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RESUMO

O setor de energia elétrica enfrenta desafios significativos relacionados a volatilidade
dos pregos, complexidade dos mercados e a necessidade de prever tendéncias de longo prazo.
Explorar a aplicagdo do Expoente de Lyapunov, Expoente de Hurst ¢ Entropia na analise dos
pregos de energia elétrica, fornece uma visdo da complexidade e dinamicas do mercado e da
formacdo do preco da energia elétrica. O Expoente de Lyapunov revela a presenca de
comportamento caotico, destacando a imprevisibilidade dos pregos. O Expoente de Hurst avalia
a persisténcia ou reversdo a média nos precgos, informando estratégias de previsdo e tendéncias
de longo prazo. A Entropia quantifica a complexidade, indicando a variabilidade e estabilidade
dos dados. Essas métricas capacitam tomadores de decisao no setor elétrico, oferecendo insights

para a gestao de riscos, estratégias e compreensao do mercado de energia elétrica.

Palavras-chave: Expoente de Lyapunov, Expoente de Hurst, Entropia, Pre¢o de Energia.



ABSTRACT

The electric power sector faces significant challenges related to price volatility, market
complexity and the need to predict long-term trends. Exploring the application of the Lyapunov
Exponent, Hurst Exponent and Entropy in the analysis of electricity prices provides an insight
into the complexity and dynamics of the market and the formation of the price of electricity.
The Lyapunov Exponent reveals the presence of chaotic behavior, highlighting the
unpredictability of prices. The Hurst Exponent assesses persistence or mean reversion in prices,
informing forecasting strategies and long-term trends. Entropy quantifies complexity,
indicating data variability and stability. These metrics empower decision makers in the
electricity sector, offering insights for risk management, strategies and understanding of the

electricity market.

Keywords: Lyapunov Exponent, Hurst Exponent, Entropy, energy price.
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1 INTRODUCAO

O Brasil possui um sistema de geragdo elétrica que predominantemente utiliza seus
recursos hidricos. Nos Ultimos anos, em média, 74% da geragdo de energia elétrica
corresponderam a geragdo em aproveitamentos hidroelétricos. Hé, portanto, necessidade de
uma cuidadosa coordenacdo da operagdo, tanto para que o sistema seja eletricamente seguro
quanto para que os recursos sejam aproveitados de forma eficiente (ONS e CCEE).

A principio, pode-se imaginar que a agua armazenada nos reservatorios nao possui valor
associado, logo seria mais vantajoso atender a demanda utilizando primeiramente a agua
estocada nos reservatorios evitando o acionamento de usinas termoelétricas, que possuem um
custo direto associado ao seu combustivel. Porém, considerando que a capacidade de
armazenamento em um sistema ¢ limitada pela capacidade de seus reservatorios, € que a
afluéncia futura aos aproveitamentos ¢ desconhecida, pode-se dizer que ha uma dependéncia
entre a decisdo operativa de hoje e os custos operativos do futuro (ONS, 2020).

Ainda segundo o Operador Nacional do Sistema - ONS, o planejamento da operacgao
tem como objetivo a determinagdo 6tima dos recursos hidricos e térmicos seguindo o critério
de minimizacdo dos custos globais de producao de energia elétrica associado ao atendimento
da demanda e preservagao dos reservatorios no longo prazo.

Para solucdo desse problema de otimizagdo complexo foram desenvolvidos pelo Centro
de Pesquisa de Energia Elétrica — CEPEL modelos computacionais que reduzem o problema
em etapas menores e entregam o prego de energia, em R$/MWh, para diferentes horizontes de
tempo (mensal, semanal e horario).

Para visualizar o comportamento dos pregos de energia ao longo do tempo, comparou-
se na Figura 1 os retornos semanais do preco da energia no Brasil com os retornos semanais do
dolar e IBOVESPA, de janeiro de 2010 a dezembro de 2023. E possivel observar a grande
volatilidade do preco de energia elétrica, até pela mudanga da escala de seu grafico. Enquanto
dolar e IBOVESPA tem retornos semanais médios 0,2% e 0,1%, respectivamente, o preco de
energia tem retorno médio 3,5%. E o desvio padrdo do retorno semanal fica 2,1% para o cdmbio,

3,1% para o IBOVESP e o preco de energia elétrica 25,9%.
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Figura 1 Retorno semanal do Preco de Energia, Cimbio e IBOVESPA

Esse comportamento volatil do preco da energia no Brasil tem influéncia da composi¢ao
da matriz da geragdo brasileira e deve-se considerar que o sistema elétrico ¢ constantemente
adaptado as novas exigéncias de padrdes de consumo e/ou padrdes de geracdo. Entender a
dinamica do comportamento de determinacdo do preco de energia tem por objetivo a
compreensdo da correta sinalizagdo econOmica aos agentes que participam do mercado de
energia.

E a teoria dos sistemas dinamicos pode auxiliar nesta analise de sinaliza¢do economica

do preco de energia. Para este trabalho, escolheu-se apresentar uma introducao ao
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comportamento caodtico de sistemas dindmicos pela andlise do Preco de Liquidagdo das

Diferencgas - PLD, de acordo com trés métricas:

e O coeficiente de Lyapunov que mede a taxa com que trajetorias proximas no
espaco de fase de um sistema dindmico divergem com o tempo, como explicado
em Alligood (1996). A ideia de sua aplicagdo ¢ poder entender quao sensivel os
precos sdo a pequenas mudancas, sugerindo um potencial de volatilidade;

e O Expoente de Hurst que mede a persisténcia ou memoria de longo prazo de
uma série temporal, como explicado em Mandelbrot e Wallis (1969). Com este
conceito serd avaliado o comportamento futuro do preco, indicando se seguirdo
tendéncias passadas ou mudarao de diregao;

e Entropia estima a desordem ou complexidade de um sistema, conforme Pincus
(1990). Pode ser aplicada nos precos de energia para entender o risco associado

aos precos de energia;

Este trabalho busca compreender a aplicagdo da teoria citada aos pregos de energia, bem
como sua utilidade para o auxilio da tomada de decisdo em investimentos que envolvam o pre¢o
de energia.

No Capitulo 2 deste texto sera trazido um breve histdrico do setor de energia brasileiro
e a métrica adotada para definicdo dos precos de energia elétrica, abordando as principais
caracteristicas que explicam o comportamento dos precos.

O Capitulo 3 abordard a revisdo bibliografica das métricas apresentadas e quais
metodologias serdo utilizadas para a mensuragdo dos indicadores da série temporal dos pregos
de energia, utilizando como exemplo o mapa logistico.

Posteriormente, serdo apresentados no Capitulo 4 os resultados e discussao da aplicagao
do expoente de Lyapunov, expoente de Hurst e entropia na série de precos de energia, no
Capitulo 4 e no Capitulo 5 sera feita a citacdo de trabalhos futuros a serem realizados.

Veremos, entdo, a seguir as caracteristicas da formacao de preco de energia.
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2 MERCADO DE ENERGIA ELETRICA BRASILEIRO

Diferentemente da maioria dos paises que passaram por reformas no desenho do
mercado de eletricidade na década de 1990, o Brasil optou pela formaga@o de pregos a partir de
custos auditados. Nesse modelo, os agentes declaram sua disponibilidade e seus custos de
producao, que sao utilizados por um operador central para despachar o sistema de forma 6tima.
Para tanto, o operador dispde de modelos computacionais de otimizagdo, que calculam o
“despacho 6timo” com base em parametros de risco pré-estabelecidos, restricdes de
transmissdo, dados do sistema e expectativas de comportamento futuro — de carga e, no caso
brasileiro, de hidrologia. O custo marginal de geragao determina também o prego do mercado
de curto prazo (Castro; Borges e Simone, 2023).

Neste capitulo sera apresentado um historico da formag@o de prego do Brasil, desde a
composicao de nossa matriz até a metodologia adotada atualmente para defini¢do do preco de

energia elétrica.

2.1 A matriz de geracio e o planejamento da operacao

Como publicado no livro “O planejamento da operacdo energética no sistema
interligado nacional” (ONS, 2020), o Operador Nacional do Sistema - ONS relata que a partir
de meados da década de 1960 o crescimento do consumo de energia elétrica trouxe uma
necessidade da expansdo da capacidade instalada geradora do Brasil e da malha de transmissao.
Isso exigiu que os sistemas elétricos brasileiros funcionassem de maneira integrada, para
aproveitamento racional das fontes energéticas disponiveis e buscando um equilibrio
econdmico.

Ainda segundo o ONS em seu livro, em razdo de suas caracteristicas naturais, o Brasil
desenvolveu sua matriz energética com predominancia da hidroeletricidade. O operador ainda
ressalta que apesar do predominio hidrelétrico, a recente expansao do Sistema Interligado
Nacional - SIN tem sido marcada pelo crescimento na participagao de novas formas de geragao,
com destaque para as fontes edlica e fotovoltaica, e de transmissdo, especialmente a utilizagao
mais intensa da transmissdo em corrente continua. Todos esses movimentos, de acordo com 0s
autores, aumentam a complexidade do sistema e o desafio do ONS de garantir que a operacao
do SIN se dé da forma mais segura e econdmica, requisito cada vez mais essencial a medida

que avanca na sociedade brasileira a sua dependéncia da energia elétrica.
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Conforme Figura 2, os dados disponiveis no site do ONS' demonstram que a expansio
recente da matriz brasileira vem ocorrendo pelas fontes renovaveis. De 2019 a 2023, a

participagdo eodlica e solar passou de 11% para 18%, sendo que outros 12% de Micro e Mini

Geragao Distribuida — MMGD sao predominantemente solar.

Solar
2.453
2%

Solar
11.291
5%

Térmica
40.324

Hidraulica Térmi 12
érmica
108.309 34502 Hidraulica
67% v 108.451 2023
50% MMGD
- 26.022
12%
Edlica
14.775 oli
Nuclear 904 Falicn
e ] Nuclear 28403

1%

1.990 13%

1%

Figura 2 Matriz elétrica brasileira em 2019 e 2023, valores em MW e %

O fato da expansao de outras fontes, além da hidroelétrica e térmica, € importante devido
a complementariedade da geragdo. Essa diversificacdo traz maior seguranga de suprimento para
a carga. Esse fato ¢ apresentado pelo ONS (2020) e pode ser constatado na Figura 3, que mostra
a complementariedade das fontes eolica, solar, hidrelétrica e PCT (Pequenas Centrais Térmicas,

por exemplo Biomassa).

! https://www.ons.org.br/paginas/sobre-o-sin/o-sistema-em-numeros
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Figura 3 Complementariedade das fontes de geracao [2].

Enquanto o planejamento da expansdo visa atender de maneira otimizada o consumo de
energia elétrica e fornecer sinais para minimizar os custos totais futuros para a sociedade, o
objetivo principal de cada um dos agentes que participam desse setor € a maximizagao de seus
resultados.

Cada agente privado desenvolve seu plano de expansao empresarial, com objetivos que
podem ser bastante distintos daqueles do planejamento governamental. Ao governo cabe buscar
as utilizacdes adequadas, racionais e otimizadas dos recursos naturais.

Para solucionar esse problema, cabe ao Operador do sistema fornecer o justo sinal
econdmico. Entao, segundo o ONS em seu livro sobre o planejamento da operacao, o problema
de planejamento energético do sistema brasileiro consiste em determinar metas de geragao para
as usinas hidroelétricas e termoelétricas para cada estdgio de tempo ao longo do horizonte de
estudo, atendendo a demanda de energia elétrica, as restricdes operativas das usinas e as

restrigoes elétricas do sistema.

2.2 Metodologia de determinac¢do dos precos de energia

A determinagdo da alocagdo 6tima dos recursos hidricos e térmicos € norteada segundo
um determinado critério, como o critério de minimizacao dos custos globais de producao da
energia elétrica. A principio, pode-se imaginar que a 4gua armazenada nos reservatorios nao

possui valor associado, logo seria mais vantajoso atender a demanda utilizando primeiramente
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a agua estocada nos reservatdrios evitando o acionamento de usinas termoelétricas, que
possuem um custo direto associado ao seu combustivel. Porém, considerando que a capacidade
de armazenamento em um sistema ¢ limitada pela capacidade de seus reservatorios, e que a
afluéncia futura aos aproveitamentos ¢ desconhecida, pode-se dizer que ha uma dependéncia
entre a decisdo operativa de hoje e os custos operativos do futuro (ONS e CCEE).

A estratégia do Planejamento da Operagdo resume-se em tomar decisdes no presente
para que os reservatorios tenham como se manter em niveis seguros para atendimento da carga
no futuro e que garantam o menor custo.

Como mencionado em seu manual de treinamento (ONS e CCEE), o ONS dispde de
uma cadeia de modelos computacionais para a otimizagao da operagdo e minimizacao do custo
de atendimento a carga. Estes modelos sdo desenvolvidos pelo Centro de Pesquisas de Energia
Elétrica — CEPEL. O modelo NEWAVE ¢ utilizado para projecao de médio prazo (5 anos),
enquanto os modelos DECOMP e DESSEM agregam mais detalhes das usinas e projetam os
precos semanais € horarios, respectivamente. A Figura 4, abaixo, detalha o fluxo temporal da
cadeia de modelos. Cabe destacar que todos os programas computacionais de formacao de preco
passam por processos de validagdo no ambito da Agéncia Nacional de Energia Elétrica -
ANEEL, com a participagdo de agentes de geracdo, transmissao, distribuicdo e comercializagao

associados ao ONS e a CCEE.

N | VAN

horizonte: 5 anos
etapas: mensais

;‘:.«0 horizonte: 2 a 6 meses
etapas: semanais

DETALHAMENTO
L
HORIZONTE DE ESTUDO

A o5 AL horizonte: 1 semana
33 nataRGlria etapas: 2 hora

v i

Figura 4 Fluxo temporal dos modelos de formacéo de preco [2]

De acordo com ONS (2020) o planejamento da operagdo energética de médio e curto
prazo ¢ um problema de natureza essencialmente estocastica, dado que ndao temos o
conhecimento perfeito da disponibilidade das afluéncias futuras, combustivel da principal fonte

geradora do SIN. Uma alternativa para resolver o problema estocastico ¢ escrevé-lo na sua
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forma equivalente deterministica, onde as restricdes e variaveis de todos os periodos e cenarios
sdo consideradas de uma s6 vez em um Unico problema de otimizag¢ao deterministica.

Devido ao porte e complexidade desse problema, ¢ necessaria a sua divisdo em
diferentes etapas, abrangendo estudos nos horizontes de médio prazo, curto prazo e
programacao didria (ONS, 2020). Pode-se entdo estudar o comportamento do sistema com
diversos cendrios de vazdes. E essas vazdes afluentes, ainda seguindo o Operador do Sistema,
sao representadas de forma equivalente, com o ajuste de modelos estocésticos PAR(p)
(autorregressivos periodicos) e a utilizacdo de uma modelagem probabilistica na simulagdo das
vazdes afluentes futuras. Dessa forma, através da Programagao Dinamica Dual Estocéstica, o
modelo NEWAVE ¢ responsavel pela constru¢ao da Fungao de Custo Futuro (FCF), que valora
a agua armazenada nos reservatorios do SIN em cada estagio de simulagao, trazendo esse custo
ao valor presente. A Figura 5, extraida do livro do ONS (2020), ilustra esse processo. Sendo a

linha mais grossa a média dos cendrios futuros que resulta na formacao dos custos de energia.

" - 5 -‘,:’.‘
213 o
“i :.."- '-]:.: .':
21T Nivel de
CF=Valor S 8 108
pipc) 107 : Armazenamento
medio . 1 \ "
W iz ("Estado™)
'n,‘_} '-.‘.\.
DR :

Figura 5 Formacio da Func¢io de Custo Futuro do modelo Newave Fonte: [1]

Ainda segundo o ONS (2020) o DECOMP realiza uma otimizagdo linear para o
despacho hidrotérmico, considerando restrigdes operativas e de transmissdao do sistema. O
modelo busca minimizar o custo total da operacdo, incluindo custos de geracdo térmica e
penalidades por nao atendimento da demanda, respeitando limites operativos das usinas e linhas
de transmissdo. E o DESSEM leva em conta as condi¢des operativas do sistema em intervalos
de tempo curtos (hora a hora). As equagdes consideram a demanda de carga, geracao
termelétrica, intercambios energéticos entre regides, € outras restricdes técnicas.

O problema a ser resolvido, entdo, ¢ a otimizagdo do atendimento do curto prazo e a

preservacdo dos reservatorios no longo prazo. Isto €, depende de decisdes imediatas e decisdes
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futuras. Segundo o ONS (2020), o problema de despacho 6timo resolvido que faz parte do
planejamento da operagdo energética pode ser escrito de forma sucinta, de acordo com a
equagao de minimizagdo descrita. Para resolver este problema, utiliza-se métodos de
programacao linear que implica em minimizar o custo total da operagdao considerando as
restricoes de balanco de energia, atendimento a demanda, fun¢do de produgdo, hidraulicas,
elétricas, de custo futuro e de caixa.

Os modelos de formagdo de preco de energia, entdo, sdo fundamentais para o
funcionamento eficiente do mercado de energia elétrica. Eles sdo projetados para refletir os
custos de producdo, transmissdo e distribuicdo de energia, bem como para incorporar fatores
como a demanda de mercado, a disponibilidade de recursos, condi¢des ambientais, e politicas
regulatdrias. A seguir serd apresentado o comportamento do prego historico de energia elétrica,

horario e semanal.

2.3 Comportamento dos dados historicos do preco de energia

Como apresentado anteriormente, a precificagdo da energia elétrica ¢ influenciada por
uma série de variaveis de entrada, cada uma contribuindo de maneira unica para a determinagao
dos precos finais. Entre estas variaveis, destacam-se fatores como a disponibilidade de recursos
naturais (por exemplo, agua para hidrelétricas, vento para turbinas edlicas), custos de produgao,
demanda do mercado, politicas governamentais e restrigdes elétricas. A disponibilidade de
recursos naturais ¢ particularmente critica, pois influencia diretamente a capacidade de geragao
de energia.

Por exemplo, em periodos de seca, a capacidade das hidrelétricas pode ser
significativamente reduzida, levando a um aumento no prego da energia devido a escassez de
oferta. A Figura 6 apresenta o comportamento do preco da energia elétrica ao longo do histérico

analisado, nos formatos horario e semanal.
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Figura 6 Grafico de precos de energia elétrica, horario e semanal.

Observando ainda a Figura 7, dos histogramas de pregos hordrios e semanais, vemos

uma elevada frequéncia de observacgdes proximas aos intervalos de menores precos de energia.

A série horaria tem mediana R$ 104,31/MWh ¢ a série semanal mediana R$ 87,51/MWh.

Frequencia

Horario

--— média=191.46
-=-- mediana = 104.31

R$/MWh

350 4

Frequencia

Semanal

-—- média = 164.96
=== mediana = 87.51

R$/MWh

Figura 7 Histograma dos pregos de energia elétrica, horario e semanal
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Uma andlise Box-Plot, Figura 8, nos permite visualizar que para os pregos horarios e
semanais, 75% dos dados ficam abaixo de R$ 275,86/ MWh e R$ 220,52/MWh,
respectivamente. A mediana dos dados é R$ 104,31/MWh e RS 87,51/ MWh. E o intervalo entre
o primeiro e terceiro quartis ¢ R$ 206,82/MWh e R$ 190,03/MWh, a diferenga relevante entre

0s quartis mostra que o preco de energia tem um comportamento volatil.
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Figura 8 Box-Plot dos precos de energia elétrica, horario e semanal

Em virtude das caracteristicas do sistema elétrico brasileiro — com elevada participacao
de usinas hidrelétricas — alguma variabilidade nos precos ¢ esperada, uma vez que as
afluéncias futuras sdo desconhecidas e os modelos meteoroldégicos sdo imprecisos. A
volatilidade dos precos na industria de energia elétrica ¢ um fator de risco percebido tanto para
os geradores quanto para os consumidores. Um gerador corre o risco de que o prego seja muito
baixo para cobrir todos os custos. Um consumidor corre o risco de que, as vezes, o prego da
eletricidade seja muito alto em comparacdo com os beneficios que ela cria (Castro; Borges e
Simone, 2023).

Em suma, a analise do historico do setor de energia do Brasil, com suas caracteristicas
unicas de grande participagdo hidrelétrica, nos leva a entender a metodologia de formagao de
precos. Os modelos computacionais de formacao de pregos sdo responsaveis pela sinalizagdo

econdmica ao mercado e seus agentes, refletindo os custos de geragdo, condigdes climaticas e
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politicas regulatorias. O resultado disso €, como observado, que os precos de energia elétrica
apresentam variagdes significativas em intervalos horarios e semanais.
No proximo capitulo deste trabalho sera analisa a metodologia escolhida para

determinar quao cadtico pode ser o comportamento dos precos de energia.
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3 CAOS EM SISTEMAS DINAMICOS E METODOLOGIA

Neste capitulo, exploraremos as metodologias relacionadas a trés importantes conceitos
de anélise de sistemas nao lineares utilizados na analise de séries temporais: o Expoente de
Hurst, a Entropia Amostral e o Expoente de Lyapunov. Este capitulo ndo apenas detalha a teoria
por tras desses conceitos, mas também discute as metodologias utilizadas para aplicagdes em
séries reais, além de uma contextualizacdo da dinamica dos sistemas, do mapa logistico e do
caos.

Inicialmente, sera apresentado o conceito basico de um sistema dinamico.

3.1 Sistemas dinimicos

Um sistema dindmico consiste em um conjunto de possiveis estados, junto com uma
regra que determina o estado presente em termo dos estados passados (Alligod, 1996). Ainda
de acordo com o autor, esse tipo de sistema ¢ deterministico, significando que podemos
determinar o estado presente unicamente de acordo com os estados passados.

Existem dois tipos principais de sistemas dindmicos: equacdes diferenciais e mapas
iterados (também conhecidos como equacdes de diferengas). As equagdes diferenciais
descrevem a evolugdo dos sistemas em tempo continuo, enquanto os mapas iterados surgem em
problemas onde o tempo ¢ discreto (Strogatz, 2015).

E a compreensdo dos sistemas passa pelo conceito de estabilidade, conforme
apresentada por Boyce e Di Prima (2009), envolve a anélise do comportamento das solu¢des
de equagoes diferenciais em relacdo ao tempo. Os pontos onde a expressdo tem resultado nulo
sdao chamados muitas vezes de solugdes de equilibrio ou pontos criticos (fixos). Ainda segundo
os autores, a equacao ainda segue um caminho, ou trajetéria, € o plano com todas as fases da
trajetoria € o plano de fases.

Um ponto fixo estavel tem a propriedade de que os pontos proximos a ele se movam
ainda mais perto do ponto fixo no sistema dindmico. Para um ponto fixo instavel, os pontos
proximos se afastam com o passar do tempo. Uma boa analogia ¢ que uma bola no fundo de

um vale ¢ estavel, enquanto uma bola equilibrada no topo de uma montanha ¢ instavel.

(Alligood, 1996)
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De acordo com Alligod (1996) a quantificagdo da trajetoria do sistema, para andlise de
sua estabilidade e compreensao de suas propriedades, ¢ seu mapa. Que pode ser entendido como

uma funcao cujas entradas e saidas pertencem ao mesmo dominio.

‘Seja x um ponto e fum mapa. A orbita de x em f'¢ o conjunto de
pontos {x, f(x), f°(x),...}. O ponto de inicio x da orbita ¢ chamado
de valor inicial (ou condi¢do inicial) da 6rbita. Um ponto p ¢ um

ponto fixo do mapa f'se f(p)=p.

Boyce e Di Prima (2009) ainda destacam que o objetivo principal da caracterizacdo das
equagoes de acordo com o padrao geométrico formado por suas trajetorias ¢ fundamental na
teoria qualitativa de equagdes diferenciais.

E para Alligood (1996) questdao da estabilidade ¢ significativa porque um sistema do
mundo real estd constantemente sujeito a pequenas perturbagdes. Portanto, um estado
estaciondrio observado num sistema realista deve corresponder a um ponto fixo estavel. Se o
ponto fixo for instavel, pequenos erros ou perturbagdes no estado fariam com que a orbita se
afastasse do ponto fixo, o que entdo ndo seria observado.

Portanto, pontos fixos e a estabilidade sdo conceitos fundamentais no estudo da
dinamica de sistemas. Pontos fixos sdo estados em que o sistema permanece constante ao longo
do tempo e a estabilidade desses pontos ¢ crucial para entender como o sistema responde a
perturbagoes.

Alguns exemplos sdo conhecidos para compreensao da dinamica de sistemas nao-

lineares, dentre eles estd o mapa logistico, conceito apresentado a seguir.

3.2 Mapa logistico

Um exemplo popular para explorar as caracteristicas dos sistemas nao lineares ¢ o mapa
logistico, desenvolvido por Robert May (1976) para analise do crescimento populacional de
insetos

Xnt1 = TXn(1 = xp) (1)
com os valores do pardmetro r € [0, 4] e com x,, € [0, 1].
Essa func¢do tem comportamento estavel para determinados valores de 7. Com orbitas

limitadas e periddicas ou convergentes. Conforme apresentado por Strogatz (2015), para 1 <r
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< 3, a populagdo cresce e eventualmente atinge um estado estacionario diferente de zero,
conforme ilustrado na Figura 9 quadro superior.

Ainda de acordo com Strogatz, para r maiores, por exemplo r = 3,3, a populacdo aumenta
novamente, mas agora oscila em torno de um estado estacionario, alternando entre uma grande
populagdo numa geracao e uma populagdo menor na seguinte, conforme apresentado na Figura

9 quadro inferior.
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Figura 9 Mapa logistico parar=2,8 er = 3,3, com x0 = 0,2

Mas ¢ para valores de » mais proximos de 4 que a fungao logistica se mostra interessante
no estudo de sistemas dindmicos nao-lineares, pelo fato do comportamento do sistema mudar
radicalmente. A Figura 10 apresenta a evolu¢do de duas trajetorias do mapa logistico com r =

4 mas com condi¢des iniciais diferentes em 0,001.
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Figura 10 Mapas logisticos parar =4 e com x0 = 0,2 e x0 = 0,2 + 0,001

Com r = 4, a equagdo logistica apresenta uma Orbita aperiodica, ou seja, iterando a
equacdo o resultado ndo se repete. Isso significa que o sistema apresenta imprevisibilidade e
demonstra o chamado “efeito borboleta” ou dependéncia sensivel as condi¢des iniciais
(Richardson e Mitchell).

De forma mais generalizada e expandindo a anélise, a alteracdo na dindmica da funcao
se apresenta de forma mais clara quando se simula, para diferentes valores de », o valor de x,+;

depois de 1000 iteragdes, conforme a Figura 11.
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Figura 11 Diagrama de bifurcacio do mapa logistico

De acordo com Strogatz (2015), em r = 3,4, o atrator ¢ um ciclo de periodo 2, conforme
indicado pelos dois ramos. A medida que » aumenta, ambos os ramos se dividem
simultaneamente, produzindo um ciclo de periodo 4. Uma cascata de duplica¢des adicionais de
periodo ocorre a medida que » aumenta, produzindo o periodo 8, o periodo 16 e assim por
diante, até que em » = 3,57, onde o0 mapa se torna caotico e o atrator muda de um conjunto finito
para um conjunto infinito de pontos.

O mapa logistico, simples em sua forma, revela comportamentos surpreendentemente
complexos quando certos parametros sdo ajustados. O sistema transita de um comportamento
previsivel para um caodtico, ilustrando como pequenas alteracdes podem levar a grandes
mudangas na dindmica do sistema.

Esta transicao do previsivel para o imprevisivel no mapa logistico serve como um
modelo fundamental para visualizar o caos em sistemas, conceito esse que sera trazido em

seguida.
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3.3 Caos em sistemas dindmicos

Sistemas cadticos sdo sistemas complexos que pertencem a classe dos sistemas
dinamicos deterministicos (Guegan, 2009). Esses sistemas sdo caracterizados pela forte nao-
linearidade e de acordo com Alligood (1996) uma o6rbita caodtica ¢ aquela que continua a
experimentar para sempre o comportamento instavel que uma orbita exibe perto de uma fonte,
mas que nao ¢ fixa ou periddica. Em qualquer ponto de tal orbita, existem pontos
arbitrariamente proximos que se afastardo do ponto durante a iteragdo adicional.

Essa caracteristica pode ser observada na figura abaixo, onde se apresentam as
diferengas de duas trajetdrias com condi¢des iniciais diferentes em 0,001. Na parte superior da
Figura 12 observa-se que, para r = 2,8, a medida que as iteracdes ocorrem a diferenga das
trajetdrias tende a zero. Enquanto no quadro inferior da figura, com as trajetorias tendor =4, a

medida que as iteragdes ocorrem a diferenga entre as trajetorias ndo apresenta um padrao.
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Figura 12 Diferenca de duas trajetorias com condic¢des iniciais diferentes em 0,001, para r = 2,8 (acima) e r
=4 (abaixo)

Segundo apresentado por Alligood et al (1996) um sinal ¢ interpretado como tendo
comportamento caotico se ele ¢ limitado em suas Orbitas, deterministico, as Orbitas sdo

aperiddicas e apresenta dependéncia sensivel as condi¢des iniciais.
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O link da nogao do caos com o comportamento estocastico ¢ a base para aprofundar os
estudos nesse campo, permitindo conectar a teoria a andlises reais e extrair sinais de caos de
conjuntos de dados.

Saber se um sistema ou um conjunto de dados apresenta comportamento caotico ¢ uma
maneira de melhorar as previsdes, pois indica se os dados sdo sensiveis as condi¢des iniciais e
determina que métodos de modelagem mais avangados sejam empregados nas projegdes, além
de maior cuidado na tomada de decisdo. E, para quantificar o caos em um sistema, utiliza-se o
expoente de Lyapunov que mede a divergéncia exponencial das trajetdrias em um espaco de

fase.
3.4 Expoente de Lyapunov

Uma orbita cadtica ¢ aquela que sempre continua a experimentar um comportamento
instavel perto de uma fonte, mas essa 6rbita ndo ¢ fixa ou periddica. ... Em qualquer ponto da
orbita, existem pontos arbitrariamente proximos que se afastardo do ponto durante as proximas
iteragOes. Essa irregularidade continua ¢ quantificada pelos nimeros de Lyapunov e expoentes
de Lyapunov (Alligod, 1996).

Ainda para o autor o numero de Lyapunov é, portanto, a taxa média de divergéncia de
duas orbitas ao longo das iteragcdes e o expoente de Lyapunov ¢ o logaritmo natural desse
numero. Uma fung¢do pode ser dita cadtica se o expoente de Lyapunov for maior que zero.

De acordo com Alligood (1996) o expoente de Lyapunov ¢ definido como o limite,
quando o tempo tende ao infinito, do logaritmo natural da razao entre a distancia final e a
distancia inicial entre duas trajetérias, dividido pelo tempo. Seja entdo f um mapa do dominio

real R. O Expoente de Lyapunov A(x;) da orbita {x/, x2, x3, ...} é:

h(x1) = limyco (3) Ml f/ o)l + -+ Il Ge)l] 3)

Exemplificando o expoente de Lyapunov através do mapa logistico, € possivel calcular
o expoente para diferentes valores de r, considerando 2000 itera¢des. A Figura 14 apresenta o

resultado, paralelamente ao diagrama de bifurcagao.
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Figura 13 Diagrama de bifurcacio e Expoente de Lyapunov vs r

Strogatz (2015) nos diz que, olhando o grafico do expoente de Lyapunov vs r
paralelamente ao diagrama de bifurcacao, nota-se que A permanece negativo para r < 3,57, e se
aproxima de zero nas bifurcagdes de duplicagcdo de periodo. Os picos negativos correspondem
aos 2"-ciclos. O inicio do caos ¢ visivel perto de r = 3,57, onde A apresenta valores positivos.
Ainda segundo o autor, para > 3,57 o expoente de Lyapunov geralmente aumenta, exceto
pelas quedas causadas pelas janelas de comportamento periddico.

O grafico mostra em quais regides a func¢do exibe comportamento cadtico com
sensibilidade as condi¢des iniciais (expoente acima de 0), regides com comportamento
periddico ou convergente (expoente abaixo de zero) e as regides de transi¢ao do comportamento
periddico para cadtico (expoente igual a zero).

Outro ponto relevante para determinagao do expoente de Lyapunov, conforme a propria
formula 5 apresenta, ¢ a quantidade de periodos para determinagdo de A. A Figura 15, abaixo,
mostra a evolu¢do do expoente de Lyapunov a medida que mais iteragdes sdo adicionadas no

calculo.
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Figura 14 Expoente de Lyapunov vs numero de iteragdes n

Para cada dimensao do espaco de fase de um sistema, existe um expoente de Lyapunov,
formando o que se chama de espectro de Lyapunov. Frequentemente, o foco recai sobre o maior
expoente de Lyapunov, pois este determina o comportamento geral do sistema. Se o maior
expoente de Lyapunov € positivo, isso indica que o sistema ¢ divergente, caracteristico de um
comportamento cadtico. Se € negativo, isso corresponde a uma contragdo do espaco de fase,
indicando que o sistema age de maneira estacionaria ou periodicamente estavel. O espectro
ainda pode ser misto, indicando que algumas varidveis ou diregdes no sistema exibem
sensibilidade as condig¢des iniciais (caracteristica do caos) e outras varidveis sao estabilizadoras.

Para séries temporais produzidas por sistemas dindmicos, a presenga de um expoente
positivo indica caos. Além disso, em muitas aplicagdes ¢ suficiente calcular apenas o maior
expoente de Lyapunov (Rosentein, Collins e De Luca, 1993).

Para isso, serd utilizado o algoritmo proposto por Rosenstein, Collins e De Luca. E a
ideia do algoritmo ¢ calcular o maior expoente de Lyapunov pela reconstru¢ao da dindmica da
série temporal usando o método de incorporagdo de atraso (delay embedding method), que
escolhe um atraso 7 e uma dimensao de imersdo m. A partir de uma série temporal x(z), construa

vetores de estado Y(i) no espacgo de fase m-dimensional:

Yi) = [x(i), x(i + 1), x(i + 2%0), ..., x(i + (m—1)*7)] (4)
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parai =1,2, ...N — (m — I)*r, onde N ¢ o nimero total de pontos de dados. Em seguida se
calcula a distancia Euclidiana entre cada par de pontos no espago de fases reconstruido e se
identifica o vizinho mais proximo Y(j) de cada ponto Y(i).

Calcula-se entao a média logaritmica das distancias entre os pares de pontos vizinhos,
ao longo do tempo. Para cada 7, calcule a média do logaritmo das distancias d(i, k) entre o ponto

Y(i) e seu vizinho mais proximo ao longo do tempo £, ou seja:
D(i) = £ ¥kZ} log (d(i,i+ k) (5)

onde K ¢ o nimero de passos no tempo ao longo do qual as trajetdrias sdo seguidas. O expoente
de Lyapunov ¢ a inclinagdo da curva ajustada aos pontos D(i) em funcao do tempo. Ou seja, ¢
dado pela inclinacdo da linha de melhor ajuste (geralmente obtida por regressao linear) dos
pontos (k, D(i)).

A Figura 16 compara os valores esperados e calculados pelo algoritmo de Rosenstein,

para o expoente de Lyapunov com diferentes valores de » na equagao logistica.

Expoente de Lyapunov
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Figura 15 Expoente de Lyapunov Esperado e calculado pelo método de Rosenstein
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Comparando-se ainda o algoritmo de Rosenstein com o valor esperado do expoente de
Lyapunov para diferentes valores de iteragcdes n, vemos que o algoritmo se aproxima do valor

calculado, conforme Figura 17.
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Figura 16 Expoente de Lyapunov Esperado e pelo método de Rosenstein, para diferentes valores de n

O algoritmo de Rosenstein ¢ vantajoso porque ¢ relativamente simples de implementar
e ndo requer conhecimento prévio das equagdes do sistema dindmico. No entanto, ¢ sensivel a
escolha dos parametros, como a dimensao de incorporagao, o atraso na incorporagao € 0 numero
de pontos usados para o ajuste exponencial.

Outros indicadores sdo auxiliares para analise do comportamento de uma série de dados,

o expoente de Hurst e a entropia amostral sdo dois desses exemplos que veremos adiante.
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3.5 Expoente de Hurst

O Expoente de Hurst, denotado por H, ¢ uma medida estatistica utilizada para analisar
séries temporais, especialmente para identificar a presenga de autocorrelacao de longo prazo ou
memoria nos dados. Este expoente foi originalmente desenvolvido por Harold Edwin Hurst
(Hurst, 1951) ao estudar as varia¢des anuais do nivel do rio Nilo e o controle de vazdes dos
reservatorios.

Hurst utilizou em seus estudos uma razdo adimensional R/S, onde R é a medida entre
niveis maximo e minimo do reservatorio e S € o desvio padrao dos niveis medidos. O valor R/S
permite comparar o reescalonamento de séries temporais das mais diferentes. Hurst concluiu
que o reescalonamento, para muitas séries temporais, pode ser descrito por uma regra, conforme

Hurst (1965).
R

5 = kN" (6)
onde R/S = reescalonamento da série de dados registrados

k = uma constante

N = ntimero de observagoes

H = expoente de Hurst

Para este trabalho utilizaremos o método descrito por Weron (2002), em que muito se
assemelha a Mandelbrot e Wallis (1969), para estimar o expoente de Hurst, H. Esta metodologia
¢ uma abordagem estatistica que se baseia na andlise de séries temporais. Esse método ¢
particularmente util para identificar a presenca de dependéncia de longo alcance ou "memoria"
em dados financeiros, geofisicos, hidrolégicos, entre outros.

Seja X(t) uma série temporal com N observagdes. Sao entdo calculados os desvios em
relagdo a média, isto ¢, Y(t) = X(t) — X, onde X é a média da série temporal. Em seguida é
calculada a soma cumulativa Z(t) = Yf_, Y (i) parat = I, 2, ..., N. Entdo, para cada intervalo
selecionado n calcula-se o intervalo reescalonado R/S: sendo R(n) a amplitude da série
cumulativa Z(?) em cada segmento de tamanho n, ou seja, R(n) = max(Zin, Z2n, ..., Znn) -
min(Zin, Zon, ..., Znn) € seja ainda S(n) o desvio padrao das observacdes originais X(z), em cada
segmento de tamanho .

Posteriormente ¢ calculada a razdo R(n)/S(n) para diferentes tamanhos de segmento .
O expoente de Hurst ¢ entdo calculado como a inclinagdo da reta de melhor ajuste em um grafico

log(R(n)/S(n)) versus log(n).
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Um valor de H > 0,5 indica uma tendéncia a persisténcia, onde um aumento ¢ provavel
de ser seguido por outro aumento e uma queda por outra queda. Um valor de H < 0,5 indica
antipersisténcia, onde um aumento ¢ provavel de ser seguido por uma queda e vice-versa. Um
valor de H = 0,5 sugere um comportamento semelhante a um passeio aleatério, sem memoria.

Na Figura 18 ¢ apresentada uma comparagdo da evolucdo do expoente de Hurst para o
mapa logistico, variando os valores de » e comparando com o diagrama de bifurcag@o. Observa-
se um expoente proximo de 1 enquanto / < r < 3, ou seja, o mapa logistico tem comportamento
periodico ou convergentes. Para 3 > r > 3,57, o expoente de Hurst fica abaixo de 0,5 motivado
pelo comportamento oscilatdrio do mapa logistico. E para » > 3,57 o expoente de Hurst tende

a 0,5 indicando o comportamento aleatdrio da série.

Expoente de Hurst

Figura 17 Expoente de Hurst Esperado e Diagrama de Bifurcacio, para o mapa logistico

Mandelbrot e Wallis (1969) exploram a robustez do método de intervalo reescalonado
(R/S) como uma ferramenta para detectar dependéncia de longo prazo em séries temporais €
fornecer uma medida quantitativa da autocorrelagdo de longo prazo. O método R/S ¢ entdo

eficaz em identificar a presenca de persisténcia ou memoria em séries temporais.
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3.6 Entropia Amostral

Richman e Moorman (2000) introduzem a Sample Entropy (SampEn) como uma medida
menos dependente do comprimento da série em comparagcdo com a Approximate Entropy
(ApEn). A SampEn ¢ projetada para avaliar a complexidade de séries temporais, fornecendo
uma medida da quantidade de previsibilidade ou regularidade em dados fisiologicos e outros
tipos de séries temporais.

Dada uma série temporal {x;, x2, ..., xn} com N pontos, € preciso definir dois parametros:
o comprimento da sequéncia m e o limiar de similaridade ». Entdo ¢ preciso formar sequéncias
de comprimento m paracadaide [ a N—m + 1, isto &, Xu(i) = {xi, Xi+1, ..., Xi+m-1}.

Para cada par de vetores X(i) e X(j) com j # i, calcule a distancia d entre eles, distancia
mAXima duwax(X(i), X(j) = mdx(\xirk — xj¢|) para k = 0, ..., m — 1, é frequentemente usada. E
feita entdo a contagem de sequéncias similares para cada i, conta-se o nimero de vetores X(j)
G#i,j=1,.. N—m)tal que dnix(X(i), X(j)) <r. Denote esta quantidade como B(i) para vetores

de comprimento m e A(i) para vetores de comprimento m+1.

o _ 1 N-m . —
Calcula-se a probabilidade B = PO — (N_m_l)zlﬂ B(i) e A

(N—m—l)l(N—m—Z) YN-m=1A(i). A SampEn ¢é definida como

SampEn(m,r,N) = —In (%) . (7)

Essencialmente, segundo os autores, a entropia amostral (SampEn) compara a
probabilidade de que sequéncias de dados que s3o proximas (similares) para um dado
comprimento m permanecam proximas para o proximo comprimento de sequéncia m+1. Uma
SE menor indica uma maior regularidade ou previsibilidade na série temporal, enquanto uma
SE maior indica maior complexidade ou irregularidade.

Na Figura 19 vemos o comportamento da entropia para o mapa logistico, variando o
valor de r. A entropia segue zerada ou muito pequena até r = 3,57, depois disso ela apresenta

valores crescentes até r = 4, tendo momentos de queda nos 2"-ciclos.
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Figura 18 Entropia Amostral (SampEn) e Diagrama de Bifurca¢io, para o mapa logistico

Independente do sistema analisado, prever seu comportamento ao longo do tempo ¢ algo
de interesse. Mas essa tarefa ndo ¢ simples, principalmente para sistemas complexos que
possuem nao-linearidade, ou seja, sistemas altamente sensiveis as condigdes iniciais.

Isso sugere que, embora um sistema nao linear evolua no tempo com um comportamento
instavel e aperiodico, tal comportamento pode ser deterministico, pois seu estado futuro
depende de seu estado atual.

Neste capitulo, forams explorados os conceitos e metodologias associadas ao expoente
de Lyapunov, expoente de Hurst e entropia amostral, ferramentas auxiliares para a analise de
séries temporais. O expoente de Lyapunov permite identificar a presenca de comportamentos
caoticos em séries temporais. O expoente de Hurst permite identificar os comportamentos
persistentes, antipersistentes e aleatorios. J4 a entropia amostral avalia a regularidade e a
previsibilidade dos dados.

Juntos, esses indicadores abrem caminho para uma compreensao da dindmica de séries
temporais, permitindo uma analise nao-linear do comportamento dos dados. No capitulo
seguinte sera analisada a aplica¢dao desses métodos nas séries de pregos de energia elétrica e

quais insights podem ser feitos a partir dos resultados.
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4 RESULTADOS E DISCUSSAO

Os conceitos apresentados no Capitulo 3 tem papel importante na compreensao da
complexidade, persisténcia e dindmica temporal de séries temporais. A particular aplicagcdo
desses conceitos na série de precos de energia elétrica apresentada no Capitulo 2 tem seus
resultados discutidos nesta secao do trabalho.

Conforme consta na introducao, a motivacdo deste estudo foi trazer um primeiro
entendimento do comportamento ndo-linear da série histérica do preco de energia elétrica e
como isso poder ter uma correlagdo com a dindmica de operacao, planejamento e formagao de
prego.

Inicialmente, o expoente de Lyapunov avalia a estabilidade e sensibilidade do sistema a
pequenas variagdes nas condigdes iniciais. Isso auxilia na compreensdo da resiliéncia do
mercado de energia elétrica diante de perturbagdes e eventos extremos. Aplicando entdo o
algoritmo de Rosenstein as séries semanal e horaria de prego, foram obtidos os seguintes valores

e Semanal: 0,16
e Horario: 0,32

Uma segunda andlise ¢ avaliar as subséries. A Figura 20 apresenta o comportamento

para 5000 subséries de tamanho 2190 para os pregos horarios (2190 horas equivale a trés meses)

e de tamanho 52 para os precos semanais (52 semanas equivale a um ano).



40

Hordrio Semanal
1200 +
1200
1000 -
10040 4
m o
m 4
e =
‘S i
= =
o LF]
= =
g g
= 600 =600
A0 - 200
200 4+ 00 -
] T T : : 0 : :
04 0.2 00 02 . 00 02
Expoente de Lyapunov Expoente de Lyapunov

Figura 19 Histogramas do expoente de Lyapunov para 5000 subséries, de tamanho 2190 para os precos
horarios e tamanho 52 para os precos semanais

Os resultados obtidos das 5000 subséries sdo os seguintes:
e Semanal: 0,09 £ 0,06
e Horario: 0,17 + 0,08

Os expoentes positivos obtidos, tanto para as séries inteiras quanto para as subséries,
indicam que o preco de energia € sensivel as condi¢des iniciais e isso sugere maior dificuldade
na previsdo dos precos. Esse comportamento pode ser associado as diferentes fontes energéticas
que compoe a matriz elétrica e trazem incertezas na formacgao do preco.

A segunda parte envolveu o calculo do expoente de Hurst, para indicar a persisténcia ou
reversdo de tendéncias nos precos. Como visto no Capitulo 3, essa métrica oferece uma
perspectiva para modelagem de longo prazo, fornecendo informagdes sobre a natureza das
tendéncias. Foram calculados os expoentes de Hurst para as séries semanal e horaria, com os
resultados

e Semanal: 0,85
e Horario: 0,95



41

Uma segunda andlise, conforme a Figura 21, foi o comportamento do expoente a medida
que a série aumenta, ou seja, para visualizar o comportamento do expoente conforme aumentam

as quantidades de registros das séries.

Semanal

----- total = (.85

=

=
=]

Expoente de Hurst
=

07

] 200 400 600 B0 1000

n.
Heorario

""" total = 0.95

Expoente de Hurst

n

Figura 20 Expoente de Hurst vs niimero de registros n

Por fim, a Figura 22 apresente um estudo do comportamento do expoente de Hurst para
5000 subséries de tamanho 2190 para os precos horarios (2190 horas equivale a trés meses) e
de tamanho 52 para os pregos semanais (25 semanas equivale a um ano). Onde foi possivel
notar, para os pregos horarios, uma aproximagao dos valores de expoente de Hurst das subséries

com a série principal.
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Figura 21 Histogramas do expoente de Hurst para 5000 subséries, de tamanho 2190 para os pregos
horarios e tamanho 52 para os precos semanais

Os resultados obtidos das 5000 subséries sdo os seguintes:
e Semanal: 0,69 +0,13
e Horario: 0,74 £ 0,22
Os valores obtidos maiores que 0,5 para o expoente de Hurst, para a série total e
subséries, sugerem uma tendéncia de persisténcia, indicando que aumentos ou diminui¢des nos
precos tém maior probabilidade de serem seguidos por movimentos similares. Isso implica uma
memoria longa na série temporal, onde os pregos futuros sdo influenciados por comportamentos
passados de maneira significativa, podendo indicar menos volatilidade e mais previsibilidade
nos movimentos de precos a longo prazo. Isso pode estar associado ao fato de cenéarios
meteoroldgicos ndo se alterarem rapidamente e influenciarem a formacao do preco durante
longos periodos.
O terceiro indicador avaliado foi a entropia amostral, que ¢ uma medida de desordem e
da imprevisibilidade nos padrdes temporais dos pregos. Essa ferramenta ¢ auxiliar para
entendimento da volatilidade, identificar mudancas de regime e avaliar a presenca de padrdes

sazonais, oriundos das fontes energéticas que compde a matriz.
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Para todo o histdrico analisado, as entropias obtidas foram:
e Semanal: 0,22
e Horario: 0,03
Uma outra anélise feita, conforme a Figura 23, foi o estudo das 5000 subséries de
tamanho 2190 para os pregos horarios (2190 horas equivale a trés meses) e de tamanho 52 para

0s pregos semanais (52 semanas equivale a um ano).
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Figura 22 Histogramas da Entropia para 5000 subséries, de tamanho 2190 para os precos horarios e
tamanho 52 para os pregos semanais

Os resultados obtidos das 5000 subséries sdao os seguintes:
e Semanal: 0,61 £ 0,37
e Horario: 0,07 + 0,05
Para uma série de pregos de energia elétrica, uma SampEn acima de 0 significa que
existem padrdes de comportamento que ndo sdo completamente previsiveis ou regulares.
Entretanto, existe uma diferenga do comportamento da entropia para as séries horaria e semanal.
A série semanal apresenta maior entropia, este valor relativamente mais alto que o horario
sugere que a série de precos semanais de energia elétrica tem uma maior complexidade e menor

previsibilidade em compara¢do com a série horaria. Isso pode ser devido a variagdes mais



44

significativas nos pre¢os ao longo das semanas. Para a série horaria este valor mais baixo indica
que a série de precos hordrios de energia elétrica ¢ mais regular e previsivel. Variagdes nos
precos da energia elétrica dentro de um tnico dia tendem a seguir um padrao mais consistente.

A presenga de complexidade nos precos pode ser reflexo de volatilidade no mercado,
onde fatores como variagdes na oferta e demanda, mudancas regulatdrias, flutuagdes nos custos
de producdo de energia e eventos externos, influenciam os pre¢os de maneira ndo linear e
imprevisivel.

A SampEn acima de 0, mesmo que levemente acima, indica que os precos possuem um
certo grau de complexidade e imprevisibilidade, refletindo a influéncia de multiplos fatores
internos e externos que afetam o mercado. O expoente de Lyapunov positivo reforca essa
interpretagdo, apontando para uma sensibilidade as condig¢des iniciais € uma tendéncia ao
comportamento cadtico, onde pequenas mudangas podem levar a variagdes significativas nos
precos. Isso sugere que o mercado de energia ¢ dindmico, com a potencialidade de mudangas
abruptas e imprevisiveis nos precos decorrentes de eventos pequenos.

Por outro lado, um expoente de Hurst proximo de 1 sugere uma forte tendéncia de
persisténcia nos precos da energia elétrica, indicando que as tendéncias atuais t€ém uma alta
probabilidade de continuar no futuro préximo. Essa persisténcia, quando vista em conjunto com
a complexidade e a sensibilidade as condigdes iniciais, sugere que, embora 0s precos possam
seguir uma tendéncia estavel a longo prazo, eles estdo sujeitos a volatilidades de curto prazo e
a desvios imprevisiveis. Para os participantes do mercado, isso implica na necessidade de
estratégias de gestdo de risco planejadas e a utilizacdo de ferramentas analiticas para entender
a dinamica do mercado de energia. Os operadores ¢ investidores devem estar preparados para
responder as mudancas no mercado, aproveitando as tendéncias persistentes, mas também
protegendo-se contra a volatilidade e os riscos associados a natureza imprevisivel e
potencialmente caotica dos precos da energia elétrica.

A identificagao do comportamento caotico nos precos de energia impulsiona a inovagao
em modelagem e analise. Métodos mais avancados podem ser desenvolvidos para capturar

melhor a complexidade subjacente e melhorar as estratégias de previsao.
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5 CONCLUSOES

A utilizacao das métricas descritas no Capitulo 3 deste trabalho, na analise da série de
precos de energia elétrica do Brasil, serve de ponto de partida para um aprofundamento do
estudo do setor elétrico e como a operacdo e planejamento do sistema podem influenciar na
formagao do preco, trazendo reflexos para a economia do pais.

Os resultados compilados, conforme figura 23, indicam que pequenas variagdes nos
precos podem levar a divergéncias significativas no longo prazo, dificultando previsoes.
Inércias no mercado se refletem na série, mantendo os pregos em uma trajetoria consistente ao

longo do tempo. E existem elementos de aleatoriedade e complexidade que podem introduzir

incertezas na previsao de precos.

Expoente de Expoente de Entropia
Lyapunov Hurst Amostral

Té Série total 0,16 0,85 0,22

]

ga Subséries 0,09 0,69 0,61

2 Série total 0,32 0,95 0,03

‘<

< Subséries 0,17 0,74 0,07

Figura 23 Tabela resumo dos valores médios dos indicadores analisados, para a série total e 5000
subséries

A partir deste estudo inicial, pesquisas futuras podem expandir a aplicacdo desses
indicadores para outras séries temporais econdmicas e financeiras, explorando sua utilidade em
diferentes contextos e mercados. A continuagdo deste trabalho podera abordar limitacdes
identificadas, testar a aplicabilidade dos métodos em previsdes de longo prazo e desenvolver

modelos preditivos que incorporem essas métricas, abrindo espaco para a analise econdmica e

a gestao de riscos no mercado de energia.
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ANEXO A — CODIGOS COMPUTACIONAIS

Cddigo utilizado para calculo dos resultados no Capitulo 4 — Resultados e Discussao.

#HH#BIBLIOTECAS UTILIZADAS
import pandas as pd
import nolds

import numpy as np

#H Carrega dados do Excel em um DataFrame do pandas

#Preco Semanal

path_semanal = "C:/caminho_do_arguivo/nome_do_arguivo semanal.xlsx’
sheet_name_semanal = 'Planilhal’ # Substitua pelo nome da sua planilha
dados_preco semanal = pd.read excel(path semanal, sheet name=sheet name semanal)

#Preco Horario

path_hora = 'C:/caminho_do_arquivo/nome_do_arquivo hora.xlsx’
sheet_pame_hora = 'Planilhal® # Substitua pelo nome da sua planilha
dados_preco_hora = pd.read_excel(path_hora, sheet name=sheet name hora)

##H Escolhe a coluna desejada e a converte para um array numpy, depois limpas os dados

col_preco_semanal = 'PLD" # Substitua pelo nome da sua coluna

preco_semanal = dados preco semanal[col preco semanal].values

# Remove Mals e Infs da lista

dados_preco_semanal limpo = [x for x in preco_semanal if not (np.isnan(x) or np.isinf(x))]

col _preco hora = 'Valor' # Substitua pelo nome da sua coluna

preco_hora = dados_preco_hora[col_preco hora].values

# Remove Mals e Infs da lista

dados_preco_hora limpo = [x for x in preco_hora if net (np.isnan(x) er np.isinf(x))]

iHHCalcula o expoente de Lyapunov total da série
lyapunov_total semanal = nolds.lyap r(dados_preco semanal limpo, emb dim = 4, lag = 1

, min_tsep = None, tau = 1, min_neighbors = 28, trajectory_len = 18

, fit=u'RANSAC', debug_plot=False, debug_data=False, plot_file=None, fit_offset=0)
print(round({lyapunov_total_semanal,5)) |

lyapunov_total_hora = nolds.lyap_r(dados_preco_hora_limpo, emb_dim = 4, lag = 1

, min_tsep = 258, tau = 1, min_neighbors = 28, trajectory_len = 18

, fit=u'poly’, debug plot=False, debug data=False, plot file=None, fit offset=8)
print{round(lyapunov_total hora,5))

#HHCalcula o expoente de Hurst total da série

hurst_total semanal = nolds.hurst_rs(dados preco semanal limpo, nvals=None, fit=u'RANSAC®,
debug plot=True, debug data=False, plot file=None, corrected=True, unbiased=False)

print{round(hurst_total semanal,5))

hurst_total hora = nolds.hurst_rs(dados_preco_hora_limpo, nvals=None, fit=u’'RANSAC®,
debug plot=True, debug data=False, plot file=None, corrected=True, unbiased=False)
print{round(hurst_total hora,5))

#H#Calcula a Entropia total da série

sampen_total semanal = nolds.sampen{dados_preco_semanal limpo, emb dim=4, tolerance=MNone,
debug_plot=False, debug data=False, plot_file=None)

print{round(sampen_total semanal,5))

sampen_total hora = nolds.sampen{dados_preco hora limpo, emb dim=4, tolerance=None,
debug_plot=False, debug_data=False, plot_file=None)
print{round(sampen_total hora,5))

48
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#HiCalculo das subséries
cont = @
cont_histograma lyap = []
cont_histograma_hurst = []
cont_histograma_sampen = []
while cont<5860:

# Escolher aleatoriamente o ponto de inicic para obter uma amostra continual de 5008 dados
ponto_inicio = np.random.randint{€, len(dados preco hora limpo) - 738)

# Obter uma amostra aleatdria de 188@ dados consecutivos
amostra_aleatoria = dados_preco _hora_ limpo[ponto_inicio:ponto_inicio + 738]

# Calculo dos indicadores
amostra_aleat_lyap = nolds.lyap_r(amostra_aleatoria, emb_dim = 4, lag = 1

, min_tsep = 258, tau = 1, min_neighbors = 28, trajectory_len = 18

, fit=u'poly’, debug_plot=False, debug_data=False, plot_file=None, fit_offset=08)
amostra_aleat_hurst = nolds.hurst_rs{amostra_aleatoria, nvals=Mone, fit=u’'RANSAC®,

debug plot=False, debug data=False, plot file=None, corrected=True, unbiased=False)
amostra_aleat sampen = nolds.sampen{amostra_aleatoria, emb dim=1, tolerance=Hone,

debug_plot=False, debug_data=False, plot_file=None)

# Armazena os dados

cont_histograma lyap.append(amostra_aleat lyap)
cont_histograma_hurst.append{amostra_aleat hurst)
cont_histograma_sampen.append(amostra_aleat_sampen)
cont +=1



