
LUCAS BOTELHO COELHO

MÁRCIO CARLOS PERIN TEDESCO

TIAGO LEE

ATAIRU – REDE SOCIAL PARA VIAJANTES

São Paulo

2015

LUCAS BOTELHO COELHO

MÁRCIO CARLOS PERIN TEDESCO

TIAGO LEE

ATAIRU – REDE SOCIAL PARA VIAJANTES

Trabalho de conclusão de curso de Engenharia de Computação apresentado

à Escola Politécnica da Universidade de São Paulo – Departamento de Engenharia

de Computação e Sistemas Digitais

Orientador: Prof. Dr. Selma Shin Shimizu Melnikoff

São Paulo

2015

DEDICATÓRIA

Agradeço à minha família, pelo apoio incondicional nessa trajetória. Mãe, seu
cuidado e dedicação foram o que me deram, em alguns momentos, a esperança

para seguir. Pai, seu incentivo ao estudo me fez chegar até aqui. Irmão, obrigado
pela parceria. Agradeço também aos meus amigos e professores.

Lucas Botelho Coelho

Dedico este trabalho à minha companheira Sophie Fluzin, com muito carinho, pelo
suporte, companheirismo, motivação e apoio indiscutível durante todas as etapas

desse projeto e momentos difíceis da minha graduação. Ao meu irmão pela parceria
e colaboração no design deste projeto. Aos meus pais, pelo apoio incondicional

durante todas as etapas da minha vida, por sempre escolherem acreditar em mim e
investirem cegamente nos meus sonhos e ambições

Márcio Carlos Perin Tedesco

Agradeço a Deus por permitir todas as experiências que tive até o presente
momento e que ainda terei na minha vida. Dedico este trabalho aos meus pais e ao
meu irmão, que me apoiaram nesta jornada de estudos e de trabalho, além do amor

que recebi deles. Aos amigos que acreditaram em mim e que permitiram a minha
participação neste projeto.

Tiago Lee

AGRADECIMENTOS

Agradecernos à nossa professora orientadora, Profa. Dra. Selma Shin
Shimizu Melnikoff, por aceitar orientar o nosso projeto e por nos orientar durante

todos os momentos em que buscamos seu auxilio. Obrigado, pelos conselhos e pela

orientação .

Agradecemos ao Marcos Heitor Perin Tedesco, pela grande ajuda no design

do nosso sistema. Obrigado pela dedicação e perfeccionismo de todos os seus
trabalhos.

Agradecemos também aos nossos amigos do coop14 que nos acolheram

como se sempre fossemos da classe e nos ajudaram durante todo este ano a

tornarem as aulas e estudos mais agradáveis. Sem eles não seria tão motivador

estudar em grupo para as provas. Com eles aprendemos que nem sempre é

possível fazer tudo com perfeição mas sempre é possível atingir o alvo com força e

tranquilidade.

RESUMO

A possibilidade e a facilidade de viajar por meio dos transportes aéreos

permitem que um número maior de turistas percorram o mundo. Porém, na hora de

procurar atrações locais, restaurantes típicos, museus e outras informações, é

necessário gastar um certo tempo com pesquisas na Internet, Blogs, aplicativos de

viagens como o TripAdvisor, agência de viagens, para receber recomendações e

saber quais os melhores atrativos da região. Em todos os casos, se a pessoa vai a

algum lugar pela primeira vez não há como evitar este gasto de tempo em pesquisa.

Denominado de ATAIRU, palavra de derivação indígena, tupi-guarani, que significa

companheiro de viagem, este projeto de formatura tem como foco principal

desenvolver um sistema que facilite a busca de informações de atrações da cidade

de destino e possibilitar a interação entre os usuários por meio de uma rede social.

Palavras chaves: Sugestão de roteiros. Filtragem colaborativa. Sistema de

recomendação.

ABSTRACT

The possibility and the easiness to travel through the air transport system

allow to a higher number of tourists to discover the world. However, to look for

attractions, venues, typical restaurants, museums and other information, it is

necessary to spend some time to search in the Internet, Blogs, travelling apps like

TripAdvisor, travel agencies, to receive recommendations and to get to know the best

attractions of the area. Denominated as ATAIRU, word with origins in the indian
language tupi-guarani which means travel companion, this graduation project has the

main focus in developing a system that makes it easy to find information about

attractions of the destined city and make it possible to interact between the users of

the system through its social network.

Keywords: ltinerary Suggestions. Collaborative Filter. Recommendation

System .

LISTA DE FIGURAS

Figura 1 - Diagrama de Navegação - Parte 1... 22

Figura 2 – Diagrama de Navegação - Parte 2 .. 22

Figura 3 – Diagrama de Navegação - Parte 3 .. 23

Figura 4 – Diagrama de Navegação - Parte 4 .. 23

Figura 5 – Diagrama de Navegação - Parte 5 .. 24

Figura 6 – Tela 0 - Início... 25

Figura 7 - Tela 3 - Roteiros .. 26

Figura 8 – Tela 6 - Perfil... 27

Figura 9 – Tela 8 – Bate-papo.. 28

Figura 10 – Tela 10 – Gerenciamento da Rota .. 29

Figura 11 – Tela 12 – Matching ... 30

Figura 12 – Tela 14 – Configurações ... 31

Figura 13 – Diagrama de Classes Simplificado .. 32

Figura 14 – Tabela de escalabilidade da plataforma Heroku .. 40

Figura 15 - Distribuição de atividades... 48

Figura 16 – Backend Sprint Schedule .. 49

Figura 17 – Frontend Sprint Schedule... 49

Figura 18 – Sprint Backlog... 50

Figura 19 – Tela de Issues.. 51

Figura 20 – Arquitetura de Sistema... 51
Figura 21 - Diagrama Entidade-Relacionamento - Usuário... 52

Figura 22 - Diagrama Entidade-Relacionamento - Lógica de Negócios. ... 53

Figura 23 – Tela de Categories do Foursquare.. 56

Figura 24 – Mapping Tags x foursquareCategoriesID(1) ... 57

Figura 25 – Mapping Tags x foursquareCategoriesID(2) ... 58

Figura 26 – Mapping Tags x foursquareCategoriesID(3) ... 58

Figura 27 - cidades disponiveis no prototipo inicial.. 59

Figura 28 – Recursos e métodos ... 64

Figura 29 – Tela O – Login...,........................ 76

Figura 30 – Tela 1 – Cadastro .. 77

Figura 31 – Tela 4 – Adicionar Evento ... 78

Figura 32 – Tela 5 – Mapa do Roteiro ... 79

Figura 33 – Tela 7 – Amigos..,........................ 80

Figura 34 – Tela 9 – Rotas ... 81

Figura 35 – Tela 11 – Adicionar Amigos à Rota ... 82

Figura 36 – Tela 13 – Perfil do Usuário Selecionado ... 83

Figura 37 – Tela 15 – Seleção de Rota... 84

Figura 38 – Tela 16 – Buscar Amigos... 85

Figura 39 – Diagrama de Classes... 86

SUMÁRIO

1. Introdução.. 13

1.1. Motivação.. 13

1.2. Objetivo ... 13

1.3. Justificativa .. 14

1.4. Estrutura da Monografia ... 14

2. Especificação do sistema.. 16

2.1. Funcionalidade .. 16

2.1.1. Funcionalidade 1 - Criação de Rotas e Roteiros.. 16

2.1.2. Funcionalidade 2 - Sugestão de Roteiro.. 17

2.1.3. Funcionalidade 3 - Composição de Roteiros... 18

2.1.4. Funcionalidade 4 - Matching de roteiros: ... 18

2.1.5. Funcionalidade 5 - Chat... 18

2.1.6. Funcionalidade 6 (Extensão) - Gamification ... 18

2.1.7. Funcionalidade 7 (Extensão) - Aviso sobre Eventos e Pontos Importantes.................. 19

2.2. Modelo de Casos de Uso ... 19

2.2.1. Usuário t)eslogado .. 19

2.2.2. Usuário Logado.. 19

2.2.3. Sistemas Externos ... 19

2.2.4. Administrador do Sistema ... 20

2.2.5. Casos de Uso por Ator... 20

2.3. Diagrama de navegação .. 22

2.4. Interface Homem Computador ... 24

2.5. Diagrama de classes simplificado.. 32

2.5.1. User ... 32

2.5.2. Profile .. 33

2.5.3. Settings.. 33

2.5.4. Route ... 33

2.5.5. ltinerary... 33

2.5.6. Event.. 33

2.5.7. Administrator .. 34

2.6. Considerações sobre a Especificação do Sistema ... 34

3

3.1

Conceitos e Tecnologia .. 35

Arquitetura Orientada a Serviços (SOA – Service Oriented Archtecture\ 35

Restful Services APIs.. 36

iOS ... 37

Ruby on Rails ... 38

Plataforma Heroku .. 39

SGBD PostgreSCIL ,... 40

3.7. Provas de Conceito.. 41

3.7.1. Provas de Conceito - Foursquare .. 41

3.7.2. Utilização dos Dados Foursquare .. 42

Prova de Conceito - Facebook... 43

Utilização dos Dados de Facebook.. 44

Prova de Conceito - Forecast IO .. 45

3.8. Considerações Finais do Capítulo.. 46

4. DESENVOLVIMENTO...47

Divisão de Atividades .. 47

Gerenciamento do projeto.. 48

Arquitetura de Sistema ... 51

Modelagem de Dados ... 52

4.5. Algoritmo de geração de roteiros. .. 55

4.5.1. Categories Foursquare .. 55

4.5.2. TagsCategory ... 56

4.5.3. Lógica..Erro! Indicador não definido.

4.6. Chat Server e funcionalidade de chat ... 59

4.7. Algoritmo de A4atc/7/ng ... 60

4.8. Backlog de Implementação do Backer7d... 60

4.9. Resultados de Implementação do Backenc/.. 63

Testes .. 64

Considerações Finais do Capítulo.. 65

5. Considerações Finais.. 66

5.1. Conclusão .. 66

5.2. Contribuições .. 66

Trabalhos Futuros.. 67

3.2.

3.3

3.4.

3.5

3.6

3.7.3.

3.7.4.

3.7.5.

4.1.

4.2.

4.3.

4.4.

4.10.

4.11.

5.3.

REFERÊNCIAS .. 69

GLOSSÁRIO.. 71

ApÊNDICE A – DESCRICÃO DE CASOS DE USO .. 72

APÊNDICE B – PROTÓTIPOS DE TELAS .. 76

APÊNDICE C – DIAGRAMA DE CLASSES... 86

APÊNDICE D – DESCRICÃO DO API DO ATAIRU... 87

D.1 Users ... 87

D.1.1 Users / Login .. 87

D.1.2 Users / Logout.. 89

D.1.3 Users / Cadastro de Usuário .. 90

D.1.4 Users / Pegar Dados do Usuário .. 92

D.1.5 Users / Atualizar Cadastro ... 95

D.1.6 Users / Verificar Registro do Facebook Id.. 97

D.1.7 Users / Busca de Usuários.. 98

D.1.8 Users / Retornar Dados de um Usuário ...

D.2 Tags ..

D.2.1 Tags / Listar Tags..,

D.2.3 Tags / Excluir Tag ...,

D.3 Rotas ... 105

D.3.1 Rotas / Listar Rotas .. 105

D.3.2 Rotas / Criar Rota ... 106

D.3.3 Rotas / Retornar Rota .. 107

D.3.4 Rotas / Excluir Rota .. 109

D.3.5 Rotas / Adicionar itinerário.. 110

D.3.6 Rotas / Excluir itinerário .. 112

D.3.7 Rotas / Adicionar usuário... 113

D.3.8 Rotas / Excluir usuário ... 115

D.3.9 Rotas / Match de Rota ... 116

D.3.11 Rotas / Retornar usuários associados à rota ... 118

D.4 Roteiros... 119

D.4.1 Roteiros / Pegar Roteiros... 119

D.4.2 Roteiros / Excluir Roteiro... 121

D.4.3 Roteiros / Gerar Roteiro .. 122

101

101

103

D.4.4 Roteiros / Listar Eventos

D.4.5 Roteiros / Atualizar Roteiro ... 125

123

D.5 Eventos ... 126

D.5.1 Eventos / Listar Eventos... 126

D.5.2 Eventos / Adicionar Evento no Roteiro.. 128

D.5.3 Eventos / Excluir Evento no Roteiro .. 129

D.5.4 Eventos / Atualizar Evento do Roteiro... 130

D.6 Perfil.. 131

D.6.1 Perfil / Criar perfil usuário ... 131

D.6.2 Perfil / Pegar perfil usuário .. 133

D.6.4 Perfil / Pegar perfil simples usuário... 136

D.7 Amigos .. 136

D.7.1 Amigos / Listar amigos... 136

D.7.2 Amigos / Listar users que o tem como amigo ... 138

D.7.3 Amigos / Adicionar Amigo ... 140

D.7.4 Amigos / Excluir Amigo .. 141

D.8 Configuração... 143

D.8.1 Configuração /Listar configurações ... 143

D.8.2 Configuração / Atualizar Configurações .. 144

D.9 Mensagens.. 146

D.9.1 Mensagens / Recuperar Mensagens ... 146

D.9.2 Mensagens / Armazenar Mensagem ... 147

13

1. INTRODUÇÃO

Este capítulo apresenta a motivação, o objetivo, a justificativa e a estrutura da

monografia .

1.1. Motivação

Este trabalho insere-se no contexto de viagens, no qual pessoas desejam

viajar e conhecer lugares mas, muito além disso, querem conhecer pessoas que

tenham o mesmo objetivo que elas ou compartilhem de interesses semelhantes.

Quando as viagens não são feitas através de agências de turismo, é difícil saber

onde se hospedar, visitar, ter uma boa refeição e conhecer a cultura local. Todas

essas questões são consideradas quando o assunto tratado é viagem, no entanto,

nem sempre são feitas de maneira eficiente por falta de conhecimento e informação.

Dentro desse contexto, a motivação para o projeto de formatura é oferecer um

sistema, cujo principal serviço é oferecer, às pessoas, melhores experiências e

facilidades ao visitarem novos lugares.

1.2. Objetivo

O objetivo do trabalho é desenvolver um sistema, denominado de ATAIRU

(palavra de derivação indígena, tupi-guarani, que significa companheiro de viagem),

com ênfase em uma rede social voltada para viajantes e mochileiros. A plataforma

de viagens integra os seguintes recursos:

• Informações atualizadas de restaurantes, museus, hotéis, hostels e atrações
turísticas com seus respectivos horários de funcionamento;
Capacidade de traçar rotas de viagem e verificar se há alguém que irá
percorrer uma parte da mesma rota ou ainda um mesmo roteiro dentro da
cidade;
Plataforma social com a capacidade de interação entre usuários do aplicativo;
Possibilidade de elaboração de um roteiro e compartilhá-lo com outros
usuários;
G amification . para permitir que a visita de novos lugares e a busca de novas

pessoas através do aplicativo seja um jogo, motivando e incentivando a

prática do turismo e desenvolvimento cultural da pessoa,

•

•

•

14

1.3. Justificativa

A equipe de projeto é formada por três alunos que realizaram intercâmbio em

três continentes diferentes: Lucas no Canadá, continente americano, Márcio na

Espanha, continente európeu e Tiago na Coréia, continente asiático. Isto os levou a

conhecer muitas pessoas, muitos lugares e, nas discussões para a definição do

trabalho, puderam identificar problemas que ocorreram durante as viagens e

maneiras de melhorar essa experiência que tem, como intuito, alimentar as pessoas

culturalmente, promovendo o seu crescimento pessoal.

Durante as viagens, foram realizados estudos das ferramentas de viagens

disponíveis e chegou-se à conclusão de que não há nenhuma, entre as analisadas,

que atendesse às expectativas dos participantes, no mercado. O sistema de

referência da TripAdvisor é o mais próximo no que se refere à disponibilização de

informações de lugares, porém os usuários precisam requisitar a busca de lugares

apenas, sem ter uma ferramenta para montar um roteiro de viagens (TRIPADVISOR,

2014). Outro sistema de referência é o Gogobot, que apresenta uma ferramenta

para auxiliar na construção de um roteiro, sendo que o próprio usuário precisa fazer

a pesquisa de lugares pelo sistema para adicionar à sua lista de lugares a visitar,

além de não oferecer uma rede social a seus usuários (GOGOBOT, 2014).A falta de

um sistema, que tenha todas as informações relevantes integradas, ofereça

sugestões de roteiros e que apresente uma rede social, motivou a propor este

projeto de formatura

1.4. Estrutura da Monografia

O documento é organizado em 5 capítulos: Introdução, Especificação do

Sistema, Conceitos e Tecnologias, Desenvolvimento e Considerações Finais.

No capítulo 1 - Introdução – são apresentadas as seções de Motivação,

Objetivo, Justificativa e Organização do trabalho.

No capítulo 2 - Especificação do Sistema – são apresentados os resultados

da análise de requisitos e do sistema Atairu: Funcionalidades, Modelo de Casos de

Uso, Diagrama de Navegação, Interface Homem-Computador, Diagrama de Classes

Simplificado e Considerações Finais do Capítulo.

15

No capítulo 3 - Conceitos e Tecnologias - são apresentadas as explicações e

as justificativas sobre as decisões referentes às tecnologias adotadas, abrangendo:

SOA, Restful APIs, iOS, Ruby on Rails, Plataforma Heroku, SGBD PostgreSQL,

Provas de Conceito e Considerações Finais do Capítulo.

No capitulo 4 - Desenvolvimento – são apresentados: Divisão de Atividades,

Arquitetura de Sistema, Modelagem de Dados, Algoritmo de Geração de Roteiros,

Backlog de Implementação do Backend. Resultados de Implantação do Backend e

Considerações Finais do Capítulo.

No capítulo 5 – Considerações Finais

Conclusão, Contribuições e Trabalhos Futuros.

são aDresentadas as secões

16

2. ESPECIFICAÇÃO DO SISTEMA

Este capítulo apresenta os requisitos do sistema, através de Funcionalidades,

Modelo de Casos de Uso, Interface Homem Computador, Diagrama de Navegação e

Diagrama de Classes Simplificado.

2.1. Funcionalidade

O sistema Atairu possui sete funcionalidades, que são: criação de rotas e

roteiros, sugestão de roteiro, composição de roteiros, matching de roteiros, chat.

gamification e aviso sobre eventos e pontos importantes. As cinco iniciais possuem

maior prioridade, pois constituem um conjunto consistente para mostrar os recursos

do aplicativo e, portanto, foram consideradas para o projeto de formatura. As duas

últimas (6 e 7) não foram consideradas para essa etapa, porém são interessantes

para complementar o sistema.

2.1.1. Funcionalidade 1 - Criação de Rotas e Roteiros

Descrição: Tem o objetivo de fornecer recursos para criar uma rota dentro de

uma viagem (cidades a serem visitadas), incluindo datas, tempo de duração,

interesses, e para permitir adicionar um usuário ou grupo de usuários no roteiro

(eventos a serem percorridos em uma cidade) ou à rota

A rota é constituída das seguintes informações:

• Cidades a serem visitadas em ordem cronológica

• Datas de início e fim de viagem

• Usuários que participarão da viagem

• Um ou mais roteiros para cada cidade

O roteiro é constituído das seguintes informações:

• Agenda dos eventos a serem realizados

• Datas de estadia

Horário dos eventos

• Descrição dos eventos

Cada evento pode listar os usuários (de maneira discreta, por exemplo, uma

17

pequena foto do usuário) que possuem este evento registrado no seu roteiro. O perfil

do usuário deve conter as seguintes informações:

Foto

Nome do usuário

• Cidades já visitadas

• Interesses da pessoa: utilizados para obter um roteiro orientado aos

gostos do usuário

Motivação: Tem a finalidade de facilitar a organização da viagem do usuário.
Recursos :

O usuário pode criar o seu próprio roteiro para uma determinada

cidade.

• O usuário pode editar um roteiro sugerido pela aplicação.

• O usuário pode compartilhar diferentes roteiros com diferentes usuários.

• As informações do usuário podem ser obtidas através de uma interface

com o Facebook.

•

2.1.2. Funcionalidade 2 - Sugestão de Roteiro

Descrição: Tem o objetivo de fornecer um mecanismo para apresentar

sugestões de roteiro para uma determinada cidade ou lugar. O sistema fornece um

roteiro, de acordo com a duração da viagem, o período do ano e o perfil do usuário.

A partir dos roteiros de vários usuários e de roteiros previamente elaborados, o

algoritmo faz sugestões de acordo com certos filtros, levando em conta os interesses
do usuário.

Motivação: Quando se tem poucos dias para visitar uma cidade, por exemplo,

é difícil otimizar o roteiro com lugares que são mais significativos.
Filtros :

• Tempo da viagem

• Período do ano

• Interesses/Perfil do usuário

• Outros a definir

18

2.1.3. Funcionalidade 3 - Composição de Roteiros

Descrição: Tem o objetivo de fornecer um mecanismo para compor (ou

misturar) os roteiros personalizados de diversos usuários, para criar um roteiro único

para os usuários em questão.

A partir de vários roteiros de vários usuários que compartilham o mesmo

roteiro, esta funcionalidade gera um roteiro único de forma a se adaptar aos
interesses de cada usuário.

Motivação: pessoas que viajam juntas e que pretendem desfrutar o tempo

juntas na cidade podem, através dessa funcionalidade, elaborar um roteiro unificado.

2.1 .4. Funcionalidade 4 - Matching de roteiros:

Descrição: Tem o objetivo de fornecer um mecanismo para realizar matching,

em que um usuário pode encontrar e entrar em contato com um ou mais usuários

que realizam a mesma rota que ele.

Motivação: pessoas que viajam sozinhas e que pretendem desfrutar o tempo

na cidade com alguém podem, através dessa funcionalidade, encontrar outras

pessoas com o mesmo perfil e, dessa maneira, aumentar o intercâmbio cultural e

tornar a viagem mais dinâmica.

2.1.5. Funcionalidade 5 - Chat

Descrição: Tem o objetivo de fornecer um mecanismo para um chat, para

facilitar a comunicação entre usuários que compartilham de uma mesma rota ou com

amigos da sua lista de chat.

Motivação: Tem a finalidade de promover um primeiro contato entre os

usuários que são pareados via Matching ou para facilitar a comunicação entre os

usuários que já pertencem à lista de amigos do usuário.

2.1.6. Funcionalidade 6 (Extensão) - Gamification

Descrição: Tem o objetivo de fornecer uma plataforma mais interativa entre

os usuários por meio de gamification .

Motivação: Tem a finalidade de atrair e incentivar os usuários a utilizarem o

19

aplicativo, o que pode levá-los a fazer comentários, sugestões e feedbacks de

VIagens.

2.1.7. Funcionalidade 7 (Extensão) - Aviso sobre Eventos e Pontos

Importantes

Descrição: Tem o objetivo de fornecer um mecanismo que notifica, ao

usuário, qual é o evento histórico associado ao lugar por onde está passando; além

disso, pela posição adquirida pelo GPS, o aplicativo notifica pontos importantes a
uma determinada distância.

Motivação: Tem a finalidade de mostrar possibilidades de se visitar outros lugares

além dos já programados pelo roteiro.

2.2. Modelo de Casos de Uso

Os atores possuem diferentes permissões de acesso às funcionalidades do

sistema. São eles: usuário deslogado, usuário logado, sistema externo e
administrador de sistema.

2.2.1. Usuário Deslogado

Corresponde ao ator que não está autenticado no sistema. Usufrui da

funcionalidade 2, Sugestão de Roteiro, porém sem a possibilidade de salvar o roteiro

em um perfil até que esteja autenticado no sistema.

2.2.2. Usuário Logado

Corresponde ao ator que está autenticado no sistema e, por isso, possui

acesso a todas as funcionalidades do sistema.

2.2.3. Sistemas Externos

Estes atores são APIs do Facebook, Whatsapp, Google Maps e sites sobre

informações turísticas. O sistema utiliza, a partir destes sistemas externos, as

informações de perfis, como o do Facebook, de mapas, como o Google Maps, e de

interfaces com messenger8 como o Whatsapp (considerado um dos mais usados no

20

mundo), para possibilitar a troca de mensagens.

2.2.4. Administrador do Sistema

O administrador do sistema corresponde ao ator que interage com o sistema

de maneira administrativa, tendo como principal função adicionar informações ou

fontes de informações sobre eventos e pontos turísticos.

2.2.5. Casos de Uso por Ator

O usuário deslogado possui os seguintes casos de uso:

UCI. Fazer Login

UC2. Cadastrar usuário

UC3. Gerar sugestão de roteiros

UC4. Visualizar tela de Login

UC6. Adicionar evento

UC7. Remover evento

UC10. Visualizar roteiro do dia no mapa

•

•

•

•

e

•

O usuário logado tem os seguintes casos de uso:

•

•

•

•

•

•

•

e

•

•

•

UCI. Fazer Login

UC3. Gerar sugestão de roteiro

UC4. Visualizar tela de Login
UC5. Visualizar tela de Perfil

UC6. Adicionar evento

UC7. Remover evento

UC8. Visualizar informações do evento
UC9. Visualizar roteiro do dia

UC10. Visualizar roteiro do dia no mapa

UCI 1. Visualizar tela de gerenciamento de rota

UC12. Visualizar tela de contatos

UC13. Visualizar tela de configurações do sistema

21

•

•

•

•

@

•

•

@

e

•

•

•

•

UC14. Criar rota

UC15. Remover rota

UC16. Adicionar roteiro a partir de uma rota
UC17. Adicionar roteiro a uma rota

UC18. Remover roteiro

UC19. Editar informações da rota

UC20. Visualizar informações do roteiro (incluindo data e filtros)

UC21. Adicionar contato à rota

UC22. Executar Matching

UC23. Adicionar um usuário à lista de amigos

UC24. Enviar mensagem

UC25. Adicionar amigos à rota

UC26. Selecionar rota

UC34. Remover contato da rota

O sistema externo tem os seguintes casos de uso:

• UC27. Obter perfil do usuário no Facebook

• UC28. Obter mapa do Google Maps

• UC29. Mostrar rota no mapa

• UC30. Executar Web Crawler

O administrador de sistema tem os seguintes casos de uso:

• UC31. Adicionar site à lista do Web Crawler

• UC32. Adicionar eventos no Banco de Dados

• UC33. Atualizar informações de eventos

Os casos de uso mais importantes, relacionados com as principais

funcionalidades do sistema estão descritos com detalhes no APÊNDICE A –

DESCRIÇÃO DOS CASOS DE USO.

22

2.3. Diagrama de navegação

O diagrama de navegação mostra a sequência das telas para a realização

dos caos de uso do Aitaru. Foi dividido em partes para a melhor visualização, a partir

das telas: Tela 0, Tela 2, Tela 6, Tela 7 e Tela 10. As Figuras 1 a 5 apresentam os

componentes divididos do diagrama.

if telaAnterior =a Tela 1_InIcia && login == true

%agin == false

Tela 0_Login

Tela 2 Cadastro

login == f3tse
if teFaAnterlor == Teía2_Roteiros && login == true

Tela 15_Seleção da Rota

Figura 1 - Diagrama de Navegação - Parte 1

login == true
Tela 2 Início \

if teÊaAnterÉor == Tela 1_ InIcio && login == true

Ío9in= =false

Tela 3_Roteiros

Tela 3_Roteiros

Figura 2- Diagrama de Navegação - Parte 2

23

login w = true

Tela 2 Inicia Tela 6 Perfil

Tela 7 Amigos

Tela }4_Configurações Tela 9 Rotas

Figura 3 - Diagrama de Navegação - Parte 3

Tela 8_Bate-papo

Figura 4 – Diagrama de Navegação - Parte 4

24

Tela 2 Fnicio

Tela 12_Matching Tela 13 Perfil do usuário selecionado

Tela 10 C;erencÊ&menta da RoE3

Tela 7_Amigos

Tela 11_Adicionar amigos à rota

Figura 5 – Diagrama de Navegação - Parte 5

2.4. Interface Homem Computador

Nesta seção, são apresentados os protótipos das principais telas do sistema,

em cada um dos possíveis estados e os casos de uso relacionados identificados, A

lista completa dos protótipos de tela se encontra no APÊNDICE B – PROTÓTIPOS

DE TELAS. As telas principais são: Tela 2, Tela 3, Tela 6, Tela 8, Tela 10, Tela 12 e

Tela 14, e estão apresentadas nas Figuras 6 a 14.

25

Tela 2 - Início

8 iI(3 9342

'# a +
2===

Mensagem de
boas vincIas

Cidade

uH:+ eAn

Sun May 12Sun M3b’ 72

=;MFaTn- mwíf
Today Today

Buscar
1 j

Figura 6 – Tela 2 - Início

Descrição: Essa é a tela inicial do aplicativo. Através dela, o usuário pode

gerar um roteiro para uma determinada cidade, em um período estabelecido de dias

e selecionando alguns filtros de interesse. O usuário, antes de gerar esse roteiro,

pode acionar o side bar (menu que aparece ao deslizar a tela da esquerda para a

direita) e ir para tela de realizar o login clicando no botão Login , ou pode ir para sua

tela de perfil clicando no botão Perfil, caso ele já esteja logado.

26

Tela 3 - Roteiros

ã 80 9:42

3' dIal' dba

n: are e, H+? +;: 0
K +

n = q: 1!t : 19r = : 1111 i: +h 4 n 4eiE : :h A Ahp t • n + :
Jb

4

+

a dtalKl '-"'' E

VA PA

Figura 7 - Tela 3 - Roteiros

Descrição: Essa tela mostra o roteiro de uma determinada cidade com as

informações dos respectivos lugares, ao lado da foto. O usuário pode, ao clicar no

sinal de +, adicionar um novo evento ao roteiro; ao clicar no sinal X, pode excluir um

evento do roteiro. O usuário pode visualizar os eventos do roteiro no mapa ao clicar

no botão Mapa. Caso o usuário queira salvar esse roteiro, clica no botão Salvar

Roteiro. Se este não estiver logado, o aplicativo irá para tela de login .

27

Tela 6 - Perfil

8 80 9:42
b /.e ’

&@
p) ,-aK /a

9
t

t
hB

t: # & P::h ::r•

4: :n : nb $r dAL

::! :F + bh

+ : 8:iÉ r + 11!:p 1 31• T:!fE1 3

:: : 3 ne n ç M : = $ er rnR : 4161F R+ 1:F nF h :: : : 3

LOKI
\«'*«

: . 1 in + : :hW : A + Gt & + # + + & n & ' + + + ;

Figura 8 - Tela 6 - Perfil

Descrição: Nessa tela, o usuário visualiza o seu perfil com informações mais

relevantes. Ao clicar em Viagens, o usuário vai para tela de gerenciamento de rotas.

Ao clicar em Amigos, o usuário visualiza a lista de seus amigos e ao clicar em

Configurações, o usuário vai para tela onde pode realizar as configurações do

sistema (Tela 14).

28

Tela 8 - Bate-Papo

8 80 9:42

fvláfc to Hola carifi© q tai?

Sophie’ Nata carÊfia te echo de martos 1

aNNE 10X-TR
•qiHiinHiBHinBiP qWnlllpBIRlpf »«RHnHiiHHniB# hqlBBHIRIURllHIH\qqnHiHiHnnHniP

D FA
nBHniHbi•iBj+r 'qBninHbiH=wrqPIHHH•HÜBHHBHPq•uHniiniblBnP

+hlllHIBlllllHlr +llBHllllBlllF »9HOIBB»H#361888688+qiBiii#HBeip +llHBBHIF

nii+HiPn•1811118181+

G HJ KL

6 zx cv 8 NM a

'a @ $ *,„* @ return

Figura 9- Tela 8 - Bate-papo

Descrição: Nessa tela, o usuário pode conversar com outro usuário.

29

Tela 10 - Gerenciamento da Rota

8 80 9:42

= : v +) nb : 3 1+ 1e!b : 11:+ qe[4A â r : : 111p 3
+ + :.: = tw: 3l+ -e 3

l r$

nei

Figura 10– Tela 10 – Gerenciamento da Rota

Descrição: Nessa tela, o usuário visualiza a rota da viagem, ou seja, as

cidades e a data para onde o usuário pretende viajar. Ao clicar no ícone 45», o

sistema vai para tela de escolha de amigos que o usuário pode adicionar na viagem.

Ao clicar no botão Match , o sistema procura, nas viagens de outros usuários, as

intersecções entre as rotas e mostra na tela de match . Ao clicar no botão X, o
usuário pode remover uma determinada cidade. Ao clicar no botão +, pode adicionar

uma nova cidade ao roteiro.

30

Tela 12 - Matching

â 80 9:42

' *' 13t:: p

q = 3 ,„ : Sff: : 3
= ::e f : ; e»« :: = aR k pq

' 5:" :

n.3» =:; ::h.3"::
=: : : e r : n : 11=:! $nF n M : q+ w v 1F Lnh

' 3=’ ’

+ r1€ iEr • Hn : (•+b : 3 + w a 3

; ::,a * m.; trx : = ~wu -x
:L VF b+ 1+

= =, - a n : _= 3
= : : €F ex : : 8l p n 1A\ :F: : ; b +h =r b H n

: \: r €: e i : p :: i:9F ••+ v :: (::: # • i H • + • # m

5 M r +r

Figura l1 – Tela 12 – Matching

Descrição: A tela de matching lista os usuários que possuem, em sua rota,

pelo menos um dia de roteiro coincidente, ordenados pela quantidade de roteiros em

corriurri .

31

Tela 14 - Configurações

ã 8 9 :42

n•
r\ o w lnb rn' e\ n+ r\

b/ L 13 a GIf Gb
dnb,

+ ; e##f : # 3 o:f= b :kG é e : !-Fans:f
f-'H f +’n 33 ; e}--: -

:e'T :if ::: 5;3::FÊC'

-{-::::;FÉ”;.
; : 8 1r t: 8 : : 3> ;: r € 11p 8

= v:’;:3 =':f Ti=,.,%;;Ões 8 sff
:1:1l 3 ç e : ! : j 11: 3 c = 31

Figura 12 – Tela 14 - Configurações

Descrição: Nessa tela o usuário pode configurar as suas preferências de
sistema.

32

2.5. Diagrama de classes simplificado

A Figura 13 apresenta o Diagrama de Classes simplificado do Atairu. O

Diagrama de Classes completa se encontra no APÊNDICE C – DIAGRAMA DE
CLASSES.

+ pas sui

1'
User

+A.ínizade

Profile 1 1

1/
/

10 ’
+amIgo

1-

1"

Route „1 1 *
t{inerary

'q ‘

1’

Event

Figura 13 - Diagrama de Classes Simplificado

Para efeito de codificação, foi decidido utilizar nomes em inglês para que a

API do Atairu, caso seja utilizada por outros sistemas não tenha barreira devido à

língua portuguesa. Tem-se, a seguir, a descrição da responsabilidade das classes.

2.5.1. User

É a classe responsável por armazenar os dados cadastrais do usuário. São

eles: nome, senha, país, cidadania, e-mail, foto e data de nascimento. Os métodos

associados a esta classe são os responsáveis pela execução do login , logout e
cadastro do usuário.

33

2.5.2. Profile

É a classe responsável por conhecer os dados relativos ao perfil social do

usuário, como os interesses, e uma descrição pessoal. Associado a esta classe

estão os métodos para gerenciamento dos atributos mencionados.

2.5.3. Settings

É a classe responsável por conhecer as configurações do usuário e as

permissões para utilizar as funcionalidades do sistema. Associado a esta classe

estão os métodos para modificação dessas configurações.

2.5.4. Route

É a classe responsável por conhecer o nome e a descrição de cada rota, os

usuários que estão associados a esta rota e todos os roteiros (lniteraries) que

pertencem a essa rota. Os métodos implementados por essa classe são

relacionados com a modificação do seu nome e descrição, adição ou remoção de

usuário associadas à rota e adição, remoção e edição de ltineraries .

2.5.5. ltinerary

É a classe responsável por armazenar os dados do roteiro: datas de início e

fim, a cidade, e possui um ou mais Eventos associados. Os métodos implementados

por essa classe são relacionados com a modificação das datas de início e fim, e os
Eventos associados.

2.5.6. Event

É a classe responsável por armazenar o nome, a descrição, o horário de

funcionamento, a data de início, a data de fim e os tags que auxiliam na
classificação do evento. Os métodos implementados por essa classe estão
relacionados com a modificação dos seus atributos.

34

2.5.7. Administrator

É a classe responsável por armazenar os dados do administrador de sistema

que são seu nome e sua senha e seus métodos estão relacionados com as tarefas
administrativas.

2.6. Considerações sobre a Especificação do Sistema

A especificação do sistema seguiu o processo de metodologia descrita por

Bezerra (2006), além da utilização do conhecimento que foi obtido pelo grupo

durante os cursos de Engenharia de Software.

Com relação aos protótipos de telas descritas no APÊNDICE B –
PROTÓTIPOS DE TELAS, eles foram usadas apenas como base para a
implementação das telas na aplicação móvel. Foram feitas modificações do design

das telas, durante a implementação, para se ter uma interface mais intuitiva ao
usuário.

35

3. CONCEITOS E TECNOLOGIA

Este capítulo apresenta os conceitos relacionados com Arquitetura Orientada

a Serviços (SOA), RESTfull Services APIs, iOS, Ruby on Rails, Plataforma Heroku e

SGBD PostgreSQL, e as Provas de Conceito realizadas.

3.1. Arquitetura Orientada a Serviços (SOA

Archtecture\

Service Oriented

A necessidade em fornecer e a demanda em consumir, em um mundo

dinâmico, exigem a formulação conceitual de arquiteturas que possam moldar

sistemas adequados que as auxiliem. Para os sistemas voltados para a
disponibilização de serviços, SOA é a base para o desenvolvimento destes sistemas.

SOA é um paradigma de arquitetura para organizar e usar competências que podem

estar sob controle de domínios diferentes (OASIS, 2006).

O serviço, que caracteriza a unidade fundamental de SOA, é composto por

diversas operações que satisfazem a sua execução; no caso do serviço de

gerenciamento de usuários em um sistema, por exemplo, contém operações de

cadastro, de remoção, edição etc.

Para organizar estas operações e o conjunto de serviços, SOA apresenta as

seguintes características principais (FUGITA; HIRAMA, 2012):

• lnteroperabilidade – permite a interação entre sistemas,

independentemente da tecnologia utilizada pelas partes.

• Padronização – utilização de padrões que possibilitam a
interoperabilidade entre sistemas, como o WSDL(Web Service

Definition Languague) e SOAP(Simple Object Access Protocol).

• Baixo acoplamento – baixa dependência com outros componentes,

possibilitando modificação, substituição ou melhoria sem maiores

problemas.

• Modularização – desenvolvimento do sistema em módulos ou

componentes, apresentando baixo acoplamento entre as partes.

A divisão em módulos tem, como finalidade, a melhor visualização do sistema

para os desenvolvedores que irão utilizá-los, sem ter a necessidade de conhecer os

detalhes internos, mas se importando com a funcionalidade e o resultado do serviço.

36

Para tanto, estes módulos precisam ter baixo acoplamento para que haja maior

independência de cada serviço e, por consequência, seja possível ser reutilizado

sem maiores problemas.

A tecnologia de implementação Wet) Service, orientada a serviços,

proporciona a comunicação entre vários sistemas por causa da crescente utilização

da internet, permitindo a construção de serviços nos moldes da arquitetura SOA.

O Atairu segue os padrões Wet) Services , com o propósito de ter a
interoperabilidade entre plataformas, tendo em vista que é usado em smartphones,

cujas plataformas de operação são variadas.

3.2. Restful Services APIs

Além do conceito de SOA, foi utilizado o conceito de RESTful na arquitetura

de Atairu. A palavra RES Tful significa que o sistema está nos moldes do estilo

arquitetural REST (Represantational State Transfer) , como descrito na dissertação

de Fielding (2000). Quando há uma comunicação entre duas partes do sistema do

tipo cliente-servidor, as requisições da parte do cliente têm por objetivo obter ou

modificar o estado do servidor e isto é possível através de trocas de informações de

suas representações de estados; esta dinâmica se deu origem ao termo REST.

A arquitetura REST aplica várias restrições para seus componentes e

elementos de dados. Algumas destas restrições são:

• Client-Server. separar a arquitetura em cliente e servidor com o

objetivo de distinguir as tarefas de cada componente para que o

desenvolvimento seja independente um do outro. O servidor cuida da

parte de negócios e acesso ao banco de dados; e o cliente cuida da

interface do usuário, a apresentação das informações.

• Stateless : qualquer requisição que seja feita pelo cliente deve conter

individualmente todas as informações necessárias para que o servidor

possa processar o serviço requisitado adequadamente. Portanto, o

cliente, e não o servidor, deve guardar as informações necessárias

para guardar o estado atual.

Cacheable= como as requisições são independentes uma das outras, é

possível que haja requisições do mesmo tipo, aumentando o

•

37

processamento desnecessariamente. Para não afetar o desempenho, é

preciso que as informações possam ser guardadas em cache.

• Layered System : arquitetura em camadas para que seja possível a

adição ou a exclusão de uma camada sem afetar as outras.

Aplicando as restrições de arquitetura para os padrões de Web Services, é

necessário ter os seguintes requisitos: uma base URI (Universal Resource lndicator)

que seja única; um formato padrão para os tipos de dados que serão utilizados,

como por exemplo JSON ou XML; padronizações dos métodos HTTP em GET, PUT,

POST ou DELETE, por exemplo, sendo que cada um destes métodos tem uma

função distinta.

O desenvolvimento de Atairu utiliza a linguagem Ruby, seguindo os conceitos

SOA e RESTful . para a implementação do backend e uma interface HTTP com

métodos GET, PUT e POST.

3.3. iOS

O mercado de aplicativos móveis está atualmente polarizado entre as

plataformas Apple iOS e Google Android. Tendo em vista esse mercado, realizou-se

uma pesquisa (DREDGE, 2013) (EVANS, 2013) que auxiliasse a tomar a decisão da

plataforma a ser utilizada para o desenvolvimento do frontend do Atairu

Atualmente a fatia de mercado da plataforma Android é muito maior que a

plataforma iOS. No entanto, o iOS ainda é a plataforma favorita para startups e

testes de aceitação do mercado. Isso se deve principalmente aos seguintes fatores:

• Baixa fragmentação. Aplicativos desenvolvidos para a plataforma iOS

funcionam perfeitamente numa pequena gama de iPhones e iPads:

geralmente entre 6 e 8 diferentes dispositivos Apple. Para a plataforma

Android, existem cerca de 12000 diferentes dispositivos no mercado,

com uma grande variedade de tamanhos de tela, processadores e

versões de Android que ainda estão em uso. Essa diversidade de

versões e dispositivos provoca um problema chamado fragmentação,

ou seja, torna o desenvolvimento muito mais complexo e o suporte

pós-desenvolvimento muito custoso, pois para cada versão da

38

plataforma Android é necessário lidar com os bugs e detalhes próprios
da versão.

• APIs. Tanto o Android quanto o iOS possuem uma biblioteca extensa e

semelhante de software disponível aos seus desenvolvedores. No

entanto, a maior parte do trabalho é feita em controladores: iOS

ViewController. no iOS, e o Android Activity, na Android. A plataforma

iOS, além deste conjunto de bibliotecas, semelhante nas duas

plataformas, possui um conjunto extra e único de frameworks chamado

Core Data Framework que facilita o design do sistema.

• Ambiente. O IDE (Integrated Development Environment) torna o

desenvolvimento do aplicativo muito mais produtivo em ambas as

plataformas. O Xcode da Apple é rápido, poderoso e prestativo, sem

ser intrusivo. O debugger funciona sem problemas, e o simulador é

rápido e responsivo. Já a IDE de desenvolvimento para a plataforma

Android é o Eclipse que adiciona uma complexidade maior aos projetos

além de operar de maneira mais lenta e ser menos intuitivo.

• Facilidade em monetização. Apesar da grande fatia de mercado do

Android, em cerca de 82% do mercado, os usuários da plataforma são

mais sensíveis ao preço, tornando mais difícil uma eventual

monetização o produto. Os usuários iOS ainda são os que estão mais

dispostos a comprarem aplicativos através da App Store da Apple.

A partir desses fatores optou-se pelo desenvolvimento do frontend do Atairu

na plataforma iOS, utilizando a versão 5.1.1 do Xcode.

3.4. Ruby on Rails

O Rails é um framework que facilita o desenvolvimento de aplicações WEB,

conhecido também por Ruby on Rails por utilizar a linguagem de programação Ruby.

Esta linguagem foi criada por Yukihiro Matsumoto e ficou popular depois da criação

do framework Rails. Considerada uma ferramenta para fazer aplicações web de

acordo com Hartl e Prochaska (2008), utiliza quatro conceitos:

• Model-View-Controller (MVC) – utiliza o padrão de arquitetura que

estrutura o sistema em modelo, apresentação e controle.

39

• Don’t Repeat Yourself (DRY) – é uma prática de programação que

diminui a duplicação desnecessária de código, futuros bugs e

complexidade causada pela repetição constante.

• Convenção sobre configuração (convention over configuration) – busca

convenções que possam diminuir configurações de sistema, isto é,

codificações mais eficientes e menos trabalhosas.

• Object-Relational Mapping (ORM) – é a conversão de dados entre tipos

diferentes do sistema em linguagem de programação orientada a

objetos, isto é, os vários tipos de dados são transformados em objetos
dentro do banco de dados.

Uma biblioteca que ajuda a testar as aplicações ao decorrer do

desenvolvimento é o RSPED. Os testes podem ser feitos em um único módulo ou

em quantos se julgarem necessários, pois a modificação de uma parte do código

pode afetar outras. Desta forma, é possível verificar se os módulos desenvolvidos

anteriormente foram afetados ou não, de maneira automatizada.

Ruby on Rails tem mais de 3400 contribuidores, além de sua equipe principal

de desenvolvimento, possuindo uma vasta quantidade de documentação da

ferramenta e de bibliotecas que ajudam a otimizar a construção de aplicações web.

Tendo em vista esta facilidade oferecida pela ferramenta e a grande quantidade de

documentação disponível para ser consultada, decidiu-se utilizar o Rails para

implementar a aplicação web do projeto de formatura

Foi utilizada a versão 2.1.2p95 do Ruby e a versão 4.1.4 do Rails.

3.5. Plataforma Heroku

Umas solução simples e prática, que foi encontrada para hospedar a
aplicação em Ruby, foi o serviço cloud Platform as a Service (PaaS), o Heroku
(HEROKU, 2014). Esta plataforma utiliza a palavra dyno como sendo uma unidade
isolada de virtualização UNIX, que fornece o ambiente necessário para executar
uma aplicação. A Figura 14 mostra os diferentes dynos disponíveis.

40

Dyna
Size

Faewlory

RAM

CPU

Share
Mu itite rl ant

Coatpute

:2)

Price/dyna-
hour

1x

2X

FX

$12r'38

l024 FaB

1.!

2:':

F e 5

yes

1 E-4:':

4):-8.‘

4 Dx

50.1:15

50.111

SB.80668 100%, 1:1] na

Figura 14 - Configuração de escalabilidade da plataforma Heroku

Fonte: https://devcenter.heroku. com/articles/dyno-size

O sistema Atairu utiliza o dyno IX que fornece o poder de processamento de

512MB de RAM e 1 CPU share (uso da porcentagem mínima de CPU, definida pelo

Heroku), além de um pequeno banco de dados (10 KB) para testar a aplicação

durante seu desenvolvimento. Esta configuração de processamento é a
recomendada para aplicações com baixa requisição de weó services como a deste

trabalho que será usado apenas para testes. São fornecidos, como padrão, 750

dyno horas de graça por aplicação, portanto não há custos provenientes para o
desenvolvimento deste trabalho.

Uma característica deste serviço cloud é a utilização do Git, ferramenta de

versionamento e repositório de código, na execução do deploy das aplicações, o que

adiciona o benefício de gerenciamento e de versionamento das aplicações. Outro

benefício é a facilidade em configurar variáveis de ambiente por meio de um arquivo

externo, sem a necessidade de codificação para configurar.

3.6. SGBD PostgreSQL

Neste trabalho, foi utilizado o PostgreSQL como SGBD, versão 9.3.4. Ele

satisfaz a necessidade do sistema quanto ao quesito banco de dados e, além disto,

a utilização deste SGBD é requerida pela plataforma Heroku que hospeda a

aplicação web do sistema. Este PaaS (Platform as a Service) foi escolhido devido à

sua automatização quanto ao processo de deploy de aplicações em Ruby, isto é,

41

não há necessidade de configurar ou adaptar os sistemas que são hospedados

nesta plataforma, basta apenas fazer deploy da aplicação.

O PostgreSQL não é o mais usado dentre os open sources, porém tem

mostrado crescente adesão principalmente por ser considerada mais robusta por

causa de seus padrões mais rigorosos. As suas principais características, são

apresentadas a seguir:

• É uma ferramenta poderosa de gerenciamento de banco de dados

relacional;

Na questão de confiança e integridade dos dados é a melhor opção

para desempenho de procedures customizadas no banco de dados

(TEZER, 2014).

e

3.7. Provas de Conceito

Para implementar o sistema Atairu foi feito uma busca de dados e
informações que fossem relevantes à rede social para viajantes. As informações

referentes aos eventos e locais são obtidas através de bancos de dados já

existentes e que permitem o acesso aos seus dados através de APIs.

Foram encontradas duas APIs com essa funcionalidade, focada em

informações de locais: Foursquare (FOURSQUARE, 2014) e TripAdvisor. A prova de

conceito dessas APIs foi executada apenas com o API do Foursquare, sendo que

não foi possível testar o API do TripAdvisor por restrições legais de acesso a seus
dados.

O Facebook (API do Facebook) (FACEBOOK, 2014) foi escolhido para fazer

prova de conceito, devido à grande informação disponível com relação às

preferências do usuário. Para a fonte de dados de previsões do tempo, foi escolhido

o API do Forecast IO (FORECAST, 2014).

3.7.1. Provas de Conceito - Foursquare

O Atairu utiliza o Foursquare para busca de informações referentes aos

eventos. O Foursquare usa o conceito de venue que significa local onde algo

acontece ou ocorrência de algum evento; portanto, sua API retorna as informações

42

referentes aos eventos em formato JSON. As venues podem ser locais fixos ou
eventos sazonais.

O API permite uma busca no banco de dados do Foursquare para obtenção

de informações que incluem dicas, fotos, check-in-counts (contagem de check-in) e

hereNow (quem se encontra no local agora). As pesquisas podem ser feitas ao redor

de um local ou através da cidade inteira. Tudo isto pode ser requisitado pelo serviço

de venues, sem a necessidade de o usuário estar autenticado na Foursquare e

disponível a altas taxas de requisições: cinco mil requisições por hora, podendo

requisitar mais se necessário.

3.7.2. Utilização dos Dados do Foursquare

Uma das condições de acesso à API do Foursquare é que, se os seus dados

forem armazenados em algum servidor ou dispositivo, não é permitido manter um

banco de dados separado com informações melhoradas da venues. isto é, toda e

qualquer melhoria na informação deve ser enviada primeiramente ao banco de

dados do Foursquare, para então ser acessado via Weó Services . Outra condição

de uso é de mencionar que a fonte dos dados é o Foursquare.

Este trabalho implementa a sugestão de roteiros e isto não quebra as

condições de uso da API, pois é feito uma melhoria quanto a seleção de venues e

não na informação que ela possui. Portanto, a fonte de dados escolhida para a

busca por locais é o Foursquare.

A utilização da API exige a observação de regras de uso; mesmo que não

precise de um usuário autenticado no sistema Foursquare para obter seus dados, as

políticas de uso devem ser respeitadas. Tais políticas são:

• Quando houver utilização dos dados de seu banco de dados, é

necessário explicitar de maneira apropriada de que a fonte é o

Foursquare.

• O armazenamento dos dados em outro banco de dados é permitido,

desde que seja feita a atualização periódica, para que não sejam

disponibilizados dados desatualizados aos usuários.

43

Não é permitida a combinação de informações de locais do Foursquare

com as de outras fontes, visando melhorar ou modificar os dados

fornecidos pelos serviços da API.

• Caso haja dados que precisem ser modificados para melhorar a
qualidade da informação fornecida, deve ser enviada uma requisição

de edição da informação para que haja a modificação primeiramente

no Foursquare.

Existe a restrição para disponibilizar, no máximo, 4 dicas ou fotos da

mesma venue 1 caso contrário deve haver um direcionamento para a

página do Foursquare.

Não é permitido vender, alugar ou transferir os dados do Foursquare a

terceiros; a obtenção dos dados deve ser feita diretamente por meio da

API

As restrições para o sistema são os casos de uso UC30, UC31 e UC32

especificados no Modelo de Casos de Uso da seção 2.2, os quais não foram

implementados, pois vão contra as condições de uso do API do Foursquare. O

Atairu, portanto utiliza os dados relacionados às venues obtidas apenas do
Foursquare.

•

•

3.7.3. Prova de Conceito - Facebook

No que se refere à obtenção de dados pessoais, a fim de determinar o perfil

das preferências do usuário, foi realizada uma prova de conceito do Facebook API,

devido à quantidade de usuários cadastrados na rede social e à facilidade de

obtenção de informações do usuário. Através da API, é possível acessar as

preferências dos usuários que podem ser visualizadas em sua rede de amigos.

Os dados analisados foram:

• likes – indica o que o usuário do Facebook gostou, podendo ser uma

página do Facebook ou algum perfil de uma figura pública.

• about e interests – frases genéricas, sem categorização do tipo de

informação.

• tagged_places – lugares visitados pelo usuário, podendo ser casualmente

um restaurante ou em uma viagem,

44

Estes dados não são precisos quanto ao gosto do usuário em relação a

viagens, pois não apresentam uma padronização quanto ao tipo de dado informado,

como o likes, about e o interests.

Além destes, foram obtidos, através da API, dados cadastrais como nome,

país de origem, e-mail, data de aniversário, primeiro nome, sobrenome, gênero, id

de usuário e foto. Para o propósito de descobrir a preferência do usuário, poderia ter

sido implementado um sistema de reconhecimento de padrões baseado no conceito

de Machine Learning da área de IA (Inteligência Artificial), tendo como base a

análise de tagged places-, porém este método de obtenção da preferência do

usuário é invasivo e, por isto, foi decidido não o utilizar para este projeto.

A obtenção dos dados do usuário somente é possível com a sua autorização,

existindo, portanto, uma restrição de acesso. Para os dados cadastrais básicos

como nome e e-mail não é necessário permissão especial; a permissão de

autenticar em uma aplicação por meio do Facebook já é o suficiente para obter estes

dados básicos. Portanto este API não é utilizado para a obtenção da preferência do

usuário, mas é utilizado para obter os dados cadastrais básicos, pela aplicação

móvel, com a finalidade de fazer apenas a autenticação do usuário no sistema.

3.7.4. Utilização dos Dados de Facebook

O Facebook oferece fluxos de login para diversos aparelhos e sistemas.

Alguns são fáceis de serem implementados, utilizando seu SDK oficial, enquanto

que outros precisam de codificação adicional para efetuar o login do usuário no
Facebook.

Para garantir qualidade de experiência ao usuário, o Facebook requisita

revisão de acesso aos dados mais restritos antes que a aplicação peça permissão

de acesso a dados pessoais ao usuário pela aplicação. Esta revisão pode demorar

de 3 a 7 dias para saber se será possível requisitar ao usuário a permissão de

acesso de seus dados, classificados como sensíveis pelo Facebook.

As informações de acesso aos dados do usuário, sem ter o pedido de revisão

ao Facebook são perfil público, email e amigos do usuário (app friends) . O perfil

público disponibiliza informações de descrição sobre o usuário (about) . A lista de

amigos do usuário neste caso é composta pelos amigos que utilizam a mesma

45

aplicação que o usuário e não a lista completa de amigos do Facebook. Para

propósito de teste e de desenvolvimento de aplicações, não há restrição de acesso a

essas informações

Os demais atributos precisam passar pela revisão Facebook quanto à

utilização destas informações na aplicação ou sistema, sendo classificados nas

seguintes categorias:

• Propriedades estendidas do perfil - Propriedades sensíveis que podem

ou não ser parte do seu perfil público.

• Permissões estendidas - Inclui as informações mais sensíveis do perfil.

Uma dessas permissões permite a publicação de histórias no seu

profile do Facebook. Todas as permissões estendidas aparecem em

uma tela separada do fluxo de login para que o usuário possa decidir

fornecer ou não essas informações

• Permissão de página - Permite administrar qualquer página do

Facebook que a pessoa gerencie.

3.7.5. Prova de Conceito - Forecast IO

A condição climática de uma região afeta nas atividades que podem ser feitas,

portanto a previsão do tempo deve ser levada em conta no algoritmo de sugestão de

roteiros. Para a obtenção de dados da previsão de tempo, foi executada uma prova

de conceito do API do Forecast IO. Estes dados são utilizados no algoritmo de

sugestão de roteiros.

O Forecast IO permite executar consultas para a maioria das localizações do

mundo, retornando as seguintes informações:

• Condições climáticas atuais;

• Previsão do tempo por minuto em um período de 1 hora;

• Previsão do tempo por hora em um período de 48 horas.

• Previsão do tempo por dias em um período de 1 semana.

Há duas chamadas principais da API que podem ser feitas. A primeira

chamada retorna a previsão do tempo atual para os próximos sete dias por meio da

requisição web abaixo:

46

https://api.forecast.to/forecast/APIKEY/LATITUDE , LONGITUDE

A segunda chamada permite fazer uma consulta para um tempo específico,

passado ou futuro, sendo na maioria dos casos 60 anos atrás até 10 anos no futuro.

A requisição wet) para esta chamada segue abaixo:

https://api.forecast .to/forecast/APIKEY/LATITUDE, LONGITUDE , TIME

A decisão da escolha deste serviço, como fonte de dados de previsões do

tempo, foi a simplicidade de utilização da API, não sendo necessário uma

característica especial para incluir tal função no sistema Atairu.

3.8. Considerações Finais do Capítulo

Os conceitos apresentados neste capítulo ajudaram a definir as tecnologias e

a arquitetura do sistema projetado. Para a escolha das tecnologias foram

ponderados os seguintes quesitos:

• Curva de aprendizagem e relevância da tecnologia no mercado;

• Capacidade de reutilização da aplicação lógica por outros sistemas,

através de uma API de serviços;

• Adaptabilidade ao conceito de RESTful Services;

• Facilidade de monetização.

A partir do levantamento das requisições de dados necessários para o

funcionamento do sistema Atairu, foram realizadas provas de conceito das APIs de

serviços que permitiram o seu fornecimento de maneira menos restritiva. Portanto

as tecnologias escolhidas para o desenvolvimento do sistema são:

• Tecnologia de implementação SOA: VVeó Services',

• Frontend-. Plataforma iOS, Xcode versão 5.1.1;

• Backend'. linguagem Ruby versão 2.1.2p95 e framework Rails versão

4.1.4;

• Servidor de aplicação cloud-, Plataforma Heroku;

• SGBD: PostgreSQL versão 9.3.4;

APIs: Foursquare, Facebook e Forecast IO

47

4. DESENVOLVIMENTO

Este capítulo apresenta Divisão de Atividades, Arquitetura de Sistema,

Modelagem de Dados, Algoritmo de Geração de Roteiros, Backlog de
Implementação do Backend e Resultados de Implementação do Backend.

4.1. Divisão de Atividades

A divisão de atividades de um grupo é feito pelo gerente de projetos e este

papel foi designado a Márcio Carlos Perin Tedesco, principalmente pelo seu

conhecimento técnico e habilidade em organizar tarefas a serem executadas.

As atividades a serem realizadas depois do primeiro quadrimestre, no qual foi

feita a especificação do sistema, foram agrupadas em três partes: elaboração da

aplicação lógica (backend) , elaboração da aplicação móvel iOS (frontend) e

elaboração da monografia. Estas atividades foram distribuídas inicialmente de forma

que dois dos integrantes desenvolvessem o backend e o outro integrante o frontend .

ficando a monografia para ser escrita por todos os integrantes em paralelo à

respectiva atividade.

No decorrer do desenvolvimento deste trabalho, foi decidido que deveria

haver uma mudança na distribuição de atividades, em função do prazo de entrega

da monografia. Com este intuito foi feita a transferência de responsabilidade de um

dos integrantes da atividade frontend para se dedicar na elaboração da monografia.

A divisão inicial e a divisão final das atividades são mostrada na Figura 15.

Devido a maior conhecimento da tecnologia Ruby e Rails e a agilidade em

codificar de Mácio Carlos Perin Tedesco, foi decidido que a responsabilidade em

finalizar a monografia ficaria para Tiago Lee.

48

Márcio 1
1

Tiago 1

1

Lucas

Aplicação
lógiea

Aplicação
lógica

Aplicação
móvel iOS

1::)ivisão

inicial

Monografia

Divi§ão
atual

Aplieação
lógica

Figura 15

Monografia Aplicação
móvel iOS

Distribuição de atividades

4.2. Gerenciamento do projeto

O processo de gerenciamento de projeto escolhido teve como inspiração o

SCRUM que é um processo desenvolvimento de software ágil, com característica

iterativa e incremental (VIEIRA, 2014).

A unidade básica de desenvolvimento em SC3RUM é um sprint que pode ter

uma duração de tempo variável, porém, deve ser previamente definida. Para o

projeto a duração estipulada de cada sprint foi de 10 dias. A definição das features

(funcionalidades), implementadas em cada sprint, foi realizada em conjunto com os

três membros do projeto logo no começo da etapa de desenvolvimento. As
funcionalidades implementadas em cada sprint tanto do backend quanto do frontend

foram casadas de maneira a ser possível realizar um teste integrado ao final de cada

sprint. Portanto, ao final de cada sprint sempre foi agendado um deploy das

modificações realizadas no backend ao servidor de lógica do sistema e a realização

de um teste integrado com o frontend.

Eventuais dificuldades que levaram a atrasos foram gerenciadas através da

alteração da quantidade de tarefas atômicas de cada sprint e aumento de tempo na

dedicação ao projeto. Essa variação na distribuição do tempo dedicado ao sprint já

49

havia sido prevista devido à sazonalidade de provas e trabalhos durante o

quadrimestre. As Figuras 16 e 17, apresentam as tabelas utilizadas no

gerenciamento dos sprints do backend e do frontend .

RUBY ON RAiLS . SPRiFfr SCHEDULE

Start5

589115 ari ,vlanda_v

Sprint End

Based GB 1 cx : nc-9&

91/InF3. Ends aR FrtB13_v

9/20/2014

9/3C>/2C}14

10/10/2014

iof2a/2014

10/30/2014

11/9/2034

!U 19/2014

User/Admn - Âutenticaç,aa

ProíBe - Tags

ünerary/EverRS

Rocas/

AmigosAmigos/Incluir

Chat/Seítings

Match

9/10/2014

9/20/2014

9/30/2014

!0/10f2014

io/aQ/2014

IOf30F2014

il/gf2a14

Figura 16 – Backend Sprint Schedule

ias - SPRiNT SCHEDULE

[Foeus

/,{an Fear,#ps Inc 11.'Jod ,a SprInt (User Slur}' F?e+ererrc€ 83

Sprint Start

899#+5 on Mmd3y

Sprint End

ãasM CD 1 CF ;:) nw.k

5lumts fntis ap Fwiay

8/3Lf2014

9/19/,2014

9/30/2014

10/11/2014

10/31/2014

11/11/2014

11/22/2014

12/3.12014

Status

151vIni ;

0

1

2

3

4

5

6

7

8

Preparação Ambiente

Data Model/ Data Provider/Config u raçao
inicial

Home/Login/Cadastro

Meu Perfil 1 Parti! Amiga

Rotas/

Roteiros/Eventos

Arl}igos/lrlcluir Amigos/Chat/Busca
Amigos

Match

Identidade Visual e Design(Sinrples)

8/25/2014

9/9/2014

9/20/2014

10/1/2034

10721/2014

11/1/2014

11/12/2014

11/23/2014

Figura 17 - Frontend Sprint Schedule

Além dessas tabelas, uma tabela auxiliar, o Sprint Backlog , criada juntamente

com as tabelas de gerenciamento dos sprints. definiu as tarefas atômicas a serem

realizadas durante cada sprint a fim de implementar uma funcionalidade. Essa tabela

50

foi modificada dinamicamente ao longo do projeto e ajudou a rastrear as dificuldades

do grupo e gerenciar o tempo dedicado a cada tarefa dentro do sprint. A Figura 18

apresenta um extrato dessa tabela. Cada entrada na tabela corresponde a uma ação

atômica e seu status.

Além dessas tabelas, a comunicação de erros entre o frontend e o backend e

as modificações a serem implementadas pelo backend foram realizadas através do

sistema de criação e resolução de issues (erros), disponível na ferramenta utilizada

para o gerenciamento de código e repositório Git, o qual é apresentada na Figura
19

e;riaí model Profile
C;riar assaclacao do modeÊ Profile com model user
Criar action create no Profiles controller

Criar ac{ion update rio Profiles controller
Criar model Tags
Criar assüciacaa do model com o model profile
C:riar action creaFeícreate- IIO T. cnnirniler
Criar action irldex {aet no Ta=is controller

Criar action destroy(de$ lys conlrolterrio
Documentar webservice T
CHar action do conlrol ler Reqistratioris
Criar acüon show do cortr s

Revisar confIg/routes
Vgrificar se tÊmeout do auíh token do Dev lse funciona
Adicionar Profile à dashboard
Adicionar Tags a dashboard activeAdmin
Ua ar D]etloy Hernku
Teste inleqrado MobÉÉe Sprint 2

Docurnentar webservice u :e-user-data
Docurnentar 'e t-user
Documentar webservice creat
Docurrtentar wetlservice update-DroNe
Documentar webservice ati 1e

Criar cenario e realizar testes SPEC qe[user
CrIar cenario e realizar testes SPEC cr9ate-oronÉe
Criar cenario e realizar testes SPEC líoFiie

Criar cenario e realizar testes SPEC get

Sprint 2 -
3010912014

Figura 18 - SprInt Backlog

51

ticashcrieÊhnGiihqui3 / ãtaÊru Server ' r b,. T G>urlwaíçh v 3 + Star a 1/ Fork o

Puli r8qu8sl$ Labels Milestone$

€) 6 Open + 1 r .: i' 11 u’ç

Verificar mais de 7 eventos enviadas em apenas um dia
?Jlak€n7€í

Eventos dupliçndos no generathitinerary usuario nao iugada
aDMlii ;:}

Multip tas imagens na campo phataURL, generatbitinerary
.! fi=V q 'bIrr ?3\ aI\akin?8

phc{oURL de cidades
!*'. ariax 1 giP$

’ - ' search-user
arE,jg 11;

' Timeout audI token da De\rise iRlynN
arÉtkçn7:3

Filters v 13.1: b LiC :=. oi:'e{ 1

Aut tK)í v LAbels v Mlie stones v

>

0}
n

+

,11

/q;slçrtee v Scr! ,

A

A

A #:

Figura 19 – Tela de Issues

4.3. Arquitetura de Sistema

A Figura 20 apresenta a arquitetura de sistema Atairu, através do Diagrama

de Implantação, que apresenta os elementos de infraestrutura nos quais foi alocado
o software .

S Íoí de
E anco de Dados

;q

15
8 l + 1a i r 1iii

Servit:Re de Web
Service$

+

Internet

ApllMóvel

Fài;book Ab'1 Fodrsàuare ’ÀpÊ Foíec-ast 1 ci- API

Figura 20 – Arquitetura de Sistema

52

O sistema é organizado em quatro camadas: camada de acesso aos dados,

alocado no Servidor de Banco de Dados; camada de negócio, no Servidor de VWeó

Services (contém o algoritmo e lógica do Atairu, além de expor os serviços web e

gerenciar suas conexões) e no Servidor de Chat; a camada de interface,

responsável pela apresentação do conteúdo no dispositivo móvel e a camada de

sistemas externos, APIs das fontes de dados.

4.4. Modelagem de Dados

Nesta seção é descrito o modelo de dados construído para armazenar as

informações do Atairu no banco de dados PostgreSQL.

O diagrama de Entidade-Relacionamento foi dividido em duas partes por

razões de melhor visualização, as quais são apresentadas nas Figuras 21 e 22.

User Data

:::::3WBb *

a@It LaqGTErr +b – – – -

user_klus« INT

+

318w
©tws lbrr

tagJkan» VA FtCHAR{1 {))

taç_dmcdptk3rr VARCHAFl[255)

profll8_tner_kluser INT

event kíawnt INT

V

1

1

J UBer

kíuwr INT

HrstJwr» VAFICHAF4(45)

bst_name VAR(>HA Fi(45)

l»ssvord VARCHAFi{45}

9wxi8íENUM{W', 'F)

country VAFICHAFie45}

emaii VAFiCHAR(45)

1guto BLOB

düz9rBtfç> VARCHAFt(45)

datBOfBifth DATE

/ tneí_khner INT

b

\1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

:::::1 #a8tW *

&lkywMatch BO(:)LEAN

albwChat BOOLEAN

user Hus8r IVF

b

>

3 8811&dna tw V

kl8díTttnlstrat« INT

flnt_name VARCHAFI(45)

bst_name VAFqCHAFt(4q

email VARt:RAR{45)

Iwswwd VARCHARe4s}

Index es b

1

1

Figura 21 - Diagrama Entidade-Relacionamento - Usuário.

53

A Figura 21 apresenta as entidades que armazenam as informações

referentes ao usuário que, devido ao aspecto de rede social do Atairu, é um grande

concentrador de informações. A Figura 22 apresenta as tabelas que armazenam as

informações envolvidas com a lógica do sistema. As principais entidades que fazem

parte do modelo de dados do Atairu são: User e ltinerary.

&sMs$ Lt® l:>ata

tns_user ;-

1 rouba idroute tNT

t ww_tki8w INT
b

route V

dante INT

g íwr» VARC}NAF\{45)

7 chs«+rthn LONGTEXT

btnçhx6$

3 €1w8ertEv«tt V

Húxxs@lEv@It INT

' «aítllata DATEFIME

. «xlDat8 DATEÍIME

f tHímwyJc#ürmmy INT

tHímaryJtxÁejc#cxrb INT

t l_kbtty INT

t8vaíú_Hovwrt IMT

1 av8rü_cãy_kk#y MF

b

=] Hr»lsry V

Yt&18@ry ÜVT

.* «8rtDat8 t>ATFflME

' «xlDate DATEFIME

tíwtaJdt9ut8 INT

tdty_Ucly INT

>Inch xes

:jay V

Hdty INT

' mrr» VARCHAR{45)

, cowrtryVAFI(}W45)
bIncbxe$

6

–18\HId +

devMIt INT

• rwn6 VARCHAFt('H}

' dHa4#ba VARCHAR(45)

' t@s VARCHAR{4$)

t dty_W:#y WT

>

3 w9rkingHur8R©DW

t brr

F 8vwrt_klev81vt INT

) dhyofr}»W88kT}NYÊNT

d opartTlírn TiME

.' do$8Tirrn TiME

lnderes

Figura 22 - Diagrama Entidade-Relacionamento - Lógica de Negócios.

A entidade user possui relacionamentos com entidades responsáveis por

gerenciar seus dados, configurações no sistema, mensagens enviadas e recebidas e
relacionamentos com outros users.

54

settings: tabela que armazena as configurações do usuário. As duas

principais configurações são a configuração que permite a presença do

usuário nas buscas realizadas pela funcionalidade Match e a

configuração que permite que o usuário seja encontrado através do

mecanismo de busca de usuários;

message: tabela que armazena as mensagens enviadas pelo usuário

permitindo o acesso a um histórico de chat com cada usuário.

•

+ profile. tabela que armazena as informações que podem ser
visualizadas por outros usuários. Possui associação com a tabela de

tags , de um para muitos.

friendship-. join table que armazena a relação de amizade entre dois•

user_ id.

As entidades tags e tagsCategories fazem parte da lógica de um mapeamento

de preferências do usuário, nomeadas de tags, para um sistema de categorias a

serem buscadas na API do Foursquare e atuarem como um filtro de eventos

relacionados às preferencias do usuário.

Associadas à entidade ltinerary estão as principais entidades relacionadas à

lógica do aplicativo:

route: é a entidade que relaciona os usuários com as informações que

se referem à lógica do sistema. Armazena as informações a respeito da

autorização de alteração de uma viagem, além de informações

descritivas da viagem.

itinerary: é a principal entidade da lógica de geração de roteiros.

Armazena as informações a respeito das datas de começo e término

de um roteiro em alguma cidade.

chosenEvent: é a entidade que estabelece a ordem dos eventos em um

determinado dia.

city: é entidade que relaciona o eventos de uma cidade a um itinerário.

event: é a entidade que acumula a maior parte dos dados do sistema.

•

•

A tabela de eventos é carregada com eventos bem classificados e

recomendados por muitos usuários da comunidade do Foursquare.

Esses eventos são armazenados e, respeitando o termo de uso de

•

•

•

•

55

dados do Foursquare, são atualizados por uma sub-rotina com uma

periodicidade menor que um mês.

4.5. Algoritmo de geração de roteiros.

O algoritmo de geração de roteiros utiliza conceitos de location-awareness e

context-awareness (SCHILIT; ADAMS; WANT, 1994). Um dos grandes desafios que

o desenvolvimento do Atairu enfrentou foi a obtenção do perfil do usuário. Portanto,

para poder mapear as buscas de venues ao API do Foursquare, foi realizado um

mappIng entre as tags que são as preferências que o usuário pode associar ao seu

perfil e entre as Categories de busca do Foursquare.

Sistemas de recomendação se utilizam da opinião de comunidades para

ajudar os usuários a identificar itens úteis para um espaço de busca extenso (e.g.,

Amazon inventory, Netflix movies). A técnica utilizada por muitos destes sistemas é

denominada collaborative filtering (CF), a qual analisa opiniões passadas da

comunidade para encontrar correlações de usuários similares e itens para sugerir k

items personalizados (e.g. filmes) para um usuário a (LEVANDOSKI, 2012),

Técnicas de recomendação existentes se utilizam de ratings representados

por triplas (user, rating, item) , no entanto, não utilizando a geolocalização como um

parâmetro na geração de roteiros. O Atairu se utiliza da geolocalização dos eventos

como um dos parâmetros para obtenção do próximo evento da lista de eventos que

será apresentada ao usuário. Além disso, dados relativos ao feedback dos usuários

que utilizam a ferramenta Foursquare permitiram a utilização desses dados como

parâmetros para a construção de um filtro colaborativo.

4.5.1. Categories Foursquare

O Foursquare oferece uma classificação de suas venues , através de

Categories. Para obter informações mais precisas das venues buscadas, realizou-se

um mapeamento entre tags , preferências do usuário e categorias que melhor

correspondem a essas preferências. A Figura 23 apresenta a tabela de categories

do Foursquare.

56

FOURSQUARE FOR DE.'ELOPERS Meus Apps

4bf58d.18d48988'3 180941735

Museum

4bf38tld8d'; 898 Bd: 81941735

a
';bf 5BdJB':34898 Bd 18 E 941715

a
Art Museurn

History MuscurtI
{bE38ddSd4 tIP 88l:1190941735

a
Planetariurna
4bf 3 BddBd48988d19 2941733

Science Museum

4bf5Bddad45988ci 191941715

Figura 23 – Tela de CategorIes do Foursquare

4.5.2. TagsCategory

A cada tag criada para suprir uma preferência do usuário e contribuir para o

desenho do seu perfil, foi associado um array de foursquareCategoriesIDs. Esses

IDs são utilizados no algoritmo de geração de roteiros como um primeiro filtro para

obtenção de listas de eventos mais adequados ao perfil do usuário.

Além disso, cada tag possui os atributos tag_description , e tiers. O atributo

tiers, é um dos parâmetros utilizados na geração dos roteiros. As tiers é um array

que aceita o conjunto de valores de 1 a 3 com combinações entre si. Esses valores

correspondem ao seguinte mapeamento:

1 -> manha

2 -> tarde

3 -> noite

Esse conjunto de tiers define quais tags fazem sentido para a lógica de

geração, dependendo do momento do dia. A tag nightlife só tem sentido durante a

57

noite, portanto é atribuída a seu conjunto de tiers o valor 3. As Figuras 24, 25 e 26

apresentam como são mapeadas as Tags para um conjunto de foursquarel Ds
através da classe TagsCategory que também guarda as informações sobre o nome

e descrição da Tag relacionada assim como as tiers as quais essa TagsCategory

pertence.

Tryi,:àlericí-v . CFeüteí [{

nIght Lifetag nãE€:
Pra quem curte balada e uma nclte agItadatag des(riptr3r!

pf N: . 11:1 1 ; fe Sp 1.1::]
'4bf58dd3c1+8988d11b94 1733fOIir \cad’ ?1.. a :=el3r ies.{:J: ["4bf SBtid8d43933d116941735

4bf58dd8d48988dl:Lf941';35 4d457185d754aa6376a81359’]

tlc r 3 : 11]

most ÇQqFD€>nrIal$e
FjptÉari Pra abert curte yrsàtãr os pontos turÍstICOS mais visitados
e':dÊ-r4»íiesT Ti= []

Tie Ii [: ,-; 1

tãq RãRe zen
tãg c:es cf 1.pt iD 11 Pra quem curte uma prügramação mais trãnquitã e reLaxada
taur icuãrecate33r, 185 :!): j'’52e8}6}3bcb(57flQ66b7ê27'- , ’S3eBiô13bcbc57fla66b7a28'

4 b t5Bdd8Íi48988d 162941735'&bts1;4bt58díi8d+$988€§le3941:735 .639417351- , 1:4d9S qb 16a:43aS68<b65t;473
4bf58dd3d48938d:12f941?334bf 4bf58dd3d48998d :13194 :1?3S»]66941735

tie :- s : jI ? 7]

1,!ç r:dre : ' outdoor
programação eo ar livrePra Quetr curter ! p Lion

:ü':âtêj3íresí3: [' 52e81ó12bebe57fl06611798e" ,'-S26?€4d8e4bQec79:;õ6e48t5“
53eOfeef498e5a3c066fd8a9» ,'-4bf58dd8d4898Bd162941?3S']

4 Street 4’!. Street Far1 , Stree: Food 34lhering üti'le T 6 "cat 3:Ftüc}a'fI

tIers : i 1, 2 , 1]

Figura 24 – Mapping Tags x foursquareCategorieslDV)

4.5.1. Lógica

A lógica de geração de roteiros se utiliza dos seguintes conceitos para a

geração de roteiros personalizados:

Data Mining-. os dados são obtidos do API do Foursquare no momento

da requisição; o algoritmo extrai as informações a respeito dos eventos

e realiza uma verificação de consistência para campos nulos ou
informações inválidas.

Data Analytics 1 através do DataMining, obtém-se os dados a respeito

da utilização de usuários, comentários e frequência de check-ins nessa

venue. Um check-in é quando uma venue é visitada por um usuário

logado na aplicação que executa essa funcionalidade. Com esses

dados foi elaborado um algoritmo que determina a relevância de uma

venue para o contexto em que o usuário se encontra e seu perfil.

•

•

58

tag n3 ne :i}tiseuBi
Pra quem {82 questão de visitar as ae’tEores museuslag <3e$=íàptàcü

4bfSgdd8d4B988d1819 41733 "][".;bffoursquare($tegqriesEC) le2S1:3 1735
Ar { Gallery, iius€oa

Tit»rs : [! , :]

arttãg„„FlaHe
Pt-ã quem curte uni {eãtrü e faz questão de assistir uma boa peçatian

32e81612bcbcS7f !066b79eeSQ7c8c4Q91d49&def c8€67a91 {ü 5113 : [“4bf38e§d8ei 489$8dle293173$fOiJF$q
i98ãd leS 931733 “]4

+ ;,rt Ga\ lefT, PubLic Êí{ . 37 r'?ct Art , h:sic gel\38
tio:-\: [1, 2]

erttertãirlnen: eventstàq r,ane
Pra quãüt ciirte parques de diversão ou eventos para se divertirtãg ãeçcrÀPtico

5267e4d8e4bDec79466e48cS{guí5q\:3í8 ç3{eüürie5iü; [='4bfS8dd$d48988d182941735
4hf58dd8d48968d If7941735" 1

The::e ;>à 1-E . ${ ! ee'i f 32 f . Fle3$!afküT
tier 3 : [IÊ : y 3]

historicaltaB„.flüRIE!
Pra !lyen curte visitar í!}onu17terltos e predios histarico$rjgi:ian

4dee fb 944?65fa36:13côbaBereCdLbg(11 ies:0: [“52eB1612htbc5?fl088b7a14
8:i12d941 735’ , “S2e$1612bcbc57f l©66b7a3g1733 n , "4t#4bf58Üd8d.

f1066E179ec!"]52e8 :1
++ !1(à E ace , HI$ 10ri(SIte, (.{ tv ?131\ , F,'J6tinçrê{ 1 Lari#:r,ari , TouR Ê%!\

t{er-; : [3 , :,31
g=:ÔQüf §çu\Ç-üuYe

Figura 25 - MappIng Tags x foursquareCategoriesIDR\

k shop
cá gosta de

53e8feet498e3aac866fd8a9{"4bf58dd8d489$8d12Q9S1735
'4bf59dd8d48988dl$69417355376f355hd3c37f1868c94c31735

Ê88filfg 941735" 1É4fâ$dt: c7,19937 ?lbf5
F,)Iii €(idr 1, $ tluel f'.in:1 a.3t#\erÁn,#, F:si! ?%:Rw{ , beer Store
#gç3d K brLIIk f,ir3p

Liqü;if Store , t!órkel,

souvenIrtag
ulna lealbranca da viageí$.rápt it=8; ’Pra que:1 curte ca8tprâí um ptesente

rcCãtcg or{e srD: ["52f2ãb2ebcbc57f 1066b8blb 41Jf S8dd8d48988d :128951735
§gdd8é=!898$dlf794 1735']

e §çuv fã{}if Shop , Cáft }hop , pl_€8g3íhâ{
tãei--s: [:,:,=]

taG nâm€f : =tFleãtFe
Pra quem curte urt teatro e faz questão de assistir ur$a boa peçafaQ 8es<riptàeí!

4bf5addEd4898ed135941735four$qu.3 re(ãteqorte5 in : [='4bfS&eid8d489B8dlf293 1735
4t}f 3 sdd$d48988d137$41733 " }4hf5ãdd 141735

;?q!-fc':;:{:; A{{$:*;er,ie, !e<He Tii€àT-i! , €:3?eF8 ?{elise , Tíi#aTe!
tieí§= [3}

Pra quem curte um cinema e faz questão de assistir yr$ bom fitrlte
re tTD= ['’4t)f§8dd6d4$9$8ãl?f941735"]

4 Hc:vIc Ti:ea\.e i
tiers ; [:,2,3]

4

Figura 26 – Mapping Tags x foursquareCategoriesID(3)

e Location-awareness: com a informação sobre a posição do evento que

o usuário visitará, é possível determinar, em um determinado raio,

quais os eventos mais adequados.

59

O algoritmo de geração de roteiros constrói uma pilha de eventos para cada

dia do roteiro definido pelo usuário. Se o usuário não estiver logado, o roteiro gerado

estabelece como parâmetro a relevância e feedback do evento que é calculado a

partir de dados estatísticos do API do Foursquare. A Figura 27 apresenta a relação

de Cities populadas no banco de dados do Atairu, para utilização em testes.

lat : "41.872:117" , tIna : "12.479095"}City .create([{ nam: ItáliaRoala country
ILai : "48 . 856583 " , long : "2 . 349014"}Paris Françacountryíiaiiie

Rio de Janeiro 1_at : "-22.90812" , :.ana: '' -43 . 198414"}Brasil{ name country
Portugal lat : "38.719805" , lona : "-9.148865"}{ name Lisboa country

Madrid{ name Espanha kIt ; "40.411405" , lona : " -3.703423"}country
Inglaterra tal ; ''51.S06392" , tony: "-0.128859"}Londres{ name count ry

1)

Figura 27 - cidades disponíveis no protótipo inicial

Se o usuário estiver logado, o algoritmo de geração de roteiros considera as

informações sobre suas preferências mapeadas através de tags e calcula um roteiro

mais adequado para o seu perfil.

Além disso, com as informações da posição geográfica dos eventos, é

disponibilizada uma previsão do tempo para cada dia do itinerário. Os dados para

esta previsão são extraídos no momento da geração do algoritmo de roteiros através
do API Forecast /O.

4.6. Chat Server e funcionalidade de chat

O Atairu oferece uma ferramenta de chat simples para facilitar a comunicação

entre seus usuários. O chat server está alojado em um servidor próprio e dedicado

somente a este recurso.

Para o desenvolvimento do servidor de chat do Atairu foi utilizado o
framework de servidor de mensagens Faye. O Faye é um sistema de messaging do

tipo publishing-subscribe criado por James Colgan e distribuído sob o tipo de licença

MIT (ROSEN, 2004). O Faye provê um servidor de mensagens que realiza o

gerenciamento de canais e redirecionamento das mensagens recebidas e enviadas.

Sistemas de messaging do tipo publishing-subscribe operam através de

canais. Um canal é o meio pelo qual todas as mensagens são enviadas e recebidas

pelos usuários que estão subscritos a este canal. Um usuário subscrito a um canal

passa a receber as mensagens deste canal e passam a ter permissão para enviar

60

mensagens a este canal. Para a implementação do Atairu, apenas canais bilaterais

são permitidos, ou seja, as conversas de chat ocorrem entre dois usuários, não se

permitindo chats em grupo.

O histórico de mensagens é recuperado toda vez que um usuário é subscrito

a um canal. Como o Atairu implementa sistema de mensagens dois a dois esse

evento acontece quando é inicializada uma conversa de chat. Esta funcionalidade

permite o envio de mensagens mesmo que um dos usuários esta offline .

4.7. Algoritmo de Matching

O Matching é uma funcionalidade do Atairu que permite aos usuários

cadastrados a busca e contato de outros usuários que tenham viagens que

coincidam em um ao mais dias e que serão realizados na mesma cidade. É

necessária uma permissão do usuário para que ele seja listado como potencial

contato de outros usuários, através desse mecanismo de busca.

4.8. Backlog de Implementação do Backend

Para o desenvolvimento da API de web services do Atairu, foi construído um

backlog , listando todos os serviços a serem implementados na API, juntamente com

a descrição de suas funcionalidades. Por meio do gerenciamento da implementação

destes serviços em um documento compartilhado entre os integrantes do grupo, foi

possível acompanhar a execução destas atividades.

A relação de atividades desenvolvidas no processo de implementação da API

de RESTfulServices do Atairu é apresentado a serguir.

1. Estudo Web Services: Com o intuito de desenvolver uma API de web

services , foi verificado que a arquitetura REST era a mais adequada

para este sistema, tendo como base a utilização dos vários métodos

dos recursos alocados na aplicação lógica.

2. Web Service Users - Login: Realiza a autenticação do usuário no
sistema.

3. Web Service Users - Logout: Verifica se o usuário está logado no
sistema, realizando um check duplo, através do seu e-mail passado

como parâmetro no corpo da requisição e do token de autenticação

61

passado no header. Se o usuário existe e o token de autenticação está

ok. realiza o logout do usuário no sistema
4. Web Service Users - Cadastro de Usuário: Cria um novo usuário no

sistema e logo em seguida o autentica no sistema.

5. Web Service Users - Pegar Dados do Usuário: Retorna os dados do
usuário.

6. Web Service Users - Atualizar Cadastro: Atualiza o cadastro de um

usuário.

7. Web Service Users - Facebook id: Verifica se já existe algum usuário

registrado com o facebook id enviado. Se sim, retorna o usuário, se

não, envia uma mensagem de erro.

8. Web Service Users - Busca de Usuários: Busca usuários pelo nome

ou sobrenome ou e-mail. A identificação do e-mail é automática, pela

presença do '@’.

9. Web Service Users - Retornar Dados de um Usuário: Retorna os

dados de um usuário e um booleano isFriend. isFriend é true se o

usuário buscado é amigo do requisitante e false caso contrário.

10. Web Service Tags - Listar Tags: Retorna todas as tags relacionadas

ao usuário.

11. Web Service Tags - Criar Tag: Cria uma associação entre uma tag e
urri user.

12. Web Service Tags - Exluir Tag: Exclui uma associação entre uma tag
e um user.

13. Web Service Rotas - Listar Rotas: Retorna todas as rotas associadas

ao usuário logado.

14. Web Service Rotas - Criar Rota: Cria uma rota com os atributos name

e description .

15. Web Service Rotas - Retornar Rota: Retorna rota especificada pelo
identificador .

16. Web Service Rotas - Excluir Rota: Exclui uma rota do sistema.

17. Web Service Rotas - Adicionar roteiro: Adiciona um roteiro (ltinerary)

a uma rota, especificados por um indentificador.

62

18. Web Service Rotas - Excluir roteiro: Remove uma associação entre

um roteiro (ltinerary) e uma rota.

19. Web Service Rotas - Adicionar Usuário: Cria uma associação entre
um usuário e uma rota.

20. Web Service Rotas - Excluir Usuário: Exclui uma associação entre

um usuário e uma rota.

21. Web Service Rotas - Match de Rota: Verifica a existência de rotas

que possuam ao menos uma data coincidente e retorna a lista de rotas

(Matchs) e roteiros (ltineraries) relacionados.

22. Web Service Rotas - Retornar Usuários Associados à Rota:

Retorna lista de usuários associados a uma determinada rota e o id do

seu administrador.

23. Web Service Roteiros - Pegar Roteiros: Retorna roteiro (ltinerary)

especificado pelo identificador. Observação: este roteiro (ltinerary)

deve, obrigatoriamente, pertencer a uma rota que está associada ao
usuário.

24. Web Service Roteiros - Excluir Roteiro: Exclui um roteiro (ltinerary) .

25. Web Service Roteiros - Gerar Roteiro: Retorna um roteiro (ltinerary)

a partir dos seguintes parâmetros: cidade, datas que compreendem a
estadia do usuário na cidade e interesses do usuário.

26. Web Service Roteiros - Listar Eventos: Retorna um array com todos

os Eventos que estão associados ao roteiro (ltinerary) especificado

pelo identificador.

27. Web Service Roteiros - Atualizar Roteiro: Atualiza roteiro (ltinerary)
especificado pelo identificador.

28. Web Service Eventos - Listar Eventos: Retorna lista de eventos

cadastrados para uma cidade.

29. Web Service Eventos - Adicionar Evento no Roteiro: Adiciona um

evento a um roteiro (ltinerary) .

30. Web Service Eventos - Excluir Evento no Roteiro: Exclui um evento

que pertence a um roteiro (ltinerary) .

63

31. Web Service Eventos - Atualizar Evento do Roteiro: Atualiza um

evento que pertence a um roteiro (ltinerary) .

32. Web Service Perfil - Criar perfil usuário: Cria o perfil completo de um

usuário logado.

33. Web Service Perfil - Pegar Perfil Usuário: Retorna o perfil completo

de um usuário especificado pelo identificador.

34. Web Service Perfil - Atualiza Perfil Usuário: Atualiza o perfil do

usuário logado, retornando o perfil atualizado.

35. Web Service Perfil - Pegar Perfil Simples Usuário: Retorna um perfil

simplificado de um usuário especificado pelo identificador.

36. Web Service Amigos - Listar Amigos: Retorna a lista de amigos de

um usuário logado no sistema

37. Web Service Amigos - Listar usuários que o tem como amigo:
Retorna a lista de users que possuem o usuário logado na sua lista de

amigos.

38. Web Service Amigos - Adicionar Amigo: Cria uma relação de

amizade entre o usuário especificado pelo identificador e o usuário

logado no sistema.

39. Web Service Amigos - Excluir Amigo: Exclui um usuário especificado

pelo identificador da lista de amigos do usuário logado no sistema.

40. Web Service Configuração - Lista Configuração: Retorna uma lista

das configurações (Settings) do usuário.

41. Web Service Configuração - Atualizar Configurações: Atualiza as

configurações do aplicativo de um usuário logado no sistema.

42. Web Service Mensagens - Recuperar Mensagens: Recupera todas

as mensagens enviadas pelos usuários em um determinado canal.

43. Web Service Mensagens - Armazenar Mensagens: Armazena a

mensagem enviada pelo usuário a um determinado canal.

4.9. Resultados de Implementação do Backend

A API de web services do Atairu fornece métodos para obter e manipular os

recursos do sistema, que podem ser, usuários, rotas, roteiros, eventos, perfil de

64

usuário, amigos, configurações e mensagens. A Figura 28 apresenta os recursos e
os seus métodos.

get-Êtinerary

logout

register

get-user

update-user-data

has-facebook-id

search-users

Roteiros/ltinerarie
5 - C,4

destro:,’-itinerar}*

generate-itinerarí

list-events

Users - C.1
update-Êtinerary

add-event

remove-event

update-event

create-profile

update-profile

get-profile

lends

get-ln','erse-friends

request-friendshlp

destroy-RI enclship

get-seRings

update-settings

retrÊeve-messages

store-message

Eventos - C.5

get-user-data

get-tags

create-tag

delete-tag

get-routes

Perfil - C_6

get-route

destroy-route

create-route

match-route

adcFitinerary

del ete-itiner3ry

add-user

delete-user

Amigos - C.7

Configuração
C,8

Rotas - C.3

Mensagens - C.9

get-route-users

Figura 28 - Recursos e métodos

A especificação dos web services (descrição, parâmetros, mensagens de

sucesso, mensagens de erro) do Atairu estão descritos em APÊNDICE D –

DESCRIÇÃO DO API DO ATAIRU.

4.10. Testes

Os testes foram realizados iterativamente ao longo do projeto em,

principalmente, 3 etapas:

1. Realização de testes locais isolados de backend e frontend: localmente

foram realizados testes de casos de sucesso e de erro após a
implementação de cada funcionalidade. A biblioteca RSPEC que facilita

a descrição e execução de testes foi utilizada durante a implementação

65

das funcionalidades da aplicação lógica, para confirmar as respostas e

as mensagens de erro esperadas (VIEIRA, 2014).

2. Realização de testes locais integrados: após o sucesso na verificação

dos testes locais isolados, foram realizados testes integrados entre o

backend e o frontend. A aplicação frontend realizava urna requisição de

um weó service e o backend devolvia a resposta esperada ou urna

mensagem de erro.

3. Realização de teste entre frontend e servidor de Web Services: o

sucesso na execução dos testes integrados locais leva ao deploy da

aplicação lógica ao servidor de web services. Após o deploy, foiram

executados testes funcionais e não-funcionais, levando em conta

principalmente o tempo de resposta entre a aplicação frontend eo

servidor de WeI) Services.

A execução desses testes, de forma iterativa e incremental durante a etapa de

desenvolvimento do sistema, permitiu uma baixa taxa de retrabalho e uma alta

correspondência aos resultados esperados.

4,11. Considerações Finais do Capítulo

A implementação descrita nas seções anteriores permitem afirmar a
construção de um sistema que cumpre a especificação descrita no Capítulo 2 –

Especificação do Sistema. O padrão de arquitetura REST, utilizada na

implementação dos web services , contribuiu para o desenvolvimento de uma

arquitetura distribuída e de baixo acoplamento. Isto permitirá que outros sistemas

possam se conectar à API do Atairu, como no caso do desenvolvimento de uma

aplicação móvel com a tecnologia Android para futuros trabalhos.

66

5. CONSIDERAÇÕES FINAIS

5.1. Conclusão

A realização deste trabalho permitiu o aprendizado de conceitos de arquitetura

de sistemas weI> services como SOA e RESTful API, O primeiro conceito foi

abordado no decorrer do curso, porém a utilização da teoria na prática se mostrou

mais clara neste projeto. No caso do segundo conceito, foi a primeira vez que o

grupo se deparou com este modelo de arquitetura; porém sua aprendizagem e

aplicação neste projeto se mostraram bastante colaborativa.

O benefício obtido no aprofundamento do conhecimento do grupo se deve ao

maior tempo de dedicação, iniciado em Janeiro de 2015 e finalizado em Dezembro

de 2015, e pelo gerenciamento de projeto feito por Márcio Carlos Perin Tedesco.

Os cursos de Engenharia de Software foram essenciais para este trabalho,

fornecendo as capacidades necessárias para a especificação do sistema Atairu e

enriquecendo as experiências do grupo com relação ao ciclo de planejamento e
desenvolvimento de um software.

O grupo acredita que este sistema será de grande ajuda para os viajantes e

irá tornar o planejamento e a própria viagem mais agradável. Para tanto, o grupo

pretende continuar a agregar mais valor ao sistema Atairu, com o propósito de levar

ao mercado o que há de melhor para uma rede social para viajantes. Há muito

trabalho a ser feito e desafios a serem conquistados para que este sistema se torne

uma referência para os viajantes do mundo, mas as habilidades obtidas ao decorrer

do curso de Engenharia da Computação será a chave para vencer esta nova etapa.

5.2. Contribuições

Este trabalho teve como objetivo desenvolver um sistema com a capacidade

de auxiliar os viajantes a obterem roteiros de uma forma mais fácil, por meio do

algoritmo de sugestão de roteiros personalizada, e a conhecerem novas pessoas,

por meio do chat e do sistema de matching, Outros sistemas como o TripAdvisor e o

Gogobot tentam ajudar seus usuários a organizarem suas viagens, porém não tem a

junção de funcionalidades que o sistema Atairu possui. O primeiro sistema contém

uma base de dados mais completa, sendo a mais popular do mercado em relação a

67

informações de lugares, e a segunda ajuda a montar um roteiro de viagens, porém

apresenta baixa usabilidade e uma interface não intuitiva.

A grande contribuição deste trabalho é o algoritmo de sugestão de roteiros,

que é a principal funcionalidade. Porém, sem as outras funcionalidades, que
permitem a troca de experiências entre as pessoas, não seria possível ter um

sistema completo. Tudo isto envolveu a análise de tecnologias atuais como

linguagens de programação de aplicação móvel (iOS) e lógica (Ruby), gerenciador

de banco de dados (PostgreSQL), framework (Rails) e PaaS (Heroku), a análise de

conceitos de arquitetura voltada a web servIces como o SOA e REST e conceitos

relacionados ao gerenciamento da informação como context-aware , location-aware,

proximate selection.

Este novo conceito de sistema voltado para viagens certamente será o

propulsor de ideias inovadoras, simples e poderosas, sendo uma contribuição

importante para que novas ideias possam surgir por meio deste trabalho.

5.3. Trabalhos Futuros

O desenvolvimento deste trabalho mostrou-se bastante satisfatório, porém

não foi possível implementar a funcionalidade gamification por conta dos prazos.

Esta funcionalidade se mostra bastante promissora para atrair mais usuários ao

sistema e para melhorar a contribuição das informações em tempo real entre os

viajantes, visto que os usuários poderiam enviar um feedback de uma venue sem

violar as condições de uso da API do Foursquare.

Uma melhoria a ser feita de tempos em tempos é na funcionalidade sugestão

de roteiros, com o objetivo de sempre aprimorar e se adequar à necessidade dos

usuários. A implementação de um algoritmo de Machine Learning que possa

identificar padrões de preferências pode complementar esta funcionalidade e, para

isto, será necessário um estudo mais profundo quanto aos dados a serem

considerados.

Outras modificações a serem implementadas que foram identificadas são:

• Adicionar paginação ao sistema de envio de mensagens (chat) e adição de
emoticons-,

68

•

•

•

•

Desenvolver novos mecanismos para realizar a consistência dos dados com

relação aos eventos;

Desenvolver uma engine para obtenção de dados relacionados aos eventos

de maneira mais independente da API do Foursquare;

Desenvolver uma versão para Android, com o objetivo de alcançar a maior

fatia do market-share mobile;

Especificar e desenvolver o acesso modularizado para promover a

comercialização do Atairu ;

Especificar a precificação por módulo. A ideia inicial é permitir o uso gratuito

para geração de roteiros que não utilizam as preferências do usuário. Para a

utilização das funcionalidades como matching, busca de usuários cadastrados

e salvar viagens, o usuário deverá comprar o acesso;

Melhorar quesito de escalabilidade e gerenciamento de histórico do servidor
de chat

Implementação de PushNotifications para eventos provocados pelo sistema

(e.g. nova mensagem de chat recebida).

e

•

69

REFERÊNCIAS

BEZERRA E. O Processo de Desenvolvimento de Software. In: . Princípios de
Análise e Projeto de Sistemas com UML. Rio de Janeiro: ELSEVIER, 2006, cap.2,
pág. 19-32

DREDGE, S. If Android is so popular, why are many apps still released for iOS
first?20q 3. Disponível em:
<http://www.theguard ian . com/technology/appsblog/201 3/aug/1 5/android -v-ios-apps-
apple-google>. Acesso em: 3 de setembro de 2014.

EVANS, J. Androki vs. iOS Devek)pment: Fight1 2013. Disponível em:
<http://techcrunch.com/2013/1 1/16/the-state-of-the-art/>. Acesso em: 3 de setembro
de 2014

FIELDING, R. 1. Architectural Styles and the Design of Network-based Software
Architectures. 2000. Tese de Doutorado, University of California, lrvine, 2000

FUGITA, H. S.; HIRAMA, K. Entendendo SOA. In: . SOA: modelagem, análise
e design. Rio de Janeiro: Elsevier, 2012, cap 2, p. 7-40.

HARTL, M.; PROCHAZKA, A. Introduction : Why Rails? In: . RailsSpace:
Building a Social Networking Website with Ruby on Rails. Crawfordsville: RR
Donelley, 2008, cap 1 ,

IND., F. Facebook Social Network. 2014. Disponível em: http://www.facebook.com
Acesso em: 30 de novembro de 2014.

IND., F. Forecast IO. 2014. Disponível em: https://forecast.io/ Acesso em: 30 de
novembro de 2014.

IND., F. Foursquare. 2014. Disponível em: https://pt.foursquare.com/ Acesso em: 30
de novembro de 2014.

IND., G. Gogobot. 2014. Disponível em: http://www.gogobot.com. Acesso em: 30 de
novembro de 2014.

IND., H . Heroku Cloud Application Plataform . 2014. Disponível
em: http://www.heroku.com. Acesso em: 30 de novembro de 2014.

IND., T. TripAdvisor LLC. 2014. Disponível em: http://www.tripadvisor.c.om. Acesso
em: 30 de novembro de 2014.

70

ROSEN, L.; OPEN SOURCE LICENSING, Prentice Hall PTR, lst ed. 2004, p. 85.

LEVANDOSKI, J. J. et aI. (2012, abril) LARS: A Location-Aware Recommender
System. Microsoft Research.

OASIS SOA REFERENCE MODEL TD.Reference Model for Service for Service
Oriented Architecture 1.0. OASIS Open, 2006. 31 p.

C)RT, E. Service-Oriented Architecture and Web Services: Concepts, Technologies,
and Tools 2005 Disponível em :
http://www.oracle. com/technetwork/articles/javase/soaterms-1381 90.html . Acesso
em: 4 de novembro de 2014.

PLASNKY, R. Definição, restrições e benefícios do modelo de arquitetura REST
2014. Disponível em: <http://imasters.com.br/desenvolvimento/definicao-restricoes-
e-beneficios-modelo-de-arquitetura-rest/>. Acesso em: 24 de novembro de 2014.

SARACUT, F. Should You Develop for iOS or Android First? Discover What 7 Mobile
App Experts Say. 2013. Disponível em: <http://blog.mobiversal.com/ios-or-android-
first.html>. Acesso em: 3 de setembro de 2014

SCHILIT, B.; ADAMS, N.; WANT, R. (1994, Dezembro). Context-Aware Computing
Applications. Santa Cruz, CA: IEEE, 1994, p. 85-90.

TEZEFq, O. S. SQLite vs MySQL vs PostgreSQL. A Comparison of Relational
Database Management Sytems 2014. Disponível em :
<https://www.digitalocean . com/community/tutoriaIs/sqlite-vs-mysql-vs-postgresql-a-
comparison-of-relational-database-management-systems>. Acesso em: 24 de
novembro de 2014.

VIEIRA, D. Scrum: A Metodologia Ágil Explicada de uma forma Definitiva
2004 Disponivel em: <http://www.mindmaster.com.br/scrum/> Acessado em: 30 de
novembro de 2014

71

GLOSSÁRIO

Evento: engloba tanto as atrações como museus, teatros e parques, como
festas, festivais, mostras etc.

Roteiro do dia: é a lista de eventos sugeridos pelo sistema, ou escolhidos
pelo usuário, a serem percorridos durante um dia um uma determinada cidade.

Rota: conjunto de cidades as quais o usuário pretende visitar.

Roteiro: é o conjunto de roteiros do dia para o período de estadia na cidade.
Cada cidade que faz parte da rota de um usuário possui um roteiro com um ou mais
roteiros do dia.

Web Crawlec sistema que faz buscas pela internet com o propósito de juntar
dados ao sistema.

Deploy:é a instalação de uma aplicação em um servidor de aplicações.

72

APÊNDICE A – DESCRICÃO DE CASOS DE USO

Dentre os casos de uso listados na seção 2.5.1, foram selecionados os mais

relevantes para o funcionamento do Aitaru e são descritos em maior detalhe. São
eles

UC3 Gerar sugestão de roteiros•

e UC16 - Editar rota

e UC21 - Adicionar contato à rota

e UC22 - Executar Matching

© UC23 - Adicionar um usuário à lista de amigos

Caso de Uso UC33: Gerar sugestão de roteiros

Descrição: A partir da Tela 2 - Início, o usuário seleciona filtros de acordo com os

seus interesses, uma data de chegada à cidade, a cidade e o número de dias que

ficará na cidade, Ao pressionar o botão Buscar o sistema retorna em outra tela, Tela

3 - Roteiros, os roteiros prontos organizados por dia

Evento lniciador: Usuário requisita sugestão de roteiros.

Atores: Usuário logado ou usuário deslogado.

Pré-condição: Usuário estar na tela 2 - Início

Sequência de Eventos:

1. Usuário seleciona as atividades que tem interesse através de um ou mais

filtros listados na tela.

2. Sistema informa que o filtro foi selecionado.

3. Usuário clica no botão Cidades Disponíveis.

4. Sistema retorna a lista de cidades disponíveis.

5. Usuário seleciona a cidade desejada.

6. Usuário seleciona a quantidade de dias de estadia na cidade selecionada

7. Usuário clica no botão Buscar.

8. Sistema realiza a busca e retorna uma lista de roteiros para os dias de

estadia para a cidade selecionada.

Pós-Condição: roteiros para os dias de estadia do usuário na cidade desejada
disponíveis na tela (Tela 3)

73

Extensões: não há.

Inclusões: não há.

Caso de Uso UC16: Adicionar roteiro a partir de uma rota.

Descrição: Neste caso de uso é descrito o processo de adição de um roteiro a uma

rota .

Evento lniciador: Usuário seleciona adicionar roteiro a uma rota.

Atores: Usuário Logado.

Pré-condição: Usuário estar na tela 10 - Gerenciamento de Rota.

Sequência de Eventos:

1. Usuário seleciona o botão + de adição de roteiro.

2, Sistema apresenta a tela 2 - Início.

3. Usuário requisita sugestão de roteiros (Caso de Uso

roteiro)

4. Sistema apresenta a Tela 3 - Roteiros.

5. Usuário seleciona o botão Salvar Roteiro.

6. Sistema apresenta a tela 10 – (nome da tela) com o roteiro adicionado à rota.

Pós-Condição: Informações de rota editadas e salvas pelo sistema. O sistema

apresenta as novas informações adicionadas na tela 10 - Gerenciamento de Rota

Extensões: não há.

Inclusões :

1. Caso de Uso 3 - Gerar sugestão de roteiro (passo 3)

Gerar sugestão de

Caso de Uso UC21 : Adicionar contato à rota

Descrição: Esse caso de uso descreve o processo de adição de um contato da lista

de amigos na rota, permitindo assim que esse contado possa visualizar e editar a

rota. O ator que inicia esse caso de uso é o usuário do sistema

Evento lniciador: Adicionar contato com o qual vai compartilhar a rota.

Atores: Usuário logado

Pré-condição: Usuário estar na tela 10 - Gerenciamento da rota.

Sequência de Eventos :

1. Usuário seleciona o ícone de adicionar contato.

74

2. Sistema exibe a lista de contatos disponíveis.
3. Usuário seleciona um ou mais contatos.

4. Usuário clica no botão OK.

5. Sistema dá permissão aos contatos selecionados para visualizar e editar a
rota.

Pós-Condição: Rota replicada no perfil dos contatos selecionados e sistema volta

para a tela de visualização da rota.

Extensões: Não há.

Inclusões: Não há

Caso de Uso UC22: Executar Matching

Descrição: Esse caso de uso descreve o processo de matching da rota do usuário.

A partir dos dados das cidades da rota e do período de permanência em cada

cidade, o sistema procura algum outro usuário que se apresente na mesma cidade

com período de estadia em comum.

Evento lniciador: Usuário seleciona o botão de Match .

Atores: Usuário logado

Pré-condição: O usuário estar na tela 10 - Gerenciamento da Rota

Sequência de Eventos :

1. Sistema verifica no banco de dados do servidor possíveis usuários que

apresentam características semelhantes de viagem.

2. Sistema exibe a lista de usuários que possuam algum match , ordenando pela

quantidade de matchs.
3. Usuário clica no botão Voltar.

4. Sistema retorna lista de matching ,

Pós-Condição: Resultado do algoritmo de matching apresentado.

Extensões :

1. Sistema não encontra nenhum usuário que possua algum match , retornando

assim, um aviso de não encontrado ninguém e retorna para a tela 10. (Passo

3)

2. Usuário seleciona um ou mais usuário da lista e clica no botão adicionar

contato. (Passo 3)

75

Inclusões: Não há.

Caso de Uso UC23: Adicionar um usuário à lista de amigos

Descrição: Esse caso de uso descreve o processo de adicionar um usuário à lista

de amigos, a partir da integração com o Facebook, Twiter ou Gmail e também por

sistema de pesquisa através do nome.

Evento lniciador: Selecionar buscar contatos.

Atores: Usuário logado.

Pré-condição: O usuário estar na tela 7 - Amigos.

Sequência de Eventos:

1. Usuário clica no botão Buscar.

2. Sistema apresenta a tela 16 - Buscar amigos.

3. Sistema busca os contatos do usuário a partir da integração com o Facebook.

4. Sistema exibe a lista de contatos do usuário.

5. Usuário clica no botão + de Adicionar Contato (Caso o contato já tenha o

aplicativo)

6. Sistema faz a solicitação de amizade para o amigo.

7. Sistema mostra usuário na lista como pendente.

Pós-Condição: Contato adicionado à lista de amigos
Extensões :

1. Sistema não consegue fazer busca de contatos a partir da integração com

outra rede social: Sistema mostra uma lista vazia (Passo 3)

2. Sistema manda uma mensagem ao contato fazendo o convite para utilização

do aplicativo, caso ele não esteja cadastrado no aplicativo. (Passo 5)

3. Usuário pesquisa usuários pela barra de busca: sistema retorna a lista de

usuários cujo nome contém no texto de busca. (Passo 4)

Inclusões: Não há.

76

APENDICE B – PROTOTIPOS DE TELAS

Este apêndice apresenta todos os protótipos de telas.

Tela 0 - Login

& 13 9:42

Figura 29 - Tela 0 - Login

Descrição: Essa é a tela de login do aplicativo. Através dela, o usuário pode realizar
o login através de diferentes redes sociais ou clicar no botão Cadastrar para ir à tela de
cadastro do usuário no sistema.

77

Tela 1 - Cadastro

80 9:42

r\ r 8 : ; 3 : fF/"\
b•

1 Cadastrar

Figura 30 - Tela 1 - Cadastro

Descrição: Essa é a tela de cadastro do aplicativo. Através dela, o usuário realiza
um novo cadastro no sistema.

78

Tela 4 - Adicionar Evento

8 809142

Figura 31 - Tela 4 – Adicionar Evento

Descrição: Nessa tela, o usuário adiciona o evento ao roteiro clicando no sinal +
Cada evento tem uma descrição com algumas informações relevantes no campo informação,
mostrado na figura.

79

Tela 5 Mapa do Roteiro

8 80 9242

i- a & i 3' dra

%

\
Nklte S##8

Ca#rr©
+

'\ \

Hum »+lo1»8•
jtl ir -lb H++8

dd Mel

B#cwl«a ? # M §W
L+\+

P

Pb 48

\,% Hp!.
8#rek

Kb

:+ 5:!,DiZeR:x X
bB.

Figura 32 – Tela 5 – Mapa do Roteiro

Descrição: Nessa tela, o usuário visualiza o mapa do roteiro em um determinado dia.
Ao clicar no botão Lista, o usuário volta para a tela de visualização do roteiro.

80

Tela 7 - Amigos

8 8<3 9:42

UK

Figura 33 – Tela 7 – Amigos

Descrição:

lista. Ao clicar no ícone

Nessa tela, o sistema mostra os amigos que já foram adicionados na sua

, o sistema vai para a tela de bate papo.

81

Tela 9 - Rotas

A-f 1:: e+„ f : : 3

Figura 34 – Tela 9 – Rotas

Descrição: Para efeito de visualização das rotas pelo usuário, é utilizada a palavra
viagens para representar as rotas somente na interface de usuário, por ser mais intuitivo a
ele. Nessa tela, o usuário visualiza as suas rotas. Pode excluir a viagem associada, ao clicar
no botão X, adicionar ao clicar no botão + ou editar ao clicar no botão com a imagem de um
lápis

82

Tela 11 - Adicionar amigos à rota

' 'vu•'w' vv ' -’"• ' ' F•V"-’'U’"'•' r•""uv-’ '• ' -v-'•

Descrição: Essa tela lista os amigos já existentes e o usuário pode adicionar ou
remover os amigos que compartilham a rota

83

Tela 13

8 8{39342
f, „*Hb\

4

9»‘ 4

A b: pn f: 4AÉ :: p 1 Fr# $: : 5

f# i+1) # : « :

48 WP . F.: # - ::-: :
h e •i: \ : 3 wb + +• ; : 3

Perfil do usuário selecionado

-

300*e
3 : # # n + :r : A:: } 31+ : :11E 3

;?©tei-as e"'" co--',.--

n F•: Hi+ : +• ii!e 3i n : + r M •+ M + • n

Figura 36 – Tela 13 - Perfil do Usuário Selecionado

Descrição: Nessa tela, o usuário pode visualizar os detalhes dos roteiros em comum
e também um resumo do perfil do outro usuário (Sobre, Interesses e foto).

84

Tela 15 - Seleção de rota

W-3-142

f = :b f: : 3

Figura 37 - Tela 15 - Seleção de Rota

Descrição: Essa tela apresenta a lista de rotas já existentes do usuário e a opção de
criação de uma nova rota.

85

Tela 16 Buscar Amigos

8 80 9142

3o3:ar ;an ÇCS

à„$;;;A

:,„ GP & Se&:# :

!

: p a r 3

= + ' 3Bf' = nPc#8=e

3 : 5w f 3 5 T

n #1-+3# (bA :;

Figura 38 - Tela 16 - Buscar Amigos

Descrição: Nessa tela, o sistema faz integração com o Facebook, listando os
amigos, e permite convidá-lo a experimentar o aplicativo, caso ele não possua. Também o
usuário pode realizar buscas por nome de amigos.

86

APÊNDICE C – DIAGRAMA DE CLASSES

Este apêndice apresenta o Diagrama de Classes com os seus métodos e
atributos.

Profi te
Route

*about String
-tags String[]

4name String
+description StrIng
+sharingUs8rs String []

1

1 3 x

j'
+Amizade

1. *

User

ttinerary
1' --itall;:at;-- D.3{3

*endi3at8 E3atâ

+city String
*naale String
ÚÊ>ass word Stíln9
-countr,’ String
&email String
*photo BLOB
vcltlzerlShIP String
-datef.IfBirth E:lata

%;

10 *

+login(login Strir\9 Fã*,';d
*logouti:.! üooiean

+ a o 1 i 9 o

r1 ’

1
Evento

+name String
*descriptIon String
+-@orkÊngHaur$ String
-$taRE3ate C3ata

*enc![Iate Data
*tags $tíingj]

Adrninistrator

Settings
+name String
+email StrIng
+pass:&ord String,aÊia.:3tch 5oolean

*alio.8Chat boa lean

Figura 39 – Diagrama de Classes

87

APÊNDICE D – DESCRICÂO DO API DO ATAIRU

Esse apêndice apresenta a lista dos web services implementados. Para cada serviço, são

apresentados a descrição, os parâmetros de entrada, a resposta e, quando for o caso, os

dados envolvidos

D.1 Users

D.1.1 Users / Login

D.1.1.1 Descrição

Realiza a autenticação do usuário no sistema.

POST

/api/vl/logi n

D.1.1.2Parâmetros

Parâmetro Descrição

l•zlblqlnllwFl$ é no forr@
de email. Ex

user1 @example.com

O Password não pode

passar de 15 caracteres

(maxlength= 15)

Type

string

Status Tamanho

user[email] Obrigatório
character

varying(255)

user[password] Obrigatório
character

varying(255)

88

D.1.1.3 Resposta - Sucesso - HTTP 200

Parâmetro Descrição

[morna o uM® recem

Type Status Tamanho

data[user]
logado com um

authentication token recém

gerado. .

boolea

n

strIng

success

info

Retorna true

Mensagem: “0 usuário foi

logado com sucesso.”

D.1.1.3Resposta - Erro - HTTP 401

Parâmetro Type StatusDescrição

Retorna false

Mensagem: "E-mail ou

Tamanho

info
authenticaion token

inválidos. Você tem

certeza que está logado 7'

string

89

D.1.2 Users / Logout

D.1.2.1 Descrição

Verifica se o usuário está logado no sistema, realizando um check duplo

através do seu e-mail passado como parâmetro no corpo da requisição e do token

de autenticação passado no header Se o usuário existe e o token de autenticação

está ok, realiza o logout do usuário no sistema.

POST

/api/vl /logout

D.1.2.2 Parâmetros

Parâmetro

user[email]

Descrição

TMM e IIO foia6uw
email. Ex: user1 @example.com

Type Status Tamanho

charac{tM
string Obrigatório

varying(255)

D.1.2.3 Parâmetros - HEADER

Parâmetro Descrição

lqelll+jerdtnde aW
autenticação do usuário

retornado ao realizar o login

Type

string

Status Tamanho

X-AU TH-

TOKEN Obrigatório | 20

D.1.2.4 Resposta - Sucesso - HTTP 200

Parâmetro Descrição Tamanho

Retorna true

string
Mensagem: “0 usuár/o fo/

deslogado com sucesso.”

90

D.1.2.5 Resposta - Erro - HTTP 401

Parâmetro Descrição

Retorna false boolean

Mensagem: "E-mail ou

info
authentication token inválidos.

Você tem certeza que está

logado 7'

string

D.1.3 Users / Cadastro de Usuário

D.1.3.1 Descrição

Cria um novo usuário no sistema e logo em seguida o autentica no sistema.

POST

/api/vl/register

91

D.1.3.2Parâmetros

= arâmetro B@scricão e

string

Status Tamanh e

userjfirst_name]
lgill'll{@l@ati+ltrkaej81

usuário.
Opcional

cha HEalimI

varying(255)

character

varying (255)
user[last name] Último nome do usuário. string

enurri

Opcional

Valores possíveis: fema/e
user[gender] | .

ou male.
Opcional

Opcionaluser[country] País do usuário. string
character

varying(255)

character

varying(255)
user[citizensh ip] Cidadania do usuário. string

date

Opcional

Data de Nascimento do

user[dateOfBirth] usuário no formato

IS06801: YYYY-MM-DD
Opcional | 10

user[password] Senha do usuário string Obrigatório
character

varying (255)

character

varying(255)

character

varying(255)

character

varying (255)

character

varying (255)

t

onfirmation] usuário.
string

string

Obrigatório

user[email] E-mail do usuário Obrigatório

user[photoURL]
URL para a foto do

usuário

Id facebook do usuário

para login no facebook

string Opcional

user[facebook id
]

string Opcional

92

D.1.3.3 Resposta - Sucesso - HTTP 200

Parâmetro

data[user]

Descrição

B1181@ o uaEIEH1111911

cadastrado

Type Status Tamanho

Retorna true

info Mensagem: ”0 usuário foi
cadastrado com sucesso”

string

D.1.3.4 Resposta - Erro - HTTP 401

Parâmetro Descrição Type

boolean

Status Tamanho

Retorna false

Retorna os erros que

surgiram durante o processo

de registro

info

D.1.4 Users / Pegar Dados do Usuário

D.1.4.1 Descrição

Retorna os dados do usuário.

POST

BEm]i=ii[]

93

D.1.4.2 Parâmetros

Parâmetro Descrição Type

Mnt El[HEElll
email. Ex string

user1 @example.com

Status Tamanho

user[email] Obrigatório
character

varying (255)

D.1.4.3 Parâmetros - HEADER

Parâmetro Descrição

1(W B

autenticação do usuário

retornado ao realizar o login

Type

string

Status Tamanho

X-AUTH-

TOKEN
Obrigatório | 20

94

D.1.4.4 Resposta - Sucesso - HTTP 200

Parâmetr 0 Descricão 1 VDlq

integer

TamanhStatus e

data[user] [id]
Morna Id d§jlEMgHEe]

na tabela.

Primeiro nome do

usuário.

1

usuário.

Valores possíveis:
female ou male.

L

data[user][last_name

]

]

string
character

varying(255)

character

varying (255)
string

data[user] [gender] enurri

data[user][country] | País do usuário. string
character

varying(255)

character

varying(255)

data[user][citizenshi

P]
Cidadania do usuário. string

date

Data de Nascimento do

usuário no formato

IS06801 : YYYY-MM-

DD

URL para a foto do

usuário

data[user][dateOfBI rt

h]
10

data[user][photoU RL

]
string

booleansuccess Retorna true

D.1.4.5 Resposta - Erro - HTTP 401

Parâmetro Descrição Type Status Tamanho

Retorna false

Mensagem: " E-mail ou

authenticaion token inválidos. Você

tem certeza que está logado?

info string

95

D.1.5 Users / Atualizar Cadastro

D.1.5.1 Descrição
Atualiza o cadastro de um usuário.

POST

/api/vl /update-user-data

D.1.5.2Parâmetros

Parâmetr 0 Descricão TamanhStatusTVDe

string

e

user[first_name]
PrimeIro nom©[e]

usuário.

r

usuário.

Valores possíveis:

female ou male.

Opcional
varying(255)

character

varying(255)
user[last name] string Opcional

user[gender] enurn

string

Opcional

user[country] País do usuário. Opcional

Opcional

l

varying(255)

character

varying(255)
user[citizenship] Cidadania do usuário. string

Data de Nascimento do

usuário no formato

IS06801 : YYYY-MM-

DD

user[dateOfBirth] date Opcional 10

user[email] E-mail do usuário string

string

Obrigatório
1

varying(255)

user[photoU RL]
URL para a foto do

usuário Opcional

96

D.1.5.3 Parâmetros - HEADER

Parâmetro Descrição

CortEegBbnde ala&
autenticação do usuário

retornado ao realizar o login

Type

string

Status Tamanho

X-AUTH-

TOKEN Obrigatório | 20

D.1.5.4 Resposta - Sucesso - HTTP 200

Parâmetro

success

Type StatusDescrição

Retorna true

Mensagem: “Os detalhes de

Tamanho

info
User which e-mail is

userl ©example.com foram
atualizados com sucesso.”

D.1.5.5 Resposta - Erro - HTTP 422

Parâmetro Descrição Tamanho

Retorna false

stringinfo Mensagem: “Tentativa de

atualização inválida.”

97

D.1.6 Users / Verificar Registro do Facebook Id

D.1.6.1 Descrição

Verifica se já existe algum usuário registrado com o facebook_id enviado. Se

sim, retorna o usuário, se não, envia uma mensagem de erro.

GET

@[Ii[W88[b<-id

D.1.6.2 Parâmetros

Parâmetro Descrição

!d facebo]@ Rio usuário para

login no facebook

TamanhoStatusType

chaãrgllai
Obrigatóriostring

varying(255)
facebook id

D.1.6.3 Resposta - Sucesso - HTTP 200

Parâmetro Descrição

RdBmB o ugHlgHEHIMH

logado com um

authentication token recém

gerado

Status Tamanho

data[user] stringn

success Retorna true

98

D.1.6.4 Resposta - Erro

Parâmetro Status Tamanho

booleanRetorna false

Mensagem: “Nenhum usuário
com este facebook id foi

encontrado

info

D.1.7 Users / Busca de Usuários

D.1.7.1 Descrição

Busca usuários pelo nome ou sobrenome ou e-mail. A identificação do e-mail

é automática, pela presença do '@’.

GET

i rc - - r

D.1.7.2 Parâmetros

Descrição

e

algoritmo de busca

O user[email] é no formato

de email. Ex

user1 @example. com

Type

string

Status

Obrigatório

user[email] Obrigatório

99

D.1.7.3 Parâmetros - HEADER

Parâmetro Descrição

alEE®ml wan:Hllde

autenticação do usuário

retornado ao realizar o login

Type

string

Status Tamanho

X-AUTH-

TOKEN Obrigatório | 20

D.1.7.4 Resposta - Sucesso - HTTP 200

Parâmetro Descrição

[Wa um arraydejERos
com a informação se cada

usuário é ou não amigo do

usuário requisitante (isFrÊend ;

true ou false)

Retorna true

Tamanho

data[userÜ ,

isFriend]

stringnn,

boolean

D.1.8 Users / Retornar Dados de um Usuário

D.1.8.1 Descrição

Retorna os dados de um usuário e um booleano isFriend. isFriend é true se o

usuário buscado é amigo do requisitante e false caso contrário.

GET

E]aaEHser/a111[IEaElq[]!]

100

D.1.8.2 Parâmetros

Parâmetro

user id

Descrição Status

Obrigatório

Tamanho

ID do usuário buscado

O user[email] é no formato

de email. Ex

user1 @example.com

user[email] Obrigatório

D.1.8.3 Parâmetros - HEADER

Parâmetro Descrição

nelllw®miaJM
autenticação do usuário

retornado ao realizar o login

Tamanho

X-AUTH

TOKEN string | Obrigatório

D.1.8.4 Resposta - Sucesso - HTTP 200

Parâmetro Descrição
Tamanh

Status
0

R@W um usuário coM
informação se cada usuário é ou

não amigo do usuário

requisitante (isFriend = true ou

false)

data[user,

isFriend]

stringn,

boolean

Retorna true

101

D.2 Tags

D.2.1 Tags / Listar Tags

D.2.1.1 Descrição

Retorna todas as tags relacionadas ao usuário.

GET

m\[l1BIg=15111=

D.2.1.2 Parâmetros - HEADER

Parâmetro Descrição

(a c) rW E
autenticação do usuário

retornado ao realizar o login

Type

string

Status Tamanho

X-AU TH-

TOKEN Obrigatório | 20

D.2.1.3 Parâmetros

Parâmetro Descrição Type

MMM@
email. Ex string

user1 @example.com

Status Tamanho

user[email] Obrigatório
character

varying(255)

D.2.1.4 Resposta - Sucesso

Parâmetro

data[tag] a

Descrição

Retorna array de @g
associadas a esse usuário

Tamanho

array

Retorna true

102

D.2.1.5 Resposta - Erro

Parâmetro Descrição Status TamanhoType

Retorna false

Retorna uma mensagem que

identifica a origem do erro

D.2.2 Tags / Criar Tag

D.2.2.1 Descrição

Cria uma associação entre uma tag e um user.

POST

%alBa=IIga[31jIB

D.2.2.2 Parâmetros - HEADER

Parâmetro Descrição

Coii[iMnde ao fo/c@
autenticação do usuário

retornado ao realizar o login

Type

string

Status Tamanho

X-AUTH-

TOKEN Obrigatório | 20

D.2.2.3 Parâmetros

Parâmetro Descrição

MluqlnllbIlimHM@
email. Ex

user1 @example. com

O tag[id] corresponde a uma

tag

Type

string

Status Tamanho

user[email] Obrigatório
character

varying (255)

tag[id] Integer

103

D.2.2.4 Resposta - Sucesso

Parâmetro Descrição Type

boolean

Status

Retorna true

Retorna uma mensagem de

sucesso

D.2.2.5 Resposta - Erro

Parâmetro Descrição Type

boolean

Status Tamanho

Retorna false

Retorna uma mensagem que

identifica a origem do erro
string

D.2.3 Tags / Excluir Tag

D.2.3.1 Descrição

Remove uma associação entre uma tag e um user.

GET

7E

D.2.3.2 Parâmetros - HEADER

Parâmetro Descrição

CoM[r E
autenticação do usuário

retornado ao realizar o login

Type

string

Status Tamanho

X-AU TH-

TOKEN Obrigatório | 20

104

D.2.3.3 Parâmetros

Parâmetro Descrição

M®Üi11]EEl11
email. Ex

user1 @example. com

O tag[id] corresponde a uma

tag

Type

string

Status Tamanho

user[email] Obrigatório
character

varying(255)

tag [id] Integer

D.2.3.4 Resposta - Sucesso

Parâmetro Descrição Type

boolean

Status Tamanho

Retorna true

Retorna uma mensagem de

sucesso

D.2.3.5 Resposta - Erro

Parâmetro Descrição Type

boolean

Status

Retorna false

Retorna uma mensagem que

identifica a origem do erro
string

105

D.3 Rotas

D.3.1 Rotas / Listar Rotas

D.3.1.1 Descrição

Retorna todas as rotas associadas ao usuário logado.

GET

/api/v 1 /route/giBI11138

D.3.1.2 Parâmetros

Parâmetro Descrição

[6zluq11dllbtlljqlt.&@mato

de email. Ex

user1 @example,com

Type

string

Status Tamanho

user[email] Obrigatório

D.3.1.3 Parâmetros - HEADER

Parâmetro Descrição

agiEEr a
autenticação do usuário

retornado ao realizar o login

Type

string

Status Tamanho

X-AUTH-

TOKEN
Obrigatório | 20

D.3.1.4 Resposta - Sucesso

Parâmetro Descrição Type

Stringn

boolean

Status Tamanho

Retorna array de routes

Retorna true

106

D.3.1.5 Resposta - Erro

Parâmetro Status Tamanho

Retorna false boolean

Retorna uma mensagem que

identifica a origem do erro

D.3.2 Rotas / Criar Rota

D.3.2.1 Descrição

Cria uma rota com os atributos name e description .

POST

/a

D.3.2.2 Parâmetros

Parâmetro

route[name]

Descrição

BEI![Bao route[naM
Nome da rota

Descriçao

route[description] =

Descrição da rota

O user[email] é no
formato de email. Ex

user1 @example.com

Type

string

string

Status

Obrigatório

route[description]

user[email]

Opcional

Obrigatório

107

D.3.2.3 Parâmetros - HEADER

Parâmetro Descrição

1(cM E
autenticação do usuário

retornado ao realizar o login

Type

string

Status Tamanho

X-AU TH-

TOKEN Obrigatório | 20

D.3.2.4 Resposta - Sucesso - HTTP 200

Parâmetro

success

Status

Retorna true boolean

Mensagem “Route criado com
string1)sucesso

D.3.2.5 Resposta - Erro - HTTP 422

success

info

Retorna faqse boolean

string
Retorna uma mensagem que

identifica a origem do erro

D.3.3 Rotas / Retornar Rota

D.3.3.1 Descrição

Retorna rota especificada pelo identificador.

GET

Ma mem;@

108

D.3.3.2 Parâmetros

Parâmetro

route[id]

Descrição

B

rota

O user[email] é no formato

de email. Ex

user1 @example.com

string | Obrigatório

user[email]

D.3.3.3 Parâmetros - HEADER

X-AUTH-

TOKEN

D.3.3.4 Resposta - Sucesso - HTTP 200

string Obrigatório

Parâmetro Descrição

@8 W
autenticação do usuário

retornado ao realizar o login

Type

string

Status Tamanho

Obrigatório | 20

Parâmetro Descrição Type Status

Stringnn

Tamanho

Retorna array de routes

Retorna true boolean

109

D.3.3.5 Resposta - Erro - HTTP 422

success

info

Retorna false boolean

string
Retorna uma mensagem que

identifica a origem do erro

D.3.4 Rotas / Excluir Rota

D.3.4.1 Descrição

Exclui uma rota do sistema.

DELETE

/api/vl/route/destrJMr

D.3.4.2 Parâmetros

Parâmetro

route[id]

Descrição Tamanho

@l§§l§iklçao route[id] = Id da
rota

O user[email] é no formato

de email. Ex

user1 @example. com

string | Obrigatório

user[email] Obrigatório

110

D.3.4.3 Parâmetros - HEADER

Parâmetro Descrição

1C 1c) rW E
autenticação do usuário

retornado ao realizar o login

Type

string

Status Tamanho

X-AUTH-

TOKEN Obrigatório | 20

D.3.4.4 Resposta - Sucesso - HTTP 200

Parâmetro

success

Descrição Type

boolean

string

Status

Retorna true

Mensagem “Route excluído
))

com sucesso

D.3.4.5 Resposta - Erro - HTTP 422

success

info

Retorna false boolean

string
Retorna uma mensagem que

identifica a origem do erro

D.3.5 Rotas / Adicionar itinerário

D.3.5.1 Descrição

Adiciona um roteiro (ltinerary) a uma rota especificada por um indentificador.

POST

@Ipi/vl/route/add-iti nerary

111

D.3.5.2 Parâmetros

Parâmetro

route[id]

Descrição Tamanho

®Êcriçao route[id] = ld§Hal

rota

Descrição itinerary[id] = Id
do itinerário

O user[email] é no formato

de email. Ex

user1 @example.com

integer | Obrigatório

itinerary[id] integer l Obrigatório

user[email] Obrigatório

D.3.5.3 Parâmetros - HEADER

Parâmetro Descrição

1C 1cM E

autenticação do usuário

retornado ao realizar o login

Type

string

Status Tamanho

X-AUTH-

TOKEN Obrigatório | 20

D.3.5.4 Resposta - Sucesso - HTTP 200

Parâmetro

success

Descrição Type

boolean

Status

Retorna true

Mensagem “Associação
criada com sucesso.”

string

112

D.3.5.5 Resposta - Erro - HTTP 422

success

info

Retorna false boolean

string
Retorna uma mensagem que

identifica a origem do erro

D.3.6 Rotas / Excluir itinerário

D.3.6.1 Descrição

Remove uma associação entre um itinerário e uma rota.

DELETE

m;=lte/delete-iti nera@

D.3.6.2 Parâmetros

Parâmetro

route[id]

Descrição

BscrlçaW©M
rota

Descrição itinerary[id] = Id
do itinerário

O user[email] é no formato
de email. Ex

user1 @example. com

integer l Obrigatório

itinerary[id] integer l Obrigatório

user[email] Obrigatório

113

D.3.6.3 Parâmetros - HEADER

Parâmetro Descrição

MrrwmEz:211.19
autenticação do usuário

retornado ao realizar o login

Type

string

Status Tamanho

X-AUTFI-

TOKEN

D.3.6.4 Resposta - Sucesso - HTTP 200

Obrigatório | 20

Parâmetro

success

Descrição Type

boolean

Status

Retorna true

Mensagem “Associaçao

removida com sucesso.:’
string

D.3.6.5 Resposta - Erro - HTTP 422

success

info

Retorna false boolean

string
Retorna uma mensagem que

identifica a origem do erro

D.3.7 Rotas / Adicionar usuário

D.3.7.1 Descrição

Cria uma associação entre um usuário e uma rota

POST

/api/vl /route/add-user

114

D.3.7.2 Parâmetros

Parâmetro Descrição Tamanho

Id da rota

user[email]
E-mail do usuário que está

adicionando o user à rota

Id do user que é adicionado

à rota

string | Obrigatório

user id integer l Obrigatório

D.3.7.3 Parâmetros - HEADER

X-AUTH-

TOKEN

D.3.7.4 Resposta - Sucesso - HTTP 200

Parâmetro Descrição

(a (w) rW E

autenticação do usuário

retornado ao realizar o login

Type

string

Status Tamanho

Obrigatório | 20

Parâmetro

success

Descrição Type

boolean

Status

Retorna true.

Mensagem “Associação
criada com sucesso.”

D.3.7.5 Resposta - Erro - HTTP 422

success

info

Retorna false boolean

string
Retorna uma mensagem que

identifica a origem do erro

115

D.3.8 Rotas / Excluir usuário

D.3.8.1 Descrição

Exclui uma associação entre um usuário e uma rota.

DELETE

/api/vII

D.3.8.2 Parâmetros

Parâmetro

route[id]

Descrição Type

Id da rota

E-mail do usuário que está
string

adicionando o user à rota

Id do user que é adicionado
integer

à rota

Status

Obrigatório

Tamanho

user[email] Obrigatório

user id

D.3.8.3 Parâmetros - HEADER

Parâmetro Descrição

cgjende ao bkgia!
autenticação do usuário

retornado ao realizar o login

Type

strIng

Status Tamanho

X-AUTH-

TOKEN

D.3.8.4 Resposta - Sucesso - HTTP 200

Obrigatório | 20

Parâmetro

success

Descrição Type

boolean

Status

Retorna true

Mensagem “Associação
removida com sucesso.” string

116

D.3.8.5 Resposta - Erro - HTTP 422

success

info

Retorna false boolean

string
Retorna uma mensagem que

identifica a origem do erro

D.3.9 Rotas / Match de Rota

D.3.9.1 Descrição

Verifica a existência de roteiros que possuam ao menos uma data coincidente

e retorna a lista de rotas (Matchs) e rote\ros(ltineraries) relacionados.

POST

/api/vl /route/match-route

D.3.9.2 Parâmetros

Parâmetro Descrição Type

string

string

Status

ObrigatórioId da rota

user[email]
E-mail do usuário que está

adicionando o user à rota
Obrigatório

117

D.3.9.3 Parâmetros - HEADER

Parâmetro Descrição

1c 1c) m E

autenticação do usuário

retornado ao realizar o login

Type

string

Status Tamanho

X-AUTH-

TOKEN
Obrigatório 20

D.3.9.4 Resposta

Parâmetro Descricão Status TamanhType 0

data[users[cityName]] n

]

MEna o nomeZH

cidade onde aconteceu

o match

Retorna as data onde

aconteceu o match

Retorna o número de

hits(número de datas

encontradas)

True ou False

dependendo do

sucesso ou não ao

encontrar ao menos um

match .

string

data[users[matchDates

]n]
array

stringdata[users[hits] a]

success boolean

120

D.3.11 Rotas / Retornar usuários associados à rota

D.3.11.1 Descrição

Retorna lista de usuários associados a uma determinada ri

administrador.

Ita e o id do seu

GET

/a&EaZMEBEEk

D.3.11.2 Parâmetros

Parâmetro

route[id]

Descrição

@liii@ route[Id] = Id]BEI
rota

O user[email] é no formato

de email. Ex:

user1 @example.com

string | Obrigatório

user[email]

D.3.11.3 Parâmetros - HEADER

string Obrigatório

Parâmetro Descrição

coME
autenticaçao do usuário

retornado ao realizar o login

Type

string

Status Tamanho

X-AU TH-

TOKEN Obrigatório | 20

119

e

D.3.11.4 Resposta

Parâmetr 0 Descriçã e Status TamanhType

l@3ilEHl®dados
de todos os usuários

associados à rota, exceto os

dados de autenticação. Se

não existem usuários

relacionados à rota devolve

um array vazIO []

Retorna id do usuário

administrador, criador da rota

Retorna true ,

data[usersn] string

data[admin id] integer

booleansuccess

D.4 Roteiros

D.4.1 Roteiros / Pegar Roteiros

D.4.1.1 Descrição

Retorna roteiro (ltinerary) especificado pelo identificador. Observação: este

roteiro (ltinerary) deve, obrigatoriamente, pertencer a uma rota que está associada

ao usuário.

GET

/api/vl/iünerarW]B]EIEBI

120

D.4.1.2 Parâmetros

Parâmetro

itinerary[id]

Descrição Tamanho

bBW181@ly[Id] 3ll]
do itinerário

e 1-Tã-o%mato
de email. Ex

user1 @example.com

string | Obrigatório

user[email] Obrigatório

D.4.1.3 Parâmetros - HEADER

Parâmetro Descrição

Co@§§nde ao foken@
autenticação do usuário

retornado ao realizar o login

Type

string

Status Tamanho

X-AUTFI-

TOKEN Obrigatório | 20

D.4.1.4 Resposta - Sucesso - HTTP 200

Parâmetro Descrição

Retorna roteiro

Type

Stringn

Status

data[itinerary]

success Retorna true

D.4.1.5 Resposta - Erro - HTTP 422

success

info

Retorna false boolean

string
Retorna uma mensagem que

identifica a origem do erro

121

D.4.2 Roteiros / Excluir Roteiro

D.4.2.1 Descrição

Exclui um roteiro (ltinerary) .

DELETE

/api/vl/itinerary/destroy-itinera3

D.4.2.2 Parâmetros

Parâmetro

itinerary[id]

Descrição Type

S

string

Status

Obrigatório

Tamanho

11PM+ MEIa161
do itinerário

O user[email] é no formato

de email. Ex

user1 @example.com

user[email] Obrigatório

D.4.2.3 Parâmetros - HEADER

Parâmetro Descrição

(u M E

autenticação do usuário

retornado ao realizar o login

Type

string

Status Tamanho

X-AUTFI-

TOKEN Obrigatório | 20

D.4.2.4 Resposta - Sucesso - HTTP 200

Parâmetro

info

Descrição Type Status

Mensagem “ltinerary excluido

122

corri sucesso

Retorna true boolean

D.4.2.5 Resposta - Erro - HTTP 422

success

info

Retorna false boolean

string
Retorna uma mensagem que

identifica a origem do erro

D.4.3 Roteiros / Gerar Roteiro

D.4.3.1 Descrição

Retorna um roteiro (ltinerary) a partir dos seguintes parâmetros: cidade, datas

que compreendem a estadia do usuário na cidade e interesses do usuário.

Método POST

/api/vl/itinerary/generate-itineraryURL

D.4.3.2 Parâmetros

Parâmetro Descrição Type Status Tamanho

Id único da cidade

Data e horário de início ObrigatóriostringstartDate

endDate Data e horário de término string

string

Obrigatório

O user[email] é no formato

de email. Ex

user1 @example. com

user[email] Obrigatório

123

D.4.3.3 Parâmetros - HEADER

Parâmetro Descrição

HM)
autenticação do usuário

retornado ao realizar o login

Type

string

Status Tamanho

X-AUTFI-

TOKEN
Obrigatório | 20

D.4.3.4 Resposta - Sucesso - HTTP 200

Parâmetro Descrição Status TamanhoType

data[itinerary] Retorna roteiro

success Retorna true

D.4.3.5 Resposta - Erro - HTTP 422

success

info

Retorna false boolean

string
Retorna uma mensagem que

identifica a origem do erro

D.4.4 Roteiros / Listar Eventos

D.4.4.1 Descrição

Retorna um array com todos os Eventos que estão associados ao roteiro

(ltinerary) especificado pelo identificador.

GET

/api/vl/itinerary/list-events

124

D.4.4.2 Parâmetros

Parâmetro

itinerary[id]

Descrição Type

string

string

Status

Obrigatório

Tamanho

O user[email] é no formato

de email. Ex

user1 @example.com

user[email] Obrigatório

D.4.4.3 Parâmetros - HEADER

Parâmetro Descrição

Cq§§BÊnde ao fo/cW
autenticação do usuário

retornado ao realizar o login

Type

string

Status Tamanho

X-AU TH-

TOKEN Obrigatório | 20

D.4.4.4 Resposta - Sucesso - HTTP 200

Parâmetro Descrição

data[events]n Retorna array de eventos

Retorna true

D.4.4.5 Resposta - Erro - HTTP 422

success

info

Retorna false boolean

string
Retorna uma mensagem que

dentifÊca a origem do erro

125

D.4.5 Roteiros / Atualizar Roteiro

D.4.5.1 Descrição

Atualiza roteiro (ltinerary) especificada pelo identificador.

PUT

> merary

D.4.5.2 Parâmetros

Parâmetro Descrição

a$crlçãM©w
do itinerário

Status TamanhoType

itinerary[id] string | Obrigatório

startDate

endDate

Data e horário de início

Data e horário de término

O user[email] é no formato

de email. Ex

user1 @example. com

user[email] string Obrigatório

D.4.5.3 Parâmetros - HEADER

Parâmetro Descrição

TMr
autenticação do usuário

retornado ao realizar o login

Type

string

Status Tamanho

X-AU TH-

TOKEN Obrigatório | 20

126

D.4.5.4 Resposta - Sucesso - HTTP 200

Parâmetro

success

Descrição Type

boolean

string

Status

Retorna true

info
Retorna urna mensagem de

sucesso

D.4.5.5 Resposta - Erro - HTTP 422

success

info

booleanRetorna false

Retorna uma mensagem que
string

identifica a origem do erro

D.5 Eventos

D.5.1 Eventos / Listar Eventos

D.5.1.1 Descrição

Retorna a lista de eventos cadastrados para uma cidade.

GET

EEiaiçM

127

D.5.1.2 Parâmetros

Parâmetro Descrição

Identificador único da cidade

TamanhoType Status

D.5.1.3 Resposta

Parâmetro

isSuccess

Descrição

Ii+1(ell',~@abr:arelnljej++jexew ro

se houver algum erro

Mensagem de sucesso ou erro

Retorna um array de eventos

da cidade

Type

bog[IR

n

Status

message

events array

128

e

D.5.1.4 Events

Parâmetr 0 •

Nome do evento

Descrição do evento.

Retorna o id único do evento

Endereço do Evento

Latitude

Longitude

Horário de funcionamento

Data e horário de início

Data e horário de término

Lista de url das imagens

Descriçã Type Status

riarrie

description

idEvent

address

latitude

longitude

workingHou rs

startDate

endDate

urllmages

string

string

string

string

int

int

string

string

string

array

D.5.2 Eventos / Adicionar Evento no Roteiro

D.5.2.1 Descrição

Adiciona um evento a um roteiro (ltinerary) .

POST

/api/vl /events/add -event

129

D.5.2.2 Parâmetros

Parâmetro Descrição

Identificador único do roteiro

Identificador único do evento

Data e horário de início

Data e horário de término

Type

string

string

string

string

Status Tamanho

idEvent

startDate

endDate

Obrigatório

Obrigatório

Obrigatório

D.5.2.3 Resposta

Parâmetro

isSuccess

Descrição

Ii{-ltejIlhaw8ajelnll«WM ou @

se houver algum erro,

Mensagem de sucesso ou erro.

Retorna o id único do evento

escolhido

Type

boM
ri

string

Status

rrlessage

id EventChosen string

D.5.3 Eventos / Excluir Evento no Roteiro

D.5.3.1 Descrição

Exclui um evento que pertence a um rote\ro(ltinerary) .

POST

EEn[!/Zbvents/waaMHi[]

130

D.5.3.2 Parâmetros

Parâmetro Descrição Type Status Tamanho

MaREUMI
D.5.3.3 Resposta

Parâmetro

isSuccess

Descrição

Ii{1(611 nnbrajel«ll«++rexejl,M

se houver algum erro,

Mensagem de sucesso ou erro

Type

tHe a
n

string

Status

D.5.4 Eventos / Atualizar Evento do Roteiro

D.5.4.1 Descrição

Atualiza um evento que pertence a um roteiro (ltinerary) .

POST

/api/vl /events/update-event

D.5.4.2 Parâmetros

Parâmetro

id EventChosen

startDate

Descrição Type Status

Retorna o id único do evento sO

Data e horário de início Obrigatório

Data e horário de término string | Obrigatório

Tamanho

131

D.5.4.3 Resposta

Parâmetro

isSuccess

Descrição

1:tq(811,hublal8lnljejwq@@rsl1

se houver algum erro,

Mensagem de sucesso ou erro

Type

boM
n

Status

rnessage

D.6 Perfil

D.6.1 Perfil / Criar perfil usuário

D.6.1.1 Descrição

Cria o perfil completo de um usuário logado.

POST

9 @ ii

D.6.1.2 Parâmetros

Parâmetro Descrição Type

string

Status

Opcional

Tamanho

user[about]
TaMHElaTs

pessoal do usuário

O user[email] é no formato de

email. Ex

user1 @example. com

chazí®m

varying (255)

user[email] Obrigatório
character

varying(255)

132

D.6.1.3 Parâmetros - HEADER

Parâmetro Descrição

(b/ M E

autenticação do usuário

retornado ao realizar o login

Type

string

Status Tamanho

X-AUTH-

TOKEN Obrigatório | 20

D.6.1.4 Resposta - Sucesso - HTTP 200

Parâmetro

success

Descrição Type

boolean

Status Tamanho

Retorna true

Mensagem: “Perfil

info
pertencente ao usuário

#{@user.email} foi criado

com sucesso.”

D.6.1.5 Resposta - Erro - HTTP 401

Parâmetro

success

Descrição Type

boolean

Status Tamanho

Retorna false

Mensagem: "Tentativa de

criação inválida no controller

#Lobject}

info string

133

D.6.2 Perfil / Pegar perfil usuário

D.6.2.1 Descrição

Retorna o perfil completo de um usuário especificado pelo identificador.

GET

/api/vl /profile/get-profile

D.6.2.2 Parâmetros

Parâmetro Descrição Type

[!MM:Meme Bea
stringemail. Ex

user1 @example. com

Status Tamanho

user[email] Obrigatório
character

varying(255)

D.6.2.3 Parâmetros - HEADER

Parâmetro Descrição

C@onde ao toke@E

autenticação do usuário

retornado ao realizar o login

Type

string

Status Tamanho

X-AUTH-

TOKEN Obrigatório | 20

D.6.2.4 Resposta - Sucesso - HTTP 200

Parâmetro

data

Descrição StatusType Tamanho

Haas]algEF]Ei:!1
[value]

boolean

Retorna o Perfil do usuário

Retorna true

134

D.6.2.5 Resposta - Erro - HTTP 401

Parâmetro Descrição Type

string

Statu
Tamanho

S

Retorna false

Retorna a mensagem

"Tentativa de GET inválida no

controller #Lobject}

info strIng

D.6.3 Perfil / Atualizar perfil do usuário

D.6.3.1 Descrição

Atualiza o perfil do usuário logado, retornando o perfil atualizado.

PUT

/api/vl /profile/update-profile

D.6.3.2 Parâmetros

Parâmetro Descrição

mluqlnllbdllmH®XH
email. Ex

user1 @example.com

Texto com a descrição

pessoal atualizada do usuário

Type

string

string

Status Tamanho

user[email] Obrigatório
character

varying(255)

user[about] Opcional
character

varying (255)

135

D.6.3.3 Parâmetros - HEADER

Parâmetro Descrição

CoMle ao to@llEI!

autenticação do usuário

retornado ao realizar o login

Type

string

Status Tamanho

X-AUTH-

TOKEN
Obrigatório | 20

D.6.3.4 Resposta - Sucesso - HTTP 200

Parâmetro Descrição Tamanho

re

info
perfil pertencente ao usuário

#{User.email} foram
atualizados com sucesso.”

string

success Retorna true boolean

D.6.3.5 Resposta - Erro - HTTP 401

Parâmetro

success

Descrição Type

string

Tamanho

Retorna false

Retorna a mensagem

'Tentativa de GET inválida no

controller #Lobject}

info string

D.6.4 Perfil / Pegar perfil simples usuário

D.6.4.1 Descrição

Retorna um perfil simplificado de um usuário especificado pelo identificador.

GET

eBmFMl;

D.6.4.2 Parâmetros

Parâmetro Descrição

Id do usuário

Status

Obrigatório

Tamanho

D.6.4.3 Resposta

Parâmetro

isSuccess

Descrição Type Status

lit-lurtbn«Bam«ttej++texellã IHe al
se houver algum erro n

Mensagem de sucesso ou erro string

Nome do usuário string

Sobrenome do usuário

Url da imagem do usuário string

rrlessage

lastName

urllmage

D.7 Amigos

D.7.1 Amigos / Listar amigos

D.7.1.1 Descrição

Retorna a lista de amigos de um usuário logado no sistema.

137

GET

/apa818@riendshal§[Biga

D.7.1.2 Parâmetros

Parâmetro TypeDescrição

•

email, Ex: string

user1 @example.com

Status Tamanho

user[email] Obrigatório
character

varying(255)

D.7.1.3 Parâmetros - HEADER

Parâmetro Descrição

FwBlat11l118
autenticação do usuário

retornado ao realizar o login

Type

string

Status Tamanho

X-AUTH-

TOKEN Obrigatório | 20

D.7.1.4 Resposta - Sucesso - HTTP 200

Parâmetro Descrição

IMwlüh&llllnlr&lMWMf4a

com todos os amigos e suas

informações

Retorna true

Type Status Tamanho

data[userÜ n] string

boolean

138

D.7.1.5 Resposta - Erro

Parâmetro Descrição

Retorna false

m/ste nenhum(a)

friendship associado ao usuário

user[email}

info

2 Amigos / Listar users q

D.7.2.1 Descrição

Retorna a lista de users que pl

D.7 ue o tem como amigo

string

lário logado na s

GET

l @

D.7.2.2 Parâmetros

Parâmetro Descrição Type

MMMm
email. Ex string

user1 @example. com

Status Tamanho

user[email]
character

Obrigatório
-' | varying(255)

139

D.7.2.3 Parâmetros - HEADER

X-AUTH-

TOKEN

D.7.2.4 Resposta - Sucesso - HTTP 200

data[usernn]

D.7.2.5 Resposta - Erro

Parâmetro Descrição

aiEii)m23311Eii
autenticaçao do usuário

retornado ao realizar o login

Type

string

Status Tamanho

Obrigatório | 20

Parâmetro Descrição Status Tamanho

TãEHllBEIRe
com todos os amigos e suas

nformações

Retorna true

string

boolean

Parâmetro Descrição Type Status

Retorna false

Mensagem: "Não ex/ste a

inverse-friendship associado ao

usuário user[email}

info string

140

D.7.3 Amigos / Adicionar Amigo

D.7.3.1 Descrição

Cria uma relação de amizade entre o usuário especificado pelo identificador e

o usuário logado no sistema.

POST

/api/vl/friendsh ip/request-friendshi p

D.7.3.2 Parâmetros

Parâmetro Descrição

FFl+zlMlbRrenuqt

relacionado ao usuário

logado

O user[email] é no formato de

email. Ex

user1 @example.com

Type

string

Status Tamanho

friend [id] Obrigatório

user[email] string Obrigatório
character

varying (255)

D.7.3.3 Parâmetros - HEADER

Parâmetro Descrição

me E
autenticação do usuário

retornado ao realizar o login

Type

string

Status Tamanho

X-AUTH-

TOKEN Obrigatório | 20

141

D.7.3.4 Resposta - Sucesso - HTTP 200

Parâmetro

success

Descrição

Retorna true

Id na tabela Friendship

Id do usuário logado

Id do amigo adicionado

Mensagem de sucesso

Type

boolean

Integer

Status Tamanho

D.7.3.5 Resposta - Erro

Parâmetro Descrição

success

info

Retorna false

Mensagem de erro

boolean

string

D.7.4 Amigos / Excluir Amigo

D.7.4.1 .Descrição

Exclui um usuário especificado pelo identificador da lista de amigos do

usuário logado no sistema.

DELETE

8@shm=;mmEíl$

142

D.7.4.2 Parâmetros

Parâmetro Descrição

IFBjezlulbTl[enbrql

relacionado ao usuário

logado

O user[email] é no formato de

email. Ex

user1 @example.com

Type

string

Status Tamanho

friend [id]

user[email]

D.7.4.3 Parâmetros - HEADER

Obrigatório

character
Obrigatório

- | varying(255)

Parâmetro Descrição

neIlrw etiMIEl!
autenticaçao do usuário

retornado ao realizar o login

Type

string

Status Tamanho

X-AUTH-

TOKEN

D.7.4.4 Resposta - Sucesso - HTTP 200

Obrigatório | 20

Parâmetro Descrição

Retorna true

Type

boolean

Status Tamanho

success

info Mensagem de sucesso string

D.7.4.5 Resposta - Erro

Parâmetro Descrição

success

info

Retorna false boolean

stringMensagem de erro

143

D.8 Configuração

Descrição

Permissão para match

Permissão para aparecer nas

buscas de amigos

Type

boolean

boolean “1 “ ou “0

D.8.1 Configuração /Listar configurações

D.8.1.1 Descrição

Retorna uma lista das configurações (Settings) do usuário.

GET

/api/vl/setti ngs/get-settings

D.8.1.2 Parâmetros

Parâmetro Descrição

leztRqlnB’tbllllatje3 w;lllkl(+1

de email. Ex

user1 @example. com

Type

string

Status Tamanho

user[email] Obrigatório

144

D.8.1.3 Parâmetros - HEADER

Parâmetro Descrição

na
autenticação do usuário

retornado ao realizar o login

Type

string

Status Tamanho

X-AUTH-

TOKEN

D.8.1.4 Resposta - Sucesso

Obrigatório | 20

Parâmetro

dataÜ

Descrição Type Status

Mo W
usuário

IHe al
r7

m)
n

Retorna true

D.8.1.4 Resposta - Erro - HTTP 401

Parâmetro

success

StatusDescrição Type

Retorna false

Retorna mensagem de erro string

Tamanho

D.8.2 Configuração / Atualizar Configurações

D.8.1 Descrição

Atualiza as configurações do aplicativo de um

PUT

/abi77l5 iitTig=

145

D.8.2.2 Parâmetros

Parâmetro

setting [id]

Descrição

ID d3ejlnldo naaMÊ settingg
em D.8

Aceita os aclores “0“ ou “1 ” que

correspondem a true ou false

O user[email] é no formato de

email. Ex: user1 @example.com

integer l Obrigatório

setting[value] boolean | Obrigatório

user[email] string | Obrigatório

D.8.2.3 Parâmetros - HEADER

Parâmetro Descrição

msEEElilua]EllIE
autenticação do usuário

retornado ao realizar o login

X-AUTH

TOKEN string | Obrigatório

D.8.2.4 Resposta Sucesso

Parâmetro Descrição Type

string

boolean

Statu
Tamanho

S

info

success

Mensagem de sucesso

Retorna true

146

D.8.3.5 Resposta - Erro

Parâmetro Descrição Type

string

S

Tamanho

success

info

Retorna false

Mensagem de erro

D.9 Mensagens

D.9.1 Mensagens / Recuperar Men

D.9.1.1 Descrição

sagens

Recupera todas as mensagens enviadas pelos usuários em um determinado

canal.

GET

/api/vl/message/retrieve-messages

D.9.1.2 Parâmetros - HEADER

Parâmetro Descrição

Corr@onde ao foke@
autenticação do usuário

retornado ao realizar o login

Type

string

Status Tamanho

X-AUTH-

TOKEN
Obrigatório | 20

147

D.9.1.3 Parâmetros

Parâmetro Descrição

MBT
email. Ex

user1 @example.com

Canal no qual as mensagens

foram enviadas

Type

string

Status Tamanho

user[email] Obrigatório
character

varying(255)

channel string Obrigatório
character

varying (255)

D.9.1.4 Resposta - Sucesso

Parâmetro Descrição Status TamanhoType

7
mensagens envidas pelo

user no channel
datan n array

boolea

n
success Retorna true

D.9.2 Mensagens / Armazenar Mensagem

D.9.2.1 Descrição

Armazena a mensagem enviada pelo usuário a um determinado canal.

POST

3

148

D.9.2.2 Parâmetros - HEADER

Parâmetro Type StatusDescrição

To]rEIIHEHe it;lKqlnn
Obrigatóriostringautenticação do usuário

retornado ao realizar o login

Tamanho

X-AUTH

TOKEN

D.9.2.3 Parâmetros

o ljBTescricão

pmmmzHBlg@39
user[email] | email. Ex:

user1 @example.com

O texto da mensagem

Canal no qual a mensagem

foi enviada

Data e hora no qual a

mensagem foi enviada

D.9.2.4 Resposta - Sucesso

message

Parâmetr Tvne

string

Status Tamanh0

character

varying(255)

character

varying(TEX

T)

character

varying(255)

Obrigatório

text Obrigatório

channel

timestam p

string

datetime

Obrigatório

Obrigatório

Parâmetro Descrição

Retorna true

Status Tamanho

Retorna stringnn

stringinfo Retorna uma mensagem de
sucesso

149

D.9.2.5 Resposta - Erro

Parâmetro Descrição Type

boolean

Status Tamanho

Retorna false

Retorna uma mensagem que

identifica a origem do erro

