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RESUMO

Em algoritmos de negociagdo, um grande numero de fluxos de dados deve ser
analisado a cada momento assim que um novo dado se torne disponivel, gerando
assim um grande esforgco computacional. Através do estudo da correlagdo e dos
padrées dos fluxos de dados pode se obter oportunidades para operacdes de
arbitragem. Baseado nessa crenga este frabalho tem como objetivo demonstrar uma
aplicagdo de uma arbitragem estatistica através do meétodo dos minimos quadrados
flexiveis (MQF) e de sua equivaléncia com o fitro de Kalman aplicado em um
experimento utilizando ativos listados na BM&F Bovespa e obtendo resultados

promissores.

Palavras-chave: Arbitragem estatistica, Filiro de Kalman, minimos quadrados

flexiveis algoritmo de negociacao.



ABSTRACT

in trading algorithms, a large number of data streams have to be analyzed each time
so that a new data is available, thus generating a large computational effort. it's
possible to get opportunities for arbitrage operations from the study of patterns and
correlation of data streams. Based on this belief this work aims to demonstrate a
statistical arbitrage application using the method of flexible least squares (FLS) and
their equivalence with the Kalman filter applied to an experiment using the assets

listed on the BM&F Bovespa and getting promising results.

Keywords: Statistical arbitrage, Kalman filter, flexible least squares, algorithmic

trading.
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1 Introducéao

Nos ultimos anos tem se visto um aumento da necessidade por parte dos bancos,
clubes, fundos de investimentos, e corretoras de valores, para se automatizar as
operacdes dos sistemas de negociacdes. No mercado americano e europeu ja esta
cada vez mais consolidado o uso de sistemas autdnomos de negociacdo ou
algorithmic trading systems (ATS) que efetuam operagdes nos mercados com pouca

ou nenhuma intervengao humana (para mais detalhes consulte Bloomberg... (2010)).

Nas economias emergentes, devido a atual situagdo econémica mundial, ha um
aumento da demanda destes sistemas e principalmente estratégias de investimento
que tirem o maximo proveito das particularidades de cada mercado como é caso do
Brasil e outros paises emergentes, para mais informagdes consuite High...(2011).
Isto é feito através de sofisticadas plataformas de negociagéo baseados em modelos

preditivos que servem de base para estrategias de investimento especulativo.

Em algoritmos de negociagao, um grande numero de fluxos de dados deve ser
analisado a cada momento assim que um novo dado se torne disponivel, gerando
assim um grande esforgo computacional. Um problema recorrente esta em identificar
dependéncias entre fluxos de dados dependentes do tempo, isso pode ser modelado
como um problema de regressdo. Desta maneira um sistema automatizado de
negociacdo deve ser capaz de quantificar em que medida um fluxo depende de

outros fluxos de cotagdo em um dado ponto no tempo.

A cada ponto no tempo, assume se que o fluxo do ativo alvo depende de forma
linear de uma série de outros fluxos, porém os coeficientes dos modelos de

regressao podem mudar de maneira suave ao longo do tempo.

O objetive deste trabalho € demonstrar uma solug&o possivel para uma estratégia de
negociagdo conhecida como pair trading, onde o foco &€ encontrar disparidades no
comportamento de ativos listados em bolsa e a fim e executar uma operacio de

arbitragem.



Este trabalho estd organizado da seguinte maneira. No capitulo 2 trataremos
brevemente dos tipos e de como funcionam as estratégias de arbitragem estatistica,
assim como da motivagao para o método proposto. No capitulo 3 sera apresentado
o método dos minimos quadrados flexiveis (MQF), um modelo de regresséo linear
que ndo requer uma suposicio probabilistica para seu uso, onde tal caracteristica é
muito Util para o proposito deste trabalho. No capitulo 4 sera apresentada uma
conexao entre o MQF e as equacdes do filiro de Kalman que levara ao modelo que
sera implementado. Sera tratada no capitulo 5 uma forma de extrair os componentes
principais a partir de um grande nimero de fluxos de cotagdo, complementando o
MQF na obtengado no algoritmo da estratégia de investimento. A implementagao da
arbitragem estatistica e bem como seu resultado sera apresentado no capitulo 6.

Por ultimo, consideracbes finais serdo tratadas no  capitulo 7.



2 Estratégia de arbitragem estatistica

Este trabalho tera foco na arbitragem estatistica, uma gama de estratégias que tem
como principal caracteristica a procura por disparidades de pregcos de um ou mais
ativos baseados no valor esperado destes ativos, tais estratégias sdo amplamente

utilizadas em bancos, Assets, em fundos de investimentos e fraders independentes.

O exemplo mais simples de arbitragem estatistica é uma estratégia de investimento
conhecida como pair trading, onde um o investidor deve escolher dois ativos que
tendem a se mover de forma correlacionada ao longo de um grande periodo. Desta
forma o investidor pode obter oportunidades com as disparidades momenténeas dos
precos destes ativos, posicionando se comprado no ativo em baixa e vendido no
ativo que estiver sobrevalorizado, e revertendo esta posicdo quando ambos os
ativos voltarem a um estado proximo ou igual ao original. Este tipo de estratégia
tenta capturar a tendéncia que o mercado ira seguir e isto é feito através da

identificacdo de padrbes presentes nas séries de precos.

As tendéncias dos precos de ativos sdo comumente relacionadas com correlacdes
nas variagdes de suas séries, uma tendéncia é uma série de pregos de ativos que se
movimenta constantemente em uma diregdo ao longo de um determinado intervalo

de tempo, onde as séries exibem uma correlagéo positiva.

A figura 1 mostra um exemplo desta estratégia. Onde vemos a evolug&o historica
dos precos de dois ativos, a AMBEV3 e a AMBEV4 denotamos x; e y,
respectivamente onde t = 1, 2,3 ..., note que no periodo apresentado as duas series
de pregos exibem uma dependéncia. Esta estratégia poderia ser implementada em
um sistema automatizado de negociagdo para tirar proveito das divergéncias
temporarias antes que os pregos dos ativos voltem para o seu estado de equilibrio.
O algoritmo para o spread é pode ser descrito como y, — x; = 5,. Por exemplo, se o
valor de s, em um dado momento t for maior que uma constante ¢, assume se que o
ativo AMBEV3 esta sobre valorizado e o investidor ou um sistema automatizado,
devera se posicionar de maneira comprada em AMBEV4 e vendido em AMBEV3, o
lucro sera obtido quando estas ac¢bes reverterem a média. Embora uma relagao

estavel entre dois ativos possa persistir por algum tempo, esta pode desaparecer de
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repente ou apresentar-se em diferentes padrdes, como padrdes peridédicos ou uma
tendéncia que pode ser capturado através da implementacdo de outros mais

modelos refinados.

evolugdo dos pre¢os
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Figura 1 - Comparac3o das cotacdes da AMBEV3 e AMBEV4

As oportunidades para o0 uso de uma estratégia de pair trading como descrito acima
sdo limitadas, pois, dependem de ativos que possuem correlacéo positiva, préxima a
1. Para este problema foram criadas ao longo de dos anos extensfes e variagdes
baseadas neste tipo de estratégia. Por exemplo, arbitragem de basket, também
conhecida como arbitragem de indice, onde o investidor explorar as discrepancias
temporarias entre um indice e uma carteira formada com os ativos formadores desse
indice. No mercado brasileiro essa estratégia pode ser feita comprando o contrato
IBOV futuro e vendendo a carteira com os papéis das 50 empresas formadoras do
IBOV nas devidas proporgdes de cada papel participante do indice ou vice-versa.

Neste trabalho sera abordada uma versdo da estratégia de pair frading onde serao
exploradas as discrepancias temporarias de pregos entre um dado ativo escolhido
pelo investidor e outro ativo artificial que reproduz o ativo escolhido. O ativo artificial
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€ obtido pela combinacéo linear de um conjunto de precos no qual assumimos ter

correlacdo com o ativo escolhido.

Segundo Montana et al.(2008), a justificativa desta abordagem parte do principio de
gque se existe uma forte associacao entre o ativo artificial e o ativo escolhido dure por
um longo periodo de tempo esta associacdo sugere que os ativos reagem a algum
componente, e ndo observado, subjacente de risco que explica essa dinamica que
pode incluir todas as fontes de risco relacionadas ao mercado. O objetivo dessa
abordagem e minimizar todas as fontes de risco relacionadas ao mercado e obter

um fluxo de dados que representa um o risco-alvo especifico.

Por exemplo, suponha que y, seja o valor de um ativo em um momento ¢, e . seja o
valor do ativo artificial calculado a partir de um conjunto de pregos no mesmo
momento t. Até o momento o ativo artificial pode ser interpretado como o “prego
justo” do ativo escolhido, dada toda a informagao disponivel e condigcbes de
mercado. A diferenga entre y, e ¥, representa o risco associado ao ativo escolhido,
ou seja, o descasamento do precgo, e se este comportamento contenha um padrao
previsivel é possivel explorar este comportamento em um investimento especulativo.
A estratégia depende fundamentalmente da forma e da precisdo de como se estima
o valor do ativo artificial, isto sera visto a seguir através do estudo dos minimos

quadrados flexiveis em uma abordagem apresentada por Montana et al.(2008).
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3 Minimos quadrados flexiveis

Um modelo de regressao linear padrao contém uma variavel de respostay, e p
variaveis de predicdo x, ..., x,, que formam um vetor coluna x, = (xy¢, ..., xp)" O
modelo nos diz que y, pode ser aproximando por x.;f, onde f & um vetor de
dimensao p dos parametros de regressdo. A regressdo dos minimos quadrados
estima § do vetor de parametros sdo encontrados como os valores que minimiza a

de fungéo de custo

T
C(B) = ) (e xeBY: )

se a variavel de resposta y, e o vetor de predicdo x, sao observagdes em um
momento t de um conjunto de fluxos de dados, € possivel que a dependéncia entre
estas duas variaveis mude e evolua de maneira dindmica ao longo do tempo. O
método dos minimos quadrados flexiveis (MQF) foi introduzido nos anos 80 por
Kalaba e Tesfatsion (1989) como uma generalizacdo do modelo de regressao linear
descrito acima gque permite o0 uso de variaveis dependentes do tempo em seus

coeficientes. Adicionando a suposigao basica da regresséo

Y —xB) =0 (2)
o MQF também postula que

Ber1 — B = 0 (3)
desta forma os coeficientes irdo evoluir de maneira lenta e gradual ac longo do

tempo.

Uma importante caracteristica do MQF é a n&o necessidade de se especificar as
probabilidades para o erro residual da form. (2), e este aspecto € muito util para
casos onde normalmente ndo seja possivel especificar um modelo preciso para
descrever os erros e que seja valido em todos os momentos, como é o caso dos
fluxos de cotagdo. De acordo com Montana et al.(2008) o modelo do MQF funciona
bem mesmo quando suposigdo da form.(3) € violada, em mudangas grandes e

repentinas de §,_, para §,, para alguns momentos de t.
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O método MQF consiste em minimizar uma versdo penalizada da fungao de custo

da regressac dos minimos quadrados

T T-1
CB) =) e =X +11 ) & @
t=1 t=1
onde
‘ft - (BH] - ﬁt )'(ﬁt+1 = Be) (5)

e 1 € um valor escalar maior que 0 a ser definido.

No algoritmo original proposto por Kalaba e Tesfatsion (1988), a minimizagdo do
para cada B, é feita de forma seqliencial, onde todos os pontos de dados estdo
armazenados em uma base de dados e podem ser acessados prontamente. Na

seqliéncia sera visto o nucleo dessa abordagem.

De acordo com Montana et al.(2008) o menor custo do processo de estimagao no
tempo t pode ser escrito recursivamente como

in

c(Brrii ) = ﬁtf {(ve - x'tPe )2+ pé + (B0} (6)

além disso, este custo € assumido para ter uma forma quadratica

c(Bes ) = B'Se—1Br — 2B',5¢-1 + 111 (7)
onde S,_, e 5.4 tém dimensdes p x p e p x 1, respectivamente, e r,_, € uma variavel
escalar. Substituindo a eq.{7) na eq.(6) e, em seguida, derivando a funcdo de custo
da eq.(6) respeitando se 8, e condicionado a §,,,, obtém-se uma equacao recursiva

de atualizagéo para o coeficiente de regressao variavel no tempo

Br = de+ MBria (8)

onde

de = u My (Se-1 + X Ye)
M, = u(se—, + pl, + xtx't)—l
lembrando que as recursdes sao iniciadas com os valores de S, e s, com algum
valor. Agora, segundo Montana et al.(2008), usando a eq.(8), a funcido de custo

pode ser escrito como
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CBrsts k) =B, Ste1 — 2B, Se + 11

onde

Se = ull, + M) (9)
s; = pd, (10)
Ty =Ty + Y5 — (Spo1 + x0ye)'d,

e onde I, € uma matriz identidade p x p. Para aplicar a eq.(8), este procedimento
exige que todos os ponios de dados até T devem estar disponiveis, de modo que o
vetor de coeficientes 5 deve ser calculado primeiro. Os trabalhos de Kalaba e
Tesfatsion (1988) e Montana et al.(2008) mostram que o calculo da estimativa f;

pode ser obtida seqgliencialmente como

Br = (Sr—y + 2px'p) " (S7r—1 + XrYr)

posteriormente, a €q.{(8) pode ser usada para estimar todos os vetores de

coeficientes restantes fy_,4,. . ., £, indo para tras no tempo.

O procedimento baseia-se no ajuste do pardmeiro u, onde esta variavel regula a
suavizando a influéncia da fungéo de custo definida em na eq.(4). O parametro u é

definido como

(1-46)
H=775%
onde & & um valor escalar, assim, com um § proximo a 0, corresponde a maiores
valores de u, dando maior peso para a fungado de custo. Por outro lado um vaior

maior de & resulta em uma influéncia menor de y para o MQF estimar §, .

Tendo interesse em situagbes em que os pontos de observagao dos fluxos de dados
chegam sequencialmente, € ndo em situagdes em que se tém todos os pontos
prontamente disponiveis. De acordo com Montana et al.(2008), cada variavel x, da
matriz de dimenséao p representa um ponto de observacgéo do fluxo de pregos no

tempo. Neste contexto, usando o método dos minimos quadrados flexiveis o calculo

de 8, é dado pela seguinte equagao recursiva,

Br = (Seo1 + xex') H(Spmr + XeIr) (11)

onde S.e s; s&o
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S = pu(Se—q +ul, + XeX ') H(Seo1 + xex) (12)

Se = f(Sp—q + plp F 2:x°) TN (Sem1 + X e)
como descrito em Montana et al.(2008) este algoritmo tem uma boa precisao,
retornando ao caminho dos seus coeficientes, tanto no caso onde todos os dados
estdo a disposigdo, como no caso aonde os dados chegam de forma seqilencial, e
mesmo quando a premissa da form.(3) é quebrada devido a saltos abruptos nos

valores dos fluxos de dados.
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4 Minimos quadrados flexiveis e Filtro de Kalman

O método MQF puro apresentado na ultima se¢éo nos impde alguns “desafios” tanto
do ponto de vista do algoritmo como computacional, como estimar a matriz de
covariancia e inversao das matrizes das eq.(11) e eq.(12). Desta forma, se
assumirmos que os coeficientes de regressao podem conter valores aleatorios sem

perder o a flexibilidade e generalidade do método original.

Embora a hipotese geral exija apenas que a evolugéo dos coeficientes de regressao
de f.,, — B; seja pequena a cada passo e todas as vezes, ndo ha nenhuma
restricao ao fato de que cada vetor B, possa ser um vetor randémico, tanto que no
trabalho original de Kalaba e Tesfatsion (1988), 5, é tratado como uma seqiiéncia de

incognitas a serem estimadas.

Com essa suposicdo em maos, € possivel fazer uma ligagdo algébrica entre as
equacdes do metodo MQF e as equacdes do filtro de Kalman (FK), dando assim
uma solugao para os “desafios” descritos ha pouco, além de dar um sentido para o
paradmetro u da fungdo de custo. Neste capitulo sera mostrado um meétode proposto

por Montana et al.{(2008) que conecta o MQF com FK.

4.1 Filtro de Kalman

O filtro de Kalman é um poderoso método para a estimacgao de ., onde o coeficiente
de regressao em t + 1 € modelado como uma versdo com ruido do coeficiente
anterior no tempo t. Segundo Montana et al.(2008) foi introduzido um vetor aleatério

w, com média zero e uma matriz de covariancia V,,, de modo que
Bis1= Pe+w, t=01,.T—-1

da mesma maneira, foi introduzida uma variavel €, com média zero e variancia V,,
Ye= X+ t=01,..T—1

considerando ambas as equag¢bes acima formam um modelo de estado- espago no
qual se assume que as séries {w,} e {¢,} sd0 mutuamente e individualmente nao

correlacionadas, ou seja w, ndo tem correlacdo com w;, assim como ¢, nao tem
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correlagdo com ¢, , € w, ndo tem correlagdo com w,., para qualquer valor dezec
ou a #b. Ainda se assume que para todo t, w;, € € B, Inicial ndo sao
correlacionados. Nenhuma suposicao sobre a distribuicdo de ¢, e w; € feita, assume
se apenas que ela é desconhecida. Desta maneira, a Unica diferengca entre o

sistema especificado acima e o MQF é a suposigao de aleatoriedade da B;.

Para se estabelecer uma conexdo entre 0 FK e o MQF, Montana et al.(2008)
construiu uma forma alternativa do filtro de Kalman que néo faz suposigbes sobre as
distribuicbes de €, e w,, N@o se baseiam em suposi¢gdes probabilisticas, e ainda nao

necessitando de inversdes de matrizes para o calculo da estimacgao.

No tempo ¢, definimos £, como o valor estimado de £; € $,41 = E(y:41), O resultado
do valor esperado de y,,,, a variancia de y,,, € conhecida para cada momentot e
dada por @, = Var(y,,1), 0 erro para cada passo é definido comoe, =y, — E(y;). A
matriz de covariancia de 8, — f, como P, e R, é a matriz de covariancia de 8, — £,_+,
assim podemos escrever P, = Cov(B, — f;) e R, = Cov(B, — f,_,) e assumindo a

linearidade do sistema, podemos ver que, notempo ¢t — 1,

Ri=P_1+V,
Ve = x'tﬁt—:l
Qr = X' Rexe + Ve
onde P._, e f3,_, assumimos como conhecidos, a equacao recursiva FK atualizard P,
e B, emfungdo de P_; € fr_.
Imagine que queremos obter um estimador de g, que seja linear em y,, que é
B: = a, + K,y,, para um a, e K, que serdo definidos mais a diante Assim podemos

escrever

Be = ai + Kee, (16)

onde
a; = P4
e =Y — X¢Br1

desta maneira mostraremos que para um K,, e se 5, € necessario para a seguinte

minimizacado da soma dos quadrados



T
C= Z(J’t - x’tﬁt)z
t=1

para provar iISSO, escrevemos

Y = (y]_: '"'yT)'
X={"...x'r)
B=(p,..5,)

£=(eq,..,er)

K, -~ 0
0 - K,

assim podemaos escrever a eq. (17) da seguinte forma
C=C(B)= (Y —-XB)(Y—-XB)

eB =4 +Keondead =((@),...ap))"

(17)

18

Mostraremos que A* = B*, onde B* = (#,, ..., °,) . Com o B acima exposto, a soma

dos quadrados pode ser escrita como
S(B)= (¥ — XA — XKe) (Y — XA* — XK¢)

= (Y — XA)(Y — XA") — 2(Y — XA")XKe + £K'X'XKe

gque é minimizado quando Y — XA* ou quando 0 = E(Y — XA"), levando a 4" = B*,

assim, a; = f3,_, da eq.(16) temos

B = Bioa + Keep
para um K, (sera definido mais a frente) e da definig&o de P, temos:
P, = Cov(Be — (Be-n + Ke(x'Be + € — x'tfe-1)))
= Cov ((fy = Kex' ) (Be = Be—v) — Kie€:)
= (I, = Kex')(Ip = %K' )Ry — VoK K,
=R, — KX Ry — R K'y + QK K,

(18)

(19)
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assim, podemos escolher um K, que minimiza

EB: = Be)'(B: — Br) (20)
gque é 0 mesmo gque minimizar o trago de P,, e, portanto, K, é a solugdo da equagao

matricial

dtracgo(P, TR0
Kbl oS {40 . —2(x th) + 20K, =0
oK,

dtrago(P;)

i & a derivada parcial do vestigio de P;, que respeita K,. Resolvendo
t

onde

5 R 3 5 .
esta equagdo encontraremos K, =é—xt, onde a quantidade K;, também conhecida
t

como o “ganho de Kalman”, & ideal entre todos os estimadores lineares de 8, que

minimiza a form.(20) junto com K, :%, a partir da eq.(19) a minima matriz de
t

covariancia P, &

Py = Ry — Q. KK"; (21)
o fitro de Kalman é formado basicamente das equagbes eq.(18) e eq.(21),

acompanhados de
Rex,
K, =
TQ
Rt = Pt—l + Vw
Qe = x"tRix; Re + Ve

j— ]
e = Yr — X'tPr

os valores iniciais de f, e P, devem ser dados (normalmente iniciando ambos com

0}, note que da recursdo de P, e R, temos

Riy1 =R — QKK +V, (22)

4.2 Aplicando o MQF ao Filtro de Kalman

De acordo com Montana et al.(2008), as equagbes do filtro de Kalman s&o

normalmente derivadas considerando uma distribuicdo normal para ¢, e w,
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respectivamente, esta hipétese sobre a distribuicao permite a derivagdo da fungéo
de verossimilhanga, assim, quando a verossimilhanga normal esta disponivel,

podemos constatar que a sua maximizag&o € equivalente a minimizar a quantidade

Z(yt_xtﬁt) %zf

respeitando g, ..., fr onde &,, definido na equacdo (5), a prova estda em Jazwinski

(1970), observando a expressdo acima vemos que ela é a funcio de custo definida

na eq.(4) apenas substituindo ;1— por u.

Para o caso deste trabalho, e para um cenario mais geral, nenhuma distribuicao
pode ser assumida. Podemos chegar neste resultado, através de uma reorganizacéo
da eq.(11) na forma da eq.(18), que & o estimador FK de ., note que da eq.(12)

podemos escrever
(St—1 + xtx't)-I o #St-l(st—l + .“Ip + xtxrc)-l

substituindo na eq.(11) nas temos g, = 57 's,, entdo teremos

bt — b1 = St_lst - Sé_—115t—1
»y—1 B
= (St—l + XX t) (Se—1 +x:¥e) — St-Iist—1

St_—llxtx'tst_—ll (Se—1 + X ¥e)
X Sihx + 1

_ co-1
=8, 01%: Y —

St_"lle fo-1 ‘o1 r o1
= ' S~1x +1 (Vex ¢Sea%e + ¥ — X ¢St 00801 — Xt 821X Ve)
tor-1%t
Sihx, VA
o —— — X
x’tSc“—lzxt T1 e tBe-1)

= Ktet

onde
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V=1

resta provar gue a recursividade de S, como em (12) se comunica com a recursao da
eq.(22), para R,;, = S7!, partindo se da eq.(12) e usando o lema de inversédo de

matriz, obtemos
Reya =S¢t =p7 (S q + xtx't)—l(st-l + ul, + xtx't)
. #_1(113 + pu(Se-q + xtx't)_l)
= u My + (Spmg +Hxpx )

-1 " o1
Seo1XeX ¢ 8i4

- 4 —1I
' Sixe + 1 o

=Ry — QK K's +V,
que é a recursdo FK descrita na eq.{(22), onde V,, = p1,.

Claramente, vemos que o f3, estimado pelo MQF visto na eq. (11) é o mesmo que o0

estimador B, do filtro de Kalman na eq.(18), com isso temos

1
Cov(Biys — Br) = ;Ip

desta forma temos o pape! do parametro de suavizacao u definido na eq.(4), com u
tendendo ao infinito a matriz de covariédncia de §,,, — B, tende ao infinito, o que
significa que B4, = B, para todo t, reduzindo o modelo uma regressdo com
coeficientes constantes. Quando u tende a zero, a matriz de covariancia de 8,,., — B;
terd uma diagonal com valores de muito elevados dos seus elementos fazendo com

que os valores estimados por g, flutuem erraticamente.

Um efeito importante da correspondéncia estabelecida entre a MQF e o FK do pontc

de vista computacional, como dito antes, é que o filtro de Kalman nao necessita de
nenhuma inverséo de matriz, para estimar cada £, em qualquer t. Isso & muito Gtil,

pois p pode ser muito grande.



22

De maneira resumida sera apresentado abaixo todas formulas para a estimagao de
B,, adiantando um pouco da implementagdo descrita mais a diante, x; € o vetor

coluna dos retornos observados e y, é o valor da cotagao corrente do ativo alvo.

Br = Kiey + By

-1
K. = Sp—1X¢
t— _ro—1
— f o
e =Y — Xtfia

Q= x,tSt_-—llxt +1

St =574 — QKK —u,
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5 Redugédo de dimensdes

Os sistemas de negociacdes de alta freqiéncia precisam lidar com uma grande
quantidade de dados que chegam a todo o momento, atualmente em fracdes de
segundo. E o tratamento da regresséo linear deste grande fluxo de dados gera uma

grande demanda computacional.

Se pudéssemos reduzir a necessidade de consumo dos fluxos de dados poderiamos
ter um sensivel aumento no processamento dos mesmos. Neste capitulo iremos ver
uma solugao para este problema, extraindo assim os componentes principais dos
fluxos de cotacdo. A seguir veremos uma abordagem vista em Montana et al.(2008)
do algoritmo de Weng et al.(2003).

De acordo com o algoritmo proposto por Weng et al.(2003) e considerando que
R, = E(r;7’;) € a matriz de covariancia desconhecida de um conjunto de fluxos de
dados disponivel em um momento ¢t = (1, ..., T), sera mostrado um método para se
estimar de maneira incremental o valor de R,,;, em termos praticos, € possivel

extrair os fluxos de cotagdo que melhor representam o seu conjunto.

A seguir serd mostrado em linhas gerais o algoritmo proposto por Weng et al.(2003).

O autovetor g, de R, satisfaz a seguinte equacao, onde A, é o autovalor.

he = 449: = Reg: (23)
Onde h, & o valor estimado atual a partir de h, que usa todos os dados até o tempo

t=(1,..,T), note que

T
he+- +hp 1
et S

B 3 he+- +h S .
o valor estimado h, = tTT e substituindo R, por r,r; temos

t
Et = —Z 19 (24)
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até o momento vemos que ffr € a média de r;r'g;. Observando a fungdo vemos g,

pode ser estimado como " " desta maneira h, deve ser ter o valor de r, na
i—1

primeira iterag&o, substituindo na equagio temos
t A

1
h E 25
t = TIT[ ”hl 1” ( )

no cenario onde ndo se dispde de todos os dados prontamente, mas sim chegando
seqliencialmente, é necessario rearranjar a funcdo para ela consiga trabalhar de

maneira recursiva utilizando se apenas h,_,. Note que influéncia de valores antigos

P P t—1 1 . . o~
& controlada através dos pesos —— €< para as estimativas de h,.

h —ltzz hioy lrr = —t_lfi +11r“r'———h'r_1
i Meiall 1|| T T A
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6 Sistema de negociagao

Neste trabalho o experimento foi feito de duas maneiras, diferenciando apenas na
quantidade de papéis (fluxos de cotagéo) usados para se construir o valor corrente
do ativo artificial, a primeira utilizando se todos os ativos listados na Bovespa ¢ a
segunda utilizando apenas os componentes principais encontrados pelo método de
Weng et al.(2003).

Ambas as simulac¢des utilizaram a mesma amostra de cotagdo histérica dividida em
duas partes, uma para o treinamento do algoritmo e a outra para o experimento em
si. Como veremos mais adiante a massa de treinamento sera utilizado para se
escolher o melhor valor para o parametro § e também para a escolha dos
componentes principais. A seguir veremos os detalhes desta implementagdo que

utiliza os mesmos métodos descritos por Montana et al.(2008).

6.1 Dados

Neste trabalho utilizaremos na arbitragem estatistica papéis listados na bolsa de
valores de S&do Paulo, a Bovespa. Foi usado o preco de fechamento de 04/06/2008
até 31/08/2011 das 433 empresas listadas na bolsa no inicio do periodo. Para os
casos de dados faltantes, como dias em que um ou mais papéis nao foram
negociados, ou simplesmente se uma dada empresa fechou seu capital, foi utilizado

o ultimo valor conhecido de cada fluxo.

Todos os dados dos fluxos foram transformados em retornos logaritmos para t maior

que 1 e a forma utilizada foi

1 = log(p,) — log(p-1)

onde p, € o preco corrente de um fluxo. Assim temos uma forma de comparar ativos

com precos diferentes de maneira direta e com valores proximos de zero.
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6.2 Regra de trading

Para esta simulagio contamos com investimento inicial de R$100000,00, chamado
de w, e nado foram incluidos nos célculos da estratégia os custos atrelados a

negociagcdao como corretagem ou emolumentos.

O papel escolhido para ser o ativo alvo em todas as simulagbes foi a PETR4,
Petrobras PN, apenas por ser uma empresa com um papel de grande liquidez e
conseqlentemente por ter negécios em todos os dias de pregdo. O nimero de
contratos a serem negociados em cada t € dado por
w
Ty =—
(43
onde m; € uma razado entre o montante w e o prego do ativo alvo p, ho momento t. A

fungao de spread e dada por

Se = ay—1'4f (26)
onde s, € o0 spread, a, € 0 prego atual do ativo alvo onde neste caso tera sera o

mesmo que p, e ', & o vetor de retornos observados que junto com g, estimado pelo

FK formam o valor escalar do ativo artificial.
A posigao corrente de um dia para outro € dada por
De(s) = —sign(se) m;

a estratégia € muito simples, pois apenas depende do comportamentc de reversdo a
média, podemos ver isso na evolugdo dos retornos da figura 2, sugerindo que a
hipotese é verdadeira. Para calcularmos o retorno de cada momento ¢ foi utilizado o

seguinte método

fe = (r — Pe—1) Fr-1(5t) (27)
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6.3 Implementagao

Nesta se¢&o sera mostrado como foi implementado o modelo e serdo apresentados

os resultados do experimento.

Primeiramente, os dados foram separados em duas partes, de 04/06/2008 a
02/09/2010 foi usado para o treino do algoritmo de negociagdo e para medir qual
seria o melhor peso a ser usado no parametro &, para isso foi utilizado o indice de
Sharpe, que ¢é definido como a razdo entre a média dos retornos monetarios e seu

desvio padrao.

O procedimento usado para se escolher melhor parametro § foi feito da seguinte
maneira; evoluindo-se o valor do parametro 6 de 0,1 até 1, onde § € constante
dentro de cada simulagdo. Para a estimativa do ativo artificial foram utilizados todos
0s 433 papéis. Os retornos calculados pela eq.(27) a cada momento t foram
armazenados em um vetor V = (f, ..., fr) que serviu de base para o calculo do
indice de Sharpe de cada simulagdo. O melhor indice de Sharpe obtido foi 1,129

com § igual a 0,5.

A tabela 1 mostra o desempenho de cada simulagcdo usando seu respectivo
parédmetro § dentro da base de treino. Para efeito de comparacgao, foi montada uma
estratégia de comprar e manter a posigéo até o final do periodo. A compra foi feita
utilizando todo montante w ao prego de p, e 0 desmonte da posigéo foi feita ao

preco de pr e o indice de Sharpe observado para esta estratégia foi de -2,807.

O mesmo periodo usado para se escolher o peso do parametro é foi usado também
para se escolher os principais fluxos de precos através do algoritmo de Weng et
al.(2003) e Montana et al.(2008) para a redugéo da dimensao do vetor de retomos,
assim, a partir dos 433 fluxos de dados foi possivel chegar a apenas 2 ativos que
melhor representam o todo. Tanto os 433 como os 2 fluxos foram usados na massa
de dados do experimento de 6/9/2010 a 31/6/2011 onde foi possivel observar um
aumento da velocidade do processamento e também houve uma melhora no indice

de Sharpe guando usados os 2 fluxos em relagéo aos 433 fluxos.

Com a massa de dados de 6/9/2010 a 31/6/2011, foram feitas trés simulagbes. A

primeira foi usar o filtro de Kalman (FK) com os 433 fluxos para construir o ativo
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artificial, a segunda utilizando apenas os 2 fluxos encontrados anteriormente, e a
terceira foi apenas comprar o ativo e manter a posigao até o final do periodo. Para
as duas primeiras simulagdes § foi mantido com 0,5 e utilizando a mesma maneira
de se avaliar o desempenho do parametro §, o indice de Sharpe para a simulacéo
montada com os 433 fluxos foi de -1,02, a simulagdo com 2 fluxos teve o
desempenho de -0,07 e a estratégia de comprar e manter a posicao obteve o indice
de -1,08. A evolugédo do desempenho de cada estratégia pode ser visto na figura 3

que construido a partir da soma acumulada dos retornos da eq.(27) de cada

estratégia.

5 Indice Sharpe
0.1 -0,510
0,2 1,386
0,3 0,774
0,4 1,129
0,5 1,129
0.6 0,815
0,7 0,815
0,8 0,691
0,9 0,255

1 0,946

Tabela 1 - Comparagio do Indice de Sharpe
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7 Conclusao

Neste trabalho vimos que é possivel construir uma estratégia de arbitragem a partir
do MQF interligado com o filtro de Kalman. Também vimos ser possivel reduzir a
quantidade dos fluxos de cotacdo sem perder a preciséo do trade. Tanto a estratégia
MQF-FK como o algoritmo para redugédo de dimensées poderiam ser implementadas
como componentes em um sistema de frading automatizado como o Streambase
stream...(2011).

Nesta simulagio n&o consideramos os custos relacionados a operagdo como a taxa
de corretagem, taxa de custodia e emolumentos. Para um cenario ou simulacéo
mais realista os custos devem ser considerados. Uma maneira de se fazer isso seria
modificar as regras de frading do capitulo 6 para que o algoritmo modifique sua

posigéo apenas quando o valor do retorno for maior que os custos.

A selegdo dos fluxos de dados poderia acontecer de forma automatica e dinamica,
nao dependendo assim de todos os fluxos de pregos da Bovespa, mas sim na
similaridade do comportamento do ativo alvo. Uma maneira de se responder a esta
questao é recorrer a ferramentas utilizadas em data mining a fim de encontrarmos
fluxos de cotagéo correlacionados. Um exemplo disso € o SPIRIT construido por
Sun et al. (2006), um algoritmo que detecta padrdes de forma automatica a partir de
streams de dados em tempo real.

Por dltimo, o método poderia ser aplicado a uma carteira com varias agdes e um
modelo de previsdo de mercado poderia ser acoplado a regra de arbitragem,
evitando se assim que mudangas no comportamento dos ativos causem prejuizos a

estratégia, como visto em Bollen et al.(2010).
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