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RESUMO 

TANAKA, T. J. Modelagem de manipuladores robóticos paralelos com elos flexíveis 

baseada em redes neurais. 2025. Monografia (Trabalho de Conclusão de Curso) – Escola de 

Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2025. 

O aprendizado de máquina é uma área que vem ganhando muito destaque em tempos 

recentes, sendo que representa uma inovação relevante no campo da modelagem de sistemas 

dinâmicos ao ser capaz de utilizar dados empíricos para gerar modelos complexos. Este 

trabalho aplica essa abordagem à modelagem de um manipulador paralelo planar do tipo 

3RRR com elos flexíveis, integrando simulações numéricas, experimentos laboratoriais e 

técnicas avançadas de redes neurais. Inicialmente, utilizou-se o software MSC Adams para a 

geração de dados virtuais, considerando modelos rígidos e flexíveis, a fim de estabelecer uma 

base comparativa. Em seguida, foram realizadas medições experimentais com extensômetros 

e uma câmera, tanto em um elo único quanto no manipulador completo, assegurando a 

representatividade do ambiente real. A etapa de processamento e modelagem envolveu o 

emprego de Physics-Informed Neural Networks (PINNs), complementadas pela técnica 

SINDy e por redes feedforward, permitindo explorar diferentes estratégias de aprendizado. A 

validação evidenciou a capacidade das PINNs de reproduzir com elevada precisão os 

comportamentos observados, mesmo em condições experimentais ruidosas, superando 

abordagens exclusivamente baseadas em dados. Destaca-se a contribuição deste estudo para a 

consolidação do Physics-Informed Machine Learning (PIML) como ferramenta robusta para 

sistemas robóticos, ao mesmo tempo em que se reconhece a necessidade de avanços futuros 

na redução do custo computacional e na integração com estratégias de controle em tempo real. 

Palavras-chave: Manipulador paralelo, Elos flexíveis, Physics-Informed Machine Learning, 

PINNs, Modelagem dinâmica. 
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ABSTRACT 

TANAKA, T. J. Neural Network-Based Modeling of Parallel Robotic Manipulators with 

Flexible Links. 2025. Monograph (Undergraduate Thesis) – São Carlos School of 

Engineering, University of São Paulo, São Carlos, 2025. 

Machine learning  is an area that has been receiving a lot of emphasis lately, it represents a 

significant innovation in the modeling of dynamical systems by utilizing empirical data to 

generate complex models. This work applies the approach to the modeling of a planar 3RRR 

parallel manipulator with flexible links, integrating numerical simulations, laboratory 

experiments, and advanced neural network techniques. Initially, the MSC Adams software 

was employed to generate virtual datasets, considering both rigid and flexible models, thus 

establishing a comparative basis. Subsequently, experimental measurements were carried out 

with strain gauges and a camera, both on a single flexible link and on the complete 

manipulator, ensuring the representativeness of real-world conditions. The processing and 

modeling stage employed Physics-Informed Neural Networks (PINNs), complemented by the 

SINDy technique and feedforward neural networks, enabling the exploration of different 

learning strategies. Validation highlighted the ability of PINNs to reproduce observed 

behaviors with high accuracy, even under noisy experimental conditions, outperforming 

purely data-driven approaches. This study contributes to consolidating Physics-Informed 

Machine Learning (PIML) as a robust tool for robotic systems, while also recognizing the 

need for future developments in reducing computational cost and integrating the models into 

real-time control strategies. 

Keywords: Parallel manipulator, Flexible links, Physics-Informed Machine Learning, PINNs, 

Dynamic modeling. 
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1 INTRODUÇÃO 

 

O avanço da robótica vem demandando soluções cada vez mais eficientes do ponto de 

vista energético e dinâmico. Dentro desse contexto, os manipuladores paralelos se tornam 

uma opção interessante devido à sua eficiência de energia e capacidades dinâmicas altas. 

Entretanto, o controle desses sistemas é mais complexo devido ao fato deles utilizarem 

dinâmica acoplada e a falta de uma forma de medir a posição e orientação do efetuador final. 

Para resolver essas incertezas, técnicas de controle baseado em modelo, visão e 

processamento de imagem estão sendo usadas em manipuladores paralelos com elos rígidos, 

algo que já é bem estudado e documentado. Por outro lado, o mesmo não pode ser dito a 

respeito dos manipuladores com elos flexíveis devido à presença de motores menos potentes e 

elos mais flexíveis. Uma opção que pode elevar ainda mais a eficiência energética, todavia, 

isso também aumenta a complexidade do sistema  ao introduzir vibrações provenientes da 

flexibilidade dos componentes. 

É possível obter modelos dinâmicos de manipuladores paralelos com elos flexíveis 

através de diversos métodos, no entanto, a maioria deles fornecem modelos grandes e lentos, 

sendo inadequados para realizar controle. Visto isso, o aprendizado de máquina informado por 

física surge como uma alternativa interessante. Este é um novo método que utiliza dados em 

conjunto com conhecimentos prévios para formar modelos. Essa abordagem, diferentemente 

de redes neurais profundas, não necessita de um grande banco de dados para funcionar, pois 

utilizar conhecimentos prévios, como leis físicas e observações, cria restrições teóricas, vieses 

indutivas e observacionais. Esses fatores aumentam o desempenho do algoritmo de 

aprendizado, requerendo menos dados para gerar modelos menores e eficientes para controle. 

Este novo tipo de abordagem, apesar de ser relativamente nova, já foi utilizado em 

vários campos de pesquisa e funções relacionadas à automação e robótica. Apesar de todas as 

pesquisas e avanços, o aprendizado de máquina informado por física possui algumas 

limitações e continua sob desenvolvimento. Visto isso, este trabalho visa explorar o uso de 

redes neurais na modelagem de manipuladores complexos, sendo realizado em estágios. 

Primeiro, sistemas simples construídos  no software MSC Adams foram modelados, em 

seguida foi aplicado a rede neural informada por física em um sistema simplificado do 

manipulador e por fim, uma rede neural modelou o manipulador 3RRR completo. Esta 
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estratégia foi adotada para aumentar de forma gradual a complexidade das tarefas realizadas, 

permitindo uma compreensão progressiva dos métodos utilizados e assegurando que os 

conceitos fossem consolidados antes da aplicação no manipulador real. 

​ Com este trabalho, espera-se não apenas desenvolver um modelo funcional e eficiente 

para controle do manipulador 3RRR com elos flexíveis, mas também contribuir para o avanço 

do uso de técnicas de aprendizado de máquina baseadas em física no contexto da robótica e 

automação. Os resultados obtidos são promissores, e este trabalho representa um passo 

importante rumo à integração dessas metodologias em aplicações práticas de engenharia. 

1.1 Objetivos do trabalho 

O objetivo principal deste trabalho é a aplicação de técnicas de aprendizado de 

máquina, em especial redes neurais, na modelagem dinâmica de manipuladores com elos 

flexíveis, avaliando sua viabilidade como ferramenta de suporte ao desenvolvimento de 

estratégias de controle. 

A fim de atingir o objetivo principal, diversos objetivos específicos serão realizados, 

sendo eles: 

●​ Desenvolver modelos virtuais de pêndulos rígidos e flexíveis no software MSC 

Adams para geração de dados sintéticos.​

 

●​ Realizar experimentos com o manipulador serial e com o manipulador 3RRR 

completo, utilizando extensômetros, câmera e codificadores para coletar dados de 

treinamento dos algoritmos.​

 

●​ Implementar uma rede neurais do tipo PINN nos pêndulos simulados e no 

manipulador flexível, incorporando restrições físicas no processo de aprendizado. E 

uma do tipo feedforward no manipulador 3RRR.​

 

●​ Analisar a precisão, robustez e potencial de generalização dos modelos obtidos.​

 

●​ Identificar limitações e propor perspectivas para aplicação das técnicas em controle 

em tempo real. 
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Esses objetivos visam proporcionar um entendimento mais aprofundado das técnicas 

de aprendizado de máquina, avaliando sua viabilidade e investigando sua aplicação em 

sistemas dinâmicos, com vistas ao aprimoramento da eficiência e da efetividade desses 

sistemas. 
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2 REVISÃO BIBLIOGRÁFICA 

2.1 Técnicas de controles para manipuladores paralelos 

Os manipuladores robóticos se tornaram ferramentas muito importantes nos processos 

produtivos devido à sua eficiência e adaptabilidade em realizar diversas tarefas. No entanto, a 

indústria está em uma busca constante por melhorias nos processos produtivos, o que leva a 

avanços tecnológicos a fim de garantir maior precisão, velocidade, qualidade do produto e 

redução no tempo de produção. Dentro dos manipuladores robóticos, existem duas categorias 

principais: manipuladores seriais, que apresentam elos conectados em cadeia simples, e 

manipuladores paralelos, nos quais o efetuador final é sustentado por múltiplas cadeias 

cinemáticas. A escolha e controle dos manipuladores paralelos será descrita nesta seção. 

2.1.1 Manipuladores paralelos com elos flexíveis 

Devido às múltiplas cadeias cinemáticas, que funcionam de forma independente e 

simultânea, os manipuladores paralelos possuem eficiência de energia e capacidades 

dinâmicas maiores em relação a manipuladores em série (Ruiz et al., 2018; Carvalho Fontes 

et al., 2021). Uma forma de elevar ainda mais a eficiência energética e o desempenho 

dinâmico é diminuindo a inércia dos componentes com elos finos e flexíveis. No entanto, a 

modelagem deste tipo de sistema é um grande desafio, pois esses dois métodos aumentam a 

complexidade da dinâmica do sistema.  

A dinâmica acoplada dos manipuladores paralelos e a falta de uma forma de medir a 

posição e orientação do efetuador final diretamente dificulta o seu controle (Paccot; Andreff; 

Martinet, 2009). Já os elos flexíveis introduzem vibrações e deformações, que também 

contribuem para uma maior complexidade no controle e modelagem, por isso, esse campo dos 

manipuladores paralelos com elos flexíveis é pouco explorado (Morlock et al., 2021; Morlock 

et al., 2022). 

2.1.2 Estratégias de controle alternativas 

Uma estratégia utilizada para lidar com os problemas citados é o controle baseado em 

modelo, que apresenta elevado desempenho em manipuladores paralelos com alta 

não-linearidade, parâmetros com variação no tempo e incertezas (Saied et al., 2018; Bennehar 

et al., 2017). Além disso, técnicas baseadas em visão e processamento de imagem estão sendo 
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usadas para resolver essas incertezas (Mohan et al., 2017; Colombo; Carvalho Fontes; Silva, 

2019). Também é possível obter modelos dinâmicos de manipuladores paralelos com elos 

flexíveis através dos métodos dos elementos finitos (Pham et al., 2022; Colombo; Silva, 

2022), Lagrangiano e multicorpos flexíveis (Lipinski et al., 2019), modelo de restrição de 

feixe dinâmico (Ling; Yuan; Zhang, 2024), entre outros. No entanto, esses métodos fornecem 

modelos grandes e lentos, sendo inadequados para realizar controle (Silva et al., 2010).  

Uma alternativa que já foi implementada com sucesso em manipuladores paralelos de elos 

rígidos e robôs paralelos acionados por cabos foi o controle sem modelo (Wang et al., 2020; 

Wang et al., 2021). Mas no caso dos elos flexíveis, é necessário compensar a deformação por 

meio de uma estimativa dela (Bengoa et al., 2017; Bastos, 2022), esse cálculo torna o controle 

mais complexo e lento. Em razão disso, buscamos o aprendizado de máquina como uma 

possível alternativa para esse tipo de modelagem. 

2.2 Manipuladores robóticos estudados 

O sistema principal estudado neste trabalho foi o manipulador 3RRR paralelo com 

elos flexíveis, também foi utilizada uma versão simplificada do manipulador com apenas um 

elo. Ambos os sistemas e seus históricos serão expostos nesta seção. 

2.2.1 Manipulador 3RRR com elos flexíveis 

O manipulador robótico planar foi construído no Laboratório de Dinâmica da Escola 

de Engenharia de São Carlos (EESC-USP) em 2014 e financiado pela FAPESP 2014/01809-0 

para a avaliação numérica e experimental de vários níveis de redundância cinemática em 

manipuladores robóticos de cinemática paralela. Em uma pesquisa posterior, um sistema de 

servovisão foi utilizado para a implementação de um controle no espaço da tarefa (Colombo; 

Carvalho Fontes; Silva, 2019). Em outro estudo, os elos foram modificados para serem 

flexíveis com extensômetros medindo sua deformação em função de realizar um controle 

híbrido livre de modelo (Silva et al., 2024). 

O protótipo era originalmente do tipo 3PRRR, no qual a letra P simboliza uma junta 

prismática, enquanto R denota uma junta de revolução. As letras sublinhadas são referentes às 

juntas ativas, enquanto as não sublinhadas estão relacionadas às juntas passivas. Neste 

trabalho, as juntas passivas são bloqueadas, ou seja, não há movimento translacional dos 

motores, fazendo com o que o sistema mecânico seja simplificado para um manipulador 
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paralelo 3RRR. Assim, o manipulador possui 3 cadeias cinemáticas, cada uma com 3 juntas 

de revolução, sendo a primeira ativa acionada por um motor, a segunda livre entre dois elos 

flexíveis e a última no efetuador final, onde todos os braços convergem.  

Observando a Figura 1, é possível identificar parte da instrumentação empregada no 

sistema. No que se refere às referências adotadas, utilizaram-se as coordenadas cartesianas e a 

orientação do efetuador final para a determinar sua posição e ângulo, bem como os ângulos 

correspondentes a cada motor. A instrumentação e o sistema de coordenadas utilizados serão 

descritos de forma detalhada na seção de metodologia deste trabalho. 

Figura 1 – Elos cinemáticos do 3RRR com elos flexíveis 

 

Fonte: Adaptado de SILVA et al., 2024 

2.2.2 Manipulador flexível serial 

A fim de explorar o uso de PINNs, um tipo de rede neural mais complexo, 

determinamos que o uso de um sistema mais simples seria a forma mais efetiva de verificar a 

viabilidade da estratégia. Assim, uma das cadeias cinemáticas do manipulador 3RRR foi 

desconectada, restando apenas um único elo flexível com uma junta rotativa ativa e o 

efetuador em sua extremidade, conforme pode ser visto nas Figuras 2 (a) e 2 (b). 
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Figura 2 – Manipulador flexível de elo único (a) Vista lateral do manipulador (b) Vista 
superior do manipulador 

 

(a)​ ​ ​ ​       ​      (b) 

Fonte: Autoria própria, 2025 

2.3 Aprendizado de máquina  

O avanço recente de técnicas de aprendizado de máquina permitiu sua aplicação em 

uma ampla gama de problemas de engenharia. Dentre os diversos métodos disponíveis, esse 

trabalho foca nas redes neurais artificiais e as informadas por física, que serão descritas nesta 

seção. 

2.3.1 Aplicações na engenharia 

Apesar do aprendizado de máquina ser um método relativamente novo, seu uso tem se 

expandido rapidamente em diversas áreas de engenharia. Uma delas é a engenharia de 

materiais, especialmente na Indústria 4.0, permitindo prever propriedades mecânicas e reduzir 

custos experimentais. Redes neurais artificiais foram empregadas com sucesso em estudos 

sobre o uso de modelos para teste e manufatura de materiais compósitos (Esmaeili; Rizvi, 

2023). Em outro estudo, o aprendizado de máquina guiado por física, em inglês 

physics-guided machine learning (PGML), foi efetivo na garantia de estabilidade em 

processos de usinagem ao criar modelos que evitam o shatter e que reduzem a necessidade de 

medições reais ao utilizar modelos teóricos (Greis et al., 2023). O PGML também se mostrou 
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capaz de realizar simulações de dinâmica estrutural, onde, comparado com métodos 

puramente baseados em dados, ele apresentou uma capacidade de generalização melhor e um 

uso menor de dados. Já em relação à modelagem baseada em física, seu modelo exibiu uma 

eficiência computacional melhor e a capacidade de identificar física parcialmente 

desconhecida (Yu; Yao; Liu, 2020). 

Uma das áreas que o aprendizado de máquina já é amplamente utilizado é a dos 

sistemas térmicos e fluídicos, isso se deve ao fato dos fenômenos complexos existentes neste 

campo. O método SINDy foi empregado para prever o conforto térmico em cabines de 

veículos elétricos, estimando variáveis como temperatura equivalente homogênea e 

temperatura média radiante com alta precisão e baixo tempo de processamento, superando 

limitações dos modelos puramente baseados em física (Warey; Kaushik; Han, 2022). Redes 

neurais recorrentes e profundas também foram utilizadas na previsão de campos térmicos e 

em um estudo que aplicou isso na manufatura aditiva a laser, os modelos gerados atingiram 

alta concordância com simulações numéricas, permitindo otimizar estratégias de deposição e 

reduzir tensões residuais (Ren et al., 2020). O aprendizado de máquina também já foi 

utilizado em experimentos dinâmicos, automatizando a seleção de parâmetros em testes de 

vibração induzida por vórtices e reduzindo drasticamente o número de ensaios necessários 

para mapear respostas não lineares em sistemas fluido-estruturais (Fan et al., 2019). Este 

último estudo também cita que a metodologia utilizada também poderia ser aplicada na 

mecânica dos sólidos e em processos de manufatura, algo que já foi comprovado nos 

exemplos anteriores. 

Por fim, o aprendizado de máquina foi utilizado em sistemas dinâmicos, a área de foco 

deste trabalho. Uma extensão do método SINDy com parâmetros de controle foi capaz de 

identificar as equações diferenciais que regem sistemas com parâmetros de controle ajustáveis 

diretamente dos dados experimentais. Essa metodologia tem sido aplicada com sucesso em 

sistemas que exibem formação de padrões e bifurcações, permitindo reconstruir dependências 

não lineares e prever comportamentos complexos mesmo em presença de ruído experimental 

(Nicolaou et al., 2023). A abordagem do PIML também foi explorada na previsão 

probabilística de respostas em sistemas dinâmicos, combinando modelos físicos com modelos 

de aprendizado capazes de representar e corrigir discrepâncias entre previsões teóricas e 

observações experimentais. Essa integração permite que o sistema opere com entradas 

aleatórias não estacionárias e reduza o custo computacional de análises de confiabilidade, ao 
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mesmo tempo que apresenta resultados robustos em aplicações como vigas submetidas a 

carregamentos dinâmicos e escoamentos hipersônicos sobre painéis flexíveis (Subramanian; 

Mahadevan, 2023).  

Em todas as aplicações apresentadas, o aprendizado de máquina baseado em física 

apresentou resultados confiáveis, onde o método produziu modelos eficientes que previram 

corretamente os sistemas estudados. Isso demonstra a adaptabilidade e efetividade do método 

em diversos campos de estudo, reforçando a proposta deste trabalho de utilizá-lo para a 

modelagem de um manipulador robótico paralelo com elos flexíveis. 

2.3.2 Redes neurais artificiais 

​ As redes neurais artificiais são modelos de inteligência artificial inspirados no 

funcionamento do cérebro humano, que usam nós interconectados em camadas para aprender 

e processar dados, de forma similar que os neurônios reais são utilizados. Elas funcionam 

aprendendo padrões complexos através do treinamento com exemplos, ajustando pesos e 

vieses nas conexões entre os neurônios artificiais para gerar previsões ou decisões precisas. 

Isso permite que elas realizem o aprendizado profundo, que é capaz de aprender padrões 

complexos diretamente de grandes volumes de dados (Schmidhuber, 2015), foram estes 

motivos que levaram à sua escolha para a tarefa de modelagem do trabalho. 

A rede neural utilizada foi do tipo feedforward com múltiplas camadas ocultas, projetada para 

mapear relações não lineares entre variáveis de entrada e estados dinâmicos do sistema. A 

arquitetura proposta é composta pelos estágios de entrada, camadas ocultas e saída. O nome 

desse tipo de rede se dá pelo fato de que informações são passadas e transformadas de nós de 

uma camada anterior para os nós de uma próxima camada (Choi et al., 2020).  

 

2.3.3 Aprendizado de máquina informado por física 

O aprendizado de máquina informado por física, em inglês physics-informed machine 

learning (PIML), é um novo método que utiliza dados em conjunto com conhecimentos 

prévios para formar modelos. Essa abordagem, diferentemente de redes neurais profundas, 

não necessita de um grande banco de dados para funcionar, pois utilizar conhecimentos 

prévios, como leis físicas e observações, cria restrições teóricas, vieses indutivas e 

observacionais. Esses fatores aumentam o desempenho do algoritmo de aprendizado, 
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requerendo menos dados para gerar modelos menores e eficientes para controle (Karniadakis 

et al., 2021). Outra vantagem desse método é a sua capacidade de integrar perfeitamente 

dados e equações diferenciais parciais com informações físicas completas ou incompletas 

(Willard et al., 2022). 

O método SINDy é um tipo de PIML que utiliza regressão esparsa para obter sistemas 

dinâmicos não lineares de dados de medição. O seu funcionamento é baseado na análise de 

variáveis de estado, onde o algoritmo examina a variação dessas no tempo e, a partir disso, 

infere equações governantes do sistema, criando modelos inerentemente interpretáveis e 

generalizáveis. Esse pacote também nos permite configurar o algoritmo, deste modo, 

podemos ajustar as variáveis de estado segundo as informações adicionais que obtemos pela 

observação do manipulador e leis físicas (De Silva et al., 2020). 

Neste trabalho, utilizamos o modelo rígido do manipulador como base e buscamos 

representar a flexibilidade através de termos adicionais. Com isso, utilizou-se a estratégia do 

SINDy como inspiração na forma de identificar a contribuição da flexibilidade na dinâmica 

do sistema e obter os componentes que a representam na rede neural informada por física do 

manipulador flexível serial. 

 

2.4 Softwares utilizados 

2.4.1 MSC Adams 

Os modelos virtuais são uma forma rápida de realizar simulações e experimentos sem 

desgastar ou desenvolver equipamentos físicos, facilitando a obtenção de dados do sistema. 

Sendo assim, modelos foram criados no software Adams MSC. A escolha deste software se 

deve ao fato dele possuir a função de simular corpos flexíveis, sendo um dos mais utilizados 

no estudo da dinâmica e distribuição de forças de sistemas mecânicos. Ele é empregado tanto 

na indústria quanto na pesquisa, como em um estudo similar, no qual a simulação de um 

manipulador planar paralelo 3RRR foi realizado no mesmo (Varedi-Koulaei; Daniali; 

Farajtabar, 2016). 

2.4.2 Google Colab 
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O Google Colab é uma plataforma baseada em nuvem que suporta a execução de 

programas em Python. Sua característica principal é a disponibilização de recursos 

computacionais sem a necessidade de uma infraestrutura local, o que facilita a implementação 

e o treinamento de redes neurais. Além disso, ele possui integração com bibliotecas de 

aprendizado de máquina como TensorFlow e PyTorch, fora possibilitar a organização e 

compartilhamento de experimentos em ambiente colaborativo. Devido a esses fatos, o Google 

Colab foi escolhido como a plataforma para se desenvolver a programação deste trabalho. 

2.4.3 MATLAB 

O MATLAB é uma plataforma de programação e cálculo numérico amplamente 

empregada em engenharia e pesquisa científica. Suas ferramentas incluem bibliotecas para 

análise de sinais, controle, otimização e simulação de sistemas dinâmicos. Nesta pesquisa, o 

MATLAB foi aplicado na aquisição dos dados de treinamento e posteriormente na 

implementação do controle dos manipuladores robóticos a partir dos modelos obtidos. 
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3 METODOLOGIA 

3.1 Modelos virtuais no software MSC Adams  

O software MSC Adams foi utilizado como ferramenta de simulação dinâmica para 

gerar dados sintéticos para a validação inicial das técnicas de PIML aplicadas neste trabalho. 

Foram modelados dois sistemas, ambos representando a dinâmica de um elo único: um 

pêndulo rígido, como referência clássica, e um pêndulo flexível, capaz de reproduzir os 

efeitos de deformação estrutural. 

3.1.1 Pêndulo rígido 

O modelo do pêndulo rígido foi implementado no MSC Adams como um corpo 

indeformável, preso a uma extremidade por uma junta de revolução, como pode ser visto na 

Figura 3. O elo é composto por uma barra com dimensões de 1000 mm de comprimento,  50 

mm de largura e espessura de 3 mm com massa de 1,17 kg. A fim de simular a resistência do 

ar e atrito, uma mola de torção com amortecimento de 6 N.mm.s/grau foi colocada no pivô do 

pêndulo, vista na Figura 4. Os dados registrados foram as coordenadas cartesianas da 

extremidade livre da barra. 

Figura 3 – Vista completa do pêndulo rígido 

 

Fonte: Autoria própria, 2025 
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Figura 4 – Vista focada no ponto de fixação do pêndulo rígido 

 

Fonte: Autoria própria, 2025 

 

3.1.2 Pêndulo flexível 

O modelo do pêndulo flexível foi criado a partir da mesma geometria, mas utilizando 

a ferramenta ViewFlex do MSC Adams, que permite a representação de deformações 

estruturais por meio da integração de elementos finitos ao corpo rígido. 

As propriedades mecânicas adotadas para o elo foram: módulo de elasticidade (E) de 

7000 N/mm² e coeficiente de Poisson (ν) de 0,29. Esses valores foram escolhidos para 

permitir que a flexibilidade tenha um efeito significativo e seja visualizada durante o 

movimento do pêndulo. A Figura 5 apresenta a barra durante o movimento, evidenciando sua 

deformação e a distribuição dos esforços internos. 
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Figura 5 – Pêndulo flexível durante o movimento oscilatório 

 

Fonte: Autoria própria, 2025 

 

3.2 Instrumentação do manipulador paralelo 3RRR com elos flexíveis 

Esta subseção apresenta a instrumentação e os equipamentos utilizados para a 

comunicação do manipulador paralelo 3RRR com elos flexíveis. A Figura 6 mostra a 

instrumentação utilizada para a construção do experimento. 

Figura 6 – Instrumentação empregada para o experimento 

 

Fonte: Autoria própria, 2025 
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3.2.1 Componentes 

●​ Motores de atuação: 3 motores Maxon EC60 plano sem escovas com 100 W de 

potência de entrega e uma corrente nominal de 2.3 A, acoplados com redutores 

planetários GP52 C de redução 3,5:1, fornecendo uma rotação nominal de 1200 rpm e 

torque nominal de 0,82 N.m. Cada motor possui um controlador Maxon EPOS2 50/5 

com uma fonte de energia de até 50 Vdc e uma corrente de 5 A. Vale notar que os 

motores possuem codificadores, que medem a posição angular dos atuadores.​

 

●​ Elo flexível: fabricado em aço mola AISI 6150. Cada elo apresenta um comprimento 

de 318,5 mm, largura de 3,5 mm e espessura de 0,7 mm. Devido ao baixo peso e 

espessura dos elos, eles são flexíveis e a deformação neles gera vibrações no sistema.​

 

●​ Extensômetros: do tipo HBM 350-E, instalados em configuração de ponte completa na 

base do elo, utilizados para medir deformações associadas à flexibilidade. O sinal 

adquirido passa por amplificadores de sinal HBM HB40 CLIPX antes do envio à placa 

de controle.​

 

●​ Placa de controle dSPACE 1103: interface central de aquisição e processamento, 

responsável pela leitura dos sensores, execução das leis de controle e envio dos sinais 

de comando ao motor.​

 

●​ Câmera oCam-5CRO-U: utilizada para coletar imagens em tempo real do manipulador 

paralelo, requer uma interface USB 3.0 e apresenta uma resolução de 640x480 pixels, 

com uma taxa de quadros máxima de 60 quadros por segundo.​

 

●​ Computador 1: responsável pelo processamento das imagens obtidas pela câmera para 

a estimativa da posição do efetuador.​

 

●​ Computador 2: dedicado ao desenvolvimento do controle em MATLAB/Simulink.​
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3.2.2 Esquema de conexões e funcionamento 

Cada cadeia cinemática do manipulador é acionada por um motor instalado em sua 

junta ativa, controlado pela placa dSPACE 1103. A comunicação entre os controladores EPOS 

e o dSPACE 1103 é conduzida via protocolo CAN a uma taxa de transmissão de 250 kbit/s, e 

a Ethernet é usada para estabelecer a comunicação entre a placa e o computador. 

A câmera é fixada acima do protótipo a fim de obter imagens de todo o espaço de 

trabalho. Como mencionado, as imagens, capturadas pela câmera, são processadas pelo 

Computador 1 para determinar a posição do efetuador final. Note que, o manipulador paralelo 

é considerado plano, uma vez que o movimento é restrito ao longo das direções x e y, 

enquanto z = 0. Após as imagens serem capturadas pela câmera, o algoritmo de 

processamento de imagens (Geronel et al. (2024) é usado para estimar a posição linear  e 

angular do efetuador final.  

Devido ao baixo peso dos elos e consequentemente a alta flexibilidade, características 

como vibração indesejada pode ser ocasionada no protótipo, gerada principalmente pela 

deformação dos elos. Assim, os extensômetros são fixados em cada elo, visando coletar em 

tempo real a deformação de cada elo flexível. O sinal coletado é enviado para amplificadores 

de sinal HBM HB40 CLIPX , e então enviados a dSPACE 1103. Portanto, torna-se importante 

observar que todo o sinal medido é coletado através da câmera e dos extensômetros, 

codificados e levados para a dSPACE, conforme pode ser observado no esquema da Figura 7. 
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Figura 7 – Esquema de comunicação do 3RRR com elos flexíveis 

 

Fonte: Adaptado de SILVA et al., 2024 

A dSPACE envia os dados adquiridos ao computador 2 que projeta a estratégia de 

controle, realizada em Matlab/SIMULINK, a fim de gerar um sinal de controle apropriado. 

Este sinal é então encaminhado para os controladores dos motores, através da  dSPACE, 

realizando o movimento do protótipo 3RRR. 

 

3.3 Modelos físicos e cinemáticos  

A formulação de modelos físicos e cinemáticos serve como referência para a análise 

dos sistemas estudados e para a incorporação das leis da dinâmica nas redes neurais. Nesta 

seção, são apresentados os modelos e sistemas de referência do pêndulo rígido, manipulador 

flexível serial e manipulador paralelo 3RRR. 
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3.3.1 Pêndulo Rígido 

O primeiro modelo, ilustrado na Figura 8, descreve o movimento de um pêndulo 

simples subamortecido rígido. 

Figura 8 – Representação do pêndulo físico 

 

Fonte: (Bonventi Júnior; Aranha, 2015) 

 

Utilizando as seguintes equações baseadas em um estudo sobre oscilações amortecidas 

(Bonventi Júnior; Aranha, 2015): 

  𝑑2θ

𝑑𝑡2 + 𝑏
𝐼

𝑝

𝑑θ
𝑑𝑡 + 𝑚𝑔𝑙

𝐼
𝑝

θ = 0 (1) 

A Equação 1 é uma equação diferencial ordinária de segunda ordem que descreve o 

movimento de um pêndulo amortecido, onde θ é a posição angular do pêndulo, b é o 

coeficiente de amortecimento angular, l é a distância do pivô ao centro de massa, g é a 

aceleração da gravidade, m é a massa total da barra e Ip​ é o momento de inércia. 

 θ(𝑡) = 𝐴𝑒
−𝑏𝑡/2𝐼

𝑝𝑐𝑜𝑠(ω𝑡 + ϕ) (2) 

A solução da Equação 1, apresentada na Equação 2, é análoga ao caso do sistema 

massa-mola amortecido. Como o movimento se inicia com amplitude A máxima, temos que a 

fase ϕ = 0. Por fim, a frequência natural de oscilação harmônica do pêndulo é definida pela 
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Equação 3, a frequência de oscilação com amortecimento é dada na Equação 4 e o momento 

de inércia da barra é relacionado pela Equação 5. 

 ω
0

= 𝑚𝑔𝑙/𝐼
𝑝 (3) 

 

 ω = ω
0

2 − 𝑏/2𝐼
𝑝( )2 (4) 

 

 𝐼
𝑝

= 𝑚 (ℎ2 + 𝑤2)/12 + 𝑙2[ ] (5) 

 

3.3.2 Manipulador flexível serial 

O segundo modelo cobre o manipulador de único elo, sendo uma simplificação do 

3RRR original. Este modelo é ilustrado na Figura 9, apresentando as características 

geométricas do sistema. 

Figura 9 – Características geométricas do manipulador flexível serial 

 

Fonte: Autoria própria, 2025 
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A posição angular da junta ativa é definida por θ, e a distância do centro da junta ativa 

até o efetuador final é L, o comprimento do elo. Vale notar que este θ representa o ângulo da 

extremidade do manipulador, diferente do θ dos codificadores. Dada a simplicidade do 

manipulador, as posições x e y do efetuador final podem ser descritas pelas seguintes 

relações: 

 𝑥 = 𝐿 𝑐𝑜𝑠 θ( )    (6) 

 

 𝑦 = 𝐿 𝑠𝑖𝑛 θ( )    (7) 

Também podemos realizar  cinemática inversa para resolver θ e determinar as restrições do 

sistema: 

 𝑡𝑎𝑛(θ) = 𝑦
𝑥

   (8) 

 

 𝑥2 + 𝑦2 = 𝐿
   (9) 

 

As Equações 6, 7 e 8 descrevem o comportamento rígido de um manipulador 1, e a Equação 9 

representa sua restrição.  A partir disso, técnicas de aprendizado de máquinas são utilizadas, 

com o objetivo de através de uma equação simplificada de um elo rígido, obter as equações de 

um elo com estrutura flexível. Assim, permite-se utilizar o aprendizado de máquina como 

uma extensão da modelagem matemática do sistema mecânico, possibilitando compensar 

efeitos de incertezas, defeitos de produção e erros operacionais. 

3.3.3 Manipulador 3RRR 

Conforme foi descrito na seção 2.2.1 , o manipulador paralelo 3RRR com elos 

flexíveis é composto por três cadeias cinemáticas idênticas, cada uma formada por uma junta 
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de revolução ativa e duas passivas, interligando a base fixa ao efetuador final. Podemos 

observar as referências do sistema na Figura 10. 

Figura 10 – Características geométricas do 3RRR 

 

Fonte: Adaptado de Ruiz et al, 2018 

​ Os ângulos θ indicam a posição angular das juntas ativas com os motores e a posição 

do efetuador final é dada pelas coordenadas x e y, enquanto a sua orientação se dá pelo ângulo 

. Como aplicamos apenas uma rede neural do tipo feedforward neste modelo, não foi α

necessário criar um modelo matemático do manipulador 3RRR completo. Por este motivo, 

utilizaremos apenas o sistema de referências na modelagem para o aprendizado de máquina. 

3.4 Coleta e manipulação de dados 

A coleta e processamento de dados é uma etapa essencial para assegurar a qualidade 

das informações utilizadas no treinamento das redes neurais e nos métodos complementares 

de aprendizado, fazendo com que os modelos obtidos sejam consistentes. O processo incluiu 

tanto a exportação de dados sintéticos gerados em simulação, quanto o tratamento de dados 

experimentais coletados em bancada. 

3.4.1 Coleta e exportação de dados virtuais 

Os modelos do pêndulo rígido e flexível, desenvolvidos no MSC Adams, foram 

configurados para registrar as posições cartesianas x e y da extremidade livre em ambos os 

pêndulos e, no caso do flexível, a deformação no nódulo com maior valor medido. A duração 

das simulações foi de 10 segundos, realizadas com taxa de amostragem de 10 e 1000 

medições por segundo, sendo a maior quantidade de medições empregada para aumentar a 

precisão dos dados. Os dados obtidos foram exportados para uma tabela no Google Sheets, 
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onde as coordenadas x e y foram utilizadas para calcular a posição angular θ do pêndulo por 

meio da função ATAN. Para utilizar esses dados no Google Colab, foi empregada a biblioteca 

Pandas, que permite inserir os dados de uma coluna da tabela em uma variável no Python. 

Através dessa primeira abordagem, foi possível compreender o funcionamento e  as 

características de um elo rígido e flexível, permitindo a investigação experimental do sistema 

proposto. 

3.4.2 Coleta de dados reais 

Para a coleta dos dados reais, foi utilizado a estratégia sem modelo, através da 

utilização de um controlador de modos deslizantes. Através dessa estratégia, é possível 

combinar as imagens do efetuador final e a deformação medida nos extensômetros, a fim de 

estabelecer a posição angular e linear do efetuador. Assim, o controle desenvolvido é dividido 

em dois laços: o laço da câmera, que estima a posição do efetuador final, e o laço de 

deformação, responsável por compensar a flexibilidade do protótipo. A câmera, fixada acima 

do protótipo, é utilizada para coletar as imagens em tempo real, e através da utilização do 

algoritmo de processamento de imagens, a posição do efetuador final é estimada. Neste caso, 

o controlador de modos deslizantes é empregado devido a sua robustez e simplicidade. 

Baseado no erro entre os estados desejado e real, calculados em cada iteração, a lei de 

controle correspondente pode ser calculada. Em seguida, baseada no erro entre as 

deformações obtidas pelos extensômetros e o valor do sinal desejado, uma lei de controle é 

estabelecida. 

Assim, diferentes trajetórias, definidas como entrada do tipo degrau, são utilizadas 

para a coleta dos dados. O experimento é executado diversas vezes, a fim de estabelecer um 

conjunto de dados. Com isso, o banco de dados foi dividido entre treinamento, teste e 

validação. Os dados treinados e testados não serão os mesmos utilizados para a validação. 

Vale notar que o procedimento descrito foi utilizado tanto no manipulador 3RRR completo 

quanto em sua versão simplificada. Temos na Figura 11 um exemplo de conjunto de dados, 

com as entradas do sistema em azul e as saídas em vermelho. 

 

Figura 11 – Amostra do conjunto de dados utilizados no treinamento e teste da rede neural 
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Fonte: Autoria própria, 2025 

Observe que foram necessários três sensores diferentes para adquirir os sinais: uma 

câmera, codificadores e extensômetros. Isso aumenta a complexidade do protótipo, emprega 

diferentes premissas de manipuladores paralelos com enlaces rígidos e exige um tempo de 

processamento de custo superior. As redes neurais artificiais são projetadas visando 

reconhecer padrões complexos de sistemas mecânicos com uma quantidade menor de dados e, 

possivelmente, como uma forma de retirar a necessidade de sensores adicionais.  

3.4.3 Tratamento de dados 

O tratamento dos dados buscou filtrar ruídos, eliminar inconsistências e preparar os 

sinais para a etapa de treinamento das redes neurais. Com exceção do caso do pêndulo rígido, 

todos os conjuntos de dados foram normalizados utilizando o valor máximo das entradas e 

saídas. Eles também passaram por um processo de centralização, removendo partes iniciais e 

finais dos dados que possuíam inconsistências que poderiam afetar o processo de 

aprendizado. É importante destacar que os valores da deformação gerados pelo MSC Adams 

são absolutos e apenas positivos, assim, como forma de assimilar a condição real, utiliza-se 

uma função que altera o sinal da deformação a cada meio período, simétrico em torno de zero. 

Observa-se na Figura 12, a comparação do sinal original em laranja com o simétrico em azul. 
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Figura 12 – Simetrização do sinal de deformação em torno e zero 

 

Fonte: Autoria própria, 2025 

Adotamos outras estratégias no processamento das medidas de deformação, como a 

análise do espectro de frequência, que auxiliou na identificação dos componentes principais 

do sinal e na separação de vibrações relevantes de ruídos de alta frequência, levando a escolha 

de filtros digitais. Incluindo o Bandstop de segunda ordem (Notch), os filtros passa-alta e 

passa-baixa de segunda ordem para remover ruídos e preservar o comportamento dinâmico 

essencial do sistema. Outro método utilizado foi uma aproximação por série de Fourier 

através de um Rede Neural de Fourier, a fim de filtrar pontos discrepantes e facilitar a 

diferenciação, o funcionamento desta rede neural será explicada em detalhe na seção 3.5.4. 

Após a aproximação ser encontrada, a função autograd.grad da biblioteca Pytorch foi aplicada 

para obter a primeira e segunda derivada da deformação, que foram utilizadas na investigação 

do treinamento dos modelos. A derivação dos sinais de deformação pode ser observada na 

Figura 13. 
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Figura 13 – Aproximação por série de Fourier com a primeira e segunda derivada

 

Fonte: Autoria própria, 2025 

No entanto, as estratégias discutidas de filtragem e aproximação foram empregadas 

apenas no pêndulo flexível e o modelo do manipulador serial com 1 conjunto de dados de 

treinamento. Para a análise do manipulador 3RRR completo e do modelo final do 

manipulador serial, os dados reais utilizados não possuíam ruído significativo e não 

necessitavam de um filtro ou da aproximação pela série de Fourier, assim, as medidas das 

deformações foram apenas normalizadas e centralizadas. Fora isso, estes últimos casos 

utilizam múltiplos conjuntos de dados no seu treinamento, fazendo com que o tempo de 

processamento aumente significativamente, necessitando a simplificação descrita. 

Esse conjunto de procedimentos assegurou que os dados utilizados nas etapas de 

treinamento fossem consistentes, livres de distorções e representassem com fidelidade a 

dinâmica real e simulada do sistema, aumentando a confiabilidade dos modelos obtidos. 

3.5 Modelos de aprendizado de máquina  

​ Esta seção visa explicar como os métodos de aprendizado de máquina foram utilizados 

na construção de modelos capazes de representar a dinâmica de sistemas rígidos e flexíveis, 

assim como as configurações utilizadas neles. 
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3.5.1 Rede neural feedforward 

A rede neural responsável por modelar o manipulador 3RRR é do tipo feedforward 

com múltiplas camadas ocultas, projetada para mapear relações não lineares entre variáveis de 

entrada e estados dinâmicos do sistema. Ela é composta por três estágios: entrada, camadas 

ocultas e saída. As entradas correspondem às posições angulares dos motores (θ1, θ2, θ3) e 

aos sinais dos extensômetros (s1, s2, s3), enquanto a saída representa a posição da 

extremidade do efetuador (x, y, α). Com relação às camadas ocultas, há neurônios que irão 

processar informações e aprender uma tarefa específica. A rede neural recebe uma entrada u e 

a propaga pelas camadas ocultas l, aplicando os pesos W e viés b, conforme a Equação 10.  

                               ​ (10) 𝑢𝑙+1 = 𝑊𝑙𝑢𝑙 + 𝑏𝑙,  𝑝𝑎𝑟𝑎 𝑙 = 1,  ...,  𝐿 − 1

Em seguida, um operador de soma realiza a soma dos sinais ponderados de cada 

sinapse l do neurônio. A função de ativação é então aplicada a cada camada oculta para 

limitar a saída do neurônio a um determinado intervalo e melhorar as respostas não lineares 

do algoritmo (Garpeilli et al., 2023). 

                                             ​ (11) 𝑅𝑒𝐿𝑈(𝑢) = 𝑚𝑎𝑥(0,  𝑢)

A função ReLU (Rectified Linear Unit) é definida na Equação 11, que retorna u se u 

for maior do que zero, caso contrário, retorna zero. O procedimento utilizado na etapa de 

aprendizado minimiza a função objetivo para modificar os valores dos pesos e vieses a fim de 

alcançar a minimização desejada. Para realizar esse processo, uma função de perda deve ser 

definida para comparar a saída da rede com o valor esperado. No nosso caso, o erro é 

estimado pela técnica do Erro Quadrático Médio (MSE), conforme a Equação 11.  

                                                  ​ (12) 𝐿 = 1
𝑁

𝑖=1

𝑁

∑ (𝑦
𝑖

+ 𝑦
𝑖
)2

As variáveis y, e ŷi representam os valores reais e estimados pela rede neural, 

respectivamente, e N é o comprimento dos vetores. O processo de aprendizado é 

implementado usando o método do gradiente. A função de perda (Equação 12) é usada para 

propagar os erros da camada de saída até a primeira camada de cada neurônio, as derivadas 

parciais do MSE são calculadas com relação aos pesos e vieses correspondentes. Com base 

nas derivadas, calcula-se o gradiente da função de perda, e o uso do método da descida do 

gradiente permite a atualização dos valores de pesos e vieses para realizar o aprendizado da 
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rede neural. Para a implementação, os dados foram divididos em dois conjuntos: o primeiro 

relativo aos dados para treino e  teste, enquanto o segundo para validação. O primeiro grupo 

foi ainda dividido em  90% dos dados para treino e 10% para teste. A Figura 14 ilustra a rede 

neural adotada para o trabalho.  

Figura 14 – Esquemático da Rede Neural do tipo feedforward utilizada 

 

Fonte: Autoria própria, 2025 

3.5.2 Rede neural informada por física 

Nos casos do manipulador flexível serial, pêndulo rígido e pêndulo flexível, 

utilizamos redes neurais informadas por física, do inglês physics-informed neural networks 

(PINNs), para a modelagem de sua dinâmica, seu funcionamento pode ser observado na 

Figura 15. 

Figura 15 – Esquemático do PINN utilizado 

 

Fonte: Autoria própria, 2025 
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A Figura 15 destaca a principal diferença entre um PINN e uma rede neural comum: o 

fato do PINN possuir duas funções de perda. Enquanto uma rede neural considera apenas a 

força de perda, obtida através dos dados medidos, o PINN inclui uma função de perda 

adicional, relativo à física do sistema. Isso auxilia na robustez da rede neural, especialmente 

em condições com baixo número de dados coletados. Um dos parâmetros de ajuste na 

arquitetura da rede neural é a relação de peso no treinamento entre essas duas funções de 

perda. 

A configuração final do PINN foi obtida após múltiplos testes com os diferentes 

sistemas modelados. Ela buscou permitir que a rede aprendesse tanto as relações empíricas 

quanto às restrições impostas pela física enquanto equilibra precisão, robustez a ruídos 

experimentais e viabilidade computacional. 

A arquitetura do PINN também é do tipo feedforward, possuindo 5 camadas ocultas, 

40 neurônios por camada oculta e função de ativação da tangente hiperbólica (tanh), escolhida 

por ser adequada para sinais oscilatórios, facilitando a representação de dinâmicas periódicas.  

No entanto, a função de perda se diferencia da rede neural anterior por possuir dois 

componentes, a perda física (loss1) e a perda de dados (loss2). Associadas, respectivamente, à 

satisfação da equação diferencial parcial que descreve o sistema e  a diferença entre as saídas 

preditas pela rede e as observações experimentais. O peso das perdas foi configurado como 

igual, conforme demonstrado na Equação 13. 

                                      ​ (13) 𝑙𝑜𝑠𝑠 = 10−1. 𝑙𝑜𝑠𝑠1 + 10−1. 𝑙𝑜𝑠𝑠2

​ Foram utilizadas duas variáveis de entrada para o PINN, o tempo (tphysics) e a 

deformação medida no extensômetro (st), a saída foi definida como uma única variável 

dependente, o ângulo de deslocamento (θ). A deformação foi escolhida como uma das 

entradas do PINN, visto que ela está relacionada à flexibilidade e é possivelmente uma forma 

de representá-la. A sua derivada foi utilizada apenas no caso do pêndulo flexível, pois 

presumimos que ela representaria a flexibilidade de forma mais efetiva. Porém, não 

observamos mudanças significativas com o valor original da deformação, por este motivo que 

a derivação não foi utilizada no modelo do manipulador flexível serial. 

Além dos pesos e vieses da rede, foram definidos parâmetros físicos “k” com a função de 

capturar a flexibilidade do sistema. Eles representam constantes na formulação da equação 
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física e sua identificação foi uma parte integral do processo de aprendizado, em linha com o 

conceito do método SINDy abordado anteriormente. As Equações 14 e 15 representam a 

física utilizada no caso do pêndulo flexível e manipulador serial flexível, respectivamente.  

  𝑑2θ

𝑑𝑡2 + 𝑏
𝐼

𝑝

𝑑θ
𝑑𝑡 + 𝑚𝑔𝑙

𝐼
𝑝

θ + 𝑘 𝑑𝑠𝑡
𝑑𝑡 = 0 (14) 

 

  𝑑2θ

𝑑𝑡2 + 𝑘1. 𝑠𝑡 + 𝑘2. 𝑠𝑡2 + 𝑘3. 𝑠𝑒𝑛(𝑠𝑡) + 𝑘4𝑠𝑡 = 0 (15) 

​ A escolha dos múltiplos parâmetros físicos “k” foi realizada visando modelar 

componentes distintos da dinâmica do sistema. Enquanto k1 descreve um termo de 

crescimento linear no tempo, k2 e k4 introduzem um comportamento polinomial e 

exponencial, representando a não linearidade do sistema. Por fim, o termo k3 modela um 

comportamento oscilatório, relacionado aos modos vibratórios naturais do elo flexível. 

Em relação ao algoritmo de otimização, utilizamos o Adam com uma taxa de 

aprendizado inicial de 1.10-3, devido à sua eficiência em problemas não lineares. Durante o 

treinamento, foi adotada a política de taxa de aprendizado OneCycleLR, que consiste em 

variar a taxa de aprendizado em um único ciclo de treinamento. Inicialmente, ocorre um 

aumento gradual da taxa de aprendizado até um valor máximo, em seguida, a taxa é reduzida 

progressivamente até valores pequenos. Esta foi a política de taxa de aprendizado que 

forneceu os melhores resultados, ela foi configurada com uma taxa máxima de aprendizagem 

de 0,01 e um número total de passos de 5001. 

​ O PINN também possui uma função de  early stopping, a fim de interromper o 

treinamento antes do final do número de passos, caso não ocorra uma evolução significativa, 

assim conservando recursos e permitindo que modelos sejam obtidos em menos tempo. No 

caso, foi utilizado um tamanho de lote de 4001, tolerância de convergência de 1.10-5, 

paciência de early stopping de 100 (com interrupção após 20 verificações consecutivas sem 

melhoria) e um clipping de gradiente de 1,0. Por fim, o PINN utilizou a combinação de 9 

conjuntos de dados para o seu treinamento e um décimo conjunto para a sua validação, 
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assegurando que os resultados obtidos possuam maior confiabilidade e capacidade de 

generalização. 

3.5.3 Rede Neural de Fourier  

​ A rede neural de Fourier (FNN) foi utilizada como um método de aprendizado de 

máquina auxiliar no processamento dos dados do pêndulo flexível e nos primeiros testes do 

manipulador flexível serial. Ao contrário das redes feedforward tradicionais, que utilizam 

funções de ativação convencionais, como ReLU ou Tanh, as FNNs empregam funções 

harmônicas periódicas como parte de suas ativações ou como features adicionais na entrada 

da rede. 

  𝑥(𝑡) =
𝑛=1

𝑁

∑ (𝑎
𝑛
𝑠𝑖𝑛(2π𝑓

𝑛
𝑡) + 𝑏

𝑛
𝑐𝑜𝑠(2π𝑓

𝑛
𝑡))𝑒

−λ
𝑛
𝑡

(16) 

A FNN foi implementada conforme a Equação 16, visando identificar os coeficientes 

“a” e “b”, além da frequência “f’’ e do fator de decaimento da série de Fourier “λ”. O 

coeficiente “N” é o parâmetro que define o número de termos da série de Fourier, assim, 

podemos ajustar a aproximação baseado na complexidade do sinal original. No caso do 

pêndulo flexível, utilizou-se N = 1, pois isso resultava em uma série mais simples e adequada 

para a derivação. 

 Essa configuração permitiu que a rede aproximasse a deformação por funções 

harmônicas de senos e cossenos, filtrando ruídos de alta frequência, mantendo apenas os 

componentes relevantes da dinâmica. Outro benefício da utilização da FNN foi a 

possibilidade de calcular derivadas de primeira e segunda ordem com maior facilidade, 

evitando a amplificação de ruídos típica da diferenciação numérica. 

3.5.4 Validação experimental 

Para realizar uma avaliação experimental do modelo obtido, ele foi empregado no 

controle do manipulador flexível de elo único. A esquemática da aplicação experimental é 

ilustrada na Figura 16. O PINN utiliza o vetor do tempo (t) e a deformação (st), multiplicadas 

respectivamente pelos seus coeficientes (conforme visto na Eq. 15), como entradas para 

treinar a rede neural. Em seguida, os pesos e os vieses aprendidos são utilizados para a 
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reconstrução do modelo que foi utilizado para realizar o controle do sistema. Neste caso, o 

método proposto é implementado no protótipo a fim de avaliar como o método responde ao 

elo flexível e a sua eficácia na tarefa. 

Figura 16 – Ilustração esquemática para a aplicação experimental 

 

Fonte: Autoria própria, 2025 
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4 RESULTADOS 

Nessa seção, serão apresentados os resultados dos testes nos diferentes modelos 

estudados, ela foi estruturada em duas partes. A primeira trata dos pêndulos simulados, 

incluindo o pêndulo rígido e o pêndulo flexível. A segunda aborda os sistemas reais do  

manipulador flexível serial e manipulador 3RRR. Também foi realizada uma descrição das 

limitações e dificuldades encontradas na obtenção dos resultados. 

4.1 Pêndulos simulados 

Os pêndulos simulados serviram de base para a validação e familiarização  inicial dos 

métodos de aprendizado de máquina. Os resultados obtidos permitiram avaliar as diferenças 

entre o comportamento de um sistema rígido e de um sistema flexível, realidade mais próxima 

do sistema experimental com elos flexíveis. 

4.1.1 Pêndulo rígido 

Na simulação do pêndulo rígido, o elo foi modelado como um corpo indeformável 

preso a uma junta de revolução. As Figuras 17 e 18 ilustram os resultados obtidos. 

Figura 17 – Evolução da solução do PINN do pêndulo rígido 

 

Fonte: Autoria própria, 2025 
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Figura 18 – Evolução da estimativa do amortecimento do PINN do pêndulo rígido 

 

Fonte: Autoria própria, 2025 

Conforme mostrado nas Figuras 17 e 18, percebe-se que a rede neural é capaz de 

reconhecer padrões complexos, através do comportamento do sistema mecânico. Essa 

primeira abordagem garante uma validação da viabilidade da estratégia empregada nesta etapa 

da pesquisa e permitirá uma avaliação do impacto da flexibilidade no sistema. 

4.1.2 Pêndulo flexível 

Na simulação do pêndulo flexível, foi utilizado o recurso ViewFlex do MSC Adams, 

que integra elementos finitos ao corpo multicorpos para representar deformações elásticas. 

Este caso também utilizou a FNN para aproximar a deformação por uma série de Fourier, 

observável na Figura 19. 
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Figura 19 – Medidas de deformação e aproximação pela rede neural de Fourier 

 

Fonte: Autoria própria, 2025 

Analisando as Figuras 20 e 21, podemos notar que a função de perda e todos os 

coeficientes da série de Fourier convergiram de forma adequada, indicando que o treinamento 

ocorreu com sucesso e que a aproximação obtida é precisa. 

Figura 20 – Evolução da função de perda da FNN 

 

Fonte: Autoria própria, 2025 
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Figura 21 – Evolução dos parâmetros aprendidos pela FNN (a) Evolução do 

coeficiente a (b) Evolução do coeficiente b (c) Evolução do coeficiente de decaimento (d) 

Evolução da frequência 

 

       (a)​​ ​ ​  ​ ​   (b) 

 

       (c)​​ ​ ​  ​ ​   (d) 

Fonte: Autoria própria, 2025 

Ao observar a Figura 22, nota-se que a solução obtida segue bem as medidas 

observadas. No entanto, as Figuras 23 e 24 mostram que tanto o termo “k” quanto as funções 

de perda não convergiram adequadamente. Com isso, através do princípio da técnica de 

aprendizado de máquina SINDy, busca-se avaliar as contribuições em que a flexibilidade 

acarreta no sistema dinâmico. Por isso, no modelo do manipulador flexível serial, 

utilizaram-se múltiplos coeficientes com termos distintos, a fim de melhorar o processo de 

treinamento de rede neural e melhorar a qualidade do modelo obtido. 
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Figura 22 – Evolução da solução do PINN do pêndulo flexível 

 

Fonte: Autoria própria, 2025 

Figura 23 – Evolução da estimativa do termo “k” do PINN do pêndulo flexível 

 

Fonte: Autoria própria, 2025 
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Figura 24 – Evolução das funções de perda do PINN do pêndulo flexível 

 

Fonte: Autoria própria, 2025 

4.2 Manipuladores robóticos 

Após a validação inicial por meio das simulações de pêndulos, passou-se à análise dos 

manipuladores reais. Essa etapa serviu como o teste final  da eficácia das redes neurais em 

sistemas complexos e condições experimentais. 

4.2.1 Manipulador flexível serial  

O manipulador flexível serial utilizou a ideia de parâmetros esparsos, inspirada no 

método SINDy, para definir os termos k1​, k2​, k3​ e k4 da Equação 15, que foi empregada 

como função de perda física da rede neural. A saída deste PINN é o ângulo θ da extremidade 

livre do manipulador, calculado pelas coordenadas x e y do efetuador, incluindo a 

contribuição dos sistemas rígido e flexível. Dez trajetórias foram coletadas do protótipo, a fim 

de construir a base de treinamento e validação. Nesse modelo, foram utilizados nove 

conjuntos de dados experimentais para o treinamento da rede e um décimo conjunto, não 

incluído no processo de aprendizagem, foi reservado exclusivamente para a etapa de 

validação. 
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Diferente do caso do pêndulo flexível, a inserção de múltiplos coeficientes para a 

obtenção da contribuição do sinal do extensômetro, o procedimento adotado apresenta boa 

aderência ao conjunto de dados de validação, conforme pode ser observado na Figura 25. As 

Figuras 26 e 27 indicam que tanto os coeficientes “k”​ quanto às funções de perda convergiram 

adequadamente. Note que em cada coeficiente adotado, há uma contribuição distinta, o que 

destaca como a flexibilidade pode estar relacionada à física do sistema. 

Figura 25 – Evolução da solução do PINN do manipulador flexível serial 

 

 Fonte: Autoria própria, 2025 
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Figura 26 – Evolução das estimativas dos termos “k” do PINN do manipulador 

flexível serial 

 

Fonte: Autoria própria, 2025 

Figura 27 – Evolução das funções de perda do PINN do manipulador flexível serial 

 

Fonte: Autoria própria, 2025 

Como última abordagem, foi realizada uma validação experimental do modelo obtido, 

as Figura 28 e 29 mostram a comparação teórica e experimental da metodologia proposta. 

Note que neste caso, o sinal teórico é dito por “Real”, enquanto o sinal experimental é 

descrito como “PINN”. 
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Figura 28 – Comparação entre as posições reais e o controle do ângulo medido 

diretamente do manipulador do modelo do PINN 

 

Fonte: Autoria própria, 2025 

Figura 29 – Comparação entre as posições reais e o controle do ângulo calculado a 

partir das posições x e y da câmera do modelo do PINN 

 

Fonte: Autoria própria, 2025 

Conforme visto nas Figuras 28 e 29, a técnica do PINN apresenta um desempenho 

positivo, na aplicação experimental. Através da Figura 29 se observa oscilações, ocasionadas 

pela câmera, no período estacionário do elo, não possuindo qualquer interferência no sinal de 

medida. Portanto, vê-se que a abordagem adotada pode ser utilizada em aplicações práticas 

em controle de sistemas flexíveis. Através da utilização da metodologia empregada 
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anteriormente, busca-se avaliar a aplicação das técnicas de aprendizagem no manipulador 

paralelo 3RRR, conforme visto na seção abaixo. 

4.2.2 Manipulador 3RRR  

Para o manipulador 3RRR, utilizou-se uma rede neural do tipo feedforward, cuja 

entrada é composta pelas três posições angulares dos motores e pelos sinais obtidos dos 

extensômetros instalados nos elos. A Figura 30 apresenta a comparação entre os dados reais 

obtidos experimentalmente e os valores estimados pela rede neural para as variáveis x, y e α 

do efetuador final. Observa-se que a rede proposta foi capaz de capturar, de maneira 

satisfatória, a dinâmica não linear do manipulador paralelo 3RRR com elos flexíveis. 

Figura 30 – Comparação entre as posições reais e estimadas pela rede neural 

 

Fonte: Autoria própria, 2025 

A rede neural demonstrou bom desempenho na estimativa das componentes de 

posição do manipulador, com destaque para as coordenadas x e y, cujas respostas 

acompanharam de forma bem próxima os dados reais. As principais discrepâncias ocorreram 

nas fases de transição e amortecimento, o que era esperado, dada a complexidade das 

oscilações resultantes da flexibilidade estrutural. Por outro lado, a variável angular apresentou 

maior sensibilidade a erros, especialmente na resposta inicial, devido ao acoplamento entre a 

orientação e as deformações dos elos, além da influência de ruídos nos sensores. Ainda assim, 

a rede foi capaz de reproduzir coerentemente a tendência geral da resposta dinâmica. 

De modo geral, a arquitetura feedforward com múltiplas camadas ocultas, combinada 

com a minimização baseada no MSE e com o uso de funções de ativação ReLU, mostrou-se 

eficaz no mapeamento não linear entre os sinais de entrada e a resposta do sistema. Os 

resultados obtidos indicam que a rede neural desenvolvida possui potencial para modelar 
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sistemas com significativa flexibilidade estrutural e acoplamento dinâmico, como o 

manipulador 3RRR. 

Como forma de abordar experimentalmente o método proposto da rede neural 

feedforward, também foi realizada uma abordagem similar ao de controle (para o manipulador 

serial) utilizando o modelo obtido, conforme ilustrado na Figura 31. Nesse experimento, a fim 

de avaliar a validação do técnica proposta, as posições x, y e o ângulo α estimados pelo 

modelo NN foram comparados com os valores medidos pela câmera. 

Figura 31 – Comparação entre as posições da câmera e estimadas pela rede neural do 

3RRR 

 

Fonte: Autoria própria, 2025 

Através da comparação, pode-se notar que o controle realizado conseguiu utilizar da 

técnica de aprendizado de máquinas para estimar a dinâmica do manipulador paralelo. Devido 

à complexidade e graus de liberdade adicionais, em comparação ao serial, houve uma 

discrepância um pouco mais relevante. No entanto, o modelo proposto foi capaz de capturar 

satisfatoriamente o comportamento do sistema mecânico, o que valida a estratégia proposta e 

abre espaço para futuras discussões de melhorias. 

4.3 Limitações e desafios enfrentados 

Durante o desenvolvimento da pesquisa, algumas limitações e desafios foram 

identificados tanto na etapa experimental quanto na implementação computacional dos 
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modelos de aprendizado de máquina. Os principais pontos enfrentados e os ajustes realizados 

para contorná-los serão descritos nesta seção. 

4.3.1 Limitações dos experimentos 

Os experimentos realizados com o elo flexível e com o manipulador 3RRR 

apresentaram algumas restrições práticas devido a motivos de segurança e limitações físicas. 

A principal delas foi em relação à limitação dos testes a pequenas amplitudes e baixas 

velocidades, restringindo a variabilidade dos dados e reduzindo a capacidade da rede de ser 

generalizada para condições dinâmicas mais complexas. Fora isso, o uso de extensômetros em 

elos flexíveis dos manipuladores apresentou ruído devido à sensibilidade do sensor, o que 

dificultou a obtenção de dados limpos para treinamento e validação das redes neurais. 

4.3.2 Desafios na implementação dos algoritmos de aprendizado de máquina 

A implementação dos algoritmos de aprendizado de máquina foi a área em que 

ocorreram os maiores desafios, a maioria deles foram atribuídos à complexidade desse tipo de 

algoritmo. Existem muitos parâmetros para serem controlados e técnicas diferentes que 

podem ser utilizadas, isso faz com que o ajuste das redes neurais seja difícil e muitas vezes 

não intuitivo. Em alguns casos, a rede neural apresentou dificuldade em convergir de forma 

estável, colocando em dúvida a confiabilidade do modelo obtido. O balanceamento das 

funções de perda dos PINNs também foi complexo, pois pesos inadequados levavam a 

sobreajuste ou perda da consistência física. No caso do pêndulo flexível, a função da perda 

física precisou ter sua influência reduzida drasticamente para alcançar convergência, 

indicando possíveis inadequações no modelo. 

Além destas dificuldades, esse tipo de algoritmo possui alto custo computacional, 

devido à necessidade de calcular derivadas automáticas e termos da equação diferencial a 

cada iteração. O que restringiu o número de experimentos de calibração de hiperparâmetros e 

impôs simplificações nas equações dinâmicas utilizadas. Embora o Google Colab tenha 

fornecido acesso a GPU, o tempo disponível de execução e a memória limitaram o número de 

testes em larga escala. O cálculo das derivadas da deformação foi outro desafio, pois a 

diferenciação direta dos sinais experimentais amplificava ruídos, comprometendo a qualidade 

dos dados utilizados. 
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4.3.3 Ajustes realizados 

​ Em relação às restrições de movimento do manipulador, o experimento para coleta de 

dados foi repetido diversas vezes com diferentes trajetórias a fim de estabelecer um banco de 

dados seguro. Os sinais ruidosos foram filtrados, normalizados e aproximados por uma FNN, 

possibilitando calcular derivadas de forma analítica e reduzir os efeitos do ruído. Sobre a 

implementação dos algoritmos, utilizamos várias técnicas para melhorar a qualidade do 

treinamento e modelos obtidos, como a política de aprendizado One Cycle, que foi 

implementada a fim de melhorar a convergência e acelerar o treinamento. Também foram 

realizados diversos testes com os pesos das funções de perda com o objetivo de equilibrar a 

influência dos dados e da física no treinamento das PINNs. A validação cruzada e 

experimental foram outros métodos muito importantes para avaliar o desempenho dos 

modelos em diferentes conjuntos de dados, garantir sua robustez e comprovar a sua eficácia. 

Esses ajustes permitiram que os modelos de aprendizado de máquina atingissem 

desempenho satisfatório, mesmo diante das limitações experimentais e computacionais 

enfrentadas. 
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5 CONCLUSÃO 

O presente trabalho investigou a aplicação de redes neurais artificiais e aprendizado de 

máquina informado por física na modelagem de manipuladores com elos flexíveis, utilizando 

tanto simulações virtuais quanto dados experimentais obtidos em bancada. A pesquisa 

contemplou desde modelos simplificados até a aplicação em um sistema paralelo complexo, 

permitindo avaliar a robustez e a aplicabilidade da abordagem.  

5.1 Principais conclusões 

Baseado nos resultados obtidos, foi possível concluir que os métodos de aprendizado 

de máquina demonstraram alto potencial na modelagem de sistemas mecânicos com 

dinâmicas complexas, como os manipuladores robóticos. As redes implementadas foram 

eficazes tanto em configurações simples, como os pêndulos simulados, quanto em sistemas 

reais de maior complexidade, como o manipulador paralelo 3RRR com elos flexíveis. Esse 

desempenho, em conjunto com a validação experimental, reforça a robustez das técnicas 

aplicadas e evidencia que o aprendizado de máquina pode capturar fenômenos não lineares e 

de acoplamento dinâmico típicos desses sistemas, tornando-se uma alternativa sólida aos 

métodos analíticos tradicionais. 

No caso específico do manipulador de elo único, a estrutura baseada em PINN, com perda 

física inspirada no método SINDy, possibilitou a identificação bem-sucedida de parâmetros 

físicos a partir de dados reais, como amortecimento e flexibilidade. Já para o manipulador 

3RRR completo, a rede feedforward mostrou um desempenho satisfatório na estimativa das 

variáveis de saída, reproduzindo o comportamento real mesmo sob ruído experimental. Esses 

resultados consolidam o PIML como uma ferramenta promissora para a modelagem de 

manipuladores robóticos flexíveis, estabelecendo uma base teórica e experimental sólida para 

o avanço de futuras pesquisas em modelagem e controle em tempo real. 

5.2 Aspectos positivos 

​ Entre os principais aspectos positivos, temos a validação em diferentes sistemas, essa 

metodologia se mostrou eficaz para aumentar gradativamente a complexidade dos modelos 

estudados, permitindo um aprendizado e aplicação mais efetiva das técnicas utilizadas. A 

integração entre dados e modelos físicos do PIML é outro ponto de destaque, pois ele foi 

capaz de conciliar informações experimentais com equações diferenciais, levando a um 



73 

aprendizado estável, que não depende de grandes bases de dados, e modelos mais consistentes 

e simples. O uso das FNN também foi notável por explorar um uso diferente das redes 

neurais, além de sua aproximação ser muito eficaz na melhoria da representação da 

deformação, possibilitando  calcular derivadas analíticas mais precisas, mitigando os efeitos 

de ruídos experimentais. O uso da estratégia de identificação de parâmetros físicos inspirada 

no método SINDy foi muito benéfico ao trazer interpretabilidade ao modelo, aproximando-o 

de representações físicas. A sobreposição entre as trajetórias experimentais e as predições da 

rede mostraram a aplicação prática e uma validação da eficiência dos modelos obtidos, 

consolidando o PIML como uma ferramenta promissora para aplicações em robótica e 

controle de sistemas flexíveis. 

Finalmente, o projeto possibilitou o domínio de diversas ferramentas e áreas como 

MSC Adams, MATLAB, bibliotecas de aprendizado de máquina em Python e os 

experimentos em bancada, ampliando a base interdisciplinar da pesquisa.​

 

5.3 Reflexões sobre limitações 

Apesar dos resultados promissores, algumas limitações apontam para oportunidades 

de aprimoramento em pesquisas futuras, a principal delas foi a exploração de arquiteturas 

alternativas. A área de aprendizado de máquina é muito vasta e existem outros métodos a 

serem explorados que podem oferecer vantagens adicionais no desempenho em relação às 

redes neurais utilizadas. O ajuste dos parâmetros do algorítimo também é outro campo que 

pode ser investigado com mais profundidade, a configuração atual é satisfatória, mas 

certamente existem áreas que podem ser aprimoradas a fim de melhorar o desempenho do 

treinamento. A capacidade computacional foi outro fator limitante deste trabalho, uma vez 

que o uso do Google Colab impôs restrições de tempo de execução e memória. Essas 

limitações impactaram o treinamento das redes neurais, pois apresentavam um custo 

computacional elevado e restringiram o número de testes realizados. Por fim, um número 

maior de ensaios com trajetórias maiores e variadas enriqueceria a base de dados e 

beneficiaria a generalização dos modelos obtidos. 

5.4 Perspectiva para melhorias e aplicações futuras 

Durante a execução deste trabalho, ocorreram desafios tanto na etapa experimental 

quanto na implementação computacional dos modelos de aprendizado de máquina. As 
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limitações identificadas ao longo do processo influenciaram os resultados, mas também 

trouxeram aprendizados importantes e indicaram caminhos promissores para aprimoramentos 

futuros da pesquisa na aplicação de aprendizado de máquina em manipuladores robóticos. 

Baseado nas reflexões das limitações na seção anterior, as perspectivas de 

aprimoramento envolvem principalmente o avanço das arquiteturas de rede, a otimização dos 

processos de treinamento e o fortalecimento da infraestrutura experimental e computacional. 

A estudo de arquiteturas alternativas, como as redes convolucionais, redes recorrentes e o uso 

de autoencoders, pode ampliar a capacidade de generalização e reduzir o custo de 

convergência das redes. Além disso, técnicas de ajuste automático de hiperparâmetros e 

métodos de regularização mais sofisticados poderiam contribuir para um aprendizado mais 

estável e eficiente.  

Outro ponto fundamental é a ampliação da base experimental, que foi limitada por a 

restrições práticas dos manipuladores reais. Deste modo, o uso de sensores com maior 

precisão e uma revisão da implementação do modelo permitiria que ensaios com maior 

amplitude e velocidade sejam executados com segurança. Juntando isso com testes de 

diferentes condições de carga proporcionaria uma representação mais ampla do 

comportamento dinâmico do sistema, favorecendo a robustez e a generalização dos modelos 

obtidos. Em paralelo, a adoção de uma infraestrutura computacional mais potente, com o uso 

de GPUs dedicadas ou servidores de alto desempenho, superaria as limitações impostas pelo 

ambiente de desenvolvimento utilizado. Possibilitando explorar redes mais complexas, 

realizar múltiplos experimentos de forma simultânea, comparar o desempenho de outras 

funções de ativação e perda. 

Ademais, visamos aplicar o PINN na modelagem do manipulador paralelo 3RRR com 

elos flexíveis completo e realizar o seu controle em tempo real, este era um dos objetivos 

iniciais deste trabalho, porém, a complexidade da tarefa superou as expectativas e não foi 

possível realizá-la no escopo do projeto. No entanto, com a base de conhecimento 

estabelecida, essa tarefa se torna possível e a sua realização consolidaria o PIML como uma 

ferramenta prática e confiável para o controle de sistemas robóticos flexíveis. Por fim, 

espera-se que este trabalho contribua não apenas para a compreensão dos manipuladores 

flexíveis, mas também para o avanço das aplicações de aprendizado de máquina informado 

por física na engenharia.  
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APÊNDICE 

 

A seguir está o repositório no Google Drive que reúne os códigos desenvolvidos no 

Google Colab utilizados para o processamento dos dados, construção e comparação dos 

modelos de aprendizado de máquina empregados neste projeto. Também estão incluídos os 

conjuntos de dados utilizados, os modelos criados no software MSC Adams e os artigos e 

projetos relacionados ao trabalho. 

https://drive.google.com/drive/folders/1z2eHkfA-_Npqmw8BEI9Xn6JZ24r4VKsz?usp=shari
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