-se as contribuigoes de todas as trajetérias possiveis que a particula
pode seguir ao longo do tempo. Em outras palavras, enquanto a integral de Riemann
lida com uma tunica curva, a integral de caminho considera todas as possiveis curvas que

conectam os pontos inicial e final no tempo. Neste caso, t/n é andlogo a h e tem-se:

—
Il
/.
unl -
/
wa
/

X
a

Figura 2 — O tempo total é dividido por n passos. Infinitos caminhos podem ser tomados
a cada intervalo de tempo, resultando em um conjunto de trajetérias de a a b
cuja soma é obtida pela integral de caminho.

Fonte: Elaborada pela autora.

Retorna-se a (4.6), tendo entao que a propagagao de uma particula de ¥ até y,, em

n passos é dada por:

n

o - _ |9i — yial?
H Gt/n(yl—l? yl H 47Tt/n 3/2 Irp ( 4(t/n) (49)

i=1 i=1
onde yy = T e y,, é a posicao final da particula. O potencial entra multiplicativamente em

cada intervalo de tempo, e a contribui¢ao do potencial ao longo do caminho é:

i:ﬁleaﬁp (—%V(y?)) (4.10)

Logo, temos que a evolugao temporal é obtida por (9):

n—oo

@) = i ()7 [ [ R g,
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onde:

L[ g =il .
S(F=an i) =S = | = (Yl oy 412
=) =34 (L () (4.12)

Em (4.11) os y’s sao integrados em todo o espago e engloba uma expansao em caminhadas

3n
aleatorias. No limite do continuo (n — o), o fator (L) * ¢ absorvido na densidade de

Ant
probabilidade associada a medida de Wiener. Os #’s sao integrados em todo o espaco,
com pontos inicial e final fixos. Considera-se todos os caminhos possiveis com um peso

estatistico, chegando enfim a férmula de Feynman-Kac:

(e~ Ho V) (7) = / 5D (co(1))dw (4.13)

Qz
em que ¢ é um estado quantico (vetor no espago de Hilbert), S(w) a agdo e Qz o conjunto
de caminhos w com w(0) = & com uma medida de Wiener sobre processos aleatérios. A
féormula (4.13) considera que nao hé uma tnica trajetéria, como no caso da Mecanica
Classica, onde a trajetéria é determinada pelas equagoes variacionais de Euler-Lagrange,
mas uma superposicao de todas as trajetorias, incorporando o principio de incerteza de
Heisenberg, e, entao, a quantizagao do sistema. Nao ha contradi¢do com o principio da
minima ac¢ao, uma vez que caminhos mais proximos ao caminho classico possuem um
maior peso na somatoria, o que pode ser verificado quantitativamente ao expandir a acao

em torno do caminho classico w:

S(w) ~ S(wa) + %% (6w)? (4.14)

Figura 3 — Possiveis caminhos de uma particula livre entre dois pontos, com o caminho
classico, cuja acao é minima, destacado em azul.
Fonte: Elaborada pela autora.

Para transicionar da mecanica quantica para uma teoria de campos, ao invés de integrar
sobre caminhos w(t) como em (4.13), integra-se sobre todas as configuragoes possiveis de
campo ¢(z). A medida de integragao sobre caminhos entdo é substituida por uma medida
funcional dw — D¢. Na TQC, essa integral funcional '® é uma medida do tipo Gibbs, onde

soma-se sobre todas as configuracoes possiveis de um sistema com pesos dados por e~ 5.
15

Tem-se que dw é um produtério das diferenciais dos y’s e D¢ das diferenciais dos ¢’s.
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5 CONCLUSAO

As Teorias de Gauge desempenham um importante papel na Fisica de Particulas
Elementares, sendo essenciais na compreensao das interacoes fundamentais da natureza —
a interacao eletrofraca, que tem como mediadores os fétons e os bésons W e Z, é descrita
por SU(2) x U(1), ja SU(3) descreve a interagao forte, a qual participam os glions e
quarks — que unificadas constituem o chamado Modelo Padrao. Essas teorias permitem a
formulacao matematica de simetrias de campo, facilitando a andlise de intera¢oes complexas
e promovendo avancos em areas além da Fisica de Particulas, como na cosmologia, na

fisica do estado sélido e na teoria da informacao quantica.

Diante do exposto, este estudo apresentou uma introducao estruturada aos conceitos
fundamentais da Fisica de Particulas, apresentando os principais aspectos das Teorias de
Gauge e sua relacio com os Grupos e Algebra de Lie, que descrevem as simetrias de Gauge
locais abelianas e nao abelianas nas teorias de campos. Também obteve-se as equagoes de
Maxwell a partir da Eletrodinamica Quantica no ambito classico, por meio das Equacoes

de Euler-Lagrange aplicadas a densidade de lagrangiana da QED.

Foi explorada ainda a quantizagao de teorias de campos utilizando a formulagao de
Feynman-Kac, método que permitiu uma nova interpretacao das trajetorias em sistemas
quanticos, fundamentada na probabilidade e nas agoes associadas ao sistema. Tais desen-
volvimentos ofereceram uma visao mais abrangente da Fisica de Particulas e estabeleceram
uma base solida para futuros estudos na area, servindo como uma motivacao inicial para

estudos mais especificos em Teoria Quantica de Campos.
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