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RESUMO 

MORAES, T. H.  Aprendizagem profunda aplicada à separação de materiais recicláveis.   

2022.  51 f.  Trabalho de conclusão de curso (MBA em Inteligência Artificial e Big Data) – 

Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos, 

2022. 

 

A gestão de resíduos sólidos urbanos (RSU) é um dos principais desafios que o mundo 

enfrenta atualmente (GUPTA et al., 2019). Anualmente são gerados 2.01 bilhões de toneladas 

de RSU, estima-se que esse número chegue a 3.40 bilhões até 2050. Desse total, ao menos 

33% não são tratados de forma adequada, gerando impactos ambientais e sociais negativos 

(KAZA et al., 2018). O processo de reciclagem é essencial para a obtenção de uma economia 

circular, visando otimizar a etapa de triagem dos materiais recicláveis propõe-se utilização de 

uma rede neural profunda para a realização das tarefas de identificação e classificação 

necessárias. Para determinação da melhor arquitetura para a tarefa, inicialmente faz-se um 

levantamento bibliográfico, passando pela definição de redes neurais, até comentários sobre 

estruturas dos modelos estado da arte para detecção de objetos. Opta-se pela análise do 

impacto de alteração do backbone sobre a solução de segmentação de instância Mask R-CNN 

sobre a análise da desafiadora base ZeroWaste Dataset (BASHKIROVA, 2021). Tal dataset 

lançado em 2021, traz mais de 6 mil imagens anotadas com formato COCO, trazendo ao 

público uma base de domínio específico, voltada para a reciclagem de materiais em ambiente 

produtivo (quadros de filmagens feitas sobre uma esteira de separação de RSU recicláveis). 

Compara-se os resultados obtidos para a detecção de máscaras das instâncias anotadas para 

um modelo com backbone Resnet-50 e ResNext-101. Obtêm-se resultados a partir de 70% 

melhores para a precisão das máscaras com a backbone mais robusta. 

 

 

Palavras-chave: aprendizagem profunda; materiais recicláveis; segmentação de instâncias; 

Mask R-CNN 

  



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

ABSTRACT 

MORAES, T. H. Deep learning applied to the separation of recyclable materials. 2022. 51 f. 

Trabalho de conclusão de curso (MBA em Inteligência Artificial e Big Data) – Instituto de 

Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos, 2022. 

 

The management of municipal solid waste (MSW) is one of the main challenges our society 

currently faces (GUPTA et al., 2019). 2.01 billion tons of MSW are generated annually, it is 

estimated that this number will reach 3.40 billion by 2050. From this total, at least 33% are 

not adequately treated, generating negative environmental and social impacts (KAZA et al., 

2018). The recycling process is a key component to reach a circular economy. Aiming to 

optimize the stage of sorting recyclable materials, it is proposed the use of a deep neural 

network to carry out the necessary detection and classification tasks. To set the best 

architecture for the task, initially an extense literature review is done, discussing topics from 

the definition of neural networks to comments on the structures of state-of-the-art models for 

object detection. We chose to analyze the impact of changing the backbone on the Mask R-

CNN instance segmentation solution, when trained and tested on the challenging ZeroWaste 

Dataset base (BASHKIROVA, 2021). This dataset, launched in 2021, consists of more than 

6,000 images annotated with COCO format, a public dataset regarding a specific domain 

base, focused on the recycling of materials in an industrial setting (frames obtained from a 

recycling paper facility’s conveyor belt). The results of the segmentation task (masks) 

obtained from a model built on Resnet-50 are compared to the ones generated from a 

ResNext-101 backbone-based model. Results suggests a minimum improvement of 70% for 

the accuracy of the masks predictions with the most robust backbone network. 

 

Keywords: deep learning; recyclable materials; instance segmentation; Mask R-CNN 
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1 INTRODUÇÃO 

 

1.1 Contextualização 

 

A gestão de resíduos sólidos urbanos (RSU) é um dos principais desafios que o mundo 

enfrenta atualmente (GUPTA et al., 2019). Anualmente são gerados 2.01 bilhões de toneladas 

de RSU, estima-se que esse número chegue a 3.40 bilhões até 2050. Desse total, ao menos 

33% não são tratados de forma adequada, gerando impactos ambientais e sociais negativos 

(poluição marinha, contaminação do solo e de lençóis freáticos, problemas de saúde pública, 

etc.) (KAZA et al., 2018). Gerir de forma eficiente os RSU é, portanto, de fundamental 

importância para construir-se uma sociedade sustentável.  

Uma gestão eficiente dos RSU engloba a aplicação e otimização de diversas 

estratégias: redução, reuso, reciclagem, coleta e disposição final de resíduos orgânicos e 

inorgânicos. Este projeto tem como objetivo otimizar o processo de reciclagem, almejando 

facilitar a transição do modelo econômico-produtivo atual para um modelo de economia 

circular. 

O processo de reciclagem poder ser dividido em quatro grandes etapas: separação e 

coleta seletiva, triagem dos materiais, comercialização e processamento industrial. A triagem 

dos materiais, em geral, é feita manualmente, sendo esse o gargalo da cadeia produtiva 

(PARREIRA, OLIVEIRA, LIMA, 2009), ou seja, o fator que limita a produtividade do 

processo de reciclagem. Almejando a otimização da etapa de triagem, propõe-se utilização de 

uma rede neural profunda para a realização das tarefas de identificação e classificação dos 

materiais recicláveis.  

CNN’s (convolutional neural network) utilizam uma arquitetura bem adaptada para a 

tarefa de classificação de imagens, sendo utilizadas na maioria das redes neurais para 

reconhecimento de imagem (DATA SCIENCE ACADEMY, 2021). Trabalhos anteriores 

propõem o emprego de redes neurais convolucionais, aliadas à técnica de transferência de 

aprendizado, para a realização das tarefas de detecção e classificação materiais recicláveis 

(KULKARNI, RAMAN, 2019; HE, GU, SHI, 2020; DEWULF, 2017). 

A dificuldade de se encontrar grandes bases de dados com imagens de materiais 

recicláveis em estado de pós-uso devidamente rotulados, representa um obstáculo no 

treinamento da CNN. Em Kulkarni, Raman, 2019 e Dewulf, 2017, os autores utilizaram 

técnicas de data augmentation e de transferência de aprendizado para minimizar o problema, 
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obtendo acurácias na ordem de 80%-90% nos conjuntos de teste. No entanto, não puderam 

testar suas redes em um dataset que se aproxime mais à realidade da disposição dos materiais 

nas esteiras de triagem manual. 

Recentemente, foi disponibilizada a base de imagens ZeroWaste (BASHKIROVA et 

al., 2021), a qual contém 1800 imagens segmentadas rotuladas, além de 6000 imagens não 

rotuladas, obtidas a partir de quadros de vídeos coletados da esteira de triagem de uma 

unidade real de processamento de materiais reciclados.  

 

1.2 Justificativa e motivação 

 

O processo de reciclagem é uma etapa fundamental da estruturação de um plano de 

gestão de resíduos sólidos sustentável. Estima-se que a produção global de resíduos sólidos 

urbanos aumentará em 70% até 2050, com a disseminação e otimização do processo de 

reciclagem, pode-se reintroduzir parte desses resíduos na cadeia produtiva. Essa reintrodução 

diminui a dependência da sociedade com relação às matérias-primas brutas e diminui o 

montante final de resíduos que precisam ser alocados em aterros sanitários (KAZA et al., 

2018).  

A separação dos diferentes materiais recicláveis é a chamada etapa de triagem, sendo 

essa o gargalo do processo (PARREIRA, OLIVEIRA, LIMA, 2009). A utilização de técnicas 

de visão computacional foi proposta por diversos autores (KULKARNI, RAMAN, 2019; HE, 

GU, SHI, 2020; DEWULF, 2017) para auxiliar a otimizar esta tarefa. Mais especificamente, o 

uso de CNN’s, as quais são amplamente utilizadas em tarefa de detecção e classificação de 

imagens (DATA SCIENCE ACADEMY, 2021).  

No entanto, não se encontrou um trabalho anterior que tenha testado essa abordagem 

com dados reais, advindos da esteira de triagem de uma planta de reciclagem. Este projeto 

visa sanar esta falta, buscando verificar a viabilidade de implantação de sistemas inteligentes 

nas linhas de produção, otimizando sua eficiência. 

 

1.3 Questão de pesquisa e objetivos 

 

Neste trabalho, espera-se avaliar o desempenho de redes convolucionais nas tarefas de 

detecção e classificação de imagens do dataset ZeroWaste (BASHKIROVA et al., 2021). 
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Questão: “Qual o desempenho obtido por diferentes implementações de uma mesma 

arquitetura de detecção e classificação de imagens estado-da-arte (KULKARNI, RAMAN, 

2019; HE, GU, SHI, 2020; DEWULF, 2017) quando submetida a um banco de imagens que 

representa a realidade do processo de triagem em uma planta de reciclagem?” 

Diante desta questão de pesquisa, são definidos os seguintes objetivos para o 

desenvolvimento deste trabalho: 

• Mapear algoritmos de aprendizado a partir de redes convolucionais disponíveis 

na literatura; 

• Treinar variações do algoritmo escolhido com o dataset ZeroWaste 

(BASHKIROVA et al., 2021), comparando os desempenhos obtidos para as 

diferentes composições. 

A partir do modelo proposto, espera-se obter ao menos uma rede que apresente 

resultados satisfatórios.  
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2 FUNDAMENTAÇÃO TEÓRICA 

 

2.1 Processo de reciclagem 

 

O processo de reciclagem consiste na estratégia de reinserir materiais específicos, tais 

como papel, plástico, vidro, alumínio, os quais foram previamente descartados no processo 

produtivo através do reprocessamento adequado destes resíduos. Tal estratégia é fundamental 

para se estabelecer uma política de gerenciamento de resíduos sólidos urbanos bem-sucedida, 

a qual, por sua vez, é essencial à construção de uma sociedade mais sustentável, tanto social 

quanto ambientalmente (OZDEMIR et al., 2021). 

O processo de reciclagem pode ser dividido em quatro grandes etapas (OZDEMIR et 

al., 2021): 

• Coleta: esta etapa inclui diversas estratégias de coleta, como por exemplo, coletas 

seletivas em áreas residenciais, descartes de materiais em indústrias, centros de 

recepção de materiais coletados por agentes independentes, etc.; 

• Processamento: esta etapa inclui a ida dos materiais aos centros de reciclagem, 

onde estes materiais serão separados, limpos e transformados em fonte de matéria-

prima para processos produtivos posteriores; 

• Produção: esta etapa consiste na realização de novos produtos a partir do material 

reciclado processado, tais como latas de alumínio, caixas de papelão, pregos, etc.; 

• Venda: nesta etapa os produtos feitos a partir de materiais reciclados são vendidos, 

introduzindo circularidade ao modelo de consumo, tornando-o mais sustentável. 
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Figura 1: Principais etapas do processo de reciclagem e sua circularidade. 

 

Fonte: autoria própria. Ícones por iconixar, Freepik e photo3idea_studio (www.flaticon.com). 

 

Dentre as etapas descritas, a etapa de processamento, especificamente a etapa de 

separação dos materiais recicláveis, consiste na etapa mais crítica do processo de reciclagem 

(OZDEMIR et al., 2021). A separação é fundamental para se evitar contaminação dos 

materiais, assim como para aumentar a eficiência na geração de matéria-prima útil aos 

processos produtivos posteriores.  

Existem três categorias de separação (triagem) de materiais (HADDAD et al., 2020): 

• Manual: o material recebido é disposto sobre uma superfície (mesa ou chão) 

para então ser separado através da catação, sem uso direto de qualquer 

equipamento (pode haver presença de balanças, prensas e empilhadeiras na 

planta, mas não são utilizados na etapa de triagem); 

• Semimecanizada: conta com a presença de esteiras transportadoras, as quais 

promovem um fluxo contínuo de materiais, que por sua vez serão separados 

através da catação de colaboradores dispostos ao longo da esteira. Pode contar 

com equipamentos adicionais, tais como extratores de sucata (separação 

magnética), no entanto, a triagem ainda é feita majoritariamente por pessoas; 

• Mecanizada: na triagem mecanizada equipamentos, tais como peneiras 

rotativas, separadores balísticos, ópticos, eletrostáticos, indutivos e magnéticos, 

são responsáveis pela maior parte da separação. O papel dos colaboradores 

http://www.flaticon.com/


18 
 

 

passa a ser de inspeção final, na qual qualquer produto impróprio 

(erroneamente separado pelos equipamentos) é retirado da linha através de 

catação. 

Figura 2: O processo de triagem manual é representado por a (chão) e por b (mesa). A triagem semiautomatizada 

pode ser observada em c, enquanto uma planta de triagem mecanizada é ilustrada em d. 

 

Fonte: imagens retiradas de Britto (2018), Gomes (2018), Aversani (2020) e RNSP (2014). 

 

Segundo Parreira et al. (2009) grande parte do material reciclado no Brasil é 

reintroduzido no ciclo produtivo graças às ações de associações e cooperativas de catadores. 

Existem ao menos 1,8 mil cooperativas atuantes no país atualmente, as quais reciclaram em 

média 510 toneladas de material em 2021 (ANCAT, 2021).  

Britto (2018) levantou as condições de mecanização em associações e cooperativas 

capixabas, chegando à conclusão de que todas as entidades analisadas realizavam a triagem de 

forma semimecanizada (conta com presença de esteira para a triagem manual de resíduos) ou 

manual. Já um levantamento feito entre as cooperativas presentes no município de São Paulo 

e habilitadas pela Autoridade Municipal de Limpeza Urbana (AMLURB) apontou que, em 

2014, nenhuma delas possuía um fluxo de trabalho mecanizado (ABLP, 2014).  

Assumindo que as amostras de associações e cooperativas consideradas em ambos os 

estudos (BRITTO, 2018 e ABLP, 2014) são representativas da realidade nacional, pode-se 
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concluir que no Brasil a maioria do material reciclado é processado em unidades de triagem 

manuais ou semiautomatizadas. 

Visando comparar a eficiência produtiva de plantas de reciclagem com diferentes 

métodos de triagem, Haddad et al. (2020) levantou informações referentes à 6 cooperativas 

paulistanas, as quais foram sintetizadas na tabela 1. 

 

Tabela 1: características de triagem de seis cooperativas de reciclagem paulistanas 

 A B C D E F 

Triagem Manual Manual Semimecanizada Semimecanizada Semimecanizada Mecanizada 

Material 

processado por 

cooperado (
𝒕𝒐𝒏

𝒎ê𝒔
) 

4,00 2,78 4,46 3,66 4,69 22,0 

Rejeito gerado (%) 30,0 5,0 10,0 8,5 12,0 50,0 

 

Fonte 1: adaptado de Haddad et al. (2020). 

 

 Pode-se perceber que a quantidade de materiais processados por cooperador em uma 

unidade mecanizada pode chegar a ser cinco vezes maior do que a média das demais 

cooperativas, no entanto a taxa de rejeito também cresce significativamente. Mesmo 

considerando o impacto da taxa da alta taxa rejeito da unidade mecanizada (50%), a taxa de 

material processado por cooperado em uma unidade mecanizada superior ao dobro da média 

para as demais plantas de separação. 

 Visando automatizar a triagem de materiais, mantendo a taxa de rejeito inferior à 50%, 

preferencialmente no limite de 10% (média para as cooperativas semimecanizadas em Haddad 

et al. (2020)), sugere-se a aplicação de técnicas de processamento de dados de imagens 

realizado através de modelos de aprendizagem profunda (deep learning). 

 

2.2 Aprendizagem profunda aplicada à reciclagem 

 

Guo et al., 2021 realizou a revisão de artigos publicados entre 2003 e 2020 os quais 

aplicassem técnicas de aprendizagem de máquina no contexto do tratamento de resíduos 

sólidos orgânicos e processos de reciclagem. Este levantamento apontou que em 54% dos 

artigos revisados redes neurais artificiais (artificial neural networks - ANN) foram o modelo 

escolhido para resolver o problema proposto, contra 15% SVM (Single Vector Machine), 9% 

algoritmos genéticos (AG), 7% de árvores de decisão e random forests (AD/RF). 
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Figura 3: Proporção de modelos de aprendizagem de máquinas utilizados em análises de tratamentos de 

resíduos e/ou processo de reciclagem. 

  

Fonte: adaptado de (GUO et al., 2021). 

 

Por se tratar do modelo de aprendizado de máquina mais empregado na bibliografia 

específica pesquisada (GUO et al., 2021), as redes neurais artificiais são o alvo de estudo 

deste trabalho. 

 

2.2.1 Redes neurais artificiais (ANNs) 

 

Uma ANN consiste em uma unidade de processamento de informação cuja 

estruturação foi inspirada no modelo de funcionamento do cérebro humano (OZDEMIR et al., 

2021). Algumas características típicas das ANNs são a sua não-linearidade, sua alta 

adaptabilidade e sua tolerância a falhas (GUO et al., 2021).  

A unidade mínima de processamento de uma ANN recebe o nome de neurônio ou nó. 

O processamento de dados em um neurônio é realizado a partir da soma ponderada dos 

valores de entrada, a este valor adiciona-se também o viés adequado. O resultado desta soma é 

alimentado à função de ativação, a qual gerará uma determinada saída (figura 4). 
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Figura 4 – Representação da estrutura básica de um neurônio. 

 

Fonte: adaptado de (OZDEMIR et al., 2021) 

 

Geralmente em uma ANN múltiplos neurônios são utilizados, estes são organizados 

em camadas. Primeiramente temos a camada de entrada, a qual é seguida por uma ou mais 

camadas escondidas, e por último temos a camada de saída. Os neurônios de uma camada 

conectam-se com os neurônios da camada subsequente, de forma que as saídas dos neurônios 

de uma camada tornam-se as entradas dos neurônios da seguinte (figura 5). Como cada 

neurônio possui uma função de ativação, essas conexões sucessivas resultam em uma 

composição de funções, tal composição é o que caracteriza este modelo de aprendizagem 

como profundo (PONTI, COSTA, 2017). 

Treinar um ANN implica em determinar valores ótimos para seus parâmetros (pesos e 

vieses). Para tal é necessário que se haja uma função que determine a qualidade da predição 

feita pela rede, tal função recebe o nome de função de custo. A função de custo indica quão 

longe uma determinada predição emitida pelo modelo está da classe real à qual a entrada 

analisada pertence. Uma das funções de custo mais utilizadas em classificação é chamada 

entropia cruzada (cross-entropy) (PONTI, COSTA, 2017). 

Uma vez estipulada a função de custo utilizam-se algoritmos de otimização, os quais 

tem como objetivo encontrar o ponto de mínimo global da função de custo, para determinar os 

parâmetros ótimos do da rede neural. Gradiente descendente estocástico (Stochastic Gradient 

Descent – SGD) e Adam são alguns dos algoritmos de otimização utilizados na literatura 

(PONTI, COSTA, 2017). 
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Figura 5 – Representação da estrutura básica de uma ANN. 

 

Fonte: adaptado de (OZDEMIR et al., 2021). 

 

São exemplos de ANNs, perceptrons multicamadas (multi layer perceptrons – MLP), 

redes de função de base radial (Radial Basis Function – RBF), redes neurais convolucionais 

(Convolutional Neural Networks – CNN), redes neurais recorrentes (recurrent neural network 

– RNN). 

Apesar das ANNs serem ferramentas úteis para lidar com grandes volumes de dados, 

alguns pontos de atenção devem ser levantados. A falta de explicabilidade dos resultados 

obtidos a partir das ANNs representa um problema. ANNs são por vezes consideradas “caixas 

pretas”, nas quais tem-se um input e um output claros, mas não há um entendimento completo 

das etapas intermediárias, tal característica pode fazer com que o output não seja percebido 

como confiável, principalmente em aplicações das ciências da natureza (GUO et al., 2021). 

Outro ponto de atenção deve ser direcionado à alta adaptabilidade do modelo, apesar 

de termos mencionado esta característica como uma vantagem das ANNs, caso a modelagem 

não seja feita de forma adequada, a grande quantidade de parâmetros utilizados pode levar ao 

fenômeno de overfitting, fazendo com que o modelo final não desempenhe bem no ambiente 

real. 

Neste trabalho, os dados que alimentarão o algoritmo de aprendizado de máquina 

consistem em imagens. O modelo de ANN mais consagrado para o processamento de imagens 

é a CNN (MAO et al., 2020; PONTI, COSTA, 2017), portanto este será o algoritmo alvo de 

nosso estudo.  
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2.2.2 Redes neurais convolucionais (CNNs) 

 

Uma CNN é uma rede neural composta basicamente por camadas convolucionais. Tais 

camadas processam as entradas a partir de campos receptivos locais. A convolução permite 

processar imagens de entrada levando em conta sua estrutura bidimensional, tal característica 

faz com que a principal aplicação das CNNs seja o processamento de informações visuais 

(PONTI, COSTA, 2017). 

Cada neurônio de uma camada convolucional consiste em um filtro aplicado a uma 

imagem de entrada. Este filtro é composto por um tensor (matriz multidimensional) de pesos, 

o qual é responsável pela transformação da imagem de entrada por meio de uma combinação 

linear dos pixels vizinhos (PONTI, COSTA, 2017).  

A dimensão do tensor filtro é dada por 𝑘 × 𝑘 × 𝑑, onde 𝑘 é parâmetro a ser definido 

pelo designer do modelo, enquanto 𝑑 é dado a partir do número de canais de entrada, por 

exemplo, uma imagem RGB possui 3 canais, portanto os filtros aplicados a essa imagem 

deverão ter 𝑑 = 3. Os tamanhos de filtro mais utilizados são 5 × 5 × 𝑑; 3 × 3 × 𝑑 e 1 × 1 ×

𝑑 (PONTI, COSTA, 2017). 

Esta estrutura de processamento através de filtros faz com que haja uma redução 

significativa da quantidade de pesos do modelo, por exemplo, para uma imagem RGB de 

tamanho 224 × 224 × 3, 150528 pesos seriam necessários em um neurônio completamente 

conectado (fully connected – FC), enquanto para um filtro convolucional com 𝑘 = 5, teríamos 

5 × 5 × 3, 75 pesos em um mesmo neurônio (PONTI, COSTA, 2017). 

Uma vez determinadas as dimensões do filtro, seus pesos e o viés do neurônio, este 

tensor é aplicado a uma região específica da imagem em processamento, esta região é 

chamada de campo receptivo local, cujo valor de saída (pixel) é dado pela combinação dos 

campos de entrada nesse campo receptivo (PONTI, COSTA, 2017). A saída resultante deste 

processo consiste em uma nova matriz de pixels, a qual recebe o nome de feature maps 

(figura 6).  
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Figura 6 – Representação esquemática de uma camada convolucional com 𝑛 filtros processando uma 

imagem em preto e branco (como a imagem possui um único canal, temos 𝑑 = 1). 

 

Fonte: PONTI, COSTA, 2017. 

 

Para 𝑘 = 3 , o campo receptivo é composto por 9 pixels vizinhos. No exemplo 

apresentado na figura 7, temos como primeiro campo receptivo a ser processado a matriz 

[
2 2 2
1 0 1
1 1 3

] (em destaque na matriz de entrada). Para se determinar o pixel de saída deste 

campo receptivo, um neurônio realizará o produto da matriz do campo receptivo pela matriz 

do filtro e adicionará o viés ao resultado obtido (equação 1). 

 

Figura 7 – Exemplo de como é determinado o pixel de saída de um campo receptivo. 

 

Fonte: adaptado de Ponti, 2021. 
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Equação 1 – Primeiro passo do cálculo realizado pelo neurônio de convolução 

𝑃𝑖𝑥𝑒𝑙 𝑑𝑒 𝑠𝑎í𝑑𝑎0,0 =  [
2 2 2
1 0 1
1 1 3

] × [
−1 0.5 1
−1 0 0
0 0 0.5

] + 1.5 = 3 

 

Adicionalmente aos pontos de atenção levantados na seção anterior para as ANNs, 

quando da utilização de CNN’s deve-se observar que como o único input para extração de 

features são imagens, a qualidade do resultado é extremamente sensível à qualidade das 

imagens que alimentam o modelo (GUO et al., 2021). 

 

 

2.2.3 Classificação multirrótulos 

 

As imagens contidas no dataset de interesse possuem uma diferença fundamental com 

relação à TrashNet: presença de múltiplos objetos sujeitos à classificação em cada uma das 

imagens.  

Surge a partir dessa característica a necessidade de uma camada adicional de 

processamento que seja capaz de localizar os objetos classificáveis dentro de uma imagem, 

para então dar prosseguimento à tarefa de classificação. 

 

Figura 8 – Exemplos de imagens que contém múltiplos rótulos obtidos a partir de (a) detecção de 

objetos e (b) segmentação de objetos 

 

Fonte: adaptado de BANDYOPADHYAY, 2022 

 

Para a classificação de imagens com múltiplos rótulos agregados a localização de 

objetos, existem duas principais vertentes de localização (BANDYOPADHYAY, 2022): 

detecção de objetos e a segmentação de imagens. No caso da detecção de objetos, a 

localização dos objetos é apontada através de bounding boxes, em geral com formato 
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retangular (figura 8a). Já no caso da segmentação de imagens, cada pixel da imagem será 

classificado como pertencente a um objeto ou classe de objetos, gerando máscaras que 

delimitam os contornos dos objetos (figura 8b). 

Para o caso em estudo, o objetivo final da correta classificação dos materiais 

recicláveis é a possibilidade de automatizar o processo a partir, por exemplo, de braços 

robóticos, para tal, seria imprescindível uma visão computacional clara do contorno dos 

objetos. A densidade dos objetos na esteira de separação é considerada alta, o que também 

sugere que os esforços de localização de objetos devem ser direcionados no sentido da correta 

segmentação das imagens obtidas pelos sensores. Portanto, opta-se pelo emprego da 

segmentação de imagens para a classificação dos objetos contidos no dataset ZeroWaste. 

 

 

2.2.3.1 Segmentação de imagens 

 
Tarefas de segmentação de imagens podem ser classificadas em três categorias 

(SALMI, 2021): 

­ Segmentação semântica 

­ Segmentação de instâncias 

­ Segmentação panóptica 

Para entender a diferenciação entre elas, primeiro é necessário definir os conceitos de 

“stuff” e “things” em uma imagem. Things contempla todas as categorias de objetos contáveis 

contidos em uma imagem, tais objetos podem ser contados na imagem ao se atribuir 

diferentes Ids para cada uma dessas instâncias. Stuff representa todas as classes de 

incontáveis, tais como céu, estrada, mar, etc (V7 Labs, 2022). 

A segmentação semântica realiza a classificação de todos os pixels de uma imagem, 

sendo que para cada um deles é atribuída uma classe dentre as predefinidas pelo usuário.  

Já a segmentação de instâncias geralmente gera bounding boxes que delimitam cada 

objeto contável (thing) presente na imagem, juntamente com sua respectiva máscara e 

classificação, nesse caso, múltiplos objetos pertencentes a uma mesma classe são tratados 

como instâncias distintas.  

Por fim, a segmentação panóptica utiliza um algoritmo capaz de diferenciar diferentes 

objetos de uma mesma classe (segmentação de instâncias), sendo também capaz de classificar 

os objetos não contáveis.  
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A diferenciação entre as saídas de uma imagem submetida a cada uma das três 

vertentes de segmentação pode ser observada na figura 9. 

 

Figura 9 – Diferentes métodos de segmentação de imagens: (a) imagem original; (b) segmentação 

semântica; (c) segmentação de instâncias; (d) segmentação panóptica 

 

Fonte: adaptado de V7 Labs, 2022. 

 

 O ZeroWaste dataset possui anotações somente para as instâncias de interesse 

(plástico, plástico rígido, papelão e metal), não havendo máscaras para papéis (pois não 

devem ser removidos da esteira de separação), assim como para o fundo da imagem (esteira 

de separação). Portanto, o método de segmentação mais adequado consiste na segmentação e 

instâncias, assim como sugerido no artigo de publicação da base de imagens. 

 Usualmente frameworks de detecção de objetos contém quatro componentes 

(ELGENDY, 2020):  

­ Region proposal: modelo utilizado para gerar regiões de interesse dentro de uma imagem 

(ROI – Regions of Interest) que serão efetivamente processadas para geração das máscaras e 

classificações de cada objeto. A saída deste modelo consiste em uma grande quantidade de 

bounding boxes (coordenadas que definem um contorno, geralmente retangular), cada qual 

com uma respectiva pontuação de objetividade (objectness score). As bounding boxes com 

maior pontuação são então repassadas para as camadas de processamento seguintes. 

­ Extratores de características e preditores: para cada bounding box características são extraídas, 

a partir delas os preditores constatam a presença ou não de um objeto no contorno, e caso a 

presença seja confirmada, é realizada a classificação do objeto 

­ Non-maximum suppression (NMS): usualmente múltiplas bounding boxes (bbox) são 

fornecidas para uma mesma imagem, sendo frequente a sobreposição das mesmas, portanto o 
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objetivo da técnica de NMS é realizar a combinação de bbox sobrepostas, resultando em uma 

única bbox para cada uma das instâncias de interesse 

­ Métricas de avaliação de desempenho: as métricas utilizadas para medir o desempenho da 

tarefa de detecção de objetos são: 

o Curva de precisão e recall: assim como para classificação de imagens, a curva de 

precisão e recall consiste na plotagem de uma curva que possui a precisão (razão entre 

os verdadeiros positivos detectados pelo algoritmo e a soma dos verdadeiros positivos 

com os falsos positivos) no eixo y e o recall (razão entre os verdadeiros positivos 

detectados pelo algoritmo e a soma dos verdadeiros positivos com os falsos negativos) 

no eixo x. Um bom detector consiste naquele que mantém índices de precisão altos 

conforme o recall aumenta. 

o Quadros processados por segundo (FPS – frames per second): determina a velocidade 

de processamento de um determinado framework. 

o Precisão média (mAP – mean average precision): uma das métricas mais utilizadas na 

tarefa de detecção de objetos, consiste em uma porcentagem, calculada a partir da 

média entre as áreas sob as curvas de precisão x recall para todas as classes existentes, 

sendo que quanto maior a mAP, melhor o resultado obtido pelo algoritmo. 

o Interseçcão sobre união (IoU – intersection over union): determina a sobreposição 

entre a bbox predita e a bbox verdadeira. Tal medida é utiliza para determinar se a 

detecção prevista é um positivo verdadeiro ou falso, sendo calculada a partir da razão 

entre a área de sobreposição entre as bboxes e a área de união das mesmas (figura 10). 

Quanto maior a razão, maior a qualidade da bbox predita, no entanto, usualmente 

utiliza-se um valor mínimo de IoU=0,5 para que a predição seja considerada como um 

verdadeiro positivo. 

 

Figura 10: Ilustração para definição da métrica de intersecção sobre união (IoU) 

 

Fonte: adaptado de Elgendy, 2020 
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Três arquiteturas populares para a tarefa de detecção de objetos são as redes neurais 

convolucionais baseadas em regiões (region-based convolutional neural networks – R-CNN), 

single-shot detectors (SSD) e YOLO (you only look once).  

 

 

2.2.3.2 Mask R-CNN 

 

A arquitetura Mask R-CNN é uma das atualizações mais recentes da família R-CNN, 

sendo construída sobre o modelo Faster R-CNN com um ramo adicional para a segmentação 

dos objetos de interesse contidos em uma imagem.  

Resumidamente, a estrutura geral do MASK R-CNN pode ser observada na figura 11. A 

primeira etapa de processamento consiste na extração de mapa de características a partir de 

uma rede neural convolucional (backbone), tais mapas são então alimentadas a um region 

proposal, que gera como saída as coordenadas das bboxes assim como a pontuação de 

objetividade para cada uma delas.  

Ambas as informações, juntamente com os mapas de características são então 

encaminhados para a uma cada de de pooling das regiões de interesse (RoI), cuja saída 

consiste em RoI de tamanho fixo. Sequencialmente tais RoI são processadas por camadas 

completamente conectadas (FC) até chegarem às duas últimas camadas conectadas, uma 

dedicada a classificação do objeto, e outra dedicada a identificação das coordenadas da bbox 

associada a ele.  

O ramo adicional responsável pela geração das máscaras de segmentação das instâncias de 

interesse recebe o output da camada de pooling das RoI, o qual é processado por camadas 

convolucionais, gerando como resultado a máscara desejada. 

 

Figura 11 – Diagrama simplificado representando a arquitetura do modelo Mask R-CNN 

 

Fonte: Hui, 2018. 
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2.2.3.3 SSD 

 
Ao contrário da família R-CNN, SSD e YOLO são detectores com um uma única fase 

de processamento, isto é, ao contrário das R-CNNs nas quais existe uma rede que avalia a 

localização do objeto e outra que realiza sua classificação, ambas as tarefas são realizadas por 

camadas convolucionais.  

Desta forma, em detectores de fase única a pontuação de objetividade é determinada a 

partir de regressão logística para cada bbox, caso a pontuação obtida seja maior que um limiar 

pré-determinado, então o modelo realiza uma classificação, caso contrário, a etapa de 

predição é dispensada.  

Tal característica permite que estes detectores obtenham FPS superiores àqueles 

obtidos por R-CNN’s, em detrimento de uma menor mAP. 

 A arquitetura básica de uma SSD pode ser visualizada na figura 12. Consiste 

basicamente em uma rede neural convolucional utilizada como base (backbone) a partir da 

qual os mapas de características são extraídos. Posteriormente, camadas com múltiplas escalas 

decrescentes são adicionadas, por fim, uma camada de NMS, a qual recebe bboxes de 

camadas convolucionais de diferentes escalas, é responsável pela eliminação de bboxes 

sobrepostas e pela classificação dos objetos.  

 

Figura 12: SSD com VGG16 como backbone. Neste exemplo, a penúltima camada recebe 8732 bboxes, os quais 

resultam da conexão da camada conv4_3 (38 x 38 x 4 bbox), conv7 (19 x 19 x 6 bboxes), conv8_2 (10 x 10 x 6 

bboxes), conv9_2 (5 x 5 x 6 bboxes), conv10_2 (3 x 3 x 4 bboxes) e conv11_2 (1 x 1 x 4 bboxes) 

 

 

Fonte: Elgendy, 2020 
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A saída esperada da camada de detecção consiste em vetores de dimensão 5 (4 

coordenadas da bbox + 1 pontuação de objetividade) + número de classes do problema, tal 

vetor é repassado para a NMS, a qual é responsável por ranquear as predições e manter apenas 

a quantidade desejada (geralmente, no máxima as 200 melhores predições (ELGENDY, 

2020)). 

 

 

2.2.3.4 YOLO 

 

Assim como a SSD, a YOLO consiste em um detector de fase única. Uma de suas 

versões mais recentes é a YOLOv3, cuja arquitetura pode ser observada na figura 13. 

A YOLO prevê três momentos distintos de detecção, visando realizá-la em três 

diferentes escalas com passos 32 (detecção de objetos grandes), 16 (detecção de objetos 

médios) e 8 (detecção de objetos pequenos). 

Inicialmente uma imagem é processada pela DarkNet-53, a qual conta com 53 

camadas, em seguida a imagem sofre downsampling até a camada 79, a partir da qual a rede 

se ramifica, e prossegue com a redução, até a primeira detecção ser feita na camada 82 (passo 

32). Em seguida o mapa de características da camada 79 é upsampled por 2 e concatenado 

com o mapa advindo da camada 61, então uma segunda predição é realizada na camada 94 

(passo 16). Processo semelhante ocorre para as camadas subsequentes, de forma que a última 

predição é realizada na camada 106 (passo 8). 

 

Figura 13: arquitetura completa da YOLOv3 

 

Fonte: Eldengy, 2020 
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2.3 Estado da Arte 

 
2.3.1 Classificação de imagens 

A inserção de técnicas de aprendizagem profunda no universo de gerenciamento de 

resíduos sólidos urbanos é um fenômeno recente, nota-se que a maioria dos artigos sobre o 

tema datam a partir de 2018. 

Como a otimização do desempenho dos modelos de aprendizagem profunda depende 

da exposição do modelo a uma grande quantidade de dados, a escassez de bases de imagens 

especificamente voltadas aos RSUs representa um obstáculo ao emprego das CNNs. 

Yang e Thung (2016) publicaram uma base de imagens conhecida como TrashNet. A 

TrashNet conta atualmente com um total de 2527 imagens rotuladas em seis diferentes 

categorias: vidro (501), papel (594), papelão (403), plástico (482), metal (410) e não 

reciclável (137).  As imagens consistem em fotos individuais de cada peça de material 

reciclado sobre um fundo branco, expostos à iluminação natural. 

A TrashNet deu o primeiro passo para sanar o déficit de bancos de dados de imagens 

de domínio específico no campo da reciclagem, a maioria dos artigos aqui referenciados 

utilizaram imagens contidas nessa base como entrada nos seus modelos de classificação.  

Apesar de sua importância, a quantidade de imagens contidas na TrashNet é 

considerada pequena para o treinamento de uma CNN. Para contornar este problema, técnicas 

de data augmentation, transferência de aprendizado (fine-tuning e/ou feature extraction), e 

comitês de classificação (ensemble) são comumente vistas em publicações da área (tabela 2).  

Sidhart (2020) construiu uma CNN cuja estrutura é composta por 3 camadas 

convolucionais com 32 filtros cada, cada uma delas seguida de MaxPooling2D (2 × 2). As 

feature maps resultantes são então achatadas e alimentada à duas camadas completamente 

conectadas com 128 neurônios, cujo resultado alimenta a camada de saída com 4 neurônios 

com função de ativação Softmax. O banco de dados utilizados é composto pelas imagens 

contidas em quatro das seis categorias da TrashNet (YANG, THUNG, 2016), papel, metal, 

plástico e papelão, totalizando 2077 imagens. A acurácia obtida para o conjunto de teste após 

100 épocas foi de 76,19%. O resultado abaixo da média, quando comparado as demais 

referências (tabela 2), deve-se à maior simplicidade do modelo adotado. 

Aral et al. (2018) optou por comparar o desempenho de arquiteturas mais robustas e já 

bem estabelecidas, evidenciando o impacto da transferência de aprendizado nas acurácias 

obtidas para a tarefa de classificação das imagens na TrashNet (YANG, THUNG, 2016). 

Técnicas simples de data augmentation, tais como espelhamento vertical e horizontal e 



33 
 

 

rotações de 15º ou 20º, foram utilizadas para enriquecer a base de dados. Os melhores 

resultados para acurácia foram obtidos a partir das arquiteturas DenseNet121 (95%), 

DenseNet169 (95%) e Inception-V4 (94%). 

Özkaya (2018) comparou o desempenho da tarefa de classificação ao substituir a 

camada de saída com função de ativação SoftMax por um classificador SVM. Todas as 

arquiteturas testadas (AlexNet, GoogleNet, ResNet, VGG-16 e SqueezeNet) foram pré-

treinadas. O resultado indicou que a acurácia dos modelos conectados com SVM na tarefa de 

classificação da TrashNet (YANG, THUNG, 2016) foi superior aos modelos com Softmax. 

Destaca-se a GoogleNet+SVM, a qual atingiu o patamar de 97.86% de acurácia após 200 

épocas. 

Similarmente ao que foi feito por Özkaya (2018), Ramsurrun (2021) também optou 

por comparar diferentes classificadores na camada de saída: SVM, Softmax e Sigmoid. 

Processos de data augmentation foram empregados, no entanto, as arquiteturas não foram 

pré-treinadas. Inception-V4, Inception-V3 e ResNet101V2 são exemplos de arquiteturas que 

desempenharam melhor com o emprego da função Sigmoid; enquanto VGG-16 e MobileNet 

desempenharam melhor com o SVM; finalmente, VGG-19, Xception desempenharam melhor 

com o Softmax. Todas as arquiteturas foram submetidas à 50 épocas de treinamento, 

posteriormente as cinco melhores foram submetidas à 100 épocas de treinamento, como 

resultado a melhor acurácia na base de imagens TrashNet (YANG, THUNG, 2016) foi obtida 

a partir da estrutura VGG-19+Softmax (87.9%). 

Huang et al. (2020) propõe a construção de um comitê de classificação composto por 

três arquiteturas como método para maximizar a acurácia da classificação das imagens 

contidas no banco de imagens TrashNet (YANG, THUNG, 2016).  Quando combinadas as 

arquiteturas pré-treinadas VGG19 (89.7% de acurácia), DenseNet169 (88.6% de acurácia) e 

NASNetLarge (89.2% de acurácia), forma-se um comitê cuja acurácia de classificação atinge 

96.5%. 

Mao et al. (2020) propõe a utilização de algoritmos genéticos para otimizar os hiper 

parâmetros da camada completamente conectada (FC) da arquitetura DenseNet121. Tal 

otimização juntamente com técnicas de data augmentation aplicadas à TrashNet (YANG, 

THUNG, 2016) viabilizaram uma acurácia de classificação de 99.6%. 

Vo et al. (2019) utilizou a arquitetura ResNext como base do seu modelo intitulado 

Deep Neural Networks for Trash Classification (DNN-TC). As modificações feitas consistem 

em adicionar duas camadas totalmente conectadas após a etapa de Global Average Pooling 

existente na ResNext-101, cujas dimensões de saída são 1024 e N respectivamente, sendo n o 
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número de classes. Para o caso da TrashNet (YANG, THUNG, 2016), N=6. A função de 

ativação log softmax é empregada na camada de saída, gerando uma acurácia de 94% após 

100 épocas de treinamento. 

Por fim, Bircanoglu et al. (2018) optou por adaptar a arquitetura DenseNet121 de 

forma a diminuir sua complexidade, permitindo que o modelo seja treinado em hardwares 

mais simples. A RecycleNet possui 3 milhões de parâmetros, uma redução de mais de 50% 

com relação aos 7 milhões de parâmetros de seu modelo base. Apesar de atingir uma menor 

acurácia (81% na TrashNet (YANG, THUNG, 2016)), a RecycleNet diminui as restrições de 

hardware necessárias para treinar uma rede com 121 camadas.  

 

Tabela 2 – Resumo dos resultados disponíveis na bibliografia para diferentes arquiteturas de CNNs 

 

Referência 
Nº de 

classes 

Nº de 

imagens 

Data 

augmentation 

Transferência 

de 

aprendizado 

Acurácia Observações 

Sidhart et 

al., 2020 
4 2.1k - - 76.19% 100 épocas 

Aral et al, 

2018 
6 2.5k + + 

95% 
DenseNet121 

100 épocas 

95% 
DenseNet169 

120 épocas 

94% 
Inception-V4 

120 épocas 

Özkaya e 

Seyfi, 2018 
6 2.5k 

- + 97.86% 
GoogleNet + SVM 

200 épocas 

- + 88.10% 

GoogleNet + 

Softmax 

200 épocas 

- + 97.46% 
VGG-16+SVM 

200 épocas 

- + 90% 
VGG-16+Softmax 

200 épocas 

Ramsurrun 

et al., 2021 
6 2.5k + - 87.9% 

VGG19 + Softmax 

50 épocas 

Huang et 

al., 2020 
6 7.5k - + 96.5% 

VGG19 + 

DenseNet169 + 

NASNetLarge 

Mao et al., 

2020 
6 2.5k + + 99.6% 

DenseNet121 + 

Algoritmo genético 

40 épocas 

Vo et al., 

2019 
6 2.5k - + 94% 

ResNext modificada 

100 épocas 

Bircanoglu 

et al., 2018 
6 2.5k + + 81% 

RecycleNet 

200 épocas 

 

Além da TrashNet (YANG, THUNG, 2016), outra base de imagens de materiais 

recicláveis disponível para download é a Recycling Dataset (SINGH, LUO, LI, 2021). A 

Recycling Dataset é composta por 11500 imagens divididas em cinco classes: caixas, garrafas 

de vidro, latas de bebidas, latas de bebidas amassadas e garrafas plástica, cada classe conta 
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com 2300 imagens. Assim como a TrashNet, as imagens da Recycling Dataset possuem fundo 

claro, apresentando apenas um objeto por imagem.  

 

 

2.3.2 Detecção de objetos 

 

A escassez de bases de dados anotadas com múltiplos objetos recicláveis pós-descarte 

(com deformação e sobreposição significativa entre as instâncias) é um obstáculo para o 

desenvolvimento e comparação de arquiteturas de aprendizagem profunda que visem detectar 

e classificar estes materiais.  

Visando contornar este problema Kulkarni e Raman (2019) realizaram um trabalho 

interessante de sobreposição dos objetos contidos em imagens da TrashNet, de forma a se 

aproximar da realidade de um ambiente de triagem real. Quatro objetos são recortados e 

colados em uma mesma imagem utilizando uma rede adversária generativa (Generative 

Adversarial Networks – GAN), as imagens com múltiplos objetos são então alimentadas a 

uma rede do tipo Faster R-CNN, obtendo F1-Score de 0.98 para a classe “papelão” e 0.78 

para a classe “não reciclável”.  

No entanto, Seredkin et al., 2019 notou que ao se montar uma base de dados de 

imagem sintética a partir de recortes retangulares de imagens que continham apenas um 

material reciclável, apesar do mesmo fundo uniforme ser utilizado para todas as imagens, o 

detector resultante apresentou bbox coincidentes com os exatos retornos dos recortes, 

indicando que uma possível diferença entre a iluminação das colagens estava sendo utilizada 

pela rede para amparar duas predições. 

Uma série de outros bancos de dados de imagens de resíduos foram levantados durante 

o projeto Detect Waste Project (sem fins lucrativos), tais como Open Liter Map, TrashCan 

1.0, Extended TACO, cujo framework de processamento proposto consiste em dividir o 

problema de detecção e classificação em duas partes, para cada uma delas uma rede neural 

dedicada é utilizada. Para o problema de detecção foram analisadas três redes: EfficientDet, 

DETR e Mask R-CNN, sendo que a melhor mAP foi aquela obtida pela EfficientDet (65,5%). 

Já para a etapa de classificação a rede EfficientNet-B2 foi utilizada por proporcionar melhores 

resultados quando comparada com a ResNet-50 e EfficienteNet-B4 (MAJCHROWSKA et al., 

2021). 

Em Majchrowska et al., 2021 ainda é descrito que a maioria das aplicações de 

aprendizagem profunda em tarefas de reconhecimento de imagens de RSU’s utiliza redes da 
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família R-CNN, SSDs e YOLO, com mAP variando entre 15,9% para a base de dados TACO 

com arquitetura Mask R-CNN e 81% para Trash-ICRA19 com a Faster R-CNN (tabela 3). 

Embora, na maioria das pesquisas, a quantidade de classes seja reduzida (geralmente apenas 

uma categoria do tipo “resíduo urbano”). 

 

Tabela 3: resumo dos resultados disponíveis na bibliografia para diferentes arquiteturas de detectores de objetos 
 

Referência Base de dados Arquitetura Desempenho (%) 

Awe, Mengistu, and 
Sreedhar 2017 

Mindy Yang and Gary 
Thung’s dataset 

Faster R-CNN mAP = 68.3 

Liu et al. 2018 VOC2007 dataset YOLOv2 Acc = 89.71 

Fulton et al. 2019 Trash-ICRA19 Faster R-CNN mAP = 81 

Fulton et al. 2019 Trash-ICRA19 YOLOv2 mAP = 47.9 

Fulton et al. 2019 Trash-ICRA19 SSD mAP = 67.4 

Hong, Fulton, and Sattar 
2020 

TrashCan 1.0 Faster R-CNN AP = 34.5 

Hong, Fulton, and Sattar 
2020 

TrashCan 1.0 Mask R-CNN 
(segmentation) 

AP = 30 

Carolis, Ladogana, and 
Macchiarulo 2020 

TrashNet YOLOv3 mAP50 = 59.57 

Proença and Simões 
2020 

TACO Mask R-CNN (instance 
segmentation) 

mAP50 = 15.9 

Kraft et al. 2021 UAVVaste YOLOv4 mAP = 47.6 

Kraft et al. 2021 UAVVaste EfficientDet-D3 mAP = 44.5 

Liang and Gu 2021 WasteRL ATSS mAP = 67.5 

Fonte: adaptado de Majchrowska, 2021. 
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3 METODOLOGIA 

 
Embora, como levantado na seção anterior, pesquisas visando a aplicação de técnicas 

de aprendizagem profunda tem se tornado mais frequentes nos últimos anos, aplicações em 

ambientes produtivos ainda não são amplamente exploradas. A falta de uma base de dados de 

referência pública, devidamente anotada é um dos obstáculos ao desenvolvimento de 

arquiteturas que atendam a este domínio específico. 

Visando sanar este déficit de bases de dados anotadas que contemplem a 

complexidade inerente ao processo de separação de RSUs, em 2021 foi disponibilizada a 

ZeroWaste Dataset (BASHKIROVA et al., 2021), a qual apresenta 1874 imagens 

completamente segmentadas e rotuladas de materiais reciclados em ambiente produtivo, mais 

especificamente na esteira de separação de uma unidade de triagem de RSU recicláveis. A 

base também contém outras 6212 imagens não rotuladas, as quais podem ser utilizadas, 

segundo Bashkirova et al. (2021), para treinar algoritmos semi-supervisionados. 

Na esteira de triagem representada pela base de imagens, a separação dos materiais é 

feita de acordo com 5 classes de materiais: papel, papelão, plástico, plástico rígido e metal. 

Após a separação, apenas papeis devem permanecer na esteira, por isso, apenas foram 

anotados objetos pertencentes às quatro demais classes.  

Os autores realizaram experimentos para detecção de objetos utilizando as arquiteturas 

Mask R-CNN (pré-treinada a partir da MS COCO), RetinaNet e TridentNet, obtendo mAP de 

34.9, 33.5 e 36.3 respectivamente (treinamentos supervisionados).  O objetivo deste trabalho é 

investigar o impacto da alteração do backbone sobre o desempenho de uma arquitetura 

estado-da-arte especializada em segmentação (predição de máscaras para instâncias de objetos 

que não são classificados como papel), Mask R-CNN sobre o dataset ZeroWaste. 

 

 

3.1 ZeroWaste Dataset 

 
  A ZeroWaste Dataset conta com quatro conjuntos de dados: 

­ ZeroWaste-f: banco de imagens anotadas, adotando-se o modelo COCO de anotação de 

bounding boxes e máscaras para cada instância de interesse presente 

­ ZeroWaste-w: coleção de dados no formato “antes x depois” da remoção dos objetos alvo de 

classificação, cujo objeto é fornecer dados para o treinamento de redes fracamente 

supervisionadas com saídas binárias 
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­ ZeroWaste-s: banco de imagens não anotados, direcionado à métodos de aprendizagem semi-

supervisionados 

­ ZeroWasteAug: base resultante da implementação de data augmentation, visando combater o 

desbalanceamento entre classes 

As imagens foram coletadas utilizando o esquema apontado na figura 14. 

 

Figura 14: configuração do aparato utilizado para obtenção da filmagem da esteira de separação. A 

esquerda: maiores detalhes do aparato de filmagem. A direita: disposição dos aparatos ao longo da 

esteira de separação

 
Fonte: Bashkirova, 2021 

 

A planta de separação na qual a filmagem foi realizada é especializada em reciclagem 

de papel, de forma que qualquer outro material é considerado um contaminante (metal, 

plástico, etc.). A filmagem obteve imagens no início da esteira de separação e ao final dela 

(após a separação dos contaminantes). As câmeras (GoPro Hero 7) foram fixadas em bases 

desenhadas de forma a reduzir transmissão de vibração, visando a captura de quadros mais 

nítidos. Iluminação auxiliar foi providenciada graças ao uso de lâmpadas portáteis (LitraTorch 

2.0) associadas a difusores de luz. Câmeras foram instaladas 1 metro acima da esteira de 

separação, e o ponto de iluminação a cerca de 0.8 m acima da mesma referência.  

Foram obtidos 12 vídeos sequenciais com duração total de 95 minutos e 14 segundos, 

com 120 quadros por segundo e definição 1920 x 1080 pixels. 

Os vídeos foram processados de acordo com as etapas abaixo indicadas, o resultado 

pode ser observado na figura 15: 
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1. Rotação e corte: quadros foram rotacionados de forma que a esteira estivesse paralela ao eixo 

horizontal e recortados de forma a excluir informações externas ao conteúdo da esteira 

2. Remoção de distorção óptica: OpenCV foi utilizado para remoção do efeito “olho de peixe” 

causado pela proximidade da esteira à câmera  

3. Deblurring: utilizado método SNR-Deblur para remoção de embaçamento ocasionado pelo 

movimento da esteira 

Figura 15: A esquerda – quadro original; A direita – quadro pós-processado. 

 

Fonte: Bashkirova, 2021 

 

Um total de 4661 quadros foram anotados de forma que apenas os contaminantes 

foram considerados como instâncias de interesse (foreground), enquanto papel e esteira foram 

considerados como fundo (background). Devido ao alto desbalanceamento entre as classes e 

sua inerente complexidade, optou-se por trabalhar com uma única classificação “não-papel”, 

tal treinamento, poderia ser útil considerando separação de materiais em uma unidade de 

reciclagem de papel. 

O dataset anotado e armazenado sob o formato MS COCO disponibilizado pelos 

autores já vem dividido em conjuntos de treino, validação e teste, contando com a distribuição 

de objetos detectáveis por quadro indicada no histograma abaixo (figura 16). 
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Figura 16: distribuição de contaminantes presentes por quadro 

 

Fonte: Bashkirova, 2021 

Finalmente, na figura 17 podem ser observados exemplos de saídas esperadas para 

duas imagens pertencentes ao ZeroWaste-f. 

 

Figura 17 – Apresentação de dois exemplos de imagens contidas na ZeroWaste Dataset (à esquerda) e 

suas respectivas segmentações e rótulos (à direita). 

 

Fonte: BASHKIROVA, 2021. 

 

3.2 Experimentos 

 
Experimento consistirá em utilizar a mesma implementação do algoritmo Mask R-CNN 

empregada pelos autores, no entanto a CNN utilizada como backbone será alterada. No artigo 

de lançamento da base (BASHKIROVA, 2021) o backbone empregado era do tipo ResNet-

50. Neste experimento utilizaremos a implementação com um backbone mais robusto, 

ResNext-101. 
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O modelo a ser testado foi construído em cima do framework detectron2 (WU et al., 

2019). Sua construção modular permite maior flexibilidade na implementação e adaptação de 

algoritmos de aprendizagem profunda voltados ao processamento de imagens.  

Aplicando o princípio da modularidade, será investigado como a alteração do backbone 

afetará a qualidade da saída da segmentação e classificação, através da comparação com os 

valores de mAP para as máscaras. 

3.2.1 Configurações 

O para treinamento foram utilizadas 3000 imagens da base ZeroWasteAug, as quais 

foram processadas com batch=2, por mil iterações. Devido ao limitado tamanho do dataset e 

do poder computacional disponível, para obtenção de um melhor resultado, foi utilizada 

transferência de aprendizagem a partir de pesos treinados na base MS-COCO, fornecidos pelo 

pacote detectron2. Estipulou-se uma taxa de aprendizagem de 0.0025 (configuração padrão da 

configuração). 

 

Aplicando o princípio da modularidade, será investigado como a alteração do backbone 

afetará a qualidade da saída da segmentação e classificação, através da comparação com os 

valores de mAP para as máscaras. 
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4 RESULTADOS E ANÁLISES 

Após treinamento, os resultados abaixo foram obtidos. 

 

Tabela 4: Resultados obtidos com o Mask R-CNN (ResNext-101) e comparação com valores obtidos com 

configurações padrão do framework detectron2 (BASHKIROVA, 2021) para precisão média das máscaras 

 

Fonte: Autoria própria 
 

Com uma rede neural mais robusta e transferência de aprendizagem resultados a partir de 

71% melhores foram obtidos. Observou-se que, assim como detectado pelos autores do 

dataset, o algoritmo tem dificuldade de detectar os contornos de objetos menores.  

Quanto ao tempo de processamento, obteve-se 0,368 segundos/imagem para inferência na 

base de teste, significativamente acima dos 0,033 segundos/imagem, limite para considerar 

processamento em tempo real. 

Abaixo, podem ser visualizados exemplos de imagens com máscaras detectadas pelo 

modelo aqui empregado. 

 

Figura 18 – Exemplos de imagens obtidas a partir do modelo com ResNext-101, todas as instâncias 

contam com o rótulo “non-paper” 

 

Fonte: Autoria própria 
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5 CONCLUSÃO 

Neste trabalho foi apresentado um panorama geral sobre geração e gestão de resíduos 

sólidos urbanos (RSU), pontuando o desafio de aumentar a capacidade de processamento de 

RSU. Foi pontuada a oportunidade de sem empregar algoritmos de detecção de objetos neste 

setor, visando reduzir o gargalo de produção que a separação manual representa. 

Foi feita um extenso levantamento bibliográfico sobre o tema de classificação e detecção 

de imagens e objetos. Propondo-se, a partir do entendimento da arquitetura das soluções 

atualmente disponíveis, uma análise de impacto sobre modificação da rede neural 

convolucional que gera as features maps utilizadas para alimentar o algoritmo Mask R-CNN. 

Observou-se que tais redes possuem grande impacto sobre os resultados obtidos em uma 

mesma base de dados, levando a resultados com no mínimo 71% de melhora para o caso 

analisado. 

No entanto, o desafio do escopo das instâncias a serem mapeadas, com alto nível de 

oclusão e deformação, ainda representa um desafio para obtenção de melhores detectores. De 

forma que ainda há bastante espaço para melhoria na tarefa de detecção e classificação de 

materiais recicláveis em ambientes produtivos, considerando não somente à acurácia dos 

modelos, mas também a velocidade de processamento para tarefa de inferência. 
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