
Universidade de São Paulo – USP 

Escola de Engenharia de São Carlos – EESC 

Departamento de Engenharia Elétrica 

 

 

Fernando Bambozzi Bottura 

 

 

 

Um método alternativo e inteligente para o 
monitoramento remoto das variações de tensão de 

curta duração em um sistema de distribuição de 
energia elétrica 

 

 

 

 

 

 

São Carlos 

2010 

  



II 
 

 

  



III 
 

 
 
 

FERNANDO BAMBOZZI BOTTURA 
 
 
 
 
 

UM MÉTODO ALTERNATIVO E 
INTELIGENTE PARA O 

MONITORAMENTO REMOTO DAS 
VARIAÇÕES DE TENSÃO DE CURTA 

DURAÇÃO EM UM SISTEMA DE 
DISTRIBUIÇÃO DE ENERGIA 

ELÉTRICA. 
 
 
 
 
 
 

Trabalho de Conclusão de Curso apresentado à 
Escola de Engenharia de São Carlos, da 

Universidade de São Paulo  
 

Curso de Engenharia Elétrica com ênfase em 
Sistemas de Energia e Automação 

 
ORIENTADOR: Prof. Dr. Mário Oleskovicz 

 
 

 
 

São Carlos 
2010 

  



IV 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 



VI 
 

  



VII 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Aos meus pais, Herbert e Maria Teresa e à 
minha irmã Eleonora, por sempre estarem 
presentes em minha vida. 

  



VIII 
 

 

  



IX 
 

Agradecimentos 
 

Ao Professor Dr. Mário Oleskovicz, pela confiança a mim conferida para a realização deste 

trabalho de conclusão de curso, por sua dedicada atenção e profissionalismo exemplares. 

Ao Hermes Manoel Galvão Castelo Branco, pela intensa contribuição efetuada em todas as 

etapas deste trabalho que levaram à sua finalização, sempre com seu raciocínio objetivo e espírito 

crítico extremamente construtivo. 

A todos os demais integrantes do Laboratório de Sistemas de Energia Elétrica (LSEE) que 

contribuíram para a elaboração deste trabalho, em especial ao Renato Machado Monaro, pelas 

importantes opiniões e sugestões. 

Quero também, prestar meus agradecimentos a todos os professores do Departamento de 

Engenharia Elétrica que contribuíram de maneira valiosa à minha formação profissional. 

  



X 
 

 

  



XI 
 

Sumário 

Agradecimentos ........................................................................................................................ IX 

Lista de figuras ...................................................................................................................... XIII 

Lista de tabelas ....................................................................................................................... XV 

Resumo ................................................................................................................................ XVII 

Abstract .................................................................................................................................. XIX 

Capítulo 1 – Introdução .............................................................................................................. 1 

    1.1 – Objetivos do trabalho..................................................................................................... 3 

1.2 – Apresentação deste documento ..................................................................................... 3 

Capítulo 2 – Revisão bibliográfica ............................................................................................. 5 

Capítulo 3 – Redes neurais artificiais ....................................................................................... 15 

3.1 – Modelo não linear de um neurônio artificial ............................................................... 15 

3.2 – Representações gráficas de uma RNA ........................................................................ 17 

3.3 – Funções de ativação ..................................................................................................... 18 

3.3.1 – Função de limiar ou função de Heaviside ............................................................ 18 

3.3.2 – Função linear por partes. ...................................................................................... 19 

3.3.3 – Função sigmóide ................................................................................................... 20 

3.3.4 – Função sinal e tangente hiperbólica...................................................................... 21 

3.4 – Arquiteturas de redes neurais artificiais ...................................................................... 22 

3.4.1 – Redes de camada única ......................................................................................... 22 

    3.4.2 – Redes de múltiplas camadas ................................................................................. 26 

3.4.3 – Treinamento de retropropagação de erro (back-propagation). ............................ 27 

3.4.4 – Treinamento Levenberg-Marquardt ..................................................................... 29 

Capítulo 4 – O sistema elétrico de distribuição em análise ...................................................... 31 

4.1 – Modelagem computacional do sistema de distribuição ............................................... 31 

Capítulo 5 – Base de treinamento para a RNA e estratégia de monitoramento da tensão ....... 37 

5.1 – Obtenção da base de dados de treinamento para a RNA ............................................. 37 

5.1.1 - Simulação das situações de defeitos...................................................................... 37 

5.1.2 – Pré-processamento dos dados resultantes das simulações .................................... 38 

5.2 – Estratégia proposta para monitoramento da tensão ..................................................... 41 

5.2.1 – Treinamento da RNA com o algoritmo back-propagation. ................................. 42 

5.2.2 – Treinamento da RNA com o algoritmo Levenberg-Marquardt ........................... 47 

5.2.3 – Análise sobre a arquitetura e o tipo de treinamento adotados .............................. 52 

5.3 – Análise do desempenho da RNA escolhida ................................................................. 52 

5.3.1 – Aplicação de falta, exemplo 1 .............................................................................. 53 

5.3.2 – Aplicação de falta, exemplo 2 .............................................................................. 55 

5.3.3 – Aplicação de falta, exemplo 3 .............................................................................. 56 



XII 
 

5.3.4 – Índice de acertos das RNAs. ................................................................................. 58 

Capítulo 6 – Conclusões ........................................................................................................... 61 

Referências bibliográficas ........................................................................................................ 63 

 
  



XIII 
 

Lista de figuras 
 
Figura 1 - Classificação das variações encontradas sobre o valor eficaz da tensão de 

fornecimento. .............................................................................................................................. 7 

Figura 2 - Curva de tolerância de tensão CBEMA, adaptado de Kyei et al. (2002) .................. 7 

Figura 3 - Curva de tolerância de tensão ITIC, adaptado de Kyei et al. (2002) ......................... 8 

Figura 4 - Representação esquemática simplificada de um neurônio biológico. ..................... 16 

Figura 5 - Modelo não linear de um neurônio artificial. .......................................................... 16 

Figura 6 - Grafo de fluxo de sinal de um neurônio .................................................................. 17 

Figura 7 - Grafo arquitetural de um neurônio........................................................................... 18 

Figura 8 - Comportamento da função de ativação do tipo limiar ou Heaviside. ...................... 19 

Figura 9 - Comportamento da função de ativação do tipo linear por partes. ........................... 20 

Figura 10 - Comportamento da função de ativação do tipo sigmóide. ..................................... 20 

Figura 11 - Comportamento da função de ativação do tipo sinal. ............................................ 21 

Figura 12 - Comportamento da função de ativação do tipo tangente hiperbólica. ................... 22 

Figura 13 - Diagrama arquitetural de uma rede de camada única alimentada adiante ............. 23 

Figura 14 - Representação de uma fronteira de decisão para um problema bidimensional ..... 24 

Figura 15 – Fronteira de decisão: (a) As linhas tracejada e contínua ilustram possíveis 

fronteiras de decisão; (b) A linha contínua representa a única fronteira de decisão possível .. 26 

Figura 16 - Arquitetura de uma rede de múltipla camada alimentada adiante. ........................ 27 

Figura 17 - Ilustração do problema XOR ................................................................................. 27 

Figura 18 - Disposição geográfica dos alimentadores pertencentes a uma subestação de uma 

concessionária de energia regional sob estudo. ........................................................................ 31 

Figura 19 - Aspecto da modelagem computacional dos alimentadores da concessionária de 

energia regional realizada via interface gráfica do ATPDraw. ................................................. 32 

Figura 20 - Visão geral dos pontos de aplicação da falta e de monitoramento da tensão. ....... 38 

Figura 21 – Aspecto do processo de janelamento. ................................................................... 40 

Figura 22 - Figura esquemática representando a RNA empregada em uma das fases do 

sistema trifásico. ....................................................................................................................... 42 

Figura 23 – Resultado da comparação entre saída esperada e saída gerada pela RNA da fase A, 

para o primeiro exemplo. .......................................................................................................... 53 

Figura 24 – Resultado da comparação entre saída esperada e saída gerada pela RNA da fase B, 

para o primeiro exemplo. .......................................................................................................... 54 

Figura 25 – Resultado da comparação entre saída esperada e saída gerada pela RNA da fase 



XIV 
 

C, para o primeiro exemplo. ..................................................................................................... 54 

Figura 26 – Resultado da comparação entre saída esperada e saída gerada pela RNA da fase A, 

para o segundo exemplo. .......................................................................................................... 55 

Figura 27 – Resultado da comparação entre saída esperada e saída gerada pela RNA da fase B, 

para o segundo exemplo. .......................................................................................................... 55 

Figura 28 – Resultado da comparação entre saída esperada e saída gerada pela RNA da fase 

C, para o segundo exemplo. ..................................................................................................... 56 

Figura 29 – Resultado da comparação entre saída esperada e saída gerada pela RNA da fase A, 

para o terceiro exemplo. ........................................................................................................... 56 

Figura 30 – Resultado da comparação entre saída esperada e saída gerada pela RNA da fase B, 

para o terceiro exemplo. ........................................................................................................... 57 

Figura 31 – Resultado da comparação entre saída esperada e saída gerada pela RNA da fase 

C, para o terceiro exemplo. ....................................................................................................... 57 

Figura 32 – Histograma relacionando a quantidade de casos de testes com a magnitude dos 

erros entre resposta esperada e resposta gerada pela RNA da fase A ...................................... 58 

Figura 33 – Histograma relacionando a quantidade de casos de testes com a magnitude dos 

erros entre resposta esperada e resposta gerada pela RNA da fase B ...................................... 58 

Figura 34 – Histograma relacionando a quantidade de casos de testes com a magnitude dos 

erros entre resposta esperada e resposta gerada pela RNA da fase C ...................................... 59 

 

  



XV 
 

Lista de tabelas 
 

Tabela 1 - Características da fonte de tensão do SEP utilizada ................................................ 33 

Tabela 2 - Parâmetros do modelo RL mutuamente acoplado, disposto em série com a fonte de 

tensão do equivalente elétrico................................................................................................... 33 

Tabela 3 - Características do modelo do transformador de potência. ...................................... 33 

Tabela 4 - Parâmetros do modelo empregado para a modelagem dos bancos de capacitores. 34 

Tabela 5 – Exemplos de dados de carga do sistema de distribuição. ....................................... 34 

Tabela 6 – Tabela contendo parâmetros de dois trechos de condutores dos alimentadores para 

sequência zero........................................................................................................................... 35 

Tabela 7 – Tabela contendo parâmetros de dois trechos de condutores dos alimentadores para 

sequência positiva. .................................................................................................................... 35 

Tabela 8 - Configuração para a obtenção da base de treinamento para a RNA. ...................... 40 

Tabela 9 – Resultados do treinamento back-propagation para RNA da fase  A  com 

arquitetura   6-10-5-1. ............................................................................................................... 43 

Tabela 10 – Resultados do treinamento back-propagation para RNA da fase A com 

arquitetura 6-14-7-1. ................................................................................................................. 43 

Tabela 11 – Resultados do treinamento back-propagation para RNA da fase A com 

arquitetura 6-15-10-1. ............................................................................................................... 44 

Tabela 12 – Resultados do treinamento back-propagation para RNA da fase A com 

arquitetura 6-20-10-1. ............................................................................................................... 44 

Tabela 13 – Resultados do treinamento back-propagation para RNA da fase A com 

arquitetura 6-20-15-1. ............................................................................................................... 44 

Tabela 14 – Resultados do treinamento back-propagation para RNA da fase A com 

arquitetura 6-25-15-1. ............................................................................................................... 45 

Tabela 15 - Resultados do treinamento back-propagation para RNA da fase A com arquitetura  

6-30-20-1. ................................................................................................................................. 45 

Tabela 16 – Resultados do treinamento back-propagation para RNA da fase A com 

arquitetura 6-40-30-1. ............................................................................................................... 45 

Tabela 17 - Resultados do treinamento back-propagation para RNA (20.000 épocas de 

treinamento) da fase A com arquitetura 6-25-15-1. .................................................................. 46 

Tabela 18 – Resultados do treinamento back-propagation para RNA (20.000 épocas de 

treinamento) da fase B com arquitetura 6-25-15-1. .................................................................. 46 

Tabela 19 - Resultados do treinamento back-propagation para RNA (20.000 épocas de 



XVI 
 

treinamento) da fase C com arquitetura 6-25-15-1. .................................................................. 47 

Tabela 20 – Resultados do treinamento Levenberg-Marquardt para RNA da fase A com 

arquitetura 6-10-5-1. ................................................................................................................. 47 

Tabela 21 – Resultados do treinamento Levenberg-Marquardt para RNA da fase A com 

arquitetura 6-14-7-1. ................................................................................................................. 48 

Tabela 22 – Resultados do treinamento Levenberg-Marquardt para RNA da fase A com 

arquitetura 6-15-10-1. ............................................................................................................... 48 

Tabela 23 – Resultados do treinamento Levenberg-Marquardt para RNA da fase A com 

arquitetura 6-20-10-1. ............................................................................................................... 48 

Tabela 24 – Resultados do treinamento Levenberg-Marquardt para RNA da fase A com 

arquitetura 6-20-15-1. ............................................................................................................... 49 

Tabela 25 – Resultados do treinamento Levenberg-Marquardt para RNA da fase A com 

arquitetura 6-25-15-1. ............................................................................................................... 49 

Tabela 26 – Resultados do treinamento Levenberg-Marquardt para RNA da fase A com 

arquitetura 6-25-20-1. ............................................................................................................... 49 

Tabela 27 – Resultados do treinamento Levenberg-Marquardt para RNA da fase A com 

arquitetura 6-30-20-1. ............................................................................................................... 50 

Tabela 28 – Resultados do treinamento Levenberg-Marquardt para RNA da fase B com 

arquitetura 6-15-10-1. ............................................................................................................... 50 

Tabela 29 – Resultados do treinamento Levenberg-Marquardt para RNA da fase B com 

arquitetura 6-25-20-1. ............................................................................................................... 51 

Tabela 30 – Resultados do treinamento Levenberg-Marquardt para RNA da fase C com 

arquitetura 6-15-10-1. ............................................................................................................... 51 

Tabela 31 – Resultados do treinamento Levenberg-Marquardt para RNA da fase C com 

arquitetura 6-25-20-1. ............................................................................................................... 51 

Tabela 32 – Comparação do desempenho entre duas arquiteturas de RNA ............................. 52 

 

  



XVII 
 

Resumo 
 
BOTTURA, F. B. Um método alternativo e inteligente para o monitoramento remoto das 
variações de tensão de curta duração em um sistema de distribuição de energia elétrica. 2010. p. 
85. Trabalho de Conclusão de Curso (Engenharia Elétrica com Ênfase em Sistemas de Energia e 
Automação) – Escola de Engenharia de São Carlos (EESC), Universidade de São Paulo, São Carlos – 
SP,2010. 

 

Este trabalho tem por objetivo apresentar um método de monitoramento remoto dos níveis de 

tensão em um determinado ponto de interesse de um sistema de distribuição de energia. A partir de um 

sistema de distribuição previamente modelado, foi possível obter uma base de treinamento para as três 

redes neurais artificiais. Após o processo de treinamento, estas devem fornecer uma estimação para os 

níveis de tensão das três fases no ponto de interesse a ser monitorado remotamente. O 

desenvolvimento desta estratégia permitirá o monitoramento da qualidade da energia elétrica no que 

diz respeito aos níveis de tensão, sem a necessidade de se introduzir medidores adicionais no sistema 

de distribuição, o que pode proporcionar economia no âmbito financeiro às concessionárias de energia 

elétrica. O desempenho das três redes neurais foi validado e constatou-se que o método de 

monitoramento remoto dos níveis de tensão pode se tornar uma aplicação tecnicamente viável.  

 

 

 

 

 

 

 

 

 

 

 

Palavras Chave: Sistemas elétricos de distribuição, qualidade da energia elétrica, monitoramento 
remoto, variações de tensão de curta duração e redes neurais artificiais.
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Abstract 
 
BOTTURA, F. B. An intelligent alternative method for remote monitoring of short duration 
voltage variations in a power distribution system. 2010. 85 f. Trabalho de Conclusão de Curso 
(Engenharia Elétrica com Ênfase em Sistemas de Energia e Automação) – Escola de Engenharia de 
São Carlos (EESC), Universidade de São Paulo, São Carlos – SP,2010. 

 

The aim of this is work is to present a method for the remote voltage levels monitoring at a 

particular point in a power distribution system. From a power distribution system previously modeled, 

a data set for the learning process of three artificial neural networks was obtained. After the training 

process, they might be able to provide the estimation of the voltage levels in the three phases at a 

particular point remotely monitored. This methodology allows the power quality monitoring related to 

the voltage levels, without introducing additional measuring instruments in the power distribution 

system, which could provide savings to the energy company. The three neural networks performance 

was validated and it was found that the remote monitoring method of the voltage levels can be 

technically viable.   

        

 

 

 

 

 

 

 

 

 

 

 

Keywords: Power distribution system, power quality, remote monitoring, short duration voltage 
variations and artificial neural networks.  
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Capítulo 1 – Introdução 
 

A Qualidade da Energia Elétrica (QEE) é caracterizada pela disponibilidade da energia na 

forma de uma onda senoidal pura, sem alterações em amplitude e freqüência (Dugan et al. 2003). 

Entretanto, um Sistema Elétrico de Potência (SEP) está sujeito a diversos fenômenos que 

comprometem a QEE, freqüentemente ocasionando a má operação de equipamentos e, em alguns 

casos, perda de processos industriais. Entre os fenômenos que comprometem a QEE destacam-se, pela 

freqüência de ocorrência, os afundamentos de tensão, dado que 87% de todas as ocorrências de 

fenômenos relacionados à QEE dizem respeito a este tipo de distúrbio (Oleskovicz, 2007). Estes 

eventos, na grande maioria das vezes, são conseqüências da ocorrência de faltas ao longo do SEP, 

dado que o afundamento de tensão no ponto da falta se propaga ao longo da linha. 

Neste contexto, cargas sensíveis alocadas em diferentes pontos de um sistema elétrico de 

potência podem operar inadequadamente quando submetidas a certas variações de tensão, decorrentes 

de distintas situações de faltas incidentes sobre o sistema elétrico (Bollen et al. 2006). Estas variações 

podem resultar em níveis de tensão abaixo do exigido (como afundamentos de tensão) que por sua 

vez, devem ser avaliados e, quando não extinguidos por completo, amenizados. Torna-se então de 

extrema importância o conhecimento da área de vulnerabilidade destas cargas frente às possíveis 

operações não desejadas sobre o sistema elétrico. Por área de vulnerabilidade entende-se a região ao 

redor de uma carga na qual a ocorrência de faltas causa, nesta carga e nas suas proximidades, uma 

variação de tensão suficiente para prejudicar a operação das mesmas. 

A tendência de uma exigência mais rígida em termos da QEE fornecida, seja por parte dos 

consumidores ou das concessionárias de energia elétrica, tem sido crescente. Equipamentos como o 

caso de computadores, controladores lógico programáveis, robôs industriais, máquinas elétricas, 

dentre outros, que são partes integrantes das etapas que agregam valor aos processos industriais, em 

geral, possuem baixa tolerância quando submetidos aos possíveis distúrbios advindos da rede de 

energia elétrica. Portanto, quando estes equipamentos são acometidos por distúrbios de QEE 

possivelmente desencadearão prejuízos financeiros consideráveis.  

Assim como os consumidores industriais, os consumidores comerciais e residenciais estão 

cada vez mais cientes de seu direito de serem supridos por uma energia elétrica de qualidade, uma vez 

que se observa o surgindo e consolidação de normatizações (em âmbitos nacionais e internacionais) 

que visam assegurar a QEE aos consumidores. Fica claro que a preocupação com os distúrbios de 

QEE possuem implicações econômicas e legais evidentes, configurando-se como um campo de 

pesquisa importante e promissor. 

Uma condição necessária na tarefa de se manter níveis aceitáveis da qualidade da energia 

elétrica é a metodologia empregada no monitoramento dos distúrbios sobre a mesma. Em geral este 
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monitoramento se revela como sendo um procedimento não trivial e de investimento financeiro 

relativamente elevado. As dificuldades podem ter início logo no instante de se eleger o melhor local 

em que o equipamento de monitoramento será instalado, pois muitas vezes não se tem conhecimento 

prévio sobre quais os pontos que poderão fornecer a melhor visão da situação de operação do sistema 

de energia elétrica, sob o ponto de vista da QEE. Além desta dificuldade inicial, a ocorrência dos 

distúrbios de QEE possui caráter estocástico, de forma que não se deve apenas levar em consideração 

a topologia do sistema, necessitando-se incluir a abordagem de outros parâmetros menos controláveis 

(Dugan et al. 2003). 

Com o objetivo de se desenvolver metodologias mais eficientes a serem aplicadas ao 

monitoramento dos distúrbios, vários pesquisadores têm estudado os fenômenos relacionados à QEE. 

Atualmente constata-se, por exemplo, o uso de ferramentas de inteligência artificial, como é o caso das 

Redes Neurais Artificiais (RNAs), Lógica Fuzzy (LF), e de ferramentas matemáticas como, por 

exemplo, o caso da Transformada de Fourier e Transformada Wavelet (Bollen et al. 2006). Estas 

ferramentas são utilizadas principalmente na etapa de pré-processamento das informações e extração 

de características relevantes, ou para a classificação dos distúrbios. Cabe relembrar que a principal 

motivação das pesquisas desenvolvidas atualmente, além de ampliar os conhecimentos neste campo e 

realizar contribuições acadêmicas muito relevantes, é minimizar as perdas econômicas decorrentes de 

distúrbios de QEE, nos processos de produção de bens que utilizem a energia elétrica como insumo.  

Tendo em vista a dificuldade para se realizar o monitoramento dos distúrbios relativos à 

QEE, o alto custo de implantação de medidores de QEE e a crescente demanda por níveis cada vez 

mais exigentes da qualidade da energia elétrica fornecida, propõe-se o desenvolvimento de um método 

alternativo para a medição e monitoramento dos níveis de tensão em pontos de um sistema de 

distribuição de energia elétrica, pela utilização de uma ferramenta de inteligencia artificial, em 

particular, pela aplicação de RNAs. Como anteriomente comentado, o interesse em se monitorar a 

tensão de alimentação de um determinado ponto do sistema, advém do fato de que os afundamentos de 

tensão representam cerca de 87% dos distúrbios referntes à QEE. 

Pela metodologia proposta, a partir de dados coletados por um monitor de QEE instalado na 

subestação de um sistema de distribuição de energia elétrica, será possível estimar o nível de tensão 

em um (ou mais) pontos(s) deste sistema. Desta maneira, pretende-se apresentar uma alternativa que 

seja confiável e atrativa do ponto de vista financeiro.  

Para este estudo inicial, cabe salientar que o monitoramento de um determinado consumidor 

poderá ser realizado da forma proposta, fornecendo uma estimativa muito próxima das reais condições 

de operação a que o consumidor está sendo submetido, sem a necessidade de se dispor de um medidor 

de QEE instalado permanentemente no ponto de conexão do cliente.  
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1.1 – Objetivos do trabalho 

 

Este trabalho tem como objetivo o desenvolvimento de uma estratégia que, tomando por 

base valores de tensão medidos em uma subestação de um sistema de distribuição de energia elétrica, 

quantifique valores da variação da tensão em pontos de interesse ao longo deste sistema de 

distribuição de energia elétrica. Deste monitoramento da variação da tensão, será possível mapear 

níveis de sensibilidade, no que se diz respeito aos níveis de tensão de fornecimento, delimitando áreas 

de vulnerabilidade no sistema em análise para um determinado ponto de interesse. 

Para o desenvolvimento deste trabalho, foram simuladas diferentes situações de falta ao 

longo de um sistema de distribuição de energia elétrica, previamente modelado dispondo do 

“software” ATP (“Alternative Transients Program”) (Rule Book, 1987) utilizando parâmetros reais de 

uma concessionária local. Por meio destas simulações gerou-se os dados que foram fornecidos para o 

treinamento de uma RNA utilizada para o monitoramento remoto da tensão em um ponto específico 

do sistema. O desenvolvimento da arquitetura da RNA em questão foi efetuado com o auxílio da 

ferramenta computacional “Neural Network Toolbox” do Matlab® (Demuth et al. 2007). 

Sendo assim, com o desenvolvimento da estratégia proposta, apresenta-se uma alternativa 

para a realização do monitoramento dos níveis de tensão em determinado ponto de interesse do 

sistema de distribuição, além da verificação da sensibilidade do sistema devido a faltas incidentes nas 

vizinhanças deste ponto.  

Pelos resultados até então encontrados, vale comentar que fica evidente a possibilidade de 

espansão deste monitoramento para outros pontos de interesse sobre o sistema em análise. 

Por fim, pretende-se alcançar um aprofundamento dos conhecimentos relativos à QEE e à 

sistemas inteligentes, em particular, sobre RNAs. 

1.2 – Apresentação deste documento 
 

Diante da introdução apresentada, este documento possui mais cinco capítulos. O capítulo 

dois trás uma revisão bibliográfica contendo conceitos relacionados à QEE e pesquisas realizadas 

atualmente nesta área. Em seguida, o capítulo três trata sobre as RNAs, apresentando os principais 

fundamentos teóricos da área. Logo após, o sistema de distribuição de energia elétrica em estudo, 

previamente modelado computacionalmente é apresentado no capítulo quatro. No capítulo cinco, 

apresenta-se a metodologia proposta e os resultados por ela obtidos.  

O capítulo seis trás as conclusões obtidas com a realização deste trabalho e possíveis temas 

para a continuidade desta pesquisa. 
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Capítulo 2 – Revisão bibliográfica 
 

Os estudos acerca da QEE são, atualmente, de suma importância para a garantia de um 

serviço de distribuição da energia elétrica que esteja dentro das especificações exigidas pelas normas, 

instigando, portanto, o interesse de diversos setores da economia. 

A preocupação com a conformidade dos níveis de tensão se faz presente, sendo que um dos 

principais distúrbios referentes à QEE é a variação de tensão. Uma variação de tensão é caracterizada 

pela permanência do nível de tensão fora da faixa nominal durante um determinado intervalo de 

tempo. As variações de tensão estão subdivididas em: variações de tensão de longa duração (VTLD) e 

variações de tensão de curta duração (VTCD). 

Quando os fenômenos de variação de tensão se prolongam por períodos de tempo superiores 

a 1 minuto são classificados como sendo VTLD. Neste caso, quando a tensão se eleva para valores 

entre 1,1p.u. e 1,2p.u. em relação à tensão nominal, tem-se o que se denomina sobretensão, já quando 

um fenômeno remete à uma tensão remanescente que permaneça abaixo de 0,9p.u. da nominal, este é 

classificado como sendo subtensão (Dugan et al. 2003). As VTLD são fenômenos decorrentes, em 

geral, de variações na carga do sistema, chaveamentos sobre o mesmo, além de poderem estar 

relacionadas às situações de faltas sustentadas. Este tipo de variação de tensão pode acarretar em 

efeitos indesejáveis como a redução da vida útil de equipamentos, bem como causar a parada dos 

mesmos. A sobretensão é geralmente resultante do processo de desligamento de grandes cargas ou da 

energização de bancos de capacitores. Conforme mencionado, a vida útil dos equipamentos pode ser 

seriamente afetada quando sobretensões acometem o sistema. Por outro lado, a subtensão pode ter sua 

origem, por exemplo, no excesso de carregamento dos circuitos alimentadores e pela entrada de cargas 

no sistema. Este distúrbio tem efeitos negativos como: interrupção da operação de equipamentos 

eletrônicos, elevação do tempo de partida de máquinas de indução, potencializando os efeitos 

indesejáveis que ocorrem durante este processo, dentre outras conseqüência danosas. Num caso mais 

grave de VTLD tem-se a presença da interrupção sustentada, em que a tensão de fornecimento 

permanece em zero por um tempo maior do que um minuto.     

Já os fenômenos de VTCD estão relacionados às durações inferiores a 1 minuto, e são 

subdivididas em variações instantâneas (0,5 a 30 ciclos), momentâneas (30 ciclos a 3 segundos) e 

temporárias (3 segundos a 1 minuto). Em se tratando da magnitude da tensão, uma VTCD pode ser 

classificada como: interrupção, afundamento e elevação de tensão. Quando há a incidência de faltas 

elétricas sobre o sistema elétrico, estas podem causar a completa interrupção do fornecimento da 

tensão (interrupção), em alguns casos, acarretar em um aumento no valor nominal da tensão 

(elevação), ou provocar afundamentos de tensão. Em se tratando de VTCD, as interrupções recebem a 

denominação de interrupções de curta duração, e são detectadas quando a tensão de fornecimento ou a 

corrente de carga apresentem um valor remanescente de 0 (zero) a 0,1p.u., em relação aos valores 

nominais, por um período de tempo inferior a 1 minuto (Dugan et al. 2003). Cabe ressaltar que em um 
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sistema de energia elétrico, a duração de uma falta está relacionada com o tempo de atuação dos 

dispositivos de proteção utilizados pelas concessionárias de energia, uma vez que estes terão a função 

de eliminá-las, ou de isolá-las do restante do sistema (Oleskovicz, 2007). O aumento no valor nominal 

da tensão, em intervalos de tempo inferior a 1minuto é denominado de elevação de tensão, que é 

definida, de acordo com Dugan et al. (2002), como sendo um aumento entre 0,1p.u. e 0,8p.u. sobre o 

valor nominal da tensão de fornecimento. Conforme mencionado anteriormente, este tipo de distúrbio 

é causado, principalmente, por faltas elétricas incidentes sobre o sistema, podendo ser originado 

também pelo desacoplamento de cargas de grande porte do mesmo. 

Dentre os distúrbios referentes à QEE, o afundamento de tensão é um dos que desperta maior 

interesse, principalmente devido seu maior grau de ocorrência e possíveis prejuízos decorrentes. O 

afundamento de tensão é definido como sendo qualquer decréscimo cuja magnitude remanescente 

apresenta-se entre 0,9 a 0,1p.u. da tensão nominal em um intervalo de tempo, entre meio ciclo a um 

minuto (Dugan et al. 2003), considerando-se a freqüência nominal do sistema (60 Hz). Conforme já 

mencionado, os afundamentos de tensão se enquadram na classe de fenômenos de VTCD sendo, 

portanto, classificados como: instantâneos, momentâneos e temporários. Conforme Dugan et al. 

(2002), os afundamentos instantâneos possuem duração típica de 0,5 a 30 ciclos, já os momentâneos 

são aqueles que apresentam duração de 30 ciclos a 3 segundos, e finalmente, os temporários 

compreendem o intervalo de 3 segundos a 1min.  

Cabe colocar que o módulo 8 do PRODIST (“procedimentos de distribuição de energia 

elétrica”) (ANEEL, 2009) no sistema elétrico brasileiro, que trata em especial da QEE, normatiza 

intervalos diferentes daqueles típicos encontrados na literatura, ampliando o intervalo de tempo dos  

afundamentos de tensão para até a 3 minutos. Este documento estabelece que o afundamento 

momentâneo de tensão compreende um intervalo de tempo superior ou igual a 1 ciclo e inferior ou 

igual a 3 segundos. Já temporário em uma faixa de tempo superior a 3 segundos e inferior a 3 minutos, 

desconsiderando, portanto, a classificação de afundamentos momentâneos citada acima. Esta é uma 

classificação menos rígida no que diz respeito a assegurar a qualidade da tensão, uma vez que 

afundamentos mesmo inferiores a 1 ciclo podem ser danosos ao sistema, como por exemplo, causando 

perdas de informações devido à operação inadequada de um equipamento microprocessado.  

Este tipo de perturbação pode ser causado, em geral, pela partida de grandes motores e/ou 

outras cargas elétricas de grande porte que solicitem alta corrente de partida, por curtos-circuitos 

incidentes no sistema e por chaveamentos da concessionária de energia elétrica sobre determinado 

sistema (Kagan et al., 2009). Para sintetizar as classificações referentes às variações de curta e longa 

duração apontadas, é apresentada a Figura 1. 
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Figura 1 - Classificação das variações encontradas sobre o valor eficaz da tensão de 
fornecimento. 

 

Em vista à preocupação das conseqüências danosas aos equipamentos sensíveis, resultantes 

dos fenômenos de VTCD, curvas de sensibilidades foram desenvolvidas para se especificar zonas de 

tolerância dos equipamentos microprocessados às variações de tensão, relacionando suas magnitudes 

com o respectivo tempo de ocorrência das mesmas. A curva CBEMA (Computer Business 

Manufacturers Associations) (Dugan et al. 2003) foi a primeira destas curvas e foi desenvolvida pelos 

fabricantes de computadores eletrônicos, tornando-se referência para a especificação de tolerância de 

equipamentos microprocessados. Esta curva está mostrada na Figura 2. 

 

Figura 2 - Curva de tolerância de tensão CBEMA, adaptado de Kyei et al. (2002) 
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A Figura 2 mostra três regiões distintas associadas às letras A, B e C; as mesmas 

representam: A – região normal de trabalho, considerada aceitável para determinada situação de 

operação; B – região perigosa de trabalho, com possibilidade de ruptura da isolação dos equipamentos 

perda de hardware); C – região perigosa de trabalho, com possibilidade de paralisação de alguns 

equipamentos (disfunções). 

 Posteriormente, como uma ampliação do emprego da curva CBEMA, surgiu a curva ITIC 

(Information Technology Industry Council) que apresenta níveis mais rígidos quanto à magnitude e 

duração das variações de tensão de curta duração (Dugan et al. 2003). Na Figura 3, a curva ITIC é 

apresentada. 

 

Figura 3 - Curva de tolerância de tensão ITIC, adaptado de Kyei et al. (2002) 

O comportamento nas regiões determinadas pelas curvas é o mesmo, tanto para a curva 

CBEMA, quanto para a ITIC. Os pontos que caírem abaixo da curva inferior (região C) podem causar 

o desligamento ou mau funcionamento da carga sensível. Os pontos acima da curva superior (região 

B) poderão causar um mau funcionamento devido à falha de isolação ou desligamento por 

sobretensão, entre outros. A região A, configura a região de operação normal. 

Outros conceitos relacionados com a robustez do sistema e com os fenômenos de QEE já 

mencionados no presente trabalho, também merecem destaque nesta seção de revisão bibliográfica. 

São eles: a área de vulnerabilidade e, por conseqüência, a área afetada. 

Em Goswami et al. (2008), a área de vulnerabilidade é definida como sendo toda a porção do 

circuito do sistema elétrico de potência (barramentos e segmentos de linha) que, quando acometida por 

defeitos (falhas) pode provocar afundamentos de tensão em um dado barramento. Estes afundamentos 

possuem magnitudes abaixo da tensão mínima de operação (limiar de tensão) de uma carga elétrica 

sensível. Já a área afetada, como exposto por Goswami et al. (2008), é entendida como sendo o 
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conceito complementar de área de vulnerabilidade, ou seja, dado a incidência de uma falta elétrica em 

um determinado barramento do sistema, define-se qual a porção do sistema elétrico que terá sua tensão 

reduzida para níveis menores do que a tensão mínima de operação.  

 Sobre este escopo inicialmente apresentado, estudos relacionados revelam o surgimento de 

novas interpretações relativas ao diagnóstico de QEE. Como por exemplo, tem-se a pesquisa de Won 

et al. (2005), onde os autores propõem um método para uma nova abordagem sobre a caracterização 

de afundamentos de tensão utilizando-se uma função de aproximação ao perfil de afundamento de 

tensão, do tipo raiz k-ésima. Esta função, segundo os autores, representaria o perfil do afundamento de 

tensão em determinada carga. O método permite eliminar a superestimação da duração dos 

afundamentos de tensão detectados pelos monitores de QEE, onde o perfil do evento não é retangular 

devido às características dinâmicas inerentes da carga em análise, como, por exemplo, no afundamento 

provocado pela reaceleração de um motor elétrico de indução de grande porte após uma queda de sua 

tensão na alimentação (Bollen, 1995 apud Won et al. 2005). Segundo relatado, a função descrita é 

capaz de aproximar o perfil do afundamento de tensão usando apenas os dados padrões fornecidos por 

medidores de QEE. O parâmetro (k) é obtido experimentalmente por aproximações sucessivas. O 

método parece ser capaz de caracterizar de maneira prática e mais exata o verdadeiro efeito de um 

afundamento de tensão.   

Seguindo na mesma linha de estudo, Kyei et al. (2002) ressaltam a importância de se 

investigar os fenômenos relacionados aos afundamentos de tensão. Para tanto, os autores propõem um 

método para a obtenção de curvas de tolerância de tensão para uma carga em particular, como um 

complemento à utilização das curvas padrões CBEMA e ITIC (Dugan et. al. 2002), empregadas de 

maneira generalizada aos diversos tipos de cargas não lineares em operação. Pela pesquisa, os autores 

foram capazes de modelar um evento de afundamento de tensão em um sistema de distribuição de 

energia através do estudo de um retificador monofásico de tensão, em que a entrada do mesmo 

representa a tensão (VAC) fornecida pela rede de energia elétrica, e a tensão retificada (VDC) representa 

a tensão fornecida à carga. Pela solução temporal da equação diferencial associada a este retificador 

em termos da saída (VDC), mostra-se que é possível obter uma resposta similar à curva CBEMA no 

plano (VDC x T), onde T é o tempo de duração do afundamento de tensão, obtendo-se a curva de 

sensibilidade da carga. Cabe salientar que a análise pode ser estendida ao caso trifásico. Além da 

tensão, os mesmos demonstram que é possível referenciar a sensibilidade de um equipamento por 

meio de outros parâmetros de interesse, como, por exemplo, a velocidade ou o torque em uma carga 

rotativa, ampliando assim o conceito de curva de sensibilidade antes apenas referido à curva CBEMA 

ou ITIC. 

A preocupação em se considerar os parâmetros de sensibilidade das cargas em operação 

também é observado no artigo publicado por Lee et  al. (2004). Os autores discutem a importância de 

se obter um índice de QEE que seja capaz de associar um custo financeiro à gravidade dos danos 

causados na carga de interesse por afundamentos e interrupção de tensão de diferentes classes (k) de 
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magnitude e duração, provenientes da rede de distribuição de energia elétrica. A quantificação da 

gravidade dos danos na carga é expressa por uma média [E(k)] que leva em consideração a frequência 

e a energia dos afundamentos de tensão e interrupção na operação da carga, de cada classe (k). Ao se 

levar em consideração a sensibilidade de diversos tipos de carga em estudo, o artigo cita a obtenção de 

suas respectivas curvas de tolerância, salientando a semelhança das mesmas com a curva CBEMA, 

conforme explicitado em Kyei et al. (2002). Nestas curvas, são introduzidas subdivisões no eixo das 

abscissas (tempo), relativas às classes (k), definidas pelo padrão IEEE Std 1159-1995, com o objetivo 

de se prever possíveis danos na carga. O cálculo do custo é realizado com base em registros 

estatísticos do sistema elétrico para uma conhecida taxa de defeito do mesmo, e no fator Ck, que reflete 

a média de custo financeiro em uma determinada classe (k) de afundamento e interrupção de tensão. 

Este índice pode ser muito útil para o consumidor e fornecedor da energia elétrica, uma vez que é 

capaz de refletir em um aspecto financeiro os efeitos negativos advindos de uma má qualidade no 

fornecimento da energia elétrica. 

Em Bollen et al. (2008) os autores enfatizam a importância de se aprofundar os estudos sobre 

a elaboração de uma curva, que pode ser traduzida como uma curva de compartilhamento de 

responsabilidade (responsability-sharing curve), ressaltando as responsabilidades cabíveis tanto às 

concessionárias de energia como aos próprios usuários no que diz respeito, principalmente, aos 

afundamentos de tensão. Esta curva, embora semelhante às curvas já bem conhecidas como a CBEMA 

e a ITIC, traz a tona, segundo os autores, o que já existe em algumas normas internacionais, como é o 

caso da África do Sul, em que a norma NRS 048-2, (NRS 048-2:2003, 2003 apud Bollen et al, 2008)  

estabelece que o consumidor é responsável por afundamentos com tensões remanescentes acima de 0,7 

p.u. com duração de até 150ms, acima de 0,8 p.u. com duração de até 600ms e aqueles que sejam de 

maior duração com tensões remanescentes de 0,85 p.u. da tensão nominal. É proposto no artigo que se 

utilize a norma internacional IEC Std. 61000-4-11 (IEC Std. 61000-4-11, 2001 apud Bollen et al, 

2008), como parâmetro para a escolha da curva de responsabilidade para afundamentos de tensão. Os 

próprios autores salientam sobre as peculiaridades e características locais das regiões de distribuição 

de energia elétrica, o que acaba por influenciar a elaboração de regulamentações locais. Neste sentido, 

a tentativa de uma generalização normativa pode ser prematura, entretanto, o artigo deixa claro que 

uma maior discussão e aperfeiçoamento das normas concernentes à qualidade da tensão fornecida são 

válidos. 

Mais uma vez, tomando-se por base registros estatísticos de eventos relacionados com a 

QEE, é cabível citar Wang et  al. (2005), pelos quais se apresenta uma solução, baseada em uma 

análise estatística, para a estimação do comportamento de afundamentos de tensão em um sistema de 

distribuição de energia elétrica, predizendo sua magnitude e duração. Os autores propõem a 

implementação de algoritmos computacionais para se obter esta solução, eliminando dessa maneira a 

necessidade de se realizar medições extensivas e caras ações de monitoramento. Através de uma tabela 

da densidade de probabilidade da ocorrência de afundamentos de tensão, obtida por uma função que 
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pondera diversos aspectos do sistema elétrico de potência, conforme apresentado pelos autores, é 

possível mapear a probabilidade da incidência de um afundamento de tensão em uma carga sensível 

conectada em um determinado ponto do sistema em análise. Este ponto é o local onde se pretende 

predizer se um afundamento de tensão será capaz de danificar ou não a carga conectada ao mesmo, 

observando-se aqui uma relação com o conceito de área de vulnerabilidade (Dugan et. al. 2002). Para 

se verificar a gravidade do afundamento de tensão, é necessário confrontar os dados da tabela com a 

curva de tolerância da carga (Kyei et al. 2002). O método proposto pode ser utilizado para se planejar 

tanto a minimização como a mitigação dos efeitos indesejáveis provocados pelo afundamento de 

tensão sobre um determinado equipamento.  

  O conceito de área de vulnerabilidade também é trabalhado por Myo Thu et al. (2004), que 

analisa a influência de diferentes funções de distribuição de probabilidade de defeitos (curtos-

circuitos) em uma linha de transmissão de energia elétrica, e na predição de afundamentos de tensão 

em dois barramentos (escolhidos ao acaso) de um sistema de distribuição genérico, através de uma 

aproximação estocástica baseada em simulação computacional.  

Conforme ressaltado pelos autores, a obtenção de uma base de dados de registros dos 

distúrbios de QEE que contenha informações relevantes para proporcionar uma correta análise 

estatística do desempenho de um sistema elétrico de potência, frente a estes distúrbios, consiste em 

uma tarefa de difícil execução. Para, tanto seria necessário executar o monitoramento da operação do 

sistema ao longo de anos. Visando eliminar dos estudos relacionados a estes distúrbios a forte 

dependência destes registros estatísticos, dois principais métodos são propostos na literatura: o método 

da posição da falta (fault-position – FP) e o método da distância crítica (critical distance – CD), 

conforme se encontra em Carpinelli et al. (2009).  O método da distância crítica leva em consideração 

o princípio do divisor de tensão aplicado ao ponto de acoplamento comum, local este onde está 

instalada a carga que se deseja monitorar a tensão no instante da ocorrência de uma falta. Isto é 

realizado conhecendo-se o valor da tensão de fornecimento (fonte), a impedância da fonte vista do 

ponto de acoplamento comum e a impedância entre o local de ocorrência da falta e o ponto de 

acoplamento comum. Já o método da posição da falta, é capaz de fornecer uma matriz que contém as 

tensões de todos os barramentos do sistema durante a ocorrência de uma falta, chamada matriz de 

afundamento. Sua obtenção se dá a partir da matriz de impedâncias (Zbus) do sistema elétrico de 

distribuição em questão. Este método é implementado computacionalmente seguindo três principais 

passos: (i) simulação de curto-circuito para a ocorrência de uma falta em determinado local do 

sistema; (ii) cálculo de todas as tensões remanescentes nos barramentos do sistema devido à falta 

aplicada; (iii) construção da matriz de afundamentos. Os passos de (i) a (ii) devem ser repetidos para 

diversas posições de faltas, considerando-se, por exemplo, todas as barras do sistema e alguns pontos 

no decorrer de todas as linhas do mesmo. Por fim, no passo (iii), o resultado das tensões 

remanescentes efetuados em (ii) são armazenados na matriz de afundamentos.        

Por fornecer mais informações acerca das tensões do sistema elétrico através da matriz de 
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afundamentos, o método de posição da falta se revela como sendo o que proporciona uma visão mais 

ampla da situação de operação do sistema elétrico durante a ocorrência da falta como será discutido na 

seqüência.      

Goswami et al. (2008), em sua pesquisa, apresentam um método analítico para se prever 

afundamentos de tensão e se obter áreas de vulnerabilidade de interesse em um sistema de distribuição 

de energia elétrica. O estudo tem seu equacionamento formulado, considerando-se curtos-circuitos 

trifásicos simétricos, para obtenção de uma matriz chamada matriz de afundamento de tensão (VSM), 

calculada a partir da matriz de impedâncias (ZBUS) do sistema pelo método de posição da falta. Ao se 

interpretar a matriz (VSM) em linhas e se representar graficamente estas informações no diagrama 

unifilar do sistema elétrico, determina-se a área de vulnerabilidade de interesse, ou seja, uma dada 

linha (m) da matriz de afundamentos de tensão identifica um barramento no sistema elétrico, e, além 

disso, representa o potencial de afundamento de tensão que uma carga conectada a este barramento 

(m) está sujeita em conseqüência de defeitos incidentes no sistema. Os resultados mostram que é 

possível obter a área de vulnerabilidade para um barramento do sistema utilizando-se apenas da matriz 

(VSM) obtida originalmente a partir da matriz (ZBUS) do sistema, sem a necessidade de se empregar 

técnicas estatísticas que requerem extensa coleta de dados relativos à incidência de falhas no sistema. 

Vale comentar que uma análise mais cuidadosa no caso de curtos trifásicos assimétricos se faz 

necessário. Entretanto, o método apresentado pode ser muito útil quando uma análise preliminar é 

considerada. 

Em Carpinelli et al. (2009), os autores obtém uma matriz de afundamentos de tensão (during 

fault voltage matrix - DFV) que mostra todas as tensões de pós falta do sistema, de maneira 

semelhante ao que se encontra em Goswami et al. (2008). Esta matriz foi obtida através do método de 

posição da falta, acrescentando-se desta vez uma combinação das magnitudes dos afundamentos 

contidos na DFV com os dados estatísticos referentes à taxa de falha do sistema considerado, para se 

tentar obter um resultado mais condizente possível com o real. O artigo de Carpinelli et al. (2009) 

sugere uma interpretação gráfica desta matriz, implementado uma escala graduada em cores que 

quantifica a intensidade do afundamento de tensão, proporcionando uma rápida inspeção visual da 

situação das tensões remanescentes nos barramentos do sistema após a ocorrência da falta elétrica. Um 

ponto muito importante explicitado pelos autores acerca da robustez do sistema elétrico em estudo, 

advém do cálculo da capacidade de curto-circuito dos barramentos do sistema (Kagan et al. 2005), e 

da relação estabelecida com a matriz de afundamentos de tensão (DFV), obtida via método de posição 

da falta. Com o estudo efetuado pelos autores, nota-se que quanto maior a capacidade de curto-circuito 

de uma barra, maiores serão os afundamentos de tensão causados ao restante do sistema em 

decorrência da incidência de uma falta sobre a mesma. Em contrapartida, quanto menor a capacidade 

de curto-circuito da barra em questão, mais susceptível ela estará a afundamentos em virtude da 

ocorrência de faltas em outros pontos do sistema que possuam maior capacidade de curto-circuito. 

Além disso, esta barra de menor capacidade de curto circuito, quando acometida por uma falta, levará 
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a afundamentos no restante do sistema que será sentido por uma menor quantidade de barras. Nota-se, 

portanto, que o emprego do método de posição da falta é capaz de fornecer uma visão mais ampla 

acerca da situação das tensões dos barramentos do sistema quando uma falta acomete determinado 

ponto do mesmo, e uma simples análise via método da distância crítica, pode levar a interpretações 

equivocadas, uma vez que este método não agrega informações a respeito do comportamento das 

demais barras do sistema.  

Atualmente, constata-se que o emprego de ferramentas inteligentes, em particular RNAs, 

atuando em conjunção com técnicas de extração de características, como o uso da Transformada 

Wavelet (TW), acaba por enriquecer os estudos relativos à QEE, apresentando novas soluções ao 

monitoramento.  Em Devaraj et al. (2006), por exemplo, busca-se um processo automático para o 

monitoramento da QEE com o uso de RNAs e da TW. Neste processo é realizada a classificação dos 

seguintes eventos: afundamentos de tensão, elevações de tensão, transitórios e distorções harmônicas. 

Com a determinação da energia contida nos coeficientes wavelet da onda em estudo, e tomando-se 

como referência uma onda senoidal pura, determina-se o desvio entre as distribuições de energia do 

sinal analisado e do sinal de referência em cada nível de decomposição. Alguns parâmetros estatísticos 

também são calculados, tais como: média, desvio padrão, valor RMS, fator de crista, dentre outros. 

Estes parâmetros, referenciados a cada tipo de distúrbio, são utilizados para se treinar uma RNA. 

Através de um SEP de quatro barramentos, simulado computacionalmente no software Matlab
®, os 

autores ilustram a eficiência da RNA, simulando eventos como: faltas, chaveamentos e harmônicos 

devido às cargas não lineares. As amostras referentes ao treinamento da RNA são obtidas em 

diferentes localizações do sistema elétrico, gerando diferentes medidas, numa tentativa de se obter 

uma maior abrangência relativa aos diferentes pontos de monitoramento. A eficiência da RNA é 

apresentada através de um diagrama do qual se depreende que o índice de acerto da RNA é de 100%. 

A classificação de distúrbios elétricos relacionados à QEE, incluindo sua ausência, também é 

pesquisado por Lira et al. (2004), em que os autores utilizam as seguintes técnicas: RNAs, TW e 

Análise de Componentes Principais (ACP). Inicialmente os dados de tensão coletados do sistema de 

monitoração da CHESF (Companhia Hidrelétrica do São Francisco), foram pré-processados em duas 

etapas. A primeira utilizando-se da Transformada Wavelet Discreta (TWD) e a segunda, empregando-

se a ACP. Em ambas as etapas o objetivo é o de se alimentar a RNA que classificará os distúrbios com 

uma entrada pré-avaliada, visando-se aumentar seu índice de acerto. A resposta da RNA foi codificada 

de modo a existirem seis saídas correspondentes aos seis tipos de eventos a serem classificados. Nos 

ensaios foram empregadas redes MLP (Multi-Layer Perceptron) de uma camada intermediária. Na 

apresentação dos resultados foram geradas três bases de conhecimento em função dos coeficientes 

wavelets, decorrentes da primeira etapa do pré-processamento do sinal. Para cada base foram treinadas 

três redes distintas, gerando-se três casos diferentes a serem analisados. A resposta combinada das três 

redes revela sua importância quando o objetivo é a classificação de fenômenos que concentram 

simultaneamente componentes de altas (transitórios) e de baixas freqüências (afundamentos). Nesta 
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situação foram combinadas as respostas das redes dos casos 2 e 3, proporcionando um índice de acerto 

de 99,3%. 

Além dos estudos referentes à classificação dos distúrbios da QEE, as RNAs e a TW são 

aplicadas quando o objetivo é a detecção de defeitos elétricos. Em Silva et al. (2006), o método 

desenvolvido tem por objetivo a detecção e classificação de faltas em um sistema de distribuição, 

também da CHESF, onde se utiliza de RNAs e da TW para distingui-las de outros fenômenos 

relacionados à QEE e inerentes à operação do sistema elétrico, tais como: afundamentos de tensão e 

transitórios. O método possui dois módulos: módulo de detecção e módulo de classificação. No 

primeiro, através de um sistema interligado com registradores digitais de falta, é realizada a aquisição 

de amostras da forma de onda de corrente e tensão. Em seguida, ainda no primeiro módulo, é 

calculada a TW (no seu primeiro nível de decomposição) e, finalmente, efetuado o cálculo da energia 

de seus coeficientes. Este processo possibilita a detecção do momento em que o curto ocorreu, bem 

como a determinação de sua duração, antes da atuação do dispositivo de proteção do sistema elétrico. 

No segundo módulo, após a identificação das amostras de corrente e tensões correspondentes ao 

defeito, estas são reamostradas (preservando as características relevantes do sinal), e a partir de então, 

a RNA é alimentada por padrões de entrada gerados por janelas cujo tamanho corresponde ao tempo 

de duração da falta calculado no módulo de detecção. O artigo mostra o emprego de uma rede neural 

MLP cujo treinamento foi realizado através de diferentes situações de falta empregando-se dados reais 

e simulados computacionalmente pelo software ATP. Os resultados mostram um alto índice de acerto 

da RNA (98,83%) ao classificar as situações de defeito incidentes na linha. 

Outro estudo que demonstra a aplicação de RNAs e da TW para se classificar faltas em um 

sistema elétrico de potência pode ser encontrado em Upendar et al. (2008). O método toma por base as 

informações colhidas pelos relés digitais e pelos registradores digitais. O tratamento destes dados se dá 

inicialmente através da decomposição do sinal (50 Hz) pela TW até o seu nono nível de 

decomposição, utilizando-se dois ciclos completos com 512 amostras. Desses nove níveis de 

decomposição, dá-se especial atenção para o sétimo nível em que se encontram os segundo e terceiro 

harmônicos. Vários índices relacionados ao sétimo nível de decomposição da corrente nas três fases 

foram calculados e usados posteriormente para se alimentar a entrada de uma RNA. Para se encontrar 

a arquitetura da RNA, treiná-la e verificar seu índice de acerto, foram gerados diversos cenários de 

operação, variando-se o tipo de falta, o ângulo de inserção (de 0° a 360°), o valor das impedâncias de 

faltas e diferentes localizações das mesmas. Com as diversas combinações entre os parâmetros 

apontados e um sistema elétrico de potência concebido para se realizar as simulações, desenvolveu-se 

uma arquitetura para a RNA cujo índice geral de acerto foi de (99,88%). 

Estes foram alguns dentre os vários e importantes trabalhos reportados que dizem respeito, 

ou que apresentam alguma relação com o tema principal deste trabalho de conclusão de curso. 

Para o próximo item, reservam-se alguns apontamentos conceituais sobre RNAs. Técnica 

inteligente sobre a qual todo o trabalho foi concebido.  
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Capítulo 3 – Redes neurais artificiais 
 

Os estudos acerca das redes neurais artificiais (RNA) tiveram sua origem na neurobiologia 

com a investigação do funcionamento do cérebro humano. A capacidade do cérebro de processar 

informações altamente complexas de maneira paralela, o coloca em posição vantajosa em relação à 

forma de processamento seqüencial de informações de um computador digital, conferindo-lhe assim 

uma maior velocidade em certos processamentos (Haykin, 2001). Visando modelar esta forma peculiar 

do cérebro humano em resolver problemas específicos de alta complexidade, surgem as redes neurais 

artificiais, implementadas via componentes eletrônicos ou programação computacional. 

Uma RNA tem a capacidade, assim como o cérebro humano, de armazenar conhecimento 

adquirido através de um processo de aprendizagem, modificando as interconexões existentes entre 

suas unidades de processamento (neurônios) na medida em que interage com o meio através de um 

algoritmo de aprendizagem. Estes algoritmos são capazes de modificar os pesos sinápticos que 

interligam as unidades de processamento até que se alcance um objetivo de projeto. O conhecimento 

armazenado por meio das ligações sinápticas confere às RNAs a capacidade de generalização, uma de 

suas mais intrigantes habilidades. Isto é, a rede é capaz de produzir saídas adequadas para entradas que 

não estavam presentes durante o processo de aprendizagem.  

Outra importante propriedade de um RNA é a tolerância a falhas, pois seu desempenho se 

degrada suavemente em função de condições de operações adversas, o que a torna um sistema com 

certa robustez. Em suma, a rede neural fornece o modelo implícito do ambiente na qual está inserida e 

realiza a função de processamento da informação de interesse (Haykin, 2001). 

  

3.1 – Modelo não linear de um neurônio artificial 
 

O neurônio artificial constitui a unidade fundamental de processamento da informação em uma 

RNA. Segundo Haykin, (2001) o modelo não linear de um neurônio artificial, é constituído por três 

elementos básicos: pesos sinápticos, somador e uma função de ativação. Na Figura 4 é possível 

observar uma representação esquemática simplificada de um neurônio biológico, e, na Figura 5, a 

representação do modelo do neurônio não linear. Nesta última, os sinais de entrada de 1x até mx

constituem o vetor de sinal de entrada, ou padrão de ativação, para o neurônio que antes de serem 

submetidos ao combinador linear, estarão sujeitos a uma ponderação através dos respectivos pesos 

sinápticos. Ainda na Figura 5, tem-se o destaque para o bias que é representado por uma entrada fixa 

)1( 0 +=x de  modo que o peso sináptico associado  defina   sua  magnitude )( kb , isto é, kk bw =0 . A 

função do bias é a de introduzir um limiar de ativação para o neurônio, ou seja, dependendo do valor 

kb  a saída do combinador linear poderá aumentar ou diminuir a entrada líquida da função de ativação, 

o que acabará por influenciar a saída do neurônio. 
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Figura 4 - Representação esquemática simplificada de um neurônio biológico. 

 

 

 

Figura 5 - Modelo não linear de um neurônio artificial. 

 

O fluxo da informação se dá pelo seguinte percurso: um sinal (xj) na entrada da sinapse (j) 

conectada ao neurônio (k) é multiplicado pelo peso sináptico (wkj), sendo (wkj>0) ou (wkj <0). Em 

seguida, o sinal ponderado encontra um combinador linear (somador) produzindo o sinal (vk) que 

recebe o nome de campo local induzido ou potencial de ativação. O campo local induzido é dado por: 
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Finalmente, uma função de saturação chamada de função de ativação )(⋅ϕ , limita o valor da 

saída do neurônio (k) em um valor finito em termos do campo local induzido, isto é:  

)( kk vy ϕ=        (2) 

O processo de aprendizagem em uma rede neural implica na modificação dos parâmetros 

livres da rede, ou seja, os pesos sinápticos e níveis de bias, de tal forma que ela seja capaz de gerar 

uma saída desejada para um determinado padrão de ativação (vetor de entrada).  

 

3.2 – Representações gráficas de uma RNA 
 

Uma possível representação gráfica de uma RNA se dá através de grafos orientados de fluxo 

de sinal, constituindo uma rede de elos (ramos) orientados que são interligados em certos pontos (nós) 

(Haykin, 2001). Esta representação é uma alternativa ao modelo de blocos funcionais apresentado na 

Figura 5, e fornece uma perspectiva mais clara e objetiva do funcionamento de uma RNA. Com este 

tipo de representação é possível examinar o fluxo de um determinado sinal, tanto de um neurônio para 

outro, como em cada neurônio individualmente. A Figura 6 mostra o modelo de um neurônio sob o 

ponto de vista de grafos de fluxo de sinal. O tratamento do elo de ativação, que representa uma 

transmitância não linear, é feito mais adiante no item 3.3. 

 

Figura 6 - Grafo de fluxo de sinal de um neurônio 

 

Uma variante da representação gráfica mencionada acima é a representação por grafo 

arquitetural, como mostrado na Figura 7. Quando a apresentação de uma determinada arquitetura de 

uma RNA se faz necessária, este tipo de representação pode se tornar conveniente uma vez que o foco 
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é a maneira como os neurônios estão interconectados, ou seja, como se dá a topologia da RNA. Neste 

caso, o fluxo do sinal interno ao próprio neurônio se torna implícito e a representação do modelo 

neuronal é novamente simplificada sem perda de generalidade. Um grafo arquitetural apresenta três 

elementos: (1) nós de fonte, que fornecem os sinais de entrada; (2) nó computacional, que é a 

representação do neurônio; (3) elos de comunicação, que realizam a conexão dos nós de fonte com os 

nós computacionais. 

 

Figura 7 - Grafo arquitetural de um neurônio. 

 

3.3 – Funções de ativação 
 

Conforme mencionado anteriormente, uma função de ativação determinará a saída )( ky de 

um neurônio em termos do campo local induzido )( ky , de acordo com a Equação (2). Na 

representação por grafos orientados de fluxo de sinal, a função de ativação é a transmitância não linear 

presente no elo de ativação da Figura 6. Cinco dos principais tipos de funções de ativação são 

apresentadas a seguir.  

 

3.3.1 – Função de limiar ou função de Heaviside 
 

A função de ativação do tipo limiar fornece à saída )( ky  do neurônio a característica da 

propriedade do tudo ou nada. Um neurônio não linear contendo a função de ativação do tipo limiar é 

referido na literatura como sendo o modelo de McCulloch-Pitts (Haykin, 2001). Neste modelo, a saída 

)( ky  assume valor )1( =ky  se o campo local induzido for maior ou igual a zero, e assume valor 

)0( =ky  se o campo local induzido for menor do que zero. Sendo assim, tem-se a definição da função 

de ativação descrita dado um potencial de ativação (v), conforme a Equação (3). O seu comportamento 

pode ser observado na Figura 8. 
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Figura 8 - Comportamento da função de ativação do tipo limiar ou Heaviside. 

 

Por fim, como uma conseqüência da Equação (3), a saída do neurônio (k) cujo campo local 

induzido vale ( kvv= ) estará dentro dos seguintes limites: 
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3.3.2 – Função linear por partes. 
 

Esta função de ativação se assemelha a uma função do tipo rampa, obedecendo a uma dada 

inclinação (α ) no intervalo em que Vvk ≤  , onde R∈V . Fora deste intervalo a função assume 

valor unitário para ( Vvk > ) e valor nulo para ( Vvk −< ). Dessa forma a função de ativação linear 

por partes é definida formalmente como sendo: 
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Pode-se notar que quando o fator de ganho (α ) é suficientemente grande, a função de 

ativação linear por partes se aproxima da função de limiar. A Figura 9 ilustra o comportamento da 

função de ativação do tipo linear por partes, definida na Equação (5). 
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Figura 9 - Comportamento da função de ativação do tipo linear por partes. 

  

3.3.3 – Função sigmóide 
 

A função de ativação do tipo sigmóide, segundo Haykin, (2001) é a função comumente 

encontrada em configurações de redes neurais artificiais. Ela representa um equilíbrio entre o 

comportamento de uma função linear e o de uma função não linear. Além disso, o fato de ser 

diferenciável em todo o seu domínio contribui para questões técnicas, como por exemplo, no 

desenvolvimento da teoria de redes perceptron de múltiplas camadas. A seguir, tem-se a definição de 

uma função de ativação sigmóide: 

av
e

v
+

=
1

1
)(ϕ      ,     (6) 

na qual (a) é o parâmetro de inclinação da função.  O comportamento da função de ativação definida 

pela Equação (6) é apresentado na Figura 10. 

 

 

 

Figura 10 - Comportamento da função de ativação do tipo sigmóide. 
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3.3.4 – Função sinal e tangente hiperbólica 
 

Em geral, é desejável que a função de ativação )(⋅ϕ  assuma valores entre -1 e 1, tornando-se 

uma função ímpar do campo local induzido, conforme se observa na Equação (7). A esta função se 

denomina função sinal, cuja característica auxiliará na capacidade da RNA em separar os padrões de 

entrada em classes de forma mais conveniente. O comportamento da função sinal dada pela Equação 

(7) está ilustrado na Figura 11. 
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Figura 11 - Comportamento da função de ativação do tipo sinal. 

 

Da mesma maneira como a função sinal se dá como uma função ímpar do campo local 

induzido, tem-se também, a função tangente hiperbólica, expressa pela Equação (8): 

 

)tanh()( vv =ϕ         (8) 

 

Esta função possui papel importante no processo de treinamento de uma rede perceptron de 

múltiplas camadas via algoritmo de retropropagação, uma vez que pode ser capaz de acelerar a 

convergência do mesmo, no que se diz respeito ao número de iterações. (Haykin, 2001). A função 

tangente hiperbólica tem seu comportamento ilustrado na Figura 12. 
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Figura 12 - Comportamento da função de ativação do tipo tangente hiperbólica. 

 

3.4 – Arquiteturas de redes neurais artificiais 
 

A arquitetura de uma RNA está relacionada com a maneira pela qual os neurônios estão 

distribuídos topologicamente, isto é, a maneira pela qual eles estão interconectados. As redes neurais 

artificiais podem ser divididas em duas principais categorias: as redes de camada única e redes de mais 

de uma camada, denominadas redes de múltiplas camadas. Além disso, a arquitetura de uma RNA 

também está intimamente ligada ao seu tipo de treinamento, uma vez que o algoritmo de treinamento 

dependerá do modo como estão distribuídas as conexões entre os neurônios da rede.  

 

3.4.1 – Redes de camada única 
 

A arquitetura de camada única alimentada adiante (feedfoward) apresenta uma camada de 

entrada (nós de fonte) e uma camada de saída, ou seja, a camada que contém os nós computacionais é 

a própria camada de saída da RNA, conforme mostra a Figura 13. Como exemplos de redes de camada 

única existentes citam-se a rede Perceptron e a ADALINE (adaptative linear element) (Kovács, 

1996). Ambas são capazes de tratar apenas problemas linearmente separáveis, executando tarefas 

como, por exemplo, reconhecimento de padrões linearmente separáveis. 
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Figura 13 - Diagrama arquitetural de uma rede de camada única alimentada adiante 

 

3.4.1.1 – Perceptron 
 

Conforme pesquisado em Haykin, (2001), o Perceptron de Rosenblatt, ou simplesmente 

Perceptron é concebido utilizando-se o modelo de neurônio não linear de McCulloch-Pitts contendo 

uma função de ativação do tipo limiar ou sinal, isto é, limitando abruptamente a saída do neurônio. 

Assumindo-se que a função de ativação utilizada seja a função sinal dada pela equação (7), a saída do 

Perceptron será 1+=y  se o campo local induzido do neurônio resultar em valor positivo )0( >v , 

e, analogamente, será 1−=y  para 0<v , estabelecendo-se assim uma regra para se discriminar os 

estímulos de entrada em duas classes, tomando-se os dois diferentes tipos de saídas produzidas pelo 

perceptron. Conforme a Equação (2) tem-se a representação para a saída da rede neural como segue: 
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por esta equação, (m) é a dimensão do vetor de estímulos de entrada ),,,()( 21 mxxxnx L=  

apresentados ao perceptron pertencentes ao n-ésimo padrão de entrada de treinamento.  

Segundo Kovács, (1996) a Equação (9) representa um hiperplano (fronteira de decisão) que 

divide o espaço euclidiano m-dimensional (��), definido pelos (m) estímulos de entrada, em duas 
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regiões (A e B) de tal maneira que Ax ∈
v

 se 0>y  e, no caso complementar, Bx ∈
v

caso 0<y . Em 

um caso bidimensional (m=2), o hiperplano se resume a uma reta que separa o plano definido pelas 

variáveis 
1x  e 

2x , conforme ilustra a Figura 14.  

 

Figura 14 - Representação de uma fronteira de decisão para um problema bidimensional 

 

O perceptron é treinado segundo o princípio de aprendizado de Hebb, em que a atualização 

dos seus pesos sinápticos é realizada por um incremento (∆w) dado por: 

 

( ) )()( nxyndw jj ⋅−=∆ η    , para mj ,,2,1 L=     (10) 

 

Pela Equação (10) é possível constatar que a alteração dos pesos sinápticos é dependente do 

produto entre a entrada )(nx , do sinal de erro proveniente da diferença entre a saída desejada e a saída 

produzida pelo Perceptron ))(( ynd − , e pelo parâmetro (η) que define a taxa de aprendizagem. Se os 

padrões de entrada forem linearmente separáveis, então a atualização dos pesos sinápticos cessará 

quando o sinal de erro for nulo para todo o conjunto de treinamento (n=N). Conforme demonstrado 

por Haykin, (2001), isto ocorrerá para um número finito de iterações, o que garante a convergência do 

treinamento do perceptron. 

 

3.4.1.2 – Adaptative Linear Element (ADALINE). 
 

Contemporaneamente a Rosenblatt, Widrow desenvolveu a rede ADALINE realizando 
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importante contribuição ao desenvolvimento dos estudos em RNA, introduzindo o princípio de 

aprendizado denominado regra delta (Kovács, 1996). Este processo de aprendizagem consiste em um 

algoritmo supervisionado para minimizar o erro quadrático médio entre a saída do combinador linear 

(campo local induzido) e a saída desejada, obtendo um ponto de mínimo através de um processo de 

iteração local. O erro quadrático médio neste caso é dado como uma função dos parâmetros da rede da 

seguinte forma: 

    ( )
2

1

)()(
2

1
)( ∑

=

−=
N

n

nvndwE       (11) 

Uma vez que o campo local induzido de um neurônio é dado pela Equação (1), obtém-se: 
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O ponto de mínimo da Equação (12) é um ponto (
*

w ) que pode ser obtido realizando-se 

ajustes sucessivos do vetor peso )( w  na direção oposta ao vetor gradiente de )( wE em relação ao 

vetor de pesos )( w , uma vez que este aponta para a direção e sentido em que o crescimento da função 

)( wE  é maior. Sendo assim tem-se: 
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Reescrevendo-se a Equação (13) em uma forma mais simples, obtém-se: 

 

( ) )()()()( nxnvndnw ⋅−=∆ η   , para Nn ,,2,1 L=   (14) 

 

A Equação (14) é a chamada regra delta, mostrada na forma em que os pesos são ajustados 

após cada padrão (n) de treinamento ter sido apresentado à rede neural artificial. O parâmetro (η) é a 

taxa de aprendizagem e representa o tamanho do passo em direção à descida do vetor gradiente. Pelo 

processo matemático envolvido, a regra delta também é conhecida como método do gradiente. 

Cabe salientar que a principal diferença entre a rede perceptron e a ADALINE está no fato 

de que a última faz a minimização das distâncias dos padrões classificados em relação a uma única 

fronteira de decisão a ser determinada no espaço euclidiano m-dimensional. O Perceptron por sua vez, 

a cada execução do algoritmo de aprendizagem, estará sujeito a encontrar uma fronteira de decisão 

diferente, dependendo da inicialização dos pesos sinápticos. Na Figura 15(a), a linha contínua e 
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tracejada ilustra duas possíveis fronteiras de decisão que podem ser encontradas pelo Perceptron. Já 

na Figura 15(b), verifica-se que linha contínua é a única fronteira de decisão a ser determinada pelo 

ADALINE. 

 

 

Figura 15 – Fronteira de decisão: (a) As linhas tracejada e contínua ilustram possíveis fronteiras 
de decisão; (b) A linha contínua representa a única fronteira de decisão possível 

 

3.4.2 – Redes de múltiplas camadas 
 

Neste tipo de arquitetura os neurônios estão organizados em camadas, com a presença de 

uma ou mais camadas intermediárias entre a camada de entrada e saída, chamadas de camadas ocultas. 

Este tipo de configuração aumenta a capacidade da RNA em modelar um problema de complexidade 

elevada, sendo uma alternativa às redes de camada única que são mais simples. A Figura 16 exibe o 

grafo arquitetural de uma de rede de múltiplas camadas. Pode-se citar como um exemplo desse tipo de 

arquitetura as redes Perceptron Multi-Camadas (PMC) ou Multilayer Perceptron (MLP).  

 As redes MLP surgiram da necessidade de se classificar padrões que não são linearmente 

separáveis, como o caso do clássico problema XOR (Haykin, 2001). Neste caso, o Perceptron 

elementar (de camada única) deveria ser capaz de executar a tarefa de traçar duas retas como fronteiras 

de decisão com o objetivo de se resolver a função booleana do OU exclusivo, ou seja, separando os 

padrões de saída desta função, conforme ilustra a Figura 17. 
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Figura 16 - Arquitetura de uma rede de múltipla camada alimentada adiante. 

 

 

Figura 17 - Ilustração do problema XOR 

 

O perceptron elementar, devido suas limitações, não é indicado para a resolução de 

problemas não linearmente separáveis, como o caso do problema XOR, sendo necessário o uso de 

redes de múltiplas camadas para a realização desta tarefa (Haykin, 2001). 

 

3.4.3 – Treinamento de retropropagação de erro (back-propagation). 
 

Em Haykin, (2001), o autor cita a ampla utilização do algoritmo de treinamento 

supervisionado de retropropagação de erro (back-propagation) para se treinar RNAs do tipo MLP. 

 

Camada de entrada 

    (nós de fonte) 

Camada de saída Camada oculta 
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Este algoritmo consiste de dois passos: (1) propagação (forward) e (2) retropropagação (backward). 

No primeiro passo um padrão de entrada é aplicado aos nós de fonte da RNA que permeia todas as 

camadas ocultas até encontrar a camada de saída. Nesta fase, não há a modificação de quaisquer pesos 

sinápticos. Já no segundo passo, a resposta produzida na fase de propagação é subtraída da resposta 

desejada gerando um sinal de erro, que será propagado em sentido reverso, contrário às direções 

naturais das conexões sinápticas. Neste momento, os pesos sinápticos são atualizados de modo que a 

rede retorne uma resposta mais próxima da desejada. 

Sejam os índices (i) e (j) correspondentes a neurônios pertencentes a camadas subseqüentes, 

ou seja, o neurônio (j) está em uma camada à direita da camada a que pertence o neurônio (i). Desta 

maneira o sinal de erro, na apresentação do n-ésimo padrão de treinamento, quando o neurônio (j) é 

um nó de saída, é dado por: 

 

    
)()()( nyndne jjj −=         (15) 

 

Ao se tomar todo o conjunto dos neurônios da camada de saída, que são exatamente aqueles 

sobre os quais é possível se calcular o erro quadrático médio, pois são os únicos visíveis da RNA, tem-

se: 

    

( )∑=
j

j nenE
2)(

2

1
)(      (16) 

 

O objetivo do algoritmo de retropropagação é o de ajustar os pesos sinápticos de maneira a 

minimizar o erro quadrático médio ( E ) relativo a todos os padrões de treinamento, normalizando-os 

em relação ao tamanho deste conjunto, obtendo-se: 
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       (17) 

O referido ajuste dos pesos sinápticos é divido em dois casos: (i) o caso para o qual o 

neurônio (j) é um nó de saída (pertencente à camada de saída); (ii) o caso em que é um nó oculto 

precedendo um neurônio (k) da camada de saída.  

 

(i) Ajuste dos pesos sinápticos da camada de saída 

Neste caso, similarmente à linha de raciocínio empregada para a derivação da regra delta 

através da descida do vetor gradiente, conforme demonstrado por Haykin (2001), o algoritmo de 

retropropagação aplica uma correção ao vetor de pesos do elo sináptico do neurônio (j) que é dado 

por: 
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em que o parâmetro (η) é agora a taxa de aprendizagem do algoritmo de retropropagação e )(njδ  é o 

gradiente local que aponta para o ajuste necessário ao vetor de pesos, definido como sendo: 

 

  
( ))()()( nvnen jjj ϕδ ′=      (19) 

 

(ii) Ajustes dos pesos sinápticos das camadas ocultas 

Em se tratando de camada oculta, a resposta alvo para a saída de cada neurônio a ela 

pertencente acaba se tornando indefinida, impossibilitando o uso da Equação (19) para se determinar o 

gradiente local. Sendo assim, pelo desenvolvimento realizado por Haykin (2001), tem-se uma 

redefinição do gradiente local para neurônios das camadas ocultas, obtendo-se uma fórmula de 

retropropagação para o mesmo como sendo: 

 

   

( )∑′=
k

kjkjjj nwnnvn )()()()( δϕδ     (20) 

 

Ao se analisar a Equação (20), observa-se que a ponderação dos gradientes locais das 

camadas subseqüentes )( kδ contribui para a constituição do gradiente local do neurônio (j) pertencente 

à camada oculta.  

De maneira geral, o algoritmo de retropropagação de erro, seguirá a regra delta, ajustando os 

pesos sinápticos de cada neurônio (j) em função da taxa de aprendizagem (η), do gradiente local )( jδ , 

respeitando as restrições para cada caso apresentadas anteriormente, e, finalmente do sinal de entrada 

de cada neurônio (j) advindo do neurônio (i) da camada precedente. 

 

3.4.4 – Treinamento Levenberg-Marquardt 
 

Uma alternativa ao treinamento executado pelo algoritmo de retropropagação de erro é o 

treinamento Levenberg-Marquardt. Este tipo de treinamento tem suas bases no algoritmo back-

propagation, porém, apresenta algumas vantagens. O algoritmo back-propagation é fundamentado no 

método da descida do gradiente, já o algoritmo de Levenberg-Marquardt tem como base a técnica dos 

mínimos quadrados. Conforme exposto por Fernandes (2009) o treinamento por retropropagação de 

erro guiado pela descida do gradiente, necessita de um número considerável de iterações para 

convergir. Além disso, apresenta certa ineficiência em localizar o ponto de mínimo global da 

superfície de erro para problemas mais complexos. Por sua vez, o treinamento Levenberg-Marquardt, 
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em virtude de se ser baseado em um método de segunda ordem, possui uma convergência 

significativamente mais acelerada quando comparada ao treinamento back-propagation, mesmo para 

problemas mais complexos. 

Durante o treinamento de Levenberg-Marquardt, toda a etapa forward do algoritmo de 

retropropagação do erro permanece inalterada. Já na etapa de backward, os cálculos para ajustes de 

peso são realizados de forma diferente do back-propagation, pois a função de ajuste dos pesos 

representa uma aproximação ao método de Newton.   

Segundo demonstração realizada por Fernandes (2009) o algoritmo de ajuste dos pesos de 

Levenberg-Marquardt pode ser derivado do método de Newton, com o objetivo de se minimizar o erro 

quadrático médio relativo a todas as (N) entradas de treinamento da rede neural, expresso pela equação 

(17), que pode ser reescrita em sua forma vetorial como segue: 
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A equação (21) pode ser vista como sendo um vetor de erros que é função dos pesos 

sinápticos (W) da rede, referentes aos (N) padrões de treinamento apresentados à RNA: 

 

     ( ))()()()( 21 WeWeWeweE N+++== L    (22) 

 

A equação iterativa obtida para o método de treinamento de Levenberg-Marquardt que 

ajustará os parâmetros da rede é: 

 

   ( ) )()()()(
1

WeWJWJWJW
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−
µ   , (23) 

 

sendo ( J) a matriz jacobiana derivada do desenvolvimento realizado via método de Newton; )( µ  é o 

parâmetro de ajuste da taxa de convergência do algoritmo e ( Ι ) é simplesmente a matriz identidade. A 

equação (23) constitui o análogo à etapa backward do algoritmo de retropropagação do erro. 

  



31 
 

Capítulo 4 – O sistema elétrico de distribuição em análise 
 

Para o desenvolvimento da estratégia de monitoramento da tensão em pontos específicos do 

sistema de distribuição de energia elétrica de uma concessionária local, empregando redes neurais 

artificiais, utilizou-se de uma modelagem computacional, realizada no “software” ATP (Alternative 

Transients Program) (Rule Book, 1987). Esta modelagem resulta de estudos e de uma interação de 

uma equipe do Laboratório de Sistemas de Energia Elétrica (LSEE) da Escola de Engenharia de São 

Carlos (EESC-USP), com uma concessionária de energia regional. Na Figura 18, é possível visualizar 

a disposição geográfica dos dois alimentadores que constituem o sistema elétrico em estudo neste 

trabalho. Apesar de não ficar explicito na figura, cabe salientar os alimentadores partem da mesma 

subestação. 

 

 

Figura 18 - Disposição geográfica dos alimentadores pertencentes a uma subestação de uma 
concessionária de energia regional sob estudo. 

 

Neste capítulo serão apresentados alguns aspectos referentes à modelagem dos alimentadores 

do referido sistema elétrico de distribuição. Ressalta-se que uma abordagem aprofundada a respeito da 

modelagem do sistema elétrico não é pertinente aos objetivos iniciais propostos neste trabalho. 

Entretanto, por ser de suma importância para a formação da base de dados utilizada para a 

implementação computacional e validação do algoritmo proposto, aspectos gerais serão abordados. 

 

4.1 – Modelagem computacional do sistema de distribuição 
 

O sistema de distribuição utilizado neste trabalho foi previamente modelado utilizando-se de 

parâmetros de um sistema de distribuição real pertencente a uma concessionária local. Os dois 



 

alimentadores ilustrados na Figura 1

gráfica do ATPDraw (Priklher et al. 2001

 

Figura 19 - Aspecto da modelagem computacional dos 
energia regional

 

Para a realização desta modelagem, foi necessária a obtenção junto 

seguintes dados: equivalente do sistema; dados do transformador de potência da subestação; 

parâmetros dos condutores utilizados; dados das cargas alocadas no alimentado

seguir, serão apresentadas as principais características do sistema de distribuição que proporcionaram 

sua respectiva modelagem computacional.

A fonte de tensão utilizada é uma fonte senoidal trifásica do tipo 14 

características para a fase A 

qual, as relações das demais fases pode ser derivada.

 

 

 

 

alimentadores ilustrados na Figura 18 foram modelados dispondo do “software”

r et al. 2001), sendo esta modelagem ilustrada na figura 

Aspecto da modelagem computacional dos alimentadores da concessionária 
energia regional realizada via interface gráfica do ATPDraw

Para a realização desta modelagem, foi necessária a obtenção junto 

seguintes dados: equivalente do sistema; dados do transformador de potência da subestação; 

parâmetros dos condutores utilizados; dados das cargas alocadas no alimentado

seguir, serão apresentadas as principais características do sistema de distribuição que proporcionaram 

sua respectiva modelagem computacional. 

A fonte de tensão utilizada é uma fonte senoidal trifásica do tipo 14 (Rule Book, 1987)

estão apresentadas na Tabela 1. O sistema adotado é o 

demais fases pode ser derivada. 
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software” ATP, via interface 

), sendo esta modelagem ilustrada na figura 19. 

 

alimentadores da concessionária de 
PDraw. 

Para a realização desta modelagem, foi necessária a obtenção junto a concessionária dos 

seguintes dados: equivalente do sistema; dados do transformador de potência da subestação; 

parâmetros dos condutores utilizados; dados das cargas alocadas no alimentador, entre outros. A 

seguir, serão apresentadas as principais características do sistema de distribuição que proporcionaram 

(Rule Book, 1987), cujas 

estão apresentadas na Tabela 1. O sistema adotado é o ABC,a partir do 
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Tabela 1 - Características da fonte de tensão do SEP utilizada 

Parâmetro Valor 

Amplitude 71.851,699 V 

Freqüência 60Hz 

Fase 0° 

 

Para se completar o modelo do equivalente elétrico do sistema, adicionou-se uma 

impedância em série com a fonte de tensão, conforme o modelo RL mutuamente acoplado (Rule 

Book, 1987) cujos parâmetros para as fases A, B e C estão apresentados na Tabela 2 como segue: 

 

Tabela 2 - Parâmetros do modelo RL mutuamente acoplado, disposto em série com a fonte de 
tensão do equivalente elétrico. 

Parâmetro Valor 

Resistência de seqüência zero 20,805 Ω/m 

Indutância de seqüência zero 203,721 mH/m 

Resistência de seqüência positiva 4,062 Ω/m 

Resistência de seqüência positiva 52,5397 mH/m 

 

Para simular o transformador existente na subestação de distribuição, utilizou-se o modelo de 

um transformador trifásico saturável com dois enrolamentos (Rule Book, 1987), conforme os dados 

que constam da Tabela 3. 

 

Tabela 3 - Características do modelo do transformador de potência. 

Parâmetro Valor 

Potência nominal 15/20 MVA 
Relação de transformação (a) 3,809524 

Corrente nominal do primário (Ip) 131,215970 A 
Corrente nominal do secundário (Is) 499,870363 A 

Ligação do primário Estrela 
Ligação do secundário Delta 
Deslocamento angular 30° 

Resistência do primário 0,054695 Ω 
Resistência do secundário 0,79376 Ω 

Indutância do primário 1,628 mH 
Indutância do secundário 23,6258 mH 

Resistência de magnetização 1 MΩ 
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No sistema de distribuição da concessionária, consta a presença de dois bancos de 

capacitores utilizados para melhorar o perfil da tensão. Estes dois bancos de capacitores foram 

modelados como um elemento capacitivo concentrado não acoplado, do tipo zero, conectado em 

estrela (Rule Book, 1987), cujos parâmetros estão mostrados na Tabela 4. 

 

Tabela 4 - Parâmetros do modelo empregado para a modelagem dos bancos de capacitores. 

Parâmetro Valor 

Capacitância fase A 5,96521 µF 

Capacitância fase B 5,96521 µF 

Capacitância fase C 5,96521 µF 

 

As cargas alocadas nos alimentadores apresentados foram modeladas como potências 

constantes, via um elemento RL concentrado não acoplado do tipo zero, conectado em delta (Rule 

Book, 1987). Devido à extensa quantidade de consumidores presentes nos alimentadores, serão 

apresentadas as características de apenas alguns consumidores, dentre estes, as da carga referente ao 

ponto de monitoramento de interesse deste trabalho. A tabela 5 trás estas informações. 

 

Tabela 5 – Exemplos de dados de carga do sistema de distribuição. 

Carga Resistência (Ω) Indutância (mH) 

Ponto 1 8179,90 9,243 .10-3 

Ponto 2 2944,76 3,328x10-3 

Ponto de Monitoramento 2453,97 2,773x10-3 

 

 

Por fim, para completar a modelagem do sistema elétrico de distribuição, têm-se os dados 

referentes aos condutores existentes no mesmo. Cada trecho dos alimentadores foi modelado por 

valores de resistência e indutância, através de um elemento RL mutuamente acoplado, dos tipos 51, 52 

e 53 (Rule Book, 1987). Os condutores pertencentes ao sistema elétrico são de alumínio sem alma de 

aço com bitolas de 336,4 MCM, 04 AWG, 1/0 AWG, e cabo de rede compacta com 185mm2. Cada 

trecho do sistema, dos vários existentes, do sistema possui característica própria adequadamente 

representada para o correto funcionamento modelo computacional. As Tabela 6 e 7 contêm parâmetros 

de dois trechos dos alimentadores para a sequência zero e sequência positiva, respectivamente. 
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Tabela 6 – Tabela contendo parâmetros de dois trechos de condutores dos alimentadores para 
sequência zero. 

Trecho Distância (m) Cabo R0 (Ω) L0 (mH) 

I 124,2 336,4 MCM 0,045972 0,251375 

II 573,4 1/0 AWG 0,449227 1,18634 

 

 

Tabela 7 – Tabela contendo parâmetros de dois trechos de condutores dos alimentadores para 
sequência positiva. 

Trecho Distância (m) Cabo R1 (Ω) L1 (mH) 

I 124,2 336,4 MCM 0,023995 0,038526 

II 573,4 1/0 AWG 0,347767 0,20367 
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Capítulo 5 – Base de treinamento para a RNA e estratégia de 
monitoramento da tensão 
 

Conforme anteriormente apresentado, este trabalho tem por objetivo o monitoramento 

remoto dos níveis de tensão de um determinado ponto da rede de distribuição por uma RNA. Tal 

monitoramento se dará a partir de informações obtidas com o monitoramento da subestação. Todos os 

procedimentos que foram realizados para se alcançar este objetivo são explicitados neste capítulo. 

 Primeiramente, serão apresentados os procedimentos realizados, empregando-se o sistema 

elétrico de distribuição sob análise, para a obtenção da base de dados utilizada. Posteriormente, 

apresenta-se a RNA que foi empregada para realizar o monitoramento, e em seguida, os resultados 

obtidos pela metodologia de monitoramento proposta. 

 

5.1 – Obtenção da base de dados de treinamento para a RNA 
 

5.1.1 - Simulação das situações de defeitos 
 

Para a obtenção da base de treinamento da RNA que irá monitorar os níveis da tensão eficaz 

no ponto de interesse, foram simuladas várias situações de faltas monofásicas, envolvendo a fase A do 

sistema modelado (Figura 20). Para tanto, foram selecionados vinte pontos de faltas dispostos ao longo 

do sistema de distribuição. Esses pontos foram selecionados de forma a possibilitar uma boa variedade 

de distâncias de falta em relação ao ponto a ser monitorado. Para cada ponto de falta, variou-se a 

impedância e o ângulo de falta, medindo-se a tensão resultante na subestação e no ponto a ser 

monitorado via RNA. A Tabela 8 ilustra os parâmetros variados nas simulações. Deve-se salientar que 

a última coluna da Tabela 8 representa o número de situações de curtos-circuitos simulados em cada 

ponto resultante da combinação dos parâmetros das outras colunas. 

Na Figura 20 estão explicitados os pontos de aplicação das faltas (realçados em vermelho), e 

os locais de monitoramento de tensão, na subestação e no ponto a ser monitorado remotamente pela 

RNA (realçado em verde). O ponto a ser monitorado, realçado na Figura 20, diz respeito a uma carga 

com características peculiares, apontada segundo estudos anteriormente realizados pelo grupo de 

pesquisas do LSEE (EESC-USP). Sua distância considerável em relação à subestação o faz ser mais 

susceptível à influência da operação do restante do sistema, e torna a regulação de tensão mais 

complicada. 

Cabe salientar que um estudo mais apurado para uma melhor escolha dos pontos de 

aplicação das faltas pode ser realizado, o que resultará em uma melhor representatividade do sistema 

como um todo, gerando uma base de dados mais completa para o treinamento das RNAs responsáveis 

pelo monitoramento da tensão no ponto remoto. 



 

 

5.1.2 – Pré-processamento dos dados resultantes das simulações
 

Após as simulações de cada situação de falta, conforme o procedimento 

explicado, procedeu-se à formação dos padrões de entrada da RNA, obtidos

correntes trifásicas na subestação, e das respectivas saídas associadas, que

tensões trifásicas no ponto de monitoramento remoto. 

para o treinamento da RNA e, posteriormente, diferentemente dos utilizados para o treinamento, a 

outra parte será empregada pa

 

 

Figura 20 - Visão geral dos pontos de aplicação da falta e de monitoramento da tensão.

 
 

Para a formação dos padrões de entrada, foram selecionados três ciclos precedentes e seis 

ciclos subseqüentes ao instante de início de cada 

das fases do sistema trifásico

128 amostras por ciclo na freqüência fundamental do sistema (60 Hz)

deslizante de dimensão de um ciclo, com deslocamento de meio ciclo (64 amostras). A cada 

processamento dos dados resultantes das simulações 

Após as simulações de cada situação de falta, conforme o procedimento 

formação dos padrões de entrada da RNA, obtidos

correntes trifásicas na subestação, e das respectivas saídas associadas, que por sua vez são obtidas das 

tensões trifásicas no ponto de monitoramento remoto. Inicialmente, parte destes dados será utilizada 

para o treinamento da RNA e, posteriormente, diferentemente dos utilizados para o treinamento, a 

outra parte será empregada para a validação e teste da metodologia proposta. 

Visão geral dos pontos de aplicação da falta e de monitoramento da tensão.

Para a formação dos padrões de entrada, foram selecionados três ciclos precedentes e seis 

ciclos subseqüentes ao instante de início de cada defeito dos sinais de tensão e corrente em cada uma 

do sistema trifásico, medidos na subestação. Sobre estes sinais, amostrados a uma taxa de 

128 amostras por ciclo na freqüência fundamental do sistema (60 Hz), 

deslizante de dimensão de um ciclo, com deslocamento de meio ciclo (64 amostras). A cada 
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Após as simulações de cada situação de falta, conforme o procedimento anteriormente 

formação dos padrões de entrada da RNA, obtidos a partir das tensões e 

por sua vez são obtidas das 

Inicialmente, parte destes dados será utilizada 

para o treinamento da RNA e, posteriormente, diferentemente dos utilizados para o treinamento, a 

 

Visão geral dos pontos de aplicação da falta e de monitoramento da tensão. 

Para a formação dos padrões de entrada, foram selecionados três ciclos precedentes e seis 

dos sinais de tensão e corrente em cada uma 

amostrados a uma taxa de 

 utilizou-se uma janela 

deslizante de dimensão de um ciclo, com deslocamento de meio ciclo (64 amostras). A cada 
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deslocamento da janela, foram calculados os respectivos valores eficazes (rms) da tensão e corrente 

nas três fases, resultando assim, em seis valores (três de tensão e três de corrente) de entrada. Deste  

modo, os eventos de QEE da forma como são percebidos na subestação, foram apresentados como 

padrão de entrada à RNA. 

Para exemplificar o processo de janelamento referido, considere um sinal amostrado com 16 

amostras por ciclo, considerando 60Hz como a freqüência fundamental, conforme mostrado na Figura 

21. Nesta figura observa-se um deslocamento de meio ciclo da janela sobre a forma de onda, ou seja, 

os pontos delimitados pelo retângulo verde representam um deslocamento de meio ciclo da janela em 

relação aos pontos delimitados pelo retângulo vermelho. Cada retângulo contém 16 amostras, e o 

deslocamento da janela deslizante é de meio ciclo, isto é, de 8 amostras. Este processo de 

deslocamento é realizado sucessivamente até o fim do sinal, de modo que para 2 ciclos, neste 

exemplo, serão obtidas 3 janelas, e, conseqüentemente, 3 padrões de valores eficazes. Observe que 

neste exemplo, obtêm-se os padrões para apenas uma entrada da rede. Na estratégia de monitoramento 

proposta neste trabalho, este procedimento será realizado para 6 formas de onda (três de tensão e três 

de corrente), conforme dito anteriormente.  

A escolha de 3 ciclos de pré-falta pode ser justificada pelo fato de que o sistema simulado 

opera em condições de regime, e uma maior amostragem dos sinais durante este período poderia se 

caracterizar como desnecessária. Já para o período de pós-falta, foram amostrados mais ciclos (6 

ciclos), uma vez que se espera um comportamento transitório do sistema elétrico após o instante de 

aplicação da falta. Em geral, da análise das simulações efetuadas, o comportamento transitório cessa 

pouco antes do término dos 6 ciclos de pós-falta, indicando que nos demais ciclos o comportamento 

dos sinais tende a se estabilizar. 

Da maneira como foram  simuladas, entre o instante de início de cada curto-circuito até o seu 

fim, tem-se um total de 9 ciclos, obtendo-se então, 17 padrões de entrada (valores eficazes resultantes 

da janela deslizante) a serem apresentados à RNA decorrentes de cada situação de defeito simulada. 

Dessa maneira, com 200 casos de faltas simuladas, o banco de dados construído possui 3.400 padrões 

de entrada.  

Para a obtenção dos padrões de saída, aplicou-se o mesmo procedimento utilizado para a 

obtenção das entradas aos sinais de tensão das três fases sobre o ponto de monitoramento remoto, 

obtendo-se os respectivos 3.400 padrões de saída. Do total de padrões obtidos (3.400 padrões), 2.380 

(70%) foram utilizados para o treinamento da RNA e 1.020 (30%) diferentes padrões, foram 

reservados para validação. 
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Tabela 8 - Configuração para a obtenção da base de treinamento para a RNA. 

Ponto de aplicação da 
falta 

Impedâncias de falta 
(Ω) 

Ângulo de falta 
( °) 

Total 

1 0; 10; 20; 30 e 40 0 e 90 10 casos 
2 0; 10; 20; 30 e 40 0 e 90 10 casos 
3 0; 10; 20; 30 e 40 0 e 90 10 casos 
4 0; 10; 20; 30 e 40 0 e 90 10 casos 
5 0; 10; 20; 30 e 40 0 e 90 10 casos 
6 0; 10; 20; 30 e 40 0 e 90 10 casos 
7 0; 10; 20; 30 e 40 0 e 90 10 casos 
8 0; 10; 20; 30 e 40 0 e 90 10 casos 
9 0; 10; 20; 30 e 40 0 e 90 10 casos 

10 0; 10; 20; 30 e 40 0 e 90 10 casos 
11 0; 10; 20; 30 e 40 0 e 90 10 casos 
12 0; 10; 20; 30 e 40 0 e 90 10 casos 
13 0; 10; 20; 30 e 40 0 e 90 10 casos 
14 0; 10; 20; 30 e 40 0 e 90 10 casos 
15 0; 10; 20; 30 e 40 0 e 90 10 casos 
16 0; 10; 20; 30 e 40 0 e 90 10 casos 
17 0; 10; 20; 30 e 40 0 e 90 10 casos 
18 0; 10; 20; 30 e 40 0 e 90 10 casos 
19 0; 10; 20; 30 e 40 0 e 90 10 casos 
20 0; 10; 20; 30 e 40 0 e 90 10 casos 

Total  --- --- 200 casos 

 

 
Figura 21 – Aspecto do processo de janelamento. 
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5.2 – Estratégia proposta para monitoramento da tensão 
 

O monitoramento da tensão no ponto de interesse se dará com a utilização de três RNAs 

distintas, uma para cada fase. Cada uma das três RNAs utilizadas recebe como padrão de entrada os 

valores eficazes dos sinais de tensão e corrente das três fases conforme explicitado na Seção 5.1.2, ou 

seja, cada uma das RNAs recebe seis valores de entrada. Cada uma das RNAs fornece como saída o 

valor eficaz de tensão em uma das fases no ponto de monitoramento remoto, ou seja, uma RNA é 

responsável por estimar o valor da tensão para a fase A no ponto remoto, outra é responsável pela 

estimação da fase B e outra pela fase C. Desta forma não será necessária a instalação de medidores 

para se monitorar a situação das tensões no ponto de interesse, pois estas serão estimadas pelas RNAs 

a partir dos valores medidos na subestação. A Figura 22 ilustra mais claramente esta configuração. 

É necessário ressaltar que na Figura 22 está ilustrada apenas uma das três RNAs empregadas 

para o monitoramento remoto das três fases do sistema trifásico. Esta configuração é utilizada para as 

três fases do sistema, de modo que seja possível o monitoramento da tensão conforme anteriormente 

explicado.  

Sendo assim, a RNA de uma dada fase receberá como entrada os sinais de tensão e corrente 

eficazes medidos na subestação, devendo fornecer o valor eficaz de tensão para a respectiva fase no 

ponto remotamente monitorado. Este arranjo é considerado para as demais fases, de modo que se 

obtenham as tensões eficazes das três fases no ponto remoto, através de três RNAs. Além disso, os 

índices dos neurônios das camadas ocultas representados na Figura 22 indicam, respectivamente, a 

camada e seu neurônio associado, de acordo com a arquitetura adotada (6 entradas, 15 neurônios na 

primeira camada oculta, 10 neurônios na segunda camada oculta e 1 neurônio na camada de saída).  

 As redes neurais mencionadas são redes PMC, possuindo as três, a mesma arquitetura. A 

escolha da melhor arquitetura foi feita através de uma investigação do desempenho geral de diversas 

arquiteturas de RNAs, variando-se o número de neurônios das camadas ocultas e o algoritmo de 

treinamento. Esta investigação foi realizada inicialmente para a RNA que monitora a fase A até se 

encontrar a arquitetura que apresentasse as melhores respostas para esta fase. O treinamento das RNAs 

responsáveis pelo monitoramento das demais fases (B e C) foi realizado com base na arquitetura 

encontrada durante a investigação efetuada para a fase A. A seguir, apresenta-se a investigação 

realizada para encontrar a melhor arquitetura utilizando-se inicialmente o algoritmo de treinamento 

back-propagation e em seguida o algoritmo Levenberg-Marquardt será também empregado com os 

mesmos propósitos. 
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Figura 22 - Figura esquemática representando a RNA empregada em uma das fases do sistema 
trifásico. 

 

5.2.1 – Treinamento da RNA com o algoritmo back-propagation. 
 

Inicialmente, a investigação em busca da melhor arquitetura para as redes neurais em 

questão, foi realizada treinando-se a RNA para a fase A com o algoritmo de retropropagação de erro 

(back-propagation). Cada arquitetura de rede investigada foi treinada cinco vezes (ensaios de 1 a 5), 

adotando-se como critérios de parada atingir um erro médio quadrático (EQM) menor do que 10-6 ,ou 

o número de épocas de treinamento superior a 6.000 épocas. Este procedimento foi necessário na 

medida em que a inicialização aleatória dos pesos sinápticos pode levar a desempenhos diferenciados. 

As Tabelas de 9 a 16, apresentam as porcentagens dos erros relativos aos casos de teste, tomados com 

relação ao valor eficaz da tensão desejada (esperada) no ponto de monitoramento remoto, para as 

seguintes faixas de erro:  

 

(i) abaixo de 0,005p.u. (ou 0,5%);  

(ii) acima de 0,005p.u (0,5%) e abaixo de 0,015p.u.(1,5%);  

(iii) acima de 0,015p.u. (1,5%) e abaixo de 0,025 p.u. (2,5%);  

(iv) abaixo de 0,03p.u. (ou 3%). 

 

Para a Tabela 9, os erros se referem à resposta apresentada por uma arquitetura PMC sendo 
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alimentada com os seis (6) valores eficazes (tensões e correntes trifásicas), contendo duas camada 

ocultas (intermediárias) com 10 e 5 unidades de processamento nas camadas ocultas, e uma (1) 

unidade como saída. Para as demais tabelas (8 a 14), a mesma notação será empregada. 

Na Tabela 9, por exemplo, para o ensaio de número 1, 3,73% dos casos de teste analisados 

apresentaram um erro no valor eficaz desejado menor do 0,005p.u. Já para 8,63% dos casos, o erro 

apresentado foi maior ou igual a 0,005p.u. e menor do que 0,015p.u. Para a faixa do erro maior ou 

igual a 0,015p.u. e menor ou igual a 0,025p.u., 9,41% dos casos foram incidentes. Para 21,76% de 

todos os casos de testes que foram avaliados, uma resposta com erro de até 0,03p.u. foi apresentada. 

Cabe afirmar que a magnitude do maior erro observado para este ensaio foi de 0,346p.u., como 

relatado na última coluna desta tabela. Logo, conclui-se que para este ensaio, esta arquitetura deixou a 

desejar na precisão das respostas apresentadas. Ainda na Tabela 9, observa-se que a melhor resposta 

decorre do ensaio 5, visto que 65,39% de todos os casos avaliados apresentaram uma resposta com um 

erro menor do que 0,03p.u. para o valor da tensão eficaz monitorada. 

Esta compreensão dos valores apresentados se estende aos demais ensaios (2 a 5) e Tabelas 

(10 a 16). 

 

Tabela 9 – Resultados do treinamento back-propagation para RNA da fase A com arquitetura   

6-10-5-1.  

Ensaio 
Erro<0,005p.u. 

(%) 
0,005≤Erro<0,015p.u. 

(%) 
0,015≤ Erro≤0,025p.u. 

(%) 

Erro 
≤0,030p.u. 

(%) 

Magnitude do 
maior erro 

(p.u.) 

1 3,73 8,63 9,41 21,76 0,346 
2 10,1 46,57 6,96 63,63 0,31 
3 31,47 4,02 8,14 43,63 0,314 
4 32,94 9,8 20,59 63,33 0,257 
5 40,39 9,71 15,29 65,39 0,372 

Médias 23,73 15,75 12,08 51,55 0,32 
  

 

 

Tabela 10 – Resultados do treinamento back-propagation para RNA da fase A com arquitetura 

6-14-7-1.  

Ensaio 
Erro<0,005p.u. 

(%) 
0,005≤Erro<0,015p.u. 

(%) 
0,015≤ Erro≤0,025p.u. 

(%) 

Erro 
≤0,030p.u. 

(%) 

Magnitude do 
maior erro 

(p.u.) 

1 42,55 17,35 9,71 69,61 0,702 
2 35,49 16,37 7,65 59,51 0,389 
3 5,88 41,57 10,49 57,94 0,395 
4 35,69 20,39 11,47 67,55 0,263 
5 39,12 15,69 12,94 67,75 0,49 

Médias 31,75 22,27 10,45 64,47 0,448 
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Tabela 11 – Resultados do treinamento back-propagation para RNA da fase A com arquitetura 

6-15-10-1. 

Ensaio 
Erro<0,005p.u. 

(%) 
0,005≤Erro<0,015p.u. 

(%) 
0,015≤ Erro≤0,025p.u. 

(%) 

Erro 
≤0,030p.u. 

(%) 

Magnitude do 
maior erro 

(p.u.) 

1 39,02 18,04 13,63 70,69 0,472 
2 36,37 11,08 11,86 59,31 0,59 
3 10,69 50,1 8,63 69,41 0,52 
4 6,57 49,41 13,24 69,22 0,725 
5 41,08 18,73 10,98 70,78 0,31 

Médias 26,75 29,47 11,67 67,88 0,523 
 

 

 

 

Tabela 12 – Resultados do treinamento back-propagation para RNA da fase A com arquitetura 

6-20-10-1. 

Ensaio 
Erro<0,005p.u. 

(%) 
0,005≤Erro<0,015p.u. 

(%) 
0,015≤ Erro≤0,025p.u. 

(%) 

Erro 
≤0,030p.u. 

(%) 

Magnitude do 
maior erro 

(p.u.) 

1 45,49 15,59 8,53 69,61 0,594 
2 39,02 18,04 13,63 70,69 0,472 
3 36,37 11,08 11,86 59,31 0,590 
4 10,69 50,1 8,63 69,41 0,520 
5 6,57 49,41 13,24 69,22 0,725 

Médias 27,63 28,84 11,18 67,65 0,580 
 

 

 

 

Tabela 13 – Resultados do treinamento back-propagation para RNA da fase A com arquitetura 

6-20-15-1. 

Ensaio 
Erro<0,005p.u. 

(%) 
0,005≤Erro<0,015p.u. 

(%) 
0,015≤ Erro≤0,025p.u. 

(%) 

Erro 
≤0,030p.u. 

(%) 

Magnitude do 
maior erro 

(p.u.) 

1 12,45 43,04 9,9 65,39 0,343 
2 43,73 18,14 7,55 69,41 0,67 
3 40,78 16,18 11,86 68,82 0,432 
4 42,84 13,24 10,69 66,76 0,565 
5 39,61 15,88 8,04 63,53 0,673 

Médias 35,88 21,29 9,61 66,78 0,536 
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Tabela 14 – Resultados do treinamento back-propagation para RNA da fase A com arquitetura 

6-25-15-1. 

Ensaio 
Erro<0,005p.u. 

(%) 
0,005≤Erro<0,015p.u. 

(%) 
0,015≤ Erro≤0,025p.u. 

(%) 

Erro 
≤0,030p.u. 

(%) 

Magnitude do 
maior erro 

(p.u.) 

1 44,41 16,96 11,86 73,24 0,315 
2 36,08 16,86 14,31 67,25 0,62 
3 35,59 18,92 14,8 69,31 0,401 
4 36,86 22,65 13,53 73,04 0,888 
5 43,43 14,61 14,9 72,94 0,231 

Médias 39,27 18 13,88 71,16 0,491 
 

 
 

Tabela 15 - Resultados do treinamento back-propagation para RNA da fase A com arquitetura  

6-30-20-1. 

Ensaio 
Erro<0,005p.u. 

(%) 
0,005≤Erro<0,015p.u. 

(%) 
0,015≤ Erro≤0,025p.u. 

(%) 

Erro 
≤0,030p.u. 

(%) 

Magnitude do 
maior erro 

(p.u.) 

1 34,71 19,12 10,88 64,71 0,466 
2 41,76 14,71 15,39 71,86 0,436 
3 42,84 18,24 10,88 71,96 0,51 
4 43,53 20,39 9,71 73,63 0,448 
5 42,94 19,71 5,2 67,84 0,411 

Médias 41,16 18,43 10,41 70 0,454 
 
 
 

Tabela 16 – Resultados do treinamento back-propagation para RNA da fase A com arquitetura 

6-40-30-1. 

Ensaio 
Erro<0,005p.u. 

(%) 
0,005≤Erro<0,015p.u. 

(%) 
0,015≤ Erro≤0,025p.u. 

(%) 

Erro 
≤0,030p.u. 

(%) 

Magnitude do 
maior erro 

(p.u.) 

1 21,37 30,78 13,43 65,59 0,272 
2 44,51 18,53 10,10 73,14 0,93 
3 37,25 14,22 12,94 64,41 0,526 
4 33,63 19,9 13,33 66,86 0,567 
5 32,84 22,75 14,51 70,1 0,307 

Médias 21,37 30,78 13,43 65,59 0,272 
 

É possível observar que da Tabela 9 até a 11, o desempenho geral da rede melhorou na 

medida em que se aumentou a quantidade de neurônios nas camadas ocultas. Ou seja, a porcentagem 

de erros menores do que 0,03p.u. aumentou com o número crescente de neurônios nas camadas 

ocultas.  

Nas tabelas de 12 a 15, observa-se que o desempenho permaneceu praticamente constante, 

ou apresentou uma melhora pouco considerável. Por fim na tabela 16, que possui a maior quantidade 

de neurônios, constata-se a diminuição do desempenho geral da rede.  

Mediante ao observado, elegeu-se a arquitetura da tabela 14, que foi a que obteve melhor 
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desempenho, para analisar qual seria a influência de um aumento da quantidade de épocas de 

treinamento no desempenho geral. Desta forma, estabeleceu-se como critério de parada para o novo 

treinamento para esta arquitetura, o EMQ ser menor do que 10-6, e/ou um número máximo de 

treinamento de 20.000 épocas. O resultado deste treinamento deu-se como segue na Tabela 17. 

 

 

Tabela 17 - Resultados do treinamento back-propagation para RNA (20.000 épocas de 

treinamento) da fase A com arquitetura 6-25-15-1. 

Ensaio 
Erro<0,005p.u. 

(%) 
0,005≤Erro<0,015p.u. 

(%) 
0,015≤ Erro≤0,025p.u. 

(%) 

Erro 
≤0,030p.u. 

(%) 

Magnitude do 
maior erro 

(p.u.) 

1 41,57 13,24 17,35 72,16 0,447 
2 43,04 22,84 7,06 72,94 0,611 
3 42,35 19,8 11,67 73,82 0,218 
4 47,55 17,94 10,1 75,59 0,578 
5 34,9 24,12 16,47 75,49 0,666 

Médias 41,88 19,59 12,53 74 0,504 
 

 

Observa-se, portanto, que mesmo com 14.000 épocas de treinamento a mais do que o 

treinamento inicial, o desempenho geral teve pouca melhoria.  

Apesar do baixo desempenho apresentado com este último treinamento para os resultados 

relativos à fase A, aplicou-se a mesma arquitetura para realizar o treinamento das redes responsáveis 

pelo monitoramento das fases B e C. Esta arquitetura (6 – 25 – 25 – 1), com 20.000 épocas de 

treinamento como critério de parada, foi reproduzida para as demais redes pois apresentou o melhor 

desempenho dentre todos os testes realizados. Os resultados obtidos para as demais fases são 

apresentados nas Tabelas 18 e 19. 

 
 

Tabela 18 – Resultados do treinamento back-propagation para RNA (20.000 épocas de 

treinamento) da fase B com arquitetura 6-25-15-1. 

Ensaio 
Erro<0,005p.u. 

(%) 
0,005≤Erro<0,015p.u. 

(%) 
0,015≤ Erro≤0,025p.u. 

(%) 

Erro 
≤0,030p.u. 

(%) 

Magnitude do 
maior erro 

(p.u.) 

1 42,75 24,22 9,9 76,86 0,184 
2 45,39 20,98 14,8 81,18 0,284 
3 47,55 13,24 15,39 76,18 0,264 
4 40,39 25,88 14,8 81,08 0,195 
5 45,69 17,45 13,73 76,86 0,239 

Médias 44,35 20,35 13,73 78,43 0,230 
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Tabela 19 - Resultados do treinamento back-propagation para RNA (20.000 épocas de 

treinamento) da fase C com arquitetura 6-25-15-1. 

Ensaio 
Erro<0,005p.u. 

(%) 
0,005≤Erro<0,015p.u. 

(%) 
0,015≤ Erro≤0,025p.u. 

(%) 

Erro 
≤0,030p.u. 

(%) 

Magnitude do 
maior erro 

(p.u.) 

1 51,47 24,51 10,49 86,47 0,240 
2 57,84 18,92 9,51 86,27 0,174 
3 46,47 26,76 11,47 84,71 0,2 
4 47,16 26,18 13,14 86,47 0,278 
5 60,29 18,33 9,51 88,14 0,163 

Médias 52,65 22,94 10,82 86,41 0,211 
 

Percebeu-se que o desempenho também não foi satisfatório para o monitoramento das fases 

B e C, e que o aumento do número máximo de épocas de treinamento possibilitou ganho moderado no 

desempenho das redes. Mediante os testes realizados, concluiu-se que um novo tipo de treinamento 

deveria ser utilizado a fim de verificar se ocorreria uma melhora no desempenho da RNA. O 

treinamento realizado foi através do algoritmo de Levenberg-Marquardt que será apresentado na 

próxima seção. 

Uma atenção especial aos erros que se situaram abaixo de 0,03p.u. se fez necessária de modo 

a tornar possível a observação do índice geral de acerto das RNAs. Tomando-se as outras faixas de 

erro, constata-se que a correlação existente entre o aumento do número de neurônios nas camadas 

ocultas e o aumento do índice de acerto se faz menos presente, o que dificulta a investigação acerca da 

melhor arquitetura de rede a ser adotada.  

5.2.2 – Treinamento da RNA com o algoritmo Levenberg-Marquardt 
 

De maneira análoga ao procedimento realizado para o treinamento back-propagation, 

realizou-se o treinamento de Levenberg-Marquardt, adotando como critérios de parada um o EMQ 

menor do que 10-6 e/ou um número total de épocas de treinamento superior a 800 épocas. As Tabelas 

de 20 a 27 revelam os resultados obtidos para os vários testes realizados com o intuito de se encontrar 

a melhor arquitetura da RNA para a fase A. 

Tabela 20 – Resultados do treinamento Levenberg-Marquardt para RNA da fase A com 

arquitetura 6-10-5-1. 

Ensaio 
Erro<0,005p.u. 

(%) 
0,005≤Erro<0,015p.u. 

(%) 
0,015≤ Erro≤0,025p.u. 

(%) 

Erro 
≤0,030p.u. 

(%) 

Magnitude do 
maior erro 

(p.u.) 

1 70,2 18,43 5,88 94,51 3,696 
2 70,29 18,63 5,98 94,9 0,336 
3 69,61 18,82 5,29 93,73 0,621 
4 69,41 20,2 3,53 93,14 0,974 
5 73,53 11,37 8,53 93,43 0,362 

Médias 70,61 17,49 5,84 93,94 1,198 
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Tabela 21 – Resultados do treinamento Levenberg-Marquardt para RNA da fase A com 

arquitetura 6-14-7-1. 

Ensaio 
Erro<0,005p.u. 

(%) 
0,005≤Erro<0,015p.u. 

(%) 
0,015≤ Erro≤0,025p.u. 

(%) 

Erro 
≤0,030p.u. 

(%) 

Magnitude do 
maior erro 

(p.u.) 

1 70,78 15,29 4,31 90,39 0,56 
2 76,27 12,25 2,35 90,88 0,62 
3 78,04 12,16 4,02 94,22 0,346 
4 76,86 12,84 2,84 92,55 1,495 
5 80,29 11,27 2,45 94,02 0,479 

Médias 78,58 12,06 2,65 93,28 0,987 
 

 

 
 

Tabela 22 – Resultados do treinamento Levenberg-Marquardt para RNA da fase A com 

arquitetura 6-15-10-1. 

Ensaio 
Erro<0,005p.u. 

(%) 
0,005≤Erro<0,015p.u. 

(%) 
0,015≤ Erro≤0,025p.u. 

(%) 

Erro 
≤0,030p.u. 

(%) 

Magnitude do 
maior erro 

(p.u.) 

1 81,27 11,08 3,04 95,39 0,863 
2 82,06 11,67 1,67 95,39 4,365 
3 78,92 11,67 1,86 92,45 0,56 
4 75,78 12,75 3,14 91,67 0,694 
5 81,76 10,2 1,96 93,92 5,757 

Médias 79,96 11,47 2,33 93,76 2,448 
 

 

 

Tabela 23 – Resultados do treinamento Levenberg-Marquardt para RNA da fase A com 

arquitetura 6-20-10-1. 

Ensaio 
Erro<0,005p.u. 

(%) 
0,005≤Erro<0,015p.u. 

(%) 
0,015≤ Erro≤0,025p.u. 

(%) 

Erro 
≤0,030p.u. 

(%) 

Magnitude do 
maior erro 

(p.u.) 

1 78,14 11,86 4,61 94,61 3,301 
2 78,43 9,12 3,73 91,27 0,8 
3 78,63 11,08 3,92 93,63 0,569 
4 77,94 11,18 2,25 91,37 0,56 
5 84,41 7,35 2,84 94,61 1,929 

Médias 79,51 10,12 3,47 93,1 1,432 
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Tabela 24 – Resultados do treinamento Levenberg-Marquardt para RNA da fase A com 

arquitetura 6-20-15-1.  

Ensaio 
Erro<0,005p.u. 

(%) 
0,005≤Erro<0,015p.u. 

(%) 
0,015≤ Erro≤0,025p.u. 

(%) 

Erro 
≤0,030p.u. 

(%) 

Magnitude do 
maior erro 

(p.u.) 

1 82,55 5,29 2,55 90,39 1,028 
2 80,59 10,69 3,14 94,41 1,185 
3 78,53 9,71 4,61 92,84 1,874 
4 77,65 15,98 1,47 95,1 1,784 
5 75,29 13,92 2,55 91,76 0,733 

Médias 78,92 11,12 2,86 92,9 1,321 
 

 

 
Tabela 25 – Resultados do treinamento Levenberg-Marquardt para RNA da fase A com 

arquitetura 6-25-15-1. 

Ensaio 
Erro<0,005p.u. 

(%) 
0,005≤Erro<0,015p.u. 

(%) 
0,015≤ Erro≤0,025p.u. 

(%) 

Erro 
≤0,030p.u. 

(%) 

Magnitude do 
maior erro 

(p.u.) 

1 77,75 13,04 2,16 92,94 1,921 
2 83,24 7,55 3,14 93,92 3,364 
3 77,35 13,04 5 95,39 1,73 
4 80,69 8,63 1,96 91,27 1,75 
5 79,9 10,88 2,65 93,43 1,702 

Médias 80,29 9,75 2,3 92,35 1,726 
 

 

 

Tabela 26 – Resultados do treinamento Levenberg-Marquardt para RNA da fase A com 

arquitetura 6-25-20-1. 

Ensaio 
Erro<0,005p.u. 

(%) 
0,005≤Erro<0,015p.u. 

(%) 
0,015≤ Erro≤0,025p.u. 

(%) 

Erro 
≤0,030p.u. 

(%) 

Magnitude do 
maior erro 

(p.u.) 

1 80,1 12,16 1,76 94,02 0,556 
2 80,98 9,22 3,43 93,63 4,582 
3 77,84 9,8 5,2 92,84 1,499 
4 82,45 8,82 2,16 93,43 0,759 
5 81,18 9,12 3,73 94,02 0,585 

Médias 81,81 8,97 2,94 93,73 0,672 
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Tabela 27 – Resultados do treinamento Levenberg-Marquardt para RNA da fase A com 

arquitetura 6-30-20-1. 

Ensaio 
Erro<0,005p.u. 

(%) 
0,005≤Erro<0,015p.u. 

(%) 
0,015≤ Erro≤0,025p.u. 

(%) 

Erro 
≤0,030p.u. 

(%) 

Magnitude do 
maior erro 

(p.u.) 

1 80,78 9,22 1,96 91,96 4,18 
2 81,96 11,47 1,86 95,29 0,47 
3 78,33 10,88 4,71 93,92 3,18 
4 79,22 9,8 5,2 94,22 0,74 
5 78,33 10,88 4,71 93,92 3,18 

Médias 79,73 10,45 3,69 93,86 2,35 
 

 

Em geral, na grande maioria dos testes realizados, observou-se que este treinamento 

propiciou resultados melhores, quando comparados com o treinamento back-propagation. É possível 

depreender das Tabelas 22 e 26 que tanto a arquitetura 6–15–10–1 como a 6–25–20–1, apresentaram 

os melhores desempenhos, com 93,76% e 93,72% dos erros menores do que 0,03 p.u. (ou 3%). 

Observa-se então que o aumento de neurônios nas camadas ocultas pouco influencia o resultado geral 

da rede, como se nota nos resultados da Tabela 27.  

Por esta razão, ambas as arquiteturas foram treinadas para as redes das fases B e C, afim de 

se verificar qual o melhor resultado englobando-se as três fases. Além disso, vê-se claramente a 

influência do treinamento de Levenberg-Marquardt, mostrando-se ser mais adequado do que o back-

propagation para o problema abordado. As Tabelas de 28 a 31 apresentam os resultados obtidos paras 

as fases B e C com as duas arquiteturas selecionadas (6–15–10–1 e 6–25–20–1) para a nova etapa de 

teste. 

 

 

Tabela 28 – Resultados do treinamento Levenberg-Marquardt para RNA da fase B com 

arquitetura 6-15-10-1. 

Ensaio 
Erro<0,005p.u. 

(%) 
0,005≤Erro<0,015p.u. 

(%) 
0,015≤ Erro≤0,025p.u. 

(%) 

Erro 
≤0,030p.u. 

(%) 

Magnitude do 
maior erro 

(p.u.) 

1 85,59 9,22 2,75 97,55 0,43 
2 85 11,47 1,57 98,04 0,768 
3 81,76 10,88 1,67 94,31 7,661 
4 85,59 8,82 2,45 96,86 0,228 
5 81,86 13,73 1,67 97,25 1,963 

Médias 83,96 10,82 2,02 96,8 2,21 
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Tabela 29 – Resultados do treinamento Levenberg-Marquardt para RNA da fase B com 

arquitetura 6-25-20-1. 

Ensaio 
Erro<0,005p.u. 

(%) 
0,005≤Erro<0,015p.u. 

(%) 
0,015≤ Erro≤0,025p.u. 

(%) 

Erro 
≤0,030p.u. 

(%) 

Magnitude do 
maior erro 

(p.u.) 

1 86,67 6,37 3,33 96,37 4,83 
2 79,31 9,9 6,37 95,59 0,667 
3 81,67 9,02 6,08 96,76 1,192 
4 81,86 12,65 2,35 96,86 0,652 
5 82,65 9,41 3,24 95,29 1,026 

Médias 82,43 9,47 4,27 96,18 1,673 
 

 
 

Tabela 30 – Resultados do treinamento Levenberg-Marquardt para RNA da fase C com 

arquitetura 6-15-10-1. 

Ensaio 
Erro<0,005p.u. 

(%) 
0,005≤Erro<0,015p.u. 

(%) 
0,015≤ Erro≤0,025p.u. 

(%) 

Erro 
≤0,030p.u. 

(%) 

Magnitude do 
maior erro 

(p.u.) 

1 87,65 6,47 2,06 96,18 0,431 
2 85,78 8,24 1,37 95,39 1,652 
3 87,45 7,16 3,14 97,75 0,274 
4 87,16 7,94 1,27 96,37 0,476 
5 84,41 7,55 3,14 95,1 0,938 

Médias 86,49 7,47 2,2 96,16 0,754 
 
 
 
 

Tabela 31 – Resultados do treinamento Levenberg-Marquardt para RNA da fase C com 

arquitetura 6-25-20-1. 

Ensaio 
Erro<0,005p.u. 

(%) 
0,005≤Erro<0,015p.u. 

(%) 
0,015≤ Erro≤0,025p.u. 

(%) 

Erro 
≤0,030p.u. 

(%) 

Magnitude do 
maior erro 

(p.u.) 

1 88,33 5,59 1,18 95,1 0,364 
2 87,65 8,14 1,57 97,35 0,58 
3 88,33 5,59 1,18 95,1 0,364 
4 88,14 7,94 1,27 97,35 0,476 
5 87,94 7,55 2,55 98,04 0,704 

Médias 88,08 6,96 1,55 96,59 0,497 
 

 

Novamente, ambas as arquiteturas apresentam desempenhos semelhantes. Entretanto a 

arquitetura  6–15 –10 –1 apresenta ser ligeiramente melhor quando se analisa a porcentagem de erro 

≤0,030 p.u. 
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5.2.3 – Análise sobre a arquitetura e o tipo de treinamento adotados 
 

A comparação entre o desempenho das redes das três fases indica que o algoritmo de 

treinamento Levenberg-Marquardt é mais adequado ao treinamento das redes neurais, afim de que se 

possa realizar com certa segurança o monitoramento remoto de tensão no ponto de interesse. As 

arquiteturas (6–15–10–1) e (6–25–20–1), apresentaram desempenhos muito próximos, conforme 

mostra a Tabela 32, ao se observar a porcentagem de erros menores do que 0,03p.u., para ambas as 

redes nas três fases. 

 

Tabela 32 – Comparação do desempenho entre duas arquiteturas de RNA 

Arquitetura da 
RNA 

Fase A 
e≤0,030pu 

(%) 

Fase B 
e≤0,030pu 

(%) 

Fase C 
e≤0,030pu 

(%) 
(6–15–10–1) 93,76 96,8 96,16 
(6–25–20–1) 93,72 96,18 96,59 

 

 

Diante deste cenário, optou-se pela rede que possui menor quantidade de neurônios, tendo 

em vista que esta exigirá menor esforço computacional para sua eventual operação. Cabe ressaltar que 

esta escolha não prejudica o objetivo proposto para este trabalho, uma vez que a variação de 

desempenho entre as duas redes é mínima. 

 

5.3 – Análise do desempenho da RNA escolhida 
 

Após escolhida a arquitetura para as três redes correspondentes às três fases, uma análise 

mais detalhada acerca do desempenho das mesmas foi efetuado. Para tanto, foram escolhidos 3 casos 

de curtos-circuitos dentro do conjunto de testes de modo a demonstrar, através destes exemplos, o grau 

de acerto desenvolvido pelas três redes RNA.  

Com a construção de gráficos que mostram superpostas a saída de teste e a resposta 

fornecida pela RNA, é possível verificar a validação da mesma em termos do desempenho esperado. 

Se a resposta fornecida pela RNA estiver condizente, dada uma faixa de tolerância, com a saída 

desejada para a RNA (saída de teste), então se pode afirmar que a rede obteve sucesso após sua etapa 

de treinamento. 

A seguir, ilustram-se três exemplos de situações distintas para o monitoramento remoto da 

tensão no ponto de interesse. Com estes exemplos, é possível se obter uma perspectiva da eficácia das 

respostas geradas pelas redes neurais das fases A, B e C treinadas via algoritmo de Levenberg-

Marquardt. Nas figuras seguintes, a resposta fornecida pela RNA é representada pela linha vermelha, 

sendo a saída desejada, ou saída de teste, representada pela linha azul, conforme indicado nas legendas 
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de cada gráfico. Após a apresentação de cada exemplo, serão exibidos 3 histogramas que visam 

complementar a avaliação do desempenho das RNAs.  

 

5.3.1 – Aplicação de falta, exemplo 1 
 

No primeiro exemplo, compreendendo as amostras de uma situação de falta simulada, 

afirma-se que a saída da fase A da RNA, deve caracterizar uma elevação de tensão. Para estas mesmas 

amostras, as fases B e C da respectiva RNA devem caracterizar afundamentos de tensão. 

Na Figura 23, apresenta-se a saída para esta situação da fase A, ou seja, para a elevação de 

tensão. 

 

 

 

Figura 23 – Resultado da comparação entre saída esperada e saída gerada pela RNA da fase A, 
para o primeiro exemplo.   

 

 

Ao observarmos o comportamento da resposta fornecida pela RNA da fase A, constata-se 

que ela foi capaz de estimar com significativa precisão o perfil da variação da tensão no ponto de 

monitoramento remoto. O mesmo pode se verificado para as redes das fases B e C (para os 

afundamentos), conforme mostram as Figuras 24 e 25.   
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Figura 24 – Resultado da comparação entre saída esperada e saída gerada pela RNA da fase B, 
para o primeiro exemplo.   

 

 

Figura 25 – Resultado da comparação entre saída esperada e saída gerada pela RNA da fase C, 
para o primeiro exemplo.   

 
 

Constata-se que para algumas (esporádicas) amostras, a RNA acaba se equivocando e 

fornecendo resultados diferentes do esperado. Entretanto, afirma-se que este erro é na maioria das 

vezes da ordem de 0,02 p.u. 
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5.3.2 – Aplicação de falta, exemplo 2 
 

Neste segundo exemplo, afirma-se que as saídas para as fases A e B devem caracterizar 

elevações de tensão acima de 1,1p.u. e, para a fase C, uma interrupção da tensão (níveis de tensão 

próximos de 0p.u.). Este panorama está exposto nas Figuras de 26 a 28. 

 

Figura 26 – Resultado da comparação entre saída esperada e saída gerada pela RNA da fase A, 
para o segundo exemplo.   

 

 

Figura 27 – Resultado da comparação entre saída esperada e saída gerada pela RNA da fase B, 
para o segundo exemplo.   

 

Embora as RNAs para as fases A e B tenham oscilado um pouco mais em relação ao primeiro 



56 
 

exemplo, o desempenho da RNA da fase C demonstra que a estratégia de monitoramento remoto 

também é capaz de detectar variações de tensão de magnitudes elevadas com significativa precisão, 

conforme revela a Figura 28 a seguir. 

 

Figura 28 – Resultado da comparação entre saída esperada e saída gerada pela RNA da fase C, 
para o segundo exemplo. 

 

5.3.3 – Aplicação de falta, exemplo 3 
 

Para o exemplo 3, afirma-se que a saída para a fase A deve apontar um afundamento de 

tensão. Já a fase B deve caracterizar elevações de tensão acima de 1,1p.u. e, a fase C, um afundamento 

de tensão. Esta situação está exposta nas Figuras de 29 a 31. 

 

Figura 29 – Resultado da comparação entre saída esperada e saída gerada pela RNA da fase A, 
para o terceiro exemplo. 
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Figura 30 – Resultado da comparação entre saída esperada e saída gerada pela RNA da fase B, 
para o terceiro exemplo. 

 

 

Figura 31 – Resultado da comparação entre saída esperada e saída gerada pela RNA da fase C, 
para o terceiro exemplo. 

Neste terceiro exemplo, é possível verificar da Figura 29, que na fase A, a rede forneceu uma 

saída com um erro ligeiramente mais elevado, situando-se por volta de 0,07p.u., sendo que a partir do 

sexto ciclo (condição de pós-falta), esta voltou a gerar valores praticamente idênticos ao esperado. 

Para as demais fases, o desempenho foi semelhante aos exemplos anteriormente apresentados. 
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5.3.4 – Índice de acertos das RNAs. 
 

Os histogramas apresentados nesta seção relacionam o índice de acerto das RNAs com as 

amostras de treinamento. As figuras de 32 a 34 trazem os histogramas das RNAs do sistema trifásico 

para erros menores do que 0,05p.u. 

 

 

Figura 32 – Histograma relacionando a quantidade de casos de testes com a magnitude dos erros 
entre resposta esperada e resposta gerada pela RNA da fase A 

 

 
Figura 33 – Histograma relacionando a quantidade de casos de testes com a magnitude dos erros 

entre resposta esperada e resposta gerada pela RNA da fase B 
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Figura 34 – Histograma relacionando a quantidade de casos de testes com a magnitude dos erros 

entre resposta esperada e resposta gerada pela RNA da fase C 

 
Os resultados observados, quando se analisou os erros entre a resposta esperada e a resposta 

fornecida pelas RNAs para magnitudes menores do que 0,05p.u. (ou 5%), revelam que 97,45% dos 

casos de teste para a fase A, 98,82% para a fase B e 98,72% para a fase C, apresentaram erros menores 

do que 0,05p.u. As RNAs apresentaram, portanto, um índice de acerto significativo. Entretanto, um 

estudo preliminar acerca da obtenção de uma faixa de erro que represente fielmente o desempenho das 

três RNAs, quando uma possível aplicação real é considerada, não deve ser descartado, devendo ser 

incluído considerações referentes a um melhor condicionamento dos sinais em análise. 
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Capítulo 6 – Conclusões  
 

Com este trabalho, foi possível apresentar uma estratégia alternativa de monitoramento de 

tensão em um determinado ponto de interesse no sistema elétrico. Esta estratégia tem como base a 

ferramenta inteligente de RNAs. Através do monitoramento das formas de onda de tensão e corrente 

das três fases do sistema, através do medidor presente na subestação, foi mostrado que existe a 

possibilidade de se monitorar remotamente os valores eficazes das tensões em pontos distantes do 

medidor da subestação, sem a necessidade de se empregar medidores extras para esta tarefa.  

Um sistema de distribuição real, previamente modelado computacionalmente foi de vital 

importância ao desenvolvimento e validação da estratégia proposta. A obtenção da base de 

treinamento das RNAs, presentes no monitoramento de cada uma das fases do ponto remoto de 

interesse, procedeu de maneira a se obter uma boa representação das características do sistema de 

distribuição, sendo para tanto simuladas diversas condições de falta em vários pontos do sistema. Com 

os dados provenientes destas condições de faltas, formou-se uma base de treinamento para as RNAs. 

Durante os estudos, o principal desafio foi o de se encontrar uma maneira adequada para apresentar os 

padrões de treinamento às RNAs de tal forma que o sistema elétrico em questão fosse mais bem 

representado. A melhor maneira encontrada foi a de se fornecer valores eficazes das tensões e 

correntes das três fases como entrada para a RNA. O cálculo destas grandezas foi feito utilizando-se 

uma técnica de janelamento dos sinais de tensão e corrente provenientes das simulações de falta. 

 O treinamento das RNAs em questão prosseguiu utilizando-se dois tipos de algoritmos de 

treinamento. Sendo estes o algoritmo back-propagation e o algoritmo de Levenberg-Marquardt. 

Dentre os dois métodos de treinamento, verificou-se que o treinamento de Levenberg-Marquardt se 

configurou como o mais adequado para o emprego da técnica proposta.  

Com a arquitetura da RNA eleita, verificou-se que o índice de acerto das RNAs das três fases 

foi superior a 97%, sendo que a magnitude dos erros, para esta porcentagem, é inferior a 0,05p.u. Este 

fato confirma que as RNAs empregadas na estratégia de monitoramento remoto, possuem significativo 

índice de acerto de acordo com a faixa de erro adotada. Entretanto, uma análise mais aprofundada 

deve ser considerada para se computar os erros envolvidos no condicionamento dos sinais, de modo a 

se obter um referencial mais preciso para a análise do desempenho geral das três RNAs. 

Para complementar o estudo é recomendado uma análise para os demais tipos de falta e a 

inclusão da taxa de falhas das linhas do sistema de distribuição.  

Além do que foi apresentado acima, este trabalho de conclusão de curso possibilitou um 

aprofundamento dos conhecimentos relacionados às RNAs e à QEE, proporcionando também o 

desenvolvimento de certas habilidades de investigação e posicionamento crítico. 

Contudo, cabe ressaltar que alguns objetivos iniciais como a obtenção de áreas de 

vulnerabilidades associadas ao sistema elétrico em estudo necessitam de maior aprofundamento em 

pesquisa, podendo ser o objeto de um trabalho futuro. Além disso, é plausível considerar o 
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desenvolvimento de uma metodologia para a localização de faltas ao longo do sistema de distribuição 

estudado utilizando RNAs.   

Acredita-se que o objetivo principal foi alcançado, e o desenvolvimento de uma estratégia de 

monitoramento remoto da tensão se revelou viável, tanto do ponto de vista técnico como econômico.   
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