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Resumo

BOTTURA, F. B. Um método alternativo e inteligente para o monitoramento remoto das
variacoes de tensdo de curta duracio em um sistema de distribuicao de energia elétrica. 2010. p.
85. Trabalho de Conclusdo de Curso (Engenharia Elétrica com Enfase em Sistemas de Energia e
Automagdo) — Escola de Engenharia de Sao Carlos (EESC), Universidade de Sao Paulo, Sao Carlos —
SP,2010.

Este trabalho tem por objetivo apresentar um método de monitoramento remoto dos niveis de
tensdo em um determinado ponto de interesse de um sistema de distribuicio de energia. A partir de um
sistema de distribuicdo previamente modelado, foi possivel obter uma base de treinamento para as trés
redes neurais artificiais. Apds o processo de treinamento, estas devem fornecer uma estimacao para os
niveis de tensdo das trés fases no ponto de interesse a ser monitorado remotamente. O
desenvolvimento desta estratégia permitird o monitoramento da qualidade da energia elétrica no que
diz respeito aos niveis de tens@o, sem a necessidade de se introduzir medidores adicionais no sistema
de distribui¢@o, o que pode proporcionar economia no ambito financeiro as concessiondrias de energia
elétrica. O desempenho das trés redes neurais foi validado e constatou-se que o método de

monitoramento remoto dos niveis de tensdo pode se tornar uma aplicacdo tecnicamente vidvel.

Palavras Chave: Sistemas elétricos de distribuicdo, qualidade da energia elétrica, monitoramento
remoto, variagdes de tensdo de curta duragdo e redes neurais artificiais.
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Abstract

BOTTURA, F. B. An intelligent alternative method for remote monitoring of short duration
voltage variations in a power distribution system. 2010. 85 f. Trabalho de Conclusdo de Curso
(Engenharia Elétrica com Enfase em Sistemas de Energia e Automagio) — Escola de Engenharia de
Sao Carlos (EESC), Universidade de Sao Paulo, Sao Carlos — SP,2010.

The aim of this is work is to present a method for the remote voltage levels monitoring at a
particular point in a power distribution system. From a power distribution system previously modeled,
a data set for the learning process of three artificial neural networks was obtained. After the training
process, they might be able to provide the estimation of the voltage levels in the three phases at a
particular point remotely monitored. This methodology allows the power quality monitoring related to
the voltage levels, without introducing additional measuring instruments in the power distribution
system, which could provide savings to the energy company. The three neural networks performance
was validated and it was found that the remote monitoring method of the voltage levels can be

technically viable.

Keywords: Power distribution system, power quality, remote monitoring, short duration voltage
variations and artificial neural networks.
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Capitulo 1 — Introducio

A Qualidade da Energia Elétrica (QEE) € caracterizada pela disponibilidade da energia na
forma de uma onda senoidal pura, sem alteracdes em amplitude e freqii€éncia (Dugan et al. 2003).
Entretanto, um Sistema Elétrico de Poténcia (SEP) estd sujeito a diversos fendmenos que
comprometem a QEE, freqiientemente ocasionando a ma operacdo de equipamentos e, em alguns
casos, perda de processos industriais. Entre os fendmenos que comprometem a QEE destacam-se, pela
freqiiéncia de ocorréncia, os afundamentos de tensdo, dado que 87% de todas as ocorréncias de
fendmenos relacionados & QEE dizem respeito a este tipo de distirbio (Oleskovicz, 2007). Estes
eventos, na grande maioria das vezes, sdo conseqiiéncias da ocorréncia de faltas ao longo do SEP,
dado que o afundamento de tensdo no ponto da falta se propaga ao longo da linha.

Neste contexto, cargas sensiveis alocadas em diferentes pontos de um sistema elétrico de
poténcia podem operar inadequadamente quando submetidas a certas variacdes de tensdo, decorrentes
de distintas situagdes de faltas incidentes sobre o sistema elétrico (Bollen et al. 2006). Estas variacdes
podem resultar em niveis de tensdo abaixo do exigido (como afundamentos de tensdo) que por sua
vez, devem ser avaliados e, quando ndo extinguidos por completo, amenizados. Torna-se entdo de
extrema importancia o conhecimento da drea de vulnerabilidade destas cargas frente as possiveis
operagdes ndo desejadas sobre o sistema elétrico. Por drea de vulnerabilidade entende-se a regiao ao
redor de uma carga na qual a ocorréncia de faltas causa, nesta carga e nas suas proximidades, uma
variagdo de tensdo suficiente para prejudicar a operacdo das mesmas.

A tendéncia de uma exigéncia mais rigida em termos da QEE fornecida, seja por parte dos
consumidores ou das concessiondrias de energia elétrica, tem sido crescente. Equipamentos como o
caso de computadores, controladores logico programdveis, robds industriais, miquinas elétricas,
dentre outros, que sdo partes integrantes das etapas que agregam valor aos processos industriais, em
geral, possuem baixa tolerdncia quando submetidos aos possiveis distirbios advindos da rede de
energia elétrica. Portanto, quando estes equipamentos sdo acometidos por distirbios de QEE
possivelmente desencadeardo prejuizos financeiros consideraveis.

Assim como os consumidores industriais, os consumidores comerciais € residenciais estao
cada vez mais cientes de seu direito de serem supridos por uma energia elétrica de qualidade, uma vez
que se observa o surgindo e consolidagdo de normatizacdes (em dmbitos nacionais e internacionais)
que visam assegurar a QEE aos consumidores. Fica claro que a preocupag¢do com os disturbios de
QEE possuem implicacdes econdmicas e legais evidentes, configurando-se como um campo de
pesquisa importante € promissor.

Uma condi¢@o necessdria na tarefa de se manter niveis aceitdveis da qualidade da energia

elétrica é a metodologia empregada no monitoramento dos distiirbios sobre a mesma. Em geral este



monitoramento se revela como sendo um procedimento ndo trivial e de investimento financeiro
relativamente elevado. As dificuldades podem ter inicio logo no instante de se eleger o melhor local
em que o equipamento de monitoramento serd instalado, pois muitas vezes nio se tem conhecimento
prévio sobre quais os pontos que poderdo fornecer a melhor visdo da situacdo de operagdo do sistema
de energia elétrica, sob o ponto de vista da QEE. Além desta dificuldade inicial, a ocorréncia dos
distirbios de QEE possui cardter estocdstico, de forma que ndo se deve apenas levar em consideracdo
a topologia do sistema, necessitando-se incluir a abordagem de outros pardmetros menos controldveis
(Dugan et al. 2003).

Com o objetivo de se desenvolver metodologias mais eficientes a serem aplicadas ao
monitoramento dos distirbios, varios pesquisadores t€ém estudado os fendmenos relacionados a QEE.
Atualmente constata-se, por exemplo, o uso de ferramentas de inteligéncia artificial, como € o caso das
Redes Neurais Artificiais (RNAs), Logica Fuzzy (LF), e de ferramentas matemdticas como, por
exemplo, o caso da Transformada de Fourier e Transformada Wavelet (Bollen et al. 2006). Estas
ferramentas sdo utilizadas principalmente na etapa de pré-processamento das informacdes e extraciao
de caracteristicas relevantes, ou para a classificacdo dos distirbios. Cabe relembrar que a principal
motivacdo das pesquisas desenvolvidas atualmente, além de ampliar os conhecimentos neste campo e
realizar contribuicdes académicas muito relevantes, ¢ minimizar as perdas econdmicas decorrentes de
distirbios de QEE, nos processos de producdo de bens que utilizem a energia elétrica como insumo.

Tendo em vista a dificuldade para se realizar o monitoramento dos distirbios relativos a
QEE, o alto custo de implantagdo de medidores de QEE e a crescente demanda por niveis cada vez
mais exigentes da qualidade da energia elétrica fornecida, propde-se o desenvolvimento de um método
alternativo para a medi¢cdo e monitoramento dos niveis de tensdo em pontos de um sistema de
distribuicdo de energia elétrica, pela utilizacdo de uma ferramenta de inteligencia artificial, em
particular, pela aplicacio de RNAs. Como anteriomente comentado, o interesse em se monitorar a
tensdo de alimentacdo de um determinado ponto do sistema, advém do fato de que os afundamentos de
tensdo representam cerca de 87% dos disturbios referntes a QEE.

Pela metodologia proposta, a partir de dados coletados por um monitor de QEE instalado na
subestacdo de um sistema de distribuicdo de energia elétrica, serd possivel estimar o nivel de tensdo
em um (ou mais) pontos(s) deste sistema. Desta maneira, pretende-se apresentar uma alternativa que
seja confidvel e atrativa do ponto de vista financeiro.

Para este estudo inicial, cabe salientar que o monitoramento de um determinado consumidor
poderd ser realizado da forma proposta, fornecendo uma estimativa muito préxima das reais condig¢des
de operacdo a que o consumidor estd sendo submetido, sem a necessidade de se dispor de um medidor

de QEE instalado permanentemente no ponto de conexdo do cliente.



1.1 - Objetivos do trabalho

Este trabalho tem como objetivo o desenvolvimento de uma estratégia que, tomando por
base valores de tensdo medidos em uma subestagdo de um sistema de distribuicdo de energia elétrica,
quantifique valores da variacdo da tensdo em pontos de interesse ao longo deste sistema de
distribuicdo de energia elétrica. Deste monitoramento da variacdo da tensdo, serd possivel mapear
niveis de sensibilidade, no que se diz respeito aos niveis de tensdao de fornecimento, delimitando dreas
de vulnerabilidade no sistema em andlise para um determinado ponto de interesse.

Para o desenvolvimento deste trabalho, foram simuladas diferentes situagdes de falta ao
longo de um sistema de distribuicio de energia elétrica, previamente modelado dispondo do
“software” ATP (“Alternative Transients Program’) (Rule Book, 1987) utilizando parametros reais de
uma concessiondria local. Por meio destas simulagdes gerou-se os dados que foram fornecidos para o
treinamento de uma RNA utilizada para o monitoramento remoto da tensdo em um ponto especifico
do sistema. O desenvolvimento da arquitetura da RNA em questdo foi efetuado com o auxilio da
ferramenta computacional “Neural Network Toolbox” do Matlab® (Demuth et al. 2007).

Sendo assim, com o desenvolvimento da estratégia proposta, apresenta-se uma alternativa
para a realizacdo do monitoramento dos niveis de tensdo em determinado ponto de interesse do
sistema de distribuicdo, além da verificagdo da sensibilidade do sistema devido a faltas incidentes nas
vizinhangas deste ponto.

Pelos resultados até entdo encontrados, vale comentar que fica evidente a possibilidade de
espansdo deste monitoramento para outros pontos de interesse sobre o sistema em andlise.

Por fim, pretende-se alcancar um aprofundamento dos conhecimentos relativos & QEE e a

sistemas inteligentes, em particular, sobre RNAs.

1.2 — Apresentaciao deste documento

Diante da introducio apresentada, este documento possui mais cinco capitulos. O capitulo
dois trds uma revisdo bibliografica contendo conceitos relacionados a QEE e pesquisas realizadas
atualmente nesta drea. Em seguida, o capitulo trés trata sobre as RNAs, apresentando os principais
fundamentos tedricos da drea. Logo apds, o sistema de distribuicdo de energia elétrica em estudo,
previamente modelado computacionalmente € apresentado no capitulo quatro. No capitulo cinco,
apresenta-se a metodologia proposta e os resultados por ela obtidos.

O capitulo seis tras as conclusdes obtidas com a realizacdo deste trabalho e possiveis temas

para a continuidade desta pesquisa.






Capitulo 2 — Revisao bibliografica

Os estudos acerca da QEE sdo, atualmente, de suma importancia para a garantia de um
servico de distribuicdo da energia elétrica que esteja dentro das especificagdes exigidas pelas normas,
instigando, portanto, o interesse de diversos setores da economia.

A preocupacdo com a conformidade dos niveis de tensdo se faz presente, sendo que um dos
principais disttrbios referentes a QEE € a variacdo de tensdo. Uma variagdo de tensdo € caracterizada
pela permanéncia do nivel de tensdo fora da faixa nominal durante um determinado intervalo de
tempo. As variacdes de tensdo estdao subdivididas em: varia¢des de tensdo de longa duracdo (VTLD) e
variagdes de tensao de curta duracdo (VTCD).

Quando os fendmenos de variagdo de tensao se prolongam por periodos de tempo superiores
a 1 minuto sdo classificados como sendo VTLD. Neste caso, quando a tensdo se eleva para valores
entre 1,1p.u. e 1,2p.u. em relag@o a tensdo nominal, tem-se o que se denomina sobretensao, ja quando
um fendmeno remete a uma tensdo remanescente que permaneca abaixo de 0,9p.u. da nominal, este é
classificado como sendo subtensdao (Dugan et al. 2003). As VTLD sdo fendmenos decorrentes, em
geral, de variagdes na carga do sistema, chaveamentos sobre o mesmo, além de poderem estar
relacionadas as situacOes de faltas sustentadas. Este tipo de variacdo de tensdo pode acarretar em
efeitos indesejdveis como a reducdo da vida util de equipamentos, bem como causar a parada dos
mesmos. A sobretensdo é geralmente resultante do processo de desligamento de grandes cargas ou da
energizacdo de bancos de capacitores. Conforme mencionado, a vida itil dos equipamentos pode ser
seriamente afetada quando sobretensdes acometem o sistema. Por outro lado, a subtensdo pode ter sua
origem, por exemplo, no excesso de carregamento dos circuitos alimentadores e pela entrada de cargas
no sistema. Este distirbio tem efeitos negativos como: interrup¢do da operacdo de equipamentos
eletronicos, elevagdo do tempo de partida de médquinas de indugdo, potencializando os efeitos
indesejdveis que ocorrem durante este processo, dentre outras conseqiiéncia danosas. Num caso mais
grave de VILD tem-se a presenca da interrupcdo sustentada, em que a tensdo de fornecimento
permanece em zero por um tempo maior do que um minuto.

Ja os fendmenos de VTCD estdo relacionados as duracdes inferiores a 1 minuto, e sdo
subdivididas em variacdes instantdneas (0,5 a 30 ciclos), momentaneas (30 ciclos a 3 segundos) e
tempordrias (3 segundos a 1 minuto). Em se tratando da magnitude da tensdao, uma VTCD pode ser
classificada como: interrupg¢do, afundamento e elevacdo de tensdo. Quando hd a incidéncia de faltas
elétricas sobre o sistema elétrico, estas podem causar a completa interrup¢do do fornecimento da
tensdo (interrup¢do), em alguns casos, acarretar em um aumento no valor nominal da tensdo
(elevagdo), ou provocar afundamentos de tensdo. Em se tratando de VTCD, as interrup¢des recebem a
denominacgdo de interrupg¢des de curta duragdo, e sdo detectadas quando a tensdo de fornecimento ou a
corrente de carga apresentem um valor remanescente de 0 (zero) a 0,1p.u., em relacdo aos valores

nominais, por um periodo de tempo inferior a 1 minuto (Dugan et al. 2003). Cabe ressaltar que em um



sistema de energia elétrico, a duracdo de uma falta estd relacionada com o tempo de atuagdo dos
dispositivos de protecao utilizados pelas concessiondrias de energia, uma vez que estes terdo a funcdo
de eliminé-las, ou de isold-las do restante do sistema (Oleskovicz, 2007). O aumento no valor nominal
da tensdo, em intervalos de tempo inferior a 1minuto é denominado de elevagdo de tensdo, que é
definida, de acordo com Dugan et al. (2002), como sendo um aumento entre 0,1p.u. e 0,8p.u. sobre o
valor nominal da tensdo de fornecimento. Conforme mencionado anteriormente, este tipo de disttirbio
¢ causado, principalmente, por faltas elétricas incidentes sobre o sistema, podendo ser originado
também pelo desacoplamento de cargas de grande porte do mesmo.

Dentre os distirbios referentes a QEE, o afundamento de tensio € um dos que desperta maior
interesse, principalmente devido seu maior grau de ocorréncia e possiveis prejuizos decorrentes. O
afundamento de tensdao é definido como sendo qualquer decréscimo cuja magnitude remanescente
apresenta-se entre 0,9 a 0,1p.u. da tensdo nominal em um intervalo de tempo, entre meio ciclo a um
minuto (Dugan et al. 2003), considerando-se a freqiiéncia nominal do sistema (60 Hz). Conforme ja
mencionado, os afundamentos de tensdo se enquadram na classe de fendmenos de VICD sendo,
portanto, classificados como: instantineos, momentineos e tempordrios. Conforme Dugan et al.
(2002), os afundamentos instantaneos possuem duracio tipica de 0,5 a 30 ciclos, ja4 os momentaneos
sdo aqueles que apresentam duracdo de 30 ciclos a 3 segundos, e finalmente, os tempordrios
compreendem o intervalo de 3 segundos a Imin.

Cabe colocar que o médulo 8 do PRODIST (“procedimentos de distribuicdo de energia
elétrica”) (ANEEL, 2009) no sistema elétrico brasileiro, que trata em especial da QEE, normatiza
intervalos diferentes daqueles tipicos encontrados na literatura, ampliando o intervalo de tempo dos
afundamentos de tensdo para até a 3 minutos. Este documento estabelece que o afundamento
momentaneo de tensdo compreende um intervalo de tempo superior ou igual a 1 ciclo e inferior ou
igual a 3 segundos. J4 temporario em uma faixa de tempo superior a 3 segundos e inferior a 3 minutos,
desconsiderando, portanto, a classificacdo de afundamentos momentaneos citada acima. Esta € uma
classificagdo menos rigida no que diz respeito a assegurar a qualidade da tensdo, uma vez que
afundamentos mesmo inferiores a 1 ciclo podem ser danosos ao sistema, como por exemplo, causando
perdas de informagdes devido a operagdo inadequada de um equipamento microprocessado.

Este tipo de perturbacdo pode ser causado, em geral, pela partida de grandes motores e/ou
outras cargas elétricas de grande porte que solicitem alta corrente de partida, por curtos-circuitos
incidentes no sistema e por chaveamentos da concessiondria de energia elétrica sobre determinado
sistema (Kagan et al., 2009). Para sintetizar as classificagdes referentes as variacdes de curta e longa

duracdo apontadas, é apresentada a Figura 1.
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Figura 1 - Classificacao das variacoes encontradas sobre o valor eficaz da tensao de
fornecimento.

Em vista & preocupagdo das conseqiiéncias danosas aos equipamentos sensiveis, resultantes
dos fendmenos de VTCD, curvas de sensibilidades foram desenvolvidas para se especificar zonas de
tolerdncia dos equipamentos microprocessados as variagdes de tensdo, relacionando suas magnitudes
com o respectivo tempo de ocorréncia das mesmas. A curva CBEMA (Computer Business
Manufacturers Associations) (Dugan et al. 2003) foi a primeira destas curvas e foi desenvolvida pelos
fabricantes de computadores eletrdnicos, tornando-se referéncia para a especificacdo de tolerancia de

equipamentos microprocessados. Esta curva estd mostrada na Figura 2.
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Figura 2 - Curva de tolerancia de tensao CBEMA, adaptado de Kyei et al. (2002)



A Figura 2 mostra trés regides distintas associadas as letras A, B e C; as mesmas
representam: A — regido normal de trabalho, considerada aceitdvel para determinada situacdo de
operacdo; B — regido perigosa de trabalho, com possibilidade de ruptura da isolagdo dos equipamentos
perda de hardware);  C — regido perigosa de trabalho, com possibilidade de paralisagdo de alguns
equipamentos (disfuncdes).

Posteriormente, como uma ampliacdo do emprego da curva CBEMA, surgiu a curva ITIC
(Information Technology Industry Council) que apresenta niveis mais rigidos quanto a magnitude e
duracdo das variagdes de tens@o de curta duragdao (Dugan et al. 2003). Na Figura 3, a curva ITIC €

apresentada.
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Figura 3 - Curva de toleriancia de tensao ITIC, adaptado de Kyei et al. (2002)

O comportamento nas regides determinadas pelas curvas € o mesmo, tanto para a curva
CBEMA, quanto para a ITIC. Os pontos que cairem abaixo da curva inferior (regido C) podem causar
o desligamento ou mau funcionamento da carga sensivel. Os pontos acima da curva superior (regido
B) poderdo causar um mau funcionamento devido a falha de isolacio ou desligamento por
sobretensdo, entre outros. A regido A, configura a regido de operacdo normal.

Outros conceitos relacionados com a robustez do sistema e com os fendmenos de QEE ja
mencionados no presente trabalho, também merecem destaque nesta se¢do de revisdo bibliografica.
Sdo eles: a drea de vulnerabilidade e, por conseqiiéncia, a drea afetada.

Em Goswami et al. (2008), a drea de vulnerabilidade é definida como sendo toda a por¢do do
circuito do sistema elétrico de poténcia (barramentos e segmentos de linha) que, quando acometida por
defeitos (falhas) pode provocar afundamentos de tensdo em um dado barramento. Estes afundamentos
possuem magnitudes abaixo da tensdao minima de operacdo (limiar de tensdo) de uma carga elétrica

7

sensivel. J4 a drea afetada, como exposto por Goswami et al. (2008), é entendida como sendo o



conceito complementar de drea de vulnerabilidade, ou seja, dado a incidéncia de uma falta elétrica em
um determinado barramento do sistema, define-se qual a por¢do do sistema elétrico que terd sua tensdo
reduzida para niveis menores do que a tensdo minima de operacdo.

Sobre este escopo inicialmente apresentado, estudos relacionados revelam o surgimento de
novas interpretacOes relativas ao diagndstico de QEE. Como por exemplo, tem-se a pesquisa de Won
et al. (2005), onde os autores propdem um método para uma nova abordagem sobre a caracterizagdao
de afundamentos de tensdo utilizando-se uma fun¢do de aproximac¢do ao perfil de afundamento de
tensdo, do tipo raiz k-ésima. Esta funcdo, segundo os autores, representaria o perfil do afundamento de
tensdo em determinada carga. O método permite eliminar a superestima¢do da duracdo dos
afundamentos de tensdo detectados pelos monitores de QEE, onde o perfil do evento ndo € retangular
devido as caracteristicas dinamicas inerentes da carga em andlise, como, por exemplo, no afundamento
provocado pela reaceleracdo de um motor elétrico de indugdo de grande porte apés uma queda de sua
tensdo na alimentacdo (Bollen, 1995 apud Won et al. 2005). Segundo relatado, a fun¢do descrita é
capaz de aproximar o perfil do afundamento de tensdo usando apenas os dados padrdes fornecidos por
medidores de QEE. O parametro (k) € obtido experimentalmente por aproximacdes sucessivas. O
método parece ser capaz de caracterizar de maneira prética e mais exata o verdadeiro efeito de um
afundamento de tensdo.

Seguindo na mesma linha de estudo, Kyei et al. (2002) ressaltam a importincia de se
investigar os fendmenos relacionados aos afundamentos de tensdo. Para tanto, os autores propdem um
método para a obten¢do de curvas de tolerancia de tensdo para uma carga em particular, como um
complemento a utiliza¢do das curvas padroes CBEMA e ITIC (Dugan et. al. 2002), empregadas de
maneira generalizada aos diversos tipos de cargas ndo lineares em operacdo. Pela pesquisa, os autores
foram capazes de modelar um evento de afundamento de tensdo em um sistema de distribui¢do de
energia através do estudo de um retificador monofdsico de tensdo, em que a entrada do mesmo
representa a tensdo (Vc) fornecida pela rede de energia elétrica, e a tensdo retificada (Vpc) representa
a tensdo fornecida a carga. Pela solucio temporal da equacdo diferencial associada a este retificador
em termos da saida (Vpc), mostra-se que € possivel obter uma resposta similar a curva CBEMA no
plano (Vpc x T), onde T € o tempo de duragdo do afundamento de tensdo, obtendo-se a curva de
sensibilidade da carga. Cabe salientar que a andlise pode ser estendida ao caso trifdsico. Além da
tensdo, os mesmos demonstram que € possivel referenciar a sensibilidade de um equipamento por
meio de outros pardmetros de interesse, como, por exemplo, a velocidade ou o torque em uma carga
rotativa, ampliando assim o conceito de curva de sensibilidade antes apenas referido a cuarva CBEMA
ou ITIC.

A preocupagdo em se considerar os pardmetros de sensibilidade das cargas em operagdo
também € observado no artigo publicado por Lee et al. (2004). Os autores discutem a importancia de
se obter um indice de QEE que seja capaz de associar um custo financeiro a gravidade dos danos

causados na carga de interesse por afundamentos e interrupcao de tensdo de diferentes classes (k) de
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magnitude e duracdo, provenientes da rede de distribuicdo de energia elétrica. A quantificacdo da
gravidade dos danos na carga é expressa por uma média [E(k)] que leva em consideracio a frequéncia
e a energia dos afundamentos de tensdo e interrup¢do na operacdo da carga, de cada classe (k). Ao se
levar em consideracgdo a sensibilidade de diversos tipos de carga em estudo, o artigo cita a obtencao de
suas respectivas curvas de tolerincia, salientando a semelhanca das mesmas com a curva CBEMA,
conforme explicitado em Kyei et al. (2002). Nestas curvas, sdo introduzidas subdivisdes no eixo das
abscissas (tempo), relativas as classes (k), definidas pelo padrdo IEEE Std 1159-1995, com o objetivo
de se prever possiveis danos na carga. O cdlculo do custo é realizado com base em registros
estatisticos do sistema elétrico para uma conhecida taxa de defeito do mesmo, e no fator Cy, que reflete
a média de custo financeiro em uma determinada classe (k) de afundamento e interrup¢do de tensio.
Este indice pode ser muito ttil para o consumidor e fornecedor da energia elétrica, uma vez que é
capaz de refletir em um aspecto financeiro os efeitos negativos advindos de uma ma qualidade no
fornecimento da energia elétrica.

Em Bollen et al. (2008) os autores enfatizam a importancia de se aprofundar os estudos sobre
a elaboragdo de uma curva, que pode ser traduzida como uma curva de compartilhamento de
responsabilidade (responsability-sharing curve), ressaltando as responsabilidades cabiveis tanto as
concessiondrias de energia como aos proprios usudrios no que diz respeito, principalmente, aos
afundamentos de tensdo. Esta curva, embora semelhante as curvas ja bem conhecidas como a CBEMA
e a ITIC, traz a tona, segundo os autores, o0 que j4 existe em algumas normas internacionais, como € o
caso da Africa do Sul, em que a norma NRS 048-2, (NRS 048-2:2003, 2003 apud Bollen et al, 2008)
estabelece que o consumidor € responsavel por afundamentos com tensdes remanescentes acima de 0,7
p.u. com duragdo de até 150ms, acima de 0,8 p.u. com duracio de até 600ms e aqueles que sejam de
maior duragio com tensdes remanescentes de 0,85 p.u. da tensdo nominal. E proposto no artigo que se
utilize a norma internacional IEC Std. 61000-4-11 (IEC Std. 61000-4-11, 2001 apud Bollen et al,
2008), como parametro para a escolha da curva de responsabilidade para afundamentos de tensdo. Os
proprios autores salientam sobre as peculiaridades e caracteristicas locais das regides de distribui¢dao
de energia elétrica, o que acaba por influenciar a elaboragio de regulamentagdes locais. Neste sentido,
a tentativa de uma generalizacdo normativa pode ser prematura, entretanto, o artigo deixa claro que
uma maior discussao e aperfeicoamento das normas concernentes a qualidade da tensdo fornecida sdo
validos.

Mais uma vez, tomando-se por base registros estatisticos de eventos relacionados com a
QEE, ¢é cabivel citar Wang et al. (2005), pelos quais se apresenta uma solucio, baseada em uma
andlise estatistica, para a estima¢do do comportamento de afundamentos de tensdo em um sistema de
distribuicdo de energia elétrica, predizendo sua magnitude e duracdo. Os autores propdem a
implementa¢do de algoritmos computacionais para se obter esta solucdo, eliminando dessa maneira a
necessidade de se realizar medi¢Oes extensivas e caras agOes de monitoramento. Através de uma tabela

da densidade de probabilidade da ocorréncia de afundamentos de tensio, obtida por uma fungdo que
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pondera diversos aspectos do sistema elétrico de poténcia, conforme apresentado pelos autores, é
possivel mapear a probabilidade da incidéncia de um afundamento de tensd@o em uma carga sensivel
conectada em um determinado ponto do sistema em andlise. Este ponto é o local onde se pretende
predizer se um afundamento de tensdo serd capaz de danificar ou ndo a carga conectada ao mesmo,
observando-se aqui uma relacdo com o conceito de drea de vulnerabilidade (Dugan et. al. 2002). Para
se verificar a gravidade do afundamento de tensdo, é necessdrio confrontar os dados da tabela com a
curva de tolerancia da carga (Kyei et al. 2002). O método proposto pode ser utilizado para se planejar
tanto a minimizacdo como a mitigacdo dos efeitos indesejiveis provocados pelo afundamento de
tensdo sobre um determinado equipamento.

O conceito de drea de vulnerabilidade também é trabalhado por Myo Thu et al. (2004), que
analisa a influéncia de diferentes funcdes de distribui¢do de probabilidade de defeitos (curtos-
circuitos) em uma linha de transmissdo de energia elétrica, e na predi¢do de afundamentos de tensdo
em dois barramentos (escolhidos ao acaso) de um sistema de distribuicdo genérico, através de uma
aproximagao estocdstica baseada em simulagdo computacional.

Conforme ressaltado pelos autores, a obtengdo de uma base de dados de registros dos
distirbios de QEE que contenha informagdes relevantes para proporcionar uma correta andlise
estatistica do desempenho de um sistema elétrico de poténcia, frente a estes distirbios, consiste em
uma tarefa de dificil execucdo. Para, tanto seria necessirio executar o monitoramento da operacdo do
sistema ao longo de anos. Visando eliminar dos estudos relacionados a estes distirbios a forte
dependéncia destes registros estatisticos, dois principais métodos sdo propostos na literatura: o método
da posi¢do da falta (fault-position — FP) e o método da distancia critica (critical distance — CD),
conforme se encontra em Carpinelli et al. (2009). O método da distincia critica leva em consideracdo
o principio do divisor de tensdo aplicado ao ponto de acoplamento comum, local este onde estd
instalada a carga que se deseja monitorar a tensdo no instante da ocorréncia de uma falta. Isto é
realizado conhecendo-se o valor da tensdo de fornecimento (fonte), a impedancia da fonte vista do
ponto de acoplamento comum e a impedancia entre o local de ocorréncia da falta e o ponto de
acoplamento comum. Ja o método da posi¢ao da falta, € capaz de fornecer uma matriz que contém as
tensoes de todos os barramentos do sistema durante a ocorréncia de uma falta, chamada matriz de
afundamento. Sua obtencdo se d4d a partir da matriz de impedancias (Z,;) do sistema elétrico de
distribuicdo em questdo. Este método é implementado computacionalmente seguindo trés principais
passos: (i) simulacdo de curto-circuito para a ocorréncia de uma falta em determinado local do
sistema; (i1) calculo de todas as tensGes remanescentes nos barramentos do sistema devido a falta
aplicada; (iii) constru¢do da matriz de afundamentos. Os passos de (i) a (ii) devem ser repetidos para
diversas posicdes de faltas, considerando-se, por exemplo, todas as barras do sistema e alguns pontos
no decorrer de todas as linhas do mesmo. Por fim, no passo (iii), o resultado das tensdes
remanescentes efetuados em (ii) sdo armazenados na matriz de afundamentos.

Por fornecer mais informagdes acerca das tensdes do sistema elétrico através da matriz de
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afundamentos, o método de posicdo da falta se revela como sendo o que proporciona uma visao mais
ampla da situag@o de operacgdo do sistema elétrico durante a ocorréncia da falta como serd discutido na
seqiiéncia.

Goswami et al. (2008), em sua pesquisa, apresentam um método analitico para se prever
afundamentos de tensdo e se obter dreas de vulnerabilidade de interesse em um sistema de distribui¢do
de energia elétrica. O estudo tem seu equacionamento formulado, considerando-se curtos-circuitos
trifdsicos simétricos, para obtencdo de uma matriz chamada matriz de afundamento de tensao (Vsy),
calculada a partir da matriz de impedancias (Zgys) do sistema pelo método de posicao da falta. Ao se
interpretar a matriz (Vgv) em linhas e se representar graficamente estas informa¢des no diagrama
unifilar do sistema elétrico, determina-se a drea de vulnerabilidade de interesse, ou seja, uma dada
linha (m) da matriz de afundamentos de tensao identifica um barramento no sistema elétrico, e, além
disso, representa o potencial de afundamento de tensdo que uma carga conectada a este barramento
(m) esta sujeita em conseqiiéncia de defeitos incidentes no sistema. Os resultados mostram que é
possivel obter a drea de vulnerabilidade para um barramento do sistema utilizando-se apenas da matriz
(Vsm) obtida originalmente a partir da matriz (Zgys) do sistema, sem a necessidade de se empregar
técnicas estatisticas que requerem extensa coleta de dados relativos a incidéncia de falhas no sistema.
Vale comentar que uma andlise mais cuidadosa no caso de curtos trifisicos assimétricos se faz
necessdrio. Entretanto, o método apresentado pode ser muito util quando uma andlise preliminar é
considerada.

Em Carpinelli et al. (2009), os autores obtém uma matriz de afundamentos de tensdo (during
fault voltage matrix - DFV) que mostra todas as tensdes de pds falta do sistema, de maneira
semelhante ao que se encontra em Goswami et al. (2008). Esta matriz foi obtida através do método de
posicdo da falta, acrescentando-se desta vez uma combinacdo das magnitudes dos afundamentos
contidos na DFV com os dados estatisticos referentes a taxa de falha do sistema considerado, para se
tentar obter um resultado mais condizente possivel com o real. O artigo de Carpinelli et al. (2009)
sugere uma interpretacdo grafica desta matriz, implementado uma escala graduada em cores que
quantifica a intensidade do afundamento de tensdo, proporcionando uma rdpida inspecdo visual da
situacdo das tensdes remanescentes nos barramentos do sistema apds a ocorréncia da falta elétrica. Um
ponto muito importante explicitado pelos autores acerca da robustez do sistema elétrico em estudo,
advém do célculo da capacidade de curto-circuito dos barramentos do sistema (Kagan et al. 2005), e
da relacdo estabelecida com a matriz de afundamentos de tensdao (DFV), obtida via método de posi¢ao
da falta. Com o estudo efetuado pelos autores, nota-se que quanto maior a capacidade de curto-circuito
de uma barra, maiores serdo os afundamentos de tensdo causados ao restante do sistema em
decorréncia da incidéncia de uma falta sobre a mesma. Em contrapartida, quanto menor a capacidade
de curto-circuito da barra em questdo, mais susceptivel ela estard a afundamentos em virtude da
ocorréncia de faltas em outros pontos do sistema que possuam maior capacidade de curto-circuito.

Além disso, esta barra de menor capacidade de curto circuito, quando acometida por uma falta, levard
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a afundamentos no restante do sistema que sera sentido por uma menor quantidade de barras. Nota-se,
portanto, que o emprego do método de posicdo da falta é capaz de fornecer uma visdo mais ampla
acerca da situacdo das tensdes dos barramentos do sistema quando uma falta acomete determinado
ponto do mesmo, e uma simples andlise via método da distincia critica, pode levar a interpretacdes
equivocadas, uma vez que este método ndo agrega informagdes a respeito do comportamento das
demais barras do sistema.

Atualmente, constata-se que o emprego de ferramentas inteligentes, em particular RNAs,
atuando em conjun¢do com técnicas de extragdo de caracteristicas, como o uso da Transformada
Wavelet (TW), acaba por enriquecer os estudos relativos a QEE, apresentando novas solugdes ao
monitoramento. Em Devaraj et al. (2006), por exemplo, busca-se um processo automatico para o
monitoramento da QEE com o uso de RNAs e da TW. Neste processo é realizada a classifica¢do dos
seguintes eventos: afundamentos de tensdo, elevagdes de tensdo, transitdrios e distor¢des harmdnicas.
Com a determinacdo da energia contida nos coeficientes wavelet da onda em estudo, e tomando-se
como referéncia uma onda senoidal pura, determina-se o desvio entre as distribuicdes de energia do
sinal analisado e do sinal de referéncia em cada nivel de decomposicao. Alguns pardmetros estatisticos
também sdo calculados, tais como: média, desvio padrdo, valor RMS, fator de crista, dentre outros.
Estes pardmetros, referenciados a cada tipo de distirbio, sdo utilizados para se treinar uma RNA.
Através de um SEP de quatro barramentos, simulado computacionalmente no software Matlab®, os
autores ilustram a eficiéncia da RNA, simulando eventos como: faltas, chaveamentos e harmonicos
devido as cargas ndo lineares. As amostras referentes ao treinamento da RNA sdo obtidas em
diferentes localizacdes do sistema elétrico, gerando diferentes medidas, numa tentativa de se obter
uma maior abrangéncia relativa aos diferentes pontos de monitoramento. A eficiéncia da RNA §é
apresentada através de um diagrama do qual se depreende que o indice de acerto da RNA € de 100%.

A classificacdo de disturbios elétricos relacionados a QEE, incluindo sua auséncia, também é
pesquisado por Lira et al. (2004), em que os autores utilizam as seguintes técnicas: RNAs, TW e
Andlise de Componentes Principais (ACP). Inicialmente os dados de tensdo coletados do sistema de
monitoracdo da CHESF (Companhia Hidrelétrica do Sao Francisco), foram pré-processados em duas
etapas. A primeira utilizando-se da Transformada Wavelet Discreta (TWD) e a segunda, empregando-
se a ACP. Em ambas as etapas o objetivo € o de se alimentar a RNA que classificard os distirbios com
uma entrada pré-avaliada, visando-se aumentar seu indice de acerto. A resposta da RNA foi codificada
de modo a existirem seis saidas correspondentes aos seis tipos de eventos a serem classificados. Nos
ensaios foram empregadas redes MLP (Multi-Layer Perceptron) de uma camada intermedidria. Na
apresentacdo dos resultados foram geradas trés bases de conhecimento em fungdo dos coeficientes
wavelets, decorrentes da primeira etapa do pré-processamento do sinal. Para cada base foram treinadas
trés redes distintas, gerando-se trés casos diferentes a serem analisados. A resposta combinada das trés
redes revela sua importancia quando o objetivo € a classificacdo de fendmenos que concentram

simultaneamente componentes de altas (transitérios) e de baixas freqiiéncias (afundamentos). Nesta
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situacdo foram combinadas as respostas das redes dos casos 2 e 3, proporcionando um indice de acerto
de 99,3%.

Além dos estudos referentes a classificacdo dos distirbios da QEE, as RNAs e a TW sdo
aplicadas quando o objetivo é a deteccdo de defeitos elétricos. Em Silva et al. (2006), o método
desenvolvido tem por objetivo a detec¢do e classificacdo de faltas em um sistema de distribuicao,
também da CHESF, onde se utiliza de RNAs e da TW para distingui-las de outros fendmenos
relacionados a QEE e inerentes a operacdo do sistema elétrico, tais como: afundamentos de tensdo e
transitérios. O método possui dois médulos: médulo de deteccdo e médulo de classificagdo. No
primeiro, através de um sistema interligado com registradores digitais de falta, é realizada a aquisi¢ao
de amostras da forma de onda de corrente e tensdo. Em seguida, ainda no primeiro mddulo, é
calculada a TW (no seu primeiro nivel de decomposicdo) e, finalmente, efetuado o cdlculo da energia
de seus coeficientes. Este processo possibilita a detec¢do do momento em que o curto ocorreu, bem
como a determinacio de sua duragdo, antes da atuagdo do dispositivo de protecio do sistema elétrico.
No segundo moédulo, apds a identificacdo das amostras de corrente e tensdes correspondentes ao
defeito, estas sdo reamostradas (preservando as caracteristicas relevantes do sinal), e a partir de entdo,
a RNA ¢ alimentada por padrdes de entrada gerados por janelas cujo tamanho corresponde ao tempo
de duragdo da falta calculado no médulo de detecgdo. O artigo mostra o emprego de uma rede neural
MLP cujo treinamento foi realizado através de diferentes situacdes de falta empregando-se dados reais
e simulados computacionalmente pelo software ATP. Os resultados mostram um alto indice de acerto
da RNA (98,83%) ao classificar as situagdes de defeito incidentes na linha.

Outro estudo que demonstra a aplicagdo de RNAs e da TW para se classificar faltas em um
sistema elétrico de poténcia pode ser encontrado em Upendar et al. (2008). O método toma por base as
informacdes colhidas pelos relés digitais e pelos registradores digitais. O tratamento destes dados se da
inicialmente através da decomposicdo do sinal (50 Hz) pela TW até o seu nono nivel de
decomposicdo, utilizando-se dois ciclos completos com 512 amostras. Desses nove niveis de
decomposicao, da-se especial atencdo para o sétimo nivel em que se encontram os segundo e terceiro
harmdnicos. Vérios indices relacionados ao sétimo nivel de decomposi¢do da corrente nas trés fases
foram calculados e usados posteriormente para se alimentar a entrada de uma RNA. Para se encontrar
a arquitetura da RNA, treind-la e verificar seu indice de acerto, foram gerados diversos cendrios de
operagdo, variando-se o tipo de falta, o 4ngulo de insercdo (de 0° a 360°), o valor das impedancias de
faltas e diferentes localizagdes das mesmas. Com as diversas combinacdes entre os pardmetros
apontados e um sistema elétrico de poténcia concebido para se realizar as simulagdes, desenvolveu-se
uma arquitetura para a RNA cujo indice geral de acerto foi de (99,88%).

Estes foram alguns dentre os varios e importantes trabalhos reportados que dizem respeito,
ou que apresentam alguma relacdo com o tema principal deste trabalho de conclusdo de curso.

Para o préximo item, reservam-se alguns apontamentos conceituais sobre RNAs. Técnica

inteligente sobre a qual todo o trabalho foi concebido.
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Capitulo 3 — Redes neurais artificiais

Os estudos acerca das redes neurais artificiais (RNA) tiveram sua origem na neurobiologia
com a investigacdo do funcionamento do cérebro humano. A capacidade do cérebro de processar
informacdes altamente complexas de maneira paralela, o coloca em posi¢do vantajosa em relagdo a
forma de processamento seqiiencial de informa¢des de um computador digital, conferindo-lhe assim
uma maior velocidade em certos processamentos (Haykin, 2001). Visando modelar esta forma peculiar
do cérebro humano em resolver problemas especificos de alta complexidade, surgem as redes neurais
artificiais, implementadas via componentes eletronicos ou programa¢do computacional.

Uma RNA tem a capacidade, assim como o cérebro humano, de armazenar conhecimento
adquirido através de um processo de aprendizagem, modificando as interconexdes existentes entre
suas unidades de processamento (neur6nios) na medida em que interage com o meio através de um
algoritmo de aprendizagem. Estes algoritmos sdo capazes de modificar os pesos sindpticos que
interligam as unidades de processamento até que se alcance um objetivo de projeto. O conhecimento
armazenado por meio das ligacdes sindpticas confere as RNAs a capacidade de generalizagdo, uma de
suas mais intrigantes habilidades. Isto €, a rede é capaz de produzir saidas adequadas para entradas que
ndo estavam presentes durante o processo de aprendizagem.

Outra importante propriedade de um RNA ¢ a tolerancia a falhas, pois seu desempenho se
degrada suavemente em funcdo de condicdes de operacdes adversas, o que a torna um sistema com
certa robustez. Em suma, a rede neural fornece o modelo implicito do ambiente na qual estd inserida e

realiza a funcdo de processamento da informacao de interesse (Haykin, 2001).

3.1 — Modelo nao linear de um neuronio artificial

O neurdnio artificial constitui a unidade fundamental de processamento da informacdo em uma
RNA. Segundo Haykin, (2001) o modelo nao linear de um neurdnio artificial, é constituido por trés
elementos bdsicos: pesos sindpticos, somador e uma funcdo de ativagdo. Na Figura 4 é possivel

observar uma representagdo esquematica simplificada de um neur6nio biolégico, e, na Figura 5, a
representacdo do modelo do neurdnio ndo linear. Nesta dltima, os sinais de entrada de x,até x,

constituem o vetor de sinal de entrada, ou padrdo de ativagcdo, para o neur6nio que antes de serem
submetidos ao combinador linear, estardo sujeitos a uma ponderagdo através dos respectivos pesos

sindpticos. Ainda na Figura 5, tem-se o destaque para o bias que € representado por uma entrada fixa
(x, =+1)de modo que o peso sindptico associado defina sua magnitude (b, ), isto é, w,, =b,. A

funcdo do bias € a de introduzir um limiar de ativagdo para o neurdnio, ou seja, dependendo do valor

bk a saida do combinador linear poderd aumentar ou diminuir a entrada liquida da fun¢do de ativagao,

o0 que acabard por influenciar a saida do neurdnio.
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Figura 4 - Representacio esquematica simplificada de um neuronio biolégico.
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Figura 5 - Modelo nao linear de um neurdnio artificial.

O fluxo da informacdo se dd pelo seguinte percurso: um sinal (x;) na entrada da sinapse (j)

conectada ao neurdnio (k) € multiplicado pelo peso sindptico (wy), sendo (wy;>0) ou (wy; <0). Em

seguida, o sinal ponderado encontra um combinador linear (somador) produzindo o sinal (v;) que

recebe o nome de campo local induzido ou potencial de ativagdo. O campo local induzido € dado por:

m
v, = Zwijj +b,
—
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Finalmente, uma fung¢do de saturacdo chamada de funcdo de ativacdo ¢(-) , limita o valor da

saida do neurdnio (k) em um valor finito em termos do campo local induzido, isto é:

e =¢v) 2)
O processo de aprendizagem em uma rede neural implica na modificacdo dos pardmetros

livres da rede, ou seja, os pesos sindpticos e niveis de bias, de tal forma que ela seja capaz de gerar

uma saida desejada para um determinado padrdo de ativacdo (vetor de entrada).

3.2 — Representacdes graficas de uma RNA

Uma possivel representacdo grafica de uma RNA se da através de grafos orientados de fluxo
de sinal, constituindo uma rede de elos (ramos) orientados que sdo interligados em certos pontos (nés)
(Haykin, 2001). Esta representacdo é uma alternativa ao modelo de blocos funcionais apresentado na
Figura 5, e fornece uma perspectiva mais clara e objetiva do funcionamento de uma RNA. Com este
tipo de representacdo € possivel examinar o fluxo de um determinado sinal, tanto de um neurdnio para
outro, como em cada neurdnio individualmente. A Figura 6 mostra o modelo de um neurdnio sob o
ponto de vista de grafos de fluxo de sinal. O tratamento do elo de ativagdo, que representa uma

transmitancia nao linear, € feito mais adiante no item 3.3.

Elo de ativacao

Elo sinaptico

Figura 6 - Grafo de fluxo de sinal de um neurénio

7

Uma variante da representacdo grafica mencionada acima € a representacdo por grafo
arquitetural, como mostrado na Figura 7. Quando a apresentacdo de uma determinada arquitetura de

uma RNA se faz necessdria, este tipo de representacdo pode se tornar conveniente uma vez que o foco
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¢ a maneira como os neur6nios estdo interconectados, ou seja, como se dd a topologia da RNA. Neste
caso, o fluxo do sinal interno ao préprio neurdnio se torna implicito e a representacdo do modelo
neuronal é novamente simplificada sem perda de generalidade. Um grafo arquitetural apresenta trés
elementos: (1) nés de fonte, que fornecem os sinais de entrada; (2) né computacional, que é a
representacdo do neurdnio; (3) elos de comunicacdo, que realizam a conexdo dos nés de fonte com os

nds computacionais.

Xo=+1
Elo de comunicacao
X1
Yk
2 o >U >
N6 computacional
Xm
Nés de fonte

Figura 7 - Grafo arquitetural de um neuronio.

3.3 — Funcoes de ativacao

Conforme mencionado anteriormente, uma fungio de ativagdo determinard a saida (y,)de

um neurdnio em termos do campo local induzido(y,), de acordo com a Equagdo (2). Na

representacdo por grafos orientados de fluxo de sinal, a funcdo de ativacdo € a transmitancia nao linear
presente no elo de ativagdo da Figura 6. Cinco dos principais tipos de func¢des de ativacdo sdo

apresentadas a seguir.

3.3.1 — Funcao de limiar ou funciao de Heaviside

A fungdo de ativagdo do tipo limiar fornece a saida (y,) do neurbnio a caracteristica da

propriedade do tudo ou nada. Um neur6nio ndo linear contendo a funcdo de ativacdo do tipo limiar é

referido na literatura como sendo o modelo de McCulloch-Pitts (Haykin, 2001). Neste modelo, a saida
(y,) assume valor (y, =1) se o campo local induzido for maior ou igual a zero, e assume valor
(¥, =0) se o campo local induzido for menor do que zero. Sendo assim, tem-se a defini¢do da fungdo

de ativacdo descrita dado um potencial de ativacdo (v), conforme a Equacéo (3). O seu comportamento

pode ser observado na Figura 8.
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1, se v=0

ov) = { 3)

0, se v<0

o(v)

Figura 8 - Comportamento da funcio de ativacio do tipo limiar ou Heaviside.

Por fim, como uma conseqiiéncia da Equacao (3), a saida do neurdnio (k) cujo campo local

induzido vale (V=V;) estard dentro dos seguintes limites:

~ I, se v, 20
Ve 0, se v, <0 )

3.3.2 — Funcio linear por partes.

Esta fungdo de ativacdo se assemelha a uma fun¢do do tipo rampa, obedecendo a uma dada

inclinacdo (&) no intervalo em que ‘Vk‘ <V |, onde VeR. Fora deste intervalo a funcio assume

valor unitdrio para (V; > V) e valor nulo para (V; <_V). Dessa forma a funcio de ativagdo linear

por partes € definida formalmente como sendo:

1, se v2V
pv)=<0v, se -V<yv<V (5)
0, se v<=V

Pode-se notar que quando o fator de ganho (¥) € suficientemente grande, a func¢do de
ativacdo linear por partes se aproxima da fun¢do de limiar. A Figura 9 ilustra o comportamento da

funcdo de ativagdo do tipo linear por partes, definida na Equagao (5).
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P(v)

-V 0 +V V

Figura 9 - Comportamento da funcao de ativaciao do tipo linear por partes.

3.3.3 — Funcao sigméide

A fun¢do de ativagdo do tipo sigmdide, segundo Haykin, (2001) é a funcdo comumente
encontrada em configuracdes de redes neurais artificiais. Ela representa um equilibrio entre o
comportamento de uma fun¢do linear € o de uma fungdo ndo linear. Além disso, o fato de ser
diferencidvel em todo o seu dominio contribui para questdes técnicas, como por exemplo, no
desenvolvimento da teoria de redes perceptron de multiplas camadas. A seguir, tem-se a defini¢do de
uma fun¢do de ativagdo sigmdéide:

1
I+e”

o) = : (6)

na qual (a) é o parametro de inclinac¢do da fun¢do. O comportamento da fun¢do de ativagdo definida

pela Equacdo (6) € apresentado na Figura 10.

p(v)

Figura 10 - Comportamento da funcio de ativacio do tipo sigmdide.
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3.3.4 — Funcao sinal e tangente hiperbdlica

Em geral, é desejdvel que a fungdo de ativacdo ¢(-) assuma valores entre -1 e 1, tornando-se

uma funcdo impar do campo local induzido, conforme se observa na Equagdo (7). A esta fungdo se
denomina funcfo sinal, cuja caracteristica auxiliard na capacidade da RNA em separar os padrdes de
entrada em classes de forma mais conveniente. O comportamento da funcdo sinal dada pela Equagao

(7) esté ilustrado na Figura 11.

1, se v=0

p(v) = (7)
-1, se v<O

o(v)

Figura 11 - Comportamento da funcao de ativacao do tipo sinal.

Da mesma maneira como a fun¢do sinal se d4 como uma fung¢do impar do campo local

induzido, tem-se também, a fungdo tangente hiperbdlica, expressa pela Equacao (8):

@(v) = tanh( v) ®)

Esta funcdo possui papel importante no processo de treinamento de uma rede perceptron de
multiplas camadas via algoritmo de retropropagacdo, uma vez que pode ser capaz de acelerar a
convergéncia do mesmo, no que se diz respeito ao niumero de iteragdes. (Haykin, 2001). A fungdo

tangente hiperbdlica tem seu comportamento ilustrado na Figura 12.
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(V)

Figura 12 - Comportamento da funcao de ativacio do tipo tangente hiperbélica.

3.4 — Arquiteturas de redes neurais artificiais

A arquitetura de uma RNA estd relacionada com a maneira pela qual os neurdnios estdo
distribuidos topologicamente, isto €, a maneira pela qual eles estdo interconectados. As redes neurais
artificiais podem ser divididas em duas principais categorias: as redes de camada tnica e redes de mais
de uma camada, denominadas redes de multiplas camadas. Além disso, a arquitetura de uma RNA
também estd intimamente ligada ao seu tipo de treinamento, uma vez que o algoritmo de treinamento

dependerd do modo como estdo distribuidas as conexdes entre 0s neurdnios da rede.

3.4.1 — Redes de camada inica

A arquitetura de camada unica alimentada adiante (feedfoward) apresenta uma camada de
entrada (n6s de fonte) e uma camada de saida, ou seja, a camada que contém os nds computacionais é
a propria camada de saida da RNA, conforme mostra a Figura 13. Como exemplos de redes de camada
Unica existentes citam-se a rede Perceptron e a ADALINE (adaptative linear element) (Kovéacs,
1996). Ambas sdo capazes de tratar apenas problemas linearmente separaveis, executando tarefas

como, por exemplo, reconhecimento de padrdes linearmente separdveis.
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(nos de fonte)

Figura 13 - Diagrama arquitetural de uma rede de camada tinica alimentada adiante

3.4.1.1 — Perceptron

Conforme pesquisado em Haykin, (2001), o Perceptron de Rosenblatt, ou simplesmente
Perceptron é concebido utilizando-se o modelo de neurdnio nao linear de McCulloch-Pitts contendo
uma funcdo de ativacdo do tipo limiar ou sinal, isto é, limitando abruptamente a saida do neurdnio.
Assumindo-se que a fun¢do de ativacdo utilizada seja a funcio sinal dada pela equacdo (7), a saida do

Perceptron serd y = +1 se o campo local induzido do neurdnio resultar em valor positivo (v > 0),
e, analogamente, serd y = —1 para v < 0, estabelecendo-se assim uma regra para se discriminar os

estimulos de entrada em duas classes, tomando-se os dois diferentes tipos de saidas produzidas pelo

perceptron. Conforme a Equagdo (2) tem-se a representacdo para a saida da rede neural como segue:
y=pv)=¢ ijxj+b , )]
j=1

por esta equagdo, (m) é a dimensdo do vetor de estimulos de entrada x(n)=(x,,x,,"-,X,)

apresentados ao perceptron pertencentes ao n-ésimo padrdo de entrada de treinamento.
Segundo Kovics, (1996) a Equacdo (9) representa um hiperplano (fronteira de decisio) que

divide o espaco euclidiano m-dimensional (R™), definido pelos (m) estimulos de entrada, em duas
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regides (A e B) de tal maneira que x€ A se y > 0 e, no caso complementar, X€ Bcaso y < 0.Em

um caso bidimensional (m=2), o hiperplano se resume a uma reta que separa o plano definido pelas

varidveis x, € x,,conforme ilustra a Figura 14.

x2 A
X X
X X Classe A
X
X
o X
0 x X
0\ X ¥
ClasseB | O O o)
(0)
0 o 0 [ Fronteira de Decisao
2
Z wx; + b=0
j=l

Figura 14 - Representacio de uma fronteira de decisdo para um problema bidimensional

O perceptron € treinado segundo o principio de aprendizado de Hebb, em que a atualizacio

dos seus pesos sindpticos € realizada por um incremento (Aw) dado por:
Aw, =nld(m)—y)-x,(n) . para j=12,-.m (10)

Pela Equacdo (10) € possivel constatar que a alteracdo dos pesos sindpticos € dependente do

produto entre a entrada x(n), do sinal de erro proveniente da diferenca entre a saida desejada e a saida
produzida pelo Perceptron (d(n)—y) , € pelo parametro (7)) que define a taxa de aprendizagem. Se os

padrdes de entrada forem linearmente separdveis, entdo a atualizacdo dos pesos sindpticos cessard
quando o sinal de erro for nulo para todo o conjunto de treinamento (n=N). Conforme demonstrado
por Haykin, (2001), isto ocorrerd para um numero finito de iteragdes, o que garante a convergéncia do

treinamento do perceptron.

3.4.1.2 — Adaptative Linear Element (ADALINE).

Contemporaneamente a Rosenblatt, Widrow desenvolveu a rede ADALINE realizando
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importante contribuicio ao desenvolvimento dos estudos em RNA, introduzindo o principio de
aprendizado denominado regra delta (Koviacs, 1996). Este processo de aprendizagem consiste em um
algoritmo supervisionado para minimizar o erro quadritico médio entre a saida do combinador linear
(campo local induzido) e a saida desejada, obtendo um ponto de minimo através de um processo de
iteracdo local. O erro quadritico médio neste caso é dado como uma fun¢do dos parametros da rede da

seguinte forma:

N 2

E(w) =%Z(d(n)—v(n)) (11)

n=l

Uma vez que o campo local induzido de um neuré6nio é dado pela Equacio (1), obtém-se:

n=1 n=1

2
E(w) =%Z{d(n)—(z WX, +by ﬂ =%Z la(n)— (" - x(n) +b, )]2 (12)
j=1

E3

O ponto de minimo da Equacdo (12) € um ponto (W ) que pode ser obtido realizando-se
ajustes sucessivos do vetor peso (w) na direcdo oposta ao vetor gradiente de E (w) em relacdo ao
vetor de pesos (w) , uma vez que este aponta para a direcdo e sentido em que o crescimento da fungio

E(w) € maior. Sendo assim tem-se:

dor =B =72 <3 (- s+ ) a0

n=l

Reescrevendo-se a Equacdo (13) em uma forma mais simples, obtém-se:
Aw(n)y=n(d(n)-v(n)) x(n) ,paran=12,N (14)

A Equacdo (14) é a chamada regra delta, mostrada na forma em que os pesos sdo ajustados
apods cada padrdo (n) de treinamento ter sido apresentado a rede neural artificial. O parametro (1) € a
taxa de aprendizagem e representa o tamanho do passo em direcdo a descida do vetor gradiente. Pelo
processo matemdtico envolvido, a regra delta também € conhecida como método do gradiente.

Cabe salientar que a principal diferenca entre a rede perceptron e a ADALINE estd no fato
de que a ultima faz a minimizag¢do das distdncias dos padrdes classificados em relacdo a uma tnica
fronteira de decis@o a ser determinada no espago euclidiano m-dimensional. O Perceptron por sua vez,
a cada execucdo do algoritmo de aprendizagem, estard sujeito a encontrar uma fronteira de decisdo

diferente, dependendo da inicializacdo dos pesos sindpticos. Na Figura 15(a), a linha continua e
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tracejada ilustra duas possiveis fronteiras de decisdo que podem ser encontradas pelo Perceptron. Ja

na Figura 15(b), verifica-se que linha continua € a unica fronteira de decisdo a ser determinada pelo

ADALINE.

A
X2 X2
\\ X X
\\\ X X X X
AN X X - Classe A X
\\\ X X X
o AN X O - Classe B
o) X y X y
O \\\\ X O X
00 N\ X 0 X
O \\\ 0
(0] o) \\ 0
o Ny 0
X X1
a) Perceptron b) ADALINE

Figura 15 - Fronteira de decisao: (a) As linhas tracejada e continua ilustram possiveis fronteiras
de decisao; (b) A linha continua representa a vinica fronteira de decisao possivel

3.4.2 — Redes de multiplas camadas

Neste tipo de arquitetura os neurdnios estdo organizados em camadas, com a presenca de
uma ou mais camadas intermediarias entre a camada de entrada e saida, chamadas de camadas ocultas.
Este tipo de configuragdo aumenta a capacidade da RNA em modelar um problema de complexidade
elevada, sendo uma alternativa as redes de camada tnica que sdo mais simples. A Figura 16 exibe o
grafo arquitetural de uma de rede de miiltiplas camadas. Pode-se citar como um exemplo desse tipo de
arquitetura as redes Perceptron Multi-Camadas (PMC) ou Multilayer Perceptron (MLP).

As redes MLP surgiram da necessidade de se classificar padrdes que ndo sdo linearmente
separdveis, como o caso do cldssico problema XOR (Haykin, 2001). Neste caso, o Perceptron
elementar (de camada dnica) deveria ser capaz de executar a tarefa de tracar duas retas como fronteiras
de decisdo com o objetivo de se resolver a funcio booleana do OU exclusivo, ou seja, separando os

padrdes de saida desta fun¢do, conforme ilustra a Figura 17.



27

Y

Y

Y —

Camada de entrada Camada oculta Camada de saida

(nos de fonte)

Figura 16 - Arquitetura de uma rede de miltipla camada alimentada adiante.

X1

Fungao XOR (OU exclusivo)
Entradas Saidas 0.1) <> . (1.1)
X X x @ x,
0 0 0
0 1 1
1 0 1
1 1 0
. N N
(00) 1,0 2

Figura 17 - Ilustraciao do problema XOR

7

O perceptron elementar, devido suas limitacdes, ndo € indicado para a resolucdo de
problemas ndo linearmente separdveis, como o caso do problema XOR, sendo necessario o uso de

redes de miiltiplas camadas para a realizag¢do desta tarefa (Haykin, 2001).

3.4.3 — Treinamento de retropropagacao de erro (back-propagation).

Em Haykin, (2001), o autor cita a ampla utilizacdo do algoritmo de treinamento

supervisionado de retropropagacdo de erro (back-propagation) para se treinar RNAs do tipo MLP.
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Este algoritmo consiste de dois passos: (1) propagacdo (forward) e (2) retropropagacdo (backward).
No primeiro passo um padrdo de entrada é aplicado aos nés de fonte da RNA que permeia todas as
camadas ocultas até encontrar a camada de saida. Nesta fase, ndo hd a modificacio de quaisquer pesos
sindpticos. J4 no segundo passo, a resposta produzida na fase de propagagdo € subtraida da resposta
desejada gerando um sinal de erro, que serd propagado em sentido reverso, contrdrio as direcdes
naturais das conexdes sindpticas. Neste momento, os pesos sindpticos sdo atualizados de modo que a
rede retorne uma resposta mais proxima da desejada.

Sejam os indices (i) e (j) correspondentes a neurdnios pertencentes a camadas subseqiientes,
ou seja, o neurdnio (j) estd em uma camada a direita da camada a que pertence o neurdnio (). Desta
maneira o sinal de erro, na apresentacdo do n-ésimo padrdo de treinamento, quando o neurdnio () é

um né de saida, € dado por:
e;(n)=d;(n)—-y,(n (15)

Ao se tomar todo o conjunto dos neurdnios da camada de saida, que sdo exatamente aqueles
sobre os quais € possivel se calcular o erro quadratico médio, pois sao os tnicos visiveis da RNA, tem-
se:

E(n) =%Z(ej ) (16)

J

O objetivo do algoritmo de retropropagacdo é o de ajustar os pesos sindpticos de maneira a

minimizar o erro quadratico médio ( E ) relativo a todos os padrdes de treinamento, normalizando-os

em relacdo ao tamanho deste conjunto, obtendo-se:

— 1 &
E:NZE(”) (17)

n=l
O referido ajuste dos pesos sindpticos € divido em dois casos: (i) o caso para o qual o
neurdnio (j) € um nd de saida (pertencente a camada de saida); (ii) o caso em que € um né oculto

precedendo um neurdnio (k) da camada de saida.

(i) Ajuste dos pesos sinapticos da camada de saida

Neste caso, similarmente a linha de raciocinio empregada para a derivagdo da regra delta
através da descida do vetor gradiente, conforme demonstrado por Haykin (2001), o algoritmo de
retropropagacdo aplica uma corre¢do ao vetor de pesos do elo sindptico do neurdnio (j) que é dado

por:
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oE
Aw ,(m) =17 avi”) —n8 )y, (s
W,

em que o parametro (#) é agora a taxa de aprendizagem do algoritmo de retropropagacdo e 5J(n) éo

gradiente local que aponta para o ajuste necessdrio ao vetor de pesos, definido como sendo:
q
,m=e,mglv,m) (19)

(ii) Ajustes dos pesos sinapticos das camadas ocultas

Em se tratando de camada oculta, a resposta alvo para a saida de cada neurdnio a ela
pertencente acaba se tornando indefinida, impossibilitando o uso da Equacdo (19) para se determinar o
gradiente local. Sendo assim, pelo desenvolvimento realizado por Haykin (2001), tem-se uma
redefinicdo do gradiente local para neurdnios das camadas ocultas, obtendo-se uma férmula de

retropropagag¢do para 0 mesmo como sendo:

5, =g ,m)> 8 (mw, (20)
k

Ao se analisar a Equagdo (20), observa-se que a ponderagdo dos gradientes locais das

camadas subseqiientes (d{)contribui para a constituicdo do gradiente local do neur6nio (j) pertencente

a camada oculta.
De maneira geral, o algoritmo de retropropagacdo de erro, seguird a regra delta, ajustando os

pesos sindpticos de cada neurdnio (j) em fungao da taxa de aprendizagem (7), do gradiente local (o i)

respeitando as restri¢des para cada caso apresentadas anteriormente, e, finalmente do sinal de entrada

de cada neurdnio (j) advindo do neurdnio (i) da camada precedente.

3.4.4 — Treinamento Levenberg-Marquardt

Uma alternativa ao treinamento executado pelo algoritmo de retropropagacdo de erro é o
treinamento Levenberg-Marquardt. Este tipo de treinamento tem suas bases no algoritmo back-
propagation, porém, apresenta algumas vantagens. O algoritmo back-propagation é fundamentado no
método da descida do gradiente, j4 o algoritmo de Levenberg-Marquardt tem como base a técnica dos
minimos quadrados. Conforme exposto por Fernandes (2009) o treinamento por retropropagacio de
erro guiado pela descida do gradiente, necessita de um nimero considerdvel de iteracdes para
convergir. Além disso, apresenta certa ineficiéncia em localizar o ponto de minimo global da

superficie de erro para problemas mais complexos. Por sua vez, o treinamento Levenberg-Marquardt,
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em virtude de se ser baseado em um método de segunda ordem, possui uma convergéncia
significativamente mais acelerada quando comparada ao treinamento back-propagation, mesmo para
problemas mais complexos.

Durante o treinamento de Levenberg-Marquardt, toda a etapa forward do algoritmo de
retropropagacdo do erro permanece inalterada. J4 na etapa de backward, os cédlculos para ajustes de
peso sdo realizados de forma diferente do back-propagation, pois a funcdo de ajuste dos pesos
representa uma aproximagdo ao método de Newton.

Segundo demonstragdo realizada por Fernandes (2009) o algoritmo de ajuste dos pesos de
Levenberg-Marquardt pode ser derivado do método de Newton, com o objetivo de se minimizar o erro
quadratico médio relativo a todas as (N) entradas de treinamento da rede neural, expresso pela equagdo

(17), que pode ser reescrita em sua forma vetorial como segue:

- 1 < 1< T
E=ﬁ§;(ej(n))2=ﬁ§§(n) -e(n) 1)

A equagdo (21) pode ser vista como sendo um vetor de erros que € funcdo dos pesos

sindpticos (W) da rede, referentes aos (N) padrdes de treinamento apresentados a RNA:

E=§(w)=(610)V)+e20)V)+---+eN(W)) (22)

A equagdo iterativa obtida para o método de treinamento de Levenberg-Marquardt que

ajustard os parametros da rede é:

AW = (I W)- JW)+4d)" - J7 W)+ e(W) L)

sendo (J) a matriz jacobiana derivada do desenvolvimento realizado via método de Newton; (x) € o

parametro de ajuste da taxa de convergéncia do algoritmo e (e simplesmente a matriz identidade. A

equacdo (23) constitui o andlogo a etapa backward do algoritmo de retropropagacio do erro.



31

Capitulo 4 — O sistema elétrico de distribuicao em analise

Para o desenvolvimento da estratégia de monitoramento da tensao em pontos especificos do
sistema de distribuicdo de energia elétrica de uma concessiondria local, empregando redes neurais
artificiais, utilizou-se de uma modelagem computacional, realizada no “software” ATP (Alternative
Transients Program) (Rule Book, 1987). Esta modelagem resulta de estudos e de uma interacdo de
uma equipe do Laboratério de Sistemas de Energia Elétrica (LSEE) da Escola de Engenharia de Sdo
Carlos (EESC-USP), com uma concessiondria de energia regional. Na Figura 18, é possivel visualizar
a disposicdo geografica dos dois alimentadores que constituem o sistema elétrico em estudo neste
trabalho. Apesar de ndo ficar explicito na figura, cabe salientar os alimentadores partem da mesma

subestacao.

5 { —=

R AP s

Alimentador 1 Alimentador 2

Figura 18 - Disposicio geografica dos alimentadores pertencentes a uma subestacio de uma
concessionaria de energia regional sob estudo.

Neste capitulo serdo apresentados alguns aspectos referentes 2 modelagem dos alimentadores
do referido sistema elétrico de distribui¢do. Ressalta-se que uma abordagem aprofundada a respeito da
modelagem do sistema elétrico ndo € pertinente aos objetivos iniciais propostos neste trabalho.
Entretanto, por ser de suma importincia para a formagdo da base de dados utilizada para a

implementagdo computacional e validacdo do algoritmo proposto, aspectos gerais serdo abordados.

4.1 — Modelagem computacional do sistema de distribuicao

O sistema de distribuicdo utilizado neste trabalho foi previamente modelado utilizando-se de

pardmetros de um sistema de distribui¢do real pertencente a uma concessiondria local. Os dois
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alimentadores ilustrados na Figura 18 foram modelados dispondo do “soffware” ATP, via interface

gréfica do ATPDraw (Priklher et al. 2001), sendo esta modelagem ilustrada na figura 19.
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Figura 19 - Aspecto da modelagem computacional dos alimentadores da concessionaria de
energia regional realizada via interface grafica do ATPDraw.

Para a realizacdo desta modelagem, foi necessdria a obteng¢do junto a concessiondria dos

seguintes dados: equivalente do sistema; dados do transformador de poténcia da subestagdo;

pardmetros dos condutores utilizados; dados das cargas alocadas no alimentador, entre outros. A

seguir, serdo apresentadas as principais caracteristicas do sistema de distribui¢do que proporcionaram

sua respectiva modelagem computacional.

A fonte de tensao utilizada € uma fonte senoidal trifasica do tipo 14 (Rule Book, 1987), cujas

caracteristicas para a fase A estdo apresentadas na Tabela 1. O sistema adotado é o ABC,a partir do

qual, as relacdes das demais fases pode ser derivada.
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Tabela 1 - Caracteristicas da fonte de tensdo do SEP utilizada

Parametro Valor

Amplitude 71.851,699 V

Freqiiéncia 60Hz
Fase 0°

Para se completar o modelo do equivalente elétrico do sistema, adicionou-se uma
impedancia em série com a fonte de tensdo, conforme o modelo RL mutuamente acoplado (Rule

Book, 1987) cujos pardmetros para as fases A, B e C estdo apresentados na Tabela 2 como segue:

Tabela 2 - Parametros do modelo RL mutuamente acoplado, disposto em série com a fonte de
tensao do equivalente elétrico.

Parametro Valor
Resisténcia de seqiiéncia zero 20,805 Q/m
Induténcia de seqiiéncia zero 203,721 mH/m

Resisténcia de seqiiéncia positiva 4,062 Q/m
Resisténcia de seqiiéncia positiva 52,5397 mH/m

Para simular o transformador existente na subestacdo de distribuicao, utilizou-se o modelo de
um transformador trifdsico saturdvel com dois enrolamentos (Rule Book, 1987), conforme os dados

que constam da Tabela 3.

Tabela 3 - Caracteristicas do modelo do transformador de poténcia.

Parametro Valor
Poténcia nominal 15/20 MVA
Relacdo de transformacao (a) 3,809524
Corrente nominal do primadrio (I,,) 131,215970 A
Corrente nominal do secunddrio () 499,870363 A
Ligacdo do primdrio Estrela
Liga¢do do secundario Delta
Deslocamento angular 30°
Resisténcia do primério 0,054695 Q
Resisténcia do secundario 0,79376 Q
Induténcia do primario 1,628 mH
Indutancia do secundario 23,6258 mH
Resisténcia de magnetizagio 1 MQ
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No sistema de distribuicio da concessiondria, consta a presenga de dois bancos de
capacitores utilizados para melhorar o perfil da tensdo. Estes dois bancos de capacitores foram
modelados como um elemento capacitivo concentrado ndo acoplado, do tipo zero, conectado em

estrela (Rule Book, 1987), cujos parametros estdo mostrados na Tabela 4.

Tabela 4 - Parametros do modelo empregado para a modelagem dos bancos de capacitores.

Parametro Valor
Capacitancia fase A 5,96521 uF
Capacitancia fase B 5,96521 pF
Capacitancia fase C 5,96521 pF

As cargas alocadas nos alimentadores apresentados foram modeladas como poténcias
constantes, via um elemento RL concentrado ndo acoplado do tipo zero, conectado em delta (Rule
Book, 1987). Devido a extensa quantidade de consumidores presentes nos alimentadores, serdo
apresentadas as caracteristicas de apenas alguns consumidores, dentre estes, as da carga referente ao

ponto de monitoramento de interesse deste trabalho. A tabela 5 trés estas informacdes.

Tabela 5 — Exemplos de dados de carga do sistema de distribuicao.

Carga Resisténcia (Q) Indutancia (mH)

Ponto 1 8179,90 9,243 .10~

Ponto 2 2944,76 3,328x10°
Ponto de Monitoramento 2453,97 2,773)(10’3

Por fim, para completar a modelagem do sistema elétrico de distribuicdo, t€m-se os dados
referentes aos condutores existentes no mesmo. Cada trecho dos alimentadores foi modelado por
valores de resisténcia e indutincia, através de um elemento RL mutuamente acoplado, dos tipos 51, 52
e 53 (Rule Book, 1987). Os condutores pertencentes ao sistema elétrico sdo de aluminio sem alma de
aco com bitolas de 336,4 MCM, 04 AWG, 1/0 AWG, e cabo de rede compacta com 185mm?®. Cada
trecho do sistema, dos vérios existentes, do sistema possui caracteristica propria adequadamente
representada para o correto funcionamento modelo computacional. As Tabela 6 e 7 contém parametros

de dois trechos dos alimentadores para a sequéncia zero e sequéncia positiva, respectivamente.
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Tabela 6 — Tabela contendo parametros de dois trechos de condutores dos alimentadores para

sequéncia zero.

Trecho Distancia (m) Cabo R, (Q) Lo, (mH)
I 124,2 336,4 MCM 0,045972 0,251375
1I 573,4 1/0 AWG 0,449227 1,18634

Tabela 7 — Tabela contendo parametros de dois trechos de condutores dos alimentadores para

sequéncia positiva.

Trecho Distancia (m) Cabo R; (Q) L; (mH)
I 124,2 336,4 MCM 0,023995 0,038526
1I 573,4 1/0 AWG 0,347767 0,20367
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Capitulo 5 - Base de treinamento para a RNA e estratégia de
monitoramento da tensiao

Conforme anteriormente apresentado, este trabalho tem por objetivo o monitoramento
remoto dos niveis de tensdo de um determinado ponto da rede de distribui¢do por uma RNA. Tal
monitoramento se dard a partir de informacdes obtidas com o monitoramento da subestacdo. Todos os
procedimentos que foram realizados para se alcangar este objetivo sao explicitados neste capitulo.

Primeiramente, serdo apresentados os procedimentos realizados, empregando-se o sistema
elétrico de distribuicdo sob andlise, para a obtencdo da base de dados utilizada. Posteriormente,
apresenta-se a RNA que foi empregada para realizar o monitoramento, e em seguida, os resultados

obtidos pela metodologia de monitoramento proposta.

5.1 — Obtencao da base de dados de treinamento para a RNA

5.1.1 - Simulacio das situacoes de defeitos

Para a obtenc¢do da base de treinamento da RNA que ird monitorar os niveis da tensdo eficaz
no ponto de interesse, foram simuladas vdrias situagdes de faltas monofésicas, envolvendo a fase A do
sistema modelado (Figura 20). Para tanto, foram selecionados vinte pontos de faltas dispostos ao longo
do sistema de distribuicdo. Esses pontos foram selecionados de forma a possibilitar uma boa variedade
de distancias de falta em relacdo ao ponto a ser monitorado. Para cada ponto de falta, variou-se a
impedancia e o angulo de falta, medindo-se a tensdo resultante na subestacdo e no ponto a ser
monitorado via RNA. A Tabela 8 ilustra os pardmetros variados nas simulagdes. Deve-se salientar que
a dltima coluna da Tabela 8 representa o niimero de situagdes de curtos-circuitos simulados em cada
ponto resultante da combina¢do dos pardmetros das outras colunas.

Na Figura 20 estdo explicitados os pontos de aplicacdo das faltas (realgcados em vermelho), e
os locais de monitoramento de tensdo, na subestacdo e no ponto a ser monitorado remotamente pela
RNA (realcado em verde). O ponto a ser monitorado, real¢ado na Figura 20, diz respeito a uma carga
com caracteristicas peculiares, apontada segundo estudos anteriormente realizados pelo grupo de
pesquisas do LSEE (EESC-USP). Sua distincia considerdvel em relagdo a subestacdo o faz ser mais
susceptivel a influéncia da operacdo do restante do sistema, e torna a regulacdo de tensdo mais
complicada.

Cabe salientar que um estudo mais apurado para uma melhor escolha dos pontos de
aplicagdo das faltas pode ser realizado, o que resultard em uma melhor representatividade do sistema
como um todo, gerando uma base de dados mais completa para o treinamento das RNAs responsaveis

pelo monitoramento da tensido no ponto remoto.
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Apds as simulacdes de cada situagdo de falta, conforme o procedimento anteriormente

explicado, procedeu-se a

formagdo dos padrdes de entrada da RNA, obtidos a partir das tensdes e

correntes trifdsicas na subestacdo, e das respectivas saidas associadas, que por sua vez sdo obtidas das

tensdes trifdsicas no ponto de monitoramento remoto. Inicialmente, parte destes dados serd utilizada

para o treinamento da RNA e, posteriormente, diferentemente dos utilizados para o treinamento, a

outra parte serd empregada para a validacdo e teste da metodologia proposta.
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Figura 20 - Visao geral dos pontos de aplicacdo da falta e de monitoramento da tensao.

Para a formacdo dos padrdes de entrada, foram selecionados trés ciclos precedentes e seis

ciclos subseqiientes ao instante de inicio de cada defeito dos sinais de tensdo e corrente em cada uma

das fases do sistema trifdsico, medidos na subestacdo. Sobre estes sinais, amostrados a uma taxa de

128 amostras por ciclo na freqiiéncia fundamental do sistema (60 Hz), utilizou-se uma janela

deslizante de dimensdo de um ciclo, com deslocamento de meio ciclo (64 amostras). A cada




39

deslocamento da janela, foram calculados os respectivos valores eficazes (rms) da tensdo e corrente
nas trés fases, resultando assim, em seis valores (trés de tensao e trés de corrente) de entrada. Deste
modo, os eventos de QEE da forma como sdo percebidos na subestagcdo, foram apresentados como
padrdo de entrada a RNA.

Para exemplificar o processo de janelamento referido, considere um sinal amostrado com 16
amostras por ciclo, considerando 60Hz como a freqiiéncia fundamental, conforme mostrado na Figura
21. Nesta figura observa-se um deslocamento de meio ciclo da janela sobre a forma de onda, ou seja,
os pontos delimitados pelo retingulo verde representam um deslocamento de meio ciclo da janela em
relacdo aos pontos delimitados pelo retangulo vermelho. Cada retdngulo contém 16 amostras, e o
deslocamento da janela deslizante ¢ de meio ciclo, isto é, de 8 amostras. Este processo de
deslocamento € realizado sucessivamente até o fim do sinal, de modo que para 2 ciclos, neste
exemplo, serdo obtidas 3 janelas, e, conseqiientemente, 3 padrdes de valores eficazes. Observe que
neste exemplo, obtém-se os padrdes para apenas uma entrada da rede. Na estratégia de monitoramento
proposta neste trabalho, este procedimento sera realizado para 6 formas de onda (trés de tensdo e trés
de corrente), conforme dito anteriormente.

A escolha de 3 ciclos de pré-falta pode ser justificada pelo fato de que o sistema simulado
opera em condi¢des de regime, € uma maior amostragem dos sinais durante este periodo poderia se
caracterizar como desnecessdria. J4 para o periodo de pds-falta, foram amostrados mais ciclos (6
ciclos), uma vez que se espera um comportamento transitério do sistema elétrico apds o instante de
aplicacdo da falta. Em geral, da andlise das simulacGes efetuadas, o comportamento transitério cessa
pouco antes do término dos 6 ciclos de pds-falta, indicando que nos demais ciclos o comportamento
dos sinais tende a se estabilizar.

Da maneira como foram simuladas, entre o instante de inicio de cada curto-circuito até o seu
fim, tem-se um total de 9 ciclos, obtendo-se entdo, 17 padrdes de entrada (valores eficazes resultantes
da janela deslizante) a serem apresentados 2 RNA decorrentes de cada situacdo de defeito simulada.
Dessa maneira, com 200 casos de faltas simuladas, o banco de dados construido possui 3.400 padrdes
de entrada.

Para a obtencdo dos padrdes de saida, aplicou-se o mesmo procedimento utilizado para a
obtencdo das entradas aos sinais de tensdo das trés fases sobre o ponto de monitoramento remoto,
obtendo-se os respectivos 3.400 padrdes de saida. Do total de padrdes obtidos (3.400 padrdes), 2.380
(70%) foram utilizados para o treinamento da RNA e 1.020 (30%) diferentes padrdes, foram

reservados para validagao.



Tabela 8 - Configuracio para a obtencio da base de treinamento para a RNA.
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Ponto de aplicacio da | Impedancias de falta Angulo de falta
Total
falta Q) (°)
1 0; 10; 20; 30 e 40 0e90 10 casos
2 0; 10; 20; 30 e 40 0e90 10 casos
3 0; 10; 20; 30 e 40 0e90 10 casos
4 0; 10; 20; 30 e 40 0e90 10 casos
5 0; 10; 20; 30 e 40 0e90 10 casos
6 0; 10; 20; 30 e 40 0e90 10 casos
7 0; 10; 20; 30 e 40 0e90 10 casos
8 0; 10; 20; 30 e 40 0e90 10 casos
9 0; 10; 20; 30 e 40 0e90 10 casos
10 0; 10; 20; 30 e 40 0e90 10 casos
11 0; 10; 20; 30 e 40 0e90 10 casos
12 0; 10; 20; 30 e 40 0e90 10 casos
13 0; 10; 20; 30 e 40 0e90 10 casos
14 0; 10; 20; 30 e 40 0e90 10 casos
15 0; 10; 20; 30 e 40 0e90 10 casos
16 0; 10; 20; 30 e 40 0e90 10 casos
17 0; 10; 20; 30 e 40 0e90 10 casos
18 0; 10; 20; 30 e 40 0e90 10 casos
19 0; 10; 20; 30 e 40 0e90 10 casos
20 0; 10; 20; 30 e 40 0e90 10 casos
Total --- - 200 casos
10—
1 —
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Figura 21 — Aspecto do processo de janelamento.
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5.2 — Estratégia proposta para monitoramento da tensao

O monitoramento da tensdo no ponto de interesse se dard com a utilizacdo de trés RNAs
distintas, uma para cada fase. Cada uma das trés RNAs utilizadas recebe como padrio de entrada os
valores eficazes dos sinais de tensdo e corrente das trés fases conforme explicitado na Secdo 5.1.2, ou
seja, cada uma das RNAs recebe seis valores de entrada. Cada uma das RNAs fornece como saida o
valor eficaz de tensdo em uma das fases no ponto de monitoramento remoto, ou seja, uma RNA ¢é
responsdvel por estimar o valor da tensdo para a fase A no ponto remoto, outra € responsdvel pela
estimacdo da fase B e outra pela fase C. Desta forma ndo serd necessdria a instalagdo de medidores
para se monitorar a situacdo das tensdes no ponto de interesse, pois estas serdo estimadas pelas RNAs
a partir dos valores medidos na subestag¢do. A Figura 22 ilustra mais claramente esta configuracao.

E necessdrio ressaltar que na Figura 22 est4 ilustrada apenas uma das trés RNAs empregadas
para o monitoramento remoto das trés fases do sistema trifdsico. Esta configuracio ¢ utilizada para as
trés fases do sistema, de modo que seja possivel o monitoramento da tensdo conforme anteriormente
explicado.

Sendo assim, a RNA de uma dada fase recebera como entrada os sinais de tensdo e corrente
eficazes medidos na subestacdo, devendo fornecer o valor eficaz de tensdo para a respectiva fase no
ponto remotamente monitorado. Este arranjo € considerado para as demais fases, de modo que se
obtenham as tensdes eficazes das trés fases no ponto remoto, através de trés RNAs. Além disso, os
indices dos neurdnios das camadas ocultas representados na Figura 22 indicam, respectivamente, a
camada e seu neurdnio associado, de acordo com a arquitetura adotada (6 entradas, 15 neur6nios na
primeira camada oculta, 10 neur6nios na segunda camada oculta e 1 neur6nio na camada de saida).

As redes neurais mencionadas sio redes PMC, possuindo as trés, a mesma arquitetura. A
escolha da melhor arquitetura foi feita através de uma investigacdo do desempenho geral de diversas
arquiteturas de RNAs, variando-se o ndmero de neurdnios das camadas ocultas e o algoritmo de
treinamento. Esta investigacdo foi realizada inicialmente para a RNA que monitora a fase A até se
encontrar a arquitetura que apresentasse as melhores respostas para esta fase. O treinamento das RNAs
responsdveis pelo monitoramento das demais fases (B e C) foi realizado com base na arquitetura
encontrada durante a investigacdo efetuada para a fase A. A seguir, apresenta-se a investigacdo
realizada para encontrar a melhor arquitetura utilizando-se inicialmente o algoritmo de treinamento
back-propagation e em seguida o algoritmo Levenberg-Marquardt serd também empregado com os

mesmos propositos.
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Medido na Subestacio
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Figura 22 - Figura esquematica representando a RNA empregada em uma das fases do sistema
trifasico.

5.2.1 - Treinamento da RNA com o algoritmo back-propagation.

Inicialmente, a investigacdo em busca da melhor arquitetura para as redes neurais em
questdo, foi realizada treinando-se a RNA para a fase A com o algoritmo de retropropagacio de erro
(back-propagation). Cada arquitetura de rede investigada foi treinada cinco vezes (ensaios de 1 a 5),
adotando-se como critérios de parada atingir um erro médio quadratico (EQM) menor do que 10 ,ou
o nimero de épocas de treinamento superior a 6.000 épocas. Este procedimento foi necessirio na
medida em que a inicializag@o aleatdria dos pesos sindpticos pode levar a desempenhos diferenciados.
As Tabelas de 9 a 16, apresentam as porcentagens dos erros relativos aos casos de teste, tomados com
relacdo ao valor eficaz da tensdo desejada (esperada) no ponto de monitoramento remoto, para as

seguintes faixas de erro:

(i) abaixo de 0,005p.u. (ou 0,5%);

(i1) acima de 0,005p.u (0,5%) e abaixo de 0,015p.u.(1,5%);
(ii1) acima de 0,015p.u. (1,5%) e abaixo de 0,025 p.u. (2,5%);
(iv) abaixo de 0,03p.u. (ou 3%).

Para a Tabela 9, os erros se referem a resposta apresentada por uma arquitetura PMC sendo
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alimentada com os seis (6) valores eficazes (tensdes e correntes trifdsicas), contendo duas camada
ocultas (intermedidrias) com 10 e 5 unidades de processamento nas camadas ocultas, e uma (1)
unidade como saida. Para as demais tabelas (8 a 14), a mesma notacio serd empregada.

Na Tabela 9, por exemplo, para o ensaio de nimero 1, 3,73% dos casos de teste analisados
apresentaram um erro no valor eficaz desejado menor do 0,005p.u. J4 para 8,63% dos casos, o erro
apresentado foi maior ou igual a 0,005p.u. e menor do que 0,015p.u. Para a faixa do erro maior ou
igual a 0,015p.u. e menor ou igual a 0,025p.u., 9,41% dos casos foram incidentes. Para 21,76% de
todos os casos de testes que foram avaliados, uma resposta com erro de até 0,03p.u. foi apresentada.
Cabe afirmar que a magnitude do maior erro observado para este ensaio foi de 0,346p.u., como
relatado na dltima coluna desta tabela. Logo, conclui-se que para este ensaio, esta arquitetura deixou a
desejar na precisdo das respostas apresentadas. Ainda na Tabela 9, observa-se que a melhor resposta
decorre do ensaio 5, visto que 65,39% de todos os casos avaliados apresentaram uma resposta com um
erro menor do que 0,03p.u. para o valor da tensao eficaz monitorada.

Esta compreensao dos valores apresentados se estende aos demais ensaios (2 a 5) e Tabelas

(10 a 16).

Tabela 9 — Resultados do treinamento back-propagation para RNA da fase A com arquitetura

6-10-5-1.
Ensaio Err0<é)l;/z))05p.u. 0,00SSErE((;;0,0ISp.u. 0,015< Er(r;§0,025p.u. SO,](E):’jr‘r()op,u, M;irilétru:g ;10
(%) (p.u.)
1 3,73 8,063 9,41 21,76 0,346
2 10,1 46,57 6,96 63,63 0,31
3 31,47 4,02 8,14 43,63 0,314
4 32,94 9,8 20,59 63,33 0,257
5 40,39 9,71 15,29 65,39 0,372
Médias 23,73 15,75 12,08 51,55 0,32

Tabela 10 — Resultados do treinamento back-propagation para RNA da fase A com arquitetura

6-14-7-1.
Ensaio Err0<2,72))05p.u. 0,00SSErE((;)0,0ISp.u. 0,015< Er(rl;:§0,025p.u. SO,](E):;rOOp.u_ Mrilliril(l)truélre; (;10

(%) (p-u)

1 42,55 17,35 9,71 69,61 0,702

2 35,49 16,37 7,65 59,51 0,389

3 5,88 41,57 10,49 57,94 0,395

4 35,69 20,39 11,47 67,55 0,263

5 39,12 15,69 12,94 67,75 0,49
Médias 31,75 22,27 10,45 64,47 0,448
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Tabela 11 — Resultados do treinamento back-propagation para RNA da fase A com arquitetura

6-15-10-1.
Ensaio Err0<(0(,7£))05p.u. 0,00SSErE((;:)0,0lSp.u. 0,015< Er(r;g0,0ZSp.u. so,](?};r(;)p,u, M;ilil(l)tru:re; c()lo
(%) (p-u)
1 39,02 18,04 13,63 70,69 0,472
2 36,37 11,08 11,86 59,31 0,59
3 10,69 50,1 8,63 69,41 0,52
4 6,57 4941 13,24 69,22 0,725
5 41,08 18,73 10,98 70,78 0,31
Médias 26,75 29,47 11,67 67,88 0,523

Tabela 12 — Resultados do treinamento back-propagation para RNA da fase A com arquitetura

6-20-10-1.
Ensaio Err0<?(,%()))05p.u. 0,00SSErE((;:)0,0lSp.u. 0,015< Er(r((ygo,025p.u. SO,IS?OOp,u, M;i?étrugrer (;10

(%) (p.u.)

1 45,49 15,59 8,53 69,61 0,594

2 39,02 18,04 13,63 70,69 0,472

3 36,37 11,08 11,86 59,31 0,590

4 10,69 50,1 8,063 69,41 0,520

5 6,57 49,41 13,24 69,22 0,725
Médias 27,63 28,84 11,18 67,65 0,580

Tabela 13 — Resultados do treinamento back-propagation para RNA da fase A com arquitetura

6-20-15-1.
Ensaio Erro<2,7£))()5p.u. 0,00SSEr(r((;:)0,0lSp.u. 0,015< Er(r(;S0,0ZSp.u. so,g};(;)p,u, Mrzrllirilétruéirer (();10
(%) (p-u)
1 12,45 43,04 9,9 65,39 0,343
2 43,73 18,14 7,55 69,41 0,67
3 40,78 16,18 11,86 68,82 0,432
4 42,84 13,24 10,69 66,76 0,565
5 39,61 15,88 8,04 63,53 0,673
Médias 35,88 21,29 9,61 66,78 0,536
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Tabela 14 — Resultados do treinamento back-propagation para RNA da fase A com arquitetura

6-25-15-1.
Ensaio Err0<2,72))05p.u. 0,00SSErE((;)0,0lSp.u. 0,015< Er(r(;:§0,025p.u. SO,](E):’JI:r()Op,u, M;g;lrilétrugrer (;10

(%) (p-u.)

1 44,41 16,96 11,86 73,24 0,315

2 36,08 16,86 14,31 67,25 0,62

3 35,59 18,92 14,8 69,31 0,401

4 36,86 22,65 13,53 73,04 0,888

5 43,43 14,61 14,9 72,94 0,231
Médias 39,27 18 13,88 71,16 0,491

Tabela 15 - Resultados do treinamento back-propagation para RNA da fase A com arquitetura

6-30-20-1.
Ensaio Erro<3£)05p.u. 0,00SSEr(r(o;)0,0lSp.u. 0,015< Er(r(;}?0,0ZSp.u. so,gg(;)p,u, M;%]Iil(l)tru:re; ;10
(%) (p.u.)
1 34,71 19,12 10,88 64,71 0,466
2 41,76 14,71 15,39 71,86 0,436
3 42,84 18,24 10,88 71,96 0,51
4 43,53 20,39 9,71 73,63 0,448
5 42,94 19,71 5,2 67,84 0,411
Médias 41,16 18,43 10,41 70 0,454

Tabela 16 — Resultados do treinamento back-propagation para RNA da fase A com arquitetura

6-40-30-1.
Ensaio Erro<3£)05p.u. 0,00SSEr(r(o;)0,0lSp.u. 0,015< Er(r(;}?0,0ZSp.u. So’lg;?p.u. M;i?étrugrer ;10
(%) (p.u.)
1 21,37 30,78 13,43 65,59 0,272
2 44,51 18,53 10,10 73,14 0,93
3 37,25 14,22 12,94 64,41 0,526
4 33,63 19,9 13,33 66,86 0,567
5 32,84 22,75 14,51 70,1 0,307
Médias 21,37 30,78 13,43 65,59 0,272

E possivel observar que da Tabela 9 até a 11, o desempenho geral da rede melhorou na

medida em que se aumentou a quantidade de neurdnios nas camadas ocultas. Ou seja, a porcentagem

de erros menores do que 0,03p.u. aumentou com o nimero crescente de neurdnios nas camadas

ocultas.

Nas tabelas de 12 a 15, observa-se que o desempenho permaneceu praticamente constante,

ou apresentou uma melhora pouco consideravel. Por fim na tabela 16, que possui a maior quantidade

de neurdnios, constata-se a diminui¢do do desempenho geral da rede.

Mediante ao observado, elegeu-se a arquitetura da tabela 14, que foi a que obteve melhor
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desempenho, para analisar qual seria a influéncia de um aumento da quantidade de épocas de

treinamento no desempenho geral. Desta forma, estabeleceu-se como critério de parada para o novo

. . -6 z zo:
treinamento para esta arquitetura, o EMQ ser menor do que 107, e/ou um nimero méaximo de

treinamento de 20.000 épocas. O resultado deste treinamento deu-se como segue na Tabela 17.

Tabela 17 - Resultados do treinamento back-propagation para RNA (20.000 épocas de

treinamento) da fase A com arquitetura 6-25-15-1.

Ensaio Err0<2,%(7))()5p.u. 0,00SSEr(r((;)0,0lSp.u. 0,015< Er(r;i0,0ZSp.u. SO,IS;rOOp.u, Mrérllirilcl)tru;irer ;10
(%) (p.u.)
1 41,57 13,24 17,35 72,16 0,447
2 43,04 22,84 7,06 72,94 0,611
3 42,35 19,8 11,67 73,82 0,218
4 47,55 17,94 10,1 75,59 0,578
5 34,9 24,12 16,47 75,49 0,666
Médias 41,88 19,59 12,53 74 0,504

Observa-se, portanto, que mesmo com 14.000 épocas de treinamento a mais do que o

treinamento inicial, o desempenho geral teve pouca melhoria.

Apesar do baixo desempenho apresentado com este tltimo treinamento para os resultados

relativos a fase A, aplicou-se a mesma arquitetura para realizar o treinamento das redes responséveis

pelo monitoramento das fases B e C. Esta arquitetura (6 — 25 — 25 — 1), com 20.000 épocas de

treinamento como critério de parada, foi reproduzida para as demais redes pois apresentou o melhor

desempenho dentre todos os testes realizados. Os resultados obtidos para as demais fases sdo

apresentados nas Tabelas 18 e 19.

Tabela 18 — Resultados do treinamento back-propagation para RNA (20.000 épocas de

treinamento) da fase B com arquitetura 6-25-15-1.

Ensaio Erro<§)(,%(7))05p.u. 0,00SSEr(r(o%<)0,015p.u. 0,015< Er(r((y:}?0,0ZSp.u. SO,I(:;;rOOp_u_ M;lilil(l)trusre; éio

(%) (p.u.)

1 42,75 24,22 9,9 76,86 0,184

2 45,39 20,98 14,8 81,18 0,284

3 47,55 13,24 15,39 76,18 0,264

4 40,39 25,88 14,8 81,08 0,195

5 45,69 17,45 13,73 76,86 0,239
Médias 4435 20,35 13,73 78,43 0,230
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Tabela 19 - Resultados do treinamento back-propagation para RNA (20.000 épocas de

treinamento) da fase C com arquitetura 6-25-15-1.

Ensaio Err0<2,%(]))05p.u. 0,00SSEr(r;:)0,0lSp.u. 0,015< El’(r((y:§0,025p.u. SO,](E):’Jr‘r()Op,u, Mririliril(l)trugrf; éio
(%) (p-u.)
1 51,47 24,51 10,49 86,47 0,240
2 57,84 18,92 9,51 86,27 0,174
3 46,47 26,76 11,47 84,71 0,2
4 47,16 26,18 13,14 86,47 0,278
5 60,29 18,33 9,51 88,14 0,163
Médias 52,65 22,94 10,82 86,41 0,211

Percebeu-se que o desempenho também ndo foi satisfatério para o monitoramento das fases
B e C, e que o aumento do nimero maximo de épocas de treinamento possibilitou ganho moderado no
desempenho das redes. Mediante os testes realizados, concluiu-se que um novo tipo de treinamento
deveria ser utilizado a fim de verificar se ocorreria uma melhora no desempenho da RNA. O
treinamento realizado foi através do algoritmo de Levenberg-Marquardt que serd apresentado na
proxima secao.

Uma atencgao especial aos erros que se situaram abaixo de 0,03p.u. se fez necessaria de modo
a tornar possivel a observacdo do indice geral de acerto das RNAs. Tomando-se as outras faixas de
erro, constata-se que a correlagdo existente entre o aumento do nimero de neur6nios nas camadas
ocultas e o aumento do indice de acerto se faz menos presente, o que dificulta a investigag@o acerca da

melhor arquitetura de rede a ser adotada.

5.2.2 — Treinamento da RNA com o algoritmo Levenberg-Marquardt

De maneira andloga ao procedimento realizado para o treinamento back-propagation,
realizou-se o treinamento de Levenberg-Marquardt, adotando como critérios de parada um o EMQ
menor do que 10 e/ou um niimero total de épocas de treinamento superior a 800 épocas. As Tabelas
de 20 a 27 revelam os resultados obtidos para os vérios testes realizados com o intuito de se encontrar
a melhor arquitetura da RNA para a fase A.

Tabela 20 — Resultados do treinamento Levenberg-Marquardt para RNA da fase A com
arquitetura 6-10-5-1.

Ensaio Err0<2,%()))05p.u. 0,00SSErE((;:)0,0ISp.u. 0,015< Er(r((ygo,025p.u. SO,](E):’Jr‘r()Op,u, M:Iiliril(l)trugrf; éio

(%) (p-u)

1 70,2 18,43 5,88 94,51 3,696

2 70,29 18,63 5,98 949 0,336

3 69,61 18,82 5,29 93,73 0,621

4 69,41 20,2 3,53 93,14 0,974

5 73,53 11,37 8,53 93,43 0,362
Médias 70,61 17,49 5,84 93,94 1,198
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Tabela 21 — Resultados do treinamento Levenberg-Marquardt para RNA da fase A com

arquitetura 6-14-7-1.

Ensaio Erro<0,005p.u. 0,005<Erro<0,015p.u. 0,015< Erro<0,025p.u. SO,](E):’:I:r()Op,u, M:Iiliril(l)trugre; éio

(%) (%) (%) (%) (p.u)

1 70,78 15,29 4,31 90,39 0,56

2 76,27 12,25 2,35 90,88 0,62

3 78,04 12,16 4,02 94,22 0,346

4 76,86 12,84 2,84 92,55 1,495

5 80,29 11,27 2,45 94,02 0,479
Médias 78,58 12,06 2,65 93,28 0,987

Tabela 22 — Resultados do treinamento Levenberg-Marquardt para RNA da fase A com
arquitetura 6-15-10-1.

Ensaio Err0<2;/£))05p.u. 0,00SSEr(r;:)0,0ISp.u. 0,015< Er(r((ygo,025p.u. SO,](E):’:I:r()Op,u, M:Iiliril(l)trugre; éio

(%) (p-u)

1 81,27 11,08 3,04 95,39 0,863

2 82,06 11,67 1,67 95,39 4,365

3 78,92 11,67 1,86 92,45 0,56

4 75,78 12,75 3,14 91,67 0,694

5 81,76 10,2 1,96 93,92 5,757
Médias 79,96 11,47 2,33 93,76 2,448

Tabela 23 — Resultados do treinamento Levenberg-Marquardt para RNA da fase A com
arquitetura 6-20-10-1.

Ensaio Erro<2,%(j))05p.u. 0,00SSEr(r(o;)0,0lSp.u. 0,015< Er(r(;S0,0ZSp.u. SO,]ggrOOp_u_ Mrillilil(l)trusre; éio
(%) (p.u.)
1 78,14 11,86 4,61 94,61 3,301
2 78,43 9,12 3,73 91,27 0,8
3 78,63 11,08 3,92 93,63 0,569
4 77,94 11,18 2,25 91,37 0,56
5 84,41 7,35 2,84 94,61 1,929
Médias 79,51 10,12 3,47 93,1 1,432
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Tabela 24 — Resultados do treinamento Levenberg-Marquardt para RNA da fase A com
arquitetura 6-20-15-1.

Ensaio Err0<0,005p.u. | 0,005<Erro<0,015p.u. | 0,015< Erro<0,025p.u. SO,](E)::’I;I;)Op.u. M;g;i‘(‘)tr“géfo
(%) (%) (%) o o
1 82,55 5,29 2,55 90,39 1,028
2 80,59 10,69 3,14 94,41 1,185
3 78,53 9,71 4,61 92,84 1,874
4 77,65 15,98 1,47 95,1 1,784
5 75,29 13,92 2,55 91,76 0,733
Médias 78,92 11,12 2,86 92,9 1,321

Tabela 25 — Resultados do treinamento Levenberg-Marquardt para RNA da fase A com
arquitetura 6-25-15-1.

Ensaio Erro<0,005p.u. 0,005<Erro<0,015p.u. 0,015< Erro<0,025p.u. SO,](E):’:I:r()Op,u, M:Iiliril(l)trugre; éio

(%) (%) (%) ) o)

1 71,75 13,04 2,16 92,94 1,921

2 83,24 7,55 3,14 93,92 3,364

3 77,35 13,04 5 95,39 1,73

4 80,69 8,63 1,96 91,27 1,75

5 79,9 10,88 2,65 93,43 1,702
Médias 80,29 9,75 2,3 92,35 1,726

Tabela 26 — Resultados do treinamento Levenberg-Marquardt para RNA da fase A com
arquitetura 6-25-20-1.

Ensaio Erro<2,%(j))05p.u. 0,00SSEr(r(o;)0,0lSp.u. 0,015< Er(r(;S0,0ZSp.u. SO,]ggrOOp_u_ Mrillilil(l)trusre; éio
(%) (p.u.)
1 80,1 12,16 1,76 94,02 0,556
2 80,98 9,22 3,43 93,63 4,582
3 77,84 9,8 5,2 92,84 1,499
4 82,45 8,82 2,16 93,43 0,759
5 81,18 9,12 3,73 94,02 0,585
Médias 81,81 8,97 2,94 93,73 0,672
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Tabela 27 — Resultados do treinamento Levenberg-Marquardt para RNA da fase A com

arquitetura 6-30-20-1.

Ensaio Err0<2;/£))05p.u. 0,00SSEr(r;:)0,0ISp.u. 0,015< Er(r((ygo,025p.u. SO,](E):’JI:r()Op,u, Mririliril(l)trugre; éio

(%) (p-u.)

1 80,78 9,22 1,96 91,96 4,18

2 81,96 11,47 1,86 95,29 0,47

3 78,33 10,88 4,71 93,92 3,18

4 79,22 9,8 5,2 94,22 0,74

5 78,33 10,88 4,71 93,92 3,18
Médias 79,73 10,45 3,69 93,86 2,35

Em geral, na grande maioria dos testes realizados, observou-se que este treinamento

propiciou resultados melhores, quando comparados com o treinamento back-propagation. E possivel

depreender das Tabelas 22 e 26 que tanto a arquitetura 6—15-10-1 como a 6-25-20-1, apresentaram

os melhores desempenhos, com 93,76% e 93,72% dos erros menores do que 0,03 p.u. (ou 3%).

Observa-se entdo que o aumento de neurdnios nas camadas ocultas pouco influencia o resultado geral

da rede, como se nota nos resultados da Tabela 27.

Por esta razdo, ambas as arquiteturas foram treinadas para as redes das fases B e C, afim de

se verificar qual o melhor resultado englobando-se as trés fases. Além disso, vé-se claramente a

influéncia do treinamento de Levenberg-Marquardt, mostrando-se ser mais adequado do que o back-

propagation para o problema abordado. As Tabelas de 28 a 31 apresentam os resultados obtidos paras

as fases B e C com as duas arquiteturas selecionadas (6—15-10-1 e 6-25-20-1) para a nova etapa de

teste.

Tabela 28 — Resultados do treinamento Levenberg-Marquardt para RNA da fase B com
arquitetura 6-15-10-1.

Ensaio Err0<2;/£))05p.u. 0,00SSEr(r;:)0,0ISp.u. 0,015< Er(r((ygo,025p.u. SO,](E):’:I:r()Op,u, Mririliril(l)trugre; éio

(%) (p-u.)

1 85,59 9,22 2,75 97,55 0,43

2 85 11,47 1,57 98,04 0,768

3 81,76 10,88 1,67 94,31 7,661

4 85,59 8,82 2,45 96,86 0,228

5 81,86 13,73 1,67 97,25 1,963
Médias 83,96 10,82 2,02 96,8 2,21
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Tabela 29 — Resultados do treinamento Levenberg-Marquardt para RNA da fase B com
arquitetura 6-25-20-1.

Ensaio Err0<2,%(]))05p.u. 0,00SSEr(r;;0,0lSp.u. 0,015< El’(r((y:§0,025p.u. SO,](E):’Jr‘r()Op,u, Mririliril(l)tru;lrf; éio

(%) (p-u.)

1 86,67 6,37 3,33 96,37 4,83

2 79,31 9,9 6,37 95,59 0,667

3 81,67 9,02 6,08 96,76 1,192

4 81,86 12,65 2,35 96,86 0,652

5 82,65 9,41 3,24 95,29 1,026
Médias 82,43 9,47 4,27 96,18 1,673

Tabela 30 — Resultados do treinamento Levenberg-Marquardt para RNA da fase C com
arquitetura 6-15-10-1.

Ensaio Erro<3£)05p.u. 0,00SSEr(r(o;)0,0lSp.u. 0,015< Er(r(;}?0,0ZSp.u. So’lggfgp.u. M;iril:)tru;l; (;10

(%) (p.u.)

1 87,65 6,47 2,06 96,18 0,431

2 85,78 8,24 1,37 95,39 1,652

3 87,45 7,16 3,14 97,75 0,274

4 87,16 7,94 1,27 96,37 0,476

5 84,41 7,55 3,14 95,1 0,938
Médias 86,49 7,47 2,2 96,16 0,754

Tabela 31 — Resultados do treinamento Levenberg-Marquardt para RNA da fase C com

arquitetura 6-25-20-1.

Ensaio Erro<§)(,%(7))05p.u. 0,00SSEr(r(o;)0,0lSp.u. 0,015< Er(r;}?0,0ZSp.u. SO,I(:;;rOOp_u_ M;%l?;trusre; éio

(%) (p.u.)

1 88,33 5,59 1,18 95,1 0,364

2 87,65 8,14 1,57 97,35 0,58

3 88,33 5,59 1,18 95,1 0,364

4 88,14 7,94 1,27 97,35 0,476

5 87,94 7,55 2,55 98,04 0,704
Médias 88,08 6,96 1,55 96,59 0,497

Novamente, ambas as arquiteturas apresentam desempenhos semelhantes. Entretanto a
arquitetura 6-15 —10 —1 apresenta ser ligeiramente melhor quando se analisa a porcentagem de erro

<0,030 p.u.
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5.2.3 — Analise sobre a arquitetura e o tipo de treinamento adotados

A comparagdo entre o desempenho das redes das trés fases indica que o algoritmo de
treinamento Levenberg-Marquardt € mais adequado ao treinamento das redes neurais, afim de que se
possa realizar com certa seguranga o monitoramento remoto de tensdo no ponto de interesse. As
arquiteturas (6—15-10-1) e (6-25-20-1), apresentaram desempenhos muito préximos, conforme
mostra a Tabela 32, ao se observar a porcentagem de erros menores do que 0,03p.u., para ambas as

redes nas trés fases.

Tabela 32 — Comparaciao do desempenho entre duas arquiteturas de RNA

Arquitetura da Fase A Fase B Fase C
RNA €<0,030pu €<0,030pu €<0,030pu
(%) (%) (%)
(6-15-10-1) 93,76 96,8 96,16
(6-25-20-1) 93,72 96,18 96,59

Diante deste cendrio, optou-se pela rede que possui menor quantidade de neur6nios, tendo
em vista que esta exigird menor esforco computacional para sua eventual operagdo. Cabe ressaltar que
esta escolha ndo prejudica o objetivo proposto para este trabalho, uma vez que a variagdo de

desempenho entre as duas redes ¢ minima.

5.3 — Analise do desempenho da RNA escolhida

Apés escolhida a arquitetura para as trés redes correspondentes as trés fases, uma andlise
mais detalhada acerca do desempenho das mesmas foi efetuado. Para tanto, foram escolhidos 3 casos
de curtos-circuitos dentro do conjunto de testes de modo a demonstrar, através destes exemplos, o grau
de acerto desenvolvido pelas trés redes RNA.

Com a constru¢do de grificos que mostram superpostas a saida de teste e a resposta
fornecida pela RNA, € possivel verificar a validacdo da mesma em termos do desempenho esperado.
Se a resposta fornecida pela RNA estiver condizente, dada uma faixa de tolerdncia, com a saida
desejada para a RNA (saida de teste), entdo se pode afirmar que a rede obteve sucesso apds sua etapa
de treinamento.

A seguir, ilustram-se trés exemplos de situacdes distintas para o monitoramento remoto da
tensdo no ponto de interesse. Com estes exemplos, € possivel se obter uma perspectiva da eficdcia das
respostas geradas pelas redes neurais das fases A, B e C treinadas via algoritmo de Levenberg-
Marquardt. Nas figuras seguintes, a resposta fornecida pela RNA € representada pela linha vermelha,

sendo a saida desejada, ou saida de teste, representada pela linha azul, conforme indicado nas legendas
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de cada gréfico. Apds a apresentacdo de cada exemplo, serdo exibidos 3 histogramas que visam

complementar a avaliacdo do desempenho das RNAs.

5.3.1 — Aplicacao de falta, exemplo 1

No primeiro exemplo, compreendendo as amostras de uma situacdo de falta simulada,
afirma-se que a saida da fase A da RNA, deve caracterizar uma elevacgdo de tensdo. Para estas mesmas
amostras, as fases B e C da respectiva RNA devem caracterizar afundamentos de tensdo.

Na Figura 23, apresenta-se a saida para esta situacio da fase A, ou seja, para a elevacdo de

tensao.

Comparagdo entre saida desejada e saida gerada pela RNA
Exemplo 1, Fase A
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Figura 23 — Resultado da comparacao entre saida esperada e saida gerada pela RNA da fase A,
para o primeiro exemplo.

Ao observarmos o comportamento da resposta fornecida pela RNA da fase A, constata-se
que ela foi capaz de estimar com significativa precisdo o perfil da variacdo da tensdo no ponto de
monitoramento remoto. O mesmo pode se verificado para as redes das fases B e C (para os

afundamentos), conforme mostram as Figuras 24 e 25.



Comparagéo entre saida desejada e saida gerada pela RNA
Exemplo 1, Fase B
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Figura 24 — Resultado da comparacao entre saida esperada e saida gerada pela RNA da fase B,

para o primeiro exemplo.

Comparagdo entre saida desejada e saida gerada pela RNA
Exemplo 1,Fase C
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Figura 25 — Resultado da comparacao entre saida esperada e saida gerada pela RNA da fase C,

para o primeiro exemplo.

Constata-se que para algumas (esporddicas) amostras, a RNA acaba se equivocando e

fornecendo resultados diferentes do esperado. Entretanto, afirma-se que este erro é na maioria das

vezes da ordem de 0,02 p.u.
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5.3.2 — Aplicacao de falta, exemplo 2

Neste segundo exemplo, afirma-se que as saidas para as fases A e B devem caracterizar
elevagdes de tensdo acima de 1,1p.u. e, para a fase C, uma interrup¢io da tensdo (niveis de tensdo

préximos de Op.u.). Este panorama estd exposto nas Figuras de 26 a 28.

Comparagdo entre saida desejada e saida gerada pela RNA
Exemplo 2, Fase A
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Figura 26 — Resultado da comparacfo entre saida esperada e saida gerada pela RNA da fase A,
para o segundo exemplo.

Comparagédo entre saida desejada e saida gerada pela RNA
Exemplo 2, Fase B
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Figura 27 — Resultado da comparacfo entre saida esperada e saida gerada pela RNA da fase B,
para o segundo exemplo.

Embora as RNAs para as fases A e B tenham oscilado um pouco mais em relagdo ao primeiro
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exemplo, o desempenho da RNA da fase C demonstra que a estratégia de monitoramento remoto
também é capaz de detectar variacOes de tensdo de magnitudes elevadas com significativa precisio,

conforme revela a Figura 28 a seguir.

Comparagdo entre saida desejada e saida gerada pela RNA
Exemplo 2,Fase C

== Resposta da RNA
— Saida Esperada

Tensao no ponto monitorado remotamente (p.u.)

Duragio (Ciclos)

Figura 28 — Resultado da comparacao entre saida esperada e saida gerada pela RNA da fase C,
para o segundo exemplo.

5.3.3 — Aplicacao de falta, exemplo 3

Para o exemplo 3, afirma-se que a saida para a fase A deve apontar um afundamento de
tensdo. J4 a fase B deve caracterizar elevagdes de tensdo acima de 1,1p.u. e, a fase C, um afundamento

de tensdo. Esta situag@o estd exposta nas Figuras de 29 a 31.

Comparagéo entre saida desejada e saida gerada pela RNA
Exemplo 3, Fase A

—Resposta RNA
—— Saida Esperada

Tensao no ponto monitorado remotamente (p.u.)

Duragao (Ciclos)

Figura 29 — Resultado da comparacfo entre saida esperada e saida gerada pela RNA da fase A,
para o terceiro exemplo.
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Comparagdo entre saida desejada e saida gerada pela RNA
Exemplo 3, Fase B
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Figura 30 — Resultado da comparacfo entre saida esperada e saida gerada pela RNA da fase B,
para o terceiro exemplo.

Comparagdo entre saida desejada e saida gerada pela RNA
Exemplo 3, Fase C
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Figura 31 — Resultado da comparacfo entre saida esperada e saida gerada pela RNA da fase C,
para o terceiro exemplo.

Neste terceiro exemplo, é possivel verificar da Figura 29, que na fase A, a rede forneceu uma
saida com um erro ligeiramente mais elevado, situando-se por volta de 0,07p.u., sendo que a partir do
sexto ciclo (condi¢do de pds-falta), esta voltou a gerar valores praticamente idénticos ao esperado.

Para as demais fases, o desempenho foi semelhante aos exemplos anteriormente apresentados.
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5.3.4 — Indice de acertos das RNAs.

Os histogramas apresentados nesta se¢do relacionam o indice de acerto das RNAs com as
amostras de treinamento. As figuras de 32 a 34 trazem os histogramas das RNAs do sistema trifdsico

para erros menores do que 0,05p.u.

Histograma de erros para a RNA dafase A
T T T

Quantidade dos casos de teste (%)

0.01 0.015 0.02 0.025 0.03 0.04
Erro {p.u.)

Figura 32 — Histograma relacionando a quantidade de casos de testes com a magnitude dos erros
entre resposta esperada e resposta gerada pela RNA da fase A

Histograma de erros paraa RNA dafase B
T T T T T

Quantidade dos casos de teste (%)

. . i i
0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
Erro (p.u.)

Figura 33 — Histograma relacionando a quantidade de casos de testes com a magnitude dos erros
entre resposta esperada e resposta gerada pela RNA da fase B
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Histograma de erros paraa RNA dafase C
T T T T T

Quantidade dos casos de teste (%)

i L 1
o] 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
Erro {p.u.)

Figura 34 — Histograma relacionando a quantidade de casos de testes com a magnitude dos erros
entre resposta esperada e resposta gerada pela RNA da fase C

Os resultados observados, quando se analisou os erros entre a resposta esperada e a resposta
fornecida pelas RNAs para magnitudes menores do que 0,05p.u. (ou 5%), revelam que 97,45% dos
casos de teste para a fase A, 98,82% para a fase B e 98,72% para a fase C, apresentaram erros menores
do que 0,05p.u. As RNAs apresentaram, portanto, um indice de acerto significativo. Entretanto, um
estudo preliminar acerca da obten¢@o de uma faixa de erro que represente fielmente o desempenho das
trés RNAs, quando uma possivel aplicacdo real é considerada, ndo deve ser descartado, devendo ser

incluido consideracdes referentes a um melhor condicionamento dos sinais em anélise.
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Capitulo 6 — Conclusoes

Com este trabalho, foi possivel apresentar uma estratégia alternativa de monitoramento de
tensdo em um determinado ponto de interesse no sistema elétrico. Esta estratégia tem como base a
ferramenta inteligente de RNAs. Através do monitoramento das formas de onda de tensdo e corrente
das trés fases do sistema, através do medidor presente na subestagdo, foi mostrado que existe a
possibilidade de se monitorar remotamente os valores eficazes das tensdes em pontos distantes do
medidor da subestacdo, sem a necessidade de se empregar medidores extras para esta tarefa.

Um sistema de distribui¢@o real, previamente modelado computacionalmente foi de vital
importdncia ao desenvolvimento e validacio da estratégia proposta. A obtencdo da base de
treinamento das RNAs, presentes no monitoramento de cada uma das fases do ponto remoto de
interesse, procedeu de maneira a se obter uma boa representacdo das caracteristicas do sistema de
distribuicdo, sendo para tanto simuladas diversas condi¢des de falta em varios pontos do sistema. Com
os dados provenientes destas condi¢cdes de faltas, formou-se uma base de treinamento para as RNAs.
Durante os estudos, o principal desafio foi o de se encontrar uma maneira adequada para apresentar os
padrdes de treinamento as RNAs de tal forma que o sistema elétrico em questdo fosse mais bem
representado. A melhor maneira encontrada foi a de se fornecer valores eficazes das tensdes e
correntes das trés fases como entrada para a RNA. O célculo destas grandezas foi feito utilizando-se
uma técnica de janelamento dos sinais de tensdo e corrente provenientes das simulagdes de falta.

O treinamento das RNAs em questdo prosseguiu utilizando-se dois tipos de algoritmos de
treinamento. Sendo estes o algoritmo back-propagation e o algoritmo de Levenberg-Marquardt.
Dentre os dois métodos de treinamento, verificou-se que o treinamento de Levenberg-Marquardt se
configurou como o mais adequado para o emprego da técnica proposta.

Com a arquitetura da RNA eleita, verificou-se que o indice de acerto das RNAs das trés fases
foi superior a 97%, sendo que a magnitude dos erros, para esta porcentagem, € inferior a 0,05p.u. Este
fato confirma que as RNAs empregadas na estratégia de monitoramento remoto, possuem significativo
indice de acerto de acordo com a faixa de erro adotada. Entretanto, uma anélise mais aprofundada
deve ser considerada para se computar os erros envolvidos no condicionamento dos sinais, de modo a
se obter um referencial mais preciso para a andlise do desempenho geral das trés RNAs.

Para complementar o estudo é recomendado uma andlise para os demais tipos de falta e a
inclusdo da taxa de falhas das linhas do sistema de distribui¢ao.

Além do que foi apresentado acima, este trabalho de conclusdo de curso possibilitou um
aprofundamento dos conhecimentos relacionados as RNAs e a QEE, proporcionando também o
desenvolvimento de certas habilidades de investigagc@o e posicionamento critico.

Contudo, cabe ressaltar que alguns objetivos iniciais como a obtencdo de dreas de
vulnerabilidades associadas ao sistema elétrico em estudo necessitam de maior aprofundamento em

pesquisa, podendo ser o objeto de um trabalho futuro. Além disso, € plausivel considerar o
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desenvolvimento de uma metodologia para a localizacdo de faltas ao longo do sistema de distribui¢do
estudado utilizando RNAs.
Acredita-se que o objetivo principal foi alcangado, e o desenvolvimento de uma estratégia de

monitoramento remoto da tensao se revelou vidvel, tanto do ponto de vista técnico como econdmico.
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