FAUSTO PEREZ RODRIGUES

SOLUCAO DE AUTOMACAO REMOTA
UTILIZANDO GNU/LINUX
EMBARCADO E O PROTOCOLO
ZIGBEE/IEEE802.15.4

Trabalho de Conclusdo de Curso apresentado a
Escola de Engenharia de Sao Carlos, da
Universidade de Sao Paulo

Curso de Engenharia Elétrica com énfase em
Eletronica

ORIENTADOR: Prof. Dr. Evandro Luis Linhari Rodrigues

Sao Carlos

2012

AUTORIZO A REPRODUGAO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRONICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

R696s

Rodrigues, Fausto Perez

Solucdo de automacdo remota utilizando GNU/LINUX
embarcado e o protoloco ZIGBEE/IEEE 802.15.4 / Fausto
Perez Rodrigues; orientador Evandro Luis Linhari
Rodrigues. S&o Carlos, 2012.

Monografia (Graduacdo em Engenharia Elétrica com
énfase em Eletrdnica) -- Escola de Engenharia de Sé&o
Carlos da Universidade de Sdo Paulo, 2012.

1. Sistemas embarcados. 2. Protocolo ZIGBEE/IEEE
802.15.4. 3. GNU/LINUX embarcado. 4. Acesso remoto. 5.
Rede de sensores. I. Titulo.

it

FOLHA DE APROVAGCAO

Nome: Fausto Perez Rodrigues

Titulo: “Solugdo de Automagdo Remota Utilizando GNU/Linux
embarcado e o Protocolo ZIGBEE/IEEE802.15.4"

Trabalho de Conclusdo de Curso defendido e aprovado
em 3 /1/2 712/,

com NOTA\O/, l) (Wt/é : ;?L7z,0,), pela Comissao Julgadora:

Prof, Associado Evandro Luis Linhari Rodrigues (Orientador)
SEL/EESC/USP

Profa. Assistente Luiza Maria Romeiro Coda
SEL/EESC/USP

Prof. Dr. Dennis Brandio
SEL/EESC/USP

Coordenador da CoC-Engenharia Elétrica - EESC/USP:
Prof. Associado Homero Schiabel

il

v

Dedicatoria

Aos meus pais, por todo apoio, amor e confianga.

Vi

vii

Agradecimentos

Primeiramente a milha familia,

que sempre me apoiou e permitiu meu crescimento como pessoa
além de ser meu exemplo madximo.

Aos meus amigos, que foram fundamentais nas diversas fases da graduac¢do
Aos professores que encaram a missdo de ensinar com seriedade.
Ao Professor Dr. Evandro Luis Linhari Rodrigues,

que além de acreditar neste projeto

Sempre manteve sua porta aberta

Ao desenvolvedor Attie Grande pela imensa paciéncia

e trabalho na biblioteca libxbee

Ao pessoal do laboratorio

Ao Departamento da Engenharia Elétrica

A Escola de Engenharia e a USP

viii

X

Sumario
R 1] o To [Tot- o TS PPPPRP 1
O R Y o Y Y =T o - Lot [1R 1
00 R 0101 0} (=D (LU F=1 14 Tot- {o TR U URU 3
0SS T @] o] =1 o 1Y/ PR URU 3
R O 1 -1 [- Tot- [1T 4
2 FUNAAMENTO TOOMCO . tteiutiieitieeeiiee ettt e sttt e sttt e sttt e st e e sabe e e sabe e e sabeeesabeeesabeeesabeeesabeeesnbeeesabeeeanneeesareens 5
2.1 SistemMas EMDArcadoscoouuiiiiiieiiiieeiee ettt et e st e et e et e e saree s 5
2.2 MOdulo FriendlyARM TiNYGAIL0uuvueeeeeeeeeeeeeieceiiiteeeee e e e e e e e eseitareaeeeaeaaaeeeeesssasrasaasaaaaaeeeenas 5
2.3 Sistema 0peracionNal LINUXcceei oot ee ettt e e e e e e e ettt rra e e e e e e e e e e e s annsraaaeeeaaaaeaaenns 7
2.3.1 Linux € LINUX @MDBArcadocccueeeiieiiiiiiiiiee ettt ettt ettt e e s e st e e saree e 7
2.3.2 BOOLIOGAEN ...ttt ettt et ettt e s bt e bt e s eabe e e ab e e sabe e e sabeeeasbeeeaabeeanns 9
2.3.3 KBINICL .ottt ettt et e et e b e e e b ae e e s bt e e anbe e e sabeeeanreeeaareeeans 9
2.3.4 Sistema de arquivos raiz (ROOL fileSYSTEIM)ccccciuiriiiieeee et aee e 11
2.3.5 Distribuicdo GNU LinUX XUBUNTUcuuiiiiiiiiieii it eeceireee e e e e e e iavraae e e e 12
2.4 TransmiSSE0 A A0Sceiuiieiiiiieiiiie ettt ettt e et e e st e e s e e sbeeesbbeessbteesbeeesabbeesbeeesnreeennres 12
2,41 TranSMISSA0 SEITAl...eiiiuiieiiiieeiite ettt ettt ettt e st e st e e s bt e s sab e e s beeesbeeesbbeesaneeeenareenn 13
2.4.2 Protocolo e dispositivos Zighee/IEEE 802.15.4cccueeieeciurieeeeciieeeeeecireeeeesireeeeeeearaeeaeas 14
2.4.2.1 Topologia de REAE ZighEe............uuuuiiiiieiieeeeeeeeeccittee et eccrrree e e e e e e e et ee e 15
2.4.2.2 Inicializacdo da Rede Zigheeuuiiiiiiiiie it 16
2.4.2.3 Enderecamento € envio de dadOseeeeieeeeeiiiiiiiiiiieeee e e e 18
2.4.2.4 MOAUIOS Digi XD ...uuviiiieeiiee ittt e e e e e s e e e e e e e e e e e abaraeeeeeeas 19
2.4.2.5 Comunicacgdo entre dispositivos Digi XDEEcccvvveeiiiiiiiiiiiiiiieieee e, 22
S I \V, ToTo [o Yo [@] oY<T - [o- o -\ o ISP UUUU 25
K Y =Y Yo o] [} - - TSP U UUUPUPROt 27
I R o oY =] do N e (R) i Yo 1 -SSR PUURPN 27
3,01 ANAIISE d@ SISTEMA ..eiiuiiieiiiie ettt ettt ettt et e st e st e s bt e e ar e e snreeenaree s 28
3.1.1.1 Analise de viabilidade tECNICa......coovviiiiiei e 28
3.1.1.2 Analise de viabilidade CONOMICAccoiieiiriiieiiie et 28
3.1.1.3 Andlise de viabilidade legal.........cc.uuriiiiiiiii e 29
I A N F=Y 1Yl [l Yo [1K | o 1S UUU R 29
3.1.2.1 RequUISItOS FUNCIONGIS ...uuiiiiieiiee ettt e e e e e e st e e e e e e e e e e e aarseaeaeeeeas 30

3.1.2.2 Requisitos NA0-TUNCIONAIScccicciiiiiiiieee e e e e e e e e aaeeeeeas 31

3.2 Redes de SENSOres € AtUAUOIES ...ccicuiieriiiieiiieeiiiee ettt ettt et e st e s bt e e s beeesenbeesbaeesbeeesanees 31
I T Y 11 oo [o] [4T e [T {1y (LU U PUPUPN 33
3.3.1 Teste de CONSUMO € BNEIZIA...cccccccuriiiiiiieeeee e e e ettt e e e e e e e e e e e esarrrraeeeeeeaeeeeseesannsraseseeeens 33
3.3.2 Teste de modularidade e escalabilidadeccooueeriiiiiiiiiiiie e 33
3.3.3 Teste de integridade e robustez da COMUNICACA0uuviiieiieeeeiieeciiiiiieeee e e 34
3.3.4 Teste de distancia entre MOAUIOS.........eeiuiiiiiiii i 34

R 14 1Y o1 (=Y 10T) = Tot- [U RPUUPRN 35
4.1 Circuitos dos MOAUIOS D tESTE.....uiiiiiieiiiieiiiee ettt st esbee e s et esbe e e sneeeenes 35
4.2 Comunicacao serial com o modulo coordenador (RCOM CON-USBBEE)..........ccccoeecurrrrrennnnnn. 36
4.3 Compilacdo e validagdo da biblioteca IDXDEEcc...euvviviveeiiiieeeeeeecceeee e 37
4.3.1 Aplicagdo de teSte SIMPIE—Qtccc.euuriiiiiiiee ettt e e e e e e e e e e e aaeaeeaaas 39

4.4 Sistema desenvolvido em C do sistema de controle da rede Zigbee........ccccceeeeeeeicinvrreennnnnn. 39
Ot R [o [T =1 [- ok o TS UUU 40
4.4.2 Varredura iNICIal. .. . e et e e 40
e B oo) o 3 o] a1 o Tel 1 | S UUUUU 41
4.4.4 FuncgGes de chamadas € CAlIDACKSuuuueeeiiiieeiicieeeee ettt 42

I Yo Y Vo R =] o U UURU 42
4.5.1 Back-end: estrutura PHP @ AJAX ...ttt sttt s 42
4.5.2 Front-end: HTIML, CSS € JaVaSCriPt....ccccuiiiiiiieeeeeeeeciiiiiiieeeee e e e e e eeeiirare e e e e e e e e e s e e snnsrsaaaeeeeas 44

o I [0} £ o - o T =Y] A =R o IR £ (=Y 0 o T L 45

5 TeSteS @ rESUIATOS ...ttt st e st s bt e s ar e e be e e saneee e 49
5.1 CONSUMO U8 BNEIEI c.uuuriiiiiiieieeeeeiiiiiiiitieteeeeeeeeeesssitttreeeeeeaeeeseesasssstassseeaaaessssaasssssssaseeaaasesnans 49
5.2 Integridade e robustez da COMUNICACA0.......cccciiiiiiiiiiiiieee e e e e e e rrrre e e e e e e e e e 50
5.3 Modularidade e Escalabilidadec.coeiuiiiiiiiiiiie e 50
5.4 Distancia maxima de comunicagdo entre diSPOSItiVOSccccceeeeiiiiiiiiiiieiee e 50

6 DiISCUSSA0 € CONCIUSDESeeieniiieeiiiee it ettt ettt ettt s bt e sttt e st e e st e sbe e e sbeeesabaeesabeeesbeeesneeesanbeenans 53
7 Refer€ncias BibliOgrafiCas ...t e e e e e e s e e e e e e e e e e e e e anranes 55
8 Apéndice A — Fluxogramas e diagramas referentes a andlise de sistemas..........ccccceeeeeeeeeeicccnnnnns 57
9 Apéndice B — Cddigo-fonte utilizado no sistema € NOS tESTESuvuriiiiiiiieeee e 59
10 Apéndice C— Cdodigo-fonte implementado No Servidor Web.ccooeeccciiviiieeeieieee e, 65

11 ANEXO A — Lista de COMANAOS AT .uuunniiiiiiiieieeeeeeee e ettt e e e ettt e e e e e e tabae s e e e sesbaaesssesssbanaeesesseen 69

X1

INDICE DE FIGURAS

FIGURA 1 PANORAMA DOS PROTOCOLOS DE COMUNICAGAO WIRELESS. ADAPTADO DE: CUNHA (2007).......c..c..... 2
FIGURA 2 RELACAO ENTRE AS CAMADAS DE COMUNICACAO E O PROTOCOLO ZIGBEE/IEEE 802.15.4ccceeeune. 2
FIGURA 3 DIAGRAMA DA PROPOSTA DE DESENVOLVIMENTO DO PROJETO.......c0ueeeeurieeiereeeeieeeeeereeeeeeeeeseeeenseeeserneeens 3
FIGURA 4 VISAO GERAL DOS PERIFERICOS DO MODULO DE DESENVOLVIMENTO FRIENDLYARM TINY6410............... 6

FIGURA 5 VISAO GERAL DA PLACA NUCLEO (CORE) (FRIENDLYARM, 2011) ..cccviiiiieiieiiiicieeee et
FIGURA 6 ESTRUTURA SIMPLIFICADA DO SISTEMA GNU/LINUX (ELECTRONS, 2012).. .
FIGURA 7 BLOCOS DE FUNCOES DO KERNEL DO GINU/LINUXccoouviiiiiieeeieeeeeeeeeeeieeeeeeaeeeeeeeeeereeeenaeeenaeeeenaneeeennees
FIGURA 8 BLOCOS DE FUNCOES DO KERNELcceeivveeeeeeiireeeeeeeeeieeeeeeeeeisseseeeesisseesesesissesssesessssseseeesisssesssensissseesesnns
FIGURA 9 MODELO SIMPLES DE TRANSMISSAO DE DADOS SERIAL
FIGURA 10 MODELO DE TRANSMISSAO SERIAL ASSINCRONAccuviiiirieeiteeeeiteeeeeeeeeeeeeeeeeeeeeeeareeeeneeeeteeeenaneeeennees

FIGURA 11 TOPOLOGIAS DE REDE PARA REDE ZIGBEE.ccccciiiiiuiiieeieiiteeeeeeeeireeeeeeeiitseeseeeesaeeeeeeeeissseesseesisseeeseeans 16
FIGURA 12 PROCESSO DE BEACONNING PARA INCLUSAO DE DISPOSITIVO A REDE ZIGBEE. ADAPTADA DE: DIGI

INTERNATIONAL (2010) ..utieuieitieieeiieieetiesieeieestestestestesteestesseessesseessesseessesseessesssessesssessesnsessesssesssensesseensenseensennes 17
FIGURA 13 MODULOS XBEE DA DIGI INTERNATIONAL COM DIFERENTES ANTENAS.vvttiiiiiiiiieeeeeieeeeeeesiineeeeeens 20

FIGURA 14 PROCESSO PARA TRANSMISSAO DE DADOcoooeoiininiiiiiiiiiiieeeeeeeeeeeeeeeeeeens
FIGURA 15 ESTRUTURA DO FRAME DE TRANSMISSAO DO MODO AT

FIGURA 16 ESTRUTURA DO FRAME API (DIGI INTERNATIONAL,2010) c..covouieiiiiiieiieeieeee et 25
FIGURA 17 ILUSTRACAO DA COMUNICACAO POR MEIO DE FRAMES APL.......coooiiriiiiieiiiiie e 26
FIGURA 18 DIAGRAMA DE REQUISITOS PARA O SISTEMA LINUX-ZIGBEE........cccccoiiiiiiiiiiieiiieieiiiiiiiiiieeeeeeeeeeeeeeeeeens 30
FIGURA 19 TOPOLOGIA PARA MEDICAO DO CONSUMO DE ENERGIA DOS MODULOS XBEEcuvvveiiiiiiieeeieiieeeeeeenns 33
FIGURA 20 PLANTA DAS ADJACENCIAS DO DEPARTAMENTE DE ENGENHARIA ELETRICAcvvvvviiiiiiiiieeeieiiieeeene 34
FIGURA 21 CIRCUITO MODELO PARA TESTE DOS END DEVICESuvvveeieeiueeeeeeeeireeeeeeeeiaeeeeeeesianeeeeeesiareesseesissseeeeenns 35
FIGURA 22 MONTAGEM DOS DISPOSITIVOS FINAIS EM PROTOBOARDcooeeeeeeiuveeeeeeeiieeeeeeeeiieeeeeeeeiiareeeeeesirseeeeeeens 36
FIGURA 23 ADAPTADOR ROGERCOM CON-USBBEEooooiiiiiiiiie et 36
FIGURA 24 DISPOSITIVO COORDENADOR CONECTADO NO MODULO DE DESENVOLVIMENTO FRIENDLYARM

TINYOAL Q... ettt e ettt e e e e et e e e e eeta e e e e e eeataaeeeeeeeaareeeeeeettaeeeeeeetaseeeseentnseeeeeennsreeens 37
FIGURA 25 RESULTADO DE CONEXAO USB CcOM 0 ADAPTADOR ROGERCOM CON-USBBEE.........cccccccceeviinnn. 37
FIGURA 26 PROCESSOS SIMPLIFICADOS DE UTILIZACAO DA BIBLIOTECA LIBXBEEcccvuveeeeeiiveeeeeeeiirreeeeeesivreeeeen 39

FIGURA 27 RESULTADO DO CODIGO SIMPLE-AT.C......ccuvveeeveeeeeeeeeeeeeeeeeeeeennnns
FIGURA 28 TRECHO DO CODIGO DE INICIALIZACAO IMPLEMENTADO EM C
FIGURA 29 CODIGO QUE REALIZA A CHAMADA DAS FUNCOES PARA A VARREDURA INICIALcccovvvuiiieeeiiiieeeeeenns
FIGURA 30 TRECHOS DO CODIGO DO LOOP PRINCIPAL EM Coooovviiiiieeeiieeeeeeeeeeeeeeee e
FIGURA 31 TRECHO DO CODIGO PHP PARA TORNAR DINAMICA A GERACAO DO HTML FINAL
FIGURA 32 SECAO DE PROJETO DO HOTSITEcceeiurtieeeeeiirreeeeeeiiteeeeeeeeitseeeeeeeeiasseeeeeeiissesseeeesssssesseesisssesssensissrseseenns
FIGURA 33 SECAO DE REDE COM IMPLEMENTACAO DE ACESSO REMOTO A REDE ZIGBEE.... .
FIGURA 34 RELACAO ENTRE OS ARQUIVOS E OS SISTEMASceiiiutiiieeeeitteeeeeeeeitrreeeeeeiitreeeeeeessreeeeeeeinsseesseesirsreeeeeans

FIGURA 35 TRECHO DO CODIGO DO SISTEMA DE CONTROLE DA REDE PARA ESCRITA NO ARQUIVO ZIGBEE.TXT....... 46
FIGURA 36 TRECHO DO CODIGO DO SISTEMA WEB DA REDE PARA ESCRITA NO ARQUIVO PHP_ZIGBEE.TXT
FIGURA 37 MEDICAO DO CONSUMO DE CORRENTE MEDIO PARA O DISPOSITIVO XBEE COMO ROTEADOR................

FIGURA 38 RESULTADO COMPARATIVOS ENTRE OS DISPOSITIVOS XBEE E XBEE PRO NO TESTE DE DISTANCIA51
FIGURA 39 DIAGRAMA DE FLUXO DE DADOS PARA A APLICACAO DE COMANDO APL.....ocooviiiiiiiiieieeeeeeeeeee 57
FIGURA 40 DIAGRAMA DE FLUXO DE DADOS PARA PROCESSAMENTO DO REQUEST DO USUARIOccevveeenveeannne.. 58

Xii

INDICE DE TABELAS

TABELA 1 ESPECIFICACOES GERIAS DOS DIPOSITIOS XBEE E XBEE PRO SERIES 2. (DIGI INTERNATIONAL,

20T10) ettt et ettt e a bt et teea bt e bt e e a bt e bt e e a bt e b teea bt e bt e ea bt e bt e ea bt e bt e eab e e hteea bt e hteeabe e baeenbeenbeenn 21
TABELA 2 COMANDOS E IDENTIFICADORES DO FRAME API (DIGI INTERNATIONAL, 2010)...c..ccccceevverreannnn. 26
TABELA 3 COTACAO INICIAL DE CUSTO DE AQUISICAQ DE HARDWAREcccciuveeeeeeeireeeeeeeiireeeeeeeiiareeeeeesirseeeseenns 29
TABELA 4 CONFIGURACAO DOS REGISTRADORES AT DO DISPOSITIVO XBEE COORDENADORccvvvvviveeeeeeeennn. 32
TABELA 5 CONFIGURACAO DOS REGISTRADORES AT DO DISPOSITIVO XBEE ROTEADORccoovvuvveeeeeeirreeeeenns 32
TABELA 6 CONFIGURACAO DOS REGISTRADORES AT DO DISPOSITIVO XBEE DE ENTRADAS DIGITAIS................... 32
TABELA 7 CONFIGURACAO DOS REGISTRADORES AT DO DISPOSITIVO XBEE DE SAIDAS DIGITAISc.cooveuvveeennne. 32
TABELA 8 LISTA DE COMANDOS AT DE ADDRESSINGvvvveeeeeeiieeeeeeeeeiaeeeeeeeeiiaeeeeeeeeisseeseeeesssseseeeessseesseesissresseeans 69
TABELA 9 LISA DE COMANDOS AT DE NETWORKING..........uueeeeeiiieeeeeeeeciaeeeeeeeeiiaeeeeeeseisseeseeeesasseeeeesisseseseesissseeseenns 70
TABELA 10 LISTA DE COMANDOS AT DE SECURITYcccvvveeeeeeiiieeeeeeeeeaeeeeeeeeiaeeeeeeeeiaaeeseeeesaseeeeeeestsseesseesissreeseeans 72
TABELA 11 LISTA DE COMANDOS AT PARA EDICAO DE OPCOES DO MODO AT ..o 73
TABELA 12 - LISTA DE COMANDOS AT DA INTERFACE COM RFooviiiiiiiiiiiiiiii ettt 73
TABELA 13 LISTA DE COMANDOS AT DE INTERFACE SERIALoccceiiiiuiiieeeeeiiirieeeeeeeitreeeeeeesaeeeeeeeeisnreeeeeenissreeeeeans 74
TABELA 14 LISTA DE COMANDOS AT DE I/Q CONTROLveeeeveeeeeeeeeeeeeeeeeeeeeeeee e eeeeeeeaeeeeeneeeenneeeeenneeeennees 76
TABELA 15 LISTA DE COMANDOS AT DE DIAGNOSTICOS ...ccetiuttieieeieetteeeeeeeeiseeeeseseesseeeeesssaseeessssssseessssssssseeesssns 79
TABELA 16 LISTA DE COMANDOS AT PARA SLEEPcccccuveeeeeeeeiueeeeeeeeeaeeeeeeeeiaeeeeeeeeisseeseeeessasseseessissreessensnsreeeenans 80

TABELA 17 LISTA DE COMANDOS AT DE EXECUGAOuvviiieeiiitiiieeeeeeiteeeeeeeeitaeeeeeeeetaeeeeeeeetaaeeeeeeetnreeeseennseeeeeeans 81

xiii

QUADRO 1 DIAGRAMA E ESPECIFICAGAO DA PINAGEM DOS MODULOS XBEE E XBEE PRO. FONTE (DIGI
INTERNATIONAL, 2010) ...ioiiiiieiiiieienitete sttt ettt ettt ettt ettt et st e et st ae s esaeeesesbeeasesbeesnesueennesueenneene 22

X1v

Resumo

Neste trabalho ¢ implementado um sistema de acesso e controle remoto a uma rede de
sensores sem-fio, ondo tal rede de sensores utiliza o protocolo wireless IEEE
802.15.4/Zigbee. O sistema foi desenvolvido em um Modulo de Desenvolvimento
FriendyARM Tiny6410, possuindo um processador ARMI11 e o sistema operacional Xubuntu
GNU/Linux. Buscou-se atender as necessidades apresentadas no paradigma das WSN
(Wireless Sensor Network), que sdo robstez, escalabilidade, modularidade e consumo de

energia.

Palavras-chaves: Sistemas Embarcados, Protocolo Zigbee/IEEE 802.15.4,

GNU/Linux Embarcado, Acesso Remoto, Rede de Sensores.

XV

Abstract

This paper consists on the project development of a system that allows access and
control of a wireless sensor network, where is used the IEEE 802.15.4/Zigbee as the
communication protocol. This system was developted on the FriendlyARM Tiny6410 board,
with a ARM11 proccessor and the Linux Xubuntu Distribution. As result, this project aims to
fulfill the criteria of the WSN paradigm as reability, scalability, modularity and energy

efficiency.

Keywords: Embedded Systems, Zigbee/IEEE 802.15.4 Protocol, Embedded

GNU/Linux, Remote Access, Sensor Network.

1 Introducao
1.1 Apresentacio

A area de sistemas embarcados em equipamentos portateis apresentou e apresenta um
crescimento acentuado, atraindo assim, grandes investimentos em desenvolvimento cientifico
e técnico. Desta forma, a investigacdo de aplicacdes utilizando as diferentes arquiteturas
representa um grande valor comercial e intelectual para o continuo desenvolvimento na area.

Juntamente com a evolugdo dos sistemas embarcados (como em memorias,
rendimento de baterias, peso, capacidade de processamento e arquiteturas) surge a nova
geracdo dos servigos em internet (e.g. Google Maps), e a necessidade de uma infraestrutura de
comunica¢do em grande escala, criando o paradigma da rede de sensores sem-fio (WSN -
Wireless Sensor Network). A integracdo de méddulos wireless ndo s6 gera um novo modo de
comunica¢do, mas permite que os sistemas portateis adquiram novas fun¢des(LEADERS,
2007).

A evolugdo da WSN (Wireless Sensor Network) permitird uma grande gama de novas
aplicagdes e utilizacdes, tais como automagdo residencial (seguranga, HVAC, controle de
iluminacdo, entre outros), aparelhos eletronicos (controles remotos), automacdo industrial
(monitoramento de energia, controle de ambiente) e saude pessoal(monitoramento cardiaco,
de glicose). Dentre os novos desafios para a implementacdo das WSNs se encontram:
eficiéncia energética, escalabilidade, mobilidade, robustez, seguranca e estratégias de
sincronizagao.

Existe uma grande variedade de protocolos de comunicacdo wireless, os principais
apresentados na Figura 1 para as mais diversas aplicac¢des (e.g. voz, video, comunicagdo geral
de dados), todas possuem um compromisso entre a taxa de transmissao (bif rate) e a cobertura
de transmissdo (distancia). Segundo Cunha (2007) uma WSN ndo tem grandes restrigdes
quanto a largura de banda de dados utilizada, porém possui a necessidade de um consumo
reduzido de energia, robustez a interferéncias e seguranga. Desta forma, considerando a figura
1, também ¢ valido expressar que entre os protocolos apresentados apenas o Zigbee e o

Bluetooth apresentam grande potencial para a utilizagao nas WSNs.

— | IEEE 802.22
‘ jl EEE 80220 ||
2 WMAN | wittax 80216
_g
2 WiFi
g WLAN . : 802.11 802.15.3
5 igBee 802.15.3a
= Bluetooth
g 802.15.4 802.15.3c
_ 802.15.1 | I
0.01 0.1 7 10 0 T

Taxa de Transferencia (Mbps)

Figura 1 Panorama dos protocolos de comunicac¢io wireless. Adaptado de: CUNHA (2007)

Atualmente, existe um grande numero de solu¢des proprietdrias para comunicacdes
sem fio, inabilitando a interoperabilidade entre estes dispositivos de diferentes tecnologias. O
esforco conjunto da IEEE 802.15.4 Task Group (IEEE, 2003) e a Alianga Zigbee (ZIGBEE
ALIANCE, 2006) permitiu a criagdo e normalizagdo de uma pilha de protocolo para
comunicag¢des sem fio de baixa banda(Zheng e Myung, 2004). A pilha IEEE 802.15.4/Zigbee
¢ composta por quatro camadas onde: o protocolo IEEE 802.15.4 especifica as subcamadas de
Enlace (Medium Access Control) e Fisica. A especificacdo Zigbee, que se basea na pilha
IEEE802.15.4, constr6i as camadas de aplicacdo e de rede da comunicacdo de dados,
conforme mostrado na Figura 2.

A tecnologia Zigbee estd aumentando o interesse da industria e academia, sendo
considerada uma soluc¢do de baixo custo e baixo consumo para sistemas de automagdo sem
fio(ADAMS, 2005; CULTER, 2005). Os interesses abordados pela proposta da Alianga
Zigbee sdao domotica (foco deste trabalho), sistemas de saude, seguranga e controle ambiental.
Desta forma, o protocolo Zigbee apresenta-se como um protocolo para a solugdo de

problemas em WSNss.

APLICAGCAO

REDE

MAC - ENLACE —
IEEE

FISICA

Figura 2 Relacio entre as camadas de comunicacio e o protocolo Zigbee/IEEE 802.15.4

1.2 Contextualizaciao

Este trabalho foi desenvolvido dentro do contexto da pesquisa e desenvolvimento de
sistemas embarcados como gateway para a exploragdo em diversos niveis de comunicagoes,
focando na implementac¢do do servico de automacao utilizando a pilha IEEE 802.15.4/Zigbee
junto ao sistema embarcado operando um kernel Linux(BARR; MASSA, 2007)

A escolha de um sistema embarcado operando o sistema operacional GNU/Linux foi
adotado para facilitar a implementacdo COTS (Commercial-OgFThe-Shelf), onde uma solugao
pode ser apresentada de maneira mais rapida em sistemas comerciais. O gateway Zigbee
permite a exploragdo da rede IEEE 802.15.4 por meio de um servidor web, sendo assim um
gateway para a internet. Segundo Cunha (2007) os requerimentos que se pretende observar e
alcangar com este trabalho sdo:

* Robustez

* Escalabilidade

* Mobilidade

* Eficiéncia energética

A hipotese de que este conjunto proposto possa suprir as necessidades da rede de
sensores ¢ desta forma a implementagdo da mesma serd fundamental para compreender
melhor os comportamentos do protocolo assim como uma abertura para trabalhos seguintes,

como testes, avaliacdes ¢ melhorias.

1.3 Objetivo

O objetivo deste trabalho ¢ avaliar a capacidade do protocolo Zigbee/IEEE 802.15.4,
sendo testado pela implementagdo de disposivos utilizando o protocolo IEEE802.15.4/Zigbee
para uma rede de sensores e atuadores sem fio, sendo controlado por um sistema GNU/Linux

embarcado em microcontroladores ARM, conforme apresentado na figura 3.

)

@ @ &
P

e php)

Figura 3 Diagrama da proposta de desenvolvimento do projeto

1.4 Organizacao

Neste capitulo foi realizada a introducdo e justificativa do trabalho, assim como
objetivo e contexto. O capitulo 2 contém informacdes realcionadas ao embasamento tedrico
para a realizagdo deste projeto, como um estudo do protocolo Zigbee/IEEE 802.14.5 e
sistemas embarcados. Nos capitulo 3 e 4 sdo descritos os processos da metodologia utilizada,
dividida em duas componentes: analise do sofiware e configuragdes para testes. No capitulos
5 ¢ apresentada a implementagdo, assim como os resultados do processo de implementagao.
No capitulo 6 sdo apresentados os testes realizados em relacdo a proposta do trabalho e os
seus respectivos resultados. Por fim, no capitulos 7 s@o apresentadas discussdes com base nos

resultados obtidos, conlusdes sobre o trabalho e propostas para trabalhos futuros.

2 Fundamento Teodrico

Neste capitulo serdo apresentados os principais conceitos que definem o fundamento

tedrico das diversas areas abordadas neste trabalho.

2.1 Sistemas Embarcados

Um dos primeiros sistemas embarcados foi o computador de navegacdo Apollo
(ACQG), desenvolvido por Charles Stark Draper. Durante a criagdo do projeto, o sistema de
navegacao foi considerado o item com maior risco de falha dentro do projeto Apollo ja que o
sistema utilizado os mais novos componentes monoliticos com peso e tamanhos reduzidos.
Porém que caracteristica o definiu como um sistema embarcado?

Um sistema embarcado ¢ uma combinacdo entre hardware e software — podendo
incorporar outras partes, tanto mecanicas quanto elétricas — projetadas para realizar uma
determinada fun¢do. Um simples exemplo ¢ o forno micro-ondas, pois quase todas as casas
possuem um e, apesar do desconhecimento por parte de seus usudrios, possui um processador
e um software envolvidos na preparacao das refei¢cdes (GIRIO, 2010).

De acordo com Barr e Massa (2007) o design de um sistema embarcado para realizar
uma funcdo especifica estd em contraste direto com o de um computador pessoal. Este
também ¢ composto por hardware, software e partes mecanicas (unidades de disco, por
exemplo). Entretanto, um computador pessoal ndo ¢ designado para realizar uma funcao
especifica. Ao contrario, ele pode realizar muitas tarefas distintas e talvez desconhecidas para
seus projetores. Muitas pessoas utilizam o termo computador de propdsito geral para tornar
clara a disting@o. O usudrio final tem a possibilidade de utilizar seu computador pessoal como
um servidor de dados, editor de imagens ou para lazer.

E comum que um sistema embarcado seja componente de um sistema maior,
composto por demais sistemas embarcados. Por exemplo, carros modernos possui uma rede
de sistemas embarcados distribuidos. Um sistema para a frenagem, outro para interface com o
motorista, e um terceiro para a injecdo de combustivel. Nestes casos, os sistemas embarcados

em uma aplicagdo possuem ou estdo inseridos em uma rede de comunicagdo de dados.

2.2 Moédulo FriendlyARM Tiny6410
Para a implementacdo do projeto, optou-se por um moédulo de desenvolvimento ja
testado, com a finalidade de minimizar os riscos envolvendo configuracdo em baixo nivel e

hardware. Para que os testes propostos atinjam resultados de forma independente da

r

performance do modulo de desenvolvimento, ¢ necessario que o mesmo possua uma alta
capacidade de processamento, memoria e interfaces robustas ja implementadas. Desta forma
optou-se pelo moddulo de Desenvolvimento FriendlyARM Tiny6410. O modulo de
desenvolvimento Tiny6410, fabricado pela empresa chinesa FriendlyARM
(FRIENDLYARM, 2010), utilizado para desenvolvimento da estagdo central de controle do
projeto, conta com um processador Samsung S3C6410 ARMI11 de 533MHz, 256MB de
memoria RAM e Flash de 2GB. O modulo de desenvolvimento Tiny6410 possui uma grande
variedade de interfaces para periféricos, entre eles se destacam:

* 3 USB host;

* 4 portas serial DB9;

* entrada e saida de audio P2;

e saidade TV;

* porta Ethernet;

* display 4,3"TouchScreen resistivo;

* slot de SD card.

Nas Figuras 4 e 5 ¢ possivel observar com mais detalhes o modulo de

desenvolvimento e o nucleo de processamento.

CON1,2,3,4(TTL)

Temperature
USB Host3 COM3 COM2 SDIO2 Sensor
(RSZSZ) (RS232) (for SD WiFi) (18B20)

XSim g

USB Host1
LCD3

LCD2

______ Toe RTC Battery e m LCD1

USB Host2

SD Card
IR

= Buzzer
Reset key

Power
Switch

Boot Switch
(SD/Nand)

PowerJack COMO Ethernet Audio MiniUSB ADC-Test UserButtons
(5V) (RS232) (RJ45) (Out & In) Size: 180 x 130 mm

Figura 4 Visao geral dos periféricos do médulo de desenvolvimento FriendlyARM Tiny6410
(FRIENDLYARM, 2011)

“TEE ;
E Sizimn

sy,

Figura 5 Visao geral da placa niicleo (core) (FRIENDLYARM, 2011)
O moédulo ¢ acompanhado por dois DVDs que possuem manuais sobre o hardware da

placa de desenvolvimento assim como manuais sobre a instalagdo dos sistemas operacionais
que também acompanham o modulo, que sdo: Windows CE, Android 2.1, Linux(Qtopia) e

Xubuntu.

2.3 Sistema operacional Linux
Neste trabalho foi utilizado o sistema operacional Xubuntu GNU/Linux embarcado no
moédulo de desenvolvimento FriendlyARM tiny6410, sendo assim os demais sistemas

operacionais suportados pelo modulo nao serdo abordados.

2.3.1 Linux e Linux embarcado

Linux ¢ o sistema operacional que surgiu em 1991, desenvolvido por Linus Torvalds
(Linux, 2012). Pelo fato de possuir o codigo disponivel para todos, o sistema operacional
tornou-se popular rapidamente e criou-se uma grande quantidade de colaboradores. Com o
aumento de desenvolvedores permitiu o avanco do sistema em velocidade e qualidade, pois de
forma acelerada foram agregadas funcionalidades, recursos, documentagao.

O Linux ¢ referenciado como o kernel do sistema operacional, que ¢ o nucleo do
mesmo. Em dispositivos embarcados o kernel ¢ o mesmo para diferentes plataformas, apenas
sendo necessitado a sua compilagdo para a determinada arquitetura a ser implementada. Como
foi definido anteriormente, o sistema embarcado ¢ o conjunto de software e hardware com
finalidade especifica. Dada a natureza do Linux ¢ possivel modificar o sistema operacional
para atender somente as necessidades que o sistema exige. Desta forma existe uma melhor
alocagdo e aproveitamento dos recursos disponiveis, onde geralmente existem limitacdes em
relacdo a consumo de energia permitido, memoria e capacidade processamento (CUNHA,

2007).

Desta forma a versdo do Linux desenvolvida para sistemas embarcados possui as
caracteristicas e qualidades do kernel mantido pela comunidade, tais como suportes a padroes
e protocolos de comunicacao, drivers e médulos a interfaces e periféricos consolidados.

Estas versdoes focadas em sistemas embarcados também possuem um gama de
desenvolvedores trabalhando em conjunto para a criagdo de ferramentas especificas,
permitindo assim um avanco em direcdes levemente diferentes em relagdo as distribui¢des
voltadas para computadores pessoais e servidores. Assim, surgem comunidades de
desenvolvimento em plataformas especificas, como FriendlyARM (FRIENDLYARM, 2012),
possuindo diversos trabalhos em documentagdo e suporte em foruns de usuarios. Porém para
algumas plataformas ainda jovens, o nivel de documentacdo e suporte em comunidades ¢
reduzido.

A implementagdo do Linux nas diversas familias de arquitetura de sistemas
embarcados que trabalham em 32-bits(ARM, MIPS, entre outras) foi principalmente motivada
devido ao diferencial comercial do Linux, que sendo distribuido sobre a licenca GNU-GPL,
que permite qualquer usudrio ou empresa utilizar, modificar e redistribuir o sistema isento de
cobranga. Assim. existe um incentivo no sentido de diminui¢do do custo gerado pelo
desenvolvimento do projeto, onde, geralmente, o custo ¢ crucial para a realizacdo de diversos
projetos na area.

O sistema de GNU/Linux embarcado ¢ composto de maneira basica por trés
componentes: Bootloader, Kernel e Root Filesystem. O Bootloader ¢ responsavel pela
inicializacdo do sistema, e desta forma criar as condi¢des necessarias para execucao do
sistema operacional. O Kernel, conforme foi discutido anteriormente, consiste no sistema
operacional em si, gerenciando os recursos em relagdo as aplicacdes do sistema. O Root
Filesystem (sistema de arquivos raiz) contém as aplicagdes, bibliotecas, configuracdes, dados
gerais. A Figura 6 representa de maneira geral tais componentes do Linux embarcado. Nas
proximas se¢des cada um destes componentes do sistema GNU/Linux serdo abordadas

especificamente.

Bootloader

Kernel

Root
filesystem

Figura 6 Estrutura simplificada do sistema GNU/Linux (ELECTRONS, 2012)

2.3.2 Bootloader

O bootloader ¢ responsavel pela inicializagdo dos principais componentes de
hardware para a execugdo do kernel do sistema operacional, descrito na préxima secdo,
verificando o hardware disponivel e minimo para carregar o kernel na memodria RAM do
sistema. O bootloader é posicionado na memoria do dispositivo no enderego inicial de leitura
do processador, a fim de ser a primeira sequéncia de execugao a ser processada. (Linux, 2012)

Apesar dos diversos bootloaders disponiveis para os diferentes hardwares e sistemas
operacionais destacam-se o0 GRUB e o LILO para sistemas Linux em computadores pessoais.
Para sistemas embarcados opta-se pelo U-boot(U-boot, 2012)um bootloader mais simples e
ajustavel aos diferentes hardwares utilizados em sistemas embarcados, além de funcdes

poderosas como alteracdo do kernel do sistema embarcado remotamente.

2.3.3 Kernel

O Linux em si € o kernel (nicleo do sistema operacional) do sistema operacional, ou
seja, ele ndo possui as ferramentas para interface com o usudrio como ambiente gréfico,
softwares gerais (estes sendo fornecidos pela distribuicdo completa) (Linux, 2012). A
interagdo do kernel com as aplicacdes gerais, do ponto de vista de blocos de fung¢des, ¢

ilustrado na figura 7.

10

Aplicagdes de usuario
Espacgo de
Usuario
Biblioteca C GNU
e | Interface de chamadas |
1
Espaco do
Kernel Kernel
1
Kernel dependente de arquitetura

Figura 7 Blocos de funcdes do Kernel do GNU/Linux

Apesar do kernel ter sido desenvolvido por Linus Torvalds, hoje ¢ mantido por
diversos desenvolvedores. O projeto do Linux pode ser encontrado no site www.kernel.org. O
kernel opera numa area da memoria denominada kernel space (uma éarea de acesso restrito)
apresentada na Figura 8(a figura foi mantida em inglés para manter a relagdo do nome com as
siglas correspondentes) e pode ser segmentada em relagdo aos blocos que o compde. Nesta
divisdo existem trés camadas no kernel do Linux, onde a primeira ¢ a camada de interface
entre o user space e o kernel space nessa camada ¢ necessdrio uma preocupagdo com a
biblioteca glibC(principal biblioteca de funcdes utilizadas no sistema operacional) utilizada na

Distribui¢ao GNU utilizada.

System Call Interface (SCI)

Process Virtual File
Management (PM) System (VFS)

Memory
Management (MM) Network Stack
Arch Device Drivers (DD)
& /

Figura 8 Blocos de funcdes do kernel

A segunda camada é comum a todas os sistemas que utilizam Linux, independente da

arquitetura utilizada e contém as principais rotinas de gerenciamento de memoria, controle do

11

sistema de arquivos e o gerenciador de processos, este Ultimo contém as rotinas como
escalonador de tarefas, controles de sincronizagao e tratamento de informagdes.

A terceira camada ¢ a interface entre o hardware e a tratamento de processos e
arquivos do kernel, portanto ¢ a camada que contém os device drivers e definicdes da
arquitetura utilizada. Assim as mudangas necessarias para embarcar o sistema Linux para as

diversas plataformas e arquiteturas sdo realizadas nesta camada.

2.3.4 Sistema de arquivos raiz (Root filesystem)

O sistema de arquivos raiz € responsavel pela leitura e escrita e armazenamento
persistente de dados, documentos, softwares e bibliotecas que sdo necessarios para o sistema
operacionais e aplicagdes gerais dos usudrios. O sistema de arquivos realiza tal gerenciamento
de acordo com o hardware de armazenamento de dados. De acordo com Curvello e Santos
(2011), dentre os sistema de arquivo raiz existentes destacam-se os seguintes para o Linux:

* EXT3: Third Extended File System, em portugués: Terceiro Sistema de Arquivos
Estendido. E amplamente usado em ambientes desktop com sistemas baseados em UNIX,
tendo como principal caracteristica possuir mecanismos cofiaveis e robustos para escrita de
arquivos, prevenindo danos em ocasides onde o sistema ¢ indevidamente desligado. Nao
possui implementacdo de mecanismos adequados de gestdo de células l6gicas FLASH o que
torna sua aplicacdo limitada em relagdo a sistemas embarcados em longo prazo.

* YAFFS2: Yet Another Flash File System 2, ou em portugués: “Ainda Outro Sistema
de Arquivos para Flash 2”. E amplamente usado por dispositivos que possuem sistema
Android.

» JFFS2: Abreviagdo de Journalling Flash File System 2. Recentemente era um dos
sistemas de arquivos mais usados em sistemas embarcados. Com o avango das tecnologias de
memoria FLASH, tornando-se defasado para sistemas embarcados.

« UBI: Abrevi¢io de Unsorted Block Images. E o sistema de arquivos que possui
caracteristicas para implementacdo em sistemas embarcados, porém ¢ o mais complexo.
Trabalha com o sistema de arquivos na forma de blocos, como sua distribui¢do nao ¢ linear e
orientada a blocos ¢ ideal para células logicas FLASH.

Em sistemas embarcados o principal dispositivo para o armazenamento de dados de
maneira persistente sdo células de memoria FLASH (conforme citado anteriormente). A
utilizagdo de outros tipo de dispositivos, tais como disco-duros acarretariam grande consumo

de energia e encarecimento do sistema de maneira consideravel.

12

A memoria FLASH apresenta um desgaste em relagdo ao tempo, e ao uso inadequado
por meio do sistema ou usudrio. Logo, ¢ aconselhdvel a utilizacdo de um sistema de arquivos
que permita o gerenciamento das células danificadas, permitindo a otimizacdo do sistema de

arquivos e hardware.(GUIA DO HARDWARE, 2012)

2.3.5 Distribui¢ado GNU Linux Xubuntu

Conforme citado anteriormente o sistema operacional Linux ¢ em si o kernel, quando
colocado em conjunto com aplicagdes e gerenciadores do sistema operacional sdo formadas as
distribuicdes GNU/Linux (LINUX, 2012). Existem hoje mais de 300 distribui¢cdes sendo
mantidas atualizadas, sendo muitas forks (projetos derivados) de outras distribuicdes,
organizadas em diversas categorias.

Dentre a distribui¢des mais conhecidas destacam-se o Debian, Slackware, Fedora,
OpenSuse, Archlinux e Ubuntu. Existem desde pequenas diferencas a grandes modificagdes e
maneiras de se trabalhar entre as diversas distribui¢cdes. Dessa maneira o desenvolvedor ou
usuario tem a opc¢ao de escolher a distribuicdo que melhor solucione as suas necessidades.

Para sistemas embarcados existe uma grande variancdo entre as diversas distribuicdes.
Neste trabalho foi utilizada a distribuicdo Xubuntu GNU/Linux. O Xubuntu ¢ uma
distribui¢do baseada na distribuicdo Ubuntu (um fork da distribuicdo Debian) adaptada para
aplicagdes em sistemas embarcados, onde existe uma maior sensibilidade ao gerenciamento
de memoria e arquitetura de processadores.

Uma grande vantagem do sistema Xubuntu para a implementa¢do de solugdes de
rapido desenvolvimento para sistemas embarcados sdo ferramentas de alto nivel para
instalagdo de aplicagdes desenvolvidas pelo seu antecessor Debian. Dentre as ferramentas
destaca-se o gerenciador de pacotes APT (Inglés) que permite a instalacdo de outras
aplicagdes, tal como o servidor web Apache, e instalacdo de bibliotecas de linguagens de

programacao como PHP, Python entre outros.

2.4 Transmissao de dados

Esta secdo aborda o modo de transmissdo de dados na rede sem fio de sensores
(WSN) com a utilizagdo do protocolo Zigbee/IEEE 802.15.4. Também serd abordado a
comunicagdo serial que € necessaria para a comunicagdo do médulo coordenador Xbee com o

moddulo de desenvolvimento por meio da interface USB.

13

2.4.1 Transmissdo serial

Um dos métodos mais comuns de transmissdo de dados entre dispositivos, ¢ a
transmissdo serial de dados, onde cada bit de informacao ¢ transmitidos pelo mesmo canal e
em ordem sequencial. A figura 9, abaixo, ilustra o funcionamento basico de transmissdo de

dados.

Receptor Transmissor

D7 D6 D5 D4 D3 D2 D1 DO
op L0 11000171 po

Figura 9 Modelo simples de transmissiao de dados serial

Apesar da transmissdo serial apresentar velocidade menor quando comparada a
transmissdo paralela de dados, a comunicacao serial apresenta grande simplicidade na logica
de controle quanto na implementagdo fisica. A comunicac¢do serial pode ser sincrona ou
assincrona. Na comunica¢do sincrona ha a necessidade de um sinal de c/ock para determinar o
controle de fluxo de dados entre transmissor e receptor. Na segunda forma, a transmissao
assincrona e forma de controle de fluxo de dados ¢ realizada por meio de conjunto
determinado de dados que sdo transmitidos no mesmo canal dos dados de informagao.

Apesar da comunicagdo sincrona apresentar maior desempenho apresenta também um
maior nivel de complexidade e custo de hardware. Portanto para projetos simples e de custo
reduzido a implementagdo de sistemas assincronos ¢ mais utilizada, onde incide menor custo
em hardware, menor complexidade de projeto.

A comunicagdo serial assincrona apresenta a insercdo de bits de controle junto ao
canal de dados. Logo a velocidade de transmissdo de dados de informagdo torna-se ainda
menor. Como utiliza-se como solucdo o protocolo Zigbee/IEEE 802.15.4 onde ndo ocorre a
necessidade de altas taxas de transferéncia, este aspecto ndo deve gerar atrasos na

comunicagdo sem fio.

14

Transmissao envia o start bit baseado em um clock interno

Receptor utiliza a borda de decida do start bit para iniciar o
clock interno

|

|
Istartwit | Bito | | | [[| |Bit7 stophit
|

| |
| |
4 | |
| |

I I I I I I I
| T S T T T I I o
| | |

Figura 10 Modelo de transmissio serial assincrona

Na linha de transmissao sdo enviados pacotes conforme a figura 10. Permanecendo em
nivel alto durante o repouso, quando ocorre a mudanga de estado sinalizando o inicia da
transmissdo. Este primeiro bit recebe o nome de Start Bit, em seguida sdo transmitidos dados
que podem ter tamanho de 5 a 8 bits. Ao final s3o adicionados 1 ou 2 bits de paridade (sendo
configurado por software). A transferéncia de dados possui uma taxa base de transmissao

denominada Baud Rate e, neste trabalho, a mesma serd utilizada 9600bps.

2.4.2 Protocolo e dispositivos Zighee/IEEE 802.15.4

Zigbee/IEEE 802.15.4 ¢ o protocolo de comunicacdo que opera nas camadas de
aplicacdo rede, enlace e fisica, segundo pardmetros das camadas ISO/OSI, conforme
apresentado anteriormente na Figura 2. O protocolo Zigbee pode ser compreendido como uma
solucdo em protocolo que, com suporte na norma IEEE 802.15.4, desenvolvido pelo
consorcio Zigbee Alliance (ZIGBEE ALLIANCE, 2012), onde o objetivo ¢ permitir a
comunicagdo com baixas taxas de transmissdo de dados, implicando em baixo consumo de
energia e baixo custo operando na frequéncia de 2.4GHz. Neste trabalho o conjunto
Zigbee/IEEE 802.15.4 serd mencionado simplesmente como protocolo Zigbee.

O método implementado pelo protocolo Zighee permite a criagdo de uma rede onde a
transmissdo de dados pode ocorre por roteamento de dados, ou seja, a comunicacao entre dois
dispositivos ndo necessita ser direta entre o dispositivo inicial e final da transmissdo. As
dire¢des de roteamento sdo configuradas previamente, editando-se os registradores, podendo
ser modificadas enquanto a rede esta online por meio de comandos remotos caso seja utilizado
o modo API (este modo de operacdo sera abordado na se¢do intitulada API mode).

Hoje, existem no mercado, diversas solu¢des em modulos utilizando o protocolo
Zigbee dentro das caracteristicas COTS(Commercial OfFThe-Shelf), ou seja, que sdo solugdes

prontas para implementacdo. Dentre estas, serdo abordados os modulos Xbee da Digi

15

International, devido a sua presenca no mercado brasileiro e custo dentro do limite para
desenvolvimento do projeto. As principais caracteristicas dos modulos Xbee serdo

apresentadas no decorrer deste trabalho (ROGERCOM,2012).

2.4.2.1 Topologia de Rede Zigbee

Para discutir as possiveis topologias de rede Zighee ¢ necessario compreender a
distingdo que pode haver em relacdo as fun¢des de cada n6 da rede. Existem duas categorias,
em relagdes as funcdes habilitadas no dispositivo e fungdes de nos na rede. A classificagao
segundo as fun¢des habilitadas por dispositivo sdo:

* RFD - Reduced Function Device: Sao dispositivos que possuem maior simplicidade
quanto ao hardware, ndo permitindo a implementacdo completa da pilha de comunicagao.
Atuam somente como End Devices na rede e, portanto, s se comunicam com coordenadores
e roteadores. Na pratica, os RFDs sdo dispositivos com acesso a rede que constituidos por
interruptores, sensores, controladores, relés entre outros.

* FFD - Full Function Device: Sio dispositivos que possuem a capacidade de operar
como Coordenadores, Roteadores ou End Devices. Portanto, possuem hardware necessario
para a implementagdo da pilha completa de comunicag¢do, processamento e consumo de
energia. Os FFDs podem se comunicar com quaisquer outro dispositivo da rede. Os modulos
Digi Xbee estdo dentro desta categoria de dispositivos.

A segunda maneira de classificar os dispositivos que operam a rede Zighee ¢ em
relacdo a fun¢do desempenhada na rede na qual estéd incluido, podendo ser:

* Coordinator/Coordenador: O dispositivo com a funcdo de coordenador ¢
responsavel pela inicializacdo da rede (controle da PAN), controle e enumeragao (distribui¢ao
de enderecos para os dispositivos) e reconhecimento dos dispositivos. Na rede Zigbee so
existe um coordenador atuante, sendo possivel que haja um segundo dispositivo com fungao
de backup em caso de falha do primeiro coordenador. Somente implementdvel por um
dispositivo FFD.

* Router/Roteador: A fungdo de roteador também s6 podem ser executada por um
dispositivo FFD, porém podem haver varios roteadores em uma mesma rede Zighee. Os
roteadores sdo responsaveis pela transmissdo de dados entre dispositivos, permitem a entrada
de dispositivos, entre outras fungdes.

* End Device/Dispositivo Final: Nesta fun¢do ¢ possivel utilizar dispositivos FFD e
RFD, pois apenas comunicam dados para os roteadores e coordenadores. Os dispositivos

finais, neste trabalho referidos como End Devices, consomem menos energia que 0s

16

coordenadores e roteadores, pois permitem a funcdo sleep (tal operagdo serd abordada
posteriormente) do dispositivo e ndo permitida nos demais.

Considerando as possiveis fungdes desempenhadas pelos dispositivos Zigbee, as
topologias de rede sdo: (a) Star (Estrela), (b) Cluster Tree (Arvore) e (c) Mesh (Malha),

conforme apresentado na Figura 11.

(a)Star (b) Cluster Tree (c) Mash

.Coordenador .Roteador Dispositivo Final

Figura 11 Topologias de rede para rede Zigbee.
(a)Estrela(Star)(b)Arvore(Cluster Tree)(c)Malha(Mesh)
Adaptada de: ROGERCOM (2012)

A topologia Estrela (figura 11(a)) ¢ a topologia mais simples, onde o coordenador de
rede comunica-se diretamente com os dispositivos de rede. Esta topologia ¢ aplicada para
sistemas simples, onde ndo existem muitos obstaculos para a transmissdo de dados, assim
como uma taxa de transmissdo média baixa.

A topologia de Arvore (figura 11(b)) possui um nivel de complexidade acima da
topologia Estrela, pois apresenta de hierarquia, ou rota, definida para a transmissdo de dados.
Porém tal topologia apresenta uma inflexibilidade para o trafego de dados.

Na topologia de Malha (figura 11(c)) ocorre o ajuste automdtico de roteamento de
dados, assim como o monitoramento dos nods, este tipo de topologia aproveita as
caracteristicas diferencias do protocolo Zigbee/IEEE 802.15.4 para aplicacdes com diversos

nods, longas distancias e taxas de transmissdo de dados variadas.

2.4.2.2 Inicializagdo da Rede Zigbee

A inicializa¢do da rede Zigbee ocorre com a energizagdo do dispositivo coordenador,
onde o mesmo escolhe um PAN ID (Personal Area Network Identifier). Os dispositivos
encontrados pelo dispositivo coordenador, e configurados apropriadamente (a configuragao

sera abordada no Capitulo 3 - Metodologia), herdam o PAN ID do coordenador, passando a

17

fazer parte da rede. Ao “entrar” na rede do coordenador, o dispositivo recebe um endereco de
rede (16bits). O processo de criagdo de rede ocorre em duas etapas:

1. Varredura de energia(Energy Scan): O coordenador varre os diversos canais
utilizados no padrao IEEE 802.15.4, detectando niveis de energia, correspondentes a canais
utilizados por outras redes, equipamentos, entre outros. Desta forma o coordenador elimina
canais para utiliza¢do da rede.

2. Varredura de PAN(PAN Scan): Apds a varredura de energia, o coordenador busca
por PANs dentro dos possiveis canais de comunicagdo por meio de um sinal de broadcast
(Beacon Request), mostrado na Figura 11. Os dispositivos que recebem o sinal de beacon
respondem o coordenador, com informagdes relacionadas a permissdes do dispositivo, a PAN

em que o dispositivo estd e sobre o proprio dispositivo.

1. beacoing

3. association
request

4. association
response

Figura 12 Processo de beaconning para inclusio de dispositivo a rede Zigbee. Adaptada de: DIGI
INTERNATIONAL (2010)

Ao finalizar a varredura de PAN, o dispositivo coordenador analisa os frames
recebidos e determina a nova PAN, PAN ID e canal, utilizada pelos dispositivos. Quando os
demais dispositivos s3o inicializados, eles juntam-se a PAN disponivel, este processo pode
ocorrer por dois métodos:

* Beaconning: Os dispositivos roteadores permanecem ligados e emitem um sinal de
sinalizacdo(beaconning), descobrindo os demais dispositivos na rede. Enquanto os
dispositivos finais(End devices) permanecem e sleep € tornam- se ativos por um processo de
temporiza¢do a fim de observar o sinal de beaconning. Desta forma existe uma economia de

energia pelo sistema.

18

* Non-Beaconning: Neste modo todos os dispositivos permanecem ativos,
consumindo mais energia. Assim, ndo hd necessidade de sinalizacdo temporal entre os
dispositivos.

Desta forma, o dispositivo encontra a rede do coordenador e ¢ inserido, e se for
permitida sua entrada, em uma PAN valida. Ao encontrar a PAN valida, o dispositivo envia
um Association Request ao n6 patriarca, conforme apresentado na Figura 11. A permissdo de
entrada de outros roteadores ou dispositivos na rede ¢ determinada, conforme citado
anteriormente, pelo proprio atributo de permissdao de entrada e o nliimero maximo de nos-
filhos pré-determinado.

O atributo de permissdo de entrada determina a possibilidade de associa¢do de outros
dispositivos a rede na qual o dispositivo coordenador ou roteador se encontra. Tal atributo
pode permitir a entrada, permitir a entrada por um determinado periodo de tempo ou nao
permitir a entrada de mais dispositivos.

O ntmero méaximo de conexdes de um dispositivo, coordenador ou roteador, ¢
determinado segundo o numero estimado de transmissdo em relagdo ao numero de
dispositivos conectado ao roteador ou coordenador, ou seja, pelo trafego de dados

considerado limite.

2.4.2.3 Enderecamento e envio de dados

Na rede Zigbee ocorre o enderecamento dos dispositivos em dois niveis da camada de
comunica¢do ISO/OSI, enderecamento de dispositivos(podendo ser na camada de rede ou
fisica) e o enderecamento na camada de aplicagdo.

O enderecamento de dispositivos podem ser feitos em duas camadas separadas. De
uma forma, por um enderego de 64 bits que ¢ permanente e imutavel para cada radio Zigbee,
estabelecido pelo fabricante. Este endereco se assemelha ao endereco MAC em dispositivos
de rede Ethernet. A segunda forma ¢ dada por um endereco de rede, de 16 bits, configuravel e
mutavel de acordo com as necessidades da rede na qual o dispositivo se encontra.

O enderecamento na camada de aplicacdo considera o dispositivo final, de destino
(End Point), e a identificacdo da informa¢do enviada, Frame ID. O valor do End Point,
semelhante a um socket TCP, representa uma tarefa ou aplicagdo no dispositivo de destino. O
cluster ID define o comando, ou acdo, propriamente dito.

Os pacotes de dados na rede Zigbee utilizam as duas formas de enderecamento, por
dispositivo e por camada de aplicag@o, para transmitir os dados. Desta forma, a transmissao

em si pode ser feita por unicast (direcional) ou por broadcast, e caso nao haja conexao direta

19

entre os dispositivos inicial e final existe a transmissdo por meio de outros dispositivos da
rede(hops). Para que o envio encontre o enderego destino ocorre:

* Descoberta de endereco: Consiste em associar um endere¢o de rede mutavel (16
bits) a um enderego de dispositivo imutavel (64 bits). O emissor envia uma mensagem em
broadcast informando o endereco 64 bits de destino, quando o dispositivo receptor compara
os enderegos de dispositivo de 64 bits e sdo idénticos, 0 mesmo responde confirmando seu
endereco de rede (16 bits), desta forma o emissor inicial inicia a transmissdo de dados de
informacgao de aplicagdo.

* Descoberta de rota: A rota na rede Zigbee ¢ determinada por um procedimento Ad
Hoc On-Demand Distance Vector, onde a rota é determinada relacionando a distancia de
acordo com a utilizacdo dos ndés da rede. Cada transmissdo de frames de dados entre
dispositivos de roteamento ¢ considerado um 4op e pode ser determinado um numero maximo
de retransmissodes.

A transmissdo de dados na rede Zigbee possui confirmacao de sucesso na transmissao,
conhecida como ACK, referente ao termo acknowledge do inglés (reconhecimento ou
confirmagdo). A cada hop entre dispositivos ¢ transmitido um ACK na dire¢do do emissor, a
fim de informar o sucesso da transmissdo. Caso ocorra alguma falha, o radio Zigbee realiza
uma tentativa de retransmissao do pacote (sendo, por padrao, no méximo duas tentativas) e no
caso de falha nas retransmissdes a rede percebe o erro ocorrido, permitindo agdes de controle.

Na secdo 2.4.2.5 serd abordado novamente o enderegamento de dispositivos em

relacdo ao modo de operagdo utilizado.

2.4.2.4 Modulos Digi Xbee

No mercado, existem diversas empresas que fabricam dispositivos Zigbee, neste
trabalho serdo utilizados dispositivos Xbee ¢ Xbee PRO ZNET2.4, o dispositivo Xbee ¢
apresentado na Figura 13. Vale ressaltar neste ponto que o dispositivo de qualquer empresa
“X” que atue oficialmente dentro das normas do protocolo Zigbee/IEEE 802.15.4 se

comunicara sem problemas com o dispositivo da empresa “Y” .

20

Figura 13 Mo6dulos Xbee da Digi International com diferentes antenas.
Adaptado de: ROGERCOM (2012)

A versao Xbee PRO difere quanto ao desempenho em relagdo ao Xbee, desempenho
aqui medido em distancia de transmissao, principalmente. Porém tal desempenho acarreta um
maior consumo de energia pelo dispositivo. A tabela 1 fornece as principais informagdes em

relacdo aos dispositivos Xbee e Xbee PRO (DIGI INTERNATIONAL, 2010).

21

TABELA 1 Especificacdes gerias dos dipositios Xbee e Xbee PRO Series 2. (DIGI INTERNATIONAL,

2010)

Caracteristica Xbee Xbee PRO
Poténcia de saida 1 mW (0 dBm) 60 mW (18 dBm)
Alcance em ambientes internos 30m 100m

Alcance de RF em linha visivel 100m 1600m
Sensibilidade do receptor -92 dBm -100 dBm

Taxa de dados de RF 250.000 bps 250.000 bps
Tensao de alimentacio 2.8-3.4V 2.8a34v
Corrente de transmissio (tipico) 45mA @33V 215mA @33V
Corrente de Recepc¢io (tipico) 50mA @33V S55mA @33V
Dimensdes 2.438cm x 2.761cm 2.438cm x 3.294cm
Tipo de espalhamento espectral DSSS DSSS
Criptografia 1 28-bit AES 128-bit AES

Os modulos Xbee e Xbee

PRO também possuem diversos periféricos ja

implementados, tais como saidas e entradas digitais, conversores analdgico-digital, saida por

PWM, canal de comunicagdo UART (Universal Asynchronous Receiver/Transmitter). Desta

forma ¢ possivel implementar solu¢cdes de maneira rapida e eficiente, com hardware ja

validado. O diagrama de pinos ¢ apresentado conforme o Quadro 1

Neste trabalho ambos dispositivos serdo tratados por dispositivo Xbee, ¢ quando for

necessario a diferenca entre os dispositivos serd adequadamente apresentada, com os

respectivos resultados.

22

1 VCC - - Power supply
2 pouT Output Output UART Data Out
3 DIN / CONFIG Input Input UART Data In
4 DIO12 Both Disabled Digital /0 12
5 RESET Both Opencpﬁ):llzc‘t)or with Maodule Reset (reset p[t:Ls)e must be at least 200
) RSSI PWM / DIO10 Both Output RX Signal Strength Indicator / Digital 10
7 DIO11 Both Input Digital 1O 11
8 [reserved] - Disabled Do not connect
g DTR/ SLEEP_RQ/ DIOB Both Input Pin Sleep Control Line or Digital 10 8
10 GND - - Ground
1 DI04 Both Disabled Digital /0 4
12 CTS /DIO7 Both Output Clear-to-Send eFL%vt')‘lgg,nigoa} :; thg:}fl W0 7.CTS, if
13 ON/SLEEP Output Output Module Status Indicator or Digital /0
Not used for EM250. Used for programmable
secondary processor.
“ e ekl b]
if Analog sampling is desired.
Otherwise, connect to GND.
15 Associate / DIOS Both Output Associated Indicator, Digital 'O 5
16 RTS/DIOS Both Input Requesl—to-Sei?gnZlgI\;d(??:ggliﬂ%ig{ml 1/0 6. RTS,
17 AD3/DIO3 Both Disabled Analog Input 3 or Digital /0 3
18 AD2/DIO2 Both Disabled Analog Input 2 or Digital I/0 2
19 AD1/DIOY Both Disabled Analog Input 1 or Digital IO 1
2 Comglijsgig E'In(;:) Bixtton Both Disabled Analog Input 0, Digitgug:, or Commissioning

QUADRO 1 Diagrama e especificacio da pinagem dos moédulos Xbee e Xbee PRO. Fonte (DIGI
INTERNATIONAL, 2010)

2.4.2.5 Comunicacdo entre dispositivos Digi Xbee

Utilizando a interface serial do mdédulo Xbee, pode-se trabalhar de duas maneiras: de
modo transparente, utilizada entre dois dispositivos especificos, € modo API (Application
Programming Interface), que fornece uma interface para outras aplicagdes em relagdo a rede
Zigbee. As principais caracteristicas de cada modo de operacgdo ¢ descrita a seguir. De acordo
com o datasheet DIGI INTERNATIONAL (2010), estdo implementados os seguintes modos
de operacao:

« Modo Transparente: E o modo de operagdo mais simples, onde é configurado por
meio de registradores o enderego de destino (DL e DH), e ao se transmitir dados no pinto DIN
(RX) do moddulo Xbee a informagdo ¢ transmitida de forma transparente para o pino DO (TX)
do modulo Xbee de destino. O enderego de destino pode ser editado pelo canal serial também
utilizando comandos AT, no datasheet, p.129, dos dispositivos Xbee da Digi International
(2010) ¢ possivel encontrar a lista completa com descricdo dos comandos AT.

* Modo API: Neste modo existe uma estrutura (frame) que sdo categorizados entre
frames de requisito e de resposta (Transmit Data Frames e Response Data Frames). Este

método permite a utilizagdo maxima dos recursos da rede Zigbee, como transmissao

23

multiponto, configuragdo remota, entre outras aplicagdes. Além de maior controle dos dados,
por introdugdo de dados de controle como controle de erro (Checksum) e enderego de origem.

Durante o processo de comunicagdo, o dispositivo Xbee possui uma série de estados
em relagdo ao processo de comunicagdo. Tais estados sdo independentes do modo de
operagao utilizado e sdo os seguintes: sleep, repouso (idle), de transmissao, de recepgdo e de
comandos AT.

* Estado sleep : Neste modo, permitido aos dispositivos que possuam funcdo de
dispositivo final, onde os mesmos permanecem a maior parte do tempo sem ou com o minimo
de clock de maquina, e com a grande maioria dos periféricos desligados. E assim, o consumo
de energia ¢ extremamente reduzido. Estes dispositivos podem sair deste estado por uma
interrupg¢do externa ou interna (e.g. timer).

* Estado de repouso(idle): Como os dispositivos coordenador e roteadores ndo podem
entrar em sleep(desativacdo completa da rede) eles encontram-se em estado de repouso
quando ndo estdo transmitindo ou recebendo dados. Neste estado ocorre uma diminui¢ao da
capacidade de processamento (clock), e assim, ocorre uma economia de consumo de energia,
porém ndo dréastica como a fungao sleep.

* Estado de transmissao: Quando um dado ¢ recebido por um pino de entrada de
dados, o dispositivo entra em modo de transmissdo. O dispositivo valida do enderegamento e
rota da mensagem, caso ndo sejam conhecidos(endere¢o ou rota) ¢ iniciado o processo de
descobrimento de enderego ou rota, conforme apresentado na se¢do 2.4.2.3. O fluxograma

apresentado na Figura 14 ilustra o processo para transmissdo de dados pelo dispositivo Xbee.

Recebe os Forma o Busca
dados . pacote . e(r;:je;;(igo . Transmite

Figura 14 Processo para transmissio de dado

* Estado de recep¢ao: O dispositivo entra no estado de recep¢do quando existe o sinal
no canal utilizado pela PAN, verificando se o0 mesmo ¢ o endereco de destino da informacao.
Caso seja o destino, envia o sinal de ACK para o dispositivo de origem do hop e guarda o

dado recebido em um bugfer. O processo € analogo porém invertido em relacao a transmissao.

24

* Estado de comandos AT: O estado, ou modo, AT ¢ um estado especial onde o
dispositivo Xbee recebe comandos de configuracio(leitura ou atualizacdo de dados) pela
serial UART.

Para ativar este modo enviam-se os caracteres "+++"(sem aspas) dentro de um
segundo, o dispositivo responde "OK", confirmando que o dispositivo entrou em modo de

comandos AT. A sintese dos comandos AT ¢ ilustrada na Figura 15.

. Valor Retorno de
AT Comando , (opcional) .
(opcional) carro
Comando At Novo valor a
Prif\fi-lcxig gira composto S q >er |r;soer|do Delimitador
por dois €parador . dos frame
frame regitrador
caracteres AT

Figura 15 Estrutura do frame de transmissio do modo AT

Para encerrar o modo de comandos existe um timeout ou pelo comando “ATCN*.

Para garantir a comunicagdo entre os dispositivos ¢ necessario realizar o
enderecamento dos dispositivos, conforme apresentado na secdo 2.4.2.3, de maneira coerente
com o modo de operagdo utilizado. Desta forma tem-se para o0 modo transparente de operagao
as seguintes formas de enderegamento:

* Endereco fisico de 64 bits: Por meio dos comandos AT, configura-se os campos de
DH e DL (sendo respectivamente a parte mais € menos significativa do endereco de 64 bits)
com o endereco do dispositivo de destino.

* Parimetro NI (Name Indentifier): Por meio de comandos AT, utiliza- se o
comando NI para editar e configurar o registrador NI, gerando um nome conveniente a
aplicagdo. Também por meio de comandos AT configuram-se os registradores DH e DL para
o atributo estabelecido como NI do dispositivo de destino.

Para o modo de operacdo API utiliza-se o frame padrdo que j& contém campos
relacionados ao enderegamento por 64 bits, 16 bits ou NI. Tal frame sera abordado na sec¢ao

seguinte.

25

2.4.2.6 Modo de Operacao API

Nesta secdo serd abordado o modo de operacdo API(Application Programming
Interface) do dispositivo Digi Xbee. Este método difere do modo transparente pois a frame
enviado ao pino de entrada de dados serial ndo serd simplesmente direcionado ao pino de
saida de dados do dispositivo de destino.

Ao invés, ¢ utilizada uma estrutura de frame como interface para os diferentes

comandos, A estrutura basica do frame API ¢ ilustrada na Figura 16.

Delimitador de Inicio Tamanho Dados do Frame Checksum
(Byte 1) (Bytes 2-3) (Bytes 4-n) (Bytes n+1)
OX7E MSB | LSB API-specific Structure 1 Byte

AP Identifier Identifier-specific Data
cmdD ‘ cmdData

Figura 16 Estrutura do frame API (DIGI INTERNATIONAL,2010)

Se o frame ndo ¢ recebido corretamente o modulo de destino responde com um frame
de status indicando a natureza da falha. O frame possui os seguintes campos:

* Delimitador do frame: “Ox7E” demarca o inicio do frame, qualquer dado recebido
antes do delimitador nao ¢ considerado pelo dispositivo.

* Tamanho: indica o tamanho de dados do frame, este tamanho ndo inclui o campo de
checksum.

* Dados: Variam de acordo com a mensagem, cada comando API possui um niimero e
estrutura, a estrutura geral ¢ demonstrada na Figura 15, e um detalhamento maior pode ser
encontrado no datasheet, p-102. dos dispositivos Xbee da Digi International (2010) ¢
encontrada uma descricdo completa dos frames.O identificador do comando, cmdID, indica o
comando do API que sera executado, os comandos suportados sdo listados na Tabela 2

 Checksum: ¢ um valor calculado para validar o frame recebido. E calculado
somando-se os valores do frame de dados (excluindo delimitador e tamanho), portanto n-3
bytes, e o resultado dessa operagdo ¢ subtraido do valor OxFF. Na transmissdo ¢ realizado este

algoritmo, e na recep¢ao, o valor de checksum ¢ comparado ao recebido no frame APIL.

TABELA 2 Comandos e identificadores do frame API (DIGI INTERNATIONAL, 2010)

API Frame Names API Identifier (ID)
AT Command 0x08

AT Command - Queue Parameter Value 0x09

ZigBee Transmit Request 0x10

Explicit Addressing ZigBee Command Frame Ox11

Remote Command Request 0x17

Create Source Route 0x21

AT Command Response 0x88

Modem Status 0x8A

ZigBee Transmit Status 0x8B

26

Ao enviar um frame de request, o dispositivo que o recebe envia um frame de resposta

de acordo com o comando API especificado. E mesmo quando a lina de comandos ¢ remota,

existe um traceback ad informacao, conforme ilustrado na Figura 17.

Figura 17 Ilustragdo da comunica¢do por meio de frames API.
Fonte: DIGI INTERNATIONAL (2010)

27

3 Metodologia

Neste capitulo serdo apresentados os métodos para atingir o objetivo proposto. Para
isso foi adotada uma abordagem sistematica para a elaboracdo do projeto baseada na
informagdo apresentada anteriormente no Capitulo 2. A organizacdo deste capitulo apresenta
duas se¢des que apresentam de maneira linear a sequencia de atividades que antecedem a
implementagdo do projeto.

A primeira parte aborda a funcionalidade do sofiware compreendendo a analise de
sistema, requisites, fluxo de dados e escolha de tecnologia. A segunda secdo trata da
modelagem do sistema fisico mostrando as configuracdes, topologias e dispositivos utilizados
na rede, configuracdes a serem feitas, juntamente metodologia dos testes para cada
configuracao.

3.1 Projeto de software

Nesta secdo serd abordado todo o processo de andlise de sistemas realizados, anélise
de requisitos e detalhamento em relagdo ao processamento de dados realizados, seguindo o
padrdo de implementagdo em cascata. Para isso ¢ necessario uma breve descricdo geral, em
termos da abordagem de engenharia de soffware utilizada. Os principais termos abordados
sdo:

 Usudrio: O usudrio consiste no agente primario do sistema. Realiza os pedidos para
o servidor web e ¢ o observador primario de qualidade do sistema.

* Coordenador: O coordenador representa o modulo que desempenha o papel de
coordinator na rede Zigbee. O mddulo coordenador possui interface serial-USB com o
modulo de desenvolvimento(base).

» Entradas/Saidas Digitais: O modulo de entradas, ou saidas, digitais possui a fun¢ao
de end device ou roteador dentro da rede Zigbee, sendo configurado o mdédulo Xbee para
trabalhar diretamente com os comandos para acesso e controle dos pinos de entradas/saidas
digitais.

* Modulo de desenvolvimento/Base: O modulo de desenvolvimento FriendlyARM
sera tratado, neste trabalho, também como Base, sendo responsavel pelo processamento de
dados, assim como o host do servidor web e controlador da interface serial-USB com o
moédulo coordenador da rede Zigbee

» Web-server: Principal interface com o usudrio e o sistema de controle da rede

Zigbee.

28

* Request/Response: Neste trabalho serdo tratados como requests e responses
quaisquer petigdes entre agentes ou modulos.
* Xbee API: Modo de operagao do coordenador Zigbee, permitindo o controle por

frames especificados na Norma Xbee Zigbee API.

3.1.1 Analise de Sistema

Nesta se¢@o serdo apresentados a analise de sistema do projeto e sua viabilidade de
desenvolvimento e implementagdo. A discussdo do cendrio das redes sem fio de sensores, e
sua necessidade ja foi discutida previamente no Capitulo 1.

Assim vale destacar que este sistema primordialmente busca cumprir as necessidades
propostas pelos novos desafios para a implementagdo das WSNs, onde se encontram
eficiéncia energética, escalabilidade, mobilidade, robustez, seguranca, estratégias de
sincronizagao.
3.1.1.1 Analise de viabilidade técnica

Para que o sistema seja implementado, apenas considerando as necessidades
anteriormente expostas (interface para o usudrio interagir com uma rede sem fios de
sensores), serdo utilizadas tecnologias com alto grau de maturidade, ou seja, j& aceitas e com
grande suporte da comunidade desenvolvedora.

Para o sistema de web-server e back-end serdo utilizados o pacote AMP, composto por
MySQL, Apache 2 server e PHPS, sendo implementados sobre a plataforma GNU/Linux. Este
conjunto de aplicacdes ja possui grande suporte e difusdo dentro da comunidade de
desenvolvedores.

Como citado acima a plataforma operacional serd o GNU/Linux que permite utilizar
comandos do tipo shell script para a realizacdo de tarefas, sendo possivel a implementacao
modular de solugdes para o sistema, assim como como fung¢des ad-hoc. Desta forma, o
projeto torna-se vidvel em termos técnicos de implementacdo, desenvolvimento e suporte.
3.1.1.2 Analise de viabilidade econdmica

Dentre as solucdes técnicas citadas acima, todas possuem licengas livres para a
implementagdo em aplicacdes de terceiros. Logo, a viabilidade do sistema como todo depende
de: valor de hardware (compra e configuracdo), inicializagdo (treinamento) e permanentes
(salarios, sistemas de apoio como internet, energia, aluguel). Para os fins deste documento
somente serdo abordados custos dos mddulos de hardware, considerando que os demais sdao
fornecidos por um terceiro agente (a universidade e o discente neste projeto).

O hardware proposto para a realizacdo do sistema consiste em:

29

* Médulo de desenvolvimento FriendlyARM Tiny6410: responsavel pela base do
sistema principal de controle do sistema, possuindo o sistema operacional Linux embarcado.
Contém as interfaces necessarias para a implementacdo do projeto (USB e conexdo com a
internet)

* Médulo Xbee PRO Series 2: modulo que serd responsavel pela comunicagdo
wireless da rede sendo responsavel pelas duas camadas inferiores segundo o modelo ISO/OSI
(Fisica e Enlace).

e Adaptador CON-USBEE Rogercom: responsavel pela comunicacdo fisica
(conversdo USB-UART) entre os mddulos de comunicacdo wireless e a base do sistema de
controle.

Como os componentes do circuito representam um modelo genérico correspondente
aos sensores utilizados, ndo serdo considerados. J& que a rede para os sensores ndo depende

dos mesmos. E com isso, a tabela 3 mostra o custo de implementagdo, segundo uma pesquisa

inicial .
TABELA 3 Cotacio inicial de custo de aquisicio de hardware
Qtdad Descrigao Valor (US$)/Unidade
01 FriendlyARM Tiny6410 160.00
01 Rogercom CON-USBEE 50.00
03 Xbee PRO Series 225.00
Total 275.00

3.1.1.3 Analise de viabilidade legal
Neste projeto, serdo buscadas tecnologias que ndo possuem restrigdes legais, seja em
relagdo ao uso e modificagdo de codigo. Assim o projeto nao implica restricdes a publicacao

de material desenvolvido.

3.1.2 Analise de Requisitos

Nesta se¢do serdo apresentados os requisitos que o sistema devera compreender em
sua solugdo. Os requisitos sdo levantados de maneira a permitir uma modularidade no
desenvolvimento no sistema. Os requisitos levantados sdo apresentados a seguir e descrevem

o diagrama ilustrado na Figura 18.

30

Nicnngitivneg

sistema

Leitura das
Entradas Digitais

Comunicacio Controle das \

H , . . .
com internet <> saidas Digitais ﬁ
Usuario Rede de

Monitoramento Sensores
da Rede e

Figura 18 Diagrama de requisitos para o sistema Linux-Zigbee

3.1.2.1 Requisitos funcionais
Os requisitos funcionais correspondem as atividades que o sistema realiza de tal
maneira a solucionar as necessidades propostas pelo cendrio. Desta maneira, os seguintes

requisitos funcionais foram avaliados:

A. Ler o valor das entradas digitais do médulo de entradas: Este requisito ¢ formado
pelo request do usuario/servidor para leitura de uma determinada entrada digital do médulo de
entradas digitais disposto na rede de sensores.

* Entradas: HTTP request do usuério ou chamada temporizada do servidor;

* Processamento: Verificagdo do request, identificagio do comando e transmissdo
para o modulo de transmissdo wireless, espera pela resposta e envio de resposta para o
usuario;

* Saidas: Valor da entrada digital.

B. Controlar o valor das saidas digitais do moédulo de saida: Este requisito ¢ formado
pela peticdo do usudrio para mudanga de uma determinada saida digital do modulo de saidas
digitais disposto na rede de sensores.

* Entradas: HTTP request do usuério;

* Processamento: Verificacdo do request, identificagdo do comando, transmissao para
o modulo de transmissdo wireless, validacdo da agdo e envio de resposta para o usuario;

* Saidas: Valor da saida digital e confirmacao de execugao.

31

C. Monitorar a rede de sensores: Este requisito ¢ formado pela peticdo do usudrio ou
pelo proprio sistema para avaliar o estado e que a rede estd, com detalhes sobre os nds.

* Entradas: HTTP request do usuério ou temporizado pelo sistema;

* Processamento: Verificagdo do request, identificagio do comando e transmissdao
para o modulo de transmissao wireless, espera e validacao da resposta da rede wireless;

* Saidas: Array da estrutura de pontos de rede Zigbee.

3.1.2.2 Requisitos ndo-funcionais

Os requisitos ndo funcionais serdo compostos pelas determinacdes de eficiéncia,
robustez, seguranga e atributos adicionais do sistema. Estes requisitos determinam
diretamente fatores de qualidade do sistema. Os requisitos ndo funcionais sdo descritos

abaixo.

* Eficiéncia: O sistema deve apresentar uma relacdo de sucesso/erro na execucao dos
requests do usuario/servidor de 99%

* Tempo de resposta: O sistema deve responder em no maximo Is depois do
recebimento da peticdo do usuério.

* Robustez: O sistema deve ser capaz de identificar erros e informa-los sem
comprometer a execu¢ao continua do servigo.

* Seguranca: O sistema ndo apresentard validacdo de seguranca de usudrio em sua

primeira instancia, versao alpha. Sua implementacao sendo arbitraria na fase beta.

No Apéndice A - Fluxogramas e diagramas referentes a andlise de sistemas sdo
apresentados os fluxogramas orientados a fluxo de dados, assim como o processo final

realizado pelo sistema.

3.2 Redes de sensores e atuadores

Com o software inicialmente proposto, sdo necessarios modelos de redes de sensores
para teste do sistema proposto. Nos modelos serdo utilizados quatro dispositivos: um
dispositivo contendo as entradas digitais, um contendo as saidas digitais, um
coordenador(base) e um roteador intermediario sem saidas ou entradas.

Desta forma, as topologias de rede utilizadas foram em estrela, em arvore e mesh,

conforme apresentada na figura 11. A configuragdo a ser implementada em cada elemento da

32

rede, em relagdo aos registradores AT dos dispositivos Xbee, ¢ apresentada nos Quadros 2, 3,

4es.
TABELA 4 Configuracio dos registradores AT do dispositivo Xbee coordenador
Registrador AT Valor
ID 1234
SH 0013A200
SL 405CC166
NI COORDINATOR
DH 0
DL FFFF
AP 1
BD 3
D7 1
D6 1

TABELA 5 Configuracio dos registradores AT do dispositivo Xbee roteador

Registrador AT Valor

1D 1234

SH 0013A200
SL 405CC150
NI ROUTER

DH 0

DL 0

TABELA 6 Configuracio dos registradores AT do dispositivo Xbee de entradas digitais

Registrador AT Valor

1D 1234

SH 0013A200
SL 405CA290
NI DIGITAL INPUT
DH 0

DL 0

DO 3

DI 3

D2 3

D3 3

TABELA 7 Configuracio dos registradores AT do dispositivo Xbee de saidas digitais

Registrador AT Valor

ID 1234

SH 0013A200

SL 405CA265

NI DIGITAL OUTPUT
DH 0

DL 0

DO 5

DI 5

33

D2 5
D3 5

A descri¢ao completa dos registradores AT pode ser encontrada no Anexo A — Lista

de comandos AT.

3.3 Metodologia de testes
Os testes realizados tem por objetivo satisfazer a proposta de solu¢do para automagao,
por meio da andlise do sistema em relacdo: ao consumo de energia; a modularidade e a

escalabilidade; a integridade e robustez da comunicag¢ao e a distancia entre dispositivos.

3.3.1 Teste de consumo de energia
Para a analise do consumo de energia sera utilizada a medi¢ao de corrente do modulo
Xbee para os seguintes estados, sleep(para os dispositivos finais), transmissao e recepg¢ao.
Para tal medi¢do serd utilizado um resistor em série com o pino de alimentagcdo com o
valor de 0,752 e a medicdo de queda tensdo sobre o mesmo permitird inferir o valor de
corrente. Com o valor de resisténcia baixo ndo ¢ gerado um erro na medi¢do da corrente,

sendo a topologia utilizada representada na Figura 19.

Q0

\

R1
{ J\-\/\'\/‘ Vce

ref

Figura 19 Topologia para medicio do consumo de energia dos médulos Xbee

3.3.2 Teste de modularidade e escalabilidade
Definindo modularidade como a capacidade de trabalho em cada dispositivo de

maneira particular de acordo, mantendo as caracteristicas gerais aos dispositivos e

34

escalabilidade como a capacidade de adicdo e remocdo de dispositivos da rede, sem
comprometer a eficiéncia da mesma.

A protocolo Zigbee tem a capacidade de agregar novos dispositivos a rede, desde que
estejam configurados para buscar a rede especifica. Portanto, para a realizagdo desse teste,
retira-se e se insere os dispositivos roteador e end devices e verifica-se a reinser¢do do

dispositivo a rede.

3.3.3 Teste de integridade e robustez da comunicagao

Um dos principais requisitos do sistema ¢ a robustez em relagdo a comunicagdo de
dados, para que o sistema ndo tome decisdes incoerentes erroneas.

Para realizar esta medi¢do cria-se uma rotina no servidor, que envia mensagens
temporizadas a um dos dispositivos na rede, e ¢ verificada a integridade da resposta, o tempo

de envio e resposta.

3.3.4 Teste de distancia entre modulos

Segundo a Digi International (2010), os médulos Xbee e Xbee PRO tem capacidade de
alcance de 100 e 1600 metros, respectivamente, em linha visivel das antenas.

Para a medic¢do do nivel de poténcia recebido e enviado seria necessario equipamento
mais sofisticado com a finalidade de validar as medi¢oes. Desta forma serdo realizados testes
de comunicagdo e validacdao por inspe¢do visual, ou seja, uma rotina de mudanga de estado
em uma saida digital e confirmacao visual associada a um ponto de distancia.

Também serd feita a medicdo do nivel de potencia recebida pelo dispositivo remoto,
enquanto o mesmo recebe o sinal. Para esta medida sera utilizado o terreno adjacente ao

departamento de engenharia elétrica, ilustrado na figura 20

. | - ~—
w
[}

[]| I
AN >ARTAMENTO DE ELETRICIDAL ‘
| \\\\\\s-\\\\\ \
' [TTTTTTTTTI

AL RS R S r Y,
\&A) \S S KL : Lgis u“j tslthﬁtlt_
%] ‘\S\K\K\\Qx\‘ T\ R
NN IR \ S N B NN\ =

Figura 20 Planta das adjacencias do Departamente de Engenharia Elétrica

NWNOIOVLS3

35

4 Implementacao

Neste capitulo sera abordada a implementag@o do sistema, assim como os resultados
pertencentes a implementacdo em si. Este capitulo aborda: configuracdo do sistema
GNU/Linux embarcado; a configuracdo e instalacdo da biblioteca libxbee, desenvolvida e
mantida por Attie Grande (2012); o software do sistema desenvolvido em C e em linguagens

web (HTML, CSS, JAVASCRIPT e PHP) e os circuitos utilizados para os médulos.

4.1 Circuitos dos modulos de teste

Para os testes foi desenvolvido um circuito macro para os End devices, apresentado na
Figura 19. Tais circuitos possuem simplicidade suficiente para implementagdo em
protoboard, ndo sendo necessaria a impressdo do circuito em placa. O resultado de tal

implementagao ¢ apresentado nas figuras 21 e 22.

vCC

UL LM33KC
L ™~ our T D
_l*+c1 GNDE) +c2

“T~Cap Poll - “T~Cap Poll
| 10uF 100nF

al

GND

{33 1’ ’ |

D1 D2 ! D3 ! D4
Xbee NQALEDD [\MLEDJ | \MLEDD | \MLEDO
Digi_international Resl
220
R1 220
R2,,, 220
R3 0 220
Rd,,,

3v3 —x D 3v3

BRES
0000

r/_> :

GND

Figura 21 Circuito modelo para teste dos End devices

36

-
-

-
-

»

BN EVRENE NEEENE NN

Figura 22 Montagem dos dispositivos finais em protoboard

Os demais modulos, roteador e coordenador, ndo possuem necessidade de montagem
de um circuito particular, apenas a alimentacdo adequada. Tal alimentacdo ¢ realizada pelo

adaptador USB utilizado.

4.2 Comunicacio serial com o modulo coordenador (RCOM CON-USBBEE)
A comunicag¢do entre a mddulo e o dispositivo coordenador da rede Zigbee ¢ realizada
por meio do adaptador ROGERCOM CON-USBBEE, mostrado na Figura 23. Para o

funcionamento correto basta certificar a instalagdo do driver dos dispositivos FTDI,

componente contido no adaptador.

Figura 23 Adaptador Rogercom Con-USBBEE;

37

O driver permite a criacdo de uma serial virtual relacionada a interface USB, logo a
comunicagdo utilizada ¢é, no fundo, a UART. No teste realizado para verificar o
funcionamento ¢ utilizado um terminal serial do tipo minicom, kermit, e sdo enviados
comandos AT para o dispositivo.

A montagem no modulo de desenvolvimento FriendlyARM tiny6410 ¢ mostrado na

Figura 24.

FriendlyARM

e OD o

Figura 24 Dispositivo coordenador conectado no médulo de desenvolvimento FriendlyARM Tiny6410

O resultado ¢ mostrado na Figura 25, mostrando a identificacdo do dispositivo pelo

sistema operacional e validando a comunicacao serial.

000 Terminal — bash — 85x22

USB Bus:

Host Controller Location: Built In USB
Host Controller Driver: AppleUSBOHCI
PCI Device ID: @xBaa?

PCI Revision ID: Bx@6bl

PCI Yendor ID: @xl@de

Bus Number: 6x86

CON-USEBEE ROGERCOM:

Vendor ID: 8x8483 (Future Technology Devices International Limited)

Version: 6.00

Serial Number: RCT328JE

Speed: Up to 12 Mb/sec

Manufacturer: FTDI

Location ID: Bx86208600 _
Current Available {mA): 508 A
Current Required (mA): 568 =

Product ID: 8x6861 E

Figura 25 Resultado de conexdo USB com o adaptador ROGERCOM CON-USBBEE

4.3 Compilacao e validacio da biblioteca libxbee
Para a compilagdo, tanto da biblioteca quanto dos codigos desenvolvidos foi utilizado

o gcc, um compilador extremamente robusto e eficiente disponivel no sistema utilizado.

38

Para a utilizagdo dos modo API suportado pelos dispositivos Xbee, foi uti- lizada uma
biblioteca livre, libxbee (ATTIE, 2012). A biblioteca gera as estruturas relacionadas ao
controle, monitoramento e modelos da rede formada pelos dispositivos Xbee.

Assim, inicia-se a implementacdo do software ao compilar e validar a biblioteca
libxbee, como a biblioteca ¢ desenhada para ser utilizada em uma arquitetura x386 ou x64 ¢
necessario realizar configuragdes de cross-compile para a compilacdo da biblioteca para a
arquitetura ARM.

Dentro dos arquivos de configuragdo, o arquivo configure.mk controlam o grupo de

flags relacionados a arquitetura do sistema. Edita-se a seguinte flag:

CROSS COMPILE?= arm-linux-

Ao configura-los adequadamente o processo de compilacdo foi realizado pelos

comandos:

make configure
make

make install (neste ponto € necessario ser superuser ou root)

Desta maneira s3o instalados: a biblioteca estatica(libxbee.a) , uma biblioteca
compartilhada(libxbee.so) e a documentagdo man para a comunicagao utilizando o modo API
para programas desenvolvidos em C/C++, com o compilador gcc.(ATTIE, 2012)

Para executar a compilagdo ¢ necessario “linkar” a biblioteca ao processo, com

apresentado no exemplo abaixo:

gce my_code.c -Ixbee -Ipthread -Irt -o my_executable

A implementacdo também tera carater sistemdtico, a fim de minimizar os erros e

tornar o processo o mais linear. Inicialmente ¢ validada a biblioteca libxbee, posteriormente o

servigo web e suas configuragdes e por fim a conexdo entre o sistema e o servico web.

39

4.3.1 Aplicagdo de teste simple—at

Para validar a biblioteca /ibxbee ¢ testado um software que permite verificar o
funcionamento das estruturas principais. O programa implementado ¢ chamado simple—at.c,
sendo uma modificagdo do teste padrao proposto pelo autor da biblioteca para o teste inicial.

O software deve realizar uma peti¢do ao dispositivo local, realizando um comando AT
dentro do frame API, o comando API realizado ¢ o 0x08 - AT Command (DIGI
INTERNATIONAL, 2010). O codigo completo encontra-se no Apéndice B - Arquivos fonte
utilizados no sistema e nos testes.

Na Figura 26 ¢ ilustrado o processo para a utilizacdo da biblioteca de forma adequada
e na figura Figura 27 sdo mostrados os resultados retornados pelo sofiware, impressos no

terminal via SSH.

iniciali Aguarda
iniciali conexdo. Reali resposta da Fecha a
niciatiza a eaiiza rede e conexdo AT e
comunicagao fornecendo o transmissao -
. quando a conexao
serial com o endereco de do parametro . -
. o) . recebe valida serial com o
dispositivo destino e AT por meio t . .
denad fungao da funcio TX a reposta dispositivo
cooraenador 5 atun¢ imprime na xbee
callback tela

Figura 26 Processos simplificados de utilizacio da biblioteca libxbee

Desta forma, percebe-se que a biblioteca esta instalada e funcionando de acordo com o
proposto. Para as demais a¢des do sistema, serdo necessarias outras fungdes da biblioteca e

serdo discutidas nos resultados.

root@FriendlyARH: ~/fausto_xbee/Codigo#t ./t_simple_at
Envia comando para teste no nome do dispositivo:

TX: [ATNI <CR=]

erro na transmissao: @ (No error)

rx: [COORDINATOR]
root@Friend|yARN: ~/fausto_xbee/Codigo#t [|

Figura 27 Resultado do cédigo simple-at.c

4.4 Sistema desenvolvido em C do sistema de controle da rede Zigbhee

Nesta secdo o codigo implementado tem por objetivo saciar os requisitos levantados
no Capitulo 3 — Metodologia. Para isso sdo abordadas algumas etapas desenvolvidas e
funcionamento geral, porém o codigo fonte completo pode ser encontrado no Apéndice B -

Arquivos fonte utilizados no sistema e nos testes.

40

4.4.1 Inicializacao

Inicialmente, sdo geradas as variaveis globais e locais da fungdo main.c. Também no
processo de inicializagdo sdo levantados os enderecos dos dispositivos da rede, e ¢ aberta a
conexdo xbee com o modulo coordenador. Também sdo criadas as conexdes do tipo “I/O*
com os modulos de entradas e saidas digitais, estas conexdes permitem “‘setar” um callback
para tratar o recebimento de mudanga de estado nas saidas digitais. A figura 28 mostra os
trechos do cddigo que inicializam as conexdes xbee e “I/O” assim como o link com a fung¢ao

callback para as fun¢ao myCB_simplelO().

/7 Opens the conection to the usb

if ((ret = xbee_setup(&xbee, "xbee2", "/dev/ttyUSB@", 96@0)) !'= XBEE_ENONE) {
printf("ret: %d (¥s)\n", ret, xbee_errorToStr(ret));
return ret;

}

S/ FFRRLERRREERRA LR RN R E RS RS2 2% Create conections to the Xbee device

S/ ERERRRER AR RIS SRR RS R IR 22 22%]0 conection to the end-devices

/7 Address 1 Digital Input

if ((ret = xbee_conNew(xbee, &con_I0_1, "I/0", &addressl)) != XBEE_ENONE) {
xbee_log(xbee, -1, "xbee_conNew() returned: %d (¥s)", ret, xbee_errorToStr(ret));
return ret;

}

if ((ret = xbee_conCallbackSet(con_I0_1, myCB_simpleIO, NULL)) != XBEE_ENONE) {
xbee_log(xbee, -1, "xbee_conCallbackSet() returned: %d", ret);
return ret;

Figura 28 Trecho do cédigo de inicializacio implementado em C

4.4.2 Varredura inicial

A varredura ¢ realizada por duas fungdes implementadas de forma que sdo criadas as
conexdes AT para cada request. O trafego de informacdo entre as fungdes ¢ realizado pela
utilizagdo de varidveis globais, assim o uso de memoria torna-se mais rigido, porém mais
simples de se desenvolver.

A varredura inicial tem por objetivo verificar quais dos dispositivos pré-relacionados,
J4 estdo conectados a rede assim como estd o estado das saidas e entradas de cada dispositivo.
Na chamada das fung¢des ¢ enviado o indice relacionado ao dispositivo xbee de destino, este
indice esta relacionado a estrutura de dados criada my xbee.

Na figura 29 ¢ apresentado o cddigo relacionado a chamada de tais fungdes.

41

S/ EERR R ek rt*tRomote AT to the end-devices
for (J=0;7j<3;j++) {
send_at_command(j, "NI");
for (i=0;1<20;i++) {|
my_xbee[j].NI[i] = aux_array[i];
1
}

S/ EERr Rk r*tRoad the digital status
for (3=0;j<2;j++) {
read_digital_port(j);
sleep(2);
printf("my_xbee[%¥d].D:¥s\n",j,my_xbee[j].D);
}

Figura 29 Cddigo que realiza a chamada das funcdes para a varredura inicial

4.4.3 Loop principal

No loop principal ¢ composto pela temporizagdo para o monitoramento dos
dispositivos da rede. Também sdo realizadas rotinas para a verificacao se existe algum request
do usuério ou do servidor para a atuagdo em alguma saida de um dispositivo da rede.

As rotinas que realizam a leitura se existe um request do usudrio e criam as estruturas
para disponibilizar a informagdo para o servidor serdo abordadas na se¢ao 4.6 Integragdo entre
0s sistemas.

Na figura 30 sdo apresentados trechos do cédigo implementado dentro do loop

principal, sem abordar as rotinas de integragdo com o servidor web.

// Iniciate Loop

while (1) {
sleep(10@);
//sleep(60);

(...)

S/ heerrnsextdRomote AT to the end-devices
if (count >= 6) {
count = @;
for (j=0;j<3;j++) {
my_xbee[j].status = @;
send_at_command(j, "NI");
for (i=0;1<20;i++) {
my_xbee[j].NI[1i] = aux_array[i];

}
} else {
count++;|

}

// Checks for changes in the outputs
need_output_update = 0;
for (i=0;i<4;i++) {
output_mask[i]=@;
if (temp_output[i]-4 != my_xbee[1].D[1]-0x30) {
need_output_update = 1;
output_mask[i]=1;
}
}

Figura 30 Trechos do cédigo do loop principal em C

42

4.4.4 Fungdes de chamadas e callbacks

Para a leitura das portas e envio de comandos AT, que sdo as principais estruturas API
utilizadas, foram criados procedimentos que realizam o processo estabelecido na Figura 20,
onde ocorre a abertura de conexao, realizagdo da comunicagao ¢ fechamento da conexao.

A implementacdo destas funcdes estd disponivel no Apéndice B. Conforme citado
anteriormente, o trafego entre os dados recebidos e retornados por estas fungdes € feito por
meio de variaveis globais, e utilizado um buffer de bytes “aux_array”.

As fung¢des de callback sdo inseridas quando existe uma conexao definida, e espera-se
uma resposta da rede Zigbee. Portanto ¢ estimado um tempo de resposta maximo, € se a

funcdo callback nao for chamada dentro deste periodo um erro ¢ sinalizado.

4.5 Software web

O software web proposto tem por objetivo interagir com o sistema implementado em
C que efetua o controle sobre a rede Zigbee. Neste ponto uma das paginas desenvolvidas
serve a este objetivo sendo a se¢do “Rede* no site.

As demais segdes tem por objetivo servir como um hot-site para o projeto, permitindo
ao usuario entender o contexto do projeto, assim como ter acesso facilitado aos arquivos e
documentacdo gerada. A implementacdo, dessa forma, transcende o objetivo proposto
inicialmente, mas ndo o modifica quanto a premissa inicial de integracdo do servigo web para
o controle e monitoramento de uma rede de sensores sem fio.

Os cddigos completos estao disponiveis no Apéndice C — Cédigo-fonte implementado

no servidor web — Front-end.

4.5.1 Back-end: estrutura PHP e AJAX

Conforme citado anteriormente, o projeto utilizard a tecnologia PHP para o
desenvolvimento do back-end da aplicagdo web. O projeto foi realizado utilizando a
linguagem PHP sem nenhum tipo de framework de trabalho, porém seguindo alguns dos
conceitos propostos numa aplicacdo MVC (Model-View-Controller).

Também foi utilizada a tecnologia de chamadas Ajax, que permitem chamadas
assincronas ao servidor, sem que ocorra a atualizacdo total da pégina no cliente (web
browser). Desta forma, a experiéncia do usudrio ¢ favorecida por uma navegacao mais suave.

Foi implementada a estrutura do dispositivo Xbee em PHP, assim independentemente

do meio de integragdo entre os sistemas ¢ possivel trabalhar com uma estrutura propria.

43

Assim, foi gerada a classe Xbee, com os principais registradores AT utilizados, e por meio

dos seguintes comandos sdo criadas as classes e objetos no arquivo PHP:

Sxbee = X ::factory('order', "status', "SH', 'SL', 'NI','D');

$my_xbee[$1] = call_user_func_array(array($xbee, ‘'create'),$data);

Sendo que a variavel $data contém a informagao fornecida pelo sistema de controle da
rede e a variavel $my_ xbee ¢ uma array que guardara todos os objetos Xbee da rede.

Para imprimir os valores obtidos no arquivo HTML, ¢ utilizada a funcdo echo ou pelos
delimitadores de impressdo “<?=" quando somente a informagdo dindmica ¢ levantada. A
figura 31 mostra um trecho de codigo implementado no arquivo rede.php que utiliza as duas

formas de impressao de informagdo para editar o HTML final.

<div class="xbee_data" id="router">
<img class="xbee_status" id="router" src=

<?php
Smy_xbee[2]->status ? $status = "on" : $status = "off";
echo "imhges/network/stotus_".Sstatbs.“.png"

7>

>

<div class="xbee_at">
STATUS: <?= $status ?>

NI: <?= $my_xbee[2]->NI ?>

SH: <?= $my_xbee[2]->SH 7>

SL: <?= $my_xbee[2]->SL ?>

</div>

</div>
Figura 31 Trecho do cédigo PHP para tornar dindmica a geracio do HTML final

O a recepcao das chamadas AJAX sdo semelhantes em relacdo ao processamento,
porém diferem quanto a informacdo enviada para o cliente. Ao invés de enviar a pagina
HTML resultante ¢ enviado uma estrutura JSON, tal estrutura é, em aplicacdo, um objeto
javascript formatado como string, contendo dados no formato: { parameter : value;}. O

cddigo abaixo contém um trecho do codigo utilizado para responder uma chamada Ajax.

echo json_encode(Array("id" => Soutput_id, "value" => $data[Soutput_id]));

Desta forma ¢ possivel gerar um servico ndo limitado a pagina web, permitindo a
utilizacdo dos dados da rede por sites, clientes e aplicagdes diversas. A organizacdo das

chamadas ¢ controlada pelo servidor web Apache, ndo sendo abordada nesse trabalho.

44

4.5.2 Front-end: HTML, CSS e JavaScript

Nesta secdo ¢ mostrada a implementagdo front-end do projeto. Conforme citado
anteriormente, foi criado um hot-site para o projeto. Assim, foram estipuladas quatro secdes:
Inicio, Projeto, Rede e Contato.

Na se¢@o de Inicio é contextualizado o projeto, o porqué estd sendo realizado o
projeto, por quem e outras informagdes gerais. Na secdo projeto sdo encontrados links
relacionados ao projeto, assim como os arquivos fonte e este documento. A figura 32 mostra o

resultado obtido na pagina de projeto.

LINUXIGBEE

uma solugdo em automagdo

INICIO PROJETO REDE CONTATO

documentacdo
documento final sobre o projeto

Linux‘ﬁ%‘% pesquisa

ZigBee Alliance download

T codigo-fonte
&y arquivos .c
&5 arquivos web
&5y datasheet Xbee

:“j diagramas sistema

desenvolvimento

Figura 32 Secdo de projeto do hotsite

A secdo de rede contém, propriamente, o sistema de interagdo e monitoramento da
rede de sensores com protocolo Zigbee, sdo exibidos os modulos, seus status, seus principais

dados e botdes para atuacdo das saidas do respectivo dispositivo. A figura 33 mostra o

resultado desta implementacao.

45

Rede implementada em topologia érvore (cluster tree)

S])4

£ Roteador-

(hop)

- End Device

Coordenador

V)

STATUS: off

o U}

NI: COORDINATOR STATUS: off
SH: 0013A200 NIz
SL:405CC166 SH:

SL:

Figura 33 Secdo de rede com implementacgdo de acesso remoto a rede Zigbee

Conforme citado anteriormente, foi implementada uma chamada Ajax ao servidor para
a atualizacdo dos dados da rede para o usudrio. Para esta chamada foi utilizada a biblioteca
JQuery (JQUERY, 2012), extremamente utilizada na internet para implementacdo em
Javascript. O cédigo-fonte implementado no front-end esta disponivel no Apéndice C —
Codigo-fonte implementado no servidor web — Front-end.

A se¢do Contato fornece dados e um formuldrio para o contato de pessoas interessadas

sobre o projeto.

4.6 Integracido entre os sistemas

Neste ponto existem dois sistemas operando de maneira independente. Para realizar a
integracdo entre os mesmos foram utilizados arquivos, devido a simplicidade do trabalho e
geracdo de uma estrutura aplicavel a base de dados mais complexas.

Ao ter-se dois sistemas diferentes operando sobre o mesmo arquivo notou-se
problemas quanto as permissdes assim como a integridade dos dados. Dessa forma optou-se
pela estrutura apresentada na figura 34, onde somente um sistema tem permissdo de escrita

sobre um determinado arquivo, mas ¢ permitida a leitura pelos demais.

46

Sistema de
controle da rede
Zigbee

Sistema no
servidor web

zigbee.txt php_zigbee.txt

Figura 34 Relacio entre os arquivos e os sistemas

O primeiro arquivo, zigbee.txt, contém informacdes que o sistema implementado em
C, de controle da rede Zigbee. Desta forma o Unico que tem permissao de escrita neste
arquivo ¢ o sistema em C e o servidor web somente realiza a leitura do arquivo.

O segundo arquivo, php zigbee.txt, permite a escrita pelo servidor web e tem por
funcdo informar ao sistema que controla a rede Zigbee de eventuais mudangas, tais como
mudanga de uma saida digital, ou atualizagdo por comando AT.

Desta forma foram implementadas rotinas para trabalhar com os arquivos nos dois
sistemas. As Figuras 35 e 36 contém tais rotinas no sistema em C e no sistema do servidor we

PHP, respectivamente.

if (save_on_file) {
// Saves on file
fp = fopen ("zigbee.txt","w");
if (fp) {
fprintf(fp, "1.%d . BXEXEXEX . XXEXEXKEX . ¥s . ¥s\n" ,my_xbee[@] .status,
my_xbee[@] .SH[@],my_xbee[@].SH[1],my_xbee[@].SH[2],my_xbee[@].SH[3],
my_xbee[@].SL[@],my_xbee[@].SL[1],my_xbee[@].SL[2],my_xbee[0].SL[3],
my_xbee[@] .NI, my_xbee[0].D);
fprintf(fp, "2.%d . BXEXEXHX . BXEXHEXEX . ¥s . ¥s\n" ,my_xbee[1].status,
my_xbee[1].SH[@],my_xbee[1].SH[1],my_xbee[1].SH[2],my_xbee[1].SH[3],
my_xbee[1].SL[@],my_xbee[1].SL[1],my_xbee[1].SL[2],my_xbee[1].SL[3],
my_xbee[1] .NI,my_xbee[1].D);
fprintf(fp, "3.%d . BXEXHEXEX . EXEXEXHX . ¥s . ¥s\n" ,my_xbee[2] .status,
my_xbee[2] .SH[@],my_xbee[2].SH[1],my_xbee[2].SH[2],my_xbee[2].SH[3],
my_xbee[2].SL[@],my_xbee[2].SL[1],my_xbee[2].SL[2],my_xbee[2].S5L[3],
my_xbee[2] .NI,my_xbee[2].D);
fclose(fp);

}

save_on_file = 0;

}
Figura 35 Trecho do codigo do sistema de controle da rede para escrita no arquivo zighee.txt

//Opens the file php_zigbee.txt to read the information

.................

if (Shandle) {

}

$full_data = fgets($handle);

fclose(Shandle);

$data = explode(" ", $full_data);

//var_dump($full_data);

foreach ($data as Skey => $elemment) Sdata[Skey] = trim($elemment);
$data[$output_id] == "4" ? Sdata[Soutput_id] = "5" : Sdata[Soutput_id] = "4";
$full_data = implode(" ",$data);

//var_dump($full_data);

.................

fprintf(Shandle, "%s",$full_data);
fclose(Shandle);

} catch (Exception $e) {
echo 'Exception:', $e->getMessage(), "\n";

}

Figura 36 Trecho do cédigo do sistema web da rede para escrita no arquivo php_zigbee.txt

47

48

49

5 Testes e resultados

Neste capitulo sdo apresentados os resultados dos testes realizados para validar a
proposta deste trabalho. Os resultados foram divididos segundo as propostas de testes do

Capitulo 3 — Metodologia.

5.1 Consumo de energia

Este teste foi realizado pela medi¢cdo de corrente consumida por um modulo Xbee.
Conforme observado na figura 37, a medi¢do pelo resistor em serie ndo foi um método
eficiente para a observacdo do consumo de corrente no modulo nos diferentes modos de

operacao que ele efetua durante a recepg¢do e transmissao.

odo 4D Ref de tempo
Mormal Central

Figura 37 Medicao do consumo de corrente médio para o dispositivo Xbee como roteador

Porém, foi possivel determinar a corrente média do dispositivo. Realizando uma
transmissao a cada 5 minutos, o valor de corrente da transmissao € diluido dentro do consumo

base de energia, sendo expressa segundo a tabela 8.

TABELA 8 Resultado do consumo médio de corrente por dispositivo Zigbee

Dispositivo Consumo Médio
Xbee (End device) 2mA

Xbee (Roteador) 54.6mA

Xbee PRO (roteador e coordenador) | 150mA

Tais valores se apresentam dentro do esperado, para cada tipo de dispositivo (Xbee ou

Xbee PRO) e a funcdo desempenhada pelo mesmo, segundo o datasheet.

50

5.2 Integridade e robustez da comunicac¢io

O teste de integridade de comunicag¢do foi realizado pelo envio temporizado do
comando de mudanga da saida digital e confirmacao da recepcao e efetuacdo da mudanga de
estado.

Ao receber os dados o pacote, o dispositivo de destino envia a resposta por um frame
API, porém isto ¢ suficiente para a confirmacdo de execu¢do do comando. Portanto, ¢ criado o
callback na conexao do tipo “I/O” tornando o processo de resposta redundante, permitindo a
confirmag¢do de mudanca de estado.

O teste foi realizado utilizando janelas de envio de 100 pacotes, ou seja, gerando um
total de 100 comandos de variagdo de estado em uma saida digital. O resultado obtido foi
positivo. Dentro da janela amostral maxima, determinada pela velocidade serial o indice de

erro foi nulo.

5.3 Modularidade e Escalabilidade

O teste de modularidade foi realizado pela retirada e reinser¢d@o de um dispositivo na
rede Zigbee. O protocolo realiza o controle dos dispositivos na rede, sem a interferéncia do
sistema de controle. Desta forma ndo foi possivel realizar a medi¢ao precisa dos processos de
beaconning e association request, € sim, somente o resultado final de reinsercao a rede.

A rede foi capaz de realizar tal processo, porém o tempo total para este processo
apresentou grande variacdo. Isto pode dever-se ao tempo necessario para envio do sinal de
beacon. Tal intervalo de tempo, apesar de grande variagdo durante os testes ndo ultrapassou
um minuto.

A escalabilidade mostrou-se satisfatoria dentro do protétipo implementado, ndo sendo

validada para redes com mais dispositivos.

5.4 Distancia maxima de comunicac¢io entre dispositivos

Por meio do comando AT “DB” pode-se ver o nivel de potencia recebido no ultimo
hop recebido, esta informac¢do ndo identifica toda a poténcia total utilizada na comunicacao
porém serve de medida quando utilizada na comunicagdo ponto-a-ponto.

Desta forma, foram escolhidos pontos conhecidos segundo a planta apresentada na
secao de Metodologia de Testes, e os ensaios foram realizados para os dispositivos Xbee PRO
e Xbee. Os resultados obtidos sdo mostrados na tabela 9, e uma comparagdo ¢ feita no grafico

apresentado na figura 38.

TABELA 9 Poténcia do sinal recebido pelo comando AT DB para os diferentes dispositivos

DISTANCIA (m) XBEE XBEE S/ OBST XBEE PRO XBEE PRO S/ OBST
1 -53 26 -17 -15
3 -59 37 37 -19
6 -65 -46 -49 25

10 72 -52 -52 .32
15 74 -58 57 -39
20 -82 -62 62 47
30 - -70 73 -56
40 - 77 -78 -58
50 - -81 - -62
60 - - - -65
70 - - - 67
80 - - - -70
90 - - - 74
100 - - - -79

1
—x—¥bee :

— - —Xbee sem obstaculos |

B B S e T T T P T e T e ST :
ey — = —Xbee sem obstaculos |

l 2 2 7 ¢

Potencia do hoprecekido (dBm)

Distanca (m)

Figura 38 Resultado comparativos entre os dispositivos Xbee e Xbee PRO no teste de distincia

52

53

6 Discussao e Conclusoes

Neste trabalho foi possivel implementar um sistema para o acesso remoto a uma rede
de sensores sem fio, utilizando o protocolo Zigbee e o modo de operagdo API para os
dispositivos Xbee da Digi International. O sistema final possui robustez (integridade na
comunicac¢do dos dados) e aplicabilidade no contexto das WSNs, considerando os critérios de
consumo de energia, escalabilidade (dentro da limitacdo do protdtipo implementado),
modularidade, distancia de alcance de transmissao e robustez do sistema.

Apesar da metodologia adotada ndo ter sido eficiente para a medicdo da energia
consumida nas diferentes etapas, pode se utilizar os valores médios encontrados para uma
estimacao do consumo em producdo do sistema de automagdo. O valor de consumo de 2mA
para um dispositivo final ¢ um valor significativo para o critério de baixo consumo de energia
numa rede de sensores, sendo aplicavel a diversas areas.

Mesmo dentro das limitagcdes impostas pela medi¢do da distancia maxima, o sistema
representa uma boa solucdo para automagdo sem fio quando a distancia entre os pontos nao ¢
muito elevada. E caso, as distdncias sejam muito grandes outras solu¢des de antena e radiagao
podem ser abordadas.

Dentro do desenvolvimento de software, o projeto e a implementacdo do sistema
tiveram dois dmbitos distintos, a criagdo do software de controle da rede e a interface com o
usuario. Dentro deste paradigma o desenvolvimento foi feito em paralelo transformando-se
em duas aplicagdes separadas com defini¢cdes especificas, e o trabalho de integracdo foi
responsavel pelo funcionamento do sistema como um todo.

Em relacdo a parte fisica utilizada o médulo de desenvolvimento FriendlyARM
Tiny6410 apresentou falhas em relacdo a utilizacdo constante da memoria Flash(conforme
citado na secdo 5.4), correlacionando com outros projetos que também utilizam este modulo
de desenvolvimento e apresentaram resultados semelhantes indicando um problema no
hardware. Portanto, recomenda-se a substituicdo do modulo de desenvolvimento por outro.

Este projeto permite a implementagdo e criagdo de novos projetos com a rede Zigbee
implementada, entre os possiveis projetos futuros destacam-se:

* Testes de seguranga: Realizacdo de testes de ataque a rede, por meio da frequéncia
de transmissao utilizada pela rede, assim como pela internet ao sistema.

* Implementacio de Banco de Dados integrado: Permitir que a base de dados seja
unica para o sistema de controle da rede, assim como para o sistema de servigo web, tornando

a aplica¢@o mais genérica e robusta

54

* Integracio com outros sistemas: Integracdo com outros protocolos de comunicagao
como Wi-fi, Bluetooth, CAN entre outros.

e Implementacio de um controle mével: Utilizagdo de um modulo que possua
interface com o usuério por meio de um touchscreen e permita o usudrio realizar comandos

diretamente dentro da rede Zigbee.

55

7 Referéncias Bibliograficas

ADAMS, J. Building low power into wireless sensor networks using Zigbee technology.
Industrial Embedded Systems Resource Guide, Networking: Technology, pp. 26-30,
2005.

ATTIE. Attie.co.uk, 2012. Disponivel em: <http://attie.co.uk/libxbee>

BARR, M.; MASSA, A. J. “Programming Embedded Systems: with C and GNU
development”, O’Reilly Media, Pequim, 2007.

CUNHA, A. R. On the use of IEEE 802.15.4/Zigbee as federating communication protocols
for Wireless Sensor Networks, Doctorate Thesis, FEUP-UP, 2007

CULTER T. Deploying Zigbee in existing industrial automation networks. Industrial
Embedded System Resource Guide, Networking: Technology, pp. 34-36, 2005.

CURVELLO, A. M. L; SANTOS, F. P. ARM web-tv, Monografia, Aplicagdes de
Microprocessadores I, SEL-EESC-USP, 2011

ELECTRONS, F. Free Electrons — Get the best of your hardware, 2012. Disponivel em:
<http://free-electrons.com/>

. FRIENDLYARM. FriendlyARM Forum, 2012. Disponivel em:
<http://www.friendlyarm.net/forum>

. FRIENDLYARM. Tiny6410 User manual, v1.0, 2010.

GIRIO, M. G. Utilizagdo do sistema operacional tempo real MQX embarcado para aplicagdes
de telemetria. Trabalho de Conclusiao de Curso, EESC-USP, 2010. Disponivel em:
<http://www.tcc.sc.usp.br/tce/disponiveis/18/180450/tce-18112011-110444/ >

GUIA DO HARDWARE. SLC, MLC e TLC: Por que as memorias Flash estio ficando
piores, 2012. Disponivel em: <http://www.hardware.com.br/tutoriais/slc-mlc-tlc/>

. IEEE-TG15.4, Part 15.4: Wireless Medium Access Control (MAC) and Physical
Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs).
IEEE standard for Information Technology, 2003.

JQUERY. jQuery: The Write Less, Do More, JavaScript Library, 2012. Disponivel em: <
http://www.jquery.com/>

. LEADERS.When everything connects: Information technology has nothing to lose but
its cables. The Economist. Abril, 2007. Disponivel em:

< http://www.economist.com/node/9080024>

LINUX, Viva o. Disponivel em: <http://www.vivaolinux.com.br/linux/>

56

ROGERCOM. Rogercom - O Maior conteudo brasileiro sobre Porta Paralela, 2012.
Disponivel em: < http://www.rogercom.com/ZigBee/ZigBee.htm>

U-BOOT. Das U-Boot — the Universal Boot Loader, 2012. Disponivel em:
<http://www.denx.de/wiki/U-Boot/WebHome>

ZHENG, J.; MYUNG, J. L. Will IEEE 802.15.4 Make Ubiquitous Networking a Reality? A
Discussion on a Potential Low Power, Low Bit Rate Standard, IEEE Communications

Magazine, vol. 42, No. 6, pp. 140- 146, 2004.

ZIGBEE ALIANCE, Zigbee Specification, 2006. Disponivel em: <http://www.zigbee.org/>

57

8 Apéndice A — Fluxogramas e diagramas referentes a analise de sistemas

Neste Apéndice sdo encontrado os principais diagramas de representacdo dos

requisitos funcionais do sistema. Os requisitos funcionais determinados no Capitulo 3 foram:

1. Ler o valor das entradas digitais do mddulo de entradas: Este requisito ¢ formado
pelo request do usuario/servidor para leitura de uma determinada entrada digital do médulo de
entradas digitais disposto na rede de sensores.

2. Controlar o valor das saidas digitais do modulo de saida: Este requisito ¢ formado
pela peticdo do usudrio para mudanga de uma determinada saida digital do modulo de saidas
digitais disposto na rede de sensores.

3. Monitorar a rede de sensores: Este requisito ¢ formado pela peti¢do do usuario ou
pelo proprio sistema para avaliar o estado e que a rede estd, com detalhes sobre os nds.

Assim, a Figura 38 representa os diagrama de fluxo de dados para os requisitos

enumerados. Apenas uma estrutura macro de fluxo de dados ¢ necessaria para os trés

requisitos pois existe um padrdo de funcionamento dentro da operacdo APIL.

Figura 39 Diagrama de fluxo de dados para a aplicaciio de comando API

A resposta pode portanto ser constituida de uma mensagem de erro ou de um estrutura
contendo: valores, confirmacdo de a¢do ou estrutura dos dispositivos da rede de acordo com o
processo realizado segundo os acima enumerados, respectivamente.

E importante também ressaltar o funcionamento do recebimento do request pelo

sistema do servidor web, o processo macro de fluxo de dados ¢ exibido na Figura 39.

Figura 40 Diagrama de fluxo de dados para processamento do request do usuario

58

59

9 Apéndice B — Codigo-fonte utilizado no sistema e nos testes

Neste apéndice sdo apresentados os codigos-fontes utilizados para a implementagao,

testes e o arquivo final do sistema de controle da rede Zigbee.

ARQUIVO: INDENTIFY.C

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <xbee.h>

void myCB(struct xbee *xbee, struct xbee con *con, struct xbee pkt
**pkt, void **data) {

xbee_err ret;

char *ni;

struct xbee conAddress *addr;

printf("An XBee joined the network!\n");

if ((ret = xbee pktDataGet(*pkt, "NI", 0, 0, (void**)&ni)) ==
XBEE_ENONE && ni !'=NULL) {
printf(" It is called: [%s]\n", ni);
}else {
printf(" Error while retrieving its NI - %d (%s)\n", ret,
xbee_errorToStr(ret));
)

/* you could also use 'Address (16-bit)' or 'Address (64-bit)' to get
the raw byte arrays */
if ((ret = xbee_pktDataGet(*pkt, "Address", 0, 0, (void**)&addr))
== XBEE_ENONE && addr !=NULL) {
printf(" It's address is:\n");
if (addr->addr16_enabled) {

printf(" 16-bit address: 0x%02X%02X\n", addr-
>addr16[0], addr->addr16[1]);
} else {

printf(" 16-bit address: --\n");

if (addr->addr64 _enabled) {
printf(" 64-bit address: 0x%02X%02X%02X%02X
0x%02X%02X%02X%02X\n",

addr->addr64[0], addr->addr64[1], addr->addr64[2], addr-
>addr64[3],

addr->addr64[4], addr->addr64[5], addr->addr64[6], addr-
>addr64[7]);
} else {
printf(" 64-bit address: --\n");

}else {
printf(" Error while retrieving its Address - %d (%s)\n", ret,
xbee_errorToStr(ret));
)

}

int main(void) {
void *d;
struct xbee *xbee;
struct xbee _con *con;
char txRet;
xbee_err ret;

if ((ret = xbee_setup(&xbee, "xbee2", "/dev/ttyUSB0", 9600)) !=
XBEE_ENONE) {
printf("ret: %d (%s)\n", ret, xbee_errorToStr(ret));
return ret;
}
if ((ret = xbee_conNew(xbee, &con, "Identify", NULL)) !=
XBEE_ENONE) {
xbee_log(xbee, -1, "xbee_conNew() returned: %d (%s)", ret,
xbee_errorToStr(ret));
return ret;

}

if ((ret = xbee_conCallbackSet(con, myCB, NULL)) !=
XBEE_ENONE) {
xbee_log(xbee, -1, "xbee_conCallbackSet() returned: %d", ret);
return ret;

¥
sleep(120);

if ((ret = xbee_conEnd(con)) != XBEE ENONE) {
xbee_log(xbee, -1, "xbee_conEnd() returned: %d", ret);
return ret;

¥
xbee_shutdown(xbee);

return 0;

}
ARQUIVO: REMOTE_AT D3.C

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <xbee.h>

void myCB(struct xbee *xbee, struct xbee con *con, struct xbee pkt
**pkt, void **data) {

xbee_err ret;

char *ni;

struct xbee conAddress *addr;

printf("An XBee joined the network!\n");

if ((ret = xbee pktDataGet(*pkt, "NI", 0, 0, (void**)&ni)) ==
XBEE_ENONE && ni !=NULL) {
printf(" It is called: [%s]\n", ni);
}else {
printf(" Error while retrieving its NI - %d (%s)\n", ret,
xbee_errorToStr(ret));
¥

/* you could also use 'Address (16-bit)' or 'Address (64-bit)' to get
the raw byte arrays */
if ((ret = xbee_pktDataGet(*pkt, "Address", 0, 0, (void**)&addr))
== XBEE_ENONE && addr !=NULL) {
printf(" It's address is:\n");
if (addr->addr16_enabled) {

printf(" 16-bit address: 0x%02X%02X\n", addr-
>addr16[0], addr->addr16[1]);
} else {

printf(" 16-bit address: --\n");

}
if (addr->addr64 _enabled) {
printf(" 64-bit address: 0x%02X%02X%02X%02X
0x%02X%02X%02X%02X\n",

addr->addr64[0], addr->addr64[1], addr->addr64[2], addr-
>addr64[3],

addr->addr64[4], addr->addr64[5], addr->addr64[6], addr-
>addr64[7]);
} else {
printf(" 64-bit address: --\n");

}
}else {

printf(" Error while retrieving its Address - %d (%s)\n", ret,
xbee_errorToStr(ret));
¥

}

int main(void) {
void *d;

struct xbee *xbee;
struct xbee _con *con;
char txRet;

xbee_err ret;

if ((ret = xbee_setup(&xbee, "xbee2", "/dev/ttyUSB0", 9600)) !=
XBEE_ENONE) {
printf("ret: %d (%s)\n", ret, xbee_errorToStr(ret));
return ret;
}
if ((ret = xbee_conNew(xbee, &con, "Identify", NULL)) !=
XBEE_ENONE) {
xbee_log(xbee, -1, "xbee_conNew() returned: %d (%s)", ret,
xbee_errorToStr(ret));
return ret;

}

if ((ret = xbee_conCallbackSet(con, myCB, NULL)) !=
XBEE_ENONE) {
xbee_log(xbee, -1, "xbee_conCallbackSet() returned: %d", ret);
return ret;

)
sleep(120);

if ((ret = xbee_conEnd(con)) != XBEE ENONE) {
xbee_log(xbee, -1, "xbee_conEnd() returned: %d", ret);
return ret;

}

xbee_shutdown(xbee);

return 0;

}

ARQUIVO: FORCE 10.C

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <xbee.h>

int main(void) {
void *d;
struct xbee *xbee;
struct xbee _con *con;
struct xbee pkt *pkt;
struct xbee conAddress address;
char txRet;
int i;
xbee_err ret;

if ((ret = xbee_setup(&xbee, "xbee2", "/dev/ttyUSB0", 9600)) !=
XBEE_ENONE) {
printf("ret: %d (%s)\n", ret, xbee_errorToStr(ret));
return ret;

}

memset(&address, 0, sizeof(address));
address.addr64_enabled = 1;
address.addr64[0] = 0x00;
address.addr64[1] = 0x13;
address.addr64[2] = 0xA2;
address.addr64[3] = 0x00;
address.addr64[4] = 0x40;
address.addr64[5] = 0x5C;
address.addr64[6] = 0xC2;
address.addr64[7] = 0x65;
if ((ret = xbee_conNew(xbee, &con, "Remote AT", &address)) !=
XBEE_ENONE) {
xbee_log(xbee, -1, "xbee_conNew() returned: %d (%s)", ret,
xbee_errorToStr(ret));
return ret;

}

for (= 0;1<60%4; i++) {
unsigned char value;
if ((ret = xbee_conTx(con, NULL, "D35")) != XBEE_ENONE)
;//break;

if ((ret = xbee_conRx(con, &pkt,
NULL)) != XBEE_ENONE) ;//break;

60

if ((ret = xbee pktDigitalGet(pkt, 3, 0, &value)) !=
XBEE_ENONE) {
printf("xbee_pktDigitalGet(channel=3): ret %d\n", ret);
} else {
printf("D3: %d\n", value);

xbee pktFree(pkt);
usleep(250000);
¥

if (ret '= XBEE_ENONE) {
xbee log(xbee, -1, "xbee conTx() or xbee conRx() returned:
%d", ret);
return ret;

}

if ((ret = xbee_conEnd(con)) != XBEE ENONE) {
xbee_log(xbee, -1, "xbee_conEnd() returned: %d", ret);
return ret;

}

xbee_shutdown(xbee);

return 0;

}

ARQUIVO: LINUXZIGBEE.C

/*
libxbee - a C library to aid the use of Digi's XBee wireless modules
running in API mode.

Copyright (C) 2009 onwards Attie Grande (attie@attie.co.uk)

libxbee is free sofiware: you can redistribute it and/or modify it

under the terms of the GNU Lesser General Public License as
published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

libxbee is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied
warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the

GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License

along with libxbee. If not, see <http://www.gnu.org/licenses/>.
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
// Attie's library
#include <xbee.h>

/| FLAGS

int save on_file=1;

int file is_writable = 1;

int need_output_update = 1;

/| #***+* GLOBAL VARIABLES
struct my_xbee_struct {

int status;

int SH[4];

int SL[4];

char NI[50];

char D[4];
} my_xbee[10];

char aux_dig_array[4];
char aux_array[50];
int temp_output[4];

void *d;

struct xbee_pkt *pktt;

struct xbee *xbee;

struct xbee_con *con;

struct xbee_con *con IO _1;

struct xbee_con *con IO 2;

struct xbee_con *con_remoteAT 1;
struct xbee_con *con_remoteAT 2;
struct xbee_con *con_remoteAT 3;

struct xbee_conAddress address1; // Digital Input
struct xbee_conAddress address2; // Digital Output
struct xbee_conAddress address3; // Router

/] *xxxxx CALLBACK FUNCTIONS
// My callback to send AT commands
void myCB_remoteAT(struct xbee *xbee, struct xbee con *con, struct
xbee pkt **pkt, void **data) {
inti=0;

printf("Callback remote
AT\n");

if ((*pkt)->datalen <=
D¢
printf("too short...\n");
return;

¥
printf("rx: [%s]\n", (*pkt)->data);
for (i=0;i<=(*pkt)-

>dataLen;i++) aux_array[i] = (*pkt)->data[i];
return;

}

/] FAEEEE

// My callback to read the digital port
void myCB_simplelO(struct xbee *xbee, struct xbee con *con, struct
xbee pkt **pkt, void **data) {
xbee_err ret;
int value;
inti=0;

printf("Callback remote I0\n");
/* if ((*pkt)->dataLen < 2) {
printf("too short...\n");
return;
3

for (i=0;i<4;i++) {
if ((ret = xbee pktDigitalGet(*pkt, i, 0, &value)) !=
XBEE_ENONE) {
printf("xbee_pktDigitalGet(channel=1): ret %d\n",

ret);
} else {
printf("D%d: %d\n",i, value);
aux_dig_array[i] =
value+0x30;
}
}
save _on_file=1;
return;
}
/] **xxxx CONNECTION FUNCTIONS
// Read Digital port
void read_digital port(unsigned int xbee_id) {
char txRet;
xbee_err ret;
inti=0,j=0;

my_xbee[xbee_id].status = 0;

switch(xbee id) {
case 0:
if ((ret = xbee_conNew(xbee, &con,
"Remote AT", &addressl)) != XBEE_ENONE)
xbee log(xbee, -1, "xbee conNew() returned:
%d (%s)", ret, xbee_errorToStr(ret));
break;
case 1:
if ((ret = xbee_conNew(xbee, &con,
"Remote AT", &address2)) != XBEE_ENONE)
xbee log(xbee, -1, "xbee conNew() returned:
%d (%s)", ret, xbee_errorToStr(ret));
break;
}

//Reads once the inputs
for (j=0;j<3;j+) {
unsigned int value;

if ((ret = xbee_conTx(con, NULL, "IS")) !=
XBEE_ENONE);

61

if ((ret = xbee_conRx(con, &pktt, NULL)) !=
XBEE_ENONE);

for (i=0;i<4;i++) {
if ((ret = xbee_pktDigitalGet(pktt, i,
0, &value)) |= XBEE _ENONE) {
my_xbee[xbee_id].status = 0;

printf("xbee_pktDigitalGet(): ret %d\n", ret);
}else {

my_xbee[xbee id].status = 1;
printf("D%d: %d ".i,

value);
my_xbee[xbee id].D[i]
= value+0x30;
}

}

printf("\n");

xbee pktFree(pktt);

sleep(1);

}

if ((ret = xbee_conEnd(con)) !'= XBEE _ENONE) {
xbee_log(xbee, -1, "xbee_conEnd() returned: %d", ret);

}
return;

}

// Send AT Command
void send_at_command(int xbee_id, unsigned char *at command) {

inti=0,j=0;
char txRet;
xbee_err ret;

my_xbee[xbee_id].status = 0;

printf("end_AT command function: xbee id %d : AT
command %s\n",xbee_id,at_command);
switch(xbee id) {
case 0:
if ((ret = xbee_conNew(xbee, &con,
"Remote AT", &addressl)) != XBEE_ENONE)
xbee log(xbee, -1,
"xbee_conNew() returned: %d (%s)", ret, xbee_errorToStr(ret));
break;
case 1:
if ((ret = xbee_conNew(xbee, &con,
"Remote AT", &address2)) != XBEE_ENONE)
xbee log(xbee, -1,
"xbee_conNew() returned: %d (%s)", ret, xbee_errorToStr(ret));
break;
case 2:
if ((ret = xbee_conNew(xbee, &con,
"Remote AT", &address3)) != XBEE_ENONE)
xbee log(xbee, -1,
"xbee_conNew() returned: %d (%s)", ret, xbee_errorToStr(ret));
break;
}

if ((ret = xbee_conCallbackSet(con, myCB_remoteAT,
NULL)) != XBEE_ENONE) {

xbee_log(xbee, -1, "xbee conCallbackSet() returned: %d",
ret);

return;

}

ret = xbee_conTx(con, &txRet, "%s", at_command);
printf("tx: %d\n", ret);
if (ret) {
my_xbee[xbee id].status = 0;
printf("txRet: %s\n", xbee_errorToStr(ret));

}else {
sleep(2);
my_xbee[xbee id].status = 1;
printf("aux_array: %s\n", aux_array);

if ((ret = xbee_conEnd(con)) !'= XBEE _ENONE) {
xbee_log(xbee, -1, "xbee_conEnd() returned: %d", ret);

return;

int main(void) {

char txRet;
xbee_err ret;

{0,0,0,03;

sizeof(address1));

FILE *fp;
inti= 0, j=0, count=0;
int output mask[4] =

// INIT // Input
memset(&address1, 0,

addressl.addr64 enabled = 1;
address1.addr64[0] = 0x00; my_xbee[0].SH[0] = 0x00;

[
address1.addr64[
address1.addr64[
address1.addr64[
address1.addr64[
address1.addr64[
address1.addr64[
address1.addr64[

sizeof(address2));

0x13; my xbee[0].SH[1] = 0x13;
0xA2; my xbee[0].SH[2] = 0xA2;
0x00; my xbee[0].SH[3] = 0x00;
0x40; my_ xbee[0].SL[0] = 0x40;
0x5C; my_xbee[0].SL[1] = 0x5C;
0xA2; my xbee[0].SL[2] = 0xA2;
0x65; my_ xbee[0].SL[3] = 0x65;

// Addr2 // Output
memset(&address2, 0,

address2.addr64 _enabled = 1;
address2.addr64[0] = 0x00; my_xbee[1].SH[0] = 0x00;

[
address2.addr64[
address2.addr64[
address2.addr64[
address2.addr64[
address2.addr64[
address2.addr64[
address2.addr64[

sizeof(address3));

0x13; my xbee[1].SH[1] = 0x13;
0xA2; my xbee[l].SH[2] = 0xA2;
0x00; my xbee[1].SH[3] = 0x00;
0x40; my xbee[1].SL[0] = 0x40;
0x5C; my_xbee[1].SL[1] = 0x5C;
0xA2; my xbee[1].SL[2] = 0xA2;
0x90; my xbee[1].SL[3] = 0x90;

// Addr3 // Router
memset(&address3, 0,

address3.addr64 enabled = 1;
address3.addr64[0] = 0x00; my_xbee[2].SH[0] = 0x00;

[
address3.addr64[
address3.addr64[
address3.addr64[
address3.addr64[
address3.addr64[
address3.addr64[
address3.addr64[

to the usb

0
1
2
3
4
5
6
7

0x13; my xbee[2].SH[1] = 0x13;
0xA2; my xbee[2].SH[2] = 0xA2;
0x00; my xbee[2].SH[3] = 0x00;
0x40; my xbee[2].SL[0] = 0x40;

=0x5C; my_xbee[2].SL[1] = 0x5C;
=0xCl; my_xbee[2].SL[2] = 0xCl;
=0x50; my_xbee[2].SL[3] = 0x50;

// Opens the conection

if ((ret = xbee_setup(&xbee, "xbee2", "/dev/ttyUSB0", 9600)) !=

XBEE_ENONE) {

printf("ret: %d (%s)\n", ret, xbee_errorToStr(ret));

return ret;

/

Fddkk kR ok ok Rk kR % Create conections to the Xbee device

/

seskstoslokskoclsdokskoclololorsdclolsclslolksloleek ok [conection to the end-devices

Input

// Address 1 - Digital

if ((ret =

xbee conNew(xbee, &con 10 1, "I/0", &addressl)) = XBEE _ENONE)

{

xbee_log(xbee, -1, "xbee conNew() returned: %d (%s)", ret,

xbee_errorToStr(ret));

return ret;

xbee_conCallbackSet(con IO 1,

XBEE_ENONE) {

}
if ((ret =
myCB_simplelO, NULL)) 1=

xbee log(xbee, -1,

"xbee_conCallbackSet() returned: %d", ret);

Output

return ret;

}

// Address 2 - Digital

62

if ((ret =
xbee conNew(xbee, &con 10 2, "I/0", &address2)) = XBEE _ENONE)
{
xbee log(xbee, -1, "xbee conNew() returned: %d (%s)", ret,
xbee_errorToStr(ret));
return ret;
}
if ((ret

xbee_conCallbackSet(con IO 2, myCB_simplelO, NULL)) 1=

XBEE_ENONE) {

xbee log(xbee, -1,
"xbee_conCallbackSet() returned: %d", ret);

return ret;

}

JJERE SRR AR emote
AT to the end-devices
for (j=0;j<3:j++) {
send_at command(j,"NI");
for
(i=0;1<20;i++) {
my_xbee[j].NI[i] = aux_array[i];
}

JjERrrRERRR % Read the
digital status
for (j=0;j<2:j++) {

read_digital port(j);
sleep(2);

printf("my_xbee[%d].D:%s\n",j,my_xbee[j].D);
}
// Iniciate Loop
while (1) {
sleep(10);
//sleep(60);
printf("Verifica arquivo\n");
// Reads new information regards the output
fp = fopen ("php_zigbee.txt","r");
if (fp) {
fscanf(fp,"%d %d %d
%d",&temp_output[0],&temp_output[1],&temp_output[2],&temp_output
[3D);
felose(fp);

printf("Novas saidas digitais: %d %d %d %d\n",

temp_output[0],temp_output[1],temp_output[2],temp_output[

[[FFFxxxxFHx*¥Remote AT to the end-devices
if (count >= 6) {
count = 0;
for (j=0:j<33j++) {
my_xbee[j].status = 0;
send_at command(j,"NI");
for (i=0;i<20;i++) {

my_xbee[j].NI[i] =
aux_array[i];

}else {

count++;

/I Checks for changes in the outputs

need_output_update = 0;

for (i=0;i<4;i++) {
output_mask[i]=0;
if (temp_output[i]-4 != my xbee[1].D[i]-0x30) {
need_output_update = 1;

output_mask[i]=1;

}
}
//debug
printf("output_mask = %d %d %d

%d\n",output_mask[0],output_mask[1],output_mask[2],output_mask[3]);
printf("atuais saidas = %d %d %d %d\n",my_xbee[1].D[0]-
0x30,my_xbee[1].D[1]-0x30,my xbee[1].D[2]-0x30,my_xbee[1].D[3]-
0x30);
printf("Novas saidas digitais: %d %d %d

%d\n",temp_output[0]-4,temp_output[1]-4,temp_output[2]-
4,temp_output[3]-4);

// Changes the output ~ my_xbee[1]

if (need_output_update) {
save _on_file=1;
printf("updating outputs:");
for (i=0;i<4;i++) {
if (output_mask[i]) {

char buf[10];

sprintf(buf,"D%d%c",i,temp_output[i]);

send_at_command(1,buf);
)
}

// Re-reads the digital port

read_digital port(1);

printf("my_xmee[0].D:%s\n",my_xbee[1].D);

63

(save_on_file) {
// Saves on file
fp = fopen ("zigbee.txt","w");
if (fp) {

fprintf(fp,"1.%d.%X%X%X%X.%X%X%X%X.%s.%s\n",m
y_xbee[0].status,

my_xbee[0].SH[0],my_xbee[0].SH[1],my_xbee[0].SH[2],my
_xbee[0].SH[3],

my_xbee[0].SL[0],my_xbee[0].SL[1],my_xbee[0].SL[2],my
xbee[0].SL[3],

my_xbee[0].NI, my xbee[0].D);

fprintf(fp,"2.%d.%X%X%X%X.%X%X%X%X.%s.%s\n",m
y_xbee[1].status,

my_xbee[1].SH[0],my xbee[1].SH[1],my xbee[1].SH[2],my
_xbee[1].SH[3],

my_xbee[1].SL[0],my_xbee[1].SL[1],my xbee[1].SL[2],my
xbee[1].SL[3],

my_xbee[1].NL,my xbee[1].D);

fprintf(fp,"3.%d.%X%X%X%X.%X%X%X%X.%s.%s\n",m
y_xbee[2].status,

my_xbee[2].SH[0],my_xbee[2].SH[1],my_xbee[2].SH[2],my
_xbee[2].SH[3],

my_xbee[2].SL[0],my_xbee[2].SL[1],my_xbee[2].SL[2],my
xbee[2].SL[3],

my_xbee[2].NL,my_ xbee[2].D);

fclose(fp);

)
save_on_file =0;

}

// Close all conections
if ((ret =
xbee conEnd(con IO 1)) != XBEE ENONE) {
xbee_log(xbee, -1, "xbee_conEnd() returned: %d", ret);
return ret;

}
if ((ret =
xbee conEnd(con IO 2)) != XBEE ENONE) {
xbee_log(xbee, -1, "xbee_conEnd() returned: %d", ret);
return ret;

¥
xbee_shutdown(xbee);

return 0;

64

65

10 Apéndice C — Codigo-fonte implementado no servidor web.

ARQUIVO INDEX.HTML

<HEAD>
<TITLE>LinuXZigbee - Tiny6410 - SEL/EESC/USP</TITLE>
<link rel="stylesheet" href="styles.css">
<script type="text/javascript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.7/jquery.min.js"></script>
<script type="text/javascript" src="linuxzigbee.js"></script>
</HEAD>

<BODY>
<div class="menu_line">
<div class="menu_line_black">
</div>
</div>
<div class="all">
<div class="top_banner">
<IMG id="tux" SRC="images/freddyart-bee-tux-
1816.png">

</div>

<div class="all menu">

<a id="link-inicio"
href="#">INICIO
<a id="link-projeto"
href="#">PROJETO
<a id="link-rede"
href="#">REDE
<a id="link-
contato"href="#">CONTATO

</div>

<div class="all main">
<p>Este projeto foi desenvolvido dentro do ambito
do Trabalho de Concluséo de Curso em engenharia elétrica da
Escola de Engenharia de Séo Carlos -
USP, pelo aluno Fausto Perez Rodrigues. O projeto tem por objetivo mostrar
a integracdo entre as tecnologias de
sistemas ~ embarcados e disposistivos utilizando o protocolo
Zigbee/IEEE802.15.4
como solugdo para a darea de
automagdo.</p>
<p>Na secdo de projeto, sdo disopnibilizados links
relacionados, o codigo-fonte e diagramas utilizados no projeto, assim
como o trabalho final em formato PDF.
Na secdo de rede esta um exemplo de implementagéo em topologia arvore, para
breve
apresentagdo.</p>
<p>Toda a utilizagdo do conteudo neste projeto ¢é
livre para uso/modificagdo, levando em conta que o autor ndo fornece
qualquer garantia de qualquer
tipo.</p>
</div>
</div>
</body>

ARQUIVO: PROJETO.HTML

<HEAD>
<TITLE>LinuXZigbee - Tiny6410 - SEL/EESC/USP</TITLE>
<link rel="stylesheet" href="styles.css">
<script type="text/javascript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.7/jquery.min.js"></script>
<script type="text/javascript" src="linuxzigbee.js"></script>
</HEAD>

<BODY>
<div class="menu_line">
<div class="menu_line_black">
</div>
</div>
<div class="all">
<div class="top_banner">
<IMG id="tux" SRC="images/freddyart-bee-tux-
1816.png">

</div>

<div class="all menu">

<a id="link-
inicio"href="#">INICIO
<a id="link-projeto"
href="#">PROJETO

<a id="link-
rede"href="#">REDE
<a id="link-
contato"href="#">CONTATO

</div>

<div class="all main">

<IMG id="logo-zigbee"
SRC="images/logos/zigbee.png">

<IMG id="logo-linux"

SRC="images/logos/linux.png">

</div>
</div>
</body>

ARQUIVO: REDE.PHP

<?php
require 'xbee.php';

S$root_file_path = "/var/www/fausto/Codigo/";
$xbee = Xbee::factory('order','status', 'SH', 'SL', 'NI','D');

//echo 'Debug php
';
//Opens the file zigbee.txt to read the information

try {
Shandle = fopen($root_file_path.'zigbee.txt', '');

if ($handle) {

$i=0;

while(!feof($handle)) {
Sfull_data = fgets(Shandle);
/fecho $full_data.'
';
$data = explode(".",$full_data);
$a = new Xbee;
$my_xbee[$i] =

call_user_func_array(array($xbee, 'create'),$data);

Si++;

}
fclose($handle);

}
} catch (Exception $e) {
echo 'Exception:', $e->getMessage(), "\n";

$total_devices = count(Smy_xbee)-1;

for($i=0;$i<$total_devices;$i++) {
$my_xbee[$i]->SH ='0".$my_xbee[$i]->SH.'0";
¥

/*

echo 'Total devices in the Network: '.$total_devices.'
';
echo '
'.$my_xbee[0]->NI;

echo '
'.$my_xbee[1]->NI;

echo '
'.$my_xbee[2]->NI;

*/

7>

<HEAD>
<TITLE>LinuXZigbee - Tiny6410 - SEL/EESC/USP</TITLE>

<link rel="stylesheet" href="styles.css">

<script type="text/javascript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.7/jquery.min.js"></script><!-
- >

<script type="text/javascript" src="linuxzigbee.js"></script>
</HEAD>

<BODY>
<div class="menu_line">
<div class="menu_line_black">
</div>
</div>
<div class="all">
<div class="top_banner">
<IMG id="tux" SRC="images/freddyart-bee-tux-
1816.png">

</div>

<div class="all menu">

<a id="link-
inicio"href="#">INICIO

<a id="link-projeto"
href="#">PROJETO

<a id="link-
rede"href="#">REDE

<a id="link-
contato"href="#">CONTATO

</div>

<div class="all main">

<h3>Rede implementada em topologia &rvore
(cluster tree)</h3>
<div class="xbee_data" id="coordinator">
<img class="xbee_status"
id="coordinator" src="images/network/status_on.png">
<div class="xbee_at">

NI:
COORDINATOR

SH: 0013A200

SL: 405CC166

</div>
</div>
<div class="xbee_data" id="router">
<img class="xbee_status" id="router"
sre=
<?php
$my_xbee[2]->status ?
$status = "on" : $status = "off";
echo
"images/network/status_".$status.".png"
7>
>

<div class="xbee_at">
STATUS: <?= $status
?>

NI <?= $my_xbee[2]-
>NI ?>

SH: <?= $my_xbee[2]-
>SH ?>

SL: <?= $my_xbee[2]-
>SL ?>

</div>
</div>
<div class="xbee_data" id="end1">
<img class="xbee_status" id="endl"

sre=
<?php
$my_xbee[0]->status ?
$status = "on" : $status = "off";
echo
"images/network/status_".$status.".png"
7>
>

<div class="xbee_at">
STATUS: <?= $status
?>

NI <?= $my_xbee[0]-
>NI ?>

SH: <?= $my_xbee[0]-
>SH ?>

SL: <?= $my_xbee[0]-
>SL ?>

</div>
</div>
<div class="xbee_data" id="end2">
<img class="xbee_status" id="end2"

sre=
<?php
$my_xbee[1]->status ~ ?
$status = "on" : $status = "off";
echo
"images/network/status_".$status.".png"
7>
>

<div class="xbee_at">
STATUS: <?= $status
?>

NI <?= S$my_xbee[l]-
>NI ?>

SH: <?= $my_xbee[l]-
>SH ?>

SL: <?= $my_xbee[l]-
>SL ?>

</div>
<div class="output">
<?php
for($i=0;$i<4;8$i++) { 7>
<img style=

66

<?php
$left_push = 70*$i;

m

echo "'position:absolut;left:".$left push.'px;";
7>

id=<7=""81"; 2>

src=
<?php
$my xbee[1]->D[$i] ? $status = "on" : $status =
"off";
echo "images/network/bulb_".$status.".png"
7>
>
<?php } 7>
</div>
</div>
</div>
</div>
</body>

ARQUIVO: XBEE.PHP

<?php
class Xbee
{
/**
* Define a new struct object, a blueprint object with only empty properties.
*/
public static function factory()
{
$struct = new self;
foreach (func_get_args() as $value) {
$struct->$value = null;

return $struct;

}

/**

* Create a new variable of the struct type $this.

*/

public function create()

{
/I Clone the empty blueprint-struct ($this) into the new data $struct.
$struct = clone $this;

// Populate the new struct.
$properties = array_keys((array) $struct);
foreach (func_get_args() as $key => $value) {
if (!is_null($value)) {
Sstruct->$properties[$key] = $value;
}
}

// Return the populated struct.
return $struct;

}
}

ARQUIVO: UPDATE_OUTPUT.PHP
<?php
//Set some variables

S$root_file_path = "/var/www/fausto/Codigo/";

// Gets the parameter (output_id)
Soutput_id = urldecode($_GET['output_id']);

//Opens the file php_zigbee.txt to read the information
while(!is_readable($root_file_path.'php_zigbee.txt")) ;

try {
Shandle = fopen($root_file_path.'php_zigbee.txt','r');
if ($handle) {
$full_data = fgets($handle);
fclose($handle);
$data = explode(" ", $full_data);
/Ivar_dump($full_data);
foreach ($data as $key => Selemment) $data[Skey] =
trim($elemment);

S$data[Soutput_id] == "4" ? $data[$output_id] ="5" :
$data[Soutput_id] = "4";

$full_data = implode(" ",$data);

/Ivar_dump($full_data);

while(!is_writable($root_file_path.'php_zigbee.txt"))

5

$handle =

fopen($root_file_path.'php_zigbee.txt','w");
fprintf($handle,"%s",$full_data);
fclose($handle);

}
} catch (Exception $e) {

echo 'Exception:', $e->getMessage(), "\n";
}

echo json_encode(Array("id" => $output_id, "value" => $data[Soutput_id]));
7>
ARQUIVO: AJAX_UPDATE.PHP

<?php
require 'xbee.php';

S$root_file_path = "/var/www/fausto/Codigo/";
$xbee = Xbee::factory('order','status', 'SH', 'SL', 'NI','D');

//echo 'Debug php
';
//Opens the file zigbee.txt to read the information
while(!is_readable(Sroot_file_path.'zigbee.txt")) ;
try {
Shandle = fopen($root_file_path.'zigbee.txt', '');

if ($handle) {
$i=0;
while(!feof($handle)) {
Sfull_data = fgets(Shandle);
/fecho $full_data.'
';
$data = explode(".",$full_data);
$a = new Xbee;

$my_xbee[$i] =

call_user_func_array(array($xbee, 'create'),$data);
Si++;

}
fclose($handle);

} catch (Exception $e) {
echo 'Exception:', $e->getMessage(), "\n";

$total_devices = count(Smy_xbee)-1;

for($i=0;$i<Stotal_devices;$i++) {
$my_xbee[$i]->SH ='0".$my_xbee[$i]->SH.'0";

var_dump($my_xbee);
/lecho json_encode($Smy_xbee);

7>

ARQUIVO: STYLES.CSS

body {
font-family:calibri, sans-serif;
color:#DFDFDF;
background:#1C1C14;
color:# bbb;

}

.border {
border: 1px solid white;

}

all {
height:100%;
width:900px;
margin-left:auto;
margin-right:auto;

}

.top_banner {
z-index:11;
height:100px;
}

.menu_line {
background:#FCF18D;
z-index:-2;
left:0;
top:155px;
height:30px;
width:100%;
position:absolute;

.menu_line_black {
background:#383429;
z-index:-1;
left:0;

top:25px;
height:3px;
width:100%;
position:absolute;

}
#ux {
z-index:11;
margin-left:20px;
width:183px;
}
#logo {
float:right;
margin-right:20px;
margin-top:20px;
width:40%;
z-index:100;
}
.menu {
font-size:30px;
margin-left:200px;
top:155px;
height:30px;
width:100%;
position:absolute;
}
.menu ul {
padding-left:0px;
margin:Opx;
float: left;

width: 100%;
list-style:none;

}
.menu ul li { display: inline; }

.menuullia {
margin-top:-7px;
padding: Opx 40px;
float:left;
color: #333;
text-decoration: none;
border-bottom:2px solid #1C1C14;
}

.menu ul li a:hover {

color: #333;

border-bottom:4px solid #FCF18D;
}

.main {
position:absolute;
top:200px;

}

#bg-projeto {
z-index:-1;
position:absolute;
left:Opx;
top:10px;

}

#logo-zigbee {
width: 190px;
position:absolute;
top:190px;
left:40px;

}

#logo-linux {
height: 140px;
position:absolute;

top:40px;
left:70px;
}
#bg-rede {
z-index:-1;
position:absolute;
left:Opx;
top:35px;
}
xbee_data {
position:absolute;
width:200px;
height:200px;
}

67

.xbee_data#fcoordinator {

}

top:350px;
left:50px;

.xbee_data#frouter {

}

top:350px;
left:350px;

xbee_data#fend] {

}

top:200px;
left:630px;

xbee_data#fend2 {

}

top:482px;
left:630px;

xbee_status {

position: absolute;
width: 45px;

top: 27px;
left: 45px;

}

xbee_at {
position:absolute;
top:100px;
left:50px;

}

.output {
position:absolute;
top:200px;

}

.output img {

position:absolute;
width:50px;
cursor: hand;
cursor: pointer;

}
Jinks {
z-index:1;
}
footer {
text-align:center;
bottom: 0;

position: absolute;

}

ARQUIVO: LINUXZIGBEE.JS

// Waits until the whole document is loaded

$(document).ready(function() {

function callback_timeout() {
return function() {

68

//window .location.reload();
i
}

//setTimeout(callback_timeout(), 60000);
//setTimeout(callback_timeout(), 15000);

$(".output img").on("click",function (e) {

$.ajax({
url: 'update_output.php', //the script to call to get data
data: "output_id="+$(this).attr("id"), /lyou can
insert url argumnets here to pass to api.php //for example
"id=5&parent=6"
dataType: 'json’, //data format

success: function(data) {

//alert(data.id);
//alert(data.value);
if
(data.value =="5") {
src ="on";
}else {
src = "off";
}
$(".output
img#"+data.id).attr("src", "images/network/bulb_"+src+".png")
}
Di**
S$(this).attr("src","images/loader.gif");
D

var production = true;
var path;

if (production) {
path = "http://143.107.235.36/fausto/site/tcc/";
}else {

}

path = "http://localhost/~f rodrigues/tcc/";

// Action to the menu buttons
$("#link-inicio").click(function() {
window.location = path;

Ds

$("#link-projeto").click(function() {
window.location = path+"projeto.html";

Ds

$("#link-rede").click(function() {
window.location.replace(path+"rede.php");

Ds

$("#link-contato").click(function() {
window.location.replace(path+"contato.html");
D
D

11 ANEXO A — Lista de comandos AT

69

Este anexo contém a informacdo retirada do datasheet dos dispositivos Xbee,

fornecido pela Digi Internetional, a partir da pagina 129.

TABELA 8 Lista de comandos AT de Addressing

2y | Name and Description

Destination Address High.Set/Get the upper 32 bits of the 64-bit destination address.
DH
When combined with DL, it defines the 64-bit destination address for data transmission.

Special definitions for DH and DL include 0x000000000000FFFF (broadcast) and

0x0000000000000000 (coordinator).

Destination Address Low. Set/Get the lower 32 bits of the 64-bit destination address.
DL
When combined with DH, it defines the 64-bit destination address for data

transmissions. Special definitions for DH and DL include 0x000000000000FFFF

(broadcast) and 0x0000000000000000 (coordinator).

MY 16-bit Network Address. Read the 16-bit network address of the module. A value of

0xFFFE means the module has not joined a ZigBee network

MP 16-bit Parent Network Address. Read the 16-bit network address of the module's

parent. A value of 0xXFFFE means the module does not have a parent.

Number of Remaining Children. Read the number of end device children that can join
NC
the device. If NC returns 0, then the device cannot allow any more end device children

to join.

SH Serial Number High. Read the high 32 bits of the module's unique 64-bit address.

SL Serial Number Low. Read the low 32 bits of the module's unique 64-bit address.

Node Identifier. Stores a string identifier. The register only accepts printable ASCII

NI data. In AT Command Mode, a string can not start with a space. A carriage return ends
the command. Command will automatically end when maximum bytes for the string
have been entered. This string is returned as part of the ND (Node Discover) command.
This identifier is also used with the DN (Destination Node) command. In AT command

mode, an ASCII comma (0x2C) cannot be used in the NI string

Source Endpoint. Set/read the ZigBee application layer source endpoint value. This
SE
value will be used as the source endpoint for all data transmissions. SE is only

supported in AT firmware.The default value 0XE8 (Data endpoint) is the Digi data

endpoint

Destination Endpoint. Set/read Zigbee application layer destination ID value. This
DE

value will be used as the destination endpoint all data transmissions. DE is only

supported in AT firmware.The default value (OxE8) is the Digi data endpoint.

|Node

CRE

CRE

CRE

CR

CRE

CRE

CRE

CRE

CRE

Parameter Range

0- OXFFFFFFFF

0- OXFFFFFFFF

0 - OxFFFE

[read-only]

0- OxFFFE

[read-only]

0 - MAX_CHILDREN

(maximum varies)

0- OXFFFFFFFF

[read-only]

0- OXFFFFFFFF

[read-only]

20-Byte printable

ASClI string

0-OxFF

0-OxFF

‘ Default

OxFFFF(Coordinator)

0 (Router/End Device)

OxFFFE

OxFFFE

read-only

factory-set

factory-set

ASClII space

character (0x20)

OxE8

OxE8

Cluster Identifier. Set/read Zigbee application layer cluster ID value. This value will be

70

Cl CRE 0 - OxFFFF 0x11
used as the cluster ID for all data transmissions. Cl is only supported in AT
firmware.The default valueOx11 (Transparent data cluster ID).
Maximum RF Payload Bytes. This value returns the maximum number of RF payload
NP bytes that can be sent in a unicast transmission. If APS encryption is used (AP! transmit CRE 0- OxFFFF [read-only]
option bit enabled), the maximum payload size is reduced by 9 bytes. If source routing
is used (AR < 0xFF), the maximum payload size is reduced further.
Note: NP returns a hexadecimal value. (e.g. if NP returns 0x54, this is equivalent to 84
bytes)
Device Type Identifier. Stores a device type value. This value can be used to
differentiate different XBee-based devices. Digi reserves the range 0 - OxFFFFFF.
For example, Digi currently uses the following DD values to identify various ZigBee
products:
DD CRE 0 - OXFFFFFFFF 0x30000
0x30001 - ConnectPort X8 Gateway
0x30002 - ConnectPort X4 Gateway
0x30003 - ConnectPort X2 Gateway
0x30005 - RS-232 Adapter
0x30006 - RS-485 Adapter
TABELA 9 Lisa de comandos AT de Networking
Nod
o | Name and Description | oce Parameter Range ‘ Default
XBee
0, 0x0B - 0x1A
Operating Channel. Read the channel number used for transmitting and receiving X X
CH CRE [read-only]
(Channels 11-26)
between RF modules. Uses 802.15.4 channel numbers. A value of 0 means the device
XBee-PRO (S2)
has not joined a PAN and is not operating on any channel.
0, 0x0B - 0x18
Extended PAN ID. Set/read the 64-bit extended PAN ID. If set to 0, the coordinator will
) cRe | O 0
select a random extended PAN ID, and the router / end device will join any extended
OxFFFFFFFFFFFFFFFF
PAN ID. Changes to ID should be written to non-volatile memory using the WR
command to preserve the ID setting if a power cycle occurs.
oP Operating Extended PAN ID. Read the 64-bit extended PAN ID. The OP value reflects CRE 0x01 - [read-only]
the operating extended PAN ID that the module is running on. If ID > 0, OP will equal ID. OxFFFFFFFFFFFFFFFF
Maximum Unicast Hops. Set/ read the maximum hops limit. This limit sets the
NH CRE 0 - OxFF 0x1E
maximum broadcast hops value (BH) and determines the unicast timeout. The timeout
is computed as (50 * NH) + 100 ms. The default unicast timeout of 1.6 seconds
(NH=0x1E) is enough time for data and the acknowledgment to traverse about 8 hops.
BH Broadcast Hops. Set/Read the maximum number of hops for each broadcast data CRE 0-0x1E 0

transmission. Setting this to 0 will use the maximum number of hops.

ol

NT

NO

SC

SD

Operating 16-bit PAN ID. Read the 16-bit PAN ID. The Ol value reflects the actual 16- CRE
bit PAN ID the module is running on.
Node Discovery Timeout. Set/Read the node discovery timeout. When the network

CRE
discovery (ND) command is issued, the NT value is included in the transmission to

provide all remote devices with a response timeout. Remote devices wait a random

time, less than NT, before sending their response.

Network Discovery options. Set/Read the options value for the network discovery
command. The options bitfield value can change the behavior of the ND (network CRE
discovery) command and/or change what optional values are returned in any received
ND responses or API node identification frames. Options include:
0x01 = Append DD value (to ND responses or API node identification frames)
002 = Local device sends ND response frame when ND is issued.
Scan Channels. Set/Read the list of channels to scan.
Coordinator - Bit field list of channels to choose from prior to starting network.
CRE
Router/End Device - Bit field list of channels that will be scanned to find a Coordinator/
Router to join.
Changes to SC should be written using WR command to preserve the SC setting if a
power cycle occurs.
Bit (Channel): 0 (0x0B) 4 (0xOF) 8 (0x13) 12 (0x17)
1(0x0C) 5 (0x10) 9 (0x14) 13 (0x18)
2 (0x0D) 6 (0x11) 10 (0x15) 14 (0x19)
3 (0x0E) 7 (0x12) 11 (0x16) 15 (0x1A)
Scan Duration. Set/Read the scan duration exponent. Changes to SD should be
written using WR command.
Coordinator - Duration of the Active and Energy Scans (on each channel) that are
used to determine an acceptable channel and Pan ID for the Coordinator to startup on. CRE
Router / End Device - Duration of Active Scan (on each channel) used to locate an
available Coordinator / Router to join during Association.
Scan Time is measured as:(# Channels to Scan) * (2 » SD) * 15.36ms - The number of
channels to scan is determined by the SC parameter. The XBee can scan up to 16
channels (SC = OxFFFF).
Sample Scan Duration times (13 channel scan):
If SD =0, time = 0.200 sec
SD =2, time = 0.799 sec
SD =4, time = 3.190 sec

SD =6, time = 12.780 sec

0 - OXFFFF

0x20 - OxFF [x 100 msec]

0 - 0x03 [bitfield]

XBee

1 - OxFFFF [bitfield]

XBee-PRO (S2)

1 - Ox3FFF [bitfield]

(bits 14, 15 not allowed)

XBee-PRO (S2B)

1-0x7FFF

(bit 15 is not allowed)

0- 7 [exponent]

71

[read-only]

0x3C (60d)

1FFE

Z8

NJ

JV

NW

JN

AR

AT

EE

EO

NK

ZigBee Stack Profile. Set / read the ZigBee stack profile value. This must be set the CRE 0-2

same on all devices that should join the same network.

Node Join Time. Set/Read the time that a Coordinator/Router allows nodes to join. CR 0. OxFF
This value can be changed at run time without requiring a Coordinator or Router to
restart. The time starts once the Coordinator or Router has started. The timer is reset bt sec]
on power-cycle or when NJ changes.
Channel Verification. Set/Read the channel verification parameter. If JV=1, a router R 0 - Channel verification
will verify the coordinator is on its operating channel when joining or coming up from a disabled
power cycle. If a coordinator is not detected, the router will leave its current channel and 1 - Channel verification
attempt to join a new PAN. If JV=0, the router will continue operating on its current enabled
channel even if a coordinator is not detected.
Network Watchdog Timeout. Set/read the network watchdog timeout value. If NW is R 0 - OXGAFF
set > 0, the router will monitor communication from the coordinator (or data collector)
[x 1 minute]
and leave the network if it cannot communicate with the coordinator for 3 NW periods.
The timer is reset each time data is received from or sent to a coordinator, or if a many- (up to over 17 days)
to-one broadcast is received.
Join Notification. Set / read the join notification setting. If enabled, the module will RE 01
transmit a broadcast node identification packet on power up and when joining. This
action blinks the Associate LED rapidly on all devices that receive the transmission, and
sends an API frame out the UART of API devices. This feature should be disabled for
large networks to prevent excessive broadcasts.
Aggregate Routing Notification. Set/read time between consecutive aggregate route CR 0- OXFF

broadcast messages. If used, AR should be set on only one device to enable many-to-

one routing to the device. Setting AR to 0 only sends one broadcast

TABELA 10 Lista de comandos AT de Security

| Name and Description | LEED Parameter Range
Encryption Enable. Set/Read the encryption enable setting. CRE 0 - Eneryption disabled
1 - Encryption enabled
Encryption Options. Configure options for encryption. Unused option bits should be set
CRE 0 - OxFF
to 0. Options include:
0x01 - Send the security key unsecured over-the-air during joins
0x02 - Use trust center (coordinator only
Network Encryption Key. Set the 128-bit AES network encryption key. This command
c 128-bit value

is write-only; NK cannot be read. If set to 0 (default), the module will select a random

network key.

72

OxFF

(always allows

joining)

0 (disabled)

OxFF

‘ Default

0

73

Link Key. Set the 128-bit AES link key. This command is write only; KY cannot be read.
KY CRE 128-bit value 0
Setting KY to 0 will cause the coordinator to transmit the network key in the clear to

joining devices, and will cause joining devices to acquire the network key in the clear

when joining.

TABELA 11 Lista de comandos AT para edi¢do de Opcoes do modo AT
| Node

Name and Description Parameter Range Default

Command Mode Timeout. Set/Read the period of inactivity (no valid commands
CT CRE 2 - 0x028F [x 100 ms] 0x64 (100d)

received) after which the RF module automatically exits AT Command Mode and returns

to Idle Mode.
CN Exit Command Mode. Explicitly exit the module from AT Command Mode. CRE - -
oT Guard Times. Set required period of silence before and after the Command Sequence CRE 1-0xOCE4 [x 1 ms] 0X3ES

Characters of the AT Command Mode Sequence (GT + CC + GT). The period of silence (max of 3.3 decimal sec) (1000d)

is used to prevent inadvertent entrance into AT Command Mode.
Command Sequence Character. Set/Read the ASCII character value to be used

0x2B
CRE 0 - OxFF
ce between Guard Times of the AT Command Mode Sequence (GT + CC + GT). The AT X

) ('+" ASCII)
Command Mode Sequence enters the RF module into AT Command Mode.
The CC command is only supported when using AT firmware: 20xx (AT coordinator),
22xx (AT router), 28xx (AT end device).
TABELA 12 - Lista de comandos At da Interface com RF
e | Name and Description | LEED Parameter Range ‘ Default
XBee
(boost mode disabled)
0=-8dBm
1=-4dBm
2=-2dBm
Power Level. Select/Read the power level at which the RF module transmits conducted 3=0dBm
PL CRE 4
4 =+2dBm
power. For XBee-PRO (S2B) Power Level 4 is calibrated and the other power levels are XBee-PRO (S2)
approximate. 4=17 dBm
XBee-PRO (S2)
(International Variant)
4=10dBm

PM

DB

PP

Power Mode. Set/read the power mode of the device. Enabling boost mode will improve
CRE
the receive sensitivity by 1dB and increase the transmit power by 2dB

Note: Enabling boost mode on the XBee-PRO (S2) will not affect the output power. Boost

mode imposes a slight increase in current draw. See section 1.2 for details.

Received Signal Strength. This command reports the received signal strength of the

last received RF data packet. The DB command only indicates the signal strength of the CRE
last hop. It does not provide an accurate quality measurement for a multihop link. DB can

be set to 0 to clear it. The DB command value is measured in -dBm. For example if DB

returns 0x50, then the RSSI of the last packet received was

-80dBm. As of 2x6x firmware, the DB command value is also updated when an APS

acknowledgment is received.

Peak Power. Read the dBm output when maximum power is selected (PL4). CRE

0-1,
0=-Boost mode disabled,

1= Boost mode enabled.

0 - OxFF

Observed range for

XBee-PRO:

0x1A - 0x58

For XBee:

0x 1A - 0x5C

0x0-0x12

[read only]

74

AP

AO

TABELA 13 Lista de comandos AT de Interface Serial
| Node

Name and Description

API Enable. Enable APl Mode.

CRE
The AP command is only supported when using AP!I firmware: 21xx (API coordinator),
23xx (API router), 29xx (API end device).
API Options. Configure options for API. Current options select the type of receive API

CRE

frame to send out the Uart for received RF data packets.

Parameter Range

1-2
1= APl-enabled
2 = APl-enabled

(w/escaped control
0 - Default receive API

indicators enabled

1 - Explicit Rx data
indicator API frame
enabled (0x91)

3 - enable ZDO
passthrough of ZDO
requests to the UART
which are not supported
by the stack, as well as
Simple_Desc_req,
Active_EP_req, and

Match_Desc_req.

Default

BD

NB

SB

RO

D7

D6

Interface Data Rate. Set/Read the serial interface data rate for communication between

CRE
the module serial port and host.
Any value above 0x07 will be interpreted as an actual baud rate. When a value above
0x07 is sent, the closest interface data rate represented by the number is stored in the
BD register.
Serial Parity. Set/Read the serial parity setting on the module. CRE
Stop Bits. Set/read the number of stop bits for the UART. (Two stop bits are not CRE
supported if mark parity is enabled.)
Packetization Timeout. Set/Read number of character times of inter-character silence

CRE
required before packetization. Set (RO=0) to transmit characters as they arrive instead of
buffering them into one RF packet The RO command is only supported when using AT
firmware: 20xx (AT coordinator), 22xx (AT router), 28xx (AT end device).
DIO7 Configuration. Select/Read options for the DIO7 line of the RF module. CRE
DI06 Configuration. Configure options for the DIO6 line of the RF module. CRE

0-7

(standard baud rates)
0=1200 bps
1=2400
2=4800
3=9600
4=19200
5=238400
6=57600
7=115200

0 = No parity

1 = Even parity

2 =0dd parity

3 = Mark parity
0 =1 stop bit

1 =2 stop bits

0 - OxFF 3

[x character times]

0 = Disabled

1=CTS Flow Control
3 = Digital input

4 = Digital output, low
5 = Digital output, high
6 = RS-485 transmit
enable (low enable)

7 = RS-485 transmit

enable (high enable)

0 = Disabled

1=RTS flow control
3 = Digital input

4 = Digital output, low

5 = Digital output, high

75

76

TABELA 14 Lista de comandos AT de 1/0 control
| Node

Name and Description ‘ Parameter Range Default

10 Sample Rate. Set/Read the 10 sample rate to enable periodic sampling. For periodic
R CRE 0, 0x32:0xFFFF (ms) 0
sampling to be enabled, IR must be set to a non-zero value, and at least one module pin
must have analog or digital IO functionality enabled (see D0-D8, P0-P2 commands). The
sample rate is measured in milliseconds.
10 Digital Change Detection. Set/Read the digital IO pins to monitor for changes in the
10 state. IC works with the individual pin configuration commands (D0-D8, P0-P2). If a
IC CRE : 0 - OxFFFF 0
pin is enabled as a digital input/output, the IC command can be used to force an X
immediate 10 sample transmission when the DIO state changes. IC is a bitmask that can
be used to enable or disable edge detection on individual channels. Unused bits should
be setto 0.
0 = Disabled
1=RSSIPWM
PO PWMO Configuration. Select/Read function for PWMO. CRE 1
3 - Digital input,
monitored
4 - Digital output, default
low
5 - Digital output, default
high
0 - Unmonitored digital
input 0
P1 DI011 Configuration. Configure options for the DIO11 line of the RF module. CRE
3- Digital input,
monitored
4- Digital output, default
low
5- Digital output, default
high
0 - Unmonitored digital
input
P2 DI012 Configuration. Configure options for the DIO12 line of the RF module. CRE 0
3- Digital input,
monitored
4- Digital output, default
low
5- Digital output, default
high

P3

DO

D1

D2

D3

DI013 Configuration. Set/Read function for DIO13. This command is not yet

supported.

ADO0/DIO0 Configuration. Select/Read function for ADO/DIOO0.

AD1/DIO1 Configuration. Select/Read function for AD1/DIO1.

AD2/DI02 Configuration. Select/Read function for AD2/DIO2.

AD3/DIO3 Configuration. Select/Read function for AD3/DIO3.

CRE

CRE

CRE

CRE

CRE

0,35

0 - Disabled

3 - Digital input

4 - Digital output, low

5 - Digital output, high

1 - Commissioning button
enabled

2 - Analog input, single
ended

3 - Digital input

4 - Digital output, low
5 - Digital output, high
0,25

0 - Disabled

2 - Analog input, single
ended

3 - Digital input

4 - Digital output, low
5 - Digital output, high
0,25

0 - Disabled

2 - Analog input, single
ended

3 - Digital input

4 - Digital output, low
5 - Digital output, high
0,25

0 - Disabled

2 - Analog input, single
ended

3 - Digital input

4 - Digital output, low

5 - Digital output, high

71

D4

D5

D8

LT

PR

RP

%V

DI04 Configuration. Select/Read function for DIO4.

CRE
DIO5 Configuration. Configure options for the DIO5 line of the RF module. CRE
DIO8 Configuration. Set/Read function for DIO8. This command is not yet supported. CRE
Assoc LED Blink Time. Set/Read the Associate LED blink time. If the Associate LED
functionality is enabled (D5 command), this value determines the on and off blink times

CRE
for the LED when the module has joined a network. If LT=0, the default blink rate will be
used (500ms coordinator, 250ms router/end device). For all other LT values, LT is
measured in 10ms.
Pull-up Resistor. Set/read the bit field that configures the internal pull-up resistor status
for the 1/0 lines. "1" specifies the pull-up resistor is enabled. "0" specifies no pullup.(30k

CRE
pull-up resistors)
RSSI PWM Timer. Time the RSSI signal will be output on the PWM after the last RF data

CRE
reception or APS acknowledgment.. When RP = OxFF, output will always be on.
Supply Voltage. Reads the voltage on the Vcc pin. Scale by 1200/1024 to convert to
mV units. For examplee, a %V reading of 0x900 (2304 decimal) represents 2700mV or

CRE

2.70V.

78

0,35

0 - Disabled

3 - Digital input

4 - Digital output, low

5 - Digital output, high

0 = Disabled
1 = Associated

indication LED
3 = Digital input
4 = Digital output, default

low

0,35

0 - Disabled

3 - Digital input

4 - Digital output, low

5 - Digital output, high

0, 0x0A - OxFF (100 -

2550 ms)

0 - 0x3FFF

0- Ox1FFF

0 - OXFF [x 100 ms]

0x28 (40d)

-0x-OxFFFF [read only]

79

Voltage Supply Monitoring. The voltage supply threshold is set with the V/+ command. 0-OxFFFF
If the measured supply voltage falls below or equal to this threshold, the supply voltage
V+ CRE 0
will be included in the 10 sample set. V+ is set to 0 by default (do not include the supply
voltage). Scale mV units by 1024/1200 to convert to internal units. For example, for a
2700mV threshold enter 0x900.
Given the operating Vcc ranges for different platforms, and scaling by 1024/1200, the
useful parameter ranges are:
XBee 2100-3600 mV 0,0x0700-0x0c00
PRO 3000-3400 mV, 0,0x0a00-0x0b55
Reads the module temperature in Degrees Celsius. Accuracy +/- 7 degrees. 0x0-0xFFFF
1° C =0x0001 and -1° C = OxFFFF. Command is only available in PRO S2B.
TP CRE -
TABELA 15 Lista de comandos AT de diagnésticos
& | Name and Description | LEED Parameter Range ‘ Default
Firmware Version. Read firmware version of the module.
The firmware version returns 4 hexadecimal values (2 bytes) "ABCD". Digits ABC are
VR the main release number and D is the revision number from the main release. "B" is a CRE 0 - OXFFFF [read-only] Factory-set
variant designator.
XBee and XBee-PRO ZB modules return:
0x2xxx versions.
Hardware Version. Read the hardware version of the module.version of the module.
This command can be used to distinguish among different hardware platforms. The
HV CRE 0 - OXFFFF [read-only] Factory-set

upper byte returns a value that is unique to each module type. The lower byte indicates

the hardware revision.

XBee ZB and XBee ZNet modules return the following (hexadecimal) values:

0x19xx - XBee module

0x1Axx - XBee-PRO module

80

Association Indication. Read information regarding last node join request:

0x00 - Successfully formed or joined a network. (Coordinators form a network, routers
and end devices join a network.)
0x21 - Scan found no PANs
Al CRE 0 - OxFF ~
0x22 - Scan found no valid PANs based on current SC and ID settings
0x23 - Valid Coordinator or Routers found, but they are not allowing joining (NJ expired)
[read-only]
0x24 - No joinable beacons were found
0x25 - Unexpected state, node should not be attempting to join at this time
0x27 - Node Joining attempt failed (typically due to incompatible security settings)
0x2A - Coordinator Start attempt failed"
0x2B - Checking for an existing coordinator
0x2C - Attempt to leave the network failed
0xAB - Attempted to join a device that did not respond.
0xAC - Secure join error - network security key received unsecured
0xAD - Secure join error - network security key not received

OxAF - Secure join error - joining device does not have the right preconfigured link key

OxFF - Scanning for a ZigBee network (routers and end devices)

TABELA 16 Lista de comandos AT para sleep
| Node

| Parameter Range Default

Name and Description

Sleep Mode Sets the sleep mode on the RF module. An XBee loaded with router 0-Sleep disabled (router) 0 - Router
SM RE

firmware can be configured as either a router (SM set to 0) or an end device (SM > 0). 1-Pin sleep enabled 4-End

Changing a device from a router to an end device (or vice versa) forces the device to 4-Cyclic sleep enabled Device

leave the network and attempt to join as the new device type when changes are applied. 5- Cyclic sleep, pin wake

Number of Sleep Periods. Sets the number of sleep periods to not assert the On/Sleep
SN CRE 1- OXFFFF 1

pin on wakeup if no RF data is waiting for the end device. This command allows a host

application to sleep for an extended time if no RF data is present

Sleep Period. This value determines how long the end device will sleep at a time, up to
0x20 - 0xAF0 x 10ms

SP , , , CRE 0x20
28 seconds. (The sleep time can effectively be extended past 28 seconds using the SN

(Quarter second

command.) On the parent, this value determines how long the parent will buffer a
resolution)

message for the sleeping end device. It should be set at least equal to the longest SP
time of any child end device.

Time Before Sleep Sets the time before sleep timer on an end device.The timer is reset
ST E 1- OXFEFE (x 1ms) 0x1388 (5

each time serial or RF data is received. Once the timer expires, an end device may enter
seconds)

low power operation. Applicable for cyclic sleep end devices only.

SO

Command

WH

Sl

PO

Sleep Options. Configure options for sleep. Unused option bits should be set to 0.
Sleep options include:

0x02 - Always wake for ST time

0x04 - Sleep entire SN * SP time

Sleep options should not be used for most applications. See chapter 6 for more
information.

Wake Host. Set/Read the wake host timer value. If the wake host timer is set to a non-
zero value, this timer specifies a time (in millisecond units) that the device should allow
after waking from sleep before sending data out the UART or transmitting an 10 sample.

If serial characters are received, the WH timer is stopped immediately.

Sleep Immediately. See Execution Commands table below..

Polling Rate. Sets the polling rate for the end device.

0- OxFF

0 - OXFFFF (x 1ms)

0-0x1770 (10msec)

0x00 (100

msec)

81

AC

WR

RE

FR

NR

Sl

TABELA 17 Lista de comandos AT de execucao

Name and Description

Apply Changes. Applies changes to all command registers causing queued command
register values to be applied. For example, changing the serial interface rate with the BD
command will not change the UART interface rate until changes are applied with the AC

command. The CN command and 0x08 API command frame also apply changes.

Write. Write parameter values to non-volatile memory so that parameter modifications
persist through subsequent resets.

Note: Once WR is issued, no additional characters should be sent to the module until
after the "OK\r" response is received. The WR command should be used sparingly. The
EM250 supports a limited number of write cycles.”

Restore Defaults. Restore module parameters to factory defaults.

Software Reset. Reset module. Responds immediately with an OK status, and then

performs a software reset about 2 seconds later.

Network Reset. Reset network layer parameters on one or more modules within a PAN.
Responds immediately with an “OK” then causes a network restart. All network
configuration and routing information is consequently lost.

If NR = 0: Resets network layer parameters on the node issuing the command.

If NR = 1: Sends broadcast transmission to reset network layer parameters on all nodes

in the PAN.

Sleep Immediately. Cause a cyclic sleep module to sleep immediately rather than wait

for the ST timer to expire.

CRE

CRE

CRE

CRE

CRE

E

Parameter Range

0-1

Default

CB

ND

DN

Commissioning Pushbutton. This command can be used to simulate commissioning

button presses in software. The parameter value should be set to the number of button o
presses to be simulated. For example, sending the ATCB1 command will execute the
action associated with 1 commissioning button press.
Node Discover. Discovers and reports all RF modules found. The following information
CRE

is reported for each module discovered.

MY<CR>

SH<CR>

SL<CR>

NI<CR> (Variable length)

PARENT_NETWORK ADDRESS (2 Bytes)<CR>

DEVICE_TYPE<CR> (1 Byte: 0=Coord, 1=Router, 2=End Device)

STATUS<CR> (1 Byte: Reserved)

PROFILE_ID<CR> (2 Bytes)

MANUFACTURER_ID<CR> (2 Bytes)

<CR>
After (NT * 100) milliseconds, the command ends by returning a <CR>. ND also accepts
a Node Identifier (NI) as a parameter (optional). In this case, only a module that matches
the supplied identifier will respond.
If ND is sent through the API, each response is returned as a separate
AT_CMD_Response packet. The data consists of the above listed bytes without the
carriage return delimiters. The NI string will end in a "0x00" null character. The radius of
the ND command is set by the BH command.
Destination Node. Resolves an NI (Node Identifier) string to a physical address (case-

CRE

sensitive). The following events occur after the destination node is discovered:
<AT Firmware>
1. DL & DH are set to the extended (64-bit) address of the module with the matching
NI (Node Identifier) string.
2. OK (or ERROR)\r is returned.
3. Command Mode is exited to allow immediate communication
<API Firmware>
1. The 16-bit network and 64-bit extended addresses are returned in an API
Command Response frame.
If there is no response from a module within (NT * 100) milliseconds or a parameter is
not specified (left blank), the command is terminated and an “ERROR” message is
returned. In the case of an ERROR, Command Mode is not exited. The radius of the DN

command is set by the BH command.

82

optional 20-Byte

NI or MY value

up to 20-Byte printable

ASClII string

Force Sample Forces a read of all enabled digital and analog input lines.
1S CRE -

XBee Sensor Sample. Forces a sample to be taken on an XBee Sensor device. This
18 RE -
command can only be issued to an XBee sensor device using an APl remote command.

83

