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RESUMO 

 

O setor de energia elétrica enfrenta desafios significativos relacionados à volatilidade 

dos preços, complexidade dos mercados e a necessidade de prever tendências de longo prazo. 

Explorar a aplicação do Expoente de Lyapunov, Expoente de Hurst e Entropia na análise dos 

preços de energia elétrica, fornece uma visão da complexidade e dinâmicas do mercado e da 

formação do preço da energia elétrica. O Expoente de Lyapunov revela a presença de 

comportamento caótico, destacando a imprevisibilidade dos preços. O Expoente de Hurst avalia 

a persistência ou reversão à média nos preços, informando estratégias de previsão e tendências 

de longo prazo. A Entropia quantifica a complexidade, indicando a variabilidade e estabilidade 

dos dados. Essas métricas capacitam tomadores de decisão no setor elétrico, oferecendo insights 

para a gestão de riscos, estratégias e compreensão do mercado de energia elétrica.  

 

Palavras-chave: Expoente de Lyapunov, Expoente de Hurst, Entropia, Preço de Energia.  

 

 

 



ABSTRACT 

 

The electric power sector faces significant challenges related to price volatility, market 

complexity and the need to predict long-term trends. Exploring the application of the Lyapunov 

Exponent, Hurst Exponent and Entropy in the analysis of electricity prices provides an insight 

into the complexity and dynamics of the market and the formation of the price of electricity. 

The Lyapunov Exponent reveals the presence of chaotic behavior, highlighting the 

unpredictability of prices. The Hurst Exponent assesses persistence or mean reversion in prices, 

informing forecasting strategies and long-term trends. Entropy quantifies complexity, 

indicating data variability and stability. These metrics empower decision makers in the 

electricity sector, offering insights for risk management, strategies and understanding of the 

electricity market. 

 

Keywords: Lyapunov Exponent, Hurst Exponent, Entropy, energy price. 
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1 INTRODUÇÃO 

 

O Brasil possui um sistema de geração elétrica que predominantemente utiliza seus 

recursos hídricos. Nos últimos anos, em média, 74% da geração de energia elétrica 

corresponderam a geração em aproveitamentos hidroelétricos. Há, portanto, necessidade de 

uma cuidadosa coordenação da operação, tanto para que o sistema seja eletricamente seguro 

quanto para que os recursos sejam aproveitados de forma eficiente (ONS e CCEE). 

A princípio, pode-se imaginar que a água armazenada nos reservatórios não possui valor 

associado, logo seria mais vantajoso atender a demanda utilizando primeiramente a água 

estocada nos reservatórios evitando o acionamento de usinas termoelétricas, que possuem um 

custo direto associado ao seu combustível. Porém, considerando que a capacidade de 

armazenamento em um sistema é limitada pela capacidade de seus reservatórios, e que a 

afluência futura aos aproveitamentos é desconhecida, pode-se dizer que há uma dependência 

entre a decisão operativa de hoje e os custos operativos do futuro (ONS, 2020). 

Ainda segundo o Operador Nacional do Sistema - ONS, o planejamento da operação 

tem como objetivo a determinação ótima dos recursos hídricos e térmicos seguindo o critério 

de minimização dos custos globais de produção de energia elétrica associado ao atendimento 

da demanda e preservação dos reservatórios no longo prazo.  

Para solução desse problema de otimização complexo foram desenvolvidos pelo Centro 

de Pesquisa de Energia Elétrica  CEPEL modelos computacionais que reduzem o problema 

em etapas menores e entregam o preço de energia, em R$/MWh, para diferentes horizontes de 

tempo (mensal, semanal e horário).  

Para visualizar o comportamento dos preços de energia ao longo do tempo, comparou-

se na Figura 1 os retornos semanais do preço da energia no Brasil com os retornos semanais do 

dólar e IBOVESPA, de janeiro de 2010 a dezembro de 2023. É possível observar a grande 

volatilidade do preço de energia elétrica, até pela mudança da escala de seu gráfico. Enquanto 

dólar e IBOVESPA tem retornos semanais médios 0,2% e 0,1%, respectivamente, o preço de 

energia tem retorno médio 3,5%. E o desvio padrão do retorno semanal fica 2,1% para o câmbio, 

3,1% para o IBOVESP e o preço de energia elétrica 25,9%. 
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Figura 1 Retorno semanal do Preço de Energia, Câmbio e IBOVESPA 

 

Esse comportamento volátil do preço da energia no Brasil tem influência da composição 

da matriz da geração brasileira e deve-se considerar que o sistema elétrico é constantemente 

adaptado às novas exigências de padrões de consumo e/ou padrões de geração. Entender a 

dinâmica do comportamento de determinação do preço de energia tem por objetivo a 

compreensão da correta sinalização econômica aos agentes que participam do mercado de 

energia.  

E a teoria dos sistemas dinâmicos pode auxiliar nesta análise de sinalização econômica 

do preço de energia. Para este trabalho, escolheu-se apresentar uma introdução ao 



14

comportamento caótico de sistemas dinâmicos pela análise do Preço de Liquidação das 

Diferenças - PLD, de acordo com três métricas: 

 

 O coeficiente de Lyapunov que mede a taxa com que trajetórias próximas no 

espaço de fase de um sistema dinâmico divergem com o tempo, como explicado 

em Alligood (1996). A ideia de sua aplicação é poder entender quão sensível os 

preços são a pequenas mudanças, sugerindo um potencial de volatilidade; 

 O Expoente de Hurst que mede a persistência ou memória de longo prazo de 

uma série temporal, como explicado em Mandelbrot e Wallis (1969). Com este 

conceito será avaliado o comportamento futuro do preço, indicando se seguirão 

tendências passadas ou mudarão de direção; 

 Entropia estima a desordem ou complexidade de um sistema, conforme Pincus 

(1990). Pode ser aplicada nos preços de energia para entender o risco associado 

aos preços de energia; 

 

Este trabalho busca compreender a aplicação da teoria citada aos preços de energia, bem 

como sua utilidade para o auxílio da tomada de decisão em investimentos que envolvam o preço 

de energia. 

No Capítulo 2 deste texto será trazido um breve histórico do setor de energia brasileiro 

e a métrica adotada para definição dos preços de energia elétrica, abordando as principais 

características que explicam o comportamento dos preços. 

O Capítulo 3 abordará a revisão bibliográfica das métricas apresentadas e quais 

metodologias serão utilizadas para a mensuração dos indicadores da série temporal dos preços 

de energia, utilizando como exemplo o mapa logístico.  

Posteriormente, serão apresentados no Capítulo 4 os resultados e discussão da aplicação 

do expoente de Lyapunov, expoente de Hurst e entropia na série de preços de energia, no 

Capítulo 4 e no Capítulo 5 será feita a citação de trabalhos futuros a serem realizados. 

Veremos, então, a seguir as características da formação de preço de energia. 
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2 MERCADO DE ENERGIA ELÉTRICA BRASILEIRO  

 

 Diferentemente da maioria dos países que passaram por reformas no desenho do 

mercado de eletricidade na década de 1990, o Brasil optou pela formação de preços a partir de 

custos auditados. Nesse modelo, os agentes declaram sua disponibilidade e seus custos de 

produção, que são utilizados por um operador central para despachar o sistema de forma ótima. 

Para tanto, o operador dispõe de modelos computacionais de otimização, que calculam o 

-estabelecidos, restrições de 

transmissão, dados do sistema e expectativas de comportamento futuro  de carga e, no caso 

brasileiro, de hidrologia. O custo marginal de geração determina também o preço do mercado 

de curto prazo (Castro; Borges e Simone, 2023). 

 Neste capítulo será apresentado um histórico da formação de preço do Brasil, desde a 

composição de nossa matriz até a metodologia adotada atualmente para definição do preço de 

energia elétrica.  

 

2.1 A matriz de geração e o planejamento da operação 

 

Como 

(ONS, 2020), o Operador Nacional do Sistema - ONS relata que a partir 

de meados da década de 1960 o crescimento do consumo de energia elétrica trouxe uma 

necessidade da expansão da capacidade instalada geradora do Brasil e da malha de transmissão. 

Isso exigiu que os sistemas elétricos brasileiros funcionassem de maneira integrada, para 

aproveitamento racional das fontes energéticas disponíveis e buscando um equilíbrio 

econômico.  

Ainda segundo o ONS em seu livro, em razão de suas características naturais, o Brasil 

desenvolveu sua matriz energética com predominância da hidroeletricidade. O operador ainda 

ressalta que apesar do predomínio hidrelétrico, a recente expansão do Sistema Interligado 

Nacional - SIN tem sido marcada pelo crescimento na participação de novas formas de geração, 

com destaque para as fontes eólica e fotovoltaica, e de transmissão, especialmente a utilização 

mais intensa da transmissão em corrente contínua. Todos esses movimentos, de acordo com os 

autores, aumentam a complexidade do sistema e o desafio do ONS de garantir que a operação 

do SIN se dê da forma mais segura e econômica, requisito cada vez mais essencial à medida 

que avança na sociedade brasileira a sua dependência da energia elétrica.  
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Conforme Figura 2, os dados disponíveis no site do ONS1 demonstram que a expansão 

recente da matriz brasileira vem ocorrendo pelas fontes renováveis. De 2019 a 2023, a 

participação eólica e solar passou de 11% para 18%, sendo que outros 12% de Micro e Mini 

Geração Distribuída  MMGD são predominantemente solar.   

 

 
Figura 2 Matriz elétrica brasileira em 2019 e 2023, valores em MW e % 

 

O fato da expansão de outras fontes, além da hidroelétrica e térmica, é importante devido 

a complementariedade da geração. Essa diversificação traz maior segurança de suprimento para 

a carga. Esse fato é apresentado pelo ONS (2020) e pode ser constatado na Figura 3, que mostra 

a complementariedade das fontes eólica, solar, hidrelétrica e PCT (Pequenas Centrais Térmicas, 

por exemplo Biomassa). 

 
1 https://www.ons.org.br/paginas/sobre-o-sin/o-sistema-em-numeros 
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Figura 3 Complementariedade das fontes de geração [2]. 

 

Enquanto o planejamento da expansão visa atender de maneira otimizada o consumo de 

energia elétrica e fornecer sinais para minimizar os custos totais futuros para a sociedade, o 

objetivo principal de cada um dos agentes que participam desse setor é a maximização de seus 

resultados.  

Cada agente privado desenvolve seu plano de expansão empresarial, com objetivos que 

podem ser bastante distintos daqueles do planejamento governamental. Ao governo cabe buscar 

as utilizações adequadas, racionais e otimizadas dos recursos naturais.  

Para solucionar esse problema, cabe ao Operador do sistema fornecer o justo sinal 

econômico. Então, segundo o ONS em seu livro sobre o planejamento da operação, o problema 

de planejamento energético do sistema brasileiro consiste em determinar metas de geração para 

as usinas hidroelétricas e termoelétricas para cada estágio de tempo ao longo do horizonte de 

estudo, atendendo à demanda de energia elétrica, às restrições operativas das usinas e às 

restrições elétricas do sistema.  

 

2.2 Metodologia de determinação dos preços de energia 

 

A determinação da alocação ótima dos recursos hídricos e térmicos é norteada segundo 

um determinado critério, como o critério de minimização dos custos globais de produção da 

energia elétrica. A princípio, pode-se imaginar que a água armazenada nos reservatórios não 

possui valor associado, logo seria mais vantajoso atender a demanda utilizando primeiramente 



18

a água estocada nos reservatórios evitando o acionamento de usinas termoelétricas, que 

possuem um custo direto associado ao seu combustível. Porém, considerando que a capacidade 

de armazenamento em um sistema é limitada pela capacidade de seus reservatórios, e que a 

afluência futura aos aproveitamentos é desconhecida, pode-se dizer que há uma dependência 

entre a decisão operativa de hoje e os custos operativos do futuro (ONS e CCEE). 

A estratégia do Planejamento da Operação resume-se em tomar decisões no presente 

para que os reservatórios tenham como se manter em níveis seguros para atendimento da carga 

no futuro e que garantam o menor custo.  

Como mencionado em seu manual de treinamento (ONS e CCEE), o ONS dispõe de 

uma cadeia de modelos computacionais para a otimização da operação e minimização do custo 

de atendimento à carga. Estes modelos são desenvolvidos pelo Centro de Pesquisas de Energia 

Elétrica  CEPEL. O modelo NEWAVE é utilizado para projeção de médio prazo (5 anos), 

enquanto os modelos DECOMP e DESSEM agregam mais detalhes das usinas e projetam os 

preços semanais e horários, respectivamente. A Figura 4, abaixo, detalha o fluxo temporal da 

cadeia de modelos. Cabe destacar que todos os programas computacionais de formação de preço 

passam por processos de validação no âmbito da Agência Nacional de Energia Elétrica - 

ANEEL, com a participação de agentes de geração, transmissão, distribuição e comercialização 

associados ao ONS e à CCEE.  

 
Figura 4 Fluxo temporal dos modelos de formação de preço [2] 

 

De acordo com ONS (2020) o planejamento da operação energética de médio e curto 

prazo é um problema de natureza essencialmente estocástica, dado que não temos o 

conhecimento perfeito da disponibilidade das afluências futuras, combustível da principal fonte 

geradora do SIN. Uma alternativa para resolver o problema estocástico é escrevê-lo na sua 
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forma equivalente determinística, onde as restrições e variáveis de todos os períodos e cenários 

são consideradas de uma só vez em um único problema de otimização determinística. 

Devido ao porte e complexidade desse problema, é necessária a sua divisão em 

diferentes etapas, abrangendo estudos nos horizontes de médio prazo, curto prazo e 

programação diária (ONS, 2020). Pode-se então estudar o comportamento do sistema com 

diversos cenários de vazões. E essas vazões afluentes, ainda seguindo o Operador do Sistema, 

são representadas de forma equivalente, com o ajuste de modelos estocásticos PAR(p) 

(autorregressivos periódicos) e a utilização de uma modelagem probabilística na simulação das 

vazões afluentes futuras. Dessa forma, através da Programação Dinâmica Dual Estocástica, o 

modelo NEWAVE é responsável pela construção da Função de Custo Futuro (FCF), que valora 

a água armazenada nos reservatórios do SIN em cada estágio de simulação, trazendo esse custo 

ao valor presente. A Figura 5, extraída do livro do ONS (2020), ilustra esse processo. Sendo a 

linha mais grossa a média dos cenários futuros que resulta na formação dos custos de energia. 

 

 

 
Figura 5 Formação da Função de Custo Futuro do modelo Newave  Fonte: [1] 

 

Ainda segundo o ONS (2020) o DECOMP realiza uma otimização linear para o 

despacho hidrotérmico, considerando restrições operativas e de transmissão do sistema. O 

modelo busca minimizar o custo total da operação, incluindo custos de geração térmica e 

penalidades por não atendimento da demanda, respeitando limites operativos das usinas e linhas 

de transmissão. E o DESSEM leva em conta as condições operativas do sistema em intervalos 

de tempo curtos (hora a hora). As equações consideram a demanda de carga, geração 

termelétrica, intercâmbios energéticos entre regiões, e outras restrições técnicas. 

O problema a ser resolvido, então, é a otimização do atendimento do curto prazo e a 

preservação dos reservatórios no longo prazo. Isto é, depende de decisões imediatas e decisões 
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futuras. Segundo o ONS (2020), o problema de despacho ótimo resolvido que faz parte do 

planejamento da operação energética pode ser escrito de forma sucinta, de acordo com a 

equação de minimização descrita. Para resolver este problema, utiliza-se métodos de 

programação linear que implica em minimizar o custo total da operação considerando as 

restrições de balanço de energia, atendimento a demanda, função de produção, hidráulicas, 

elétricas, de custo futuro e de caixa. 

Os modelos de formação de preço de energia, então, são fundamentais para o 

funcionamento eficiente do mercado de energia elétrica. Eles são projetados para refletir os 

custos de produção, transmissão e distribuição de energia, bem como para incorporar fatores 

como a demanda de mercado, a disponibilidade de recursos, condições ambientais, e políticas 

regulatórias. A seguir será apresentado o comportamento do preço histórico de energia elétrica, 

horário e semanal. 

 

2.3 Comportamento dos dados históricos do preço de energia 

 

Como apresentado anteriormente, a precificação da energia elétrica é influenciada por 

uma série de variáveis de entrada, cada uma contribuindo de maneira única para a determinação 

dos preços finais. Entre estas variáveis, destacam-se fatores como a disponibilidade de recursos 

naturais (por exemplo, água para hidrelétricas, vento para turbinas eólicas), custos de produção, 

demanda do mercado, políticas governamentais e restrições elétricas. A disponibilidade de 

recursos naturais é particularmente crítica, pois influencia diretamente a capacidade de geração 

de energia.  

Por exemplo, em períodos de seca, a capacidade das hidrelétricas pode ser 

significativamente reduzida, levando a um aumento no preço da energia devido à escassez de 

oferta. A Figura 6 apresenta o comportamento do preço da energia elétrica ao longo do histórico 

analisado, nos formatos horário e semanal.  
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Figura 6 Gráfico de preços de energia elétrica, horário e semanal. 

 

 Observando ainda a Figura 7, dos histogramas de preços horários e semanais, vemos 

uma elevada frequência de observações próximas aos intervalos de menores preços de energia. 

A série horária tem mediana R$ 104,31/MWh e a série semanal mediana R$ 87,51/MWh.  

 
Figura 7 Histograma dos preços de energia elétrica, horário e semanal 
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Uma análise Box-Plot, Figura 8, nos permite visualizar que para os preços horários e 

semanais, 75% dos dados ficam abaixo de R$ 275,86/MWh e R$ 220,52/MWh, 

respectivamente. A mediana dos dados é R$ 104,31/MWh e R$ 87,51/MWh. E o intervalo entre 

o primeiro e terceiro quartis é R$ 206,82/MWh e R$ 190,03/MWh, a diferença relevante entre 

os quartis mostra que o preço de energia tem um comportamento volátil.  

 
Figura 8 Box-Plot dos preços de energia elétrica, horário e semanal 

 

Em virtude das características do sistema elétrico brasileiro  com elevada participação 

de usinas hidrelétricas  alguma variabilidade nos preços é esperada, uma vez que as 

afluências futuras são desconhecidas e os modelos meteorológicos são imprecisos. A 

volatilidade dos preços na indústria de energia elétrica é um fator de risco percebido tanto para 

os geradores quanto para os consumidores. Um gerador corre o risco de que o preço seja muito 

baixo para cobrir todos os custos. Um consumidor corre o risco de que, às vezes, o preço da 

eletricidade seja muito alto em comparação com os benefícios que ela cria (Castro; Borges e 

Simone, 2023). 

 Em suma, a análise do histórico do setor de energia do Brasil, com suas características 

únicas de grande participação hidrelétrica, nos leva a entender a metodologia de formação de 

preços. Os modelos computacionais de formação de preços são responsáveis pela sinalização 

econômica ao mercado e seus agentes, refletindo os custos de geração, condições climáticas e 
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políticas regulatórias. O resultado disso é, como observado, que os preços de energia elétrica 

apresentam variações significativas em intervalos horários e semanais.  

No próximo capítulo deste trabalho será analisa a metodologia escolhida para 

determinar quão caótico pode ser o comportamento dos preços de energia. 
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3 CAOS EM SISTÊMAS DINÂMICOS E METODOLOGIA 

 

Neste capítulo, exploraremos as metodologias relacionadas a três importantes conceitos 

de análise de sistemas não lineares utilizados na análise de séries temporais: o Expoente de 

Hurst, a Entropia Amostral e o Expoente de Lyapunov. Este capítulo não apenas detalha a teoria 

por trás desses conceitos, mas também discute as metodologias utilizadas para aplicações em 

séries reais, além de uma contextualização da dinâmica dos sistemas, do mapa logístico e do 

caos.  

Inicialmente, será apresentado o conceito básico de um sistema dinâmico. 

  

3.1 Sistemas dinâmicos  

 

Um sistema dinâmico consiste em um conjunto de possíveis estados, junto com uma 

regra que determina o estado presente em termo dos estados passados (Alligod, 1996). Ainda 

de acordo com o autor, esse tipo de sistema é determinístico, significando que podemos 

determinar o estado presente unicamente de acordo com os estados passados.  

Existem dois tipos principais de sistemas dinâmicos: equações diferenciais e mapas 

iterados (também conhecidos como equações de diferenças). As equações diferenciais 

descrevem a evolução dos sistemas em tempo contínuo, enquanto os mapas iterados surgem em 

problemas onde o tempo é discreto (Strogatz, 2015). 

E a compreensão dos sistemas passa pelo conceito de estabilidade, conforme 

apresentada por Boyce e Di Prima (2009), envolve a análise do comportamento das soluções 

de equações diferenciais em relação ao tempo. Os pontos onde a expressão tem resultado nulo 

são chamados muitas vezes de soluções de equilíbrio ou pontos críticos (fixos). Ainda segundo 

os autores, a equação ainda segue um caminho, ou trajetória, e o plano com todas as fases da 

trajetória é o plano de fases. 

Um ponto fixo estável tem a propriedade de que os pontos próximos a ele se movam 

ainda mais perto do ponto fixo no sistema dinâmico. Para um ponto fixo instável, os pontos 

próximos se afastam com o passar do tempo. Uma boa analogia é que uma bola no fundo de 

um vale é estável, enquanto uma bola equilibrada no topo de uma montanha é instável. 

(Alligood, 1996) 
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De acordo com Alligod (1996) a quantificação da trajetória do sistema, para análise de 

sua estabilidade e compreensão de suas propriedades, é seu mapa. Que pode ser entendido como 

uma função cujas entradas e saídas pertencem ao mesmo domínio.  

 

x um ponto e f um mapa. A orbita de x em f é o conjunto de 

pontos {x, f(x), f²(x),...}. O ponto de início x da órbita é chamado 

de valor inicial (ou condição inicial) da órbita. Um ponto p é um 

ponto fixo do mapa f se f(p)=p  

 

Boyce e Di Prima (2009) ainda destacam que o objetivo principal da caracterização das 

equações de acordo com o padrão geométrico formado por suas trajetórias é fundamental na 

teoria qualitativa de equações diferenciais.  

E para Alligood (1996) questão da estabilidade é significativa porque um sistema do 

mundo real está constantemente sujeito a pequenas perturbações. Portanto, um estado 

estacionário observado num sistema realista deve corresponder a um ponto fixo estável. Se o 

ponto fixo for instável, pequenos erros ou perturbações no estado fariam com que a órbita se 

afastasse do ponto fixo, o que então não seria observado.  

Portanto, pontos fixos e a estabilidade são conceitos fundamentais no estudo da 

dinâmica de sistemas. Pontos fixos são estados em que o sistema permanece constante ao longo 

do tempo e a estabilidade desses pontos é crucial para entender como o sistema responde a 

perturbações.  

Alguns exemplos são conhecidos para compreensão da dinâmica de sistemas não-

lineares, dentre eles está o mapa logístico, conceito apresentado a seguir. 

  

 

3.2 Mapa logístico 

 

 Um exemplo popular para explorar as características dos sistemas não lineares é o mapa 

logístico, desenvolvido por Robert May (1976) para análise do crescimento populacional de 

insetos 

                                                       (1) 

com os valores do parâmetro r  [0, 4] e com   [0, 1]. 

Essa função tem comportamento estável para determinados valores de r. Com órbitas 

limitadas e periódicas ou convergentes. Conforme apresentado por Strogatz (2015), para 1 < r 
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< 3, a população cresce e eventualmente atinge um estado estacionário diferente de zero, 

conforme ilustrado na Figura 9 quadro superior. 

Ainda de acordo com Strogatz, para r maiores, por exemplo r = 3,3, a população aumenta 

novamente, mas agora oscila em torno de um estado estacionário, alternando entre uma grande 

população numa geração e uma população menor na seguinte, conforme apresentado na Figura 

9 quadro inferior.  

 

 
Figura 9 Mapa logístico para r = 2,8 e r = 3,3, com x0 = 0,2 

 

Mas é para valores de r mais próximos de 4 que a função logística se mostra interessante 

no estudo de sistemas dinâmicos não-lineares, pelo fato do comportamento do sistema mudar 

radicalmente. A Figura 10 apresenta a evolução de duas trajetórias do mapa logístico com r = 

4 mas com condições iniciais diferentes em 0,001. 
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Figura 10 Mapas logísticos para r = 4 e com x0 = 0,2 e x0 = 0,2 + 0,001 

 

Com r = 4, a equação logística apresenta uma órbita aperiódica, ou seja, iterando a 

equação o resultado não se repete. Isso significa que o sistema apresenta imprevisibilidade e 

 

(Richardson e Mitchell). 

De forma mais generalizada e expandindo a análise, a alteração na dinâmica da função 

se apresenta de forma mais clara quando se simula, para diferentes valores de r, o valor de xn+1 

depois de 1000 iterações, conforme a Figura 11. 
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Figura 11 Diagrama de bifurcação do mapa logístico 

 

De acordo com Strogatz (2015), em r = 3,4, o atrator é um ciclo de período 2, conforme 

indicado pelos dois ramos. À medida que r aumenta, ambos os ramos se dividem 

simultaneamente, produzindo um ciclo de período 4. Uma cascata de duplicações adicionais de 

período ocorre à medida que r aumenta, produzindo o período 8, o período 16 e assim por 

diante, até que em r  3,57, onde o mapa se torna caótico e o atrator muda de um conjunto finito 

para um conjunto infinito de pontos. 

O mapa logístico, simples em sua forma, revela comportamentos surpreendentemente 

complexos quando certos parâmetros são ajustados. O sistema transita de um comportamento 

previsível para um caótico, ilustrando como pequenas alterações podem levar a grandes 

mudanças na dinâmica do sistema.  

Esta transição do previsível para o imprevisível no mapa logístico serve como um 

modelo fundamental para visualizar o caos em sistemas, conceito esse que será trazido em 

seguida. 
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3.3 Caos em sistemas dinâmicos  

 

 Sistemas caóticos são sistemas complexos que pertencem a classe dos sistemas 

dinâmicos determinísticos (Guegan, 2009). Esses sistemas são caracterizados pela forte não-

linearidade e de acordo com Alligood (1996) uma órbita caótica é aquela que continua a 

experimentar para sempre o comportamento instável que uma órbita exibe perto de uma fonte, 

mas que não é fixa ou periódica. Em qualquer ponto de tal órbita, existem pontos 

arbitrariamente próximos que se afastarão do ponto durante a iteração adicional. 

 Essa característica pode ser observada na figura abaixo, onde se apresentam as 

diferenças de duas trajetórias com condições iniciais diferentes em 0,001. Na parte superior da 

Figura 12 observa-se que, para r = 2,8, à medida que as iterações ocorrem a diferença das 

trajetórias tende a zero. Enquanto no quadro inferior da figura, com as trajetórias tendo r = 4, à 

medida que as iterações ocorrem a diferença entre as trajetórias não apresenta um padrão. 

 

 
Figura 12 Diferença de duas trajetórias com condições iniciais diferentes em 0,001, para r = 2,8 (acima) e r 

= 4 (abaixo) 

 

Segundo apresentado por Alligood et al (1996) um sinal é interpretado como tendo 

comportamento caótico se ele é limitado em suas órbitas, determinístico, as órbitas são 

aperiódicas e apresenta dependência sensível às condições iniciais. 
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O link da noção do caos com o comportamento estocástico é a base para aprofundar os 

estudos nesse campo, permitindo conectar a teoria a análises reais e extrair sinais de caos de 

conjuntos de dados. 

Saber se um sistema ou um conjunto de dados apresenta comportamento caótico é uma 

maneira de melhorar as previsões, pois indica se os dados são sensíveis as condições iniciais e 

determina que métodos de modelagem mais avançados sejam empregados nas projeções, além 

de maior cuidado na tomada de decisão. E, para quantificar o caos em um sistema, utiliza-se o 

expoente de Lyapunov que mede a divergência exponencial das trajetórias em um espaço de 

fase. 

 

3.4 Expoente de Lyapunov 

 

Uma órbita caótica é aquela que sempre continua a experimentar um comportamento 

instável perto de uma fonte, mas essa órbita não é fixa ou periódica. ... Em qualquer ponto da 

órbita, existem pontos arbitrariamente próximos que se afastarão do ponto durante as próximas 

iterações. Essa irregularidade contínua é quantificada pelos números de Lyapunov e expoentes 

de Lyapunov (Alligod, 1996). 

Ainda para o autor o número de Lyapunov é, portanto, a taxa média de divergência de 

duas órbitas ao longo das iterações e o expoente de Lyapunov é o logaritmo natural desse 

número. Uma função pode ser dita caótica se o expoente de Lyapunov for maior que zero. 

De acordo com Alligood (1996) o expoente de Lyapunov é definido como o limite, 

quando o tempo tende ao infinito, do logaritmo natural da razão entre a distância final e a 

distância inicial entre duas trajetórias, dividido pelo tempo. Seja então f um mapa do domínio 

real . O Expoente de Lyapunov h(x1) da órbita {x1, x2, x3, ...} é:  

 

                             (3) 

 

Exemplificando o expoente de Lyapunov através do mapa logístico, é possível calcular 

o expoente para diferentes valores de r, considerando 2000 iterações. A Figura 14 apresenta o 

resultado, paralelamente ao diagrama de bifurcação.  
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Figura 13 Diagrama de bifurcação e Expoente de Lyapunov vs r 

 

Strogatz (2015) nos diz que, olhando o gráfico do expoente de Lyapunov vs r 

paralelamente ao diagrama de bifurcação, nota-se que  permanece negativo para r < 3,57, e se 

aproxima de zero nas bifurcações de duplicação de período. Os picos negativos correspondem 

aos 2n-ciclos. O início do caos é visível perto de , onde  apresenta valores positivos. 

Ainda segundo o autor, para r > 3,57 o expoente de Lyapunov geralmente aumenta, exceto 

pelas quedas causadas pelas janelas de comportamento periódico.  

O gráfico mostra em quais regiões a função exibe comportamento caótico com 

sensibilidade às condições iniciais (expoente acima de 0), regiões com comportamento 

periódico ou convergente (expoente abaixo de zero) e as regiões de transição do comportamento 

periódico para caótico (expoente igual a zero).  

Outro ponto relevante para determinação do expoente de Lyapunov, conforme a própria 

fórmula 5 apresenta, é a quantidade de períodos para determinação de . A Figura 15, abaixo, 

mostra a evolução do expoente de Lyapunov a medida que mais iterações são adicionadas no 

cálculo.  
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Figura 14 Expoente de Lyapunov vs número de iterações n 

 

 Para cada dimensão do espaço de fase de um sistema, existe um expoente de Lyapunov, 

formando o que se chama de espectro de Lyapunov. Frequentemente, o foco recai sobre o maior 

expoente de Lyapunov, pois este determina o comportamento geral do sistema. Se o maior 

expoente de Lyapunov é positivo, isso indica que o sistema é divergente, característico de um 

comportamento caótico. Se é negativo, isso corresponde a uma contração do espaço de fase, 

indicando que o sistema age de maneira estacionária ou periodicamente estável. O espectro 

ainda pode ser misto, indicando que algumas variáveis ou direções no sistema exibem 

sensibilidade às condições iniciais (característica do caos) e outras variáveis são estabilizadoras. 

Para séries temporais produzidas por sistemas dinâmicos, a presença de um expoente 

positivo indica caos. Além disso, em muitas aplicações é suficiente calcular apenas o maior 

expoente de Lyapunov (Rosentein, Collins e De Luca, 1993).  

Para isso, será utilizado o algoritmo proposto por Rosenstein, Collins e De Luca. E a 

ideia do algoritmo é calcular o maior expoente de Lyapunov pela reconstrução da dinâmica da 

série temporal usando o método de incorporação de atraso (delay embedding method), que 

escolhe um atraso  e uma dimensão de imersão m. A partir de uma série temporal x(t), construa 

vetores de estado Y(i) no espaço de fase m-dimensional:  

 

                              (4) 
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para , onde N é o número total de pontos de dados. Em seguida se 

calcula a distância Euclidiana entre cada par de pontos no espaço de fases reconstruído e se 

identifica o vizinho mais próximo Y(j) de cada ponto Y(i).  

Calcula-se então a média logarítmica das distâncias entre os pares de pontos vizinhos, 

ao longo do tempo. Para cada i, calcule a média do logaritmo das distâncias d(i, k) entre o ponto 

Y(i) e seu vizinho mais próximo ao longo do tempo k, ou seja: 

 

                                               (5) 

 

onde K é o número de passos no tempo ao longo do qual as trajetórias são seguidas. O expoente 

de Lyapunov é a inclinação da curva ajustada aos pontos D(i) em função do tempo. Ou seja, é 

dado pela inclinação da linha de melhor ajuste (geralmente obtida por regressão linear) dos 

pontos (k, D(i)). 

 A Figura 16 compara os valores esperados e calculados pelo algoritmo de Rosenstein, 

para o expoente de Lyapunov com diferentes valores de r na equação logística. 

  

 
Figura 15 Expoente de Lyapunov Esperado e calculado pelo método de Rosenstein 
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 Comparando-se ainda o algoritmo de Rosenstein com o valor esperado do expoente de 

Lyapunov para diferentes valores de iterações n, vemos que o algoritmo se aproxima do valor 

calculado, conforme Figura 17. 

 

 
Figura 16 Expoente de Lyapunov Esperado e pelo método de Rosenstein, para diferentes valores de n 

 

O algoritmo de Rosenstein é vantajoso porque é relativamente simples de implementar 

e não requer conhecimento prévio das equações do sistema dinâmico. No entanto, é sensível à 

escolha dos parâmetros, como a dimensão de incorporação, o atraso na incorporação e o número 

de pontos usados para o ajuste exponencial. 

Outros indicadores são auxiliares para análise do comportamento de uma série de dados, 

o expoente de Hurst e a entropia amostral são dois desses exemplos que veremos adiante. 
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3.5 Expoente de Hurst 

 

O Expoente de Hurst, denotado por H, é uma medida estatística utilizada para analisar 

séries temporais, especialmente para identificar a presença de autocorrelação de longo prazo ou 

memória nos dados. Este expoente foi originalmente desenvolvido por Harold Edwin Hurst 

(Hurst, 1951) ao estudar as variações anuais do nível do rio Nilo e o controle de vazões dos 

reservatórios.  

Hurst utilizou em seus estudos uma razão adimensional R/S, onde R é a medida entre 

níveis máximo e mínimo do reservatório e S é o desvio padrão dos níveis medidos. O valor R/S 

permite comparar o reescalonamento de séries temporais das mais diferentes. Hurst concluiu 

que o reescalonamento, para muitas séries temporais, pode ser descrito por uma regra, conforme 

Hurst (1965). 

                                                                  (6) 

 

onde R/S = reescalonamento da série de dados registrados  

k = uma constante  

N = número de observações  

H = expoente de Hurst 

Para este trabalho utilizaremos o método descrito por Weron (2002), em que muito se 

assemelha a Mandelbrot e Wallis (1969), para estimar o expoente de Hurst, H. Esta metodologia 

é uma abordagem estatística que se baseia na análise de séries temporais. Esse método é 

particularmente útil para identificar a presença de dependência de longo alcance ou "memória" 

em dados financeiros, geofísicos, hidrológicos, entre outros.  

Seja X(t) uma série temporal com N observações. São então calculados os desvios em 

relação à média, isto é,  , onde  é a média da série temporal. Em seguida é 

calculada a soma cumulativa  para t = 1, 2, ..., N. Então, para cada intervalo 

selecionado n calcula-se o intervalo reescalonado R/S: sendo R(n) a amplitude da série 

cumulativa Z(t) em cada segmento de tamanho n, ou seja, R(n) = max(Z1,n, Z2,n, ..., Zn,n) - 

min(Z1,n, Z2,n, ..., Zn,n) e seja ainda S(n) o desvio padrão das observações originais X(t), em cada 

segmento de tamanho n. 

Posteriormente é calculada a razão R(n)/S(n) para diferentes tamanhos de segmento n. 

O expoente de Hurst é então calculado como a inclinação da reta de melhor ajuste em um gráfico 

log(R(n)/S(n)) versus log(n).  
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Um valor de H > 0,5 indica uma tendência à persistência, onde um aumento é provável 

de ser seguido por outro aumento e uma queda por outra queda. Um valor de H < 0,5 indica 

antipersistência, onde um aumento é provável de ser seguido por uma queda e vice-versa. Um 

valor de H = 0,5 sugere um comportamento semelhante a um passeio aleatório, sem memória. 

Na Figura 18 é apresentada uma comparação da evolução do expoente de Hurst para o 

mapa logístico, variando os valores de r e comparando com o diagrama de bifurcação. Observa-

se um expoente próximo de 1 enquanto 1 < r < 3, ou seja, o mapa logístico tem comportamento 

periódico ou convergentes. Para 3 > r > 3,57, o expoente de Hurst fica abaixo de 0,5 motivado 

pelo comportamento oscilatório do mapa logístico. E para r > 3,57 o expoente de Hurst tende 

a 0,5 indicando o comportamento aleatório da série. 

 

 
Figura 17 Expoente de Hurst Esperado e Diagrama de Bifurcação, para o mapa logístico 

 

 Mandelbrot e Wallis (1969) exploram a robustez do método de intervalo reescalonado 

(R/S) como uma ferramenta para detectar dependência de longo prazo em séries temporais e 

fornecer uma medida quantitativa da autocorrelação de longo prazo. O método R/S é então 

eficaz em identificar a presença de persistência ou memória em séries temporais. 
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3.6 Entropia Amostral 

 

Richman e Moorman (2000) introduzem a Sample Entropy (SampEn) como uma medida 

menos dependente do comprimento da série em comparação com a Approximate Entropy 

(ApEn). A SampEn é projetada para avaliar a complexidade de séries temporais, fornecendo 

uma medida da quantidade de previsibilidade ou regularidade em dados fisiológicos e outros 

tipos de séries temporais. 

Dada uma série temporal {x1, x2, ..., xN} com N pontos, é preciso definir dois parâmetros: 

o comprimento da sequência m e o limiar de similaridade r. Então é preciso formar sequências 

de comprimento m para cada i de 1 a N  m + 1, isto é, Xm(i) = {xi, xi+1, ..., xi+m-1}. 

Para cada par de vetores X(i) e X(j) com , calcule a distância d entre eles, distância 

máxima dmáx(X(i), X(j)) = máx(|xi+k  xj+k|) para k = 0, ..., m  1, é frequentemente usada. É 

feita então a contagem de sequências similares para cada i, conta-se o número de vetores X(j) 

1, ..., N  m) tal que dmáx r. Denote esta quantidade como B(i) para vetores 

de comprimento m e A(i) para vetores de comprimento m+1. 

Calcula-se a probabilidade  e 

. A SampEn é definida como 

 

 .                                              (7) 

 

Essencialmente, segundo os autores, a entropia amostral (SampEn) compara a 

probabilidade de que sequências de dados que são próximas (similares) para um dado 

comprimento m permaneçam próximas para o próximo comprimento de sequência m+1. Uma 

SE menor indica uma maior regularidade ou previsibilidade na série temporal, enquanto uma 

SE maior indica maior complexidade ou irregularidade. 

 Na Figura 19 vemos o comportamento da entropia para o mapa logístico, variando o 

valores crescentes até r = 4, tendo momentos de queda nos 2n-ciclos. 
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Figura 18 Entropia Amostral (SampEn) e Diagrama de Bifurcação, para o mapa logístico 

 

Independente do sistema analisado, prever seu comportamento ao longo do tempo é algo 

de interesse. Mas essa tarefa não é simples, principalmente para sistemas complexos que 

possuem não-linearidade, ou seja, sistemas altamente sensíveis às condições iniciais.  

Isso sugere que, embora um sistema não linear evolua no tempo com um comportamento 

instável e aperiódico, tal comportamento pode ser determinístico, pois seu estado futuro 

depende de seu estado atual.  

Neste capítulo, forams explorados os conceitos e metodologias associadas ao expoente 

de Lyapunov, expoente de Hurst e entropia amostral, ferramentas auxiliares para a análise de 

séries temporais. O expoente de Lyapunov permite identificar a presença de comportamentos 

caóticos em séries temporais. O expoente de Hurst permite identificar os comportamentos 

persistentes, antipersistentes e aleatórios. Já a entropia amostral avalia a regularidade e a 

previsibilidade dos dados.  

Juntos, esses indicadores abrem caminho para uma compreensão da dinâmica de séries 

temporais, permitindo uma análise não-linear do comportamento dos dados. No capítulo 

seguinte será analisada a aplicação desses métodos nas séries de preços de energia elétrica e 

quais insights podem ser feitos a partir dos resultados. 
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4 RESULTADOS E DISCUSSÃO 

 

Os conceitos apresentados no Capítulo 3 tem papel importante na compreensão da 

complexidade, persistência e dinâmica temporal de séries temporais. A particular aplicação 

desses conceitos na série de preços de energia elétrica apresentada no Capítulo 2 tem seus 

resultados discutidos nesta seção do trabalho.   

Conforme consta na introdução, a motivação deste estudo foi trazer um primeiro 

entendimento do comportamento não-linear da série histórica do preço de energia elétrica e 

como isso poder ter uma correlação com a dinâmica de operação, planejamento e formação de 

preço. 

Inicialmente, o expoente de Lyapunov avalia a estabilidade e sensibilidade do sistema a 

pequenas variações nas condições iniciais. Isso auxilia na compreensão da resiliência do 

mercado de energia elétrica diante de perturbações e eventos extremos. Aplicando então o 

algoritmo de Rosenstein as séries semanal e horária de preço, foram obtidos os seguintes valores 

 Semanal:  0,16 

 Horário: 0,32 

Uma segunda análise é avaliar as subséries. A Figura 20 apresenta o comportamento 

para 5000 subséries de tamanho 2190 para os preços horários (2190 horas equivale a três meses) 

e de tamanho 52 para os preços semanais (52 semanas equivale a um ano).  
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Figura 19 Histogramas do expoente de Lyapunov para 5000 subséries, de tamanho 2190 para os preços 

horários e tamanho 52 para os preços semanais 

 

Os resultados obtidos das 5000 subséries são os seguintes: 

 Semanal:  0,09 ± 0,06 

 Horário: 0,17 ± 0,08 

Os expoentes positivos obtidos, tanto para as séries inteiras quanto para as subséries, 

indicam que o preço de energia é sensível as condições iniciais e isso sugere maior dificuldade 

na previsão dos preços. Esse comportamento pode ser associado as diferentes fontes energéticas 

que compõe a matriz elétrica e trazem incertezas na formação do preço.  

A segunda parte envolveu o cálculo do expoente de Hurst, para indicar a persistência ou 

reversão de tendências nos preços. Como visto no Capítulo 3, essa métrica oferece uma 

perspectiva para modelagem de longo prazo, fornecendo informações sobre a natureza das 

tendências. Foram calculados os expoentes de Hurst para as séries semanal e horária, com os 

resultados 

 Semanal:  0,85 

 Horário: 0,95 
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Uma segunda análise, conforme a Figura 21, foi o comportamento do expoente à medida 

que a série aumenta, ou seja, para visualizar o comportamento do expoente conforme aumentam 

as quantidades de registros das séries.  

 
Figura 20 Expoente de Hurst vs número de registros n 

 

Por fim, a Figura 22 apresente um estudo do comportamento do expoente de Hurst para 

5000 subséries de tamanho 2190 para os preços horários (2190 horas equivale a três meses) e 

de tamanho 52 para os preços semanais (25 semanas equivale a um ano). Onde foi possível 

notar, para os preços horários, uma aproximação dos valores de expoente de Hurst das subséries 

com a série principal.  
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Figura 21 Histogramas do expoente de Hurst para 5000 subséries, de tamanho 2190 para os preços 

horários e tamanho 52 para os preços semanais 

 

Os resultados obtidos das 5000 subséries são os seguintes: 

 Semanal:  0,69 ± 0,13 

 Horário: 0,74 ± 0,22 

Os valores obtidos maiores que 0,5 para o expoente de Hurst, para a série total e 

subséries,  sugerem uma tendência de persistência, indicando que aumentos ou diminuições nos 

preços têm maior probabilidade de serem seguidos por movimentos similares. Isso implica uma 

memória longa na série temporal, onde os preços futuros são influenciados por comportamentos 

passados de maneira significativa, podendo indicar menos volatilidade e mais previsibilidade 

nos movimentos de preços a longo prazo. Isso pode estar associado ao fato de cenários 

meteorológicos não se alterarem rapidamente e influenciarem a formação do preço durante 

longos períodos.  

O terceiro indicador avaliado foi a entropia amostral, que é uma medida de desordem e 

da imprevisibilidade nos padrões temporais dos preços. Essa ferramenta é auxiliar para 

entendimento da volatilidade, identificar mudanças de regime e avaliar a presença de padrões 

sazonais, oriundos das fontes energéticas que compõe a matriz. 
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Para todo o histórico analisado, as entropias obtidas foram: 

 Semanal:  0,22 

 Horário: 0,03 

Uma outra análise feita, conforme a Figura 23, foi o estudo das 5000 subséries de 

tamanho 2190 para os preços horários (2190 horas equivale a três meses) e de tamanho 52 para 

os preços semanais (52 semanas equivale a um ano).  

 

 
Figura 22 Histogramas da Entropia para 5000 subséries, de tamanho 2190 para os preços horários e 

tamanho 52 para os preços semanais 

  

Os resultados obtidos das 5000 subséries são os seguintes: 

 Semanal:  0,61 ± 0,37 

 Horário: 0,07 ± 0,05 

Para uma série de preços de energia elétrica, uma SampEn acima de 0 significa que 

existem padrões de comportamento que não são completamente previsíveis ou regulares. 

Entretanto, existe uma diferença do comportamento da entropia para as séries horária e semanal. 

A série semanal apresenta maior entropia, este valor relativamente mais alto que o horário 

sugere que a série de preços semanais de energia elétrica tem uma maior complexidade e menor 

previsibilidade em comparação com a série horária. Isso pode ser devido a variações mais 
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significativas nos preços ao longo das semanas. Para a série horária este valor mais baixo indica 

que a série de preços horários de energia elétrica é mais regular e previsível. Variações nos 

preços da energia elétrica dentro de um único dia tendem a seguir um padrão mais consistente. 

A presença de complexidade nos preços pode ser reflexo de volatilidade no mercado, 

onde fatores como variações na oferta e demanda, mudanças regulatórias, flutuações nos custos 

de produção de energia e eventos externos, influenciam os preços de maneira não linear e 

imprevisível. 

A SampEn acima de 0, mesmo que levemente acima, indica que os preços possuem um 

certo grau de complexidade e imprevisibilidade, refletindo a influência de múltiplos fatores 

internos e externos que afetam o mercado. O expoente de Lyapunov positivo reforça essa 

interpretação, apontando para uma sensibilidade às condições iniciais e uma tendência ao 

comportamento caótico, onde pequenas mudanças podem levar a variações significativas nos 

preços. Isso sugere que o mercado de energia é dinâmico, com a potencialidade de mudanças 

abruptas e imprevisíveis nos preços decorrentes de eventos pequenos. 

Por outro lado, um expoente de Hurst próximo de 1 sugere uma forte tendência de 

persistência nos preços da energia elétrica, indicando que as tendências atuais têm uma alta 

probabilidade de continuar no futuro próximo. Essa persistência, quando vista em conjunto com 

a complexidade e a sensibilidade às condições iniciais, sugere que, embora os preços possam 

seguir uma tendência estável a longo prazo, eles estão sujeitos a volatilidades de curto prazo e 

a desvios imprevisíveis. Para os participantes do mercado, isso implica na necessidade de 

estratégias de gestão de risco planejadas e a utilização de ferramentas analíticas para entender 

a dinâmica do mercado de energia. Os operadores e investidores devem estar preparados para 

responder as mudanças no mercado, aproveitando as tendências persistentes, mas também 

protegendo-se contra a volatilidade e os riscos associados à natureza imprevisível e 

potencialmente caótica dos preços da energia elétrica. 

A identificação do comportamento caótico nos preços de energia impulsiona a inovação 

em modelagem e análise. Métodos mais avançados podem ser desenvolvidos para capturar 

melhor a complexidade subjacente e melhorar as estratégias de previsão. 
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5 CONCLUSÕES 

 

A utilização das métricas descritas no Capítulo 3 deste trabalho, na análise da série de 

preços de energia elétrica do Brasil, serve de ponto de partida para um aprofundamento do 

estudo do setor elétrico e como a operação e planejamento do sistema podem influenciar na 

formação do preço, trazendo reflexos para a economia do país. 

Os resultados compilados, conforme figura 23, indicam que pequenas variações nos 

preços podem levar a divergências significativas no longo prazo, dificultando previsões. 

Inércias no mercado se refletem na série, mantendo os preços em uma trajetória consistente ao 

longo do tempo. E existem elementos de aleatoriedade e complexidade que podem introduzir 

incertezas na previsão de preços. 

 

 
 

Expoente de 

Lyapunov 

Expoente de 

Hurst 

Entropia 

Amostral 

Se
m

an
al

 

Série total 0,16 0,85 0,22 

Subséries 0,09 0,69 0,61 

H
or

ár
io

 

Série total 0,32 0,95 0,03 

Subséries 0,17 0,74 0,07 

 

Figura 23 Tabela resumo dos valores médios dos indicadores analisados, para a série total e 5000 
subséries 

 

A partir deste estudo inicial, pesquisas futuras podem expandir a aplicação desses 

indicadores para outras séries temporais econômicas e financeiras, explorando sua utilidade em 

diferentes contextos e mercados. A continuação deste trabalho poderá abordar limitações 

identificadas, testar a aplicabilidade dos métodos em previsões de longo prazo e desenvolver 

modelos preditivos que incorporem essas métricas, abrindo espaço para a análise econômica e 

a gestão de riscos no mercado de energia. 
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ANEXO A  CÓDIGOS COMPUTACIONAIS 

 

Código utilizado para cálculo dos resultados no Capítulo 4  Resultados e Discussão. 
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