
FAUSTO PEREZ RODRIGUES

SOLUÇÃO DE AUTOMAÇÃO REMOTA
UTILIZANDO GNU/LINUX

EMBARCADO E O PROTOCOLO
ZIGBEE/IEEE802.15.4

Trabalho de Conclusão de Curso apresentado à

Escola de Engenharia de São Carlos, da
Universidade de São Paulo

Curso de Engenharia Elétrica com ênfase em
Eletrônica

ORIENTADOR: Prof. Dr. Evandro Luís Linhari Rodrigues

São Carlos

2012

 ii

AUTORIZO A REPRODUÇÃO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Rodrigues, Fausto Perez
 R696s Solução de automação remota utilizando GNU/LINUX

embarcado e o protoloco ZIGBEE/IEEE 802.15.4 / Fausto
Perez Rodrigues; orientador Evandro Luís Linhari
Rodrigues. São Carlos, 2012.

Monografia (Graduação em Engenharia Elétrica com
ênfase em Eletrônica) -- Escola de Engenharia de São
Carlos da Universidade de São Paulo, 2012.

1. Sistemas embarcados. 2. Protocolo ZIGBEE/IEEE
802.15.4. 3. GNU/LINUX embarcado. 4. Acesso remoto. 5.
Rede de sensores. I. Título.

 iii

 iv

 v

Dedicatória

Aos meus pais, por todo apoio, amor e confiança.

 vi

 vii

Agradecimentos

Primeiramente à milha família,

que sempre me apoiou e permitiu meu crescimento como pessoa

além de ser meu exemplo máximo.

Aos meus amigos, que foram fundamentais nas diversas fases da graduação

Aos professores que encaram a missão de ensinar com seriedade.

Ao Professor Dr. Evandro Luís Linhari Rodrigues,

que além de acreditar neste projeto

Sempre manteve sua porta aberta

Ao desenvolvedor Attie Grande pela imensa paciência

e trabalho na biblioteca libxbee

Ao pessoal do laboratório

Ao Departamento da Engenharia Elétrica

À Escola de Engenharia e à USP

 viii

 ix

Sumário
1  Introdução .. 1 

1.1  Apresentação ... 1 

1.2  Contextualização .. 3 

1.3  Objetivo ... 3 

1.4  Organização ... 4 

2  Fundamento Teórico ... 5 

2.1  Sistemas Embarcados .. 5 

2.2  Módulo FriendlyARM Tiny6410 ... 5 

2.3  Sistema operacional Linux ... 7 

2.3.1  Linux e Linux embarcado .. 7 

2.3.2  Bootloader .. 9 

2.3.3  Kernel .. 9 

2.3.4  Sistema de arquivos raiz (Root filesystem) ... 11 

2.3.5  Distribuição GNU Linux Xubuntu .. 12 

2.4  Transmissão de dados .. 12 

2.4.1  Transmissão serial ... 13 

2.4.2  Protocolo e dispositivos Zigbee/IEEE 802.15.4 ... 14 

2.4.2.1  Topologia de Rede Zigbee .. 15 

2.4.2.2  Inicialização da Rede Zigbee .. 16 

2.4.2.3  Endereçamento e envio de dados ... 18 

2.4.2.4  Módulos Digi Xbee ... 19 

2.4.2.5  Comunicação entre dispositivos Digi Xbee .. 22 

2.4.2.6  Modo de Operação API .. 25 

3  Metodologia ... 27 

3.1  Projeto de software ... 27 

3.1.1  Análise de Sistema .. 28 

3.1.1.1  Análise de viabilidade técnica .. 28 

3.1.1.2  Análise de viabilidade econômica .. 28 

3.1.1.3  Análise de viabilidade legal .. 29 

3.1.2  Análise de Requisitos .. 29 

3.1.2.1  Requisitos funcionais ... 30 

3.1.2.2  Requisitos não‐funcionais .. 31 

 x

3.2  Redes de sensores e atuadores ... 31 

3.3  Metodologia de testes ... 33 

3.3.1  Teste de consumo de energia ... 33 

3.3.2  Teste de modularidade e escalabilidade .. 33 

3.3.3  Teste de integridade e robustez da comunicação .. 34 

3.3.4  Teste de distância entre módulos ... 34 

4  Implementação ... 35 

4.1  Circuitos dos módulos de teste .. 35 

4.2  Comunicação serial com o modulo coordenador (RCOM CON‐USBBEE) ................................. 36 

4.3  Compilação e validação da biblioteca libxbee ... 37 

4.3.1  Aplicação de teste simple−at .. 39 

4.4  Sistema desenvolvido em C do sistema de controle da rede Zigbee ....................................... 39 

4.4.1  Inicialização ... 40 

4.4.2  Varredura inicial .. 40 

4.4.3  Loop principal .. 41 

4.4.4  Funções de chamadas e callbacks .. 42 

4.5  Software web ... 42 

4.5.1  Back‐end: estrutura PHP e AJAX ... 42 

4.5.2  Front‐end: HTML, CSS e JavaScript .. 44 

4.6  Integração entre os sistemas ... 45 

5  Testes e resultados ... 49 

5.1  Consumo de energia .. 49 

5.2  Integridade e robustez da comunicação .. 50 

5.3  Modularidade e Escalabilidade .. 50 

5.4  Distância máxima de comunicação entre dispositivos .. 50 

6  Discussão e Conclusões .. 53 

7  Referências Bibliográficas ... 55 

8  Apêndice A – Fluxogramas e diagramas referentes a análise de sistemas ..................................... 57 

9  Apêndice B – Código‐fonte utilizado no sistema e nos testes .. 59 

10  Apêndice C – Código‐fonte implementado no servidor web. ... 65 

11  ANEXO A – Lista de comandos AT ... 69 

 xi

ÍNDICE DE FIGURAS
 

FIGURA 1 PANORAMA DOS PROTOCOLOS DE COMUNICAÇÃO WIRELESS. ADAPTADO DE: CUNHA (2007) 2 
FIGURA 2 RELAÇÃO ENTRE AS CAMADAS DE COMUNICAÇÃO E O PROTOCOLO ZIGBEE/IEEE 802.15.4 2 
FIGURA 3 DIAGRAMA DA PROPOSTA DE DESENVOLVIMENTO DO PROJETO ... 3 
FIGURA 4 VISÃO GERAL DOS PERIFÉRICOS DO MÓDULO DE DESENVOLVIMENTO FRIENDLYARM TINY6410 6 
FIGURA 5 VISÃO GERAL DA PLACA NÚCLEO (CORE) (FRIENDLYARM, 2011) .. 7 
FIGURA 6 ESTRUTURA SIMPLIFICADA DO SISTEMA GNU/LINUX (ELECTRONS, 2012) ... 9 
FIGURA 7 BLOCOS DE FUNÇÕES DO KERNEL DO GNU/LINUX .. 10 
FIGURA 8 BLOCOS DE FUNÇÕES DO KERNEL ... 10 
FIGURA 9 MODELO SIMPLES DE TRANSMISSÃO DE DADOS SERIAL ... 13 
FIGURA 10 MODELO DE TRANSMISSÃO SERIAL ASSÍNCRONA ... 14 
FIGURA 11 TOPOLOGIAS DE REDE PARA REDE ZIGBEE. .. 16 
FIGURA 12 PROCESSO DE BEACONNING PARA INCLUSÃO DE DISPOSITIVO A REDE ZIGBEE. ADAPTADA DE: DIGI
INTERNATIONAL (2010) ... 17 
FIGURA 13 MÓDULOS XBEE DA DIGI INTERNATIONAL COM DIFERENTES ANTENAS. ... 20 
FIGURA 14 PROCESSO PARA TRANSMISSÃO DE DADO .. 23 
FIGURA 15 ESTRUTURA DO FRAME DE TRANSMISSÃO DO MODO AT .. 24 
FIGURA 16 ESTRUTURA DO FRAME API (DIGI INTERNATIONAL,2010) ... 25 
FIGURA 17 ILUSTRAÇÃO DA COMUNICAÇÃO POR MEIO DE FRAMES API. .. 26 
FIGURA 18 DIAGRAMA DE REQUISITOS PARA O SISTEMA LINUX-ZIGBEE ... 30 
FIGURA 19 TOPOLOGIA PARA MEDIÇÃO DO CONSUMO DE ENERGIA DOS MÓDULOS XBEE 33 
FIGURA 20 PLANTA DAS ADJACENCIAS DO DEPARTAMENTE DE ENGENHARIA ELÉTRICA 34 
FIGURA 21 CIRCUITO MODELO PARA TESTE DOS END DEVICES .. 35 
FIGURA 22 MONTAGEM DOS DISPOSITIVOS FINAIS EM PROTOBOARD ... 36 
FIGURA 23 ADAPTADOR ROGERCOM CON-USBBEE .. 36 
FIGURA 24 DISPOSITIVO COORDENADOR CONECTADO NO MÓDULO DE DESENVOLVIMENTO FRIENDLYARM
TINY6410 .. 37 
FIGURA 25 RESULTADO DE CONEXÃO USB COM O ADAPTADOR ROGERCOM CON-USBBEE 37 
FIGURA 26 PROCESSOS SIMPLIFICADOS DE UTILIZAÇÃO DA BIBLIOTECA LIBXBEE ... 39 
FIGURA 27 RESULTADO DO CÓDIGO SIMPLE-AT.C ... 39 
FIGURA 28 TRECHO DO CÓDIGO DE INICIALIZAÇÃO IMPLEMENTADO EM C ... 40 
FIGURA 29 CÓDIGO QUE REALIZA A CHAMADA DAS FUNÇÕES PARA A VARREDURA INICIAL 41 
FIGURA 30 TRECHOS DO CÓDIGO DO LOOP PRINCIPAL EM C .. 41 
FIGURA 31 TRECHO DO CÓDIGO PHP PARA TORNAR DINÂMICA A GERAÇÃO DO HTML FINAL 43 
FIGURA 32 SEÇÃO DE PROJETO DO HOTSITE ... 44 
FIGURA 33 SEÇÃO DE REDE COM IMPLEMENTAÇÃO DE ACESSO REMOTO A REDE ZIGBEE .. 45 
FIGURA 34 RELAÇÃO ENTRE OS ARQUIVOS E OS SISTEMAS .. 46 
FIGURA 35 TRECHO DO CÓDIGO DO SISTEMA DE CONTROLE DA REDE PARA ESCRITA NO ARQUIVO ZIGBEE.TXT 46 
FIGURA 36 TRECHO DO CÓDIGO DO SISTEMA WEB DA REDE PARA ESCRITA NO ARQUIVO PHP_ZIGBEE.TXT 47 
FIGURA 37 MEDIÇÃO DO CONSUMO DE CORRENTE MÉDIO PARA O DISPOSITIVO XBEE COMO ROTEADOR 49 
FIGURA 38 RESULTADO COMPARATIVOS ENTRE OS DISPOSITIVOS XBEE E XBEE PRO NO TESTE DE DISTÂNCIA 51 
FIGURA 39 DIAGRAMA DE FLUXO DE DADOS PARA A APLICAÇÃO DE COMANDO API .. 57 
FIGURA 40 DIAGRAMA DE FLUXO DE DADOS PARA PROCESSAMENTO DO REQUEST DO USUÁRIO 58 

 xii

ÍNDICE DE TABELAS  

TABELA 1 ESPECIFICAÇÕES GERIAS DOS DIPOSITIOS XBEE E XBEE PRO SERIES 2. (DIGI INTERNATIONAL,
2010) ... 21 
TABELA 2 COMANDOS E IDENTIFICADORES DO FRAME API (DIGI INTERNATIONAL, 2010) 26 
TABELA 3 COTAÇÃO INICIAL DE CUSTO DE AQUISIÇÃO DE HARDWARE .. 29 
TABELA 4 CONFIGURAÇÃO DOS REGISTRADORES AT DO DISPOSITIVO XBEE COORDENADOR 32 
TABELA 5 CONFIGURAÇÃO DOS REGISTRADORES AT DO DISPOSITIVO XBEE ROTEADOR 32 
TABELA 6 CONFIGURAÇÃO DOS REGISTRADORES AT DO DISPOSITIVO XBEE DE ENTRADAS DIGITAIS 32 
TABELA 7 CONFIGURAÇÃO DOS REGISTRADORES AT DO DISPOSITIVO XBEE DE SAÍDAS DIGITAIS 32 
TABELA 8 LISTA DE COMANDOS AT DE ADDRESSING .. 69 
TABELA 9 LISA DE COMANDOS AT DE NETWORKING ... 70 
TABELA 10 LISTA DE COMANDOS AT DE SECURITY ... 72 
TABELA 11 LISTA DE COMANDOS AT PARA EDIÇÃO DE OPÇÕES DO MODO AT .. 73 
TABELA 12 - LISTA DE COMANDOS AT DA INTERFACE COM RF .. 73 
TABELA 13 LISTA DE COMANDOS AT DE INTERFACE SERIAL ... 74 
TABELA 14 LISTA DE COMANDOS AT DE I/O CONTROL ... 76 
TABELA 15 LISTA DE COMANDOS AT DE DIAGNÓSTICOS .. 79 
TABELA 16 LISTA DE COMANDOS AT PARA SLEEP .. 80 
TABELA 17 LISTA DE COMANDOS AT DE EXECUÇÃO .. 81 

  

 xiii

QUADRO 1 DIAGRAMA E ESPECIFICAÇÃO DA PINAGEM DOS MÓDULOS XBEE E XBEE PRO. FONTE (DIGI
INTERNATIONAL, 2010) ... 22 

 xiv

Resumo

Neste trabalho é implementado um sistema de acesso e controle remoto a uma rede de

sensores sem-fio, ondo tal rede de sensores utiliza o protocolo wireless IEEE

802.15.4/Zigbee. O sistema foi desenvolvido em um Módulo de Desenvolvimento

FriendyARM Tiny6410, possuindo um processador ARM11 e o sistema operacional Xubuntu

GNU/Linux. Buscou-se atender as necessidades apresentadas no paradigma das WSN

(Wireless Sensor Network), que são robstez, escalabilidade, modularidade e consumo de

energia.

Palavras-chaves: Sistemas Embarcados, Protocolo Zigbee/IEEE 802.15.4,

GNU/Linux Embarcado, Acesso Remoto, Rede de Sensores.

 xv

Abstract

This paper consists on the project development of a system that allows access and

control of a wireless sensor network, where is used the IEEE 802.15.4/Zigbee as the

communication protocol. This system was developted on the FriendlyARM Tiny6410 board,

with a ARM11 proccessor and the Linux Xubuntu Distribution. As result, this project aims to

fulfill the criteria of the WSN paradigm as reability, scalability, modularity and energy

efficiency.

Keywords: Embedded Systems, Zigbee/IEEE 802.15.4 Protocol, Embedded

GNU/Linux, Remote Access, Sensor Network.

1

1 Introdução
1.1 Apresentação

A área de sistemas embarcados em equipamentos portáteis apresentou e apresenta um

crescimento acentuado, atraindo assim, grandes investimentos em desenvolvimento científico

e técnico. Desta forma, a investigação de aplicações utilizando as diferentes arquiteturas

representa um grande valor comercial e intelectual para o contínuo desenvolvimento na área.

Juntamente com a evolução dos sistemas embarcados (como em memórias,

rendimento de baterias, peso, capacidade de processamento e arquiteturas) surge a nova

geração dos serviços em internet (e.g. Google Maps), e a necessidade de uma infraestrutura de

comunicação em grande escala, criando o paradigma da rede de sensores sem-fio (WSN -

Wireless Sensor Network). A integração de módulos wireless não só gera um novo modo de

comunicação, mas permite que os sistemas portáteis adquiram novas funções(LEADERS,

2007).

A evolução da WSN (Wireless Sensor Network) permitirá uma grande gama de novas

aplicações e utilizações, tais como automação residencial (segurança, HVAC, controle de

iluminação, entre outros), aparelhos eletrônicos (controles remotos), automação industrial

(monitoramento de energia, controle de ambiente) e saúde pessoal(monitoramento cardíaco,

de glicose). Dentre os novos desafios para a implementação das WSNs se encontram:

eficiência energética, escalabilidade, mobilidade, robustez, segurança e estratégias de

sincronização.

Existe uma grande variedade de protocolos de comunicação wireless, os principais

apresentados na Figura 1 para as mais diversas aplicações (e.g. voz, vídeo, comunicação geral

de dados), todas possuem um compromisso entre a taxa de transmissão (bit rate) e a cobertura

de transmissão (distância). Segundo Cunha (2007) uma WSN não tem grandes restrições

quanto a largura de banda de dados utilizada, porém possui a necessidade de um consumo

reduzido de energia, robustez à interferências e segurança. Desta forma, considerando a figura

1, também é válido expressar que entre os protocolos apresentados apenas o Zigbee e o

Bluetooth apresentam grande potencial para a utilização nas WSNs.

2

Figura 1 Panorama dos protocolos de comunicação wireless. Adaptado de: CUNHA (2007)

Atualmente, existe um grande número de soluções proprietárias para comunicações

sem fio, inabilitando a interoperabilidade entre estes dispositivos de diferentes tecnologias. O

esforço conjunto da IEEE 802.15.4 Task Group (IEEE, 2003) e a Aliança Zigbee (ZIGBEE

ALIANCE, 2006) permitiu a criação e normalização de uma pilha de protocolo para

comunicações sem fio de baixa banda(Zheng e Myung, 2004). A pilha IEEE 802.15.4/Zigbee

é composta por quatro camadas onde: o protocolo IEEE 802.15.4 especifica as subcamadas de

Enlace (Medium Access Control) e Física. A especificação Zigbee, que se basea na pilha

IEEE802.15.4, constrói as camadas de aplicação e de rede da comunicação de dados,

conforme mostrado na Figura 2.

A tecnologia Zigbee está aumentando o interesse da indústria e academia, sendo

considerada uma solução de baixo custo e baixo consumo para sistemas de automação sem

fio(ADAMS, 2005; CULTER, 2005). Os interesses abordados pela proposta da Aliança

Zigbee são domótica (foco deste trabalho), sistemas de saúde, segurança e controle ambiental.

Desta forma, o protocolo Zigbee apresenta-se como um protocolo para a solução de

problemas em WSNs.

Figura 2 Relação entre as camadas de comunicação e o protocolo Zigbee/IEEE 802.15.4

3

1.2 Contextualização

Este trabalho foi desenvolvido dentro do contexto da pesquisa e desenvolvimento de

sistemas embarcados como gateway para a exploração em diversos níveis de comunicações,

focando na implementação do serviço de automação utilizando a pilha IEEE 802.15.4/Zigbee

junto ao sistema embarcado operando um kernel Linux(BARR; MASSA, 2007)

A escolha de um sistema embarcado operando o sistema operacional GNU/Linux foi

adotado para facilitar a implementação COTS (Commercial-Off-The-Shelf), onde uma solução

pode ser apresentada de maneira mais rápida em sistemas comerciais. O gateway Zigbee

permite a exploração da rede IEEE 802.15.4 por meio de um servidor web, sendo assim um

gateway para a internet. Segundo Cunha (2007) os requerimentos que se pretende observar e

alcançar com este trabalho são:

• Robustez

• Escalabilidade

• Mobilidade

• Eficiência energética

A hipotese de que este conjunto proposto possa suprir as necessidades da rede de

sensores e desta forma a implementação da mesma será fundamental para compreender

melhor os comportamentos do protocolo assim como uma abertura para trabalhos seguintes,

como testes, avaliações e melhorias.

1.3 Objetivo

O objetivo deste trabalho é avaliar a capacidade do protocolo Zigbee/IEEE 802.15.4,

sendo testado pela implementação de disposivos utilizando o protocolo IEEE802.15.4/Zigbee

para uma rede de sensores e atuadores sem fio, sendo controlado por um sistema GNU/Linux

embarcado em microcontroladores ARM, conforme apresentado na figura 3.

Figura 3 Diagrama da proposta de desenvolvimento do projeto

4

1.4 Organização

Neste capítulo foi realizada a introdução e justificativa do trabalho, assim como

objetivo e contexto. O capítulo 2 contêm informações realcionadas ao embasamento teórico

para a realização deste projeto, como um estudo do protocolo Zigbee/IEEE 802.14.5 e

sistemas embarcados. Nos capítulo 3 e 4 são descritos os processos da metodologia utilizada,

dividida em duas componentes: análise do software e configurações para testes. No capitulos

5 é apresentada a implementação, assim como os resultados do processo de implementação.

No capitulo 6 são apresentados os testes realizados em relação à proposta do trabalho e os

seus respectivos resultados. Por fim, no capítulos 7 são apresentadas discussões com base nos

resultados obtidos, conlusões sobre o trabalho e propostas para trabalhos futuros.

5

2 Fundamento Teórico
Neste capitulo serão apresentados os principais conceitos que definem o fundamento

teórico das diversas áreas abordadas neste trabalho.

2.1 Sistemas Embarcados

Um dos primeiros sistemas embarcados foi o computador de navegação Apollo

(ACG), desenvolvido por Charles Stark Draper. Durante a criação do projeto, o sistema de

navegação foi considerado o item com maior risco de falha dentro do projeto Apollo já que o

sistema utilizado os mais novos componentes monolíticos com peso e tamanhos reduzidos.

Porém que característica o definiu como um sistema embarcado?

Um sistema embarcado é uma combinação entre hardware e software – podendo

incorporar outras partes, tanto mecânicas quanto elétricas – projetadas para realizar uma

determinada função. Um simples exemplo é o forno micro-ondas, pois quase todas as casas

possuem um e, apesar do desconhecimento por parte de seus usuários, possui um processador

e um software envolvidos na preparação das refeições (GIRIO, 2010).

 De acordo com Barr e Massa (2007) o design de um sistema embarcado para realizar

uma função específica está em contraste direto com o de um computador pessoal. Este

também é composto por hardware, software e partes mecânicas (unidades de disco, por

exemplo). Entretanto, um computador pessoal não é designado para realizar uma função

específica. Ao contrário, ele pode realizar muitas tarefas distintas e talvez desconhecidas para

seus projetores. Muitas pessoas utilizam o termo computador de propósito geral para tornar

clara a distinção. O usuário final tem a possibilidade de utilizar seu computador pessoal como

um servidor de dados, editor de imagens ou para lazer.

 É comum que um sistema embarcado seja componente de um sistema maior,

composto por demais sistemas embarcados. Por exemplo, carros modernos possui uma rede

de sistemas embarcados distribuídos. Um sistema para a frenagem, outro para interface com o

motorista, e um terceiro para a injeção de combustível. Nestes casos, os sistemas embarcados

em uma aplicação possuem ou estão inseridos em uma rede de comunicação de dados.

2.2 Módulo FriendlyARM Tiny6410

Para a implementação do projeto, optou-se por um módulo de desenvolvimento já

testado, com a finalidade de minimizar os riscos envolvendo configuração em baixo nível e

hardware. Para que os testes propostos atinjam resultados de forma independente da

6

performance do módulo de desenvolvimento, é necessário que o mesmo possua uma alta

capacidade de processamento, memória e interfaces robustas já implementadas. Desta forma

optou-se pelo módulo de Desenvolvimento FriendlyARM Tiny6410. O módulo de

desenvolvimento Tiny6410, fabricado pela empresa chinesa FriendlyARM

(FRIENDLYARM, 2010), utilizado para desenvolvimento da estação central de controle do

projeto, conta com um processador Samsung S3C6410 ARM11 de 533MHz, 256MB de

memória RAM e Flash de 2GB. O modulo de desenvolvimento Tiny6410 possui uma grande

variedade de interfaces para periféricos, entre eles se destacam:

• 3 USB host;

• 4 portas serial DB9;

• entrada e saída de áudio P2;

• saída de TV;

• porta Ethernet;

• display 4,3"TouchScreen resistivo;

• slot de SD card.

 Nas Figuras 4 e 5 é possível observar com mais detalhes o módulo de

desenvolvimento e o núcleo de processamento.

Figura 4 Visão geral dos periféricos do módulo de desenvolvimento FriendlyARM Tiny6410

(FRIENDLYARM, 2011)

7

Figura 5 Visão geral da placa núcleo (core) (FRIENDLYARM, 2011)

O módulo é acompanhado por dois DVDs que possuem manuais sobre o hardware da

placa de desenvolvimento assim como manuais sobre a instalação dos sistemas operacionais

que também acompanham o módulo, que são: Windows CE, Android 2.1, Linux(Qtopia) e

Xubuntu.

2.3 Sistema operacional Linux

Neste trabalho foi utilizado o sistema operacional Xubuntu GNU/Linux embarcado no

módulo de desenvolvimento FriendlyARM tiny6410, sendo assim os demais sistemas

operacionais suportados pelo módulo não serão abordados.

2.3.1 Linux e Linux embarcado

Linux é o sistema operacional que surgiu em 1991, desenvolvido por Linus Torvalds

(Linux, 2012). Pelo fato de possuir o código disponível para todos, o sistema operacional

tornou-se popular rapidamente e criou-se uma grande quantidade de colaboradores. Com o

aumento de desenvolvedores permitiu o avanço do sistema em velocidade e qualidade, pois de

forma acelerada foram agregadas funcionalidades, recursos, documentação.

O Linux é referenciado como o kernel do sistema operacional, que é o núcleo do

mesmo. Em dispositivos embarcados o kernel é o mesmo para diferentes plataformas, apenas

sendo necessitado a sua compilação para a determinada arquitetura a ser implementada. Como

foi definido anteriormente, o sistema embarcado é o conjunto de software e hardware com

finalidade específica. Dada a natureza do Linux é possível modificar o sistema operacional

para atender somente as necessidades que o sistema exige. Desta forma existe uma melhor

alocação e aproveitamento dos recursos disponíveis, onde geralmente existem limitações em

relação a consumo de energia permitido, memória e capacidade processamento (CUNHA,

2007).

8

Desta forma a versão do Linux desenvolvida para sistemas embarcados possui as

características e qualidades do kernel mantido pela comunidade, tais como suportes a padrões

e protocolos de comunicação, drivers e módulos a interfaces e periféricos consolidados.

Estas versões focadas em sistemas embarcados também possuem um gama de

desenvolvedores trabalhando em conjunto para a criação de ferramentas específicas,

permitindo assim um avanço em direções levemente diferentes em relação as distribuições

voltadas para computadores pessoais e servidores. Assim, surgem comunidades de

desenvolvimento em plataformas específicas, como FriendlyARM (FRIENDLYARM, 2012),

possuindo diversos trabalhos em documentação e suporte em fóruns de usuários. Porém para

algumas plataformas ainda jovens, o nível de documentação e suporte em comunidades é

reduzido.

 A implementação do Linux nas diversas famílias de arquitetura de sistemas

embarcados que trabalham em 32-bits(ARM, MIPS, entre outras) foi principalmente motivada

devido ao diferencial comercial do Linux, que sendo distribuído sobre a licença GNU-GPL,

que permite qualquer usuário ou empresa utilizar, modificar e redistribuir o sistema isento de

cobrança. Assim. existe um incentivo no sentido de diminuição do custo gerado pelo

desenvolvimento do projeto, onde, geralmente, o custo é crucial para a realização de diversos

projetos na área.

O sistema de GNU/Linux embarcado é composto de maneira básica por três

componentes: Bootloader, Kernel e Root Filesystem. O Bootloader é responsável pela

inicialização do sistema, e desta forma criar as condições necessárias para execução do

sistema operacional. O Kernel, conforme foi discutido anteriormente, consiste no sistema

operacional em si, gerenciando os recursos em relação as aplicações do sistema. O Root

Filesystem (sistema de arquivos raiz) contém as aplicações, bibliotecas, configurações, dados

gerais. A Figura 6 representa de maneira geral tais componentes do Linux embarcado. Nas

próximas seções cada um destes componentes do sistema GNU/Linux serão abordadas

especificamente.

9

Figura 6 Estrutura simplificada do sistema GNU/Linux (ELECTRONS, 2012)

2.3.2 Bootloader

O bootloader é responsável pela inicialização dos principais componentes de

hardware para a execução do kernel do sistema operacional, descrito na próxima seção,

verificando o hardware disponível e mínimo para carregar o kernel na memória RAM do

sistema. O bootloader é posicionado na memória do dispositivo no endereço inicial de leitura

do processador, a fim de ser a primeira sequência de execução a ser processada. (Linux, 2012)

Apesar dos diversos bootloaders disponíveis para os diferentes hardwares e sistemas

operacionais destacam-se o GRUB e o LILO para sistemas Linux em computadores pessoais.

Para sistemas embarcados opta-se pelo U-boot(U-boot, 2012)um bootloader mais simples e

ajustável aos diferentes hardwares utilizados em sistemas embarcados, além de funções

poderosas como alteração do kernel do sistema embarcado remotamente.

2.3.3 Kernel

O Linux em si é o kernel (núcleo do sistema operacional) do sistema operacional, ou

seja, ele não possui as ferramentas para interface com o usuário como ambiente gráfico,

softwares gerais (estes sendo fornecidos pela distribuição completa) (Linux, 2012). A

interação do kernel com as aplicações gerais, do ponto de vista de blocos de funções, é

ilustrado na figura 7.

10

Figura 7 Blocos de funções do Kernel do GNU/Linux

Apesar do kernel ter sido desenvolvido por Linus Torvalds, hoje é mantido por

diversos desenvolvedores. O projeto do Linux pode ser encontrado no site www.kernel.org. O

kernel opera numa área da memória denominada kernel space (uma área de acesso restrito)

apresentada na Figura 8(a figura foi mantida em inglês para manter a relação do nome com as

siglas correspondentes) e pode ser segmentada em relação aos blocos que o compõe. Nesta

divisão existem três camadas no kernel do Linux, onde a primeira é a camada de interface

entre o user space e o kernel space nessa camada é necessário uma preocupação com a

biblioteca glibC(principal biblioteca de funções utilizadas no sistema operacional) utilizada na

Distribuição GNU utilizada.

Figura 8 Blocos de funções do kernel

A segunda camada é comum a todas os sistemas que utilizam Linux, independente da

arquitetura utilizada e contém as principais rotinas de gerenciamento de memória, controle do

11

sistema de arquivos e o gerenciador de processos, este último contém as rotinas como

escalonador de tarefas, controles de sincronização e tratamento de informações.

A terceira camada é a interface entre o hardware e a tratamento de processos e

arquivos do kernel, portanto é a camada que contém os device drivers e definições da

arquitetura utilizada. Assim as mudanças necessárias para embarcar o sistema Linux para as

diversas plataformas e arquiteturas são realizadas nesta camada.

2.3.4 Sistema de arquivos raiz (Root filesystem)

O sistema de arquivos raiz é responsável pela leitura e escrita e armazenamento

persistente de dados, documentos, softwares e bibliotecas que são necessários para o sistema

operacionais e aplicações gerais dos usuários. O sistema de arquivos realiza tal gerenciamento

de acordo com o hardware de armazenamento de dados. De acordo com Curvello e Santos

(2011), dentre os sistema de arquivo raiz existentes destacam-se os seguintes para o Linux:

• EXT3: Third Extended File System, em português: Terceiro Sistema de Arquivos

Estendido. É amplamente usado em ambientes desktop com sistemas baseados em UNIX,

tendo como principal característica possuir mecanismos cofiáveis e robustos para escrita de

arquivos, prevenindo danos em ocasiões onde o sistema é indevidamente desligado. Não

possui implementação de mecanismos adequados de gestão de células lógicas FLASH o que

torna sua aplicação limitada em relação a sistemas embarcados em longo prazo.

• YAFFS2: Yet Another Flash File System 2, ou em português: “Ainda Outro Sistema

de Arquivos para Flash 2”. É amplamente usado por dispositivos que possuem sistema

Android.

• JFFS2: Abreviação de Journalling Flash File System 2. Recentemente era um dos

sistemas de arquivos mais usados em sistemas embarcados. Com o avanço das tecnologias de

memória FLASH, tornando-se defasado para sistemas embarcados.

• UBI: Abrevição de Unsorted Block Images. É o sistema de arquivos que possui

características para implementação em sistemas embarcados, porém é o mais complexo.

Trabalha com o sistema de arquivos na forma de blocos, como sua distribuição não é linear e

orientada a blocos é ideal para células lógicas FLASH.

Em sistemas embarcados o principal dispositivo para o armazenamento de dados de

maneira persistente são células de memória FLASH (conforme citado anteriormente). A

utilização de outros tipo de dispositivos, tais como disco-duros acarretariam grande consumo

de energia e encarecimento do sistema de maneira considerável.

12

A memória FLASH apresenta um desgaste em relação ao tempo, e ao uso inadequado

por meio do sistema ou usuário. Logo, é aconselhável a utilização de um sistema de arquivos

que permita o gerenciamento das células danificadas, permitindo a otimização do sistema de

arquivos e hardware.(GUIA DO HARDWARE, 2012)

2.3.5 Distribuição GNU Linux Xubuntu

Conforme citado anteriormente o sistema operacional Linux é em si o kernel, quando

colocado em conjunto com aplicações e gerenciadores do sistema operacional são formadas as

distribuições GNU/Linux (LINUX, 2012). Existem hoje mais de 300 distribuições sendo

mantidas atualizadas, sendo muitas forks (projetos derivados) de outras distribuições,

organizadas em diversas categorias.

Dentre a distribuições mais conhecidas destacam-se o Debian, Slackware, Fedora,

OpenSuse, Archlinux e Ubuntu. Existem desde pequenas diferenças a grandes modificações e

maneiras de se trabalhar entre as diversas distribuições. Dessa maneira o desenvolvedor ou

usuário tem a opção de escolher a distribuição que melhor solucione as suas necessidades.

Para sistemas embarcados existe uma grande varianção entre as diversas distribuições.

Neste trabalho foi utilizada a distribuição Xubuntu GNU/Linux. O Xubuntu é uma

distribuição baseada na distribuição Ubuntu (um fork da distribuição Debian) adaptada para

aplicações em sistemas embarcados, onde existe uma maior sensibilidade ao gerenciamento

de memória e arquitetura de processadores.

Uma grande vantagem do sistema Xubuntu para a implementação de soluções de

rápido desenvolvimento para sistemas embarcados são ferramentas de alto nível para

instalação de aplicações desenvolvidas pelo seu antecessor Debian. Dentre as ferramentas

destaca-se o gerenciador de pacotes APT (Inglês) que permite a instalação de outras

aplicações, tal como o servidor web Apache, e instalação de bibliotecas de linguagens de

programação como PHP, Python entre outros.

2.4 Transmissão de dados

 Esta seção aborda o modo de transmissão de dados na rede sem fio de sensores

(WSN) com a utilização do protocolo Zigbee/IEEE 802.15.4. Também será abordado a

comunicação serial que é necessária para a comunicação do módulo coordenador Xbee com o

módulo de desenvolvimento por meio da interface USB.

13

2.4.1 Transmissão serial

Um dos métodos mais comuns de transmissão de dados entre dispositivos, é a

transmissão serial de dados, onde cada bit de informação é transmitidos pelo mesmo canal e

em ordem sequencial. A figura 9, abaixo, ilustra o funcionamento básico de transmissão de

dados.

Figura 9 Modelo simples de transmissão de dados serial

Apesar da transmissão serial apresentar velocidade menor quando comparada a

transmissão paralela de dados, a comunicação serial apresenta grande simplicidade na lógica

de controle quanto na implementação física. A comunicação serial pode ser síncrona ou

assíncrona. Na comunicação síncrona há a necessidade de um sinal de clock para determinar o

controle de fluxo de dados entre transmissor e receptor. Na segunda forma, a transmissão

assíncrona e forma de controle de fluxo de dados é realizada por meio de conjunto

determinado de dados que são transmitidos no mesmo canal dos dados de informação.

Apesar da comunicação síncrona apresentar maior desempenho apresenta também um

maior nível de complexidade e custo de hardware. Portanto para projetos simples e de custo

reduzido a implementação de sistemas assíncronos é mais utilizada, onde incide menor custo

em hardware, menor complexidade de projeto.

A comunicação serial assíncrona apresenta a inserção de bits de controle junto ao

canal de dados. Logo a velocidade de transmissão de dados de informação torna-se ainda

menor. Como utiliza-se como solução o protocolo Zigbee/IEEE 802.15.4 onde não ocorre a

necessidade de altas taxas de transferência, este aspecto não deve gerar atrasos na

comunicação sem fio.

14

Figura 10 Modelo de transmissão serial assíncrona

Na linha de transmissão são enviados pacotes conforme a figura 10. Permanecendo em

nível alto durante o repouso, quando ocorre a mudança de estado sinalizando o inicia da

transmissão. Este primeiro bit recebe o nome de Start Bit, em seguida são transmitidos dados

que podem ter tamanho de 5 a 8 bits. Ao final são adicionados 1 ou 2 bits de paridade (sendo

configurado por software). A transferência de dados possui uma taxa base de transmissão

denominada Baud Rate e, neste trabalho, a mesma será utilizada 9600bps.

2.4.2 Protocolo e dispositivos Zigbee/IEEE 802.15.4

Zigbee/IEEE 802.15.4 é o protocolo de comunicação que opera nas camadas de

aplicação rede, enlace e física, segundo parâmetros das camadas ISO/OSI, conforme

apresentado anteriormente na Figura 2. O protocolo Zigbee pode ser compreendido como uma

solução em protocolo que, com suporte na norma IEEE 802.15.4, desenvolvido pelo

consorcio Zigbee Alliance (ZIGBEE ALLIANCE, 2012), onde o objetivo é permitir a

comunicação com baixas taxas de transmissão de dados, implicando em baixo consumo de

energia e baixo custo operando na frequência de 2.4GHz. Neste trabalho o conjunto

Zigbee/IEEE 802.15.4 será mencionado simplesmente como protocolo Zigbee.

O método implementado pelo protocolo Zigbee permite a criação de uma rede onde a

transmissão de dados pode ocorre por roteamento de dados, ou seja, a comunicação entre dois

dispositivos não necessita ser direta entre o dispositivo inicial e final da transmissão. As

direções de roteamento são configuradas previamente, editando-se os registradores, podendo

ser modificadas enquanto a rede está online por meio de comandos remotos caso seja utilizado

o modo API (este modo de operação será abordado na seção intitulada API mode).

Hoje, existem no mercado, diversas soluções em módulos utilizando o protocolo

Zigbee dentro das características COTS(Commercial Off-The-Shelf), ou seja, que são soluções

prontas para implementação. Dentre estas, serão abordados os módulos Xbee da Digi

15

International, devido a sua presença no mercado brasileiro e custo dentro do limite para

desenvolvimento do projeto. As principais características dos módulos Xbee serão

apresentadas no decorrer deste trabalho (ROGERCOM,2012).

2.4.2.1 Topologia de Rede Zigbee

Para discutir as possíveis topologias de rede Zigbee é necessário compreender a

distinção que pode haver em relação as funções de cada nó da rede. Existem duas categorias,

em relações as funções habilitadas no dispositivo e funções de nós na rede. A classificação

segundo as funções habilitadas por dispositivo são:

• RFD - Reduced Function Device: São dispositivos que possuem maior simplicidade

quanto ao hardware, não permitindo a implementação completa da pilha de comunicação.

Atuam somente como End Devices na rede e, portanto, só se comunicam com coordenadores

e roteadores. Na prática, os RFDs são dispositivos com acesso a rede que constituídos por

interruptores, sensores, controladores, relés entre outros.

• FFD - Full Function Device: São dispositivos que possuem a capacidade de operar

como Coordenadores, Roteadores ou End Devices. Portanto, possuem hardware necessário

para a implementação da pilha completa de comunicação, processamento e consumo de

energia. Os FFDs podem se comunicar com quaisquer outro dispositivo da rede. Os módulos

Digi Xbee estão dentro desta categoria de dispositivos.

A segunda maneira de classificar os dispositivos que operam a rede Zigbee é em

relação a função desempenhada na rede na qual está incluído, podendo ser:

• Coordinator/Coordenador: O dispositivo com a função de coordenador é

responsável pela inicialização da rede (controle da PAN), controle e enumeração (distribuição

de endereços para os dispositivos) e reconhecimento dos dispositivos. Na rede Zigbee só

existe um coordenador atuante, sendo possível que haja um segundo dispositivo com função

de backup em caso de falha do primeiro coordenador. Somente implementável por um

dispositivo FFD.

• Router/Roteador: A função de roteador também só podem ser executada por um

dispositivo FFD, porém podem haver vários roteadores em uma mesma rede Zigbee. Os

roteadores são responsáveis pela transmissão de dados entre dispositivos, permitem a entrada

de dispositivos, entre outras funções.

• End Device/Dispositivo Final: Nesta função é possível utilizar dispositivos FFD e

RFD, pois apenas comunicam dados para os roteadores e coordenadores. Os dispositivos

finais, neste trabalho referidos como End Devices, consomem menos energia que os

16

coordenadores e roteadores, pois permitem a função sleep (tal operação será abordada

posteriormente) do dispositivo e não permitida nos demais.

Considerando as possíveis funções desempenhadas pelos dispositivos Zigbee, as

topologias de rede são: (a) Star (Estrela), (b) Cluster Tree (Árvore) e (c) Mesh (Malha),

conforme apresentado na Figura 11.

Figura 11 Topologias de rede para rede Zigbee.

(a)Estrela(Star)(b)Árvore(Cluster Tree)(c)Malha(Mesh)
Adaptada de: ROGERCOM (2012)

A topologia Estrela (figura 11(a)) é a topologia mais simples, onde o coordenador de

rede comunica-se diretamente com os dispositivos de rede. Esta topologia é aplicada para

sistemas simples, onde não existem muitos obstáculos para a transmissão de dados, assim

como uma taxa de transmissão média baixa.

 A topologia de Árvore (figura 11(b)) possui um nível de complexidade acima da

topologia Estrela, pois apresenta de hierarquia, ou rota, definida para a transmissão de dados.

Porém tal topologia apresenta uma inflexibilidade para o tráfego de dados.

Na topologia de Malha (figura 11(c)) ocorre o ajuste automático de roteamento de

dados, assim como o monitoramento dos nós, este tipo de topologia aproveita as

características diferencias do protocolo Zigbee/IEEE 802.15.4 para aplicações com diversos

nós, longas distâncias e taxas de transmissão de dados variadas.

2.4.2.2 Inicialização da Rede Zigbee

A inicialização da rede Zigbee ocorre com a energização do dispositivo coordenador,

onde o mesmo escolhe um PAN ID (Personal Area Network Identifier). Os dispositivos

encontrados pelo dispositivo coordenador, e configurados apropriadamente (a configuração

será abordada no Capítulo 3 - Metodologia), herdam o PAN ID do coordenador, passando a

17

fazer parte da rede. Ao “entrar” na rede do coordenador, o dispositivo recebe um endereço de

rede (16bits). O processo de criação de rede ocorre em duas etapas:

1. Varredura de energia(Energy Scan): O coordenador varre os diversos canais

utilizados no padrão IEEE 802.15.4, detectando níveis de energia, correspondentes a canais

utilizados por outras redes, equipamentos, entre outros. Desta forma o coordenador elimina

canais para utilização da rede.

2. Varredura de PAN(PAN Scan): Após a varredura de energia, o coordenador busca

por PANs dentro dos possíveis canais de comunicação por meio de um sinal de broadcast

(Beacon Request), mostrado na Figura 11. Os dispositivos que recebem o sinal de beacon

respondem o coordenador, com informações relacionadas a permissões do dispositivo, a PAN

em que o dispositivo está e sobre o próprio dispositivo.

Figura 12 Processo de beaconning para inclusão de dispositivo a rede Zigbee. Adaptada de: DIGI

INTERNATIONAL (2010)

Ao finalizar a varredura de PAN, o dispositivo coordenador analisa os frames

recebidos e determina a nova PAN, PAN ID e canal, utilizada pelos dispositivos. Quando os

demais dispositivos são inicializados, eles juntam-se a PAN disponível, este processo pode

ocorrer por dois métodos:

• Beaconning: Os dispositivos roteadores permanecem ligados e emitem um sinal de

sinalização(beaconning), descobrindo os demais dispositivos na rede. Enquanto os

dispositivos finais(End devices) permanecem e sleep e tornam- se ativos por um processo de

temporização a fim de observar o sinal de beaconning. Desta forma existe uma economia de

energia pelo sistema.

18

• Non-Beaconning: Neste modo todos os dispositivos permanecem ativos,

consumindo mais energia. Assim, não há necessidade de sinalização temporal entre os

dispositivos.

Desta forma, o dispositivo encontra a rede do coordenador e é inserido, e se for

permitida sua entrada, em uma PAN válida. Ao encontrar a PAN válida, o dispositivo envia

um Association Request ao nó patriarca, conforme apresentado na Figura 11. A permissão de

entrada de outros roteadores ou dispositivos na rede é determinada, conforme citado

anteriormente, pelo próprio atributo de permissão de entrada e o número máximo de nós-

filhos pré-determinado.

O atributo de permissão de entrada determina a possibilidade de associação de outros

dispositivos a rede na qual o dispositivo coordenador ou roteador se encontra. Tal atributo

pode permitir a entrada, permitir a entrada por um determinado período de tempo ou não

permitir a entrada de mais dispositivos.

O número máximo de conexões de um dispositivo, coordenador ou roteador, é

determinado segundo o número estimado de transmissão em relação ao número de

dispositivos conectado ao roteador ou coordenador, ou seja, pelo trafego de dados

considerado limite.

2.4.2.3 Endereçamento e envio de dados

Na rede Zigbee ocorre o endereçamento dos dispositivos em dois níveis da camada de

comunicação ISO/OSI, endereçamento de dispositivos(podendo ser na camada de rede ou

física) e o endereçamento na camada de aplicação.

O endereçamento de dispositivos podem ser feitos em duas camadas separadas. De

uma forma, por um endereço de 64 bits que é permanente e imutável para cada radio Zigbee,

estabelecido pelo fabricante. Este endereço se assemelha ao endereço MAC em dispositivos

de rede Ethernet. A segunda forma é dada por um endereço de rede, de 16 bits, configurável e

mutável de acordo com as necessidades da rede na qual o dispositivo se encontra.

O endereçamento na camada de aplicação considera o dispositivo final, de destino

(End Point), e a identificação da informação enviada, Frame ID. O valor do End Point,

semelhante a um socket TCP, representa uma tarefa ou aplicação no dispositivo de destino. O

cluster ID define o comando, ou ação, propriamente dito.

Os pacotes de dados na rede Zigbee utilizam as duas formas de endereçamento, por

dispositivo e por camada de aplicação, para transmitir os dados. Desta forma, a transmissão

em si pode ser feita por unicast (direcional) ou por broadcast, e caso não haja conexão direta

19

entre os dispositivos inicial e final existe a transmissão por meio de outros dispositivos da

rede(hops). Para que o envio encontre o endereço destino ocorre:

• Descoberta de endereço: Consiste em associar um endereço de rede mutável (16

bits) a um endereço de dispositivo imutável (64 bits). O emissor envia uma mensagem em

broadcast informando o endereço 64 bits de destino, quando o dispositivo receptor compara

os endereços de dispositivo de 64 bits e são idênticos, o mesmo responde confirmando seu

endereço de rede (16 bits), desta forma o emissor inicial inicia a transmissão de dados de

informação de aplicação.

• Descoberta de rota: A rota na rede Zigbee é determinada por um procedimento Ad

Hoc On-Demand Distance Vector, onde a rota é determinada relacionando a distancia de

acordo com a utilização dos nós da rede. Cada transmissão de frames de dados entre

dispositivos de roteamento é considerado um hop e pode ser determinado um número máximo

de retransmissões.

A transmissão de dados na rede Zigbee possui confirmação de sucesso na transmissão,

conhecida como ACK, referente ao termo acknowledge do inglês (reconhecimento ou

confirmação). A cada hop entre dispositivos é transmitido um ACK na direção do emissor, a

fim de informar o sucesso da transmissão. Caso ocorra alguma falha, o radio Zigbee realiza

uma tentativa de retransmissão do pacote (sendo, por padrão, no máximo duas tentativas) e no

caso de falha nas retransmissões a rede percebe o erro ocorrido, permitindo ações de controle.

Na seção 2.4.2.5 será abordado novamente o endereçamento de dispositivos em

relação ao modo de operação utilizado.

2.4.2.4 Módulos Digi Xbee

No mercado, existem diversas empresas que fabricam dispositivos Zigbee, neste

trabalho serão utilizados dispositivos Xbee e Xbee PRO ZNET2.4, o dispositivo Xbee é

apresentado na Figura 13. Vale ressaltar neste ponto que o dispositivo de qualquer empresa

“X” que atue oficialmente dentro das normas do protocolo Zigbee/IEEE 802.15.4 se

comunicara sem problemas com o dispositivo da empresa “Y” .

20

Figura 13 Módulos Xbee da Digi International com diferentes antenas.

Adaptado de: ROGERCOM (2012)

A versão Xbee PRO difere quanto ao desempenho em relação ao Xbee, desempenho

aqui medido em distância de transmissão, principalmente. Porém tal desempenho acarreta um

maior consumo de energia pelo dispositivo. A tabela 1 fornece as principais informações em

relação aos dispositivos Xbee e Xbee PRO (DIGI INTERNATIONAL, 2010).

21

TABELA 1 Especificações gerias dos dipositios Xbee e Xbee PRO Series 2. (DIGI INTERNATIONAL,
2010)
Característica Xbee Xbee PRO
Potência de saída 1 mW (0 dBm) 60 mW (18 dBm)
Alcance em ambientes internos 30m 100m
Alcance de RF em linha visível 100m 1600m
Sensibilidade do receptor -92 dBm -100 dBm
Taxa de dados de RF 250.000 bps 250.000 bps
Tensão de alimentação 2.8-3.4V 2.8 à 3.4v
Corrente de transmissão (típico) 45 mA @ 3.3 V 215 mA @ 3.3 V
Corrente de Recepção (típico) 50 mA @ 3.3 V 55 mA @ 3.3 V
Dimensões 2.438cm x 2.761cm 2.438cm x 3.294cm
Tipo de espalhamento espectral DSSS DSSS
Criptografia 1 28-bit AES 128-bit AES

Os módulos Xbee e Xbee PRO também possuem diversos periféricos já

implementados, tais como saídas e entradas digitais, conversores analógico-digital, saída por

PWM, canal de comunicação UART (Universal Asynchronous Receiver/Transmitter). Desta

forma é possível implementar soluções de maneira rápida e eficiente, com hardware já

validado. O diagrama de pinos é apresentado conforme o Quadro 1

Neste trabalho ambos dispositivos serão tratados por dispositivo Xbee, e quando for

necessário a diferença entre os dispositivos será adequadamente apresentada, com os

respectivos resultados.

22

QUADRO 1 Diagrama e especificação da pinagem dos módulos Xbee e Xbee PRO. Fonte (DIGI
INTERNATIONAL, 2010)

2.4.2.5 Comunicação entre dispositivos Digi Xbee

Utilizando a interface serial do módulo Xbee, pode-se trabalhar de duas maneiras: de

modo transparente, utilizada entre dois dispositivos específicos, e modo API (Application

Programming Interface), que fornece uma interface para outras aplicações em relação a rede

Zigbee. As principais características de cada modo de operação é descrita a seguir. De acordo

com o datasheet DIGI INTERNATIONAL (2010), estão implementados os seguintes modos

de operação:

• Modo Transparente: É o modo de operação mais simples, onde é configurado por

meio de registradores o endereço de destino (DL e DH), e ao se transmitir dados no pinto DIN

(RX) do módulo Xbee a informação é transmitida de forma transparente para o pino DO (TX)

do módulo Xbee de destino. O endereço de destino pode ser editado pelo canal serial também

utilizando comandos AT, no datasheet, p.129, dos dispositivos Xbee da Digi International

(2010) é possível encontrar a lista completa com descrição dos comandos AT.

• Modo API: Neste modo existe uma estrutura (frame) que são categorizados entre

frames de requisito e de resposta (Transmit Data Frames e Response Data Frames). Este

método permite a utilização máxima dos recursos da rede Zigbee, como transmissão

23

multiponto, configuração remota, entre outras aplicações. Além de maior controle dos dados,

por introdução de dados de controle como controle de erro (Checksum) e endereço de origem.

Durante o processo de comunicação, o dispositivo Xbee possui uma série de estados

em relação ao processo de comunicação. Tais estados são independentes do modo de

operação utilizado e são os seguintes: sleep, repouso (idle), de transmissão, de recepção e de

comandos AT.

• Estado sleep : Neste modo, permitido aos dispositivos que possuam função de

dispositivo final, onde os mesmos permanecem a maior parte do tempo sem ou com o mínimo

de clock de máquina, e com a grande maioria dos periféricos desligados. E assim, o consumo

de energia é extremamente reduzido. Estes dispositivos podem sair deste estado por uma

interrupção externa ou interna (e.g. timer).

• Estado de repouso(idle): Como os dispositivos coordenador e roteadores não podem

entrar em sleep(desativação completa da rede) eles encontram-se em estado de repouso

quando não estão transmitindo ou recebendo dados. Neste estado ocorre uma diminuição da

capacidade de processamento (clock), e assim, ocorre uma economia de consumo de energia,

porém não drástica como a função sleep.

• Estado de transmissão: Quando um dado é recebido por um pino de entrada de

dados, o dispositivo entra em modo de transmissão. O dispositivo valida do endereçamento e

rota da mensagem, caso não sejam conhecidos(endereço ou rota) é iniciado o processo de

descobrimento de endereço ou rota, conforme apresentado na seção 2.4.2.3. O fluxograma

apresentado na Figura 14 ilustra o processo para transmissão de dados pelo dispositivo Xbee.

Figura 14 Processo para transmissão de dado

• Estado de recepção: O dispositivo entra no estado de recepção quando existe o sinal

no canal utilizado pela PAN, verificando se o mesmo é o endereço de destino da informação.

Caso seja o destino, envia o sinal de ACK para o dispositivo de origem do hop e guarda o

dado recebido em um buffer. O processo é análogo porém invertido em relação à transmissão.

Recebe os 
dados 

Forma o 
pacote 

Busca 
endereço 
ou rota 

Transmite 

24

• Estado de comandos AT: O estado, ou modo, AT é um estado especial onde o

dispositivo Xbee recebe comandos de configuração(leitura ou atualização de dados) pela

serial UART.

Para ativar este modo enviam-se os caracteres "+++"(sem aspas) dentro de um

segundo, o dispositivo responde "OK", confirmando que o dispositivo entrou em modo de

comandos AT. A síntese dos comandos AT é ilustrada na Figura 15.

Figura 15 Estrutura do frame de transmissão do modo AT

Para encerrar o modo de comandos existe um timeout ou pelo comando “ATCN“.

Para garantir a comunicação entre os dispositivos é necessário realizar o

endereçamento dos dispositivos, conforme apresentado na seção 2.4.2.3, de maneira coerente

com o modo de operação utilizado. Desta forma tem-se para o modo transparente de operação

as seguintes formas de endereçamento:

• Endereço físico de 64 bits: Por meio dos comandos AT, configura-se os campos de

DH e DL (sendo respectivamente a parte mais e menos significativa do endereço de 64 bits)

com o endereço do dispositivo de destino.

• Parâmetro NI (Name Indentifier): Por meio de comandos AT, utiliza- se o

comando NI para editar e configurar o registrador NI, gerando um nome conveniente a

aplicação. Também por meio de comandos AT configuram-se os registradores DH e DL para

o atributo estabelecido como NI do dispositivo de destino.

Para o modo de operação API utiliza-se o frame padrão que já contém campos

relacionados ao endereçamento por 64 bits, 16 bits ou NI. Tal frame será abordado na seção

seguinte.

AT 

Prefixo para 
inicio do 
frame 

Comando 

Comando At 
composto 
por dois 
caracteres 

, (opcional) 

Separador 

Valor 
(opcional) 

Novo valor a 
ser inserido 

no 
regitrador 

AT 

Retorno de 
carro 

Delimitador 
dos frame 

25

2.4.2.6 Modo de Operação API

Nesta seção será abordado o modo de operação API(Application Programming

Interface) do dispositivo Digi Xbee. Este método difere do modo transparente pois a frame

enviado ao pino de entrada de dados serial não será simplesmente direcionado ao pino de

saída de dados do dispositivo de destino.

Ao invés, é utilizada uma estrutura de frame como interface para os diferentes

comandos, A estrutura básica do frame API é ilustrada na Figura 16.

Figura 16 Estrutura do frame API (DIGI INTERNATIONAL,2010)

Se o frame não é recebido corretamente o módulo de destino responde com um frame

de status indicando a natureza da falha. O frame possui os seguintes campos:

• Delimitador do frame: “0x7E” demarca o inicio do frame, qualquer dado recebido

antes do delimitador não é considerado pelo dispositivo.

• Tamanho: indica o tamanho de dados do frame, este tamanho não inclui o campo de

checksum.

• Dados: Variam de acordo com a mensagem, cada comando API possui um número e

estrutura, a estrutura geral é demonstrada na Figura 15, e um detalhamento maior pode ser

encontrado no datasheet, p-102. dos dispositivos Xbee da Digi International (2010) é

encontrada uma descrição completa dos frames.O identificador do comando, cmdID, indica o

comando do API que será executado, os comandos suportados são listados na Tabela 2

• Checksum: é um valor calculado para validar o frame recebido. É calculado

somando-se os valores do frame de dados (excluindo delimitador e tamanho), portanto n-3

bytes, e o resultado dessa operação é subtraído do valor 0xFF. Na transmissão é realizado este

algoritmo, e na recepção, o valor de checksum é comparado ao recebido no frame API.

26

TABELA 2 Comandos e identificadores do frame API (DIGI INTERNATIONAL, 2010)
API Frame Names API Identifier (ID)

AT Command 0x08

AT Command - Queue Parameter Value 0x09

ZigBee Transmit Request 0x10

Explicit Addressing ZigBee Command Frame 0x11

Remote Command Request 0x17

Create Source Route 0x21

AT Command Response 0x88

Modem Status 0x8A

ZigBee Transmit Status 0x8B

Ao enviar um frame de request, o dispositivo que o recebe envia um frame de resposta

de acordo com o comando API especificado. E mesmo quando a lina de comandos é remota,

existe um traceback ad informação, conforme ilustrado na Figura 17.

Figura 17 Ilustração da comunicação por meio de frames API.

Fonte: DIGI INTERNATIONAL (2010)

27

3 Metodologia
Neste capitulo serão apresentados os métodos para atingir o objetivo proposto. Para

isso foi adotada uma abordagem sistemática para a elaboração do projeto baseada na

informação apresentada anteriormente no Capítulo 2. A organização deste capitulo apresenta

duas seções que apresentam de maneira linear a sequencia de atividades que antecedem a

implementação do projeto.

A primeira parte aborda a funcionalidade do software compreendendo a análise de

sistema, requisites, fluxo de dados e escolha de tecnologia. A segunda seção trata da

modelagem do sistema físico mostrando as configurações, topologias e dispositivos utilizados

na rede, configurações a serem feitas, juntamente metodologia dos testes para cada

configuração.

3.1 Projeto de software

Nesta seção será abordado todo o processo de análise de sistemas realizados, análise

de requisitos e detalhamento em relação ao processamento de dados realizados, seguindo o

padrão de implementação em cascata. Para isso é necessário uma breve descrição geral, em

termos da abordagem de engenharia de software utilizada. Os principais termos abordados

são:

• Usuário: O usuário consiste no agente primário do sistema. Realiza os pedidos para

o servidor web e é o observador primário de qualidade do sistema.

• Coordenador: O coordenador representa o módulo que desempenha o papel de

coordinator na rede Zigbee. O módulo coordenador possui interface serial-USB com o

módulo de desenvolvimento(base).

• Entradas/Saídas Digitais: O módulo de entradas, ou saídas, digitais possui a função

de end device ou roteador dentro da rede Zigbee, sendo configurado o módulo Xbee para

trabalhar diretamente com os comandos para acesso e controle dos pinos de entradas/saídas

digitais.

• Módulo de desenvolvimento/Base: O módulo de desenvolvimento FriendlyARM

será tratado, neste trabalho, também como Base, sendo responsável pelo processamento de

dados, assim como o host do servidor web e controlador da interface serial-USB com o

módulo coordenador da rede Zigbee

• Web-server: Principal interface com o usuário e o sistema de controle da rede

Zigbee.

28

• Request/Response: Neste trabalho serão tratados como requests e responses

quaisquer petições entre agentes ou módulos.

• Xbee API: Modo de operação do coordenador Zigbee, permitindo o controle por

frames especificados na Norma Xbee Zigbee API.

3.1.1 Análise de Sistema

Nesta seção serão apresentados a análise de sistema do projeto e sua viabilidade de

desenvolvimento e implementação. A discussão do cenário das redes sem fio de sensores, e

sua necessidade já foi discutida previamente no Capítulo 1.

Assim vale destacar que este sistema primordialmente busca cumprir as necessidades

propostas pelos novos desafios para a implementação das WSNs, onde se encontram

eficiência energética, escalabilidade, mobilidade, robustez, segurança, estratégias de

sincronização.

3.1.1.1 Análise de viabilidade técnica

Para que o sistema seja implementado, apenas considerando as necessidades

anteriormente expostas (interface para o usuário interagir com uma rede sem fios de

sensores), serão utilizadas tecnologias com alto grau de maturidade, ou seja, já aceitas e com

grande suporte da comunidade desenvolvedora.

Para o sistema de web-server e back-end serão utilizados o pacote AMP, composto por

MySQL, Apache 2 server e PHP5, sendo implementados sobre a plataforma GNU/Linux. Este

conjunto de aplicações já possui grande suporte e difusão dentro da comunidade de

desenvolvedores.

Como citado acima a plataforma operacional será o GNU/Linux que permite utilizar

comandos do tipo shell script para a realização de tarefas, sendo possível a implementação

modular de soluções para o sistema, assim como como funções ad-hoc. Desta forma, o

projeto torna-se viável em termos técnicos de implementação, desenvolvimento e suporte.

3.1.1.2 Análise de viabilidade econômica

Dentre as soluções técnicas citadas acima, todas possuem licenças livres para a

implementação em aplicações de terceiros. Logo, a viabilidade do sistema como todo depende

de: valor de hardware (compra e configuração), inicialização (treinamento) e permanentes

(salários, sistemas de apoio como internet, energia, aluguel). Para os fins deste documento

somente serão abordados custos dos módulos de hardware, considerando que os demais são

fornecidos por um terceiro agente (a universidade e o discente neste projeto).

O hardware proposto para a realização do sistema consiste em:

29

• Módulo de desenvolvimento FriendlyARM Tiny6410: responsável pela base do

sistema principal de controle do sistema, possuindo o sistema operacional Linux embarcado.

Contém as interfaces necessárias para a implementação do projeto (USB e conexão com a

internet)

• Módulo Xbee PRO Series 2: módulo que será responsável pela comunicação

wireless da rede sendo responsável pelas duas camadas inferiores segundo o modelo ISO/OSI

(Física e Enlace).

• Adaptador CON-USBEE Rogercom: responsável pela comunicação física

(conversão USB-UART) entre os módulos de comunicação wireless e a base do sistema de

controle.

Como os componentes do circuito representam um modelo genérico correspondente

aos sensores utilizados, não serão considerados. Já que a rede para os sensores não depende

dos mesmos. E com isso, a tabela 3 mostra o custo de implementação, segundo uma pesquisa

inicial .
TABELA 3 Cotação inicial de custo de aquisição de hardware

3.1.1.3 Análise de viabilidade legal

Neste projeto, serão buscadas tecnologias que não possuem restrições legais, seja em

relação ao uso e modificação de código. Assim o projeto não implica restrições à publicação

de material desenvolvido.

3.1.2 Análise de Requisitos

Nesta seção serão apresentados os requisitos que o sistema deverá compreender em

sua solução. Os requisitos são levantados de maneira a permitir uma modularidade no

desenvolvimento no sistema. Os requisitos levantados são apresentados a seguir e descrevem

o diagrama ilustrado na Figura 18.

Qtdad Descrição Valor (US$)/Unidade

01 FriendlyARM Tiny6410 160.00

01 Rogercom CON-USBEE 50.00

03 Xbee PRO Series 225.00

 Total 275.00

30

Figura 18 Diagrama de requisitos para o sistema Linux-Zigbee

3.1.2.1 Requisitos funcionais

Os requisitos funcionais correspondem as atividades que o sistema realiza de tal

maneira a solucionar as necessidades propostas pelo cenário. Desta maneira, os seguintes

requisitos funcionais foram avaliados:

A. Ler o valor das entradas digitais do módulo de entradas: Este requisito é formado

pelo request do usuário/servidor para leitura de uma determinada entrada digital do módulo de

entradas digitais disposto na rede de sensores.

• Entradas: HTTP request do usuário ou chamada temporizada do servidor;

• Processamento: Verificação do request, identificação do comando e transmissão

para o módulo de transmissão wireless, espera pela resposta e envio de resposta para o

usuário;

• Saídas: Valor da entrada digital.

B. Controlar o valor das saídas digitais do módulo de saída: Este requisito é formado

pela petição do usuário para mudança de uma determinada saída digital do módulo de saídas

digitais disposto na rede de sensores.

• Entradas: HTTP request do usuário;

• Processamento: Verificação do request, identificação do comando, transmissão para

o módulo de transmissão wireless, validação da ação e envio de resposta para o usuário;

• Saídas: Valor da saída digital e confirmação de execução.

sistema 

Usuário  Rede de 
Sensores 

Leitura das 
Entradas Digitais 

Controle das  
Saídas Digitais 

Monitoramento 
da Rede e 
Dispositivos 

Comunicação 
com internet 

31

C. Monitorar a rede de sensores: Este requisito é formado pela petição do usuário ou

pelo próprio sistema para avaliar o estado e que a rede está, com detalhes sobre os nós.

• Entradas: HTTP request do usuário ou temporizado pelo sistema;

• Processamento: Verificação do request, identificação do comando e transmissão

para o módulo de transmissão wireless, espera e validação da resposta da rede wireless;

• Saídas: Array da estrutura de pontos de rede Zigbee.

3.1.2.2 Requisitos não-funcionais

Os requisitos não funcionais serão compostos pelas determinações de eficiência,

robustez, segurança e atributos adicionais do sistema. Estes requisitos determinam

diretamente fatores de qualidade do sistema. Os requisitos não funcionais são descritos

abaixo.

• Eficiência: O sistema deve apresentar uma relação de sucesso/erro na execução dos

requests do usuário/servidor de 99%

• Tempo de resposta: O sistema deve responder em no máximo 1s depois do

recebimento da petição do usuário.

• Robustez: O sistema deve ser capaz de identificar erros e informa-los sem

comprometer a execução contínua do serviço.

• Segurança: O sistema não apresentará validação de segurança de usuário em sua

primeira instância, versão alpha. Sua implementação sendo arbitrária na fase beta.

No Apêndice A - Fluxogramas e diagramas referentes a análise de sistemas são

apresentados os fluxogramas orientados a fluxo de dados, assim como o processo final

realizado pelo sistema.

3.2 Redes de sensores e atuadores

Com o software inicialmente proposto, são necessários modelos de redes de sensores

para teste do sistema proposto. Nos modelos serão utilizados quatro dispositivos: um

dispositivo contendo as entradas digitais, um contendo as saídas digitais, um

coordenador(base) e um roteador intermediário sem saídas ou entradas.

Desta forma, as topologias de rede utilizadas foram em estrela, em árvore e mesh,

conforme apresentada na figura 11. A configuração a ser implementada em cada elemento da

32

rede, em relação aos registradores AT dos dispositivos Xbee, é apresentada nos Quadros 2, 3,

4 e 5.
TABELA 4 Configuração dos registradores AT do dispositivo Xbee coordenador

Registrador AT Valor
ID 1234
SH 0013A200
SL 405CC166
NI COORDINATOR
DH 0
DL FFFF
AP 1
BD 3
D7 1
D6 1

TABELA 5 Configuração dos registradores AT do dispositivo Xbee roteador

Registrador AT Valor
ID 1234
SH 0013A200
SL 405CC150
NI ROUTER
DH 0
DL 0

TABELA 6 Configuração dos registradores AT do dispositivo Xbee de entradas digitais

Registrador AT Valor
ID 1234
SH 0013A200
SL 405CA290
NI DIGITAL_INPUT
DH 0
DL 0
D0 3
D1 3
D2 3
D3 3

TABELA 7 Configuração dos registradores AT do dispositivo Xbee de saídas digitais

Registrador AT Valor
ID 1234
SH 0013A200
SL 405CA265
NI DIGITAL_OUTPUT
DH 0
DL 0
D0 5
D1 5

33

D2 5
D3 5

A descrição completa dos registradores AT pode ser encontrada no Anexo A – Lista

de comandos AT.

3.3 Metodologia de testes

Os testes realizados tem por objetivo satisfazer a proposta de solução para automação,

por meio da análise do sistema em relação: ao consumo de energia; à modularidade e à

escalabilidade; à integridade e robustez da comunicação e à distância entre dispositivos.

3.3.1 Teste de consumo de energia

Para a análise do consumo de energia será utilizada a medição de corrente do modulo

Xbee para os seguintes estados, sleep(para os dispositivos finais), transmissão e recepção.

Para tal medição será utilizado um resistor em série com o pino de alimentação com o

valor de 0,75Ω e a medição de queda tensão sobre o mesmo permitirá inferir o valor de

corrente. Com o valor de resistência baixo não é gerado um erro na medição da corrente,

sendo a topologia utilizada representada na Figura 19.

Figura 19 Topologia para medição do consumo de energia dos módulos Xbee

3.3.2 Teste de modularidade e escalabilidade

Definindo modularidade como a capacidade de trabalho em cada dispositivo de

maneira particular de acordo, mantendo as características gerais aos dispositivos e

34

escalabilidade como a capacidade de adição e remoção de dispositivos da rede, sem

comprometer a eficiência da mesma.

A protocolo Zigbee tem a capacidade de agregar novos dispositivos à rede, desde que

estejam configurados para buscar a rede especifica. Portanto, para a realização desse teste,

retira-se e se insere os dispositivos roteador e end devices e verifica-se a reinserção do

dispositivo a rede.

3.3.3 Teste de integridade e robustez da comunicação

Um dos principais requisitos do sistema é a robustez em relação a comunicação de

dados, para que o sistema não tome decisões incoerentes errôneas.

Para realizar esta medição cria-se uma rotina no servidor, que envia mensagens

temporizadas a um dos dispositivos na rede, e é verificada a integridade da resposta, o tempo

de envio e resposta.

3.3.4 Teste de distância entre módulos

Segundo a Digi International (2010), os módulos Xbee e Xbee PRO tem capacidade de

alcance de 100 e 1600 metros, respectivamente, em linha visível das antenas.

Para a medição do nível de potência recebido e enviado seria necessário equipamento

mais sofisticado com a finalidade de validar as medições. Desta forma serão realizados testes

de comunicação e validação por inspeção visual, ou seja, uma rotina de mudança de estado

em uma saída digital e confirmação visual associada a um ponto de distância.

Também será feita a medição do nível de potencia recebida pelo dispositivo remoto,

enquanto o mesmo recebe o sinal. Para esta medida será utilizado o terreno adjacente ao

departamento de engenharia elétrica, ilustrado na figura 20

Figura 20 Planta das adjacencias do Departamente de Engenharia Elétrica

 

35

4 Implementação
Neste capítulo será abordada a implementação do sistema, assim como os resultados

pertencentes à implementação em si. Este capitulo aborda: configuração do sistema

GNU/Linux embarcado; a configuração e instalação da biblioteca libxbee, desenvolvida e

mantida por Attie Grande (2012); o software do sistema desenvolvido em C e em linguagens

web (HTML, CSS, JAVASCRIPT e PHP) e os circuitos utilizados para os módulos.

4.1 Circuitos dos módulos de teste

Para os testes foi desenvolvido um circuito macro para os End devices, apresentado na

Figura 19. Tais circuitos possuem simplicidade suficiente para implementação em

protoboard, não sendo necessária a impressão do circuito em placa. O resultado de tal

implementação é apresentado nas figuras 21 e 22.

Figura 21 Circuito modelo para teste dos End devices

36

Figura 22 Montagem dos dispositivos finais em protoboard

Os demais módulos, roteador e coordenador, não possuem necessidade de montagem

de um circuito particular, apenas a alimentação adequada. Tal alimentação é realizada pelo

adaptador USB utilizado.

4.2 Comunicação serial com o modulo coordenador (RCOM CON-USBBEE)

A comunicação entre a módulo e o dispositivo coordenador da rede Zigbee é realizada

por meio do adaptador ROGERCOM CON-USBBEE, mostrado na Figura 23. Para o

funcionamento correto basta certificar a instalação do driver dos dispositivos FTDI,

componente contido no adaptador.

Figura 23 Adaptador Rogercom Con-USBBEE

37

O driver permite a criação de uma serial virtual relacionada à interface USB, logo a

comunicação utilizada é, no fundo, a UART. No teste realizado para verificar o

funcionamento é utilizado um terminal serial do tipo minicom, kermit, e são enviados

comandos AT para o dispositivo.

A montagem no módulo de desenvolvimento FriendlyARM tiny6410 é mostrado na

Figura 24.

Figura 24 Dispositivo coordenador conectado no módulo de desenvolvimento FriendlyARM Tiny6410

O resultado é mostrado na Figura 25, mostrando a identificação do dispositivo pelo

sistema operacional e validando a comunicação serial.

Figura 25 Resultado de conexão USB com o adaptador ROGERCOM CON-USBBEE

4.3 Compilação e validação da biblioteca libxbee

Para a compilação, tanto da biblioteca quanto dos códigos desenvolvidos foi utilizado

o gcc, um compilador extremamente robusto e eficiente disponível no sistema utilizado.

38

Para a utilização dos modo API suportado pelos dispositivos Xbee, foi uti- lizada uma

biblioteca livre, libxbee (ATTIE, 2012). A biblioteca gera as estruturas relacionadas ao

controle, monitoramento e modelos da rede formada pelos dispositivos Xbee.

Assim, inicia-se a implementação do software ao compilar e validar a biblioteca

libxbee, como a biblioteca é desenhada para ser utilizada em uma arquitetura x386 ou x64 é

necessário realizar configurações de cross-compile para a compilação da biblioteca para a

arquitetura ARM.

Dentro dos arquivos de configuração, o arquivo configure.mk controlam o grupo de

flags relacionados a arquitetura do sistema. Edita-se a seguinte flag:

CROSS_COMPILE?= arm-linux-

 Ao configura-los adequadamente o processo de compilação foi realizado pelos

comandos:

make configure

make

make install (neste ponto é necessário ser superuser ou root)

Desta maneira são instalados: a biblioteca estática(libxbee.a) , uma biblioteca

compartilhada(libxbee.so) e a documentação man para a comunicação utilizando o modo API

para programas desenvolvidos em C/C++, com o compilador gcc.(ATTIE, 2012)

Para executar a compilação é necessário “linkar” a biblioteca ao processo, com

apresentado no exemplo abaixo:

gcc my_code.c -lxbee -lpthread -lrt -o my_executable

A implementação também terá caráter sistemático, a fim de minimizar os erros e

tornar o processo o mais linear. Inicialmente é validada a biblioteca libxbee, posteriormente o

serviço web e suas configurações e por fim a conexão entre o sistema e o serviço web.

39

4.3.1 Aplicação de teste simple−at

Para validar a biblioteca libxbee é testado um software que permite verificar o

funcionamento das estruturas principais. O programa implementado é chamado simple−at.c,

sendo uma modificação do teste padrão proposto pelo autor da biblioteca para o teste inicial.

O software deve realizar uma petição ao dispositivo local, realizando um comando AT

dentro do frame API, o comando API realizado é o 0x08 - AT Command (DIGI

INTERNATIONAL, 2010). O código completo encontra-se no Apêndice B - Arquivos fonte

utilizados no sistema e nos testes.

Na Figura 26 é ilustrado o processo para a utilização da biblioteca de forma adequada

e na figura Figura 27 são mostrados os resultados retornados pelo software, impressos no

terminal via SSH.

Figura 26 Processos simplificados de utilização da biblioteca libxbee

Desta forma, percebe-se que a biblioteca está instalada e funcionando de acordo com o

proposto. Para as demais ações do sistema, serão necessárias outras funções da biblioteca e

serão discutidas nos resultados.

Figura 27 Resultado do código simple-at.c

4.4 Sistema desenvolvido em C do sistema de controle da rede Zigbee

Nesta seção o código implementado tem por objetivo saciar os requisitos levantados

no Capítulo 3 – Metodologia. Para isso são abordadas algumas etapas desenvolvidas e

funcionamento geral, porém o código fonte completo pode ser encontrado no Apêndice B -

Arquivos fonte utilizados no sistema e nos testes.

Inicializa a 
comunicação 
serial com o 
disposilvo 
coordenador 

Inicializa a 
conexão 

fornecendo o 
endereço de 
deslno e 
função 
callback

Realiza 
transmissão 
do parametro 
AT por meio 
da função TX 

Aguarda 
resposta da 

rede e 
quando 

recebe valida 
a reposta e 
imprime na 

tela 

Fecha a 
conexão AT e 
a conexão 
serial com o 
disposilvo 

xbee 

40

4.4.1 Inicialização

Inicialmente, são geradas as variáveis globais e locais da função main.c. Também no

processo de inicialização são levantados os endereços dos dispositivos da rede, e é aberta a

conexão xbee com o módulo coordenador. Também são criadas as conexões do tipo “I/O“

com os módulos de entradas e saídas digitais, estas conexões permitem “setar” um callback

para tratar o recebimento de mudança de estado nas saídas digitais. A figura 28 mostra os

trechos do código que inicializam as conexões xbee e “I/O” assim como o link com a função

callback para as função myCB_simpleIO().

Figura 28 Trecho do código de inicialização implementado em C

4.4.2 Varredura inicial

A varredura é realizada por duas funções implementadas de forma que são criadas as

conexões AT para cada request. O tráfego de informação entre as funções é realizado pela

utilização de variáveis globais, assim o uso de memória torna-se mais rígido, porém mais

simples de se desenvolver.

A varredura inicial tem por objetivo verificar quais dos dispositivos pré-relacionados,

já estão conectados à rede assim como está o estado das saídas e entradas de cada dispositivo.

Na chamada das funções é enviado o índice relacionado ao dispositivo xbee de destino, este

índice está relacionado à estrutura de dados criada my_xbee.

Na figura 29 é apresentado o código relacionado a chamada de tais funções.

41

Figura 29 Código que realiza a chamada das funções para a varredura inicial

4.4.3 Loop principal

No loop principal é composto pela temporização para o monitoramento dos

dispositivos da rede. Também são realizadas rotinas para a verificação se existe algum request

do usuário ou do servidor para a atuação em alguma saída de um dispositivo da rede.

As rotinas que realizam a leitura se existe um request do usuário e criam as estruturas

para disponibilizar a informação para o servidor serão abordadas na seção 4.6 Integração entre

os sistemas.

Na figura 30 são apresentados trechos do código implementado dentro do loop

principal, sem abordar as rotinas de integração com o servidor web.

Figura 30 Trechos do código do loop principal em C

42

4.4.4 Funções de chamadas e callbacks

Para a leitura das portas e envio de comandos AT, que são as principais estruturas API

utilizadas, foram criados procedimentos que realizam o processo estabelecido na Figura 20,

onde ocorre a abertura de conexão, realização da comunicação e fechamento da conexão.

A implementação destas funções está disponível no Apêndice B. Conforme citado

anteriormente, o trafego entre os dados recebidos e retornados por estas funções é feito por

meio de variáveis globais, e utilizado um buffer de bytes “aux_array”.

As funções de callback são inseridas quando existe uma conexão definida, e espera-se

uma resposta da rede Zigbee. Portanto é estimado um tempo de resposta máximo, e se a

função callback não for chamada dentro deste período um erro é sinalizado.

4.5 Software web

O software web proposto tem por objetivo interagir com o sistema implementado em

C que efetua o controle sobre a rede Zigbee. Neste ponto uma das páginas desenvolvidas

serve a este objetivo sendo a seção “Rede“ no site.

As demais seções tem por objetivo servir como um hot-site para o projeto, permitindo

ao usuário entender o contexto do projeto, assim como ter acesso facilitado aos arquivos e

documentação gerada. A implementação, dessa forma, transcende o objetivo proposto

inicialmente, mas não o modifica quanto a premissa inicial de integração do serviço web para

o controle e monitoramento de uma rede de sensores sem fio.

Os códigos completos estão disponíveis no Apêndice C – Código-fonte implementado

no servidor web – Front-end.

4.5.1 Back-end: estrutura PHP e AJAX

Conforme citado anteriormente, o projeto utilizará a tecnologia PHP para o

desenvolvimento do back-end da aplicação web. O projeto foi realizado utilizando a

linguagem PHP sem nenhum tipo de framework de trabalho, porém seguindo alguns dos

conceitos propostos numa aplicação MVC (Model-View-Controller).

Também foi utilizada a tecnologia de chamadas Ajax, que permitem chamadas

assíncronas ao servidor, sem que ocorra a atualização total da página no cliente (web

browser). Desta forma, a experiência do usuário é favorecida por uma navegação mais suave.

Foi implementada a estrutura do dispositivo Xbee em PHP, assim independentemente

do meio de integração entre os sistemas é possível trabalhar com uma estrutura própria.

43

Assim, foi gerada a classe Xbee, com os principais registradores AT utilizados, e por meio

dos seguintes comandos são criadas as classes e objetos no arquivo PHP:

Sendo que a variável $data contêm a informação fornecida pelo sistema de controle da

rede e a variável $my_xbee é uma array que guardará todos os objetos Xbee da rede.

Para imprimir os valores obtidos no arquivo HTML, é utilizada a função echo ou pelos

delimitadores de impressão “<?=” quando somente a informação dinâmica é levantada. A

figura 31 mostra um trecho de código implementado no arquivo rede.php que utiliza as duas

formas de impressão de informação para editar o HTML final.

Figura 31 Trecho do código PHP para tornar dinâmica a geração do HTML final

O a recepção das chamadas AJAX são semelhantes em relação ao processamento,

porém diferem quanto a informação enviada para o cliente. Ao invés de enviar a página

HTML resultante é enviado uma estrutura JSON, tal estrutura é, em aplicação, um objeto

javascript formatado como string, contendo dados no formato: { parameter : value;}. O

código abaixo contém um trecho do código utilizado para responder uma chamada Ajax.

Desta forma é possível gerar um serviço não limitado a página web, permitindo a

utilização dos dados da rede por sites, clientes e aplicações diversas. A organização das

chamadas é controlada pelo servidor web Apache, não sendo abordada nesse trabalho.

44

4.5.2 Front-end: HTML, CSS e JavaScript

Nesta seção é mostrada a implementação front-end do projeto. Conforme citado

anteriormente, foi criado um hot-site para o projeto. Assim, foram estipuladas quatro seções:

Inicio, Projeto, Rede e Contato.

Na seção de Inicio é contextualizado o projeto, o porquê está sendo realizado o

projeto, por quem e outras informações gerais. Na seção projeto são encontrados links

relacionados ao projeto, assim como os arquivos fonte e este documento. A figura 32 mostra o

resultado obtido na página de projeto.

Figura 32 Seção de projeto do hotsite

A seção de rede contêm, propriamente, o sistema de interação e monitoramento da

rede de sensores com protocolo Zigbee, são exibidos os módulos, seus status, seus principais

dados e botões para atuação das saídas do respectivo dispositivo. A figura 33 mostra o

resultado desta implementação.

45

Figura 33 Seção de rede com implementação de acesso remoto a rede Zigbee

Conforme citado anteriormente, foi implementada uma chamada Ajax ao servidor para

a atualização dos dados da rede para o usuário. Para esta chamada foi utilizada a biblioteca

JQuery (JQUERY, 2012), extremamente utilizada na internet para implementação em

Javascript. O código-fonte implementado no front-end está disponível no Apêndice C –

Código-fonte implementado no servidor web – Front-end.

A seção Contato fornece dados e um formulário para o contato de pessoas interessadas

sobre o projeto.

4.6 Integração entre os sistemas

Neste ponto existem dois sistemas operando de maneira independente. Para realizar a

integração entre os mesmos foram utilizados arquivos, devido a simplicidade do trabalho e

geração de uma estrutura aplicável a base de dados mais complexas.

Ao ter-se dois sistemas diferentes operando sobre o mesmo arquivo notou-se

problemas quanto as permissões assim como a integridade dos dados. Dessa forma optou-se

pela estrutura apresentada na figura 34, onde somente um sistema tem permissão de escrita

sobre um determinado arquivo, mas é permitida a leitura pelos demais.

46

Figura 34 Relação entre os arquivos e os sistemas

O primeiro arquivo, zigbee.txt, contém informações que o sistema implementado em

C, de controle da rede Zigbee. Desta forma o único que tem permissão de escrita neste

arquivo é o sistema em C e o servidor web somente realiza a leitura do arquivo.

O segundo arquivo, php_zigbee.txt, permite a escrita pelo servidor web e tem por

função informar ao sistema que controla a rede Zigbee de eventuais mudanças, tais como

mudança de uma saída digital, ou atualização por comando AT.

Desta forma foram implementadas rotinas para trabalhar com os arquivos nos dois

sistemas. As Figuras 35 e 36 contêm tais rotinas no sistema em C e no sistema do servidor we

PHP, respectivamente.

Figura 35 Trecho do código do sistema de controle da rede para escrita no arquivo zigbee.txt

Sistema de 
controle da rede 

Zigbee 

zigbee.txt 

Sistema no 
servidor web 

php_zigbee.txt 

escrita escrita 

leitura 

47

Figura 36 Trecho do código do sistema web da rede para escrita no arquivo php_zigbee.txt

48

49

5 Testes e resultados
Neste capítulo são apresentados os resultados dos testes realizados para validar a

proposta deste trabalho. Os resultados foram divididos segundo as propostas de testes do

Capítulo 3 – Metodologia.

5.1 Consumo de energia

Este teste foi realizado pela medição de corrente consumida por um módulo Xbee.

Conforme observado na figura 37, a medição pelo resistor em serie não foi um método

eficiente para a observação do consumo de corrente no módulo nos diferentes modos de

operação que ele efetua durante a recepção e transmissão.

Figura 37 Medição do consumo de corrente médio para o dispositivo Xbee como roteador

Porém, foi possível determinar a corrente média do dispositivo. Realizando uma

transmissão a cada 5 minutos, o valor de corrente da transmissão é diluído dentro do consumo

base de energia, sendo expressa segundo a tabela 8.

TABELA 8 Resultado do consumo médio de corrente por dispositivo Zigbee

Tais valores se apresentam dentro do esperado, para cada tipo de dispositivo (Xbee ou

Xbee PRO) e a função desempenhada pelo mesmo, segundo o datasheet.

Dispositivo Consumo Médio
Xbee (End device) 2mA
Xbee (Roteador) 54.6mA
Xbee PRO (roteador e coordenador) 150mA

50

5.2 Integridade e robustez da comunicação

O teste de integridade de comunicação foi realizado pelo envio temporizado do

comando de mudança da saída digital e confirmação da recepção e efetuação da mudança de

estado.

Ao receber os dados o pacote, o dispositivo de destino envia a resposta por um frame

API, porém isto é suficiente para a confirmação de execução do comando. Portanto, é criado o

callback na conexão do tipo “I/O” tornando o processo de resposta redundante, permitindo a

confirmação de mudança de estado.

O teste foi realizado utilizando janelas de envio de 100 pacotes, ou seja, gerando um

total de 100 comandos de variação de estado em uma saída digital. O resultado obtido foi

positivo. Dentro da janela amostral máxima, determinada pela velocidade serial o índice de

erro foi nulo.

5.3 Modularidade e Escalabilidade

O teste de modularidade foi realizado pela retirada e reinserção de um dispositivo na

rede Zigbee. O protocolo realiza o controle dos dispositivos na rede, sem a interferência do

sistema de controle. Desta forma não foi possível realizar a medição precisa dos processos de

beaconning e association request, e sim, somente o resultado final de reinserção a rede.

A rede foi capaz de realizar tal processo, porém o tempo total para este processo

apresentou grande variação. Isto pode dever-se ao tempo necessário para envio do sinal de

beacon. Tal intervalo de tempo, apesar de grande variação durante os testes não ultrapassou

um minuto.

A escalabilidade mostrou-se satisfatória dentro do protótipo implementado, não sendo

válidada para redes com mais dispositivos.

5.4 Distância máxima de comunicação entre dispositivos

Por meio do comando AT “DB” pode-se ver o nível de potencia recebido no ultimo

hop recebido, esta informação não identifica toda a potência total utilizada na comunicação

porém serve de medida quando utilizada na comunicação ponto-a-ponto.

Desta forma, foram escolhidos pontos conhecidos segundo a planta apresentada na

seção de Metodologia de Testes, e os ensaios foram realizados para os dispositivos Xbee PRO

e Xbee. Os resultados obtidos são mostrados na tabela 9, e uma comparação é feita no gráfico

apresentado na figura 38.

51

TABELA 9 Potência do sinal recebido pelo comando AT DB para os diferentes dispositivos
DISTÂNCIA (m) XBEE XBEE S/ OBST XBEE PRO XBEE PRO S/ OBST

1 -53 -26 -17 -15

3 -59 -37 -37 -19

6 -65 -46 -49 -25

10 -72 -52 -52 -32

15 -74 -58 -57 -39

20 -82 -62 -62 -47

30 -- -70 -73 -56

40 -- -77 -78 -58

50 -- -81 -- -62

60 -- -- -- -65

70 -- -- -- -67

80 -- -- -- -70

90 -- -- -- -74

100 -- -- -- -79

* dados em dBm.

Figura 38 Resultado comparativos entre os dispositivos Xbee e Xbee PRO no teste de distância

52

53

6 Discussão e Conclusões
Neste trabalho foi possível implementar um sistema para o acesso remoto a uma rede

de sensores sem fio, utilizando o protocolo Zigbee e o modo de operação API para os

dispositivos Xbee da Digi International. O sistema final possui robustez (integridade na

comunicação dos dados) e aplicabilidade no contexto das WSNs, considerando os critérios de

consumo de energia, escalabilidade (dentro da limitação do protótipo implementado),

modularidade, distância de alcance de transmissão e robustez do sistema.

Apesar da metodologia adotada não ter sido eficiente para a medição da energia

consumida nas diferentes etapas, pode se utilizar os valores médios encontrados para uma

estimação do consumo em produção do sistema de automação. O valor de consumo de 2mA

para um dispositivo final é um valor significativo para o critério de baixo consumo de energia

numa rede de sensores, sendo aplicável a diversas áreas.

Mesmo dentro das limitações impostas pela medição da distância máxima, o sistema

representa uma boa solução para automação sem fio quando a distância entre os pontos não é

muito elevada. E caso, as distâncias sejam muito grandes outras soluções de antena e radiação

podem ser abordadas.

Dentro do desenvolvimento de software, o projeto e a implementação do sistema

tiveram dois âmbitos distintos, a criação do software de controle da rede e a interface com o

usuário. Dentro deste paradigma o desenvolvimento foi feito em paralelo transformando-se

em duas aplicações separadas com definições especificas, e o trabalho de integração foi

responsável pelo funcionamento do sistema como um todo.

Em relação a parte física utilizada o módulo de desenvolvimento FriendlyARM

Tiny6410 apresentou falhas em relação a utilização constante da memória Flash(conforme

citado na seção 5.4), correlacionando com outros projetos que também utilizam este módulo

de desenvolvimento e apresentaram resultados semelhantes indicando um problema no

hardware. Portanto, recomenda-se a substituição do módulo de desenvolvimento por outro.

Este projeto permite a implementação e criação de novos projetos com a rede Zigbee

implementada, entre os possíveis projetos futuros destacam-se:

• Testes de segurança: Realização de testes de ataque a rede, por meio da frequência

de transmissão utilizada pela rede, assim como pela internet ao sistema.

• Implementação de Banco de Dados integrado: Permitir que a base de dados seja

única para o sistema de controle da rede, assim como para o sistema de serviço web, tornando

a aplicação mais genérica e robusta

54

• Integração com outros sistemas: Integração com outros protocolos de comunicação

como Wi-fi, Bluetooth, CAN entre outros.

• Implementação de um controle móvel: Utilização de um módulo que possua

interface com o usuário por meio de um touchscreen e permita o usuário realizar comandos

diretamente dentro da rede Zigbee.

55

7 Referências Bibliográficas

ADAMS, J. Building low power into wireless sensor networks using Zigbee technology.
Industrial Embedded Systems Resource Guide, Networking: Technology, pp. 26-30,
2005.

ATTIE. Attie.co.uk, 2012. Disponível em: <http://attie.co.uk/libxbee>

BARR, M.; MASSA, A. J. “Programming Embedded Systems: with C and GNU
development”, O’Reilly Media, Pequim, 2007.

CUNHA, A. R. On the use of IEEE 802.15.4/Zigbee as federating communication protocols
for Wireless Sensor Networks, Doctorate Thesis, FEUP-UP, 2007

CULTER T. Deploying Zigbee in existing industrial automation networks. Industrial
Embedded System Resource Guide, Networking: Technology, pp. 34-36, 2005.

CURVELLO, A. M. L; SANTOS, F. P. ARM web-tv, Monografia, Aplicações de
Microprocessadores II, SEL-EESC-USP, 2011

ELECTRONS, F. Free Electrons – Get the best of your hardware, 2012. Disponível em:
<http://free-electrons.com/>

_____. FRIENDLYARM. FriendlyARM Forum, 2012. Disponível em:
<http://www.friendlyarm.net/forum>

_____. FRIENDLYARM. Tiny6410 User manual, v1.0, 2010.

GIRIO, M. G. Utilização do sistema operacional tempo real MQX embarcado para aplicações
de telemetria. Trabalho de Conclusão de Curso, EESC-USP, 2010. Disponível em:
 <http://www.tcc.sc.usp.br/tce/disponiveis/18/180450/tce-18112011-110444/ >

GUIA DO HARDWARE. SLC, MLC e TLC: Por que as memórias Flash estão ficando
piores, 2012. Disponível em: <http://www.hardware.com.br/tutoriais/slc-mlc-tlc/>

_____. IEEE-TG15.4, Part 15.4: Wireless Medium Access Control (MAC) and Physical
Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs).
IEEE standard for Information Technology, 2003.

JQUERY. jQuery: The Write Less, Do More, JavaScript Library, 2012. Disponivel em: <
http://www.jquery.com/>

_____. LEADERS.When everything connects: Information technology has nothing to lose but
its cables. The Economist. Abril, 2007. Disponível em:
< http://www.economist.com/node/9080024>

LINUX, Viva o. Disponível em: <http://www.vivaolinux.com.br/linux/>

56

ROGERCOM. Rogercom - O Maior conteúdo brasileiro sobre Porta Paralela, 2012.
Disponível em: < http://www.rogercom.com/ZigBee/ZigBee.htm>

U-BOOT. Das U-Boot – the Universal Boot Loader, 2012. Disponível em:
<http://www.denx.de/wiki/U-Boot/WebHome>

ZHENG, J.; MYUNG, J. L. Will IEEE 802.15.4 Make Ubiquitous Networking a Reality? A
Discussion on a Potential Low Power, Low Bit Rate Standard, IEEE Communications
Magazine, vol. 42, No. 6, pp. 140- 146, 2004.

ZIGBEE ALIANCE, Zigbee Specification, 2006. Disponivel em: <http://www.zigbee.org/>

57

8 Apêndice A – Fluxogramas e diagramas referentes a análise de sistemas
Neste Apêndice são encontrado os principais diagramas de representação dos

requisitos funcionais do sistema. Os requisitos funcionais determinados no Capítulo 3 foram:

1. Ler o valor das entradas digitais do módulo de entradas: Este requisito é formado

pelo request do usuário/servidor para leitura de uma determinada entrada digital do módulo de

entradas digitais disposto na rede de sensores.

2. Controlar o valor das saídas digitais do módulo de saída: Este requisito é formado

pela petição do usuário para mudança de uma determinada saída digital do módulo de saídas

digitais disposto na rede de sensores.

3. Monitorar a rede de sensores: Este requisito é formado pela petição do usuário ou

pelo próprio sistema para avaliar o estado e que a rede está, com detalhes sobre os nós.

Assim, a Figura 38 representa os diagrama de fluxo de dados para os requisitos

enumerados. Apenas uma estrutura macro de fluxo de dados é necessária para os três

requisitos pois existe um padrão de funcionamento dentro da operação API.

Figura 39 Diagrama de fluxo de dados para a aplicação de comando API

A resposta pode portanto ser constituída de uma mensagem de erro ou de um estrutura

contendo: valores, confirmação de ação ou estrutura dos dispositivos da rede de acordo com o

processo realizado segundo os acima enumerados, respectivamente.

É importante também ressaltar o funcionamento do recebimento do request pelo

sistema do servidor web, o processo macro de fluxo de dados é exibido na Figura 39.

58

Figura 40 Diagrama de fluxo de dados para processamento do request do usuário

59

9 Apêndice B – Código-fonte utilizado no sistema e nos testes
Neste apêndice são apresentados os códigos-fontes utilizados para a implementação,

testes e o arquivo final do sistema de controle da rede Zigbee.

ARQUIVO: INDENTIFY.C

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <xbee.h>

void myCB(struct xbee *xbee, struct xbee_con *con, struct xbee_pkt
**pkt, void **data) {
 xbee_err ret;
 char *ni;
 struct xbee_conAddress *addr;

 printf("An XBee joined the network!\n");

 if ((ret = xbee_pktDataGet(*pkt, "NI", 0, 0, (void**)&ni)) ==
XBEE_ENONE && ni != NULL) {
 printf(" It is called: [%s]\n", ni);
 } else {
 printf(" Error while retrieving its NI - %d (%s)\n", ret,
xbee_errorToStr(ret));
 }

 /* you could also use 'Address (16-bit)' or 'Address (64-bit)' to get
the raw byte arrays */
 if ((ret = xbee_pktDataGet(*pkt, "Address", 0, 0, (void**)&addr))
== XBEE_ENONE && addr != NULL) {
 printf(" It's address is:\n");
 if (addr->addr16_enabled) {
 printf(" 16-bit address: 0x%02X%02X\n", addr-
>addr16[0], addr->addr16[1]);
 } else {
 printf(" 16-bit address: --\n");
 }
 if (addr->addr64_enabled) {
 printf(" 64-bit address: 0x%02X%02X%02X%02X
0x%02X%02X%02X%02X\n",

 addr->addr64[0], addr->addr64[1], addr->addr64[2], addr-
>addr64[3],

 addr->addr64[4], addr->addr64[5], addr->addr64[6], addr-
>addr64[7]);
 } else {
 printf(" 64-bit address: --\n");
 }
 } else {
 printf(" Error while retrieving its Address - %d (%s)\n", ret,
xbee_errorToStr(ret));
 }
}

int main(void) {
 void *d;
 struct xbee *xbee;
 struct xbee_con *con;
 char txRet;
 xbee_err ret;

 if ((ret = xbee_setup(&xbee, "xbee2", "/dev/ttyUSB0", 9600)) !=
XBEE_ENONE) {
 printf("ret: %d (%s)\n", ret, xbee_errorToStr(ret));
 return ret;
 }
 if ((ret = xbee_conNew(xbee, &con, "Identify", NULL)) !=
XBEE_ENONE) {
 xbee_log(xbee, -1, "xbee_conNew() returned: %d (%s)", ret,
xbee_errorToStr(ret));
 return ret;
 }

 if ((ret = xbee_conCallbackSet(con, myCB, NULL)) !=
XBEE_ENONE) {
 xbee_log(xbee, -1, "xbee_conCallbackSet() returned: %d", ret);
 return ret;
 }

 sleep(120);

 if ((ret = xbee_conEnd(con)) != XBEE_ENONE) {
 xbee_log(xbee, -1, "xbee_conEnd() returned: %d", ret);
 return ret;
 }

 xbee_shutdown(xbee);

 return 0;
}

ARQUIVO: REMOTE_AT_D3.C

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <xbee.h>

void myCB(struct xbee *xbee, struct xbee_con *con, struct xbee_pkt
**pkt, void **data) {
 xbee_err ret;
 char *ni;
 struct xbee_conAddress *addr;

 printf("An XBee joined the network!\n");

 if ((ret = xbee_pktDataGet(*pkt, "NI", 0, 0, (void**)&ni)) ==
XBEE_ENONE && ni != NULL) {
 printf(" It is called: [%s]\n", ni);
 } else {
 printf(" Error while retrieving its NI - %d (%s)\n", ret,
xbee_errorToStr(ret));
 }

 /* you could also use 'Address (16-bit)' or 'Address (64-bit)' to get
the raw byte arrays */
 if ((ret = xbee_pktDataGet(*pkt, "Address", 0, 0, (void**)&addr))
== XBEE_ENONE && addr != NULL) {
 printf(" It's address is:\n");
 if (addr->addr16_enabled) {
 printf(" 16-bit address: 0x%02X%02X\n", addr-
>addr16[0], addr->addr16[1]);
 } else {
 printf(" 16-bit address: --\n");
 }
 if (addr->addr64_enabled) {
 printf(" 64-bit address: 0x%02X%02X%02X%02X
0x%02X%02X%02X%02X\n",

 addr->addr64[0], addr->addr64[1], addr->addr64[2], addr-
>addr64[3],

 addr->addr64[4], addr->addr64[5], addr->addr64[6], addr-
>addr64[7]);
 } else {
 printf(" 64-bit address: --\n");
 }
 } else {
 printf(" Error while retrieving its Address - %d (%s)\n", ret,
xbee_errorToStr(ret));
 }
}

int main(void) {
 void *d;

60

 struct xbee *xbee;
 struct xbee_con *con;
 char txRet;
 xbee_err ret;

 if ((ret = xbee_setup(&xbee, "xbee2", "/dev/ttyUSB0", 9600)) !=
XBEE_ENONE) {
 printf("ret: %d (%s)\n", ret, xbee_errorToStr(ret));
 return ret;
 }
 if ((ret = xbee_conNew(xbee, &con, "Identify", NULL)) !=
XBEE_ENONE) {
 xbee_log(xbee, -1, "xbee_conNew() returned: %d (%s)", ret,
xbee_errorToStr(ret));
 return ret;
 }

 if ((ret = xbee_conCallbackSet(con, myCB, NULL)) !=
XBEE_ENONE) {
 xbee_log(xbee, -1, "xbee_conCallbackSet() returned: %d", ret);
 return ret;
 }

 sleep(120);

 if ((ret = xbee_conEnd(con)) != XBEE_ENONE) {
 xbee_log(xbee, -1, "xbee_conEnd() returned: %d", ret);
 return ret;
 }

 xbee_shutdown(xbee);

 return 0;
}

ARQUIVO: FORCE_IO.C

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <xbee.h>

int main(void) {
 void *d;
 struct xbee *xbee;
 struct xbee_con *con;
 struct xbee_pkt *pkt;
 struct xbee_conAddress address;
 char txRet;
 int i;
 xbee_err ret;

 if ((ret = xbee_setup(&xbee, "xbee2", "/dev/ttyUSB0", 9600)) !=
XBEE_ENONE) {
 printf("ret: %d (%s)\n", ret, xbee_errorToStr(ret));
 return ret;
 }

 memset(&address, 0, sizeof(address));
 address.addr64_enabled = 1;
 address.addr64[0] = 0x00;
 address.addr64[1] = 0x13;
 address.addr64[2] = 0xA2;
 address.addr64[3] = 0x00;
 address.addr64[4] = 0x40;
 address.addr64[5] = 0x5C;
 address.addr64[6] = 0xC2;
 address.addr64[7] = 0x65;
 if ((ret = xbee_conNew(xbee, &con, "Remote AT", &address)) !=
XBEE_ENONE) {
 xbee_log(xbee, -1, "xbee_conNew() returned: %d (%s)", ret,
xbee_errorToStr(ret));
 return ret;
 }

 for (i = 0; i < 60*4; i++) {
 unsigned char value;
 if ((ret = xbee_conTx(con, NULL, "D35")) != XBEE_ENONE)
;//break;

 if ((ret = xbee_conRx(con, &pkt,
NULL)) != XBEE_ENONE) ;//break;

 if ((ret = xbee_pktDigitalGet(pkt, 3, 0, &value)) !=
XBEE_ENONE) {
 printf("xbee_pktDigitalGet(channel=3): ret %d\n", ret);
 } else {
 printf("D3: %d\n", value);
 }

 xbee_pktFree(pkt);
 usleep(250000);
 }

 if (ret != XBEE_ENONE) {
 xbee_log(xbee, -1, "xbee_conTx() or xbee_conRx() returned:
%d", ret);
 return ret;
 }

 if ((ret = xbee_conEnd(con)) != XBEE_ENONE) {
 xbee_log(xbee, -1, "xbee_conEnd() returned: %d", ret);
 return ret;
 }

 xbee_shutdown(xbee);

 return 0;
}

ARQUIVO: LINUXZIGBEE.C

/*
 libxbee - a C library to aid the use of Digi's XBee wireless modules
 running in API mode.

 Copyright (C) 2009 onwards Attie Grande (attie@attie.co.uk)

 libxbee is free software: you can redistribute it and/or modify it
 under the terms of the GNU Lesser General Public License as
published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 libxbee is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied
warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the
 GNU Lesser General Public License for more details.

 You should have received a copy of the GNU Lesser General Public
License
 along with libxbee. If not, see <http://www.gnu.org/licenses/>.
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
// Attie's library
#include <xbee.h>

// FLAGS
int save_on_file = 1;
int file_is_writable = 1;
int need_output_update = 1;

// ****** GLOBAL VARIABLES
struct my_xbee_struct {
 int status;
 int SH[4];
 int SL[4];
 char NI[50];
 char D[4];
} my_xbee[10];

char aux_dig_array[4];
char aux_array[50];
int temp_output[4];

void *d;
struct xbee_pkt *pktt;
struct xbee *xbee;
struct xbee_con *con;
struct xbee_con *con_IO_1;
struct xbee_con *con_IO_2;
struct xbee_con *con_remoteAT_1;
struct xbee_con *con_remoteAT_2;
struct xbee_con *con_remoteAT_3;

61

struct xbee_conAddress address1; // Digital Input
struct xbee_conAddress address2; // Digital Output
struct xbee_conAddress address3; // Router

// ****** CALLBACK FUNCTIONS
// My callback to send AT commands
void myCB_remoteAT(struct xbee *xbee, struct xbee_con *con, struct
xbee_pkt **pkt, void **data) {
 int i = 0;

 printf("Callback remote
AT\n");

 if ((*pkt)->dataLen <=
1) {
 printf("too short...\n");
 return;
 }
 printf("rx: [%s]\n", (*pkt)->data);
 for (i=0;i<=(*pkt)-
>dataLen;i++) aux_array[i] = (*pkt)->data[i];
 return;
}

// ******
// My callback to read the digital port
void myCB_simpleIO(struct xbee *xbee, struct xbee_con *con, struct
xbee_pkt **pkt, void **data) {
 xbee_err ret;
 int value;
 int i = 0;

 printf("Callback remote IO\n");
 /* if ((*pkt)->dataLen < 2) {
 printf("too short...\n");
 return;
 }*/

 for (i=0;i<4;i++) {
 if ((ret = xbee_pktDigitalGet(*pkt, i, 0, &value)) !=
XBEE_ENONE) {
 printf("xbee_pktDigitalGet(channel=1): ret %d\n",
ret);
 } else {
 printf("D%d: %d\n",i, value);

 aux_dig_array[i] =
value+0x30;
 }
 }

 save_on_file = 1;

 return;
}

// ****** CONNECTION FUNCTIONS
// Read Digital port
void read_digital_port(unsigned int xbee_id) {
 char txRet;
 xbee_err ret;
 int i = 0, j=0;
 my_xbee[xbee_id].status = 0;

 switch(xbee_id) {
 case 0:
 if ((ret = xbee_conNew(xbee, &con,
"Remote AT", &address1)) != XBEE_ENONE)
 xbee_log(xbee, -1, "xbee_conNew() returned:
%d (%s)", ret, xbee_errorToStr(ret));
 break;
 case 1:
 if ((ret = xbee_conNew(xbee, &con,
"Remote AT", &address2)) != XBEE_ENONE)
 xbee_log(xbee, -1, "xbee_conNew() returned:
%d (%s)", ret, xbee_errorToStr(ret));
 break;
 }

 //Reads once the inputs
 for (j = 0; j < 3; j++) {
 unsigned int value;

 if ((ret = xbee_conTx(con, NULL, "IS")) !=
XBEE_ENONE);

 if ((ret = xbee_conRx(con, &pktt, NULL)) !=
XBEE_ENONE);

 for (i=0;i<4;i++) {
 if ((ret = xbee_pktDigitalGet(pktt, i,
0, &value)) != XBEE_ENONE) {

 my_xbee[xbee_id].status = 0;

 printf("xbee_pktDigitalGet(): ret %d\n", ret);
 } else {

 my_xbee[xbee_id].status = 1;
 printf("D%d: %d ",i,
value);
 my_xbee[xbee_id].D[i]
= value+0x30;
 }
 }
 printf("\n");
 xbee_pktFree(pktt);
 sleep(1);
 }

 if ((ret = xbee_conEnd(con)) != XBEE_ENONE) {
 xbee_log(xbee, -1, "xbee_conEnd() returned: %d", ret);
 }

 return;

}

// Send AT Command
void send_at_command(int xbee_id, unsigned char *at_command) {
 int i = 0, j=0;
 char txRet;
 xbee_err ret;
 my_xbee[xbee_id].status = 0;

 printf("end_AT_command function: xbee_id %d : AT
command %s\n",xbee_id,at_command);
 switch(xbee_id) {
 case 0:
 if ((ret = xbee_conNew(xbee, &con,
"Remote AT", &address1)) != XBEE_ENONE)
 xbee_log(xbee, -1,
"xbee_conNew() returned: %d (%s)", ret, xbee_errorToStr(ret));
 break;
 case 1:
 if ((ret = xbee_conNew(xbee, &con,
"Remote AT", &address2)) != XBEE_ENONE)
 xbee_log(xbee, -1,
"xbee_conNew() returned: %d (%s)", ret, xbee_errorToStr(ret));
 break;
 case 2:
 if ((ret = xbee_conNew(xbee, &con,
"Remote AT", &address3)) != XBEE_ENONE)
 xbee_log(xbee, -1,
"xbee_conNew() returned: %d (%s)", ret, xbee_errorToStr(ret));
 break;
 }

 if ((ret = xbee_conCallbackSet(con, myCB_remoteAT,
NULL)) != XBEE_ENONE) {
 xbee_log(xbee, -1, "xbee_conCallbackSet() returned: %d",
ret);
 return;
 }

 ret = xbee_conTx(con, &txRet, "%s", at_command);
 printf("tx: %d\n", ret);
 if (ret) {
 my_xbee[xbee_id].status = 0;
 printf("txRet: %s\n", xbee_errorToStr(ret));

 } else {
 sleep(2);
 my_xbee[xbee_id].status = 1;
 printf("aux_array: %s\n", aux_array);

 }

 if ((ret = xbee_conEnd(con)) != XBEE_ENONE) {
 xbee_log(xbee, -1, "xbee_conEnd() returned: %d", ret);
 }

62

 return;
}

int main(void) {

 char txRet;
 xbee_err ret;

 FILE *fp;
 int i = 0, j=0, count=0;
 int output_mask[4] =
{0,0,0,0};

 // INIT // Input
 memset(&address1, 0,
sizeof(address1));
 address1.addr64_enabled = 1;
 address1.addr64[0] = 0x00; my_xbee[0].SH[0] = 0x00;
 address1.addr64[1] = 0x13; my_xbee[0].SH[1] = 0x13;
 address1.addr64[2] = 0xA2; my_xbee[0].SH[2] = 0xA2;
 address1.addr64[3] = 0x00; my_xbee[0].SH[3] = 0x00;
 address1.addr64[4] = 0x40; my_xbee[0].SL[0] = 0x40;
 address1.addr64[5] = 0x5C; my_xbee[0].SL[1] = 0x5C;
 address1.addr64[6] = 0xA2; my_xbee[0].SL[2] = 0xA2;
 address1.addr64[7] = 0x65; my_xbee[0].SL[3] = 0x65;

 // Addr2 // Output
 memset(&address2, 0,
sizeof(address2));
 address2.addr64_enabled = 1;
 address2.addr64[0] = 0x00; my_xbee[1].SH[0] = 0x00;
 address2.addr64[1] = 0x13; my_xbee[1].SH[1] = 0x13;
 address2.addr64[2] = 0xA2; my_xbee[1].SH[2] = 0xA2;
 address2.addr64[3] = 0x00; my_xbee[1].SH[3] = 0x00;
 address2.addr64[4] = 0x40; my_xbee[1].SL[0] = 0x40;
 address2.addr64[5] = 0x5C; my_xbee[1].SL[1] = 0x5C;
 address2.addr64[6] = 0xA2; my_xbee[1].SL[2] = 0xA2;
 address2.addr64[7] = 0x90; my_xbee[1].SL[3] = 0x90;

 // Addr3 // Router
 memset(&address3, 0,
sizeof(address3));
 address3.addr64_enabled = 1;
 address3.addr64[0] = 0x00; my_xbee[2].SH[0] = 0x00;
 address3.addr64[1] = 0x13; my_xbee[2].SH[1] = 0x13;
 address3.addr64[2] = 0xA2; my_xbee[2].SH[2] = 0xA2;
 address3.addr64[3] = 0x00; my_xbee[2].SH[3] = 0x00;
 address3.addr64[4] = 0x40; my_xbee[2].SL[0] = 0x40;
 address3.addr64[5] = 0x5C; my_xbee[2].SL[1] = 0x5C;
 address3.addr64[6] = 0xC1; my_xbee[2].SL[2] = 0xC1;
 address3.addr64[7] = 0x50; my_xbee[2].SL[3] = 0x50;

 // Opens the conection
to the usb
 if ((ret = xbee_setup(&xbee, "xbee2", "/dev/ttyUSB0", 9600)) !=
XBEE_ENONE) {
 printf("ret: %d (%s)\n", ret, xbee_errorToStr(ret));
 return ret;
 }

 //
*****************************Create conections to the Xbee device
 //
*****************************IO conection to the end-devices
 // Address 1 - Digital
Input
 if ((ret =
xbee_conNew(xbee, &con_IO_1, "I/O", &address1)) != XBEE_ENONE)
{
 xbee_log(xbee, -1, "xbee_conNew() returned: %d (%s)", ret,
xbee_errorToStr(ret));

 return ret;
 }
 if ((ret =
xbee_conCallbackSet(con_IO_1, myCB_simpleIO, NULL)) !=
XBEE_ENONE) {
 xbee_log(xbee, -1,
"xbee_conCallbackSet() returned: %d", ret);
 return ret;
 }

 // Address 2 - Digital
Output

 if ((ret =
xbee_conNew(xbee, &con_IO_2, "I/O", &address2)) != XBEE_ENONE)
{
 xbee_log(xbee, -1, "xbee_conNew() returned: %d (%s)", ret,
xbee_errorToStr(ret));

 return ret;
 }
 if ((ret =
xbee_conCallbackSet(con_IO_2, myCB_simpleIO, NULL)) !=
XBEE_ENONE) {
 xbee_log(xbee, -1,
"xbee_conCallbackSet() returned: %d", ret);
 return ret;
 }

 //***********Remote
AT to the end-devices
 for (j=0;j<3;j++) {

 send_at_command(j,"NI");
 for
(i=0;i<20;i++) {

 my_xbee[j].NI[i] = aux_array[i];
 }
 }

 //***********Read the
digital status
 for (j=0;j<2;j++) {

 read_digital_port(j);
 sleep(2);

 printf("my_xbee[%d].D:%s\n",j,my_xbee[j].D);
 }

 // Iniciate Loop
 while (1) {

 sleep(10);

 //sleep(60);

 printf("Verifica arquivo\n");

 // Reads new information regards the output

 fp = fopen ("php_zigbee.txt","r");

 if (fp) {

 fscanf(fp,"%d %d %d
%d",&temp_output[0],&temp_output[1],&temp_output[2],&temp_output
[3]);

 fclose(fp);

 printf("Novas saidas digitais: %d %d %d %d\n",

 temp_output[0],temp_output[1],temp_output[2],temp_output[
3]);

 }

 //***********Remote AT to the end-devices

 if (count >= 6) {

 count = 0;

 for (j=0;j<3;j++) {

 my_xbee[j].status = 0;

 send_at_command(j,"NI");

 for (i=0;i<20;i++) {

 my_xbee[j].NI[i] =
aux_array[i];

63

 }

 }

 } else {

 count++;

 }

 // Checks for changes in the outputs

 need_output_update = 0;

 for (i=0;i<4;i++) {

 output_mask[i]=0;

 if (temp_output[i]-4 != my_xbee[1].D[i]-0x30) {

 need_output_update = 1;

 output_mask[i]=1;

 }

 }

 //debug

 printf("output_mask = %d %d %d
%d\n",output_mask[0],output_mask[1],output_mask[2],output_mask[3]);

 printf("atuais saidas = %d %d %d %d\n",my_xbee[1].D[0]-
0x30,my_xbee[1].D[1]-0x30,my_xbee[1].D[2]-0x30,my_xbee[1].D[3]-
0x30);

 printf("Novas saidas digitais: %d %d %d
%d\n",temp_output[0]-4,temp_output[1]-4,temp_output[2]-
4,temp_output[3]-4);

 // Changes the output my_xbee[1]

 if (need_output_update) {

 save_on_file = 1;

 printf("updating outputs:");

 for (i=0;i<4;i++) {

 if (output_mask[i]) {

 char buf[10];

 sprintf(buf,"D%d%c",i,temp_output[i]);

 send_at_command(1,buf);

 }

 }

 // Re-reads the digital port

 read_digital_port(1);

 printf("my_xmee[0].D:%s\n",my_xbee[1].D);

 }

 if
(save_on_file) {

 // Saves on file

 fp = fopen ("zigbee.txt","w");

 if (fp) {

 fprintf(fp,"1.%d.%X%X%X%X.%X%X%X%X.%s.%s\n",m
y_xbee[0].status,

 my_xbee[0].SH[0],my_xbee[0].SH[1],my_xbee[0].SH[2],my
_xbee[0].SH[3],

 my_xbee[0].SL[0],my_xbee[0].SL[1],my_xbee[0].SL[2],my_
xbee[0].SL[3],

 my_xbee[0].NI, my_xbee[0].D);

 fprintf(fp,"2.%d.%X%X%X%X.%X%X%X%X.%s.%s\n",m
y_xbee[1].status,

 my_xbee[1].SH[0],my_xbee[1].SH[1],my_xbee[1].SH[2],my
_xbee[1].SH[3],

 my_xbee[1].SL[0],my_xbee[1].SL[1],my_xbee[1].SL[2],my_
xbee[1].SL[3],

 my_xbee[1].NI,my_xbee[1].D);

 fprintf(fp,"3.%d.%X%X%X%X.%X%X%X%X.%s.%s\n",m
y_xbee[2].status,

 my_xbee[2].SH[0],my_xbee[2].SH[1],my_xbee[2].SH[2],my
_xbee[2].SH[3],

 my_xbee[2].SL[0],my_xbee[2].SL[1],my_xbee[2].SL[2],my_
xbee[2].SL[3],

 my_xbee[2].NI,my_xbee[2].D);

 fclose(fp);

 }

 save_on_file = 0;
 }
 }

 // Close all conections
 if ((ret =
xbee_conEnd(con_IO_1)) != XBEE_ENONE) {
 xbee_log(xbee, -1, "xbee_conEnd() returned: %d", ret);
 return ret;
 }
 if ((ret =
xbee_conEnd(con_IO_2)) != XBEE_ENONE) {
 xbee_log(xbee, -1, "xbee_conEnd() returned: %d", ret);
 return ret;
 }

 xbee_shutdown(xbee);

 return 0;
}

64

65

10 Apêndice C – Código-fonte implementado no servidor web.

ARQUIVO INDEX.HTML

<HEAD>
<TITLE>LinuXZigbee - Tiny6410 - SEL/EESC/USP</TITLE>
 <link rel="stylesheet" href="styles.css">
 <script type="text/javascript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.7/jquery.min.js"></script>
 <script type="text/javascript" src="linuxzigbee.js"></script>
</HEAD>

<BODY>
<div class="menu_line">
 <div class="menu_line_black">
 </div>
</div>
<div class="all">
 <div class="top_banner">
 <IMG id="tux" SRC="images/freddyart-bee-tux-
1816.png">

 </div>

 <div class="all menu">

 <a id="link-inicio"
href="#">INICIO
 <a id="link-projeto"
href="#">PROJETO
 <a id="link-rede"
href="#">REDE
 <a id="link-
contato"href="#">CONTATO

 </div>

 <div class="all main">
 <p>Este projeto foi desenvolvido dentro do âmbito
do Trabalho de Conclusão de Curso em engenharia elétrica da
 Escola de Engenharia de São Carlos -
USP, pelo aluno Fausto Perez Rodrigues. O projeto tem por objetivo mostrar
 a integração entre as tecnologias de
sistemas embarcados e disposistivos utilizando o protocolo
Zigbee/IEEE802.15.4
 como solução para a área de
automação.</p>
 <p>Na seção de projeto, são disopnibilizados links
relacionados, o código-fonte e diagramas utilizados no projeto, assim
 como o trabalho final em formato PDF.
Na seção de rede está um exemplo de implementação em topologia árvore, para
breve
 apresentação.</p>
 <p>Toda a utilização do conteudo neste projeto é
livre para uso/modificação, levando em conta que o autor não fornece
 qualquer garantia de qualquer
tipo.</p>
 </div>
</div>
</body>

ARQUIVO: PROJETO.HTML

<HEAD>
<TITLE>LinuXZigbee - Tiny6410 - SEL/EESC/USP</TITLE>
 <link rel="stylesheet" href="styles.css">
 <script type="text/javascript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.7/jquery.min.js"></script>
 <script type="text/javascript" src="linuxzigbee.js"></script>
</HEAD>

<BODY>
<div class="menu_line">
 <div class="menu_line_black">
 </div>
</div>
<div class="all">
 <div class="top_banner">
 <IMG id="tux" SRC="images/freddyart-bee-tux-
1816.png">

 </div>

 <div class="all menu">

 <a id="link-
inicio"href="#">INICIO
 <a id="link-projeto"
href="#">PROJETO

 <a id="link-
rede"href="#">REDE
 <a id="link-
contato"href="#">CONTATO

 </div>

 <div class="all main">

 <IMG id="logo-zigbee"
SRC="images/logos/zigbee.png">

 <IMG id="logo-linux"
SRC="images/logos/linux.png">

 </div>
</div>
</body>

ARQUIVO: REDE.PHP

<?php
require 'xbee.php';

$root_file_path = "/var/www/fausto/Codigo/";
$xbee = Xbee::factory('order','status', 'SH', 'SL', 'NI','D');

//echo 'Debug php
';
//Opens the file zigbee.txt to read the information
try {
 $handle = fopen($root_file_path.'zigbee.txt', 'r');

 if ($handle) {
 $i = 0;
 while(!feof($handle)) {
 $full_data = fgets($handle);
 //echo $full_data.'
';
 $data = explode(".",$full_data);
 $a = new Xbee;
 $my_xbee[$i] =
call_user_func_array(array($xbee, 'create'),$data);
 $i++;
 }
 fclose($handle);
 }
} catch (Exception $e) {
 echo 'Exception:', $e->getMessage(), "\n";
}
$total_devices = count($my_xbee)-1;

for($i=0;$i<$total_devices;$i++) {
 $my_xbee[$i]->SH = '0'.$my_xbee[$i]->SH.'0';
}
/*
echo 'Total devices in the Network: '.$total_devices.'
';
echo '
'.$my_xbee[0]->NI;
echo '
'.$my_xbee[1]->NI;
echo '
'.$my_xbee[2]->NI;
*/
?>

<HEAD>
<TITLE>LinuXZigbee - Tiny6410 - SEL/EESC/USP</TITLE>
 <link rel="stylesheet" href="styles.css">
 <script type="text/javascript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.7/jquery.min.js"></script><!-
- -->
 <script type="text/javascript" src="linuxzigbee.js"></script>
</HEAD>

<BODY>
<div class="menu_line">
 <div class="menu_line_black">
 </div>
</div>
<div class="all">
 <div class="top_banner">
 <IMG id="tux" SRC="images/freddyart-bee-tux-
1816.png">

 </div>

 <div class="all menu">

66

 <a id="link-
inicio"href="#">INICIO
 <a id="link-projeto"
href="#">PROJETO
 <a id="link-
rede"href="#">REDE
 <a id="link-
contato"href="#">CONTATO

 </div>

 <div class="all main">

 <h3>Rede implementada em topologia árvore
(cluster tree)</h3>
 <div class="xbee_data" id="coordinator">
 <img class="xbee_status"
id="coordinator" src="images/network/status_on.png">
 <div class="xbee_at">
 NI:
COORDINATOR

 SH: 0013A200

 SL: 405CC166

 </div>
 </div>
 <div class="xbee_data" id="router">
 <img class="xbee_status" id="router"
src=
 <?php
 $my_xbee[2]->status ?
$status = "on" : $status = "off";
 echo
"images/network/status_".$status.".png"
 ?>
 >
 <div class="xbee_at">
 STATUS: <?= $status
?>

 NI: <?= $my_xbee[2]-
>NI ?>

 SH: <?= $my_xbee[2]-
>SH ?>

 SL: <?= $my_xbee[2]-
>SL ?>

 </div>
 </div>
 <div class="xbee_data" id="end1">
 <img class="xbee_status" id="end1"
src=
 <?php
 $my_xbee[0]->status ?
$status = "on" : $status = "off";
 echo
"images/network/status_".$status.".png"
 ?>
 >
 <div class="xbee_at">
 STATUS: <?= $status
?>

 NI: <?= $my_xbee[0]-
>NI ?>

 SH: <?= $my_xbee[0]-
>SH ?>

 SL: <?= $my_xbee[0]-
>SL ?>

 </div>
 </div>
 <div class="xbee_data" id="end2">
 <img class="xbee_status" id="end2"
src=
 <?php
 $my_xbee[1]->status ?
$status = "on" : $status = "off";
 echo
"images/network/status_".$status.".png"
 ?>
 >
 <div class="xbee_at">
 STATUS: <?= $status
?>

 NI: <?= $my_xbee[1]-
>NI ?>

 SH: <?= $my_xbee[1]-
>SH ?>

 SL: <?= $my_xbee[1]-
>SL ?>

 </div>
 <div class="output">
 <?php
for($i=0;$i<4;$i++) { ?>
 <img style=

 <?php

 $left_push = 70*$i;

 echo '"position:absolut;left:'.$left_push.'px;"';

 ?>

 id=<?= '"'.$i.'"'; ?>
 src=

 <?php

 $my_xbee[1]->D[$i] ? $status = "on" : $status =
"off";

 echo "images/network/bulb_".$status.".png"

 ?>

 >
 <?php } ?>
 </div>
 </div>
 </div>
</div>
</body>

ARQUIVO: XBEE.PHP

<?php
class Xbee
{
 /**
 * Define a new struct object, a blueprint object with only empty properties.
 */
 public static function factory()
 {
 $struct = new self;
 foreach (func_get_args() as $value) {
 $struct->$value = null;
 }
 return $struct;
 }

 /**
 * Create a new variable of the struct type $this.
 */
 public function create()
 {
 // Clone the empty blueprint-struct ($this) into the new data $struct.
 $struct = clone $this;

 // Populate the new struct.
 $properties = array_keys((array) $struct);
 foreach (func_get_args() as $key => $value) {
 if (!is_null($value)) {
 $struct->$properties[$key] = $value;
 }
 }

 // Return the populated struct.
 return $struct;
 }
}

ARQUIVO: UPDATE_OUTPUT.PHP

<?php
//Set some variables
$root_file_path = "/var/www/fausto/Codigo/";

// Gets the parameter (output_id)
$output_id = urldecode($_GET['output_id']);

//Opens the file php_zigbee.txt to read the information
while(!is_readable($root_file_path.'php_zigbee.txt')) ;
try {
 $handle = fopen($root_file_path.'php_zigbee.txt','r');

 if ($handle) {
 $full_data = fgets($handle);
 fclose($handle);
 $data = explode(" ", $full_data);
 //var_dump($full_data);
 foreach ($data as $key => $elemment) $data[$key] =
trim($elemment);
 $data[$output_id] == "4" ? $data[$output_id] = "5" :
$data[$output_id] = "4";
 $full_data = implode(" ",$data);
 //var_dump($full_data);

67

 while(!is_writable($root_file_path.'php_zigbee.txt'))
;
 $handle =
fopen($root_file_path.'php_zigbee.txt','w');
 fprintf($handle,"%s",$full_data);
 fclose($handle);
 }
} catch (Exception $e) {
 echo 'Exception:', $e->getMessage(), "\n";
}

echo json_encode(Array("id" => $output_id, "value" => $data[$output_id]));

?>

ARQUIVO: AJAX_UPDATE.PHP

<?php
require 'xbee.php';

$root_file_path = "/var/www/fausto/Codigo/";
$xbee = Xbee::factory('order','status', 'SH', 'SL', 'NI','D');

//echo 'Debug php
';
//Opens the file zigbee.txt to read the information
while(!is_readable($root_file_path.'zigbee.txt')) ;
try {
 $handle = fopen($root_file_path.'zigbee.txt', 'r');

 if ($handle) {
 $i = 0;
 while(!feof($handle)) {
 $full_data = fgets($handle);
 //echo $full_data.'
';
 $data = explode(".",$full_data);
 $a = new Xbee;
 $my_xbee[$i] =
call_user_func_array(array($xbee, 'create'),$data);
 $i++;
 }
 fclose($handle);
 }
} catch (Exception $e) {
 echo 'Exception:', $e->getMessage(), "\n";
}
$total_devices = count($my_xbee)-1;

for($i=0;$i<$total_devices;$i++) {
 $my_xbee[$i]->SH = '0'.$my_xbee[$i]->SH.'0';
}
var_dump($my_xbee);
//echo json_encode($my_xbee);

?>

ARQUIVO: STYLES.CSS

body {
 font-family:calibri, sans-serif;
 color:#DFDFDF;
 background:#1C1C14;
 color:# bbb;
}

.border {
 border: 1px solid white;
}

.all {
 height:100%;
 width:900px;
 margin-left:auto;
 margin-right:auto;
}

.top_banner {
 z-index:11;
 height:100px;
}

.menu_line {
 background:#FCF18D;
 z-index:-2;
 left:0;
 top:155px;
 height:30px;
 width:100%;
 position:absolute;
}
.menu_line_black {
 background:#383429;
 z-index:-1;
 left:0;

 top:25px;
 height:3px;
 width:100%;
 position:absolute;
}

#tux {
 z-index:11;
 margin-left:20px;
 width:183px;
}

#logo {
 float:right;
 margin-right:20px;
 margin-top:20px;
 width:40%;
 z-index:100;
}

.menu {
 font-size:30px;
 margin-left:200px;
 top:155px;
 height:30px;
 width:100%;
 position:absolute;
}

.menu ul {
 padding-left:0px;
 margin:0px;
 float: left;
 width: 100%;
 list-style:none;
}

.menu ul li { display: inline; }

.menu ul li a {
 margin-top:-7px;
 padding: 0px 40px;
 float:left;
 color: #333;
 text-decoration: none;
 border-bottom:2px solid #1C1C14;
}

.menu ul li a:hover {
 color: #333;
 border-bottom:4px solid #FCF18D;
}

.main {
 position:absolute;
 top:200px;
}

#bg-projeto {
 z-index:-1;
 position:absolute;
 left:0px;
 top:10px;
}

#logo-zigbee {
 width: 190px;
 position:absolute;
 top:190px;
 left:40px;
}

#logo-linux {
 height: 140px;
 position:absolute;
 top:40px;
 left:70px;
}

#bg-rede {
 z-index:-1;
 position:absolute;
 left:0px;
 top:35px;
}

.xbee_data {
 position:absolute;
 width:200px;
 height:200px;
}

68

.xbee_data#coordinator {
 top:350px;
 left:50px;
}

.xbee_data#router {
 top:350px;
 left:350px;
}

.xbee_data#end1 {
 top:200px;
 left:630px;
}

.xbee_data#end2 {
 top:482px;
 left:630px;
}

.xbee_status {
 position: absolute;
 width: 45px;
 top: 27px;
 left: 45px;

}

.xbee_at {
 position:absolute;
 top:100px;
 left:50px;
}

.output {
 position:absolute;
 top:200px;
}

.output img{
 position:absolute;
 width:50px;
 cursor: hand;
 cursor: pointer;
}

.links {
 z-index:1;
}

.footer {
 text-align:center;
 bottom: 0;
 position: absolute;

}

ARQUIVO: LINUXZIGBEE.JS

// Waits until the whole document is loaded
$(document).ready(function() {

 function callback_timeout(){
 return function(){

 //window.location.reload();
 }
 }

 //setTimeout(callback_timeout(), 60000);
 //setTimeout(callback_timeout(), 15000);

 $(".output img").on("click",function (e) {

 $.ajax({
 url: 'update_output.php', //the script to call to get data
 data: "output_id="+$(this).attr("id"), //you can
insert url argumnets here to pass to api.php //for example
"id=5&parent=6"
 dataType: 'json', //data format
 success: function(data) {

 //alert(data.id);

 //alert(data.value);

 if
(data.value == "5") {

 src = "on";
 } else {

 src = "off";
 }
 $(".output
img#"+data.id).attr("src","images/network/bulb_"+src+".png")

 }
 });/**/

 $(this).attr("src","images/loader.gif");
 });

 var production = true;
 var path;

 if (production) {
 path = "http://143.107.235.36/fausto/site/tcc/";
 } else {
 path = "http://localhost/~f_rodrigues/tcc/";
 }

 // Action to the menu buttons
 $("#link-inicio").click(function() {
 window.location = path;
 });

 $("#link-projeto").click(function() {
 window.location = path+"projeto.html";
 });

 $("#link-rede").click(function() {
 window.location.replace(path+"rede.php");
 });

 $("#link-contato").click(function() {
 window.location.replace(path+"contato.html");
 });
});

69

11 ANEXO A – Lista de comandos AT
Este anexo contém a informação retirada do datasheet dos dispositivos Xbee,

fornecido pela Digi Internetional, a partir da página 129.
 TABELA 8 Lista de comandos AT de Addressing

AT

Command

Name and Description
Node

1

Type

Parameter Range Default

DH

Destination Address High.Set/Get the upper 32 bits of the 64-bit destination address.

When combined with DL, it defines the 64-bit destination address for data transmission.

Special definitions for DH and DL include 0x000000000000FFFF (broadcast) and

0x0000000000000000 (coordinator).

CRE 0 - 0xFFFFFFFF 0

DL

Destination Address Low. Set/Get the lower 32 bits of the 64-bit destination address.

When combined with DH, it defines the 64-bit destination address for data

transmissions. Special definitions for DH and DL include 0x000000000000FFFF

(broadcast) and 0x0000000000000000 (coordinator).

CRE 0 - 0xFFFFFFFF
0xFFFF(Coordinator)

0 (Router/End Device)

MY 16-bit Network Address. Read the 16-bit network address of the module. A value of

0xFFFE means the module has not joined a ZigBee network

CRE 0 - 0xFFFE

[read-only]

0xFFFE

MP 16-bit Parent Network Address. Read the 16-bit network address of the module's

parent. A value of 0xFFFE means the module does not have a parent.

E 0 - 0xFFFE

[read-only]

0xFFFE

NC

Number of Remaining Children. Read the number of end device children that can join

the device. If NC returns 0, then the device cannot allow any more end device children

to join.

CR
0 - MAX_CHILDREN

(maximum varies)

read-only

SH Serial Number High. Read the high 32 bits of the module's unique 64-bit address. CRE 0 - 0xFFFFFFFF

[read-only]

factory-set

SL Serial Number Low. Read the low 32 bits of the module's unique 64-bit address. CRE 0 - 0xFFFFFFFF

[read-only]

factory-set

NI

Node Identifier. Stores a string identifier. The register only accepts printable ASCII

data. In AT Command Mode, a string can not start with a space. A carriage return ends

the command. Command will automatically end when maximum bytes for the string

have been entered. This string is returned as part of the ND (Node Discover) command.

This identifier is also used with the DN (Destination Node) command. In AT command

mode, an ASCII comma (0x2C) cannot be used in the NI string

CRE 20-Byte printable

ASCII string

ASCII space

character (0x20)

SE

Source Endpoint. Set/read the ZigBee application layer source endpoint value. This

value will be used as the source endpoint for all data transmissions. SE is only

supported in AT firmware.The default value 0xE8 (Data endpoint) is the Digi data

endpoint

CRE 0 - 0xFF 0xE8

DE
Destination Endpoint. Set/read Zigbee application layer destination ID value. This

value will be used as the destination endpoint all data transmissions. DE is only

supported in AT firmware.The default value (0xE8) is the Digi data endpoint.

CRE 0 - 0xFF 0xE8

70

CI
Cluster Identifier. Set/read Zigbee application layer cluster ID value. This value will be

used as the cluster ID for all data transmissions. CI is only supported in AT

firmware.The default value0x11 (Transparent data cluster ID).

CRE 0 - 0xFFFF 0x11

NP

Maximum RF Payload Bytes. This value returns the maximum number of RF payload

bytes that can be sent in a unicast transmission. If APS encryption is used (API transmit

option bit enabled), the maximum payload size is reduced by 9 bytes. If source routing

is used (AR < 0xFF), the maximum payload size is reduced further.

Note: NP returns a hexadecimal value. (e.g. if NP returns 0x54, this is equivalent to 84

bytes)

CRE 0 - 0xFFFF [read-only]

DD

Device Type Identifier. Stores a device type value. This value can be used to

differentiate different XBee-based devices. Digi reserves the range 0 - 0xFFFFFF.

For example, Digi currently uses the following DD values to identify various ZigBee

products:

0x30001 - ConnectPort X8 Gateway

0x30002 - ConnectPort X4 Gateway

0x30003 - ConnectPort X2 Gateway

0x30005 - RS-232 Adapter

0x30006 - RS-485 Adapter

0x30007 - XBee Sensor Adapter

0x30008 - Wall Router

0x3000A - Digital I/O Adapter

0x3000B - Analog I/O Adapter

0x3000C - XStick

0x3000F - Smart Plug

0x30011 - XBee Large Display

0x30012 - XBee Small Display

CRE 0 - 0xFFFFFFFF 0x30000

TABELA 9 Lisa de comandos AT de Networking

AT

Command

Name and Description Node

1

Type

Parameter Range Default

CH
Operating Channel. Read the channel number used for transmitting and receiving

between RF modules. Uses 802.15.4 channel numbers. A value of 0 means the device

has not joined a PAN and is not operating on any channel.

CRE

XBee

0, 0x0B - 0x1A

(Channels 11-26)

XBee-PRO (S2)

0, 0x0B - 0x18

(Channels 11-24)

XBee-PRO (S2B)

0, 0x0B - 0x19

(Channels 11-25)

[read-only]

ID
Extended PAN ID. Set/read the 64-bit extended PAN ID. If set to 0, the coordinator will

select a random extended PAN ID, and the router / end device will join any extended

PAN ID. Changes to ID should be written to non-volatile memory using the WR

command to preserve the ID setting if a power cycle occurs.

CRE 0-

0xFFFFFFFFFFFFFFFF

0

OP Operating Extended PAN ID. Read the 64-bit extended PAN ID. The OP value reflects

the operating extended PAN ID that the module is running on. If ID > 0, OP will equal ID.

CRE 0x01 -

0xFFFFFFFFFFFFFFFF

[read-only]

NH
Maximum Unicast Hops. Set / read the maximum hops limit. This limit sets the

maximum broadcast hops value (BH) and determines the unicast timeout. The timeout

is computed as (50 * NH) + 100 ms. The default unicast timeout of 1.6 seconds

(NH=0x1E) is enough time for data and the acknowledgment to traverse about 8 hops.

CRE 0 - 0xFF 0x1E

BH Broadcast Hops. Set/Read the maximum number of hops for each broadcast data

transmission. Setting this to 0 will use the maximum number of hops.

CRE 0 - 0x1E 0

71

OI Operating 16-bit PAN ID. Read the 16-bit PAN ID. The OI value reflects the actual 16-

bit PAN ID the module is running on.

CRE 0 - 0xFFFF [read-only]

NT
Node Discovery Timeout. Set/Read the node discovery timeout. When the network

discovery (ND) command is issued, the NT value is included in the transmission to

provide all remote devices with a response timeout. Remote devices wait a random

time, less than NT, before sending their response.

CRE 0x20 - 0xFF [x 100 msec] 0x3C (60d)

NO

Network Discovery options. Set/Read the options value for the network discovery

command. The options bitfield value can change the behavior of the ND (network

discovery) command and/or change what optional values are returned in any received

ND responses or API node identification frames. Options include:

0x01 = Append DD value (to ND responses or API node identification frames)

002 = Local device sends ND response frame when ND is issued.

CRE 0 - 0x03 [bitfield] 0

SC

Scan Channels. Set/Read the list of channels to scan.

Coordinator - Bit field list of channels to choose from prior to starting network.

Router/End Device - Bit field list of channels that will be scanned to find a Coordinator/

Router to join.

Changes to SC should be written using WR command to preserve the SC setting if a

power cycle occurs.

Bit (Channel): 0 (0x0B) 4 (0x0F) 8 (0x13) 12 (0x17)

1 (0x0C) 5 (0x10) 9 (0x14) 13 (0x18)

2 (0x0D) 6 (0x11) 10 (0x15) 14 (0x19)

3 (0x0E) 7 (0x12) 11 (0x16) 15 (0x1A)

CRE

XBee

1 - 0xFFFF [bitfield]

XBee-PRO (S2)

1 - 0x3FFF [bitfield]

(bits 14, 15 not allowed)

XBee-PRO (S2B)

1-0x7FFF

(bit 15 is not allowed)

1FFE

SD

Scan Duration. Set/Read the scan duration exponent. Changes to SD should be

written using WR command.

Coordinator - Duration of the Active and Energy Scans (on each channel) that are

used to determine an acceptable channel and Pan ID for the Coordinator to startup on.

Router / End Device - Duration of Active Scan (on each channel) used to locate an

available Coordinator / Router to join during Association.

Scan Time is measured as:(# Channels to Scan) * (2 ^ SD) * 15.36ms - The number of

channels to scan is determined by the SC parameter. The XBee can scan up to 16

channels (SC = 0xFFFF).

Sample Scan Duration times (13 channel scan):

If SD = 0, time = 0.200 sec

SD = 2, time = 0.799 sec

SD = 4, time = 3.190 sec

SD = 6, time = 12.780 sec

Note: SD influences the time the MAC listens for beacons or runs an energy scan on a

given channel. The SD time is not a good estimate of the router/end device joining time

requirements. ZigBee joining adds additional overhead including beacon processing on

each channel, sending a join request, etc. that extend the actual joining time.

CRE 0 - 7 [exponent] 3

72

ZS ZigBee Stack Profile. Set / read the ZigBee stack profile value. This must be set the

same on all devices that should join the same network.

CRE 0-2 0

NJ Node Join Time. Set/Read the time that a Coordinator/Router allows nodes to join.

This value can be changed at run time without requiring a Coordinator or Router to

restart. The time starts once the Coordinator or Router has started. The timer is reset

on power-cycle or when NJ changes.

CR 0 - 0xFF

[x 1 sec]

0xFF

(always allows

joining)

JV Channel Verification. Set/Read the channel verification parameter. If JV=1, a router

will verify the coordinator is on its operating channel when joining or coming up from a

power cycle. If a coordinator is not detected, the router will leave its current channel and

attempt to join a new PAN. If JV=0, the router will continue operating on its current

channel even if a coordinator is not detected.

R 0 - Channel verification

disabled

1 - Channel verification

enabled

0

NW Network Watchdog Timeout. Set/read the network watchdog timeout value. If NW is

set > 0, the router will monitor communication from the coordinator (or data collector)

and leave the network if it cannot communicate with the coordinator for 3 NW periods.

The timer is reset each time data is received from or sent to a coordinator, or if a many-

to-one broadcast is received.

R 0 - 0x64FF

[x 1 minute]

(up to over 17 days)

0 (disabled)

JN Join Notification. Set / read the join notification setting. If enabled, the module will

transmit a broadcast node identification packet on power up and when joining. This

action blinks the Associate LED rapidly on all devices that receive the transmission, and

sends an API frame out the UART of API devices. This feature should be disabled for

large networks to prevent excessive broadcasts.

RE 0-1 0

AR Aggregate Routing Notification. Set/read time between consecutive aggregate route

broadcast messages. If used, AR should be set on only one device to enable many-to-

one routing to the device. Setting AR to 0 only sends one broadcast

CR 0 - 0xFF 0xFF

TABELA 10 Lista de comandos AT de Security

AT

Command

Name and Description Node

1

Type

Parameter Range Default

EE Encryption Enable. Set/Read the encryption enable setting. CRE 0 - Encryption disabled

1 - Encryption enabled

0

EO

Encryption Options. Configure options for encryption. Unused option bits should be set

to 0. Options include:

0x01 - Send the security key unsecured over-the-air during joins

0x02 - Use trust center (coordinator only

CRE 0 - 0xFF

NK
Network Encryption Key. Set the 128-bit AES network encryption key. This command

is write-only; NK cannot be read. If set to 0 (default), the module will select a random

network key.

C 128-bit value 0

73

KY
Link Key. Set the 128-bit AES link key. This command is write only; KY cannot be read.

Setting KY to 0 will cause the coordinator to transmit the network key in the clear to

joining devices, and will cause joining devices to acquire the network key in the clear

when joining.

CRE 128-bit value 0

TABELA 11 Lista de comandos AT para edição de Opções do modo AT

AT

Command

Name and Description Node

1

Type

Parameter Range Default

CT
Command Mode Timeout. Set/Read the period of inactivity (no valid commands

received) after which the RF module automatically exits AT Command Mode and returns

to Idle Mode.

CRE 2 - 0x028F [x 100 ms] 0x64 (100d)

CN Exit Command Mode. Explicitly exit the module from AT Command Mode. CRE -- --

GT
Guard Times. Set required period of silence before and after the Command Sequence

Characters of the AT Command Mode Sequence (GT + CC + GT). The period of silence

is used to prevent inadvertent entrance into AT Command Mode.

CRE 1 - 0x0CE4 [x 1 ms]

(max of 3.3 decimal sec)

0x3E8

(1000d)

CC

Command Sequence Character. Set/Read the ASCII character value to be used

between Guard Times of the AT Command Mode Sequence (GT + CC + GT). The AT

Command Mode Sequence enters the RF module into AT Command Mode.

The CC command is only supported when using AT firmware: 20xx (AT coordinator),

22xx (AT router), 28xx (AT end device).

CRE 0 - 0xFF 0x2B

(‘+’ ASCII)

TABELA 12 - Lista de comandos At da Interface com RF

AT

Command

Name and Description Node

1

Type

Parameter Range Default

PL
Power Level. Select/Read the power level at which the RF module transmits conducted

power. For XBee-PRO (S2B) Power Level 4 is calibrated and the other power levels are

approximate.

CRE

XBee

(boost mode disabled)

0 = -8 dBm

1 = -4 dBm

2 = -2 dBm

3 = 0 dBm

4 = +2 dBm

XBee-PRO (S2)

4 = 17 dBm

XBee-PRO (S2)

(International Variant)

4 = 10dBm

XBee-PRO (S2B)

(Boost mode enabled)

4 = 18dBM

3 = 16dBm

2 = 14dBm

1 = 12dBm

0 = 10dBm

4

74

PM

Power Mode. Set/read the power mode of the device. Enabling boost mode will improve

the receive sensitivity by 1dB and increase the transmit power by 2dB

Note: Enabling boost mode on the XBee-PRO (S2) will not affect the output power. Boost

mode imposes a slight increase in current draw. See section 1.2 for details.

CRE

0-1,

0= -Boost mode disabled,

1= Boost mode enabled.

1

DB

Received Signal Strength. This command reports the received signal strength of the

last received RF data packet. The DB command only indicates the signal strength of the

last hop. It does not provide an accurate quality measurement for a multihop link. DB can

be set to 0 to clear it. The DB command value is measured in -dBm. For example if DB

returns 0x50, then the RSSI of the last packet received was

-80dBm. As of 2x6x firmware, the DB command value is also updated when an APS

acknowledgment is received.

CRE

0 - 0xFF

Observed range for

XBee-PRO:

0x1A - 0x58

For XBee:

0x 1A - 0x5C

PP Peak Power. Read the dBm output when maximum power is selected (PL4). CRE 0x0-0x12 [read only]

TABELA 13 Lista de comandos AT de Interface Serial

AT

Command

Name and Description Node

1

Type

Parameter Range Default

AP
API Enable. Enable API Mode.

The AP command is only supported when using API firmware: 21xx (API coordinator),

23xx (API router), 29xx (API end device).

CRE

1 - 2

1 = API-enabled

2 = API-enabled

(w/escaped control

characters)

1

AO
API Options. Configure options for API. Current options select the type of receive API

frame to send out the Uart for received RF data packets.

CRE

0 - Default receive API

indicators enabled

1 - Explicit Rx data

indicator API frame

enabled (0x91)

3 - enable ZDO

passthrough of ZDO

requests to the UART

which are not supported

by the stack, as well as

Simple_Desc_req,

Active_EP_req, and

Match_Desc_req.

0

75

BD

Interface Data Rate. Set/Read the serial interface data rate for communication between

the module serial port and host.

Any value above 0x07 will be interpreted as an actual baud rate. When a value above

0x07 is sent, the closest interface data rate represented by the number is stored in the

BD register.

CRE

0-7

(standard baud rates)

0 = 1200 bps

1 = 2400

2 = 4800

3 = 9600

4 = 19200

5 = 38400

6 = 57600

7 = 115200

0x80 - 0xE1000

(non-standard rates up to

921kbps)

3

NB Serial Parity. Set/Read the serial parity setting on the module. CRE

0 = No parity

1 = Even parity

2 = Odd parity

3 = Mark parity

0

SB Stop Bits. Set/read the number of stop bits for the UART. (Two stop bits are not

supported if mark parity is enabled.)

CRE 0 = 1 stop bit

1 = 2 stop bits

0

RO
Packetization Timeout. Set/Read number of character times of inter-character silence

required before packetization. Set (RO=0) to transmit characters as they arrive instead of

buffering them into one RF packet The RO command is only supported when using AT

firmware: 20xx (AT coordinator), 22xx (AT router), 28xx (AT end device).

CRE 0 - 0xFF

[x character times]

3

D7 DIO7 Configuration. Select/Read options for the DIO7 line of the RF module. CRE

0 = Disabled

1 = CTS Flow Control

3 = Digital input

4 = Digital output, low

5 = Digital output, high

6 = RS-485 transmit

enable (low enable)

7 = RS-485 transmit

enable (high enable)

1

D6 DIO6 Configuration. Configure options for the DIO6 line of the RF module. CRE

0 = Disabled

1 = RTS flow control

3 = Digital input

4 = Digital output, low

5 = Digital output, high

0

76

TABELA 14 Lista de comandos AT de I/O control

AT

Command

Name and Description Node

1

Type

Parameter Range Default

IR
IO Sample Rate. Set/Read the IO sample rate to enable periodic sampling. For periodic

sampling to be enabled, IR must be set to a non-zero value, and at least one module pin

must have analog or digital IO functionality enabled (see D0-D8, P0-P2 commands). The

sample rate is measured in milliseconds.

CRE 0, 0x32:0xFFFF (ms) 0

IC

IO Digital Change Detection. Set/Read the digital IO pins to monitor for changes in the

IO state. IC works with the individual pin configuration commands (D0-D8, P0-P2). If a

pin is enabled as a digital input/output, the IC command can be used to force an

immediate IO sample transmission when the DIO state changes. IC is a bitmask that can

be used to enable or disable edge detection on individual channels. Unused bits should

be set to 0.

Bit (IO pin): 0 (DIO0)4 (DIO4)8 (DIO8)

1 (DIO1) 5 (DIO5) 9 (DIO9)

2 (DIO2) 6 (DIO6) 10 (DIO10)

3 (DIO3) 7 (DIO7) 11 (DIO11)

CRE : 0 - 0xFFFF 0

P0 PWM0 Configuration. Select/Read function for PWM0. CRE

0 = Disabled

1 = RSSI PWM

3 - Digital input,

monitored

4 - Digital output, default

low

5 - Digital output, default

high

1

P1 DIO11 Configuration. Configure options for the DIO11 line of the RF module. CRE

0 - Unmonitored digital

input

3- Digital input,

monitored

4- Digital output, default

low

5- Digital output, default

high

0

P2 DIO12 Configuration. Configure options for the DIO12 line of the RF module. CRE

0 - Unmonitored digital

input

3- Digital input,

monitored

4- Digital output, default

low

5- Digital output, default

high

0

77

P3 DIO13 Configuration. Set/Read function for DIO13. This command is not yet

supported.

CRE

0, 3-5

0 – Disabled

3 – Digital input

4 – Digital output, low

5 – Digital output, high

D0 AD0/DIO0 Configuration. Select/Read function for AD0/DIO0. CRE

1 - Commissioning button

enabled

2 - Analog input, single

ended

3 - Digital input

4 - Digital output, low

5 - Digital output, high

1

D1
AD1/DIO1 Configuration. Select/Read function for AD1/DIO1.

CRE

0, 2-5

0 – Disabled

2 - Analog input, single

ended

3 – Digital input

4 – Digital output, low

5 – Digital output, high

0

D2 AD2/DIO2 Configuration. Select/Read function for AD2/DIO2. CRE

0, 2-5

0 – Disabled

2 - Analog input, single

ended

3 – Digital input

4 – Digital output, low

5 – Digital output, high

0

D3 AD3/DIO3 Configuration. Select/Read function for AD3/DIO3. CRE

0, 2-5

0 – Disabled

2 - Analog input, single

ended

3 – Digital input

4 – Digital output, low

5 – Digital output, high

0

78

D4 DIO4 Configuration. Select/Read function for DIO4. CRE

0, 3-5

0 – Disabled

3 – Digital input

4 – Digital output, low

5 – Digital output, high

0

D5 DIO5 Configuration. Configure options for the DIO5 line of the RF module. CRE

0 = Disabled

1 = Associated

indication LED

3 = Digital input

4 = Digital output, default

low

5 = Digital output, default

high

1

D8 DIO8 Configuration. Set/Read function for DIO8. This command is not yet supported. CRE

0, 3-5

0 – Disabled

3 – Digital input

4 – Digital output, low

5 – Digital output, high

LT

Assoc LED Blink Time. Set/Read the Associate LED blink time. If the Associate LED

functionality is enabled (D5 command), this value determines the on and off blink times

for the LED when the module has joined a network. If LT=0, the default blink rate will be

used (500ms coordinator, 250ms router/end device). For all other LT values, LT is

measured in 10ms.

CRE

0, 0x0A - 0xFF (100 -

2550 ms)
0

PR

Pull-up Resistor. Set/read the bit field that configures the internal pull-up resistor status

for the I/O lines. "1" specifies the pull-up resistor is enabled. "0" specifies no pullup.(30k

pull-up resistors)

Bits:"

0 - DIO4 (Pin 11)

1 - AD3 / DIO3 (Pin 17)

2 - AD2 / DIO2 (Pin 18)

3 - AD1 / DIO1 (Pin 19)

4 - AD0 / DIO0 (Pin 20)

5 - RTS / DIO6 (Pin 16)

6 - DTR / Sleep Request / DIO8 (Pin 9)

7 - DIN / Config (Pin 3)

8 - Associate / DIO5 (Pin 15)

9 - On/Sleep / DIO9 (Pin 13)

10 - DIO12 (Pin 4)

11 - PWM0 / RSSI / DIO10 (Pin 6)

12 - PWM1 / DIO11 (Pin 7)

13 - CTS / DIO7 (Pin 12)

CRE

0 - 0x3FFF

0 - 0x1FFF

RP

RSSI PWM Timer. Time the RSSI signal will be output on the PWM after the last RF data

reception or APS acknowledgment.. When RP = 0xFF, output will always be on.

CRE

0 - 0xFF [x 100 ms]

0x28 (40d)

%V

Supply Voltage. Reads the voltage on the Vcc pin. Scale by 1200/1024 to convert to

mV units. For examplee, a %V reading of 0x900 (2304 decimal) represents 2700mV or

2.7OV.

CRE

-0x-0xFFFF [read only]

-

79

V+

Voltage Supply Monitoring. The voltage supply threshold is set with the V+ command.

If the measured supply voltage falls below or equal to this threshold, the supply voltage

will be included in the IO sample set. V+ is set to 0 by default (do not include the supply

voltage). Scale mV units by 1024/1200 to convert to internal units. For example, for a

2700mV threshold enter 0x900.

Given the operating Vcc ranges for different platforms, and scaling by 1024/1200, the

useful parameter ranges are:

XBee 2100-3600 mV 0,0x0700-0x0c00

PRO 3000-3400 mV, 0,0x0a00-0x0b55

S2B 2700-3600 mV, 0,0x0900-0x0c00

CRE

0-0xFFFF

0

TP

Reads the module temperature in Degrees Celsius. Accuracy +/- 7 degrees.

1° C = 0x0001 and -1° C = 0xFFFF. Command is only available in PRO S2B.
CRE

0x0-0xFFFF

-

TABELA 15 Lista de comandos AT de diagnósticos

AT

Command

Name and Description Node

1

Type

Parameter Range Default

VR

Firmware Version. Read firmware version of the module.

The firmware version returns 4 hexadecimal values (2 bytes) "ABCD". Digits ABC are

the main release number and D is the revision number from the main release. "B" is a

variant designator.

XBee and XBee-PRO ZB modules return:

0x2xxx versions.

XBee and XBee-PRO ZNet modules return:

0x1xxx versions. ZNet firmware is not compatible with ZB firmware.

CRE 0 - 0xFFFF [read-only] Factory-set

HV

Hardware Version. Read the hardware version of the module.version of the module.

This command can be used to distinguish among different hardware platforms. The

upper byte returns a value that is unique to each module type. The lower byte indicates

the hardware revision.

XBee ZB and XBee ZNet modules return the following (hexadecimal) values:

0x19xx - XBee module

0x1Axx - XBee-PRO module

CRE 0 - 0xFFFF [read-only] Factory-set

80

AI

Association Indication. Read information regarding last node join request:

0x00 - Successfully formed or joined a network. (Coordinators form a network, routers

and end devices join a network.)

0x21 - Scan found no PANs

0x22 - Scan found no valid PANs based on current SC and ID settings

0x23 - Valid Coordinator or Routers found, but they are not allowing joining (NJ expired)

0x24 - No joinable beacons were found

0x25 - Unexpected state, node should not be attempting to join at this time

0x27 - Node Joining attempt failed (typically due to incompatible security settings)

0x2A - Coordinator Start attempt failed‘

0x2B - Checking for an existing coordinator

0x2C - Attempt to leave the network failed

0xAB - Attempted to join a device that did not respond.

0xAC - Secure join error - network security key received unsecured

0xAD - Secure join error - network security key not received

0xAF - Secure join error - joining device does not have the right preconfigured link key

0xFF - Scanning for a ZigBee network (routers and end devices)

Note: New non-zero AI values may be added in later firmware versions. Applications

should read AI until it returns 0x00, indicating a successful startup (coordinator) or join

(routers and end devices)

CRE 0 - 0xFF

[read-only]

--

TABELA 16 Lista de comandos AT para sleep

AT

Command

Name and Description Node

1

Type

Parameter Range Default

SM
Sleep Mode Sets the sleep mode on the RF module. An XBee loaded with router

firmware can be configured as either a router (SM set to 0) or an end device (SM > 0).

Changing a device from a router to an end device (or vice versa) forces the device to

leave the network and attempt to join as the new device type when changes are applied.

RE

0-Sleep disabled (router)

1-Pin sleep enabled

4-Cyclic sleep enabled

5 - Cyclic sleep, pin wake

0 - Router

4 - End

Device

SN
Number of Sleep Periods. Sets the number of sleep periods to not assert the On/Sleep

pin on wakeup if no RF data is waiting for the end device. This command allows a host

application to sleep for an extended time if no RF data is present

CRE 1 - 0xFFFF 1

SP

Sleep Period. This value determines how long the end device will sleep at a time, up to

28 seconds. (The sleep time can effectively be extended past 28 seconds using the SN

command.) On the parent, this value determines how long the parent will buffer a

message for the sleeping end device. It should be set at least equal to the longest SP

time of any child end device.

CRE
0x20 - 0xAF0 x 10ms

(Quarter second

resolution)

0x20

ST
Time Before Sleep Sets the time before sleep timer on an end device.The timer is reset

each time serial or RF data is received. Once the timer expires, an end device may enter

low power operation. Applicable for cyclic sleep end devices only.

E 1 - 0xFFFE (x 1ms) 0x1388 (5

seconds)

81

SO

Command

Sleep Options. Configure options for sleep. Unused option bits should be set to 0.

Sleep options include:

0x02 - Always wake for ST time

0x04 - Sleep entire SN * SP time

Sleep options should not be used for most applications. See chapter 6 for more

information.

E 0 - 0xFF 0

WH
Wake Host. Set/Read the wake host timer value. If the wake host timer is set to a non-

zero value, this timer specifies a time (in millisecond units) that the device should allow

after waking from sleep before sending data out the UART or transmitting an IO sample.

If serial characters are received, the WH timer is stopped immediately.

E 0 - 0xFFFF (x 1ms)

SI Sleep Immediately. See Execution Commands table below..

PO Polling Rate. Sets the polling rate for the end device. E 0 - 0x1770 (10msec) 0x00 (100

msec)

TABELA 17 Lista de comandos AT de execução

AT

Command

Name and Description N

o

d

e

1

Node Type

Parameter Range Default

AC
Apply Changes. Applies changes to all command registers causing queued command

register values to be applied. For example, changing the serial interface rate with the BD

command will not change the UART interface rate until changes are applied with the AC

command. The CN command and 0x08 API command frame also apply changes.

CRE -

WR

Write. Write parameter values to non-volatile memory so that parameter modifications

persist through subsequent resets.

Note: Once WR is issued, no additional characters should be sent to the module until

after the "OK\r" response is received. The WR command should be used sparingly. The

EM250 supports a limited number of write cycles.“

CRE -- --

RE Restore Defaults. Restore module parameters to factory defaults. CRE -- --

FR Software Reset. Reset module. Responds immediately with an OK status, and then

performs a software reset about 2 seconds later.

CRE -- --

NR

Network Reset. Reset network layer parameters on one or more modules within a PAN.

Responds immediately with an “OK” then causes a network restart. All network

configuration and routing information is consequently lost.

If NR = 0: Resets network layer parameters on the node issuing the command.

If NR = 1: Sends broadcast transmission to reset network layer parameters on all nodes

in the PAN.

CRE 0-1 --

SI Sleep Immediately. Cause a cyclic sleep module to sleep immediately rather than wait

for the ST timer to expire.

E - -

82

CB
Commissioning Pushbutton. This command can be used to simulate commissioning

button presses in software. The parameter value should be set to the number of button

presses to be simulated. For example, sending the ATCB1 command will execute the

action associated with 1 commissioning button press.

CRE

ND
Node Discover. Discovers and reports all RF modules found. The following information

is reported for each module discovered.

MY<CR>

SH<CR>

SL<CR>

NI<CR> (Variable length)

PARENT_NETWORK ADDRESS (2 Bytes)<CR>

DEVICE_TYPE<CR> (1 Byte: 0=Coord, 1=Router, 2=End Device)

STATUS<CR> (1 Byte: Reserved)

PROFILE_ID<CR> (2 Bytes)

MANUFACTURER_ID<CR> (2 Bytes)

<CR>

After (NT * 100) milliseconds, the command ends by returning a <CR>. ND also accepts

a Node Identifier (NI) as a parameter (optional). In this case, only a module that matches

the supplied identifier will respond.

If ND is sent through the API, each response is returned as a separate

AT_CMD_Response packet. The data consists of the above listed bytes without the

carriage return delimiters. The NI string will end in a "0x00" null character. The radius of

the ND command is set by the BH command.

CRE

optional 20-Byte

NI or MY value

--

DN
Destination Node. Resolves an NI (Node Identifier) string to a physical address (case-

sensitive). The following events occur after the destination node is discovered:

<AT Firmware>

1. DL & DH are set to the extended (64-bit) address of the module with the matching

NI (Node Identifier) string.

2. OK (or ERROR)\r is returned.

3. Command Mode is exited to allow immediate communication

<API Firmware>

1. The 16-bit network and 64-bit extended addresses are returned in an API

Command Response frame.

If there is no response from a module within (NT * 100) milliseconds or a parameter is

not specified (left blank), the command is terminated and an “ERROR” message is

returned. In the case of an ERROR, Command Mode is not exited. The radius of the DN

command is set by the BH command.

CRE

up to 20-Byte printable

ASCII string

--

83

IS
Force Sample Forces a read of all enabled digital and analog input lines.

CRE -- --

1S
XBee Sensor Sample. Forces a sample to be taken on an XBee Sensor device. This

command can only be issued to an XBee sensor device using an API remote command.
RE - -

