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Resumo

O objetivo deste trabalho de conclusdo de curso foi implementar um método de
planejamento de movimento baseado em decomposicdo do ambiente em células e funcGes
de navegacdo, conforme proposto em Conner et al (2003). Para implementar 0 método
proposto, foi utilizado o software Matlab® para desenvolver um conjunto de ferramentas
que calcula a funcdo de navegacdo de um ambiente dividido em células. Com isso, este
método permitira que o robd navegue pelo ambiente a partir de qualquer posicéo inicial até
uma posicao final desejada desviando dos obstaculos, que foram considerados no mapa no

momento do planejamento.

Palavras-Chave: Planejamento de movimento. Func¢des de Navegacdo. Rob6é Movel.
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Abstract

The objective of this work was to implement a method of motion planning based on
decomposition of the environment in cells and navigation functions, as proposed in Conner
et al (2003). Matlab was used to implement the proposed method, to develop a set of tools
that calculates the navigation function of an environment divided into cells. Therefore, this
method will allow the robot to navigate the environment from any initial position to a
desired final position avoiding the obstacles considered on the map at the motion planning
step.

Keywords: Planning of movement. Navigation functions. Mobile robot.
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1. Introducéo

Em tarefas de navegacdo autbnoma, o planejamento de movimento tem o propdsito
de determinar quais movimentos o rob6 deve realizar de forma que alcance posigdes ou
configuracBes desejadas no ambiente sem que ocorram colisbes com obstaculos
(Latombe,1991). No processo de planejamento utilizam-se informagdes sobre o ambiente
no qual o robd esta inserido, na forma de um mapa, juntamente com informacGes sobre o
préprio robd, ou seja, seu modelo cinematico e dinamico. Diversos métodos de
planejamento para navegacdo sdo apresentados de forma detalhada em Latombe (1991),
Choset et al (2005), e LaValle (2006), dentre outros. Algumas das abordagens utilizadas
para planejamento de movimento sdo: roadmaps; decomposicdo em células; e campos
potenciais. A escolha do método de planejamento influencia a maneira como ocorre a
navegacdo e também como comportamentos reativos de navegagdo podem ser integrados
no sistema de controle. Um exemplo de comportamento reativo € o desvio de obstaculos
maoveis que nao sdo considerados no mapa no momento do planejamento.

Em Conner (2007) utiliza-se 0 método de decomposicdo do ambiente em células
combinado com o método de fungdo potencial de navegacao. Esta técnica divide o espaco
livre do ambiente em células de geometria simples conectadas umas as outras atraves de
uma fronteira. A partir desta divisdo, uma vez que a posicdo de destino final para o robd é
especificada, determina-se possiveis sequéncias de células pelas quais o rob6 deve
caminhar para que chegue a célula que contém a posicao final. Entdo, uma fungéo potencial
de navegacdo é definida dentro de cada célula do ambiente. Isto é feito de forma que cada
funcdo dentro de uma célula conduz o rob6, pelo gradiente negativo da funcdo, até a
fronteira dessa célula com a proxima célula da seqiiéncia. Uma vez que o robd atravessa a
fronteira da célula em que esta, ele cai no dominio de convergéncia de outra funcédo
potencial de navegacdo. Isso é feito sucessivamente, até que a funcdo de navegacdo na
Gltima célula conduza o robd até a posicdo de destino desejada.

Outra forma de navegar usando esse método é definir uma rota de monitoramento
para o rob6 através de uma seqléncia especifica de células. Assim, o robd realiza o
percurso continuamente sendo levado de uma célula a outra, conforme ilustrado na Figura

1. A vantagem em utilizar o método de planejamento de movimento baseado em divisdo do
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ambiente em células e fungdes potenciais é a de que ao dividir o ambiente em células, o
célculo de uma funcéo potencial é feito em uma regido menor e de geometria mais simples
que a do ambiente todo. Também como a navegacdo se baseia em funces potenciais,
podem-se aproveitar as diversas técnicas conhecidas na literatura para desvio de obstaculos

que se baseiam nessas fungdes.
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Figura 1: llustracdo de navegagao do rob0 através do método de decomposicdo em células.

1.1. Objetivo

Este trabalho consiste no estudo e implementacdo do método proposto em Conner
(2007) e implementa-lo utilizando o software Matlab®, este método tem como resultado
uma matriz construida a partir dos valores da funcdo de navegacdo para cada ponto do
ambiente discretizado. A matriz em questdo, por sua vez, pode ser utilizado por softwares

de controle para movimentar o robd dentro do ambiente em questéo.

1.2. Organizacao

O presente trabalho esta organizado da seguinte forma:

e O Capitulo 2 apresenta de forma breve alguns métodos de planejamento de

movimento;
e O Capitulo 3 explica de forma detalhada o método utilizado neste trabalho

de concluséo de curso;
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e O Capitulo 4 contém as informacGes sobre a implementacdo do método de
sequéncia de funcgdes de navegacdo e os resultados alcancados;

e O Capitulo 5 apresenta as conclusfes relativas ao trabalho realizado neste
projeto.
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2. Planejamento de Movimento

O método implementado por esse trabalho de concluséo de curso tem como objetivo
resolver problemas de navegacdo de rob6s mdveis, sendo assim, este capitulo apresenta de
forma sucinta diversos métodos de planejamento de movimento para fins de navegacao, tais
como: roadmaps, decomposicdo em células e campos potenciais; 0s quais sdo descritos
mais detalhadamente em Latombe (1991), Choset et al. (2005), e LaValle (2006). Para se
explicar os métodos mencionados acima, primeiro é necessaria uma explicacdo sobre o

espaco de configuragdes, que sera dada na proxima secao.

2.1. Espaco de configuracoes

O espaco de configuracdes € uma maneira de representar o0 meio ambiente no qual o
robd esta inserido. Poréem, para se entender essa definicdo de espaco de configuracdes é
necessaria algumas explicagdes sobre o0s seguintes conceitos: espaco de trabalho,
representacdo de um robd no espaco, obstaculos no ambiente, e por fim, configuracdo do
ambiente.

O espaco de trabalho de um rob6 € o espaco por onde 0 rob6 se movimenta (meio
fisico) e pode ser definido no R® ou no R? No caso desse trabalho, é utilizado o R? como
espaco de trabalho, pois o robé utilizado ira se deslocar apenas no plano Euclidiano. No

entanto, para robds que se deslocam em trés dimensdes, normalmente € utilizado o espaco

Euclidiano tridimensional para se definir o espago de trabalho, aqui representado por ‘W.

Um subconjunto compacto do espaco de trabalho "W representa um robd, R,

naquele espaco fisico. Para um subconjunto ser compacto, este conjunto deve ser fechado e
limitado, ou seja, deve possuir todos os pontos incluindo o limites/fronteiras do
subconjunto. Um exemplo de um subconjunto compacto seria no R, [2,5]; e para um

subconjunto ndo compacto, seria algo do tipo (2,5].

Obstaculos sdo subconjuntos fechados no espaco de trabalho W e serdo
representados por Bi;,...,By. Definem-se, como os sistemas de coordenadas cartesianas, Fw

e Frem W e R respectivamente.
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Finalmente a configuracdo do ambiente, representada por ¢, € definida como sendo
a completa especificagdo da posigcdo de todos os pontos do robd relativa ao sistema fixo de

coordenadas do meio ambiente, Fw. Para certa configuracdo do ambiente, g, o

subconjunto de espago de trabalho, "W, ocupado pelo robd, R, ¢ representado por R{q).
Com as defini¢des introduzidas acima, € possivel definir o espaco de configuracbes
para um rob6. O espaco de configuracdes, C, de um robd é definido como sendo o conjunto
de todas as configuracBes possiveis para este robd. No espaco de configuracdes o robd é
definido como um ponto g. O espago de configuragdes é uma ferramenta que vem sendo
muito utilizada para formulacdo de problemas de planejamento de movimento e, um dos
motivos, é que toda geometria da tarefa pode ser mapeada no espago de configuragoes.

Podem-se definir facilmente dois subconjuntos distintos pertencentes ao espaco de

configuracdes, sendo eles muito Uteis para a formulacdo de problemas de planejamento de

movimento: o espaco de configuragdes ocupado por obstaculos, Cops, € espaco de

configuracoes livres, Ciyre.

O espaco de configuragdes ocupado por obstaculos € definido como sendo o
conjunto de configuragBes para as quais ha interseccao entre o robd e os obstaculos. O
espaco de configuracdes livres, por sua vez, € definido como sendo o espaco de

configuracfes que ndo ha interseccdo entre o robd e os obstaculos.
E possivel determinar Cobs € Ciivre @ partir de um mapa do ambiente de trabalho que

represente os obstaculos e da geometria do rob6, por exemplo, para um rob6 circular que

realiza apenas movimentos de translacdo em um plano. A configuracdo do robd é dada
pelas coordenadas do ponto de referéncia localizado no seu centro, g = {x , y}. O espaco de

configuracbes para este robd é bidimensional e pode ser representado no plano Euclidiano,
R% Além disso, para este robd o espaco de trabalho também é o plano Euclidiano.

Entretanto, € importante ressaltar que, mesmo tendo a mesma dimensdo, 0 espaco de
configuracdes, C, ¢ diferente do espaco de trabalho, "W. Para definir o espaco de

configuragbes ocupado pelos obstaculos, move-se o robd ao redor de cada obstaculo do

espaco de trabalho conforme mostra a Figura 2. A trajetoria descrita pela referéncia do

robd, {x,y}, define a fronteira do obstaculo em C. Dessa maneira, determina-se a restrigéo
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que o obstaculo estabelece sobre a configuracdo do rob6. Para este caso, 0s obstaculos no

espaco de configuragdes equivalem aos obstaculos no ambiente de trabalho expandidos
pela dimensdo radial do robé circular. Na Figura 2, Cops € representado pela areas em cinza
e preto. O espaco de configuracGes livres, Ciire, COrresponde ao complemento de Cops €M

C

Figura 2: Espaco de configuragdes de um obstaculo quadrado para um rob6 circular. A area preta representa o obstaculo
no ambiente de trabalho e a rea cinza, o obstaculo no espaco de configuragdes.

Feita essa introducédo sobre espaco de configuracdo, € possivel entender os métodos
de planejamento de movimento, os quais serdo descritos abaixo.

2.2. Planejamento utilizando roadmaps

Uma roadmap como o proprio nome sugere ¢ um “mapa de ruas”, sendo essas ruas
criadas a partir de determinadas regras (métodos). Dentre 0os métodos para se criar uma
roadmap aqui serd citado o método de grafo de visibilidade e o método de retracéo

(diagrama de VVoronoi generalizado).
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O método de grafo de visibilidade apenas € utilizado para planejamento de
movimento em espacos de configuragdes bidimensionais com obstaculos (Cops) poligonais.

Neste método impde duas regras para se criar a roadmap:

e Um no do grafo € ligado a outro se estes dois nds estdo no campo de visdo um do
outro;
e Cada ponto do espago de configuragdes livre (Ciivre) deve estar no campo de viséo

de pelo menos um n6 do grafo de visibilidade.

Com ambas as regras mencionadas acima é possivel acessar a roadmap de qualquer
lugar do espaco de configuracdes. Por fim o grafo de visibilidade é criado ligando-se dois
vertices dos obstaculos (nds) por uma linha reta que ndo passe pelo interior de nenhum
obstaculo. A Figura 3 mostra um exemplo de um grafo de visibilidade, sendo os poligonos

rachurados, os obstaculos.

Figura 3: Exemplo de um grafo de visibilidade.

O método de retracdo consiste em construir uma roadmap a partir da retracdo de seu

espaco de configuragdes livres no diagrama de VVoronoi generalizado, sendo este diagrama
um subconjunto de Ciivre que maximiza a distancia entre robd e os obstaculos. Na Figura 4

é mostrado um exemplo do método de retragdo.
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Figura 4: Exemplo de um diagrama generalizado de VVoronoi (método de retracéo).

O planejamento de movimento que usa as roadmaps respeita duas regras. A
primeira € encontrar um caminho que conecte a posicdo inicial, Ginicial, € @ posicao final,
Grinal, @ roadmap. Seja q'inicial € ¢ final, reSpectivamente, o ponto de conexdo de Ginicial €
rinal @ roadmap. Entéo, a segunda regra € procurar um caminho na roadmap que ligue os
dois pontos de conexao ¢ 'inicial € ¢ final.

2.3. Decomposicdo em células

Decompor o espaco de configuracdes livres em células (subconjuntos de Ciivre) pode
ajudar na tarefa de encontrar uma solucdo no planejamento de movimento do robd, pois
dentro de cada célula a trajetdria entre dois pontos € facilmente gerada.

Quando a interseccdo de duas células ndo é nula, isso significa que estas duas
celulas sdo adjacentes, pois ambas possuem uma mesma fronteira. Esta relacdo de
adjacéncia entre as células pode ser representada por um grafo ndo direcional. Com o
espaco de configurac@es livres dividido em células e o grafo de adjacéncia construido, é

possivel obter o planejamento de movimento seguindo trés etapas:

e Determinam-se quais células possuem a posic¢éo inicial e final do robd;

e Através do grafo de adjacéncia faz-se uma busca para determinar um caminho de
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células intermediarias entre as células que possuem a configuragdo inicial e final do
robd;
e E por fim, determina-se dentro de cada célula da solugdo encontrada, uma curva que
ligue dois pontos entre as fronteiras dessas células.
A Figura 5 mostra um exemplo de decomposicdo em células, sendo o tracejado
representando a fronteira das células.

Figura 5: Exemplo de decomposicdo em células.

2.4. Campo Potencial

Nos métodos de campo potencial, também chamada de funcdo potencial, o robd
move-se de acordo com o gradiente negativo de um campo potencial definido no ambiente
(espaco de configuracdes). Neste caso, o robd é considerado como um ponto no espaco de

configuracoes livres.

Uma abordagem de campos potenciais é atribuir um potencial atrativo para a
posi¢do final do robé e um potencial repulsivo aos obstaculos. O potencial atrativo é
independente dos obstaculos e o potencial repulsivo é independente da posicéo final, sendo,
a soma desses dois campos potenciais de atracdo e de repulsdo, o campo potencial que age
sobre o rob6.
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O problema desse método € que ndo ha garantia que o rob6 alcance o seu objetivo,
pois na maioria dos métodos baseados em campos potenciais, 0 rob6 pode ficar preso em
minimos locais, 0s quais sdo pontos (diferentes do ponto de objetivo do rob6) onde o
resultado da soma dos potenciais de atracdo e de repulsdo é igual zero. No entanto, existem
algumas técnicas para lidar com esses minimos locais, fazendo o rob6 sair deles, uma

dessas técnicas € a fungdo de navegacéo.

2.4.1. Funcédo de navegacao

Rimon e Koditschek (1992) desenvolveram um tipo especial de funcdo potencial
que é livre de minimos locais, também chamada de funcdo de navegacao. Para se calcular
essa funcdo de navegacéo, é necessario conhecimento prévio de todo o ambiente em que 0
rob6 esta inserido, em outras palavras, ter o conhecimento do espaco de configuracdes

livres e dos obstaculos do ambiente de trabalho.

Para tanto, define-se uma funcdo de navegacdo da seguinte forma (Rimon &
Koditschek, 1992):

Seja Ciivre 0 espaco de configuragBes livres do robd, e qon; a configuragéo final

desejada para o robd dentro de Ciiyre. Um mapeamento ¢ : Givre — [0,1] € uma funcéo de

navegacao se ela é:

e Suave em Ciivre, OU Seja, ela possui derivadas de segunda ordem continuas;

e Polar em gopj, OU Seja, possui um Gnico minimo em ¢gonj N0 componente conectado
de Giivre que contém ¢ob;;

e Admissivel em Giire, OU Seja, uniformemente maxima na fronteira de Ciiyre;

e E sejauma funcdo do tipo Morse.

Uma funcdo do tipo Morse é uma funcdo cujos pontos criticos (pontos em que a
derivada ou o gradiente da funcdo € zero) ndo sdo degenerativos. Isso significa que 0s
pontos criticos sdo isolados, e que quando o robd segue o gradiente negativo de uma funcéo

desse tipo, qualquer perturbacéo é capaz fazer com que o robd saia do minimo local.
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Um exemplo de uma funcdo de navegacdo calculada para um ambiente composto de

esferas € mostrada na Figura 6, onde o ponto branco € o gob;.

Figura 6: Funcéo de navegacdo em um ambiente composto de esferas.

Um ambiente composto apenas de esferas ndo representa muito a realidade de
grande parte dos problemas de planejamento de movimento, sendo assim, Rimon e
Koditschek (1992) demonstram que se um ambiente composto de esferas pode ser mapeado
de modo difeomérfico’ em um ambiente de geometria mais complexa, existe uma funcéo
de navegacdo definida neste ambiente composto de esperas que também pode ser mapeada
para 0 ambiente com geometria mais complexa preservando suas propriedades de funcéo de
navegacao.

Como o método utilizado para esse trabalho de conclusdo de curso utiliza essa
técnica, serd feita uma explicacdo mais detalhada em comparacdo com os métodos
explicados anteriormente, por isso o proximo capitulo é dedicado a explicar o método

utilizado nesse trabalho de conclusao de curso.

! Uma funcdo difeomérfica é uma funcéo suave, bijetora, e que possui uma inversa também suave.
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3. Sequiéncia de funcdes de navegacao

Neste trabalho, foi implementado o método de navegacéo baseado em seqiiéncia de
funcdes de navegacdo proposto por Conner (2007). Esse método consiste em combinar o
método de decomposi¢cdo em células com o método de funcdo de navegacéo.

A primeira etapa desse metodo é dividir o ambiente de trabalho em regiGes menores
(células) e, nesse caso, no formato de poligonos convexos. Logo ap6s, define-se a posicao
final do robd, para determinar a sequéncia de células que o rob6 deve passar para atingir o
seu objetivo. Até esse ponto ndo ha diferenca entre esse método e o método de
decomposicao de células explicado no capitulo anterior. No entanto, 0 método comeca a se
diferenciar nesse ponto, onde, para cada célula, é definida uma funcdo de navegacéo. Essas
funcbes de navegacdo sdo muito mais simples de se calcular, pois ndo sdo funcdes de
navegacdo para ambientes inteiros. Esse fato € verdadeiro por causa da geometria simples

dos poligonos convexos.

As funcbes de navegacao de cada célula, exceto da célula que possui a posicéo final
do robd, sdo definidas de tal forma que leve o rob6 até a fronteira de uma célula adjacente,
e quando o rob6 chega a fronteira, ele imediatamente entra no dominio da funcdo de
navegacdo dessa célula adjacente. Assim, o robd vai navegando de célula a célula até
chegar a célula que possui a sua posicdo final. Para esta célula, a funcdo de navegacédo
definida ¢ diferente das demais, sendo definida para convergir para a posicdo final do robd,

onde é o Uinico minimo em todo o ambiente de trabalho.

Em linhas gerais, para calcular as funcbes de navegacdo mencionadas
anteriormente, primeiro, cada célula é mapeada difeomérficamente para um disco no plano
Euclidiano. Depois, aplica-se uma transformacdo para variaveis polares. A partir dai
calcula-se a funcdo potencial no disco polar, e como foi aplicado um mapeamento
difeomorfico para “transformar” o poligono convexo no disco, essa fungdo de navegacgao
pode ser mapeada para o poligono convexo preservando suas propriedades. Cada uma

dessas etapas sera detalhada a seguir.
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3.1. Mapeando poligonos convexos em discos

Para se mapear um poligono em um disco, primeiro é necessario saber como se
pode definir um poligono no espaco R?, sendo assim, esta secdo sera dedicada a explicar
matematicamente como definir um poligono no plano Euclidiano e, em seguida, mapeé-lo

em um disco.

No plano Euclidiano, R? s30 necessarias no minimo trés restricbes espaciais
(segmentos de reta, lados do poligono) para se definir um poligono. Cada lado do poligono
pode ser representando por um ponto médio, p, e uma normal, n, com o sentido da normal
apontando para fora do poligono. Para um ponto no plano Euclidiano, g, define-se a

distancia do ponto g ao i-ésimo segmento de reta como:

6(q) =-ni.(q— p) (Eq.3.1)

Uma condicao necessaria para o conjunto {(p;, ) | i = 1,...,m} de segmentos de reta definir

um poligono valido é:
Vi=1l...mVj=1...m,i#j, G (p)>0.

Se g, € ponto no interior do poligono, entdo 5 (g) >0 paratodoi € 1...m. Com

isso é possivel definir um poligono convexo, 2, como:
P={geR*|Vi=1...m, £ (qg) >0},

Assumindo que os m segmentos de reta formem um poligono vélido. Se £ (g) =0

para alguns, mas ndo todos, lados do poligono, g esta localizado na fronteira do poligono.

Define-se gz€ fmnax COMO sendo:

q, = arg max 1_[ JAG) (Eq. 3.2)
i=1
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Bnax = | | BiCap) (Fq. 3.3)
i=1

Assim frax € 0 valor maximo do produto das distancias para cada lado no interior do

poligono. Define-se a fun¢do do produto dimensionado das distancias £(g) como:

1-m
m

@ = | [p@ (Eq. 3.4)
i=1

Lema?: O conjunto de maximos locais de S(g) no interior do poligono P é uma

singularidade. Além disso, £(q) é livre de minimos locais no interior de 2.

A partir do Lema, conclui-se que S(g) decresce monotonicamente a medida que g
se aproxima da fronteira de 2 ao longo de um raio de gz em todas as dire¢cfes. Dado um

poligono convexo valido, constrdi-se 0 mapeamento para o disco usando £(q).

Nota-se que as propriedades desejadas da funcdo de navegacdo sdo invariantes a
transformacgdes do tipo translacdo e rotacdo. Sendo assim, primeiro aplica-se uma
translagdo do poligono tornando o ponto gg na origem (gsz = {0,0} no plano Euclidiano).
Depois aplica-se uma rotacdo para que o ponto médio p da face de saida do rob6 esteja no

eixo negativo de x (para o caso da célula ser a célula que possui 0 ponto objetivo do robd,

ndo é necessario aplicar esta rotacao).

Dado um poligono convexo valido P e a transformacdo ‘T (explicada
anteriormente), define-se ¢ : T(P) — B Como sendo o mapeamento difeomdrfico de um
poligono convexo para o disco:

q

T Eqg. 3.5
llql[+ 6@ (Fa. 3.5)

o(q) =

A Figura 7 mostra um mapeamento ¢ (g) em um poligono convexo.

% A prova desse lema ndo sera mostrada aqui, para mais informagdes consulte Coner (2007).

29



Figura 7: ¢ sendo aplicada em um poligono convexo.

O mapeamento ¢ € suficiente para se calcular as fun¢bes de navegacao em células
diferentes da celula final (célula que possui 0 ponto que corresponde a posi¢cdo final do
robd), poréem para a célula final ainda é preciso que seja realizado mais um mapeamento,
este por sua vez ira mapear o disco encontrado por ¢ para outro disco com 0 ponto que
corresponde a posicgéo final do robd na origem do disco. Para isso um mapeamento baseado
em ndimeros complexos é suficiente, sendo z = ¢’ = ¢(g) um ponto arbitrario no interior do

disco representando no plano complexo e zg = g2 = ¢(q,) sendo o ponto de destino do robd

no plano complexo. Entéo, a fungéo v: qug — By, é definida como:

Z— Zg

1/J(Z) = 1_—_

Zg Z

(Eq. 3.6)

A Figura 8 mostra o0 mapeamento 1y sendo aplicado a um disco, para o qual ja foi

calculada sua respectiva funcédo de navegacéo.

Figura 8: exemplo de mapeamento .
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Com o mapeamento pronto, resta apenas calcular a funcéo de navegacao para cada
tipo de célula.

3.2. Funcao de navegacéao na célula

A primeira etapa para se calcular a funcdo de navegacdo no disco é mudar de

variaveis cartesianas para variaveis polares, portanto para gy = @(q) = (Xa,ya) define-se:

p= 34y (Eq. 3.7)

0 = atan2(y4, x4) (Eq. 3.8)

O calculo da funcéo de navegacao é diferente dependendo do tipo da célula em que
estd sendo feito o célculo da funcdo de navegacdo. Para as células livres (células que o robd
tem com objetivo atravessar um dos lados do poligono), tem-se a seguinte formula para o
calculo da funcédo de navegacéo:

a—a 1 sin(a; — 0 1 sin(ay — 0
1 0+—tan_1( p sin(ay ) ) ( p sin(ag )

,0) = ——tan™?
75(0,6) 21 1—p cos(a; — 6) w1 —p cos(ay —6)

) (Eq. 3.9)

A

Onde «; representa as coordenadas do angulo dos Vvértices da face pela qual o rob6
ird passar para a célula adjacente. A Figura 9 mostra 0 mapeamento ¢ e a condicdo de

fronteira usada para o calculo da funcdo de navegacao.

T~ ~ /
- . -

- _ — —

)]

Figura 9: Mapeando poligono para o disco, com a face de saida identifica.

Para a célula final, a fungdo de navegacéo € definida da seguinte maneira:
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Yo(@) =3 (@)%, onde 0 <y, < 1. (Eq. 3.10)

Com y, e y, € possivel calcular a funcéo de navegacdo para todo o espago de
configuracéo livre. Para as fungdes de navegacdo das células obstaculo do ambiente, basta
atribuir um valor constante e muito superior aos valores encontrados para as demais células.

Assim tem-se um valor potencial bem definido para cada ponto do ambiente.

3.3. Método implementado

A seguir o fluxograma (Figura 10) mostra os passos para calcular a funcdo de
navegacdo para uma célula. Os blocos marcados com asterisco serdo detalhados mais

adiante.

Informar as coordenadas dos vertices do poligono.

v

Calcular as normais € os pontos médios de cada lado
do poligono.

!

Encontrar o conjunto discretizado de pontos g
={x,v} do poligono.

¥

Calcular 0 Fyg). conforme a equagdo 3.1

!

Calcular gs€ g, conforme as equagles 3.2 e 3.3.

'

Calcular 5g ), conforme equagdo 3.4,

'

Calcular @(g), conforme eguagio 3.5.

E a célula final?

h 4 h 4

Calcular (z), conforme equagio 3.6. sris Mudar para varidveis polares, conforme as
equagdes 3.7 e 3.8,
Calcular y, (q), conforme equagio 3.10. Calcular y3(p, 6), conforme a equagio 3.9

Figura 10: fluxograma da fungéo de navegacédo de uma célula.
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* Para 0 pseudocddigo de fi(q) séo necessarias as seguintes definicoes:

n; : normal do i-ésimo lado do poligono convexo;
pi: ponto médio do i-ésimo lado do poligono convexo;

q : representa os pontos g ={x,y} do poligono convexo.

Entradas: nj, pi, g = {X,y}
Saida: Bi(q)
para k = 1 até i faca
beta i(qg,k) = -n(k) . (g - p(k) );

fim para

** Para 0 pseudocddigo de £(g) sdo necessarias as seguintes definicoes:

m : numero de lados do poligono convexo;

Bmax : 0 produto dos Bi(q), para o ponto q que faz esse produto ser o maior valor

possivel.

Entradas: m, Bmax, Bi(q)

Saida: B(q)
beta prod(q) = 1;
para x = 1 até i faca

beta prod(g) = beta prod(qg) * beta(qg,i);
fim para

beta(qg) = ((beta max)” (l-m/m))*beta prod(q);
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*** Para 0 pseudocddigo de ¢(g) ndo é necessario acrescentar novas definicdes.

Entradas: q = {x,y}, B(q)
Saidas: ¢(q) = {xd,Yd}

x d=7phi(x) = x/ ( (x*2 + y*2)70.5 + beta(q) ):

phi(y) =y / ( (x*2 + y*2)70.5 + beta(q) );

l"<
(o
Il

**** Para 0 pseudocddigo de 1y (z) sdo necessarias as seguintes definicdes:

e Z:eumnamero complexo na forma xq + Yqj;
e z obj: ponto de destino do robd representando no plano complexo;

e 7 obj ¢ o conjugado complexo de z ob;.

Entradas: o(q) = {Xd,Yd}
Saidas: y(z)
z =x d+ y d*j;

psi(z) = (z - z obj) / (1 - Z obj*z);
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4. Resultados

O primeiro passo para avaliar a implementacdo do algoritmo de funcdes de
navegacéo utilizado em Conner (2007) foi criar um ambiente para o robd poder navegar por
ele. Este ambiente foi representado na Figura 11, onde é possivel ver que este é composto
por seis células “livres” e duas células “obstaculos”. Com isso escolheu-se duas trajetdrias
distintas, com diferentes células iniciais, porém com a célula final idéntica. Foi escolhida a
célula final igual para ambas a trajetérias por conveniéncia, pois dessa forma diminui o
namero de célculos feitos para se obter duas trajetérias no mesmo ambiente. Deve-se notar
também, que pelo fato de terem sido escolhidas duas trajetorias diferentes, nos segmentos
{(1,1),(5,8)} e {(10,8),(15,6)} existem descontinuidades na fungdo de navegacgdo global
(funcéo de navegacéo de todo o ambiente).

(1,16) (20,16)
(5,12) (10,12)
célula inicial
(5,8) (10,8) (15,6)
(18,6)
célula final
@ (14 (18,4]
célula inicial @

(1,1) (15,1) (20,1}

Figura 11: Ambiente de navegacéo criado para este trabalho.

Com o ambiente pronto, o préximo passo foi calcular a funcdo de navegacdo em
cada célula livre do ambiente, e atribuir um valor constante a funcdo de navegacéo de cada

celula obstaculo que seja maior que os valores encontrados para as fungdes potenciais das
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celulas livres. O objetivo do conjunto de ferramentas desenvolvidos nessa etapa do trabalho
foi combinar as funcbes de navegacgdo de cada célula do ambiente proposto em uma matriz
potencial. Para atingir esse objetivo foi codificado duas functions e um script (no Apéndice
A) no sotfware Matlab®. Uma function exclusiva para o célculo da funcdo de navegacao de
células livres que € diferente da fungdo de navegagdo da célula final, e a outra funciton
apenas para o célculo da funcdo de navegacdo da célula final. E por fim o script (que
invoca ambas as funcitons) atribui a funcdo de navegagdo constante para as células

obstaculos e exporta a matriz potencial em um arquivo texto.

4.1. Function betaq_m

A function que realiza o célculo da funcéo de navegacao das células livres recebeu o
nome de betag_m. Esta function tem como saida a matriz potencial da célula livre e recebe
como argumentos: o numero de lados do poligono convexo (célula livre); o lado pelo o qual
0 robd atravessara para a outra célula; o vetor das coordenadas x dos vértices do poligono; o
vetor das coordenadas y dos Vértices do poligono; e por ultimo o “grau” do poligono.

Abaixo um exemplo de chamada da function betag_m (Figura 12).

==yvet x=[35421];
=ryvet y=[72112];
== A = betag_m(5, 4, vet_x, vet_y, 2);

Figura 12: Chamada function betag_m

Para betaq_m funcionar corretamente a ordem utilizada para declarar os {xi, X,...,
Xn} de vet x deve ser a mesma na hora de declarar os {y; ,y2, ..., yn} de vet y. O dltimo
argumento dessa funcdo define o intervalo de valores da funcdo potencial. No caso do
exemplo mostrado na Figura 12, o intervalo € igual a 2, o que significa que o maior valor da
funcdo potencial calculada sera igual 2 e 0 menor valor seré igual 1.

Por convencdo, foi definido que a numeracao dos lados do poligono serd no sentido

horério, como é mostrado na Figura 13.
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(3,7)

(1,2) @ @ (5.2}

() (2
)

(2.1} (4,1)

Figura 13: Numeragdo dos lados do poligono no sentindo horario

Para testar o codigo da function betag_m desenvolvido, foi utilizada a ferramenta
plot do Matlab® para desenhar o grafico em 3D da fungdo de navegacédo calculada para a
célula livre em questdo (pentagono utilizado na Figura 13). Abaixo estdo duas figuras
mostrando a funcdo de navegacdo calculada (Figuras 14 e 15). Foi escolhido o 5° lado do

pentagono como lado que o robd ird atravessar para a célula adjacente.

1 15 2 25 3 35 4 445 5

Figura 14: Vista superior de betag_m
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Figura 15: betag_m vista 3D

4.2. Funtion betaq g

A function que realiza o calculo da funcao potencial da célula final, recebeu 0 nome
de betag_g. Ela é bastante semelhante a function betaq_m, no entanto, como o rob6 nédo
saira dessa célula, ndo é necessario passar o0 numero do lado pelo qual o rob6 deve passar
para a célula seguinte, e nem o grau do poligono, pois essa function ja foi implementada
levando em conta que o ponto de destino final do rob6 deve ser onde tem o menor valor da
funcéo de navegacéo (analogo ao poligono possuir grau 1).

Portanto os argumentos que betaq_g recebe sé@o: o nimero de lados do poligono; o
ponto de destino final do robd; o vetor das coordenadas x dos vértices do poligono; e o
vetor das coordenadas y dos vertices do poligono.

Igual a betaq_m, betaq_g tem como saida a matriz potencial da célula final. A

Figura 16 mostra um como utilizar a function betaq_g de maneira correta.

==vet x=[35421];
==yet y=[72112];
== B =betag_g(3, [3 4], vet_x, vet_y);

Figura 16: Exemplo function betaq_g

Para betag_g funcionar corretamente o segundo argumento deve ser da seguinte

forma [xs yi]. Os resultados obtidos para a célula final sdo expostos nas Figuras 17 e 18.
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0.8

0.7

06

05

Figura 17: Vista superior de betaq_g

Figura 18: betaq_g vista 3D

4.3. Script Calc_amb

Finalmente ao script foi dado o nome calc_amb. Como ja foi mencionado acima o
script apenas invoca as functions e organiza a matriz potencial do ambiente. O resultado da
execucdo de calc_amb no ambiente proposto é uma matriz potencial de 301x381, sendo as
coordenadas de y do mapa do ambiente representadas pelas linhas e a coordenadas x pelas
colunas. A Figura 19 abaixo mostra uma imagem da funcdo de navegacdo global (matriz

potencial) calculada para o ambiente proposto.
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Figura 19: Funcéo de navegacéo global.

4.4, Gradiente da funcao de navegacao

Com o conjunto de ferramentas desenvolvido (script + functions), calcula-se a
funcéo de navegacdo de um ambiente completo ou de apenas uma célula (utilizando apenas
uma das duas functions). O robd se movimentara seguindo o gradiente negativo da funcao
de navegacdo. Na Figura 20, mostra-se um exemplo do gradiente negativo de um
pentagono (que representa uma célula), e com o auxilio de setas, mostra-se a direcdo que o

rob6 devera seguir.
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Figura 20: Gradiente negativo da funcéo de navegagdo.

40



5. Conclusao

Através do desenvolvimento deste trabalho de conclusdo de curso, foi possivel
estudar uma variedade de teorias que s@o utilizadas para solucionar problemas de
movimentacdo e navegacdo de robds autdbnomos. Dentre essas teorias estudadas, foi
escolhido o método de sequéncia de funcdo de navegacdo para ser implementado, pois
abrange dois outros métodos muito conhecidos em robética: decomposi¢do do ambiente em
células e funcdo de navegacdo. Com essa implementacdo, ressaltou-se a possibilidade de
utilizacdo desse metodo para controlar robds.

Outro fator que ressalta-se com o desenvolvimento desse trabalho, é que, dentre as
teorias de campos potenciais, 0 método implementado se destacou, pois como 0 ambiente é
dividido em regibes menores, denominadas células, com geometria simples (poligonos
convexos para o R? poliedros convexos para o R®), é mais facil, matematicamente, definir
uma funcdo de navegacdo. Sendo assim 0 metodo torna-se menos Custoso
computacionalmente. Contudo, nota-se que para se utilizar o método escolhido é necessario
possuir um conhecimento prévio do ambiente, 0 que € uma restricdo para muitos problemas
de robotica. Além disso, para a utilizacdo do algoritmo implementado, este trabalho de
conclusdo de curso teve que considerar que 0 ambiente seja estatico, ou seja, 0 ambiente
sempre serd da forma como foi considerado inicialmente. Com isso, caso 0 ambiente mude,
por exemplo, um obstaculo novo é acrescentado ao ambiente, pode-se utilizar o resultado
encontrado pelo algoritmo implementado em conjunto com informagfes obtidas por
sensores do rob6 de forma reativa. O controle de robds que possuem comportamentos
reativos é explicado detalhadamente em Grassi Junior (2006).

Nesse trabalho, foi utilizado o Matlab® para implementar o algoritmo proposto por
Conner (2007), pois esse software ja possui diversas fungdes de visualizacdo prontas (plot,
plot3, surf, contour, entre outras), o que facilitou a interpretacdo dos resultados obtidos.
Esse fator foi de extrema importancia para o presente trabalho, pois, com a visualizag¢éo
gréfica dos resultados, verificou-se que a implementacdo esta de acordo com o esperado, o
que, se fosse implementado na linguagem do C/C++ haveria a auséncia da visualizagdo, o
que seria um obstaculo. No entanto, analisando de maneira computacional, a

implementacdo em Matlab® é um barreira para uma solugdo que utilize o algoritmo, mas se
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traduzido para a linguagem de programagédo C/C++, computacionalmente, a implementacéo
serd menos custoso para o computador/hardware utilizado. Por isso, uma melhoria proposta
para esse trabalho de conclusdo de curso é traduzir o algoritmo em linguagem C/C++.

Esse trabalho contribui também com informagdes sobre um ambiente previamente
conhecido, o que pode auxiliar o controle de um rob6 que estéd confinado a esse ambiente.
Sendo assim, uma importante ferramenta para o desenvolvimento de softwares de controle
baseados em funcbes de navegacdo para robds moéveis. Com isso, uma sugestdo de
continuidade, seria desenvolver softwares que utilizem a matriz de saida para controlar
robds em diferentes ambientes.

Outra sugestdo de continuidade deste trabalho de conclusdo de curso é, a partir do
resultado obtido, calcular um campo vetorial que leve em consideracdo a dindmica e a
cinética do robd a ser utilizado, assim introduzindo teoria de controle no algoritmo

implementado no presente trabalho.
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7. Apéndice A

function betag m:

function [pot M] = betaq m(tam, outlet, p x, p y, grau)

incx = 0.05;
incy = 0.05;

if (outlet > tam)
error ('Outlet zone invalida!!!")
end

px = [p x p x(1)]1;
py = [p_y p.y(1)1;

X out = [px(outlet) px(outlet+l)];
y _out = [py(outlet) py(outlet+l)];
out = [x out' y out'];

out = out';

% Calcula os pontos médios

o

for 1 = 2:tam+1

p medio x(i-1) = (px(i-1) + px(i))/2;
p_medio_y(i-1) = (py(i-1) + py(i))/2;
end
ponto_m = [p_medio_x' p_medio_y'];

% Calcula as normais

o\

for 1 = 2:tam+1

normal x(i-1) = px(i) - px(i-1);
normal_y(i-1) = py(i-1) - py(i);
end
normal = [normal y' normal x'];
% Célculo do vetor Q
% O

oe

x = [min(p_ x):incx:max(p_x)];
y = [min(p_y):incy:max(p y)]1;

»_Q‘»_Q

vetor Q representa os pontos g's utilizados na férmula do beta i;
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cont = 1;
for x = 1l:length (g x)
for y = l:length(q y)

Q(:,cont) = ([g x(x);q y(y)]);
if (g x(x) == out(l,1) & g y(y) == out(2,1))
out vert(l) = cont;
elseif (g x(x) == out(l,2) & g yl(y) ==
out vert(2) = cont;
end
for 1 = l:tam
if (g x(x) == p x(1,1) & g y(y) =
ind vert (i) = cont;
end
end
cont = cont+1l;
end
end
% Calculo do beta i
% beta i(q) = -n i . (g - p_1)
ponto m = ponto m';
normal = normal';
for 1 = 1l:tam
m = ones(size(Q));
m(l,:) = ponto m(1l,1i).*m(1,:);
m(2,:) = ponto m(2,1i).*m(2,:);
aux_z(:,:,1) = (Q - m);
n = ones(size (Q));
n(l,:) = normal(l,i).*n(1,:);
n(2,:) = normal(2,1).*n(2,:);
beta i(:,1) = -dot(n,aux _z(:,:,1));
end
beta 1 = beta i';
% Célculo do beta
% beta g(g) = beta max"k * Prod(beta i(qg))

beta = prod(beta i);
= beta';

o
[0}
o
)
|

contador positivo = 0;
contador zero = 0;

out (2,2))

p y(1l,1))



for i=l:length (beta i)
if (beta(i) >= 0)
for j=l:tam
if (beta i(j,i) > 0)

contador positivo = contador positivo+l;
elseif (beta i(j,i) == 0)
contador zero = contador zero+l;
end
end
if ((contador positivot+contador zero == tam) & (contador zero
~= tam))
beta t(i) = 1;
else
beta t(i) = 0;
end
else
beta t(i) = 0;
end
contador positivo = 0;
contador zero = 0;
end
beta t = beta t';
[beta max,q b] = max(beta);
beta = (beta max” ((l-tam)/tam)) *beta;
beta mask = (beta t > 0);
% Calculo do phi
beta = beta';
phi(l,:) = 0(1,:)./( (Q(1,:)."2 + Q(2,:).72).70.5 + beta );
phi(2,:) = 0Q(2,:)./( (Q(1,:)."2 + Q(2,:).72).70.5 + beta );

o\°

Q));
1) )

)

N P~

* Q(l,9 b);
* Q(2,9 b);

alpha rot = atan2(normal (2,outlet),normal (1,outlet));
omega = pi - alpha rot;

Rot = [cos(omega) -sin(omega); sin(omega) cos (omega)];

Q TR = Rot * Q T;

QT = Q TR;

phi T(1,:) Q T(1,:)./( (Q T(l,:)."2 + Q T(2,:).72).70.5 + beta ) ;
phi T(2,:) = Q T(2,:)./( (Q T(1l,:).”"2 + Q T(2,:).72).70.5 + beta ) ;
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alpha(:,1) = phi(:,out vert(l));
alpha(:,2) = phi(:,out vert(2));

[alphal ang,alphal ro] = cartZpol(alpha(l,1),alpha(2,1));
[alpha2 ang,alpha2 ro] cart2pol (alpha(l,2),alpha(2,2));

o

Testa e reorganiza os alpha0O e alphal

o

if (alphal _ang < 0)

alphal ang = alphal ang+2*pi;
end
if (alpha2 ang < 0)

alpha2 ang = alpha2 ang+2*pi;
end

if (alpha2 ang > alphal ang)
lixo = alphal ang;
alphal ang = alpha2 ang;
alpha2 ang = lixo;

end

clear lixo;

% Passa para coordenada Polar

o

[theta, rho] = cart2pol(phi(l,:), phi(2,:));

% Calcula a funcédo potencial

o

pot = (alpha2 ang - alphal ang) ./ (2 * pi) + (
sin(alpha2 ang*ones (size (theta)) theta)) ./ (1 - rho .*
cos (alpha2 ang*ones (size(theta)) - theta))) - (
sin(alphal ang*ones(size(theta)) - theta)) ./ (1 - rho .*
cos (alphal ang*ones (size(theta)) - theta)));
for i=1l:1length (pot)
if (beta mask(i) > 0)
pot (i) = pot(i)* (beta mask(i)')+grau;
else
pot (i) = 10;
end

end

% Reorganiza o vetor potencial em uma matriz

dx = max(size(g x));
dy = max(size(qg y));
pot M = [pot(l:dy)'];
for i=1:(dx-1)
pot M = [pot M pot(i*dy + 1:(i+l)*dy)'];
end

pi~-1) * atan((rho

pi~-1) * atan((rho
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function betag g:

function [pot M] = betag g(tam, goal, p X, p_Vy)

incx = 0.05;
incy = 0.05;

px =
py =

% Calcula os pontos médios

o

for 1 = 2:tam+l

p medio x(i-1) = (px(i-1) + px(i))/2;
p_medio_y(i-1) = (py(i-1) + py(i))/2;
end
ponto m = [p medio x' p medio y'];

% Calcula as normais

o\

for 1 = 2:tam+1

normal x(i-1) = px(i) - px(i-1);
normal_y(i-1) = py(i-1) - py(i);
end
normal = [normal y' normal x'];

o
O

vetor Q representa os pontos g's utilizados na férmula do beta i;

o

= [min(p x):incx:max(p _x)];

b
gy = [min(p y):incy:max(p y)];
cont = 1;

for x = l:length(q x)

for y = l:1length(qg y)

Q(:,cont) = ([q x(x);q y(y)1);
if ([g_x(x) gq_y(y)] == goal)
goal vert = cont;

end
cont = cont+l;
end

o
o
0]
o
)
'_l
Q
Il
|
o]
'_l
Q
|
o}
'_l

o
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ponto m = ponto m';

normal = normal';
for 1 = 1l:tam
m = ones(size(Q));
m(l,:) = ponto m(1l,1i).*m(1,:);
m(2,:) = ponto m(2,1i).*m(2,:);
aux_z(:,:,1) = (Q - m);
n = ones(size (Q))
n(l,:) = normal(l,i).*n(1l,:);
n(2,:) = normal(2,1).*n(2,:);
beta i(:,1) = -dot(n,aux _z(:,:,1));
end

beta = prod(beta i);

beta = beta';
contador positivo = 0;
contador zero = 0;

for i=l:length (beta i)
for j=l:tam
if (beta i(j,1i) >= 0)

contador positivo = contador positivo+l;
elseif (beta i(j,1i) == 0)
contador zero = contador zero+l;
end
end
if ((contador positivo == tam) & (contador zero ~= tam))
beta t(i) = 1;
else
beta t (i) = 0;
end
contador positivo = 0;
contador zero = 0;
end
beta t = beta t';
[beta max,q b] = max(beta);
beta = (beta max” ((l-tam)/tam)) *beta;
beta mask = (beta t > 0);



phi(l,:) = 0Q(1,:)./( (Q(1,:).”"2 + Q(2,:).72).70.5 + beta );

phi(2,:) = 0Q(2,:)./( (Q(1,:)."2 + Q(2,:).72).70.5 + beta );

% Translacéao

Q T = ones(size(Q));

Q T(1,:) =Q T(1,:) * Q(l,g b);

Q T(2,:) =Q T(2,:) * Q(2,9 b);

QT =0-0QT;

phi T(1,:) = Q T(1,:)./( (Q T(1,:).”"2 + Q T(2,:).72).70.5 + beta ) ;
phi T(2,:) = Q T(2,:)./( (Q T(1,:).”"2 + Q T(2,:).72).70.5 + beta ) ;
phi = phi T;

% Aplica o mapeamento no plano complexo para ajeitar o campo potencial
% zeta = (z - z g) / (1 - z g conjugado * z)

z = complex(phi(1l,:),phi(2,:));

zeta = ((z - z(goal_vert))./(l - conj (z(goal vert)).*z));

pot = (abs(zeta)) .”2;

for i=1:length (pot)

if (beta mask (i)' == 0)

pot (i) = 5;
else

pot (i) * beta mask(i)';
end

end

[

% Reorganiza o vetor potencial em uma matriz

dx max(size(g_x));
dy = max(size(qg v));
pot_M = [pot(l:dy)'];
for i=1:(dx-1)
pot M = [pot M pot (i*dy+1l: (i+l)*dy)'];
end
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script calc amb:

clear all;
close all;

o

Incremento

o\

inc = 0.05;
tamanho = [301 381];

% Trajetdria 1
potl = betag m(4,1,[1 5 5 1],[16 12 8 1],4);

4,1
betaq m(4,2,[1 20 10 5], [16 16 12 12],3);
pot3 = betag m(5,1,[20 18 15 10 10],[16 6 6 8 12],2);

o)
O
prt
N

Il

% Trajetdria 2

pot5 = betag m(6,4,[5 10 15 15 15 1],[8 8 6 4 1 1],3);
pot6 = betaq m(4,2,[15,18,20,15],[4 4 1 11,2);

% Célula Final

potd = betaq g(4,[19 5],[20 20 18 18],[16 1 4 6]);

% Células Obstéaculos

Q

®

'_l

-
|

= 8*ones(length([5:1inc:10]),length([8:inc:12]1));
cel2 = 8*ones(length([15:inc:18]),length([4:1inc:6]));

% Inicializando Matriz Potencial

Pot final = 10*ones (length(l:inc:16),length(l:inc:20));

o\

Combinando as func¢des potenciais

o\°

for i=l:max(size (potl))
for j=l:min(size (potl))
if potl(i,j) < Pot final(i,3])
Pot final(i,j) = potl(i,J):
end
end
end
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for i=l:min(size (pot2))
for j=l:max(size (pot2))
if pot2(i,j) < Pot final (i+220,3)
Pot final (i+220,3) = pot2(i,]):;
end
end
end

for i=l:max(size (cell))
for j=l:min(size(cell))
if cell(i,]j) < Pot final(j+140,i+80)
Pot final(j+140,i+80) = cell(i,J)-
end
end
end

for i=l:max(size (pot3))
for j=l:min(size (pot3))
if pot3(i,j) < Pot final (i+100,3j+180)
Pot final(i+100,3+180) = pot3(i,J);
end
end
end

for i=l:min(size (poth))
for j=l:max(size (poth))
if pot5(i,j) < Pot final(i,3])
Pot final(i,Jj) = potb(i,J):
end
end
end

for i=l:max(size (cel2))
for j=l:min(size(cel2))
if cel2(i,j) < Pot final(j+60,1i+280)
Pot final(j+60,i+280) = cel2(i,]);
end
end
end

for i=l:min(size (potb))
for j=l:max(size (potb))
if pot6(i,j) < Pot final(i,j+280)
Pot final(i,Jj+280) = pot6(i,]);
end
end
end

for i=l:max(size (potd))
for j=l:min(size (potd))
if pot4d(i,j) <= Pot final (i, j+340)
Pot final(i,j+340) = potd(i,]);
end
end
end
save -ascii 'Matriz Potencial.txt' tamanho;
save —ascii -append 'Matriz Potencial.txt' Pot final;

53



