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RESUMO

TANAKA, T. J. Modelagem de manipuladores robéticos paralelos com elos flexiveis
baseada em redes neurais. 2025. Monografia (Trabalho de Conclusdo de Curso) — Escola de

Engenharia de Sao Carlos, Universidade de Sao Paulo, Sdo Carlos, 2025.

O aprendizado de maquina ¢ uma area que vem ganhando muito destaque em tempos
recentes, sendo que representa uma inovacao relevante no campo da modelagem de sistemas
dindmicos ao ser capaz de utilizar dados empiricos para gerar modelos complexos. Este
trabalho aplica essa abordagem a modelagem de um manipulador paralelo planar do tipo
3RRR com elos flexiveis, integrando simula¢des numéricas, experimentos laboratoriais e
técnicas avancadas de redes neurais. Inicialmente, utilizou-se o software MSC Adams para a
geracdo de dados virtuais, considerando modelos rigidos e flexiveis, a fim de estabelecer uma
base comparativa. Em seguida, foram realizadas medi¢des experimentais com extensometros
e uma camera, tanto em um elo Unico quanto no manipulador completo, assegurando a
representatividade do ambiente real. A etapa de processamento ¢ modelagem envolveu o
emprego de Physics-Informed Neural Networks (PINNs), complementadas pela técnica
SINDy e por redes feedforward, permitindo explorar diferentes estratégias de aprendizado. A
validagdo evidenciou a capacidade das PINNs de reproduzir com elevada precisdo os
comportamentos observados, mesmo em condi¢des experimentais ruidosas, superando
abordagens exclusivamente baseadas em dados. Destaca-se a contribuicao deste estudo para a
consolida¢dao do Physics-Informed Machine Learning (PIML) como ferramenta robusta para
sistemas roboticos, a0 mesmo tempo em que se reconhece a necessidade de avangos futuros

na reducao do custo computacional e na integracdo com estratégias de controle em tempo real.

Palavras-chave: Manipulador paralelo, Elos flexiveis, Physics-Informed Machine Learning,

PINNs, Modelagem dindmica.






ABSTRACT

TANAKA, T. J. Neural Network-Based Modeling of Parallel Robotic Manipulators with
Flexible Links. 2025. Monograph (Undergraduate Thesis) — Sao Carlos School of

Engineering, University of Sdo Paulo, Sao Carlos, 2025.

Machine learning is an area that has been receiving a lot of emphasis lately, it represents a
significant innovation in the modeling of dynamical systems by utilizing empirical data to
generate complex models. This work applies the approach to the modeling of a planar 3RRR
parallel manipulator with flexible links, integrating numerical simulations, laboratory
experiments, and advanced neural network techniques. Initially, the MSC Adams software
was employed to generate virtual datasets, considering both rigid and flexible models, thus
establishing a comparative basis. Subsequently, experimental measurements were carried out
with strain gauges and a camera, both on a single flexible link and on the complete
manipulator, ensuring the representativeness of real-world conditions. The processing and
modeling stage employed Physics-Informed Neural Networks (PINNs), complemented by the
SINDy technique and feedforward neural networks, enabling the exploration of different
learning strategies. Validation highlighted the ability of PINNs to reproduce observed
behaviors with high accuracy, even under noisy experimental conditions, outperforming
purely data-driven approaches. This study contributes to consolidating Physics-Informed
Machine Learning (PIML) as a robust tool for robotic systems, while also recognizing the
need for future developments in reducing computational cost and integrating the models into

real-time control strategies.

Keywords: Parallel manipulator, Flexible links, Physics-Informed Machine Learning, PINNs,

Dynamic modeling.
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1 INTRODUCAO

O avango da robotica vem demandando solugdes cada vez mais eficientes do ponto de
vista energético e dindmico. Dentro desse contexto, os manipuladores paralelos se tornam
uma opg¢ao interessante devido a sua eficiéncia de energia e capacidades dinamicas altas.
Entretanto, o controle desses sistemas ¢ mais complexo devido ao fato deles utilizarem
dindmica acoplada e a falta de uma forma de medir a posicdo e orientagdo do efetuador final.
Para resolver essas incertezas, técnicas de controle baseado em modelo, visdo e
processamento de imagem estdo sendo usadas em manipuladores paralelos com elos rigidos,
algo que ja ¢ bem estudado e documentado. Por outro lado, o mesmo ndo pode ser dito a
respeito dos manipuladores com elos flexiveis devido a presenga de motores menos potentes €
elos mais flexiveis. Uma opg¢do que pode elevar ainda mais a eficiéncia energética, todavia,
isso também aumenta a complexidade do sistema ao introduzir vibragdes provenientes da

flexibilidade dos componentes.

E possivel obter modelos dindmicos de manipuladores paralelos com elos flexiveis
através de diversos métodos, no entanto, a maioria deles fornecem modelos grandes e lentos,
sendo inadequados para realizar controle. Visto isso, o aprendizado de maquina informado por
fisica surge como uma alternativa interessante. Este ¢ um novo método que utiliza dados em
conjunto com conhecimentos prévios para formar modelos. Essa abordagem, diferentemente
de redes neurais profundas, ndo necessita de um grande banco de dados para funcionar, pois
utilizar conhecimentos prévios, como leis fisicas e observagdes, cria restricdes tedricas, vieses
indutivas e observacionais. Esses fatores aumentam o desempenho do algoritmo de

aprendizado, requerendo menos dados para gerar modelos menores e eficientes para controle.

Este novo tipo de abordagem, apesar de ser relativamente nova, ja foi utilizado em
varios campos de pesquisa e fungdes relacionadas a automagao e robotica. Apesar de todas as
pesquisas e avangos, o aprendizado de maquina informado por fisica possui algumas
limitagdes e continua sob desenvolvimento. Visto isso, este trabalho visa explorar o uso de
redes neurais na modelagem de manipuladores complexos, sendo realizado em estagios.
Primeiro, sistemas simples construidos no software MSC Adams foram modelados, em
seguida foi aplicado a rede neural informada por fisica em um sistema simplificado do

manipulador e por fim, uma rede neural modelou o manipulador 3RRR completo. Esta
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estratégia foi adotada para aumentar de forma gradual a complexidade das tarefas realizadas,
permitindo uma compreensdo progressiva dos métodos utilizados e assegurando que os

conceitos fossem consolidados antes da aplicagdo no manipulador real.

Com este trabalho, espera-se ndo apenas desenvolver um modelo funcional e eficiente
para controle do manipulador 3RRR com elos flexiveis, mas também contribuir para o avango
do uso de técnicas de aprendizado de maquina baseadas em fisica no contexto da robdtica e
automagdo. Os resultados obtidos sao promissores, e este trabalho representa um passo

importante rumo a integracdo dessas metodologias em aplicagdes praticas de engenharia.

1.1 Objetivos do trabalho

O objetivo principal deste trabalho ¢ a aplicagdo de técnicas de aprendizado de
maquina, em especial redes neurais, na modelagem dindmica de manipuladores com elos
flexiveis, avaliando sua viabilidade como ferramenta de suporte ao desenvolvimento de

estratégias de controle.

A fim de atingir o objetivo principal, diversos objetivos especificos serdo realizados,

sendo eles:

e Desenvolver modelos virtuais de péndulos rigidos e flexiveis no software MSC

Adams para geracao de dados sintéticos.

e Realizar experimentos com o manipulador serial e com o manipulador 3RRR
completo, utilizando extensometros, camera e codificadores para coletar dados de

treinamento dos algoritmos.

e Implementar uma rede neurais do tipo PINN nos péndulos simulados e no
manipulador flexivel, incorporando restricdes fisicas no processo de aprendizado. E
uma do tipo feedforward no manipulador 3RRR.

e Analisar a precisdo, robustez e potencial de generalizagdo dos modelos obtidos.

e Identificar limitagcdes e propor perspectivas para aplicagao das técnicas em controle

em tempo real.
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Esses objetivos visam proporcionar um entendimento mais aprofundado das técnicas
de aprendizado de maquina, avaliando sua viabilidade e investigando sua aplicagdo em
sistemas dinamicos, com vistas ao aprimoramento da eficiéncia e da efetividade desses

sistemas.
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2 REVISAO BIBLIOGRAFICA

2.1 Técnicas de controles para manipuladores paralelos

Os manipuladores robdticos se tornaram ferramentas muito importantes nos processos
produtivos devido a sua eficiéncia e adaptabilidade em realizar diversas tarefas. No entanto, a
industria estd em uma busca constante por melhorias nos processos produtivos, o que leva a
avangos tecnologicos a fim de garantir maior precisao, velocidade, qualidade do produto e
reducdo no tempo de produ¢do. Dentro dos manipuladores roboticos, existem duas categorias
principais: manipuladores seriais, que apresentam elos conectados em cadeia simples, e
manipuladores paralelos, nos quais o efetuador final ¢ sustentado por multiplas cadeias

cinematicas. A escolha e controle dos manipuladores paralelos sera descrita nesta secgao.

2.1.1 Manipuladores paralelos com elos flexiveis

Devido as multiplas cadeias cinematicas, que funcionam de forma independente e
simultdnea, os manipuladores paralelos possuem eficiéncia de energia e capacidades
dindmicas maiores em relagdo a manipuladores em série (Ruiz et al., 2018; Carvalho Fontes
et al, 2021). Uma forma de elevar ainda mais a eficiéncia energética e o desempenho
dindmico ¢ diminuindo a inércia dos componentes com elos finos e flexiveis. No entanto, a
modelagem deste tipo de sistema ¢ um grande desafio, pois esses dois métodos aumentam a

complexidade da dindmica do sistema.

A dinamica acoplada dos manipuladores paralelos e a falta de uma forma de medir a
posi¢do e orientacdao do efetuador final diretamente dificulta o seu controle (Paccot; Andreff;
Martinet, 2009). Ja os elos flexiveis introduzem vibragdes e deformacdes, que também
contribuem para uma maior complexidade no controle e modelagem, por isso, esse campo dos
manipuladores paralelos com elos flexiveis ¢ pouco explorado (Morlock et al., 2021; Morlock

etal.,2022).

2.1.2 Estratégias de controle alternativas

Uma estratégia utilizada para lidar com os problemas citados ¢ o controle baseado em
modelo, que apresenta elevado desempenho em manipuladores paralelos com alta
nao-linearidade, parametros com variagao no tempo e incertezas (Saied et al., 2018; Bennehar

et al., 2017). Além disso, técnicas baseadas em visdo e processamento de imagem estdo sendo
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usadas para resolver essas incertezas (Mohan et al., 2017; Colombo; Carvalho Fontes; Silva,
2019). Também ¢ possivel obter modelos dindmicos de manipuladores paralelos com elos
flexiveis através dos métodos dos elementos finitos (Pham et al, 2022; Colombo; Silva,
2022), Lagrangiano e multicorpos flexiveis (Lipinski et al., 2019), modelo de restrigdo de
feixe dinamico (Ling; Yuan; Zhang, 2024), entre outros. No entanto, esses métodos fornecem

modelos grandes e lentos, sendo inadequados para realizar controle (Silva et al., 2010).

Uma alternativa que ja foi implementada com sucesso em manipuladores paralelos de elos
rigidos e robds paralelos acionados por cabos foi o controle sem modelo (Wang et al., 2020;
Wang et al., 2021). Mas no caso dos elos flexiveis, € necessario compensar a deformagao por
meio de uma estimativa dela (Bengoa et al., 2017; Bastos, 2022), esse calculo torna o controle
mais complexo e lento. Em razdo disso, buscamos o aprendizado de maquina como uma

possivel alternativa para esse tipo de modelagem.

2.2 Manipuladores robéticos estudados

O sistema principal estudado neste trabalho foi o manipulador 3RRR paralelo com
elos flexiveis, também foi utilizada uma versdo simplificada do manipulador com apenas um

elo. Ambos os sistemas e seus historicos serdo expostos nesta se¢ao.

2.2.1 Manipulador 3RRR com elos flexiveis

O manipulador robdtico planar foi construido no Laboratorio de Dindmica da Escola
de Engenharia de Sao Carlos (EESC-USP) em 2014 e financiado pela FAPESP 2014/01809-0
para a avaliacdo numérica e experimental de varios niveis de redundancia cinematica em
manipuladores roboticos de cinematica paralela. Em uma pesquisa posterior, um sistema de
servovisdo foi utilizado para a implementacdo de um controle no espago da tarefa (Colombo;
Carvalho Fontes; Silva, 2019). Em outro estudo, os elos foram modificados para serem
flexiveis com extensometros medindo sua deformagdo em funcdo de realizar um controle

hibrido livre de modelo (Silva et al., 2024).

O protdtipo era originalmente do tipo 3PRRR, no qual a letra P simboliza uma junta
prismatica, enquanto R denota uma junta de revolugdo. As letras sublinhadas sdo referentes as
juntas ativas, enquanto as nao sublinhadas estdo relacionadas as juntas passivas. Neste
trabalho, as juntas passivas sdo bloqueadas, ou seja, ndao ha movimento translacional dos

motores, fazendo com o que o sistema mecanico seja simplificado para um manipulador
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paralelo 3RRR. Assim, o manipulador possui 3 cadeias cinemadticas, cada uma com 3 juntas
de revolucdo, sendo a primeira ativa acionada por um motor, a segunda livre entre dois elos

flexiveis e a ultima no efetuador final, onde todos os bragos convergem.

Observando a Figura 1, € possivel identificar parte da instrumentacdo empregada no
sistema. No que se refere as referéncias adotadas, utilizaram-se as coordenadas cartesianas e a
orientacdo do efetuador final para a determinar sua posi¢do e angulo, bem como os angulos
correspondentes a cada motor. A instrumentacao e o sistema de coordenadas utilizados serao

descritos de forma detalhada na secdo de metodologia deste trabalho.
Figura 1 — Elos cinematicos do 3RRR com elos flexiveis

Junta de revolugao

o

{Motor 2]

Fonte: Adaptado de SILVA et al., 2024

2.2.2 Manipulador flexivel serial

A fim de explorar o uso de PINNs, um tipo de rede neural mais complexo,
determinamos que o uso de um sistema mais simples seria a forma mais efetiva de verificar a
viabilidade da estratégia. Assim, uma das cadeias cinematicas do manipulador 3RRR foi
desconectada, restando apenas um Unico elo flexivel com uma junta rotativa ativa e o

efetuador em sua extremidade, conforme pode ser visto nas Figuras 2 (a) e 2 (b).
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Figura 2 — Manipulador flexivel de elo unico (a) Vista lateral do manipulador (b) Vista
superior do manipulador

(@) (b)
Fonte: Autoria propria, 2025

2.3 Aprendizado de maquina

O avango recente de técnicas de aprendizado de maquina permitiu sua aplicagdo em
uma ampla gama de problemas de engenharia. Dentre os diversos métodos disponiveis, esse
trabalho foca nas redes neurais artificiais e as informadas por fisica, que serdo descritas nesta

secao.

2.3.1 Aplicacgdes na engenharia

Apesar do aprendizado de maquina ser um método relativamente novo, seu uso tem se
expandido rapidamente em diversas areas de engenharia. Uma delas ¢ a engenharia de
materiais, especialmente na Industria 4.0, permitindo prever propriedades mecanicas e reduzir
custos experimentais. Redes neurais artificiais foram empregadas com sucesso em estudos
sobre 0 uso de modelos para teste ¢ manufatura de materiais compdsitos (Esmaeili; Rizvi,
2023). Em outro estudo, o aprendizado de maquina guiado por fisica, em inglés
physics-guided machine learning (PGML), foi efetivo na garantia de estabilidade em
processos de usinagem ao criar modelos que evitam o shatter e que reduzem a necessidade de

medig¢des reais ao utilizar modelos teoricos (Greis et al., 2023). O PGML também se mostrou
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capaz de realizar simula¢des de dinadmica estrutural, onde, comparado com métodos
puramente baseados em dados, ele apresentou uma capacidade de generalizagdo melhor e um
uso menor de dados. Ja em relacdo a modelagem baseada em fisica, seu modelo exibiu uma
eficiéncia computacional melhor e a capacidade de identificar fisica parcialmente

desconhecida (Yu; Yao; Liu, 2020).

Uma das areas que o aprendizado de maquina ja é amplamente utilizado ¢ a dos
sistemas térmicos e fluidicos, isso se deve ao fato dos fendmenos complexos existentes neste
campo. O método SINDy foi empregado para prever o conforto térmico em cabines de
veiculos elétricos, estimando varidveis como temperatura equivalente homogénea e
temperatura média radiante com alta precisdo e baixo tempo de processamento, superando
limitagdes dos modelos puramente baseados em fisica (Warey; Kaushik; Han, 2022). Redes
neurais recorrentes ¢ profundas também foram utilizadas na previsao de campos térmicos e
em um estudo que aplicou isso na manufatura aditiva a laser, os modelos gerados atingiram
alta concordancia com simulagdes numéricas, permitindo otimizar estratégias de deposi¢ao e
reduzir tensdes residuais (Ren et al., 2020). O aprendizado de maquina também ja foi
utilizado em experimentos dindmicos, automatizando a selecdo de parametros em testes de
vibra¢do induzida por vortices e reduzindo drasticamente o niimero de ensaios necessarios
para mapear respostas ndo lineares em sistemas fluido-estruturais (Fan et al., 2019). Este
ultimo estudo também cita que a metodologia utilizada também poderia ser aplicada na
mecanica dos soélidos € em processos de manufatura, algo que ja foi comprovado nos

exemplos anteriores.

Por fim, o aprendizado de maquina foi utilizado em sistemas dindmicos, a area de foco
deste trabalho. Uma extensdao do método SINDy com parametros de controle foi capaz de
identificar as equacdes diferenciais que regem sistemas com parametros de controle ajustaveis
diretamente dos dados experimentais. Essa metodologia tem sido aplicada com sucesso em
sistemas que exibem formacdo de padrdes e bifurcacdes, permitindo reconstruir dependéncias
nao lineares e prever comportamentos complexos mesmo em presenca de ruido experimental
(Nicolaou et al.,, 2023). A abordagem do PIML também foi explorada na previsao
probabilistica de respostas em sistemas dinamicos, combinando modelos fisicos com modelos
de aprendizado capazes de representar e corrigir discrepancias entre previsdes tedricas e
observagdes experimentais. Essa integragdo permite que o sistema opere com entradas

aleatorias nao estaciondrias e reduza o custo computacional de analises de confiabilidade, ao
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mesmo tempo que apresenta resultados robustos em aplicagdes como vigas submetidas a
carregamentos dinamicos e escoamentos hipersonicos sobre painéis flexiveis (Subramanian;

Mahadevan, 2023).

Em todas as aplicagdes apresentadas, o aprendizado de maquina baseado em fisica
apresentou resultados confidveis, onde o método produziu modelos eficientes que previram
corretamente os sistemas estudados. Isso demonstra a adaptabilidade e efetividade do método
em diversos campos de estudo, reforcando a proposta deste trabalho de utilizad-lo para a

modelagem de um manipulador robdtico paralelo com elos flexiveis.

2.3.2 Redes neurais artificiais

As redes neurais artificiais sdo modelos de inteligéncia artificial inspirados no
funcionamento do cérebro humano, que usam nds interconectados em camadas para aprender
e processar dados, de forma similar que os neurdnios reais sdo utilizados. Elas funcionam
aprendendo padrdes complexos através do treinamento com exemplos, ajustando pesos e
vieses nas conexdes entre os neurodnios artificiais para gerar previsoes ou decisdes precisas.
Isso permite que elas realizem o aprendizado profundo, que ¢ capaz de aprender padrdes
complexos diretamente de grandes volumes de dados (Schmidhuber, 2015), foram estes

motivos que levaram a sua escolha para a tarefa de modelagem do trabalho.

A rede neural utilizada foi do tipo feedforward com multiplas camadas ocultas, projetada para
mapear relagdes ndo lineares entre variaveis de entrada e estados dindmicos do sistema. A
arquitetura proposta ¢ composta pelos estagios de entrada, camadas ocultas e saida. O nome
desse tipo de rede se da pelo fato de que informagdes sdo passadas e transformadas de nos de

uma camada anterior para os nos de uma proxima camada (Choi et al., 2020).

2.3.3 Aprendizado de méquina informado por fisica

O aprendizado de maquina informado por fisica, em inglés physics-informed machine
learning (PIML), ¢ um novo método que utiliza dados em conjunto com conhecimentos
prévios para formar modelos. Essa abordagem, diferentemente de redes neurais profundas,
ndo necessita de um grande banco de dados para funcionar, pois utilizar conhecimentos
prévios, como leis fisicas e observagdes, cria restrigdes tedricas, vieses indutivas e

observacionais. Esses fatores aumentam o desempenho do algoritmo de aprendizado,
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requerendo menos dados para gerar modelos menores e eficientes para controle (Karniadakis
et al., 2021). Outra vantagem desse método ¢ a sua capacidade de integrar perfeitamente
dados e equagdes diferenciais parciais com informacgdes fisicas completas ou incompletas

(Willard et al., 2022).

O método SINDy ¢ um tipo de PIML que utiliza regressdo esparsa para obter sistemas
dindmicos nao lineares de dados de medicdo. O seu funcionamento é baseado na analise de
variaveis de estado, onde o algoritmo examina a variagdo dessas no tempo e, a partir disso,
infere equacgdes governantes do sistema, criando modelos inerentemente interpretdveis e
generalizaveis. Esse pacote também nos permite configurar o algoritmo, deste modo,
podemos ajustar as variaveis de estado segundo as informagdes adicionais que obtemos pela

observagao do manipulador e leis fisicas (De Silva et al., 2020).

Neste trabalho, utilizamos o modelo rigido do manipulador como base e buscamos
representar a flexibilidade através de termos adicionais. Com isso, utilizou-se a estratégia do
SINDy como inspiracdo na forma de identificar a contribui¢do da flexibilidade na dinamica
do sistema e obter os componentes que a representam na rede neural informada por fisica do

manipulador flexivel serial.

2.4 Softwares utilizados

2.4.1 MSC Adams

Os modelos virtuais sdo uma forma rapida de realizar simulacdes e experimentos sem
desgastar ou desenvolver equipamentos fisicos, facilitando a obtencdo de dados do sistema.
Sendo assim, modelos foram criados no software Adams MSC. A escolha deste software se
deve ao fato dele possuir a fungdo de simular corpos flexiveis, sendo um dos mais utilizados
no estudo da dinamica e distribuicao de forgas de sistemas mecanicos. Ele ¢ empregado tanto
na industria quanto na pesquisa, como em um estudo similar, no qual a simulagdo de um
manipulador planar paralelo 3RRR foi realizado no mesmo (Varedi-Koulaei; Daniali;

Farajtabar, 2016).

2.4.2 Google Colab
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O Google Colab ¢ uma plataforma baseada em nuvem que suporta a execugdo de
programas em Python. Sua caracteristica principal é a disponibilizacdo de recursos
computacionais sem a necessidade de uma infraestrutura local, o que facilita a implementagao
e o treinamento de redes neurais. Além disso, ele possui integracdo com bibliotecas de
aprendizado de maquina como TensorFlow e PyTorch, fora possibilitar a organizacdo e
compartilhamento de experimentos em ambiente colaborativo. Devido a esses fatos, o Google

Colab foi escolhido como a plataforma para se desenvolver a programagao deste trabalho.

2.43 MATLAB

O MATLAB ¢ uma plataforma de programagdo e calculo numérico amplamente
empregada em engenharia e pesquisa cientifica. Suas ferramentas incluem bibliotecas para
analise de sinais, controle, otimizacdo e simulacdo de sistemas dindmicos. Nesta pesquisa, o
MATLAB foi aplicado na aquisicdo dos dados de treinamento e posteriormente na

implementa¢do do controle dos manipuladores roboticos a partir dos modelos obtidos.
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3 METODOLOGIA

3.1 Modelos virtuais no software MSC Adams

O software MSC Adams foi utilizado como ferramenta de simulagdo dindmica para
gerar dados sintéticos para a validagdo inicial das técnicas de PIML aplicadas neste trabalho.
Foram modelados dois sistemas, ambos representando a dindmica de um elo Unico: um
péndulo rigido, como referéncia classica, ¢ um péndulo flexivel, capaz de reproduzir os

efeitos de deformagao estrutural.

3.1.1 Péndulo rigido

O modelo do péndulo rigido foi implementado no MSC Adams como um corpo
indeformavel, preso a uma extremidade por uma junta de revolu¢do, como pode ser visto na
Figura 3. O elo ¢ composto por uma barra com dimensdes de 1000 mm de comprimento, 50
mm de largura e espessura de 3 mm com massa de 1,17 kg. A fim de simular a resisténcia do
ar e atrito, uma mola de tor¢do com amortecimento de 6 N.mm.s/grau foi colocada no pivé do
péndulo, vista na Figura 4. Os dados registrados foram as coordenadas cartesianas da

extremidade livre da barra.

Figura 3 — Vista completa do péndulo rigido

Fonte: Autoria propria, 2025
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Figura 4 — Vista focada no ponto de fixa¢ao do péndulo rigido

Fonte: Autoria propria, 2025

3.1.2 Péndulo flexivel

O modelo do péndulo flexivel foi criado a partir da mesma geometria, mas utilizando
a ferramenta ViewFlex do MSC Adams, que permite a representacdo de deformagdes

estruturais por meio da integragdo de elementos finitos ao corpo rigido.

As propriedades mecanicas adotadas para o elo foram: mddulo de elasticidade (E) de
7000 N/mm? e coeficiente de Poisson (v) de 0,29. Esses valores foram escolhidos para
permitir que a flexibilidade tenha um efeito significativo e seja visualizada durante o
movimento do péndulo. A Figura 5 apresenta a barra durante o movimento, evidenciando sua

deformacao e a distribuicao dos esforcos internos.
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Figura 5 — Péndulo flexivel durante o movimento oscilatdrio

Fonte: Autoria propria, 2025

3.2 Instrumentacio do manipulador paralelo 3RRR com elos flexiveis

Esta subsecdo apresenta a instrumentacdo e os equipamentos utilizados para a
comunica¢do do manipulador paralelo 3RRR com elos flexiveis. A Figura 6 mostra a

instrumentagdo utilizada para a construg¢do do experimento.

Figura 6 — Instrumentagao empregada para o experimento

i

- camera

computador 1

Fonte: Autoria propria, 2025
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3.2.1 Componentes

e Motores de atuacdo: 3 motores Maxon EC60 plano sem escovas com 100 W de
poténcia de entrega e uma corrente nominal de 2.3 A, acoplados com redutores
planetarios GP52 C de redugao 3,5:1, fornecendo uma rotagao nominal de 1200 rpm e
torque nominal de 0,82 N.m. Cada motor possui um controlador Maxon EPOS2 50/5
com uma fonte de energia de at¢ 50 Vdc e uma corrente de 5 A. Vale notar que os

motores possuem codificadores, que medem a posi¢ao angular dos atuadores.

e Elo flexivel: fabricado em ago mola AISI 6150. Cada elo apresenta um comprimento
de 318,5 mm, largura de 3,5 mm e espessura de 0,7 mm. Devido ao baixo peso e

espessura dos elos, eles sdo flexiveis e a deformagdo neles gera vibragdes no sistema.

e Extensometros: do tipo HBM 350-E, instalados em configuragdo de ponte completa na
base do elo, utilizados para medir deformagdes associadas a flexibilidade. O sinal
adquirido passa por amplificadores de sinal HBM HB40 CLIPX antes do envio a placa

de controle.

e Placa de controle dSPACE 1103: interface central de aquisicdo e processamento,
responsavel pela leitura dos sensores, execugao das leis de controle € envio dos sinais

de comando ao motor.
e (Camera oCam-5CRO-U: utilizada para coletar imagens em tempo real do manipulador
paralelo, requer uma interface USB 3.0 e apresenta uma resolu¢ao de 640x480 pixels,

com uma taxa de quadros maxima de 60 quadros por segundo.

e Computador 1: responsavel pelo processamento das imagens obtidas pela caAmera para

a estimativa da posi¢ao do efetuador.

e Computador 2: dedicado ao desenvolvimento do controle em MATLAB/Simulink.
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3.2.2 Esquema de conexdes e funcionamento

Cada cadeia cinematica do manipulador ¢ acionada por um motor instalado em sua
junta ativa, controlado pela placa dSPACE 1103. A comunicagao entre os controladores EPOS
e 0 dSPACE 1103 ¢ conduzida via protocolo CAN a uma taxa de transmissao de 250 kbit/s, e

a Ethernet ¢ usada para estabelecer a comunicacao entre a placa e o computador.

A camera ¢ fixada acima do protétipo a fim de obter imagens de todo o espago de
trabalho. Como mencionado, as imagens, capturadas pela camera, sdo processadas pelo
Computador 1 para determinar a posi¢ao do efetuador final. Note que, o manipulador paralelo
¢ considerado plano, uma vez que o movimento ¢ restrito ao longo das diregdes x ey,
enquanto z = 0. ApoOs as imagens serem capturadas pela camera, o algoritmo de
processamento de imagens (Geronel et al. (2024) ¢ usado para estimar a posi¢do linear e

angular do efetuador final.

Devido ao baixo peso dos elos e consequentemente a alta flexibilidade, caracteristicas
como vibracdo indesejada pode ser ocasionada no prototipo, gerada principalmente pela
deformacgao dos elos. Assim, os extensdmetros sao fixados em cada elo, visando coletar em
tempo real a deformacao de cada elo flexivel. O sinal coletado é enviado para amplificadores
de sinal HBM HB40 CLIPX , e entdo enviados a dSPACE 1103. Portanto, torna-se importante
observar que todo o sinal medido ¢ coletado através da camera e dos extensOmetros,

codificados e levados para a dSPACE, conforme pode ser observado no esquema da Figura 7.
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Figura 7 — Esquema de comunicacdo do 3RRR com elos flexiveis
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Fonte: Adaptado de SILVA et al., 2024

A dSPACE envia os dados adquiridos ao computador 2 que projeta a estratégia de
controle, realizada em Matlab/SIMULINK, a fim de gerar um sinal de controle apropriado.
Este sinal é entdo encaminhado para os controladores dos motores, através da dSPACE,

realizando o movimento do protétipo 3RRR.

3.3 Modelos fisicos e cinematicos

A formulagao de modelos fisicos e cinematicos serve como referéncia para a analise
dos sistemas estudados e para a incorporacdo das leis da dindmica nas redes neurais. Nesta
secdo, sdo apresentados os modelos e sistemas de referéncia do péndulo rigido, manipulador

flexivel serial e manipulador paralelo 3RRR.
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3.3.1 Péndulo Rigido

O primeiro modelo, ilustrado na Figura 8, descreve o movimento de um péndulo

simples subamortecido rigido.

Figura 8 — Representa¢do do péndulo fisico

HV

Fonte: (Bonventi Junior; Aranha, 2015)

Utilizando as seguintes equacdes baseadas em um estudo sobre oscilagdes amortecidas

(Bonventi Junior; Aranha, 2015):

+28g =0 (1)

A Equacao 1 ¢ uma equagdo diferencial ordinaria de segunda ordem que descreve o
movimento de um péndulo amortecido, onde 6 ¢ a posicdo angular do péndulo, b ¢ o
coeficiente de amortecimento angular, 1 ¢ a distancia do pivd ao centro de massa, g ¢ a

aceleragdo da gravidade, m ¢ a massa total da barra e I, ¢ 0o momento de inércia.

o(t) = Ae_bt/y"cos(oot + ¢) (2)

A solugdo da Equacao 1, apresentada na Equagdo 2, ¢ analoga ao caso do sistema
massa-mola amortecido. Como o movimento se inicia com amplitude A maxima, temos que a

fase ¢ = 0. Por fim, a frequéncia natural de oscilagdo harmdnica do péndulo ¢ definida pela
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Equacdo 3, a frequéncia de oscilagdo com amortecimento ¢ dada na Equacdo 4 e o momento

de inércia da barra € relacionado pela Equagao 5.

W, = - /mgl/Ip 3)

w = \/oooz — (b/21 )’ “)

I = m[(h” +w)/12 + [] (5)

3.3.2 Manipulador flexivel serial

O segundo modelo cobre o manipulador de tnico elo, sendo uma simplificacdo do
3RRR original. Este modelo ¢ ilustrado na Figura 9, apresentando as caracteristicas

geométricas do sistema.

Figura 9 — Caracteristicas geométricas do manipulador flexivel serial
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Fonte: Autoria propria, 2025
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A posicdo angular da junta ativa ¢ definida por 0, e a distancia do centro da junta ativa
até o efetuador final ¢ L, o comprimento do elo. Vale notar que este 0 representa o angulo da
extremidade do manipulador, diferente do 0 dos codificadores. Dada a simplicidade do
manipulador, as posi¢des x e y do efetuador final podem ser descritas pelas seguintes

relagoes:

x = L cos (0) (6)

y = Lsin (0) (7)

Também podemos realizar cinemadtica inversa para resolver 0 e determinar as restricdes do

sistema:

tan(0) = % (8)

2, 2 )

As Equacdes 6, 7 e 8 descrevem o comportamento rigido de um manipulador 1, e a Equagdo 9
representa sua restricao. A partir disso, técnicas de aprendizado de maquinas sao utilizadas,
com o objetivo de através de uma equacdo simplificada de um elo rigido, obter as equagdes de
um elo com estrutura flexivel. Assim, permite-se utilizar o aprendizado de méaquina como
uma extensdo da modelagem matematica do sistema mecanico, possibilitando compensar

efeitos de incertezas, defeitos de producao e erros operacionais.

3.3.3 Manipulador 3RRR

Conforme foi descrito na secdo 2.2.1 , o manipulador paralelo 3RRR com elos

flexiveis ¢ composto por trés cadeias cinematicas idénticas, cada uma formada por uma junta
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de revolugdo ativa e duas passivas, interligando a base fixa ao efetuador final. Podemos

observar as referéncias do sistema na Figura 10.

Figura 10 — Caracteristicas geométricas do 3RRR
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Fonte: Adaptado de Ruiz et al, 2018

Os angulos 0 indicam a posi¢@o angular das juntas ativas com 0s motores € a posicao
do efetuador final é dada pelas coordenadas x e y, enquanto a sua orientacao se da pelo angulo
a. Como aplicamos apenas uma rede neural do tipo feedforward neste modelo, ndo foi
necessario criar um modelo matematico do manipulador 3RRR completo. Por este motivo,

utilizaremos apenas o sistema de referéncias na modelagem para o aprendizado de maquina.

3.4 Coleta e manipulacio de dados

A coleta e processamento de dados € uma etapa essencial para assegurar a qualidade
das informagdes utilizadas no treinamento das redes neurais e nos métodos complementares
de aprendizado, fazendo com que os modelos obtidos sejam consistentes. O processo incluiu
tanto a exportacdo de dados sintéticos gerados em simulagdo, quanto o tratamento de dados

experimentais coletados em bancada.

3.4.1 Coleta e exportacao de dados virtuais

Os modelos do péndulo rigido e flexivel, desenvolvidos no MSC Adams, foram
configurados para registrar as posi¢des cartesianas x € y da extremidade livre em ambos os
péndulos e, no caso do flexivel, a deformacao no nodulo com maior valor medido. A duragdo
das simulagdes foi de 10 segundos, realizadas com taxa de amostragem de 10 e 1000
medi¢des por segundo, sendo a maior quantidade de medi¢cdes empregada para aumentar a

precisdo dos dados. Os dados obtidos foram exportados para uma tabela no Google Sheets,
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onde as coordenadas x e y foram utilizadas para calcular a posi¢do angular 6 do péndulo por
meio da funcdo ATAN. Para utilizar esses dados no Google Colab, foi empregada a biblioteca

Pandas, que permite inserir os dados de uma coluna da tabela em uma variavel no Python.

Através dessa primeira abordagem, foi possivel compreender o funcionamento e as
caracteristicas de um elo rigido e flexivel, permitindo a investigagdo experimental do sistema

proposto.

3.4.2 Coleta de dados reais

Para a coleta dos dados reais, foi utilizado a estratégia sem modelo, através da
utilizacdo de um controlador de modos deslizantes. Através dessa estratégia, ¢ possivel
combinar as imagens do efetuador final e a deformagdao medida nos extensometros, a fim de
estabelecer a posi¢do angular e linear do efetuador. Assim, o controle desenvolvido ¢ dividido
em dois lagos: o laco da camera, que estima a posi¢do do efetuador final, e o lago de
deformacao, responsavel por compensar a flexibilidade do prototipo. A camera, fixada acima
do protétipo, € utilizada para coletar as imagens em tempo real, e através da utilizacdo do
algoritmo de processamento de imagens, a posi¢do do efetuador final ¢ estimada. Neste caso,
o controlador de modos deslizantes ¢ empregado devido a sua robustez e simplicidade.
Baseado no erro entre os estados desejado e real, calculados em cada iteracdo, a lei de
controle correspondente pode ser calculada. Em seguida, baseada no erro entre as
deformacdes obtidas pelos extensometros e o valor do sinal desejado, uma lei de controle ¢

estabelecida.

Assim, diferentes trajetorias, definidas como entrada do tipo degrau, sdo utilizadas
para a coleta dos dados. O experimento ¢ executado diversas vezes, a fim de estabelecer um
conjunto de dados. Com isso, o banco de dados foi dividido entre treinamento, teste e
validagdo. Os dados treinados e testados ndo serdo os mesmos utilizados para a validagao.
Vale notar que o procedimento descrito foi utilizado tanto no manipulador 3RRR completo
quanto em sua versdao simplificada. Temos na Figura 11 um exemplo de conjunto de dados,

com as entradas do sistema em azul e as saidas em vermelho.

Figura 11 — Amostra do conjunto de dados utilizados no treinamento e teste da rede neural
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Fonte: Autoria propria, 2025

Observe que foram necessarios trés sensores diferentes para adquirir os sinais: uma
camera, codificadores e extensdmetros. Isso aumenta a complexidade do protdtipo, emprega
diferentes premissas de manipuladores paralelos com enlaces rigidos e exige um tempo de
processamento de custo superior. As redes neurais artificiais sdo projetadas visando
reconhecer padroes complexos de sistemas mecanicos com uma quantidade menor de dados e,

possivelmente, como uma forma de retirar a necessidade de sensores adicionais.
3.4.3 Tratamento de dados

O tratamento dos dados buscou filtrar ruidos, eliminar inconsisténcias e preparar os
sinais para a etapa de treinamento das redes neurais. Com excecdo do caso do péndulo rigido,
todos os conjuntos de dados foram normalizados utilizando o valor méximo das entradas e
saidas. Eles também passaram por um processo de centraliza¢do, removendo partes iniciais €
finais dos dados que possuiam inconsisténcias que poderiam afetar o processo de
aprendizado. E importante destacar que os valores da deformagdo gerados pelo MSC Adams
sdo absolutos e apenas positivos, assim, como forma de assimilar a condi¢do real, utiliza-se
uma funcao que altera o sinal da deformagao a cada meio periodo, simétrico em torno de zero.

Observa-se na Figura 12, a comparagao do sinal original em laranja com o simétrico em azul.
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Figura 12 — Simetrizacdo do sinal de deformagdo em torno e zero
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Adotamos outras estratégias no processamento das medidas de deformagdo, como a
analise do espectro de frequéncia, que auxiliou na identificagdo dos componentes principais
do sinal e na separagdo de vibragdes relevantes de ruidos de alta frequéncia, levando a escolha
de filtros digitais. Incluindo o Bandstop de segunda ordem (Notch), os filtros passa-alta e
passa-baixa de segunda ordem para remover ruidos e preservar o comportamento dindmico
essencial do sistema. Outro método utilizado foi uma aproximagdo por série de Fourier
através de um Rede Neural de Fourier, a fim de filtrar pontos discrepantes e facilitar a
diferenciagdo, o funcionamento desta rede neural serd explicada em detalhe na se¢do 3.5.4.
Apos a aproximagdo ser encontrada, a fun¢do autograd.grad da biblioteca Pytorch foi aplicada
para obter a primeira e segunda derivada da deformacado, que foram utilizadas na investigacao
do treinamento dos modelos. A derivacdo dos sinais de deformagdo pode ser observada na

Figura 13.
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Figura 13 — Aproximagao por série de Fourier com a primeira e segunda derivada
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No entanto, as estratégias discutidas de filtragem e aproximagao foram empregadas
apenas no péndulo flexivel ¢ o0 modelo do manipulador serial com 1 conjunto de dados de
treinamento. Para a andlise do manipulador 3RRR completo ¢ do modelo final do
manipulador serial, os dados reais utilizados ndao possuiam ruido significativo e ndo
necessitavam de um filtro ou da aproximacgdo pela série de Fourier, assim, as medidas das
deformacdes foram apenas normalizadas e centralizadas. Fora isso, estes ultimos casos
utilizam maultiplos conjuntos de dados no seu treinamento, fazendo com que o tempo de

processamento aumente significativamente, necessitando a simplificacdo descrita.

Esse conjunto de procedimentos assegurou que os dados utilizados nas etapas de
treinamento fossem consistentes, livres de distor¢des e representassem com fidelidade a

dindmica real e simulada do sistema, aumentando a confiabilidade dos modelos obtidos.

3.5 Modelos de aprendizado de maquina

Esta secao visa explicar como os métodos de aprendizado de maquina foram utilizados
na constru¢do de modelos capazes de representar a dindmica de sistemas rigidos e flexiveis,

assim como as configuragdes utilizadas neles.
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3.5.1 Rede neural feedforward

A rede neural responsavel por modelar o manipulador 3RRR ¢ do tipo feedforward
com multiplas camadas ocultas, projetada para mapear relagdes nao lineares entre variaveis de
entrada e estados dindmicos do sistema. Ela é composta por trés estagios: entrada, camadas
ocultas e saida. As entradas correspondem as posi¢des angulares dos motores (01, 62, 03) e
aos sinais dos extensometros (sl, s2, s3), enquanto a saida representa a posicdo da
extremidade do efetuador (X, y, a). Com relagdo as camadas ocultas, ha neuroénios que irdo
processar informacdes e aprender uma tarefa especifica. A rede neural recebe uma entrada u e

a propaga pelas camadas ocultas 1, aplicando os pesos W e viés b, conforme a Equacdo 10.

w4 b paral =1, . L -1 (10)

Em seguida, um operador de soma realiza a soma dos sinais ponderados de cada
sinapse 1 do neurdnio. A funcdo de ativacdo ¢ entdo aplicada a cada camada oculta para
limitar a saida do neurdnio a um determinado intervalo e melhorar as respostas ndo lineares

do algoritmo (Garpeilli et al., 2023).

RelLU(u) = max(0, u) (11)

A func¢do ReLU (Rectified Linear Unit) é definida na Equagdo 11, que retorna u se u
for maior do que zero, caso contrario, retorna zero. O procedimento utilizado na etapa de
aprendizado minimiza a funcao objetivo para modificar os valores dos pesos e vieses a fim de
alcangar a minimizagdo desejada. Para realizar esse processo, uma fun¢do de perda deve ser
definida para comparar a saida da rede com o valor esperado. No nosso caso, o erro ¢

estimado pela técnica do Erro Quadratico Médio (MSE), conforme a Equacao 11.

N -~
=20, +y) (12)
i=1

L

As variaveis y, e ¥; representam os valores reais e estimados pela rede neural,
respectivamente, ¢ N ¢ o comprimento dos vetores. O processo de aprendizado ¢é
implementado usando o método do gradiente. A fun¢do de perda (Equacdo 12) ¢ usada para
propagar os erros da camada de saida até a primeira camada de cada neuronio, as derivadas
parciais do MSE sao calculadas com relagdo aos pesos e vieses correspondentes. Com base
nas derivadas, calcula-se o gradiente da funcdo de perda, e o uso do método da descida do

gradiente permite a atualizacdo dos valores de pesos e vieses para realizar o aprendizado da
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rede neural. Para a implementacdo, os dados foram divididos em dois conjuntos: o primeiro
relativo aos dados para treino e teste, enquanto o segundo para validagdo. O primeiro grupo
foi ainda dividido em 90% dos dados para treino e 10% para teste. A Figura 14 ilustra a rede

neural adotada para o trabalho.

Figura 14 — Esquematico da Rede Neural do tipo feedforward utilizada
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Fonte: Autoria propria, 2025

3.5.2 Rede neural informada por fisica

Nos casos do manipulador flexivel serial, péndulo rigido e péndulo flexivel,
utilizamos redes neurais informadas por fisica, do inglés physics-informed neural networks
(PINNS), para a modelagem de sua dinamica, seu funcionamento pode ser observado na

Figura 15.

Figura 15 — Esquematico do PINN utilizado
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A Figura 15 destaca a principal diferenca entre um PINN e uma rede neural comum: o
fato do PINN possuir duas fun¢des de perda. Enquanto uma rede neural considera apenas a
forca de perda, obtida através dos dados medidos, o PINN inclui uma fun¢do de perda
adicional, relativo a fisica do sistema. Isso auxilia na robustez da rede neural, especialmente
em condigdes com baixo numero de dados coletados. Um dos parametros de ajuste na
arquitetura da rede neural ¢ a relagdo de peso no treinamento entre essas duas fungdes de

perda.

A configuragdo final do PINN foi obtida ap6s multiplos testes com os diferentes
sistemas modelados. Ela buscou permitir que a rede aprendesse tanto as relagdes empiricas
quanto as restrigoes impostas pela fisica enquanto equilibra precisdao, robustez a ruidos

experimentais e viabilidade computacional.

A arquitetura do PINN também ¢ do tipo feedforward, possuindo 5 camadas ocultas,
40 neuronios por camada oculta e fungdo de ativagao da tangente hiperbdlica (tanh), escolhida
por ser adequada para sinais oscilatorios, facilitando a representacao de dinamicas periodicas.
No entanto, a fun¢do de perda se diferencia da rede neural anterior por possuir dois
componentes, a perda fisica (loss1) e a perda de dados (loss2). Associadas, respectivamente, a
satisfacao da equacao diferencial parcial que descreve o sistema e a diferenga entre as saidas
preditas pela rede e as observagdes experimentais. O peso das perdas foi configurado como

igual, conforme demonstrado na Equagao 13.

loss = 10 ".loss1 + 10" . loss2 (13)

Foram utilizadas duas varidveis de entrada para o PINN, o tempo () € a
deformacao medida no extensdmetro (st), a saida foi definida como uma tnica variavel
dependente, o angulo de deslocamento (0). A deformacdo foi escolhida como uma das
entradas do PINN, visto que ela esta relacionada a flexibilidade e ¢ possivelmente uma forma
de representd-la. A sua derivada foi utilizada apenas no caso do péndulo flexivel, pois
presumimos que ela representaria a flexibilidade de forma mais efetiva. Porém, nao
observamos mudangcas significativas com o valor original da deformacao, por este motivo que

a deriva¢do ndo foi utilizada no modelo do manipulador flexivel serial.

Além dos pesos e vieses da rede, foram definidos parametros fisicos “k” com a funcdo de

capturar a flexibilidade do sistema. Eles representam constantes na formula¢ao da equacao
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fisica e sua identificacdo foi uma parte integral do processo de aprendizado, em linha com o
conceito do método SINDy abordado anteriormente. As Equacdes 14 e 15 representam a

fisica utilizada no caso do péndulo flexivel e manipulador serial flexivel, respectivamente.

2

de b do mgl dst
di’ + I dt + I 0+ k ac 0 (14)
d’e 2 st
e + kl.st + k2.st + k3.sen(st) + k4 =0 (15)
t

A escolha dos maultiplos parametros fisicos “k” foi realizada visando modelar
componentes distintos da dindmica do sistema. Enquanto kl descreve um termo de
crescimento linear no tempo, k2 e k4 introduzem um comportamento polinomial e
exponencial, representando a ndo linearidade do sistema. Por fim, o termo k3 modela um

comportamento oscilatdrio, relacionado aos modos vibratorios naturais do elo flexivel.

Em relacdo ao algoritmo de otimizagdo, utilizamos o Adam com uma taxa de
aprendizado inicial de 1.107, devido a sua eficiéncia em problemas ndo lineares. Durante o
treinamento, foi adotada a politica de taxa de aprendizado OneCycleLR, que consiste em
variar a taxa de aprendizado em um unico ciclo de treinamento. Inicialmente, ocorre um
aumento gradual da taxa de aprendizado até um valor maximo, em seguida, a taxa ¢ reduzida
progressivamente até valores pequenos. Esta foi a politica de taxa de aprendizado que
forneceu os melhores resultados, ela foi configurada com uma taxa méxima de aprendizagem

de 0,01 e um niimero total de passos de 5001.

O PINN também possui uma funcdo de early stopping, a fim de interromper o
treinamento antes do final do nimero de passos, caso ndo ocorra uma evolugao significativa,
assim conservando recursos e permitindo que modelos sejam obtidos em menos tempo. No
caso, foi utilizado um tamanho de lote de 4001, tolerAncia de convergéncia de 1.107,
paciéncia de early stopping de 100 (com interrupg¢ao apos 20 verificagdes consecutivas sem
melhoria) e um clipping de gradiente de 1,0. Por fim, o PINN utilizou a combinacio de 9

conjuntos de dados para o seu treinamento e um décimo conjunto para a sua validagdo,
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assegurando que os resultados obtidos possuam maior confiabilidade e capacidade de

generalizagdo.

3.5.3 Rede Neural de Fourier

A rede neural de Fourier (FNN) foi utilizada como um método de aprendizado de
maquina auxiliar no processamento dos dados do péndulo flexivel e nos primeiros testes do
manipulador flexivel serial. Ao contrario das redes feedforward tradicionais, que utilizam
funcdes de ativacdo convencionais, como ReLU ou Tanh, as FNNs empregam fun¢des
harmoénicas periddicas como parte de suas ativagdes ou como features adicionais na entrada

da rede.

N —At
x(t) = Y (ansin(annt) + bncos(annt))e g (16)

n=1

A FNN foi implementada conforme a Equagdo 16, visando identificar os coeficientes
“a” e “b”, além da frequéncia “f” e do fator de decaimento da série de Fourier “A”. O
coeficiente “N” ¢ o parametro que define o ntiimero de termos da série de Fourier, assim,
podemos ajustar a aproximagdo baseado na complexidade do sinal original. No caso do
péndulo flexivel, utilizou-se N = 1, pois isso resultava em uma série mais simples e adequada

para a derivacao.

Essa configuracao permitiu que a rede aproximasse a deformagdao por fungdes
harmoénicas de senos e cossenos, filtrando ruidos de alta frequéncia, mantendo apenas os
componentes relevantes da dindmica. Outro beneficio da utilizacgdo da FNN foi a
possibilidade de calcular derivadas de primeira e segunda ordem com maior facilidade,

evitando a amplificagdo de ruidos tipica da diferenciagao numérica.

3.5.4 Validagao experimental

Para realizar uma avaliacdo experimental do modelo obtido, ele foi empregado no
controle do manipulador flexivel de elo unico. A esquematica da aplicagdo experimental ¢
ilustrada na Figura 16. O PINN utiliza o vetor do tempo (t) e a deformacao (st), multiplicadas
respectivamente pelos seus coeficientes (conforme visto na Eq. 15), como entradas para

treinar a rede neural. Em seguida, os pesos e os vieses aprendidos sdao utilizados para a
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reconstru¢do do modelo que foi utilizado para realizar o controle do sistema. Neste caso, o
método proposto ¢ implementado no prototipo a fim de avaliar como o método responde ao

elo flexivel e a sua eficacia na tarefa.

Figura 16 — [lustragdo esquematica para a aplicacdo experimental
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4 RESULTADOS

Nessa se¢do, serdo apresentados os resultados dos testes nos diferentes modelos
estudados, ela foi estruturada em duas partes. A primeira trata dos péndulos simulados,
incluindo o péndulo rigido e o péndulo flexivel. A segunda aborda os sistemas reais do
manipulador flexivel serial e manipulador 3RRR. Também foi realizada uma descricdo das

limitacdes e dificuldades encontradas na obtencgao dos resultados.

4.1 Péndulos simulados

Os péndulos simulados serviram de base para a validacdo e familiarizacdo inicial dos
métodos de aprendizado de maquina. Os resultados obtidos permitiram avaliar as diferengas
entre o comportamento de um sistema rigido e de um sistema flexivel, realidade mais proxima

do sistema experimental com elos flexiveis.

4.1.1 Péndulo rigido

Na simulacao do péndulo rigido, o elo foi modelado como um corpo indeformavel

preso a uma junta de revolugdo. As Figuras 17 e 18 ilustram os resultados obtidos.

Figura 17 — Evolugao da solu¢ao do PINN do péndulo rigido
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Figura 18 — Evolucdo da estimativa do amortecimento do PINN do péndulo rigido
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Conforme mostrado nas Figuras 17 e 18, percebe-se que a rede neural é capaz de
reconhecer padroes complexos, através do comportamento do sistema mecanico. Essa
primeira abordagem garante uma validagdo da viabilidade da estratégia empregada nesta etapa

da pesquisa e permitirda uma avaliacdo do impacto da flexibilidade no sistema.
4.1.2 Péndulo flexivel

Na simulagdo do péndulo flexivel, foi utilizado o recurso ViewFlex do MSC Adams,
que integra elementos finitos ao corpo multicorpos para representar deformacdes elasticas.
Este caso também utilizou a FNN para aproximar a deformacdo por uma série de Fourier,

observavel na Figura 19.
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Figura 19 — Medidas de deformacao e aproximagao pela rede neural de Fourier
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Analisando as Figuras 20 e 21, podemos notar que a funcdo de perda e todos os
coeficientes da série de Fourier convergiram de forma adequada, indicando que o treinamento

0CorITeu com sucesso e que a aproximacao obtida € precisa.
Figura 20 — Evolugdo da funcdo de perda da FNN
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Figura 21 — Evolucao dos pardmetros aprendidos pela FNN (a) Evolu¢ao do
coeficiente a (b) Evolugao do coeficiente b (c) Evolucao do coeficiente de decaimento (d)
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Ao observar a Figura 22, nota-se que a solu¢do obtida segue bem as medidas
observadas. No entanto, as Figuras 23 e 24 mostram que tanto o termo “k” quanto as fungdes
de perda ndao convergiram adequadamente. Com isso, através do principio da técnica de
aprendizado de maquina SINDy, busca-se avaliar as contribui¢des em que a flexibilidade
acarreta no sistema dindmico. Por isso, no modelo do manipulador flexivel serial,
utilizaram-se multiplos coeficientes com termos distintos, a fim de melhorar o processo de

treinamento de rede neural e melhorar a qualidade do modelo obtido.
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Figura 22 — Evolucao da solu¢dao do PINN do péndulo flexivel

Passo de Treinamento 0 Passo de Treinamento 10000
1.0 @ Observagdes 1.0 ® Observacdes
—— Solucédo PINN —— Solugéo PINN
0.5
0.0
_05 -
Passo de Treinamento 5000 Passo de Treinamento 15000
1.0 ® Observacdes 1.0 ® Observagdes
—— Solucdo PINN —— Solugéo PINN
0.5
0.0 1
0.5 4

Fonte: Autoria propria, 2025

Figura 23 — Evolucao da estimativa do termo “k” do PINN do péndulo flexivel
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Figura 24 — Evolucao das fungdes de perda do PINN do péndulo flexivel
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4.2 Manipuladores roboticos

Ap6s a validacdo inicial por meio das simulagdes de péndulos, passou-se a analise dos
manipuladores reais. Essa etapa serviu como o teste final da eficacia das redes neurais em

sistemas complexos e condi¢des experimentais.

4.2.1 Manipulador flexivel serial

O manipulador flexivel serial utilizou a ideia de parametros esparsos, inspirada no
método SINDy, para definir os termos k1, k2, k3 e k4 da Equacao 15, que foi empregada
como fungdo de perda fisica da rede neural. A saida deste PINN ¢ o dngulo 0 da extremidade
livte do manipulador, calculado pelas coordenadas x e y do efetuador, incluindo a
contribuicdo dos sistemas rigido e flexivel. Dez trajetorias foram coletadas do prototipo, a fim
de construir a base de treinamento ¢ validacdo. Nesse modelo, foram utilizados nove
conjuntos de dados experimentais para o treinamento da rede e um décimo conjunto, nao
incluido no processo de aprendizagem, foi reservado exclusivamente para a etapa de

validagao.
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Diferente do caso do péndulo flexivel, a inser¢do de multiplos coeficientes para a
obten¢do da contribuigdo do sinal do extensdmetro, o procedimento adotado apresenta boa
aderéncia ao conjunto de dados de validagdo, conforme pode ser observado na Figura 25. As
Figuras 26 e 27 indicam que tanto os coeficientes “k” quanto as fungdes de perda convergiram
adequadamente. Note que em cada coeficiente adotado, ha uma contribui¢do distinta, o que

destaca como a flexibilidade pode estar relacionada a fisica do sistema.

Figura 25 — Evolugao da solugdo do PINN do manipulador flexivel serial
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Figura 26 — Evolucao das estimativas dos termos “k” do PINN do manipulador

flexivel serial
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Figura 27 — Evolugado das funcdes de perda do PINN do manipulador flexivel serial
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Como ultima abordagem, foi realizada uma validagao experimental do modelo obtido,
as Figura 28 e 29 mostram a comparacdo teorica e experimental da metodologia proposta.
Note que neste caso, o sinal tedrico ¢ dito por “Real”, enquanto o sinal experimental ¢é

descrito como “PINN”.
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Figura 28 — Comparacdo entre as posi¢des reais € o controle do angulo medido

diretamente do manipulador do modelo do PINN
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Figura 29 — Comparacgao entre as posicoes reais € o controle do angulo calculado a

partir das posi¢des x e y da cdmera do modelo do PINN
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Conforme visto nas Figuras 28 e 29, a técnica do PINN apresenta um desempenho
positivo, na aplica¢ao experimental. Através da Figura 29 se observa oscilagdes, ocasionadas
pela camera, no periodo estacionario do elo, nao possuindo qualquer interferéncia no sinal de
medida. Portanto, vé-se que a abordagem adotada pode ser utilizada em aplicagdes praticas

em controle de sistemas flexiveis. Através da utilizagdio da metodologia empregada
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anteriormente, busca-se avaliar a aplicagdo das técnicas de aprendizagem no manipulador

paralelo 3RRR, conforme visto na secao abaixo.
4.2.2 Manipulador 3RRR

Para o manipulador 3RRR, utilizou-se uma rede neural do tipo feedforward, cuja
entrada € composta pelas trés posi¢des angulares dos motores e pelos sinais obtidos dos
extensometros instalados nos elos. A Figura 30 apresenta a comparagdo entre os dados reais
obtidos experimentalmente e os valores estimados pela rede neural para as variaveis x, y € o
do efetuador final. Observa-se que a rede proposta foi capaz de capturar, de maneira

satisfatoria, a dindmica nao linear do manipulador paralelo 3RRR com elos flexiveis.

Figura 30 — Comparacao entre as posicoes reais € estimadas pela rede neural
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A rede neural demonstrou bom desempenho na estimativa das componentes de
posicdo do manipulador, com destaque para as coordenadas X e y, cujas respostas
acompanharam de forma bem proxima os dados reais. As principais discrepancias ocorreram
nas fases de transicdo e amortecimento, o que era esperado, dada a complexidade das
oscilacdes resultantes da flexibilidade estrutural. Por outro lado, a varidvel angular apresentou
maior sensibilidade a erros, especialmente na resposta inicial, devido ao acoplamento entre a
orientag¢do ¢ as deformagoes dos elos, além da influéncia de ruidos nos sensores. Ainda assim,

a rede foi capaz de reproduzir coerentemente a tendéncia geral da resposta dinamica.

De modo geral, a arquitetura feedforward com multiplas camadas ocultas, combinada
com a minimizagao baseada no MSE e com o uso de fungdes de ativacdo ReLU, mostrou-se
eficaz no mapeamento ndo linear entre os sinais de entrada e a resposta do sistema. Os

resultados obtidos indicam que a rede neural desenvolvida possui potencial para modelar
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sistemas com significativa flexibilidade estrutural e acoplamento dindmico, como o

manipulador 3RRR.

Como forma de abordar experimentalmente o método proposto da rede neural
feedforward, também foi realizada uma abordagem similar ao de controle (para o manipulador
serial) utilizando o modelo obtido, conforme ilustrado na Figura 31. Nesse experimento, a fim
de avaliar a validagdo do técnica proposta, as posi¢des X, y € o angulo o estimados pelo

modelo NN foram comparados com os valores medidos pela camera.

Figura 31 — Comparagao entre as posi¢oes da cdmera e estimadas pela rede neural do
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Através da comparacdo, pode-se notar que o controle realizado conseguiu utilizar da
técnica de aprendizado de maquinas para estimar a dindmica do manipulador paralelo. Devido
a complexidade e graus de liberdade adicionais, em comparagdo ao serial, houve uma
discrepancia um pouco mais relevante. No entanto, o modelo proposto foi capaz de capturar
satisfatoriamente o comportamento do sistema mecanico, o que valida a estratégia proposta e

abre espaco para futuras discussdes de melhorias.
4.3 Limitacoes e desafios enfrentados

Durante o desenvolvimento da pesquisa, algumas limitacdes e desafios foram

identificados tanto na etapa experimental quanto na implementagdo computacional dos
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modelos de aprendizado de maquina. Os principais pontos enfrentados e os ajustes realizados

para contorna-los serdo descritos nesta se¢ao.

4.3.1 Limitacdes dos experimentos

Os experimentos realizados com o elo flexivel e com o manipulador 3RRR
apresentaram algumas restrigdes praticas devido a motivos de seguranca e limitagdes fisicas.
A principal delas foi em relagdo a limitacdo dos testes a pequenas amplitudes e baixas
velocidades, restringindo a variabilidade dos dados e reduzindo a capacidade da rede de ser
generalizada para condi¢gdes dinamicas mais complexas. Fora isso, o uso de extensometros em
elos flexiveis dos manipuladores apresentou ruido devido a sensibilidade do sensor, o que

dificultou a obtencao de dados limpos para treinamento e validagao das redes neurais.

4.3.2 Desafios na implementacao dos algoritmos de aprendizado de maquina

A implementagdao dos algoritmos de aprendizado de maquina foi a area em que
ocorreram os maiores desafios, a maioria deles foram atribuidos a complexidade desse tipo de
algoritmo. Existem muitos parametros para serem controlados e técnicas diferentes que
podem ser utilizadas, isso faz com que o ajuste das redes neurais seja dificil e muitas vezes
ndo intuitivo. Em alguns casos, a rede neural apresentou dificuldade em convergir de forma
estavel, colocando em duvida a confiabilidade do modelo obtido. O balanceamento das
fungdes de perda dos PINNs também foi complexo, pois pesos inadequados levavam a
sobreajuste ou perda da consisténcia fisica. No caso do péndulo flexivel, a fun¢do da perda
fisica precisou ter sua influéncia reduzida drasticamente para alcangar convergéncia,

indicando possiveis inadequac¢des no modelo.

Além destas dificuldades, esse tipo de algoritmo possui alto custo computacional,
devido a necessidade de calcular derivadas automadticas e termos da equacdo diferencial a
cada iteragdo. O que restringiu o nimero de experimentos de calibragdo de hiperparametros e
impds simplificagdes nas equacdes dinamicas utilizadas. Embora o Google Colab tenha
fornecido acesso a GPU, o tempo disponivel de execucdo e a memoria limitaram o nimero de
testes em larga escala. O calculo das derivadas da deformacgdo foi outro desafio, pois a
diferenciagdo direta dos sinais experimentais amplificava ruidos, comprometendo a qualidade

dos dados utilizados.
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4.3.3 Ajustes realizados

Em relagdo as restricoes de movimento do manipulador, o experimento para coleta de
dados foi repetido diversas vezes com diferentes trajetdrias a fim de estabelecer um banco de
dados seguro. Os sinais ruidosos foram filtrados, normalizados e aproximados por uma FNN,
possibilitando calcular derivadas de forma analitica e reduzir os efeitos do ruido. Sobre a
implementagdo dos algoritmos, utilizamos varias técnicas para melhorar a qualidade do
treinamento € modelos obtidos, como a politica de aprendizado One Cycle, que foi
implementada a fim de melhorar a convergéncia e acelerar o treinamento. Também foram
realizados diversos testes com os pesos das fungdes de perda com o objetivo de equilibrar a
influéncia dos dados ¢ da fisica no treinamento das PINNs. A valida¢do cruzada e
experimental foram outros métodos muito importantes para avaliar o desempenho dos

modelos em diferentes conjuntos de dados, garantir sua robustez e comprovar a sua eficécia.

Esses ajustes permitiram que os modelos de aprendizado de maquina atingissem
desempenho satisfatorio, mesmo diante das limitacdes experimentais e computacionais

enfrentadas.
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5 CONCLUSAO

O presente trabalho investigou a aplicagcdo de redes neurais artificiais e aprendizado de
maquina informado por fisica na modelagem de manipuladores com elos flexiveis, utilizando
tanto simulagdes virtuais quanto dados experimentais obtidos em bancada. A pesquisa
contemplou desde modelos simplificados até a aplicagdo em um sistema paralelo complexo,

permitindo avaliar a robustez e a aplicabilidade da abordagem.

5.1 Principais conclusdes

Baseado nos resultados obtidos, foi possivel concluir que os métodos de aprendizado
de maquina demonstraram alto potencial na modelagem de sistemas mecanicos com
dindmicas complexas, como os manipuladores roboticos. As redes implementadas foram
eficazes tanto em configuragdes simples, como os péndulos simulados, quanto em sistemas
reais de maior complexidade, como o manipulador paralelo 3RRR com elos flexiveis. Esse
desempenho, em conjunto com a validagdo experimental, reforca a robustez das técnicas
aplicadas e evidencia que o aprendizado de maquina pode capturar fendmenos nao lineares e
de acoplamento dindmico tipicos desses sistemas, tornando-se uma alternativa sélida aos

métodos analiticos tradicionais.

No caso especifico do manipulador de elo Unico, a estrutura baseada em PINN, com perda
fisica inspirada no método SINDy, possibilitou a identificacio bem-sucedida de parametros
fisicos a partir de dados reais, como amortecimento e flexibilidade. J& para o manipulador
3RRR completo, a rede feedforward mostrou um desempenho satisfatorio na estimativa das
variaveis de saida, reproduzindo o comportamento real mesmo sob ruido experimental. Esses
resultados consolidam o PIML como uma ferramenta promissora para a modelagem de
manipuladores robdticos flexiveis, estabelecendo uma base tedrica e experimental solida para

o avanco de futuras pesquisas em modelagem e controle em tempo real.

5.2 Aspectos positivos

Entre os principais aspectos positivos, temos a validacdo em diferentes sistemas, essa
metodologia se mostrou eficaz para aumentar gradativamente a complexidade dos modelos
estudados, permitindo um aprendizado e aplicagdo mais efetiva das técnicas utilizadas. A
integracdo entre dados e modelos fisicos do PIML ¢ outro ponto de destaque, pois ele foi

capaz de conciliar informagdes experimentais com equacdes diferenciais, levando a um
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aprendizado estavel, que nao depende de grandes bases de dados, e modelos mais consistentes
e simples. O uso das FNN também foi notavel por explorar um uso diferente das redes
neurais, além de sua aproximacdo ser muito eficaz na melhoria da representacao da
deformagdo, possibilitando calcular derivadas analiticas mais precisas, mitigando os efeitos
de ruidos experimentais. O uso da estratégia de identificacdo de parametros fisicos inspirada
no método SINDy foi muito benéfico ao trazer interpretabilidade ao modelo, aproximando-o
de representacdes fisicas. A sobreposicao entre as trajetorias experimentais e as predi¢des da
rede mostraram a aplicacdo pratica e uma validacdo da eficiéncia dos modelos obtidos,
consolidando o PIML como uma ferramenta promissora para aplicagdes em robdtica e

controle de sistemas flexiveis.

Finalmente, o projeto possibilitou o dominio de diversas ferramentas e areas como
MSC Adams, MATLAB, bibliotecas de aprendizado de maquina em Python e os

experimentos em bancada, ampliando a base interdisciplinar da pesquisa.

5.3 Reflexdes sobre limitagoes

Apesar dos resultados promissores, algumas limitacdes apontam para oportunidades
de aprimoramento em pesquisas futuras, a principal delas foi a exploragdo de arquiteturas
alternativas. A area de aprendizado de maquina € muito vasta e existem outros métodos a
serem explorados que podem oferecer vantagens adicionais no desempenho em relagdo as
redes neurais utilizadas. O ajuste dos parametros do algoritimo também € outro campo que
pode ser investigado com mais profundidade, a configuracdo atual ¢ satisfatéria, mas
certamente existem areas que podem ser aprimoradas a fim de melhorar o desempenho do
treinamento. A capacidade computacional foi outro fator limitante deste trabalho, uma vez
que o uso do Google Colab impds restricoes de tempo de execucdo e memoria. Essas
limitacdes impactaram o treinamento das redes neurais, pois apresentavam um custo
computacional elevado e restringiram o numero de testes realizados. Por fim, um nimero
maior de ensaios com trajetorias maiores e variadas enriqueceria a base de dados e

beneficiaria a generalizagdo dos modelos obtidos.

5.4 Perspectiva para melhorias e aplicagdes futuras

Durante a execucdo deste trabalho, ocorreram desafios tanto na etapa experimental

quanto na implementacdo computacional dos modelos de aprendizado de maquina. As
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limitacdes identificadas ao longo do processo influenciaram os resultados, mas também
trouxeram aprendizados importantes ¢ indicaram caminhos promissores para aprimoramentos

futuros da pesquisa na aplicacao de aprendizado de maquina em manipuladores robdticos.

Baseado nas reflexdes das limitagdes na seg¢do anterior, as perspectivas de
aprimoramento envolvem principalmente o avanco das arquiteturas de rede, a otimizac¢do dos
processos de treinamento e o fortalecimento da infraestrutura experimental e computacional.
A estudo de arquiteturas alternativas, como as redes convolucionais, redes recorrentes € 0 uso
de autoencoders, pode ampliar a capacidade de generalizagdo e reduzir o custo de
convergéncia das redes. Além disso, técnicas de ajuste automatico de hiperpardmetros e
métodos de regularizagdo mais sofisticados poderiam contribuir para um aprendizado mais

estavel e eficiente.

Outro ponto fundamental ¢ a ampliacdo da base experimental, que foi limitada por a
restrigdes praticas dos manipuladores reais. Deste modo, o uso de sensores com maior
precisdo e uma revisdo da implementagdo do modelo permitiria que ensaios com maior
amplitude e velocidade sejam executados com seguranca. Juntando isso com testes de
diferentes condicdes de carga proporcionaria uma representagdo mais ampla do
comportamento dindmico do sistema, favorecendo a robustez e a generalizacdo dos modelos
obtidos. Em paralelo, a adogdo de uma infraestrutura computacional mais potente, com o uso
de GPUs dedicadas ou servidores de alto desempenho, superaria as limitagdes impostas pelo
ambiente de desenvolvimento utilizado. Possibilitando explorar redes mais complexas,
realizar multiplos experimentos de forma simultanea, comparar o desempenho de outras

fungdes de ativagdo e perda.

Ademais, visamos aplicar o PINN na modelagem do manipulador paralelo 3RRR com
elos flexiveis completo e realizar o seu controle em tempo real, este era um dos objetivos
iniciais deste trabalho, porém, a complexidade da tarefa superou as expectativas e nao foi
possivel realizd-la no escopo do projeto. No entanto, com a base de conhecimento
estabelecida, essa tarefa se torna possivel e a sua realizagdo consolidaria o PIML como uma
ferramenta pratica e confidvel para o controle de sistemas roboticos flexiveis. Por fim,
espera-se que este trabalho contribua ndo apenas para a compreensdo dos manipuladores
flexiveis, mas também para o avango das aplicagdes de aprendizado de méaquina informado

por fisica na engenharia.
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APENDICE

A seguir estd o repositorio no Google Drive que reune os codigos desenvolvidos no
Google Colab utilizados para o processamento dos dados, constru¢do e comparagdo dos
modelos de aprendizado de méaquina empregados neste projeto. Também estdo incluidos os
conjuntos de dados utilizados, os modelos criados no software MSC Adams e os artigos e

projetos relacionados ao trabalho.

https://drive.google.com/drive/folders/1z2eHkfA- Npgmw8BEI9Xn6J724r4VKsz?usp=shari

ng


https://drive.google.com/drive/folders/1z2eHkfA-_Npqmw8BEI9Xn6JZ24r4VKsz?usp=sharing
https://drive.google.com/drive/folders/1z2eHkfA-_Npqmw8BEI9Xn6JZ24r4VKsz?usp=sharing
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