
UNIVERSIDADE DE SÃO PAULO
ESCOLA DE ENGENHARIA DE SÃO CARLOS

Leonardo Maronezi Pizani

Estudo sobre métodos para aceleração de um algoritmo
de reconstrução de imagens de tomossíntese digital
mamária baseado em hardware GPU e programação

CUDA

São Carlos

2020





Leonardo Maronezi Pizani

Estudo sobre métodos para aceleração de um algoritmo
de reconstrução de imagens de tomossíntese digital
mamária baseado em hardware GPU e programação

CUDA

Monografia apresentada ao Curso de Enge-
nharia Elétrica com Ênfase em Eletrônica,
da Escola de Engenharia de São Carlos da
Universidade de São Paulo, como parte dos
requisitos para obtenção do título de Enge-
nheiro Eletricista.

Orientador: Prof. Dr. Marcelo A. C. Vieira

São Carlos
2020



AUTORIZO A REPRODUÇÃO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalográfica elaborada pela Biblioteca Prof. Dr. Sérgio Rodrigues Fontes da
EESC/USP com os dados inseridos pelo(a) autor(a).

 
 
Pizani, Leonardo Maronezi

 P695e Estudo sobre métodos para aceleração de um 
algoritmo de reconstrução de imagens de tomossíntese
digital mamária baseado em hardware GPU e programação
CUDA / Leonardo Maronezi Pizani; orientador  Marcelo
Andrade da Costa  Vieira. São Carlos, 2020.

 
 
Monografia (Graduação em Engenharia Elétrica com 

ênfase em Eletrônica) -- Escola de Engenharia de São
Carlos da Universidade de São Paulo, 2020.

 
 
1. GPU. 2. Programação paralela. 3. CUDA. 4. 

Tomossíntese digital mamária. I. Título.

Eduardo Graziosi Silva - CRB - 8/8907

Powered by TCPDF (www.tcpdf.org)

                               1 / 1







AGRADECIMENTOS

Agradeço primeiramente a meus pais, por todo apoio e confiança demonstrados
desde muito antes de eu ingressar na universidade.

Agradeço a meus amigos, por tornarem suportável mesmo as experiências mais
estressantes. Agradeço especialmente ao Daniel e ao Rafael, com quem dividi minhas
dúvidas e frustrações durante o desenvolvimento deste trabalho.

Agradeço ao Rodrigo, pelas dicas e pelos conhecimentos ofertados, sem os quais
este trabalho não seria possível.

Agradeço por fim ao meu professor orientador, Marcelo, e a todos os outros
professores e funcionários desta universidade, cujo trabalho contribui ativamente para a
existência do ensino público superior de qualidade no país.





RESUMO

Pizani, L. M. Estudo sobre métodos para aceleração de um algoritmo de re-
construção de imagens de tomossíntese digital mamária baseado em hardware
GPU e programação CUDA . 2020. 73p. Monografia (Trabalho de Conclusão de
Curso) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos,
2020.

Este trabalho tem como objetivo explorar algumas das funcionalidades do CUDA toolkit,
utilizando uma toolbox de reconstrução de imagens de tomossíntese digital mamária desen-
volvida para MATLAB. Foram testadas diferentes abordagens nesse processo, modificando
o algoritmo empregado nos testes a fim de aumentar seu grau de paralelismo e permitir a
aplicação de algumas das principais ferramentas disponibilizadas pelo CUDA toolkit, como
shared memory, texture objects e streams. Como o algoritmo utilizados nos testes tem a
função de gerar projeções 2D, foram aplicadas métricas de comparação de imagens em
todos as projeções geradas utilizando as imagens do algoritmo original como controle, a
fim de validar os resultados. Foram calculados os tempos médios de cada abordagem e os
valores obtidos foram comparados para permitir uma análise de quais métodos apresen-
taram os melhores resultados e quais fatores mais influenciaram no tempo de execução.
Com os testes foi possível concluir que, dependendo do algoritmo utilizado, a redução de
tempo na execução do algoritmo pode chegar a mais de 180 vezes ao empregar CUDA.
Os resultados mais significativos foram consequência das mudanças que aumentaram o
grau de paralelismo do algoritmo, porém o uso de ferramentas mais específicas do CUDA
toolkit também podem fazer uma diferença de até 1,8 vezes quando aplicadas nas condições
certas.

Palavras-chave: GPU, programação paralela, CUDA, tomossíntese digital mamária.





ABSTRACT

Pizani, L. M. Study on methods for accelerating an image reconstruction
algorithm for digital breast tomosynthesis based on GPU hardware and CUDA
programming. 2020. 73p. Undergraduate Final Project, Sao Carlos School of Engineering,
University of Sao Paulo, Sao Carlos, Brazil, 2020.

This work aims to explore some of the CUDA toolkit features, using the toolbox for
reconstruction of digital breast tomosynthesis images developed in MATLAB. Different
approaches were tested in this process, modifying the algorithm used in the tests to increase
its degree of parallelism and allow the application of some of the main tools available by
CUDA toolkit, such as shared memory, texture objects and streams. In order to validate
this work, the accelerated projection images were compared against the results provided
by the original toolbox. For each acceleration method, the average execution time was
evaluated in order to choose the best algorithm, and also what are the most important
factors that impact the acceleration procedure. Depending on the technique applied, the
time reduction factor, in the algorithm execution, can reach more than 180 times, when
using GPU with the CUDA toolkit. The higher speed improvements were achieved due to
the higher parallelism applied in the algorithms. Moreover, specific CUDA techniques can
also increase the speedup up to 1.8 times, when applied in the right manner.

Keywords: GPU, parallel programming, CUDA toolkit, digital breast tomosynthesis.





LISTA DE FIGURAS

Figura 1 – Comparativo entre quantidade de operações em ponto flutuante por
segundo em CPU e em GPU. . . . . . . . . . . . . . . . . . . . . . . . 23

Figura 2 – Comparativo entre largura de banda de memória em CPU e em GPU. . 24
Figura 3 – Cronologia das linguagens de programação de GPUs. . . . . . . . . . . 25
Figura 4 – Comparativo entre o hardware das GPUs e das CPUs. . . . . . . . . . 26
Figura 5 – Exemplo de uma arquitetura de GPU. . . . . . . . . . . . . . . . . . . 27
Figura 6 – Exemplo de um streaming multiprocessor. . . . . . . . . . . . . . . . . 28
Figura 7 – Linguagens de programação e aplicações suportadas pelo CUDA toolkit. 29
Figura 8 – Fluxo de execução de um programa utilizando CUDA. . . . . . . . . . 30
Figura 9 – Formação de uma grid de threads paralelas. . . . . . . . . . . . . . . . 31
Figura 10 – Hierarquia de memória. . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figura 11 – Localização dos diferentes tipos de memória. . . . . . . . . . . . . . . . 34
Figura 12 – Funcionamento da pinned memory. . . . . . . . . . . . . . . . . . . . . 36
Figura 13 – Sobreposição de tarefas com o uso de streams. . . . . . . . . . . . . . . 37
Figura 14 – Aquisição das projeções por um equipamento de tomossíntese. . . . . . 39
Figura 15 – Geometria de um equipamento de tomossíntese digital mamária. . . . . 41
Figura 16 – Representação dos phantoms utilizados. . . . . . . . . . . . . . . . . . 45
Figura 17 – Interpolação Bilinear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figura 18 – Projeções obtidas com o algoritmo de controle. . . . . . . . . . . . . . 55
Figura 19 – Projeções obtidas com o algoritmo feito em C++. . . . . . . . . . . . . 57
Figura 20 – Mapa de SSIM de uma das projeções do phantom BR3D, feita em C++. 58
Figura 21 – Exemplo de projeção obtida com uso da ferramenta de interpolação

própria da texture memory. . . . . . . . . . . . . . . . . . . . . . . . . 62
Figura 22 – Diferença entre a projeção da figura 21 e sua correspondente de controle. 62
Figura 23 – Tempos de execução do phantom de Shepp-Logan para cada método

testado. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figura 24 – Tempos de execução do phantom BR3D para cada método testado. . . 67





LISTA DE TABELAS

Tabela 1 – Principais parâmetros que descrevem o sistema. . . . . . . . . . . . . . 41
Tabela 2 – Componentes de hardware e versões de software utilizados. . . . . . . . 45
Tabela 3 – Parâmetros que descrevem os sistemas de cada phantom. . . . . . . . . 46
Tabela 4 – Resultado da função "gpuDevice". . . . . . . . . . . . . . . . . . . . . . 47
Tabela 5 – Argumentos de uma "mexFunction". . . . . . . . . . . . . . . . . . . . 48
Tabela 6 – Tempo (Tc), em segundos, que o algoritmo de controle demorou para

ser executado. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Tabela 7 – Resultados da aplicação de métricas comparativas em cada uma das 9

projeções adquiridas usando a GPU diretamente no MATLAB com as
suas correspondentes de controle. . . . . . . . . . . . . . . . . . . . . . 56

Tabela 8 – Tempo (T1), em segundos, que o algoritmo de controle demorou para
ser executado ao usar gpuArray como tipo de variável de entrada. . . . 56

Tabela 9 – Tempo (T2), em segundos, que o algoritmo de controle demorou para
ser executado ao usar a função "arrayfun"para calcular X e Y. . . . . . 56

Tabela 10 – Resultados da aplicação de métricas comparativas em cada uma das
9 projeções adquiridas com os métodos que usaram C++, mas não
usaram shared memory, com as suas correspondentes de controle. . . . 58

Tabela 11 – Tempo (T3), em segundos, que o algoritmo feito em C++ demorou para
ser executado. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Tabela 12 – Tempo (T4), em segundos, que o algoritmo feito em C++ demorou para
ser executado usando CUDA somente nos cálculos da interpolação, fatia
por fatia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Tabela 13 – Tempo (T5), em segundos, que o algoritmo feito em C++ demorou para
ser executado usando CUDA somente nos cálculos de X e Y, fatia por
fatia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Tabela 14 – Tempo (T6), em segundos, que o algoritmo feito em C++ demorou para
ser executado usando CUDA nos cálculos de X, Y e interpolação, fatia
por fatia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Tabela 15 – Resultados da aplicação de métricas comparativas em cada uma das 9
projeções adquiridas com os métodos que usaram C++ e shared memory
com as suas correspondentes de controle. . . . . . . . . . . . . . . . . . 60

Tabela 16 – Tempo (T7), em segundos, que o algoritmo feito em C++ demorou para
ser executado usando CUDA nos cálculos de X, Y e interpolação, fatia
por fatia, com uso de shared memory. . . . . . . . . . . . . . . . . . . . 60



Tabela 17 – Tempo (T8), em segundos, que o algoritmo feito em C++ demorou para
ser executado usando CUDA nos cálculos de X, Y e interpolação, fatia
por fatia, com uso de texture memory. . . . . . . . . . . . . . . . . . . 61

Tabela 18 – Tempo (T9), em segundos, que o algoritmo feito em C++ demorou
para ser executado usando CUDA nos cálculos de X, Y e interpolação,
fatia por fatia, com uso de texture memory diretamente no cálculo da
interpolação. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Tabela 19 – Tempo (T10), em segundos, que o algoritmo feito em C++ demorou
para ser executado usando CUDA nos cálculos de X, Y e interpolação,
todas as fatias simultaneamente, sem usar shared memory. . . . . . . . 63

Tabela 20 – Tempo (T11), em segundos, que o algoritmo feito em C++ demorou
para ser executado usando CUDA nos cálculos de X, Y e interpolação,
todas as fatias simultaneamente, usando shared memory. . . . . . . . . 63

Tabela 21 – Tempo (T12), em segundos, que o algoritmo feito em C++ demorou
para ser executado usando CUDA nos cálculos de X, Y e interpolação,
todas as fatias simultaneamente, alterando a disposição das threads e
thread blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Tabela 22 – Tempo (T13), em segundos, que o algoritmo feito em C++ demorou
para ser executado usando CUDA nos cálculos de X, Y e interpolação,
todas as projeções simultaneamente. . . . . . . . . . . . . . . . . . . . 64

Tabela 23 – Tempo (T14), em segundos, que o algoritmo feito em C++ demorou
para ser executado usando CUDA nos cálculos de X, Y e interpolação,
todas as projeções simultaneamente, mas uma fatia de cada vez. . . . 65

Tabela 24 – Tempo (T15), em segundos, que o algoritmo feito em C++ demorou para
ser executado usando CUDA nos cálculos de X, Y e interpolação, todas
as projeções simultaneamente, mas uma fatia de cada vez, utilizando
múltiplas streams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Tabela 25 – Tempo de execução obtido em cada método. . . . . . . . . . . . . . . 66



LISTA DE ABREVIATURAS E SIGLAS

1D Uma Dimensão

2D Duas Dimensões

3D Três Dimensões

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DRAM Dynamic Random Access Memory

FLOPS FLoating-point Operations Per Second

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

GPGPU General Purpose Graphics Processing Unit

NaN Not a Number

PCIe Peripheral Component Interconnect Express

PSNR Peak Signal to Noise Ratio

RAM Random Access Memory

SM Streaming Multiprocessor

SSIM Structural Similarity Index





SUMÁRIO

1 INTRODUÇÃO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.1 Contextualização e Motivação . . . . . . . . . . . . . . . . . . . . . . 19
1.2 Objetivo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3 Organização da Monografia . . . . . . . . . . . . . . . . . . . . . . . . 22

2 TEORIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1 Unidades de Processamento Gráfico . . . . . . . . . . . . . . . . . . . 23
2.1.1 Histórico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Arquitetura Das placas gráficas da NVIDA . . . . . . . . . . . . . . . 25
2.3 CUDA toolkit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4 Reconstrução de Imagens para Tomossíntese Digital Mamária . . . 39
2.4.1 Geometria do Equipamento . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.4.2 Algoritmos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 MATERIAIS E MÉTODOS . . . . . . . . . . . . . . . . . . . . . . . 45
3.1 Phantoms 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3 Metodologia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 RESULTADOS E DISCUSSÕES . . . . . . . . . . . . . . . . . . . . 55
4.1 Utilizando os recursos do MATLAB . . . . . . . . . . . . . . . . . . . 55
4.2 Utilizando CUDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 CONCLUSÃO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Referências . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71





19

1 INTRODUÇÃO

1.1 Contextualização e Motivação

Em 1965 o cofundador da Intel, Gordon Earle Moore, montou um gráfico que
descrevia a quantidade de transistores que era possível integrar em um único chip desde
1959, ano da invenção do circuito integrado, até então. Observando a tendência do gráfico
Moore previu que a quantidade de transistores por chip dobraria a cada ano, previsão
essa que veio a se tornar conhecida como Lei de Moore (Huang et al., 2010; Yao, 2004).
Posteriormente essa previsão foi revisada e o período de tempo necessário para dobrar a
quantidade de transistores em um chip foi alterada para dois anos (Denning and Lewis,
2017; McCool et al., 2012).

A Lei de Moore se mostrou uma estimativa razoável durante décadas, entretanto
o aumento no número de componentes não foi o único responsável pelo crescimento
exponencial na velocidade de processamento observada, sendo o aumento da frequência
de chaveamento dos transistores, também chamada de frequência de clock, um fator
igualmente relevante (Theis and Solomon, 2010; Ramanathan et al., 2015; Denning and
Lewis, 2017). Durante muito tempo esses dois fatores foram suficientes para manter
a elevada taxa de desenvolvimento tecnológico praticamente inalterada, porém ambos
possuem limites físicos fundamentais.

Transistores menores necessitam de menos energia, mas isso requer que a tensão
de operação diminua juntamente com o tamanho dos transistores, o que pode afetar sua
operação, uma vez que é necessária uma tensão mínima para que o componente mude
sua característica condutiva corretamente e represente o nível lógico que deveria (Theis
and Solomon, 2010; Ramanathan et al., 2015). Além disso as altas velocidades de clock
induzem grandes variações de corrente, o que implica em maiores correntes de fuga e
em um consumo de energia que não diminui na mesma proporção que a dimensão dos
transistores. Em outras palavras aumentar o número de componentes em um chip de área
fixa, como um processador por exemplo, também aumenta seu consumo de energia e, como
consequência, gera mais calor(Huang et al., 2010; Ramanathan et al., 2015; Yao, 2004).
Esse aumento progressivo no consumo de potência e geração de calor dos processadores é
chamado pela Intel de power wall.

Ao juntar as limitações da power wall com a latência de acesso a memória é possível
entender porque a indústria passou a fixar a tensão de alimentação dos transistores e parou
de simplesmente aumentar sua velocidade de chaveamento, mesmo que ainda continuem
diminuindo seu tamanho (Theis and Solomon, 2010; Ramanathan et al., 2015). Sabendo
da impossibilidade de manter o crescimento exponencial da velocidade de processamento
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pelos meios supracitados foi necessário a adoção de um novo paradigma.

Uma opção muito estudada recentemente é a integração de chips tridimensionais,
uma nova tecnologia que, em vez de integrar todos os transistores de um chip lado a lado
em um mesmo plano, visa empilhar verticalmente vários desses planos. Essa tecnologia
possibilita maior densidade de componentes por chip e novas organizações de circuitos,
porém isso também resulta em um drástico aumento na dissipação de calor no componente,
fator que já é preocupante mesmo nas tecnologias bidimensionais (Ahmed and Schuegraf,
2011; Loh et al., 2007; Huang et al., 2010).

Outra opção é diminuir os esforços em desenvolver máquinas com um único proces-
sador cada vez mais poderoso e concentra-los em desenvolver computadores com vários
núcleos de processamento, e é exatamente isso que a indústria tem feito nos últimos anos
(Adve et al., 2008). Praticamente todos os computadores modernos já se utilizam deste
princípio, possuindo pelo menos um recurso paralelo em seu hardware, de fato chips multi-
core estão tão difundidos atualmente que até no simples ato de comprar um smartphone
novo é comum se deparar com a escolha de processadores dualcore, quadcore e até octacore
(McCool et al., 2012), embora nem todo mundo saiba o que essas terminologias significam.
Os processadores multicore, como são chamados, podem não ser necessariamente mais
rápidos que um modelo de um núcleo dos mais avançados, mas utilizando do princípio de
programação paralela podem apresentar desempenho geral superior (Keckler et al., 2009;
Geer, 2005).

A programação paralela consiste de dividir grandes tarefas em frações menores
e mais simples, que são executadas de forma independente entre si, concomitantemente,
e em diferentes núcleos de processamento. Desta forma diretivas de loop, por exemplo,
dependendo de sua natureza, podem ter todos seus ciclos efetuados de uma única vez, pou-
pando grande quantidade de tempo. Contudo poucas são as ferramentas que efetivamente
foram desenvolvidas pensando em programação em paralelo (McCool et al., 2012).

As primeiras linguagens de máquina eram fundamentalmente seriais, ou seja,
efetuavam tarefas consecutivas sequencialmente, até mesmo diretivas de loop eram apenas
uma forma abreviada de executar tarefas sequenciais uma grande quantidade de vezes.
Com o passar do tempo a serialização se arraigou no processo de programação de tal
forma que a maioria dos recursos e dos conhecimentos sobre programação difundidos até
hoje são essencialmente serializados, mesmo que o hardware utilizado possua alto grau de
paralelismo (McCool et al., 2012).

Isso porém está mudando, recentemente o paralelismo vem sendo cada vez mais
utilizado em vários domínios, incluindo computação gráfica, computação de alto desempe-
nho e também em ambas combinadas (Adve et al., 2008). As chamadas GPUs (Graphics
Processing Unit) são processadores altamente especializados em renderização de imagens,
efetuando grandes quantidades de cálculos de ponto flutuante rapidamente, chegando até



1.1 Contextualização e Motivação 21

a alcançar a casa dos GFLOPS (109 Floating-point Operations Per Second) (McClanahan,
2010; Shah and Yousaf, 2019). Uma vez que o cálculo da cor de um pixel na tela é independe
da cor dos demais pixels, a paralelização das placas gráficas foi a escolha lógica, escolha
essa que tem feito com que o desenvolvimento das GPUs acelerasse ainda mais que o
previsto pela Lei de Moore (McClanahan, 2010; Brodtkorb et al., 2013).

De fato a tecnologia das placas gráficas cresceram tão rapidamente que tem
também sido utilizada em computação de propósito geral juntamente com as CPUs
(Central Processing Unit), recebendo assim o nome de GPGPU (General Purpose Graphics
Processing Unit)(Brodtkorb et al., 2013). As GPGPUs não são a única alternativa para
programar paralelamente de forma eficiente, mas tendem a ser as mais utilizadas, uma
vez que placas gráficas já são facilmente encontradas em computadores atuais por padrão,
não necessitando de um hardware completamente avesso ao cotidiano da maioria dos
programadores, como é o caso das FPGAs (Field Programmable Gate Array), por exemplo
(Brodtkorb et al., 2013).

Os maiores fabricantes de placas gráficas atualmente são dois, AMD e NVIDIA,
porém a NVIDIA tem apresentado mais destaque no meio acadêmico devido a concepção
de sua arquitetura de computação paralela própria, chamada CUDA (Compute Unified
Device Architecture) (Brodtkorb et al., 2013).

A demanda por custo computacional vem crescendo rapidamente e é seguro dizer
que vai continuar crescendo, principalmente no meio acadêmico, no qual novos algoritmos
cada vez mais complexos são desenvolvidos a todo momento. Esses novos algoritmos
necessitam ser cada vez mais velozes, uma vez que para serem refinados e validados são
necessários inúmeros testes, do contrario todo o processo de desenvolvimento será lento e
dispendioso.

Além disso, a simples aplicabilidade de um algorítimo pode depender de sua
velocidade, como é o caso das aplicações médicas, já que muitas vezes os médicos e seus
pacientes necessitam dos resultados de exames o mais rápido possível. O processo de
reconstrução de tomossíntese digital mamária, por exemplo, composto por métodos de
projeção, retroprojeção e técnicas de filtragem de ruído, já é conhecido há bastante tempo,
mas devido ao seu alto custo computacional tardou a ser foco de pesquisas (Vimieiro,
Rodrigo de Barros, 2019).

Os processos iterativos de reconstrução são lentos sequencialmente mesmo quando
executados em CPUs modernas, mas acarretam em grandes benefícios no âmbito da saúde,
uma vez que tem por objetivo gerar imagens para o rastreio do câncer de mama (Vimieiro,
Rodrigo de Barros, 2019). Por esse motivo são ótimas opções para se acelerar usando
programação paralela, e a tecnologia CUDA, além de permitir isso, proporciona uma
experiência de programação familiar ao usuário, permitindo que ele programe em uma
linguagem que já domine (Arora, 2012).
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1.2 Objetivo

O presente trabalho visa investigar o funcionamento de algumas das diferentes
ferramentas e métodos de optimização e aceleração de código que a NVIDIA disponibiliza
através do CUDA Toolkit, utilizando como objeto de estudo uma toolbox de reconstrução
de tomissíntese digital mamária que, em trabalhos anteriores, já foi testada em um modelo
de programação serial. Contudo, como o objetivo deste trabalho é entender como empregar
CUDA de forma efetiva, o único algoritmo utilizado nos testes foi o que gera as projeções,
a fim de que, futuramente, os aprendizados deste trabalho possam ser aplicados para
acelerar o processo de reconstrução por completo.

1.3 Organização da Monografia

Além deste capítulo o presente trabalho está dividido em mais 4 secções, que são
respectivamente Teoria, Materiais e Métodos, Resultados e Conclusão.

O Capítulo 2, Teoria, apresenta de maneira detalhada os conceitos da programação
paralela, bem como sua aplicação por meio das novas diretivas de C++ proporcionadas pela
arquitetura CUDA. Nesse capítulo também são explicados os conceitos básicos a respeito
de reconstrução de imagens de tomossíntese digital mamária, de forma breve e resumida,
apenas a fim de orientar adequadamente o leitor e possibilitar melhor entendimento da
secção de Resultados.

O Capítulo 3, Materiais e Métodos, descreve como foi a abordagem utilizada para
efetuar a tradução dos códigos seriais previamente estudados em códigos paralelizados por
meio de CUDA.

O Capítulo 4, Resultados, tem a finalidade de expor os resultados obtidos durante
o decorrer do trabalho e discorrer a respeito deles.

Por fim no Capítulo 5, Conclusão, é apresentada uma visão geral de como se
procedeu o trabalho e se ele alcançou as expectativas.
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2 TEORIA

Esta seção visa apresentar os conceitos fundamentais sobre os quais o presente
trabalho se sustenta e sem os quais não seria possível discorrer sobre as seções que se
seguem. Primeiramente é apresentada a arquitetura das placas de vídeo da NVIDIA,
seguida do princípio de funcionamento do CUDA e por fim o algoritmo utilizado na
análise.

2.1 Unidades de Processamento Gráfico

As placas de vídeo são projetadas para efetuar quantidades massivas de cálculos
por segundo, a fim de renderizar imagens de alta resolução sem comprometer a sua taxa
de quadros, um problema inerente de video-games. De fato a evolução das placas gráficas
foi, de início, quase que exclusivamente impulsionada pelos video-games, mas quando seu
potencial computacional foi percebido, elas passaram a ser utilizadas para as mais diversas
aplicações (Owens et al., 2008).

A crescente demanda por capacidade de processamento gráfico continua a impulsio-
nar o desenvolvimento de placas gráficas cada vez mais poderosas, conforme demonstrado
nas figuras 1 e 2 (NVIDIA, 2020).

Figura 1: Comparativo entre quantidade de operações em ponto flutuante por segundo em
CPU e em GPU.

Fonte: NVIDIA (2020).
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Figura 2: Comparativo entre largura de banda de memória em CPU e em GPU.

Fonte: NVIDIA (2020).

2.1.1 Histórico

Conforme seu nome sugere, as primeiras graphics processing units (GPUs) pos-
suíam hardware dedicado a renderização gráfica, sendo concebidas para efetuar operações
utilizando apenas primitivas geométricas, mais especificamente pontos, linhas e triângulos.
Formas geométricas complexas por sua vez eram divididas em múltiplas faces triangulares,
cujo brilho, matiz e saturação eram calculadas e direcionadas a seus respectivos pixels
(Arora, 2012; Kim et al., 2012).

As primeiras GPUs trabalhavam com uma quantidade significativamente limitada de
operações, que tinham como único propósito converter estruturas no espaço tridimensional
em imagens bidimensionais (Owens et al., 2008). Era difícil desenvolver e optimizar
programas voltados a GPUs, mas quando tais programas funcionavam eles demonstravam
uma incrível melhora no quesito de velocidade quando comparado com códigos similares
que eram executados em CPU, o que conduziu ao desenvolvimento de novas e intuitivas
formas de programar em GPU (Owens et al., 2008).

Quando as GPUs começaram a ser usadas para aplicações não gráficas, tais aplica-
ções tinham que ser reformuladas para se adequar linguagens de shaders, como OpenGL
ou DirectX por exemplo, sendo necessário descrever problemas de todos os tipos através
de primitivas gráficas apenas. A dificuldade de se fazer isso levou ao desenvolvimento de
outras formas de utilizar as GPUs visando facilitar o processo (Nickolls and Dally, 2010;
Kim et al., 2012).
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Figura 3: Cronologia das linguagens de programação de GPUs.

Fonte: Owens et al. (2008).

O avanço no hardware das GPUs também foi direcionado no sentido de melhorar
sua programabilidade, inclusive para aplicações de uso geral, possibilitando até mesmo o
surgimento de ferramentas com CUDA, DirectCompute, and OpenCL, que atualmente são
as predominantes no uso de GPGPUs (Owens et al., 2008). O CUDA toolkit da NVIDIA
permite ao programador utilizar uma abordagem mais tradicional ao lidar com sua GPU,
de forma que ele possa programar em uma linguagem já familiar a ele, como C ou Fortran,
por exemplo (Kim et al., 2012). A figura 3 ilustra de forma simplificada a cronologia do
desenvolvimento das linguagens de programação de GPUs.

2.2 Arquitetura Das placas gráficas da NVIDA

A evolução da arquitetura das GPUs e das CPUs tomaram direções bem diferentes.
As CPUs evoluíram para executar uma única tarefa por vez, uma após a outra, sistemati-
camente, aplicando todos seus recursos e potencial em cada operação, de forma a tomar
a menor quantidade de tempo possível em cada tarefa. As GPUs por sua vez utilizam
seus recursos para executar grandes quantidades de trabalho independente entre si a cada
ciclo, isso porque a resolução das imagens que deve renderizar continuam crescendo, mas
a quantidade de imagens que o olho humano consegue perceber por segundo se mantém
inalterada (Owens et al., 2008) Essa diferença de paradigma teve consequências claras no
hardware dos dispositivos, conforme ilustra a figura 4.

O fluxo de trabalho das GPUs pode ser definido como do tipo feed-forward de
múltiplas etapas, ou seja, os resultados obtidos a cada ciclo de trabalho efetuado por
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uma GPU são diretamente usados no ciclo seguinte e assim sucessivamente. Ao seguir
esse modelo de funcionamento todos os ciclos de trabalho demandam elevado grau de
paralelismo para atuar com eficiência, e não por coincidência, o hardware das GPUs foi
desenvolvido para proporcionar exatamente isso. Quando comparada com as CPUs, a
execução de cada tarefa é mais lenta, mas nesse meio tempo a quantidade de trabalho
executado tende a ser muito maior, tornando o processo como um todo mais rápido em
diversas situações (Owens et al., 2008).

Figura 4: Comparativo entre o hardware das GPUs e das CPUs.

Fonte: NVIDIA (2020).

A arquitetura das GPUs da NVIDIA é formada basicamente por um conjunto
de streaming multiprocessors (SMs), DRAM (Dynamic Random Access Memory) de alta
largura de banda e registradores, conforme demonstrado na figura 5 (Arora, 2012). Os
diferentes modelos de GPUs da NVIDIA variam no número de streaming multiprocessors
(SMs) e na quantidade de memória RAM. Quanto mais numerosos são os SMs em uma
GPU, melhor sua performance computacional, e quanto mais memória a GPU possui,
maior sua memory bandwidth (Nickolls and Dally, 2010).

A comunicação entre CPU e GPU se da por meio de barramento PCIe (Peripheral
Component Interconnect Express), enquanto a comunicação entre GPUs é feita pela inter-
face NVLink. O acesso a memória DRAM da GPU por parte dos seus SMs é interfaceado
por controladores de memória que trabalham de forma independente uns dos outros,
permitindo acessos paralelos e direcionados, mas que mantêm alta a largura de banda
(Nickolls and Dally, 2010).

Cada thread representa um fluxo de operações paralelo às demais threads, tendo
seus próprios registradores, memória, pilha, endereço de instrução e flags (Nickolls and
Dally, 2010). A quantidade de threads que compõem um thread block é definida pelo
usuário, até um limite que pode variar a depender do modelo de GPU utilizado, como
será visto mais adiante. Já as chamadas warps são conjuntos de 32 threads executadas
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Figura 5: Exemplo de uma arquitetura de GPU.

Fonte: adaptada de NVIDIA (2016).

simultaneamente por um mesmo SM, o que pode ter mais ou menos threads que as de um
thread block (Arora, 2012).

GigaThread é a unidade responsável por direcionar CUDA threads a SMs disponíveis,
distribuindo o trabalho da melhor forma possível. Os SM por sua vez organizam as threads
em blocos e as executam. Conforme cada thread block termina de executar suas tarefas e
liberam os recursos de seu respectivo SM, a GigaThread atribui a esse SM novas tarefas
(Nickolls and Dally, 2010).

Os SMs das GPUs modernas são compostos basicamente por unidades de processa-
mento, unidades de gerenciamento e memória (Nickolls and Dally, 2010). Algumas dessas
unidades são:

• CUDA cores: são os núcleos de processamento da GPU, realizam um cálculo aritmé-
tico de número inteiro ou de flutuante (32bits) a cada ciclo de trabalho;

• Special function units: são projetadas para rápido calculo de funções de raiz quadrada,
seno, cosseno, exponencial e logarítmica usando ponto flutuante;

• Load/store units: executam instruções de acesso a memória. Essas unidades combinam
o acesso múltiplas threads por vez, de forma a minimizar o número de acessos;

• Double precision unit: efetuam cálculos aritméticos de ponto flutuante com 64bits;
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• Warp scheduler : seleciona, a cada ciclo de trabalho, uma warp para executar instru-
ções;

• Dispatch units: despacham instruções retiradas da fila do instruction cache às warps
que irão executá-las.

Figura 6: Exemplo de um streaming multiprocessor.

Fonte: adaptada de NVIDIA (2016).

Os SMs compartilham entre si memória cache de segundo nível interfaceada com a
DRAM da GPU, mas cada SM também possui sua própria memória cache de primeiro nível.
Cada SM é independente e dispõe de núcleos de processamento e memória o suficiente
para rodar um ou mais CUDA thread blocks. Somando o potencial de todos os SM de uma
GPU é possível rodar milhares de threads simultaneamente (Nickolls and Dally, 2010).

A shared memory contida nos SMs, como seu nome sugere, é compartilhada entre
todas as threads em um mesmo thread block. O rápido acesso a shared memory aumenta
significativamente a performance de muitas aplicações, enquanto ao mesmo tempo diminui
a requisição de dados na DRAM (Nickolls and Dally, 2010).
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2.3 CUDA toolkit

CUDA é uma plataforma de computação desenvolvida pela NVIDIA capaz de
aplicar o elevado potencial de paralelização das placas de vídeo em computação de uso
geral de forma simples e eficiente (NVIDIA, 2020).

Seu toolkit possui de um conjunto muito amplo de ferramentas para expressar
paralelismo, mesmo usando de linguagens intrinsecamente seriais para isso, o que permite
ao programador criar algoritmos eficientes e com elevado grau de paralelismo utilizando
uma linguagem já familiar (Nickolls and Dally, 2010).

Figura 7: Linguagens de programação e aplicações suportadas pelo CUDA toolkit.

Fonte: NVIDIA (2020).

Programas desenvolvidos com CUDA usam o modelo de Programação Heterogênea,
ou seja, uma parte deles roda sequencialmente na CPU enquanto a outra parte roda
na GPU utilizando threads paralelas, conforme ilustrado na figura 8. A CPU é o host,
responsável por coordenar todo o fluxo de execução em um programa que utiliza CUDA
(NVIDIA, 2020). A parte sequencial desses programas opera como em qualquer linguagem
serial, o diferencial aqui é a utilização da GPU, que será abordada utilizando linguagem C.
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Figura 8: Fluxo de execução de um programa utilizando CUDA.

Fonte: NVIDIA (2020).

A CPU instancia os chamados kernels, que são funções descritas de forma serial no
programa, mas que utilizam múltiplas threads ao ser executadas na GPU, referenciada
daqui em diante como device (NVIDIA, 2020). Para chamar um kernel deve-se usar a
seguinte sintaxe:

1 // Declara ção do Kernel
2 __global__ void Nome ( d e f i n i ção das entradas ) {
3 . . .
4 }
5 void main ( ) {
6 . . .
7 // Chamada do Kernel
8 Nome <<< block , thread , shared , stream [ i ] >>> ( entradas ) ;
9 . . .

10 }
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O especificador "__global__"é usado junto com a declaração do kernel para
diferenciá-lo de uma função normal, significando que ele é visto por ambos dispositivos.
Também existem os especificadores "__host__"e "__device__", o uso do primeiro ou de
nenhum tem o mesmo significado, o de uma função exclusivamente do host, enquanto o
segundo é uma função exclusiva do device e que deve ser chamada por um kernel (NVIDIA,
2020).

Já os argumentos entre < < < ... > > > definem como o device vai trabalhar
com o kernel. Os dois últimos argumentos serão discutidos mais adiante, já os outros dois
definem, respectivamente, a quantidade de thread blocks em uma grid e a quantidade
de threads em um thread block. Como tanto a grid quanto os thread blocks podem ser
unidimensionais, bidimensionais ou tridimensionais, os argumentos utilizados são do
tipo "dim3", estruturas de dados compostas por 3 variáveis do tipo "size_t"que indicam
respectivamente a quantidade de elementos nas dimensões x, y e z (NVIDIA, 2020).

A forma como as threads são organizadas para gerar thread blocks e grids pode
ser vista na figura 9. Cada thread conhece sua posição em um thread block, assim como
cada thread block conhece o número de threads que o compõem e sua posição na grid,
informações essas acessíveis ao usuário também por meio de variáveis do tipo "dim3",
"threadIdx", "blockDim"e "blockIdx", respectivamente (NVIDIA, 2020).

Figura 9: Formação de uma grid de threads paralelas.

Fonte: NVIDIA (2020).



32 Capítulo 2 Teoria

A forma como as diferentes threads usam recursos de memória do device é chamada
de Hierarquia de Memória. Conforme demonstrado pela figura 10, memória local só pode
ser acessada pela thread em que foi criada, shared memory só pode ser acessada por threads
que pertençam a um mesmo thread block e global memory pode ser acessada por todas as
threads (NVIDIA, 2020).

A função cudaMalloc é usada no host para alocar global memory dinamicamente
na DRAM do device, enquanto a função cudaMemcpy copia dados do host para o device e
vice versa. Por outro lado a memória local e a shared memory são declaradas nos kernels
(NVIDIA, 2020), conforme se segue.

1 __global__ void ke rne l ( d e f i n i ção das entradas ) {
2 . . .
3 // Posi ção da thread nas dimensõ es x , y e z
4 i n t x = blockDim . x ∗ blockIdx . x + threadIdx . x ; // memó r i a l o c a l
5 i n t y = blockDim . y ∗ blockIdx . y + threadIdx . y ; // memó r i a l o c a l
6 i n t z = blockDim . z ∗ blockIdx . z + threadIdx . z ; // memó r i a l o c a l
7

8 // shared memory
9 __shared__ f l o a t shared_mem [ ] ;

10 . . .
11 }
12 void main ( ) {
13 . . .
14 f l o a t ∗ h_mem; // host memory
15 . . .
16 f l o a t ∗ d_mem; // g l o b a l memory
17

18 // a loca n bytes na g l o b a l memory do dev i ce
19 cudaMalloc ( ( void ∗∗)& d_mem, n) ;
20

21 // cop ia n bytes de h_mem para d_mem
22 cudaMemcpy(d_mem, h_mem, n , cudaMemcpyHostToDevice ) ;
23 . . .
24 }

É considerada uma boa prática diferenciar memória exclusiva do host (CPU)
da global memory (GPU), pois elas só podem ser acessadas pelos dispositivos ao qual
pertencem. Um padrão frequentemente adotado é utilizar o prefixo "d_"no nome de
variáveis que armazenam global memory e o prefixo "h_"nas variáveis exclusivas do host
(NVIDIA, 2020).
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Figura 10: Hierarquia de memória.

Fonte: NVIDIA (2020).

A quantidade de bytes de shared memory a serem alocados é o terceiro argumento
entre < < < ... > > > mencionado anteriormente. A vantagem em se utilizar shared
memory e memória local em relação a global memory é que as primeiras são armazenadas
em registradores que já se encontram nos SMs e por isso os dados percorrem um trajeto
menor até as threads, aumentando a velocidade dos acessos (NVIDIA, 2020).

Existem também outras formas de se manejar acessos a memória, que são utilizando
constant memory, pinned memory ou texture memory. A constant memory é armazenada
diretamente no device, mas diferentemente da shared memory ela é acessível a todas as
threads. Por outro lado ela possui uma série de desvantagens, dentre elas a impossibilidade de
ser alocada dinamicamente e possuir uma capacidade de armazenamento significativamente
baixa, 64KB apenas. Além disso o acesso a constant memory é limitado, se muitas threads



34 Capítulo 2 Teoria

tentarem acessar endereços de constant memory diferentes ao mesmo tempo, sua utilização
fica prejudicada e o processo pode ficar mais lento do que seria com a global memory
(NVIDIA, 2020).

Figura 11: Localização dos diferentes tipos de memória.

Fonte: NVIDIA (2020).

De fato a constant memory é um recurso útil em situações bem específicas apenas.
O comando para alocar esse tipo de memória é feito no host utilizando o especificador
"__constant__"e os dados endereçados nesse espaço de memória colocados lá são copiados
de algum endereço de memória da host por meio da função cudaMemcpyToSymbol
(NVIDIA, 2020), conforme se segue.

1 . . .
2 __constant__ f l o a t c_mem[ 5 1 2 ] ; // constant memory
3 . . .
4 void main ( ) {
5 . . .
6 f l o a t ∗ h_mem; // host memory
7 . . .
8 // cop ia n bytes de h_mem para c_mem
9 cudaMemcpyToSymbol (c_mem, h_mem, n) ;

10 . . .
11 }

Os Texture objects são geralmente uma alternativa mais viável. Criados para
referenciar e manejar o acesso a texture memory, eles são criados a partir de cuda arrays e
estruturas de dados que contêm uma série de características a seu respeito. O cuda arrays
por sua vez são vetores 1D, 2D ou 3D optimizados para o acesso a texture memory e também
são criados com base em descritivos contidos em uma estrutura de dados (NVIDIA, 2020).
Para maiores detalhes sobre ambas as estruturas é recomendável consultar a documentação
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do toolkit no site da NVIDIA (2020), mas um breve exemplo de como utilizar texture
object é apresentado abaixo:

1 __global__ void ke rne l ( cudaTextureObject_t tex ) { . . . }
2

3 void main ( ) {
4 . . .
5 // Estrutura de dados que e s p e c i f i c a o t ipo de va r i á ve l
6 // a s e r armazenado pe lo cuda array , f l o a t no caso
7 cudaChannelFormatDesc channelDesc =
8 cudaCreateChannelDesc<f l o a t >() ;
9 // Declara ção e a loca ção de memó r i a do cuda Array

10 cudaArray ∗d_cudaArray ;
11 cudaMalloc3DArray(&d_cudaArray , &channelDesc ,
12 make_cudaExtent ( bytes ) , 0) ;
13 // Estrutura de dados que Array
14 cudaMemcpy3DParms copyParams = { 0 } ;
15 cudaMemcpy3D(&copyParams ) ;
16

17 // Estruturas de dados que descrevem o texture ob j e c t
18 cudaResourceDesc texRes ;
19 cudaTextureDesc texDescr ;
20

21 // Efet ivamente cr iando o tex ture ob j e c t
22 cudaTextureObject_t tex ;
23 cudaCreateTextureObject(&tex , &texRes , &texDescr , NULL) ;
24 . . .
25 }

Armazenada diretamente no device, a texture memory não só é projetada para
permitir múltiplos acessos simultâneos a um mesmo endereço de memória de forma eficiente,
como também é organizada de forma a optimizar esses acessos a endereços adjacentes.
Para acessar endereços de texture memory é necessário utilizar as funções tex1D, tex2D ou
tex3D, a depender do número de dimensões do texture object. A forma como tais funções
fazem os acessos pode ser configuradas para acessos a endereços precisos ou até mesmo
aproximar e interpolar resultados (NVIDIA, 2020).

A pinned memory por sua vez é um tipo de memória pertencente ao host, mas que
possui um diferencial importante em relação a pageable memory, que é o tipo de memória
padrão. Como a figura 12 ilustra, o device não pode diretamente acessar pageable memory,
por isso todas as transferências dados entre dispositivos são feitas por intermédio de pinned
memory (NVIDIA, 2020).
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Figura 12: Funcionamento da pinned memory.

Fonte: NVIDIA (2020).

1 void main ( ) {
2 . . .
3 // pinned memory
4 f l o a t ∗h_pinned ;
5 . . .
6

7 // a loca n bytes de pinned memory em h_pinned
8 cudaMallocHost ( ( void ∗∗)&h_Pinned , n) ) ;
9

10 // cop ia n bytes de h_Pageable para h_Pinned
11 memcpy( h_Pinned , h_Pageable , n , cudaMemcpyHostToHost ) ;
12 . . .
13 }

Dados armazenados em pinned memory tendem a permanecer lá apenas durante as
transferências, mas gravar informação diretamente em pinned memory tem suas vantagens,
mas para isso devem ser criados streams extras. Streams são como devices virtuais que
partilham o trabalho de um device físico, mas cada stream tem seu próprio fluxo de
trabalho e atua independentemente das demais, ou seja, um mesmo device pode não só
sobrepor tarefas de um mesmo tipo, mas também executar atividades completamente
distintas concomitantemente (NVIDIA, 2020).

Quando nada é especificado todas as operações são executadas na stream nula, que
atua de modo síncrono, sempre esperando a última tarefa ser concluída antes de iniciar
a próxima. As streams criadas por outro lado operam de forma assíncrona, isso significa
que enquanto uma stream transfere dados do host para o device, outra pode executar um
kernel, optimizando o processo, conforme representado na figura 13 (NVIDIA, 2020). O
trecho de código abaixo exemplifica o uso de 8 streams para sobrepor tarefas.
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1 i n t main ( )
2 {
3 . . .
4 const i n t num_streams = 8 ;
5 cudaStream_t streams [ nStreams ] ; // Declara 8 streams
6

7 f o r ( i n t i = 0 ; i < nStreams ; i++) {
8 cudaStreamCreate(&streams [ i ] ) ; // Cria uma stream
9 i n t o f f s e t = i ∗ n / nStreams ;

10

11 // Trans fe r ê nc ia as s í ncrona de memó r i a
12 cudaMemcpyAsync(&d_mem[ o f f s e t ] , &h_pinned [ o f f s e t ] ,
13 (n / nStreams + 1) ∗ s i z e o f ( f l o a t ) ,
14 cudaMemcpyHostToDevice , stream [ i ] )
15

16 kerne l <<<block , thread , shared , streams [ i ]>>>(entradas ) ;
17

18 cudaStreamDestroy ( stream [ i ] ) ; // Destr ó i uma stream
19 }
20 . . .
21 }

Figura 13: Sobreposição de tarefas com o uso de streams.

Fonte: NVIDIA (2020).

Devido a natureza caótica do uso de streams assíncronas existem as chamadas
barreiras, que são primitivas de sincronização, para garantir que as streams tenham
terminado suas tarefas quando necessário. Quando uma stream termina suas tarefas e
atinge uma barreira, ela permanece ociosa até que as outras streams também atinjam a
mesma barreira, sem poder continuar (NVIDIA, 2020).

Apesar de todas as threads serem independentes entre si nem todas são executadas
exatamente ao mesmo tempo, sendo executadas de forma ligeiramente deslocadas no
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tempo, o que em algumas situações pode ser um problema. Para contornar esse problema
existem também barreiras de sincronização que atuam apenas em threads de um mesmo
kernel, bem como as atomic functions (NVIDIA, 2020).

As barreiras costumam ser suficientes quando todas as threads escrevem em endere-
ços de memória diferentes, mesmo que uma thread modifique um endereço lido por outra,
isso porque todas as leituras de memória podem ser efetuadas antes da escrita (NVIDIA,
2020), conforme abaixo.

1 __global__ void ke rne l ( f l o a t ∗ array )
2 {
3 i n t x = blockDim . x ∗ blockIdx . x + threadIdx . x ;
4 f l o a t tmp = array [ x ] ;
5 __syncthreads ( ) ; // b a r r e i r a
6 array [ x+1] = tmp ;
7 . . .
8 }

Por outro lado quando muitas threads modificam um mesmo endereço de memória
pode-se usar atomic functions. Esse tipo especial de função é projetado especificamente
para efetuar cálculos de um mesmo tipo envolvendo muitas variáveis, como num somatório
por exemplo, conforme pode ser visto abaixo (NVIDIA, 2020).

1 __global__ void somator io ( f l o a t ∗ array , f l o a t sum)
2 {
3 i n t x = blockDim . x ∗ blockIdx . x + threadIdx . x ;
4 atomicAdd(&sum , array [ x ] ) ;
5 }

Apesar de serem muito úteis nas situações para as quais foram projetadas, as
atomic functions possuem uma baixa variedade de operações que podem ser feitas, além
de limitarem a velocidade dos kernels por terem que sincronizar acessos de memória e por
esse motivo devem ser usadas apenas quando necessário (NVIDIA, 2020).

Existem ainda muitas outras ferramentas disponibilizadas pelo CUDA toolkit
que não foram abordadas aqui pois não serão abordadas neste trabalho. Um maior
detalhamento sobre as ferramentas apresentadas aqui, bem como outras funcionalidades,
pode ser encontrado na documentação do CUDA toolkit através do url: https://docs.
nvidia.com/cuda/.

https://docs.nvidia.com/cuda/
https://docs.nvidia.com/cuda/
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2.4 Reconstrução de Imagens para Tomossíntese Digital Mamária

Câncer é a denominação dada a um conjunto de doenças cuja principal característica
é o aumento descontrolado do número de células no tecido que a enfermidade ataca, podendo
inclusive criar tumores e se espalhar para outras regiões do corpo. Dentre os diversos tipos
existentes, o câncer de mama foi aquele com a maior taxa de mortalidade entre mulheres
no ano de 2017 no Brasil e estima-se que até o final de 2020 serão diagnosticados mais de
66 mil casos da doença (INCA, 2020).

A detecção do câncer de mama em sua etapa inicial possibilita que sejam feitos
tratamentos menos invasivos e aumenta a taxa de recuperação dos pacientes, por isso seu
diagnóstico é tão importante e é recomendado que mulheres entre 50 e 69 anos façam
exames de rastreamento a cada dois anos, mesmo na ausência de sintomas (INCA, 2020).

O exame mais conhecido que atende a essa finalidade é a mamografia, que con-
siste da obtenção de uma simples imagem radiográfica da mama, e como toda imagem
radiográfica, possui limitações. Uma radiografia é a representação bidimensional de uma
estrutura tridimensional, e isso por si só implica em perda de informação, tornando possível
que estruturas se sobreponham umas as outras e impossibilite um diagnóstico preciso
(Vedantham S. and et al, 2015; ASC, 2020).

Figura 14: Aquisição das projeções por um equipamento de tomossíntese.

Fonte: Vimieiro, Rodrigo de Barros (2019).
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Para contornar esse problema foi desenvolvida a tomossíntese digital mamária,
uma técnica que visa reconstruir o volume 3D do objeto de análise a partir da captura de
múltiplas imagens radiográficas (projeções). Para obter as imagens necessárias ao algoritmo
de reconstrução o tubo emissor de raios X varia levemente sua posição em relação ao objeto
seguindo a trajetória de um arco, capturando várias projeções 2D do objeto tridimensional
em diferentes pontos dessa trajetória (Vimieiro R. B. et al., 2019).

Como pode-se observar na figura 14, o objeto verde foi completamente obstruído
pelo objeto vermelho na projeção "B", mas é parcialmente visível nas projeções "A"e
"C"devido a variação angular do emissor de raios X. Depois de adquiridas as projeções
é possível aplicá-las em um algoritmo de reconstrução capaz de inferir a geometria dos
objetos capturados (Vimieiro, Rodrigo de Barros, 2019).

O Laboratório de Visão Computacional (LAVI), da Escola de Engenharia de São
Carlos, Universidade de São Paulo, desenvolveu uma toolbox de reconstrução de imagens
para tomossíntese digital mamária utilizando a linguagem do MATLAB, toolbox essa
que pode executar todas as etapas compreendidas por um exame de tomossíntese digital
mamária, sendo capaz até mesmo de efetuar a aquisição de projeções ao utilizar um
phantom virtual já composto por diversas fatias como objeto de estudo. Além disso a
toolbox também permite alterar a geometria do sistema para corresponder a qualquer
equipamento de tomossíntese no mercado, assim como selecionar o método a ser utilizado
para a reconstrução.

A toolbox está disponível no GitHub do LAVI pelo url: https://github.com/
LAVI-USP/DBT-Reconstruction e seu processo de desenvolvimento, bem como os testes
efetuados para sua validação, podem ser encontrados em detalhes nos trabalhos de Vimieiro
et al. (2019) e Vimieiro, Rodrigo de Barros (2019).

Como o presente trabalho se desenvolve a partir da aplicação de uma das funciona-
lidades da toolbox, mais especificamente o algoritmo que cria as projeções, é importante
estudar algumas de suas características mais atentamente.

2.4.1 Geometria do Equipamento

A toolbox consegue se adaptar a geometria de qualquer equipamento de tomossíntese
mamária, sendo ele um equipamento já consolidado no mercado ou não, e isso se deve a
uma simples estrutura de dados que contem todas as características de um equipamento
de tomossíntese, inclusive características do processo de funcionamento, como por exemplo
o número de projeções adquiridas e o número de fatias que o objeto reconstruído deve
possuir.

https://github.com/LAVI-USP/DBT-Reconstruction
https://github.com/LAVI-USP/DBT-Reconstruction
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Figura 15: Geometria de um equipamento de tomossíntese digital mamária.

Fonte: Vimieiro R. B. et al. (2019).

A figura 15 ilustra simplificadamente como é a geometria de um equipamento
utilizado em um exame de tomossíntese digital mamária, enquanto a tabela 1 compreende
os principais parâmetros contidos na estrutura de dados que descreve o sistema.

Tabela 1: Principais parâmetros que descrevem o sistema.

Parâmetro Significado
nx Número de voxels no eixo X (colunas)
ny Número de voxels no eixo Y (linhas)
nz Número de fatias
nu Número de detectores no eixo X (colunas)
nv Número de detectores no eixo Y (linhas)
dx Tamanho real de um único voxel no eixo X (mm)
dy Tamanho real de um único voxel no eixo Y (mm)
dz Tamanho real de um único voxel no eixo Z (mm)
du Tamanho real de um único detector no eixo X (mm)
dv Tamanho real de um único detector no eixo Y (mm)

DSD Distância do emissor de raios X até o plano do detector (mm)
DSO Distância do emissor de raios X até o topo do objeto (mm)
DDR Distância do detector até o eixo de rotação do emissor de raios X (mm)
DSR Distância do emissor de raios X até seu eixo de rotação (mm)
DAG Espaço entre o detector e a mesa que apoia o objeto (mm)
nProj Número de projeções

tubeAngle Variação angular total do emissor de raios X (graus)
tubeDeg Angulação do emissor de raios X em cada projeção (graus)
detAngle Variação angular total do detector (graus)

detectorDeg Angulação do detector em cada projeção (graus)
Fonte: adaptada de Vimieiro, Rodrigo de Barros (2019).
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2.4.2 Algoritmos

Outra característica importante da toolbox é o conjunto de algoritmos que o
compõem, em especial os algoritmos de projeção e retroprojeção. Um operador de projeção
geométrico, de maneira geral, é aquele que representa um objeto de N dimensões em um
espaço de N - 1 dimensões, no caso o algoritmo utilizado projeta um objeto 3D no plano
bidimensional de um detector, conforme a figura 14. A retroprojeção por sua vez faz o
oposto da projeção, buscando reconstruir o objeto original, fatia por fatia, com base em
suas projeções (Vimieiro, Rodrigo de Barros, 2019).

O método mais simples de reconstrução é aquele que simplesmente utiliza do
algoritmo de projeção seguido do algoritmo de retroprojeção, sem se preocupar com o
ruído gerado nesse processo, mas existem variantes desse método que buscam aprimora-lo,
gerando resultados mais precisos e confiáveis, alguns dos quais também estão disponíveis
para uso na toolbox. Os métodos de reconstrução iterativos tem se mostrado promissores,
mas demandam elevado custo computacional, pois executam projeção e retroprojeção
repetidas vezes em busca da convergência dos resultados (Vimieiro, Rodrigo de Barros,
2019), o que os tornam perfeitos candidatos para optimizar com a utilização de CUDA.

O presente trabalho, porém, não aborda a retroprojeção, visto que seu objetivo
é meramente investigativo e não almeja necessariamente resultados, mas sim estudar as
ferramentas de que o toolkit da NVIDIA dispõe. Por esse motivo apenas o algoritmo de
projeção será estudado mais a fundo, uma vez que é a mais simples das opções. Após fazer
os devidos testes e descobrir quais abordagens funcionam e quais não funcionam, fica aqui,
para quem interessar, a sugestão de aplicar esse aprendizado para acelerar a execução do
método iterativo de reconstrução.

Algoritmo 1: Projeção
Entrada: Volume3D, Parâmetros
Saída: Projeções
Início

para cada Projeção ∈ Projeções faça
θ ← Ângulo da Projeção;
para cada Fatia ∈ Volume3D faça

Calcular Yi e Xi ∀ (y, x) ∈ Projeção ;
Calcular i e j ∀ (Yi, Xi);
Projeção ← Projeção + Interpolação( Fatia, (i, j) );

fim
fim

Fim

Fonte: adaptada de Vimieiro, Rodrigo de Barros (2019).
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O pseudocódigo acima ilustra como é feito o processo de aquisição das projeções
por parte da toolbox, para cada posição assumida pelo emissor de raios X, o algoritmo
percorre todas as fatias do objeto tridimensional (Volume3D) aplicando o método Pixel
Driven (Vimieiro, Rodrigo de Barros, 2019).

Esse método por sua vez calcula as coordenadas (Yi, Xi) que as projeções 2D de
cada fatia ocupam no detector e varre todos os voxels dessas fatias projetando seu centro
no detector com o uso das equações 2.1 e 2.2 (Vimieiro R. B. et al., 2019). Ambos os
equacionamentos podem ser deduzidos a partir de simples semelhança de triângulo com
base no sistema apresentado na figura 15.

Yi(θ, Y, Z) = Y + Z(DSR.sen(θ) + Y )
DSR.cos(θ) +DDR− Z

(2.1)

Xi(θ,X, Z) = X(DSR.cos(θ) +DDR)
DSR.cos(θ) +DDR− Z

(2.2)

As equações 2.3 e 2.4 por sua vez convertem as coordenadas da imagem (y0, x0)
em pixels (i, j) para que, por fim, o valor dos voxels projetados possam ser repartidos entre
os pixels correspondentes por meio de interpolação linear.

i = Yi

dy
+ y0 (2.3)

j = −Xi

dx
+ x0 (2.4)
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3 MATERIAIS E MÉTODOS

Esta seção aborda o software MATLAB e as ferramentas de phantoms 3D utilizadas
durante o desenvolvimento do presente trabalho, além de detalhar os procedimentos
tomados para sua execução. De modo geral o hardware empregado na execução deste
trabalho é descrito na tabela 2, bem como as verões de software utilizados.

Tabela 2: Componentes de hardware e versões de software utilizados.

Processador Intel Core i5 - 6600k
Placa de vídeo GeForce GTX 1060 6GB
Memória RAM 16 GB

Sistema operacional Windows 7
MATLAB R2018a

CUDA toolkit 9.0

3.1 Phantoms 3D

Phantoms são objetos de estudo desenvolvidos especialmente para simular uma
estrutura tridimensional ou bidimensional composta por diferentes tecidos da anatomia
humada, com o objetivo de permitir estudos consistentes a respeito de novas metodologias
para exames sem a necessidade que testes sejam feitos diretamente em pacientes.

Figura 16: Representação dos phantoms utilizados.
(a) Phantom virtual de Shepp-Logan

Fonte: Shepp and Logan (1974).

(b) Phantom físico BR3D

Fonte: CIRS (2013).
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O presente trabalho utilizou em seus testes os mesmos phantoms 3D empregados
na validação da toolbox desenvolvida pelo LAVI. O primeiro é uma versão do phantom
virtual de Shepp and Logan (1974) adaptada por SCHABEL (2006) para gerar um objeto
virtual 3D com a quantidade de fatias que forem necessárias, enquanto o segundo é o
phantom 3D físico modelo BR3D criado pela CIRS (2013). Por se tratar de um phantom
físico, o uso do phantom BR3D se deu através de fatias já reconstruídas.

Como pode ser visto na tabela 3, que contém as especificações do sistema usado
nos testes de cada phantom, o phantom Shepp-Logan é consideravelmente menor que o
BR3D, isso é importante para comparar a eficiência do uso de CUDA em situações que
exigem mais e menos processamento.

Tabela 3: Parâmetros que descrevem os sistemas de cada phantom.

Parâmetro Shepp-Logan BR3D
nx 128 1058
ny 128 1978
nz 128 107
nu 280 2394
nv 350 3062
dx 1mm 0,1mm
dy 1mm 0,1mm
dz 10mm 0,5mm
du 1mm 0,1mm
dv 1mm 0,1mm
DSD 6600mm 660mm
DSO 5100mm 580,5mm
DDR 400mm 40mm
DSR 6200mm 620mm
DAG 220mm 22mm
nProj 9 9

tubeAngle 2, 5o 25o

detAngle 0o 0o

Fonte: toolbox (Vimieiro, Rodrigo de Barros, 2019).

3.2 MATLAB

MATLAB é um software voltado a programação baseada em matrizes com uma
vasta gama de funcionalidades. Como o desenvolvimento da toolbox, cujo algoritmo de
projeção é o objeto de estudo aqui, foi feito em MATLAB, é esperado que o presente
trabalho também faça uso de MATLAB.

Dentre todas as funcionalidades do MATLAB, as que devem ser destacadas são as
que fazem uso do potencial de computação paralela das GPUs. Abaixo segue uma breve
explicação sobre as funções usadas neste trabalho, mas uma descrição mais detalhada
pode ser encontrada na documentação do MATLAB, no site da MathWorks (2020).
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A função "gpuDevice" deve ser a primeira a ser utilizada, pois é responsável por
informar ao usuário se o MATLAB reconhece alguma placa de vídeo e, se sim, também
disponibiliza suas características, informações essenciais para este trabalho. A tabela 4
contém o resultado gerado por essa função no computador usado no desenvolvimento deste
trabalho.

Tabela 4: Resultado da função "gpuDevice".

Parâmetro Descrição
Name ’GeForce GTX 1060 6GB’
Index 1

ComputeCapability ’6.1’
SupportsDouble 1

DriverVersion 11
ToolkitVersion 9

MaxThreadsPerBlock 1024
MaxShmemPerBlock 49152
MaxThreadBlockSize [1024 1024 64]

MaxGridSize [2.1475e+09 65535 65535]
SIMDWidth 32

TotalMemory 6.4425e+09
AvailableMemory 5.4431e+09

MultiprocessorCount 10
ClockRateKHz 1809500
ComputeMode ’Default’

GPUOverlapsTransfers 1
KernelExecutionTimeout 1

CanMapHostMemory 1
DeviceSupported 1
DeviceSelected 1

A função "gpuArray" por sua vez cria objetos chamados de gpuArray, que são
armazenados na memória da GPU em vez da CPU, enquanto a função "gather" faz
o processo inverso. Quando o MATLAB usa esse tipo de variável para efetuar certas
operações, ele naturalmente as executa na GPU, contanto que tais operações tenham
suporte para isso. Porém outra forma de se usar esses objetos é como entrada da função
"arrayfun", conforme se segue:

1 . . .
2 d_input = gpuArray ( h_input ) ; % sa lva h_input na GPU
3 % executa o arquivo p r o j e c t i o n .m e sa lva o r e su l t ado em d_output
4 d_output = arrayfun ( @project ion , d_input ) ;
5 h_output = gather ( d_output ) ; % sa lva d_output na CPU
6 . . .
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Essa função interpreta um algoritmo escrito em MATLAB, no caso o arquivo
"projection.m", e o executa em múltiplas threads, uma para cada conjunto de elementos
dos vetores de entrada instanciados pelas mesmas coordenadas. Se por exemplo um
"arrayfun"receber como entrada a função F e os vetores A e B, então ela executará
F(A(1),B(1)) em uma thread, F(A(2),B(2)) em outra e assim sucessivamente. Se o número
de elementos de A e B forem diferentes a operação não irá funcionar adequadamente. Vale
ressaltar que as variáveis de entrada e de saídas dessa função devem ser do tipo gpuArray.

Outra funcionalidade do MATLAB é função "mex", cuja finalidade é chamar funções
em C, C++ ou Fortran como se fossem funções do próprio MATLAB, contanto que esses
arquivos estejam escritos com a sintaxe adequada.

1 . . .
2 % compila o có digo p r o j e c t i o n . cpp
3 mex p r o j e c t i o n . cpp
4

5 % executa o có digo p r o j e c t i o n . cpp
6 output = p r o j e c t i o n ( input ) ;
7 . . .

A função "mex" compila o arquivo de entrada, no caso "projection.cpp", e cria um
arquivo MEX de extensão ".mexw64" no diretório de trabalho, o qual é interpretado e
executado pelo MATLAB como qualquer outra função. Os arquivos C e C++ destinados
a serem usados desta forma devem substituir sua função "main"pela "mexFunction", cuja
sintaxe é apresentada abaixo.

1 #inc lude "mex . h "
2 void mexFunction ( i n t nlhs , mxArray ∗ p lhs [ ] , i n t nrhs ,
3 const mxArray ∗ prhs [ ] )
4 {
5 . . .
6 }

A função "mexFunction" é inserida pela biblioteca "mex.h" e faz o trabalho de
interfacear os argumentos de entrada e saída do arquivo com os providenciados pelo
MATLAB. A tabela 5 descreve o significado de cada um de seus argumentos.

Tabela 5: Argumentos de uma "mexFunction".

Parâmetro Descrição
prhs Vetor de argumentos de entrada
plhs Vetor de argumentos de saída
nrhs Número de argumentos ou de elementos do vetor de entrada
nlhs Número de argumentos ou de elementos do vetor de saída

Fonte: adaptada de MathWorks (2020).
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A função "mex"de fato funciona muito bem nos tipos de arquivos para os quais foi
projetada, mas a extensão utilizada pelo CUDA toolkit é ".cu", mesmo que a linguagem de
programação empregada seja C ou C++. Para contornar esse problema foi desenvolvida
a função "mexcuda", que tem suporte para CUDA. A sintaxe da função "mexcuda" no
MATLAB é a mesma que da "mex", mas difere no arquivo a ser compilado, como se segue:

1 . . .
2 #inc lude "mex . h "
3 #inc lude " gpu/mxGPUArray . h "
4 void mexFunction ( i n t nlhs , mxArray ∗ p lhs [ ] , i n t nrhs ,
5 const mxArray ∗ prhs [ ] )
6 {
7 // I n i c i a l i z a a API de GPU do MATLAB
8 mxInitGPU ( ) ;
9 . . .

10 }

Para usar a função "mexcuda", contudo, é necessário garantir que o MATLAB
tenha acesso às bibliotecas do CUDA toolkit, cuja versão deve ser compatível com a do
MATLAB, de a cordo com a tabela fornecida em sua documentação (MathWorks, 2020),
mas que também pode ser acessada diretamente pelo url: https://www.mathworks.com/
help/parallel-computing/gpu-support-by-release.html.

A linha de código abaixo atribui à variável "MW_NVCC_PATH"o diretório do
compilador NVCC, garantindo que o MATLAB o reconheça e possa fazer uso do CUDA
toolkit corretamente.

1 . . .
2 setenv ( 'MW_NVCC_PATH' , 'CUDA_dir\CUDA\v9 .0\ bin ' ) ;
3 . . .

3.3 Metodologia

Este trabalho visa investigar o potencial computacional das GPUs utilizando
como objeto de estudo uma toolbox desenvolvida em MATLAB, então é natural se-
guir uma metodologia que também aborde as funcionalidades do MATLAB. A meto-
dologia empregada aqui foi a mesma apresentada na página "Illustrating Three Ap-
proaches to GPU Computing: The Mandelbrot Set" da documentação do MATLAB,
acessível pelo url: https://www.mathworks.com/help/parallel-computing/examples/
illustrating-three-approaches-to-gpu-computing-the-mandelbrot-set.html.

https://www.mathworks.com/help/parallel-computing/gpu-support-by-release.html
https://www.mathworks.com/help/parallel-computing/gpu-support-by-release.html
https://www.mathworks.com/help/parallel-computing/examples/illustrating-three-approaches-to-gpu-computing-the-mandelbrot-set.html
https://www.mathworks.com/help/parallel-computing/examples/illustrating-three-approaches-to-gpu-computing-the-mandelbrot-set.html
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O método consiste em comparar o tempo de execução entre as diferentes abordagens
de uso da GPU pelo software ao resolver um mesmo problema. Para isso foram empregadas
as funções "gpuArray", "arrayfun" e "mexcuda", descritas na seção acima, na execução do
algoritmo de projeção.

A título de validar os resultados obtidos por cada uma das abordagens, o código
original foi utilizado como controle, ou seja, todas as projeções geradas por outros métodos
foram comparadas com as originais. O critério utilizado para a validação foi aplicar as
métricas de comparação de imagem “Pico da Relação Sinal Ruído” (PSNR - Peak Signal
to Noise Ratio) e o "Índice de Similaridade Estrutural" (SSIM - Structural Similarity
Index).

A métrica PSNR interpreta as diferenças de intensidade entre cada pixel das
imagens degradadas e da imagem original e entrega um valor em dB que expressa o quão
pura é a imagem testada. Alguns tipos de degradação, porém, podem influenciar mais a
visualização de imagens do que outros, mesmo que estejam presentes em menor intensidade,
e por isso também foi utilizada a métrica SSIM, que foi projetada especificamente para
avaliar a qualidade visual de imagens. A SSIM entrega um valor entre -1 e 1, sendo que -1
significa que as imagens não possuem similaridade, enquanto 1 indica que são elas idênticas
(Zhou Wang et al., 2004).

Para aplicar gpuArray bastou usar variáveis salvas na memória da GPU como
entrada do algoritmo de projeção, mas para usar a função "mexcuda"o código originalmente
escrito em MATLAB foi completamente traduzido para C++, o que de maneira geral
foi uma simples adaptação de sintaxe, uma vez que a maioria das primitivas e funções
utilizadas são comuns a ambas as linguagens. Entretanto a função "interp2" fugiu a essa
regra e teve de ser escrita manualmente em C++. Tal função, da forma que foi empregada,
interpola linearmente os pixels de uma imagem em suas coordenadas correspondentes
no detector, que foram calculadas previamente. A figura 17 representa visualmente o
funcionamento de uma interpolação bilinear, cujo equacionamento presente em 3.1 serviu
de base para o desenvolvimento do algoritmo 2, que foi escrito em C++.

Após constatado que o código de projeção feito em C++ funcionou, foi hora de
adaptá-lo de forma a utilizar múltiplas threads com CUDA. Para isso foram criados kernels
para cada etapa que necessitaria de um número distinto de threads, sendo elas o cálculo de
Y, o cálculo de X e os cálculos de interpolação. O uso da função "arrayfun" no MATLAB
foi similar a esta etapa em específico, mas se limitou aos cálculos de Xi e Yi, uma vez
que a função de interpolação exige acesso a mais de um pixel por vez, o que a função
"arrayfun" não foi projetada para fazer.
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Algoritmo 2: Interpolação
Entrada: Fatia, Xi, Yi

Saída: Interpolação
Início

para cada j ∈ Xi faça
x1 ← a parte inteira de j;
x2 ← x1 + 1;
alfa1 ← a parte fracionária de j;
alfa2 ← 1 - alfa1;
para cada i ∈ Yi faça

y1 ← a parte inteira de i;
y2 ← y1 + 1;
beta1 ← a parte fracionária de i;
beta2 ← 1 - beta1;
se (y1,x1) ∈ Fatia então

Q11 ← Fatia(y1,x1);
senão

Q11 ← 0;
fim
se (y1,x2) ∈ Fatia então

Q21 ← Fatia(y1,x2);
senão

Q21 ← 0;
fim
se (y2,x1) ∈ Fatia então

Q12 ← Fatia(y2,x1);
senão

Q12 ← 0;
fim
se (y2,x2) ∈ Fatia então

Q22 ← Fatia(y2,x2);
senão

Q22 ← 0;
fim
Interpolação ← Interpolação + (Q11 * alfa2*beta2) +
(Q21 * alfa1*beta2) + (Q12 * alfa2*beta1) + (Q22 * alfa1*beta1);

fim
fim

Fim
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Figura 17: Interpolação Bilinear.

Fonte: K.T. Gribbon et al. (2003).

Xx,y = (1− x)(1− y)A+ x(1− y)B + (1− x)yC + xyD (3.1)

Aqui é importante ressaltar que o uso da atomic function "atomicAdd"foi necessário
no kernel responsável pela execução do algoritmo de interpolação, uma vez que muitas
threads simultâneas têm que escrever no mesmo endereço de memória.

Depois de testadas as modificações mencionadas acima, foram também feitas outras
adaptações do sentido de aumentar o nível de paralelismo dos algoritmos em CUDA. Um
código foi adaptado para lançar em cada operação uma quantidade de threads suficiente
para executar os cálculos de todas as fatias simultaneamente, dispensando o uso de um loop
executado na CPU, enquanto outro código lançou em cada operação uma quantidade de
threads ainda maior, a fim de executar os cálculos de todas as fatias de todas as projeções
simultaneamente, dispensando o uso de ambos os loops.

Dentre todas as versões de código criadas, algumas foram escolhidas para se
aplicar ferramentas mais pontuais de CUDA, tais quais shared memory, texture memory
e streams. O uso de shared memory não exigiu mudanças significativas no código, mas
como a vantagem proposta no uso de múltiplas streams era executar trechos do algoritmo
simultaneamente com transferência de dados entre dispositivos, foi necessário inverter a
posição dos loops das fatias com o das projeções, conforme demonstrado no algoritmo 3.

A adaptação foi feita pois a obtenção da primeira projeção já necessitava de acesso
a todos os dados que seriam transferidos para a GPU durante a execução de todo o
algoritmo, desperdiçando grande parte do potencial de sobreposição disponibilizado pela
ferramenta. Ao alterar o algoritmo dessa forma, as fatias podem ser copiadas na memória
da GPU em etapas e, teoricamente, executar o código mais rapidamente.
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Algoritmo 3: Projeção Adaptada
Entrada: Volume3D, Parâmetros
Saída: Projeções
Início

para cada Fatia ∈ Volume3D faça
para cada Projeção ∈ Projeções faça

θ ← Ângulo da Projeção;
Calcular Yi e Xi ∀ (y, x) ∈ Projeção ;
Calcular i e j ∀ (Yi, Xi);
Projeção ← Projeção + Interpolação( Fatia, (i, j) );

fim
fim

Fim

O uso de texture memory por sua vez exigiu a aplicação de várias outras ferramentas
e de uma série de descritivos contidos em estruturas de dados, mas abriu a possibilidade para
estudos interessantes, como a possibilidade de se efetuar a interpolação sem a necessidade
de aplicar o algoritmo 2.

O modelo da placa de vídeo faz bastante diferença no uso de muitas das ferramen-
tas do CUDA toolkit, como por exemplo a quantidade de streams que a GPU consegue
lançar. Por esse motivo todas as informações pertinentes foram pesquisadas nas tabe-
las "Feature Support per Compute Capability"e "Technical Specifications per Compute
Capability"presentes na documentação do CUDA toolkit (NVIDIA, 2020), não apenas
garantindo que o modelo de placa gráfica empregada no desenvolvimento deste trabalho
conseguiria utilizar os recursos pretendidos, mas também que sua execução fosse feita
dentro dos limites para os quais foi projetada.
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4 RESULTADOS E DISCUSSÕES

Esta seção apresenta os resultados obtidos seguindo a metodologia supracitada de
forma ordenada, discorrendo brevemente sobre cada um deles. A figura 18 ilustra duas
das projeções geradas pelo algoritmo original, enquanto a tabela 6 apresenta o tempo (Tc)
levado para a obtenção das projeções.

Figura 18: Projeções obtidas com o algoritmo de controle.
(a) Shepp and Logan (1974) (b) BR3D

Tabela 6: Tempo (Tc), em segundos, que o algoritmo de controle demorou para ser execu-
tado.

Phantom Média Variância Desvio Padrão
Shepp-Logan 1,39 0,01 0,09

BR3D 204,18 21,15 4,60

4.1 Utilizando os recursos do MATLAB

Antes de se utilizar CUDA foram feitos testes mais simples, utilizando recursos de
programação paralela do próprio MATLAB. A tabela 7 mostra os resultados da aplicação
das métricas comparativas em cada projeção obtida, no caso todas as técnicas utilizadas
para a obtenção das projeções usando as ferramentas de programação em GPU próprias do
MATLAB resultaram nos mesmos valores em cada uma das projeções. Todos os resultados
foram extremamente elevados, o que significa que as projeções podem até ser consideradas
idênticas às de controle.
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Tabela 7: Resultados da aplicação de métricas comparativas em cada uma das 9 projeções
adquiridas usando a GPU diretamente no MATLAB com as suas correspondentes
de controle.

Shepp-Logan BR3D
Projeção PSNR SSIM PSNR SSIM

1 164,21 1,00 148,29 1,00
2 164,05 1,00 148,55 1,00
3 164,90 1,00 148,53 1,00
4 164,36 1,00 148,40 1,00
5 164,06 1,00 148,36 1,00
6 164,85 1,00 148,44 1,00
7 164,28 1,00 148,61 1,00
8 164,37 1,00 148,67 1,00
9 164,18 1,00 148,43 1,00

A tabela 8 apresenta o tempo de execução (T1) obtido com o algoritmo de controle
ao alocar memória na GPU com o uso da função "gpuArray", já o tempo (T2) da tabela 9
é relativo não só ao uso da função "gpuArray", mas também da função "arrayfun".

Tabela 8: Tempo (T1), em segundos, que o algoritmo de controle demorou para ser execu-
tado ao usar gpuArray como tipo de variável de entrada.

Phantom Média Variância Desvio Padrão (Tc/T1)
Shepp-Logan 0,71 0,00 0,02 1,96

BR3D 98,00 1,58 1,26 2,08

Tabela 9: Tempo (T2), em segundos, que o algoritmo de controle demorou para ser execu-
tado ao usar a função "arrayfun"para calcular X e Y.

Phantom Média Variância Desvio Padrão (Tc/T2)
Shepp-Logan 0,95 0,00 0,02 1,47

BR3D 15,59 0,00 0,03 13,10

Apesar da simplicidade desse processo, os resultados se mostraram bastante positi-
vos, reduzindo praticamente a metade o tempo de execução no uso de ambos os phantoms
somente ao disponibilizar para o MATLAB memória alocada na GPU. O uso da função
"arrayfun"por outro lado teve resultados mais contrastantes entre os phantoms, acelerando
muito mais o phantom BR3D que o de Shepp-logan.

Isso se deve ao fato de que o phantom de Shepp-Logan é consideravelmente pequeno
e consequentemente o tempo de execução do algoritmo também é, por isso o tempo
acrescido pelo uso da função "arrayfun"foi proporcionalmente maior que o do phantom
BR3D, sendo perceptível em um, mas não no outro.
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4.2 Utilizando CUDA

Para utilizar CUDA foi necessário primeiro adaptar o código original escrito em
MATLAB para C++, utilizando algumas das peculiaridades exigidas pelos arquivos MEX
descridas na seção de Materiais e Métodos. Uma das projeções resultantes de cada phantom
pode ser vista na figura 19.

Figura 19: Projeções obtidas com o algoritmo feito em C++.
(a) Shepp and Logan (1974) (b) BR3D

Embora as projeções sejam visualmente muito parecidas com as de controle, o
mapa de SSIM deixa claro que não são realmente idênticas. Apesar disso as diferenças são
tão sutis que, para melhor visualização, foi necessário ajustar seu contraste manualmente,
conforme a figura 20. Para ilustrar os valores reais do mapa de SSIM, sem ajuste de
contraste, foi plotado também um histograma também.

A fim de evitar que os reais valores da métrica SSIM fossem disfarçados também
foi aplicada uma máscara com a forma do phantom sobre a projeção, uma vez que a área
de interesse das projeções é uma região menor da imagem. A métrica PSNR, por sua
vez, foi aplicada em recortes retangulares que enquadraram a área de interesse. Esses
procedimentos foram tomados na aquisição das métricas de comparação de imagem para
todas as projeções de ambos os phantoms.
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Figura 20: Mapa de SSIM de uma das projeções do phantom BR3D, feita em C++.
(a) Mapa de SSIM com máscara e
ajuste de contraste. (b) Histograma sem ajuste de contraste.

A tabela 10 por sua vez mostra os resultados da aplicação das métricas compara-
tivas em cada projeção obtida e, apesar de não serem tão elevados quanto antes, ainda
demonstram um alto grau de proximidade.

Tabela 10: Resultados da aplicação de métricas comparativas em cada uma das 9 projeções
adquiridas com os métodos que usaram C++, mas não usaram shared memory,
com as suas correspondentes de controle.

Shepp-Logan BR3D
Projeção PSNR SSIM PSNR SSIM

1 42,43 0,97 55,33 0,99
2 42,02 0,97 55,60 0,99
3 41,61 0,97 55,70 0,99
4 41,35 0,97 55,58 0,99
5 40,73 0,97 55,41 0,99
6 40,32 0,97 55,55 0,99
7 40,09 0,97 55,59 0,99
8 39,80 0,97 55,48 0,99
9 39,87 0,96 55,14 0,99

Analisando os resultados é possível inferir que se tratam de erros de arredondamento,
uma vez que as projeções do phantom BR3D, cujo valor dos pixels possui mais casas antes da
virgula, sofreu bem menos influência. Apesar de parte dessa diferença no arredondamento
poder ser simples consequência da utilização de diferenças na linguagem MATLAB e C++,
o maior responsável por isso é o uso de ponto flutuante de precisão simples no código em
C++.
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A escolha de se utilizar precisão simples foi devida a maior quantidades de núcleos
de processamento desse tipo na GPU utilizada nos testes, bem como a baixa influência dessa
conversão nas imagens, como mostrado anteriormente. A tabela 11 mostra os resultados
obtidos com a execução do algoritmo escrito em C++. Nela é possível reparar que a
simples conversão de linguagem já melhorou o desempenho do algoritmo e isso também se
deve principalmente a utilização de ponto flutuante de precisão simples nos cálculos. Essa
modificação foi feita pois a placa de vídeo utilizada possui mais núcleos para cálculos de
ponto flutuante de precisão simples do que de precisão dupla.

Tabela 11: Tempo (T3), em segundos, que o algoritmo feito em C++ demorou para ser
executado.

Phantom Média Variância Desvio Padrão (Tc/T3)
Shepp-Logan 0,76 0,00 0,00 1,83

BR3D 51,34 0,01 0,10 3,98

Os testes seguintes foram feitos adaptando este código de forma a permitir que
fosse executado em GPU, mas mantendo a qualidade das projeções. As tabelas 12 a 14
demonstram os resultados obtidos adaptando os cálculos de aquisição das coordenadas X
e Y e de interpolação para serem feitos de forma paralela com CUDA. Nesta etapa ainda
foi utilizado um loop para as fatias, ou seja, os cálculos ainda foram feitos uma fatia de
cada vez.

Tabela 12: Tempo (T4), em segundos, que o algoritmo feito em C++ demorou para ser
executado usando CUDA somente nos cálculos da interpolação, fatia por fatia.

Phantom Média Variância Desvio Padrão (Tc/T4)
Shepp-Logan 3,70 0,00 0,05 0,38

BR3D 268,08 2,09 1,44 0,76

Tabela 13: Tempo (T5), em segundos, que o algoritmo feito em C++ demorou para ser
executado usando CUDA somente nos cálculos de X e Y, fatia por fatia.

Phantom Média Variância Desvio Padrão (Tc/T5)
Shepp-Logan 1,08 0,00 0,00 1,29

BR3D 50,42 0,00 0,06 4,05

Tabela 14: Tempo (T6), em segundos, que o algoritmo feito em C++ demorou para ser
executado usando CUDA nos cálculos de X, Y e interpolação, fatia por fatia.

Phantom Média Variância Desvio Padrão (Tc/T6)
Shepp-Logan 0,62 0,00 0,01 2,23

BR3D 34,57 0,01 0,08 5,90
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Pode-se observar com esses dados que, quando a GPU não é utilizada para realizar
quantidades realmente muito grandes de cálculos simultâneos, ela pode não apresentar
ganhos significativos em relação a execução na CPU, podendo inclusive demorar ainda
mais para fazê-los. Em todos os três casos o desempenho da execução com phantom BR3D
foi melhor em relação ao phantom de Shepp-Logan justamente por proporcionar maior
quantidade de cálculos a cada etapa.

Também é possível perceber que a execução dos cálculos de coordenadas de forma
paralela melhorou mais o desempenho geral do algoritmo que o cálculo da interpolação,
mesmo o número de threads simultâneas exigidas para tal sendo menor, o que significa
que a complexidade dos cálculos efetuados em paralelo também faz bastante diferença no
desempenho.

O algoritmo que efetuou ambos os cálculos em paralelo obteve os melhores resultados,
por esse motivo também foi aplicado na aquisição dos dados da tabela 16, com a diferença
que o último também utilizou de shared memory. Apesar da variação no algoritmo C++
em si não ter visualmente resultado em mudança significativa nas projeções, a utilização
das métricas apontou uma ligeira mudança, conforme demonstra a tabela 15.

Tabela 15: Resultados da aplicação de métricas comparativas em cada uma das 9 projeções
adquiridas com os métodos que usaram C++ e shared memory com as suas
correspondentes de controle.

Shepp-Logan BR3D
Projeção PSNR SSIM PSNR SSIM

1 42,80 0,96 55,35 0,99
2 42,38 0,96 55,62 0,99
3 42,03 0,96 55,71 0,99
4 41,74 0,97 55,60 0,99
5 41,14 0,96 55,43 0,99
6 40,73 0,97 55,58 0,99
7 40,51 0,96 55,62 0,99
8 40,21 0,96 55,52 0,99
9 40,24 0,96 55,18 0,99

Tabela 16: Tempo (T7), em segundos, que o algoritmo feito em C++ demorou para ser
executado usando CUDA nos cálculos de X, Y e interpolação, fatia por fatia,
com uso de shared memory.

Phantom Média Variância Desvio Padrão (Tc/T7) (T6/T7)
Shepp-Logan 0,36 0,00 0,00 3,83 1,72

BR3D 19,15 0,01 0,10 10,66 1,80
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O simples uso de shared memory foi suficiente para melhorar a velocidade de
execução do mesmo algoritmo em torno de 1.75 vezes, mesmo quando a quantidade de
acessos simultâneos a endereços de memória não era tão elevada (caso do phantom de
Shepp-Logan). Isso aconteceu não só porque a shared memory fica fisicamente mais próxima
dos SMs, mas também porque ela por si só é composta de registradores mais rápidos que
a DRAM da global memory e seu uso alivia o número de acessos da DRAM.

A foma como a shared memory armazena dados também foi suficiente para alterar
ligeiramente as imagens resultantes e, embora tal diferença seja diminuta, é interessante
perceber como a memória utilizada influencia nos cálculos.

As tabelas 17 e 18 por sua vez apresentam os resultados dos testes feitos com esse
mesmo algoritmo ao utilizar texture memory em vez e shared memory. Não foi possível
obter projeções satisfatórias com texture memory utilizando o phantom BR3D porque a
quantidade desse tipo de memória disponível na placa gráfica empregada não foi suficiente
para armazenar uma única fatia do phantom, por isso as conclusões tomadas serão referentes
apenas ao uso do phantom de Shepp-Logan.

Tabela 17: Tempo (T8), em segundos, que o algoritmo feito em C++ demorou para ser
executado usando CUDA nos cálculos de X, Y e interpolação, fatia por fatia,
com uso de texture memory.

Phantom Média Variância Desvio Padrão (Tc/T8) (T6/T8)
Shepp-Logan 0,59 0,00 0,01 2,36 1,05

BR3D - - - - -

Tabela 18: Tempo (T9), em segundos, que o algoritmo feito em C++ demorou para ser
executado usando CUDA nos cálculos de X, Y e interpolação, fatia por fatia,
com uso de texture memory diretamente no cálculo da interpolação.

Phantom Média Variância Desvio Padrão (Tc/T9) (T6/T9) (T8/T9)
Shepp-Logan 0,54 0,00 0,01 2,55 1,14 1,08

BR3D - - - - - -

Nenhum dos métodos acelerou a execução em mais do que 1,15 vezes em relação
ao T6, obtido empregando o mesmo algoritmo, mas sem fazer uso de texture memory. Ao
empregar a texture memory apenas para acessos de memória, mantendo o uso do algoritmo
2 nos cálculos de interpolação, as métricas de qualidade de imagem apontaram os mesmos
resultados dos algoritmos feitos em C++ apresentados anteriormente. Porém ao usar a
ferramenta de interpolação própria da texture memory parte das projeções foi corrompida,
contendo valores esdrúxulos, isso quando tais valores ainda eram lidos como valor numérico
pelo MATLAB e não NaN (not a number).
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Figura 21: Exemplo de projeção obtida com uso da ferramenta de interpolação própria da
texture memory.

(a) Escala ajustada automaticamente. (b) Escala ajustada entre 0 e 35.

A figura 21 mostra lado a lado uma mesma projeção obtida usando a ferramenta de
cálculo de interpolação da texture memory plotadas de duas formas distintas, uma deixando
o intervalo de intensidade entre os pixels pretos e brancos ser ajustado automaticamente
para compreender os valores máximo e mínimo presentes na imagem, enquanto a outra foi
ajustada para que todos os pixels cujo valor é menor que zero seja completamente preto.

A figura 22 por sua vez ilustra a diferença entre a projeção mostrada na figura 21
com sua correspondente de controle, com e sem editar os pixels da área corrompida.

Figura 22: Diferença entre a projeção da figura 21 e sua correspondente de controle.
(a) Sem editar a área corrompida. (b) Editando a área corrompida.
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Ao tentar aplicar as métricas PSNR e SSIM para avaliar a qualidade de projeções
como as apresentadas acima, as funções próprias do MATLAB, que também foram
empregadas nos demais testes, simplesmente falharam em chegar a algum valor conclusivo.
Apesar disso, a própria NVIDIA (2020) na documentação do CUDA toolkit enfatiza que
a interpolação feita pela texture memory é de baixa precisão, então mesmo na ausência
desse problema os resultados provavelmente teriam métricas inferiores.

Sabendo que não houveram problemas ao empregar a texture memory apenas
para acessos de memória, o que resultou inclusive em imagens de qualidade equivalente a
dos demais métodos testados, é possível inferir que o problema não ocorreu por falta de
memória.

Posteriormente o algoritmo foi modificado para se aumentar ainda mais seu grau
de paralelismo, de forma que todos os cálculos das fatias foram feitos simultaneamente
a cada execução do loop das projeções. Os resultados obtidos nos testes desse algoritmo,
usando e sem usar shared memory, se encontram nas tabelas 19 e 20.

Tabela 19: Tempo (T10), em segundos, que o algoritmo feito em C++ demorou para ser
executado usando CUDA nos cálculos de X, Y e interpolação, todas as fatias
simultaneamente, sem usar shared memory.

Phantom Média Variância Desvio Padrão (Tc/T10) (T6/T10)
Shepp-Logan 0,05 0,00 0,00 29,33 13,12

BR3D 1,99 0,00 0,01 102,67 17,39

Tabela 20: Tempo (T11), em segundos, que o algoritmo feito em C++ demorou para ser
executado usando CUDA nos cálculos de X, Y e interpolação, todas as fatias
simultaneamente, usando shared memory.

Phantom Média Variância Desvio Padrão (Tc/T11) (T10/T11)
Shepp-Logan 0,05 0,00 0,00 26,28 0,90

BR3D 2,67 0,00 0,01 76,40 0,74

Aumentar o grau de paralelismo do algoritmo reduziu drasticamente seu tempo de
execução, chegando a aumentar sua velocidade em até 17 vezes em relação a sua versão
anterior e 102 vezes em relação ao algoritmo de controle. Desta vez, porém, o uso de shared
memory prejudicou seu desempenho.

Isso aconteceu porque, ao aumentar o grau de paralelismo do algoritmo, o tempo
levado para cada acesso de memória fez menos diferença, uma vez que agora mais acessos
são efetuados simultaneamente. Além disso, para usar shared memory foi necessário aplicar
primitivas de sincronização (barreiras) na execução das threads, o que provoca atrasos
que diminuem a velocidade do algoritmo. Contudo, se os algoritmos em cada thread
fossem complexos ao ponto de exigir uma quantidade bem maior de acessos de memória, o
resultado seria diferente.
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Tabela 21: Tempo (T12), em segundos, que o algoritmo feito em C++ demorou para ser
executado usando CUDA nos cálculos de X, Y e interpolação, todas as fatias
simultaneamente, alterando a disposição das threads e thread blocks.

Phantom Média Variância Desvio Padrão (Tc/T12) (T10/T12)
Shepp-Logan 0,02 0,00 0,00 72,18 2,46

BR3D 1,10 0,00 0,01 186,29 1,81

Os resultados que se encontram na tabela 21, por sua vez, são referentes ao mesmo
algoritmo utilizado na tabela 19, efetuando os cálculos de todas as fatias de uma vez e
sem usar shared memory. A diferença aqui é a forma como as threads e thread blocks foram
organizados na grid. Nas versões anteriores tal organização variava bastante em cada
chamada de cada kernel, a fim de facilitar o entendimento do código e seu desenvolvimento,
já o código da tabela 21 mantém uma melhor consistência nessa organização, lançando
sempre uma quantidade de thread blocks na dimensão x maior do que nas dimensões y e z.

Essa mudança foi feita inicialmente para garantir que a placa de vídeo utilizada
conseguisse instanciar a quantidade de thread block necessárias ao executar todas as
projeções simultaneamente, isso porque a dimensão x é aquela que permite maior quantidade
de thread blocks, conforme demonstra a tabela 4. Entretanto pôde-se perceber com essa
mudança que, até mesmo a simples disposição das threads na grid pode fazer uma diferença
considerável no resultado final.

Tabela 22: Tempo (T13), em segundos, que o algoritmo feito em C++ demorou para ser
executado usando CUDA nos cálculos de X, Y e interpolação, todas as projeções
simultaneamente.

Phantom Média Variância Desvio Padrão (Tc/T13) (T12/T13)
Shepp-Logan 0,02 0,00 0,00 69,31 0,96

BR3D 1,10 0,00 0,01 185,03 0,96

O algoritmo utilizado para obter os resultado da tabela 22 foi feito sem a presença
de loop algum, a fim de executar os cálculos de todas as fatias de todas as projeções ao
mesmo tempo. Neste caso, entretanto, aumentar o grau de paralelismo do código desta
vez não melhorou seu desempenho, na verdade o piorou ligeiramente.

Ao executar os cálculos de todas as projeções simultaneamente, muitas threads
requisitaram acesso aos mesmos endereços de memória, congestionando os barramentos da
DRAM e fazendo com que muitas threads tivessem que esperar as outras terminarem suas
tarefas antes que pudessem, sequer efetuar a leitura de memória.

Outro fator que pode ter contribuído para esse resultado é o uso da atomic function
que efetuou os somatórios. Apesar desta mesma função ter sido utilizada em todos os
outros algoritmos, a maior quantidade de acessos que esta função teve que gerenciar
possivelmente agravou as consequências de sua natureza sincronizada.
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A tabela 23 apresenta os resultados obtidos ao empregar um algoritmo similar
ao 3, mas com a diferença de que executa todas as projeções simultaneamente e uma
fatia de cada vez. Como existem mais fatias que projeções, apenas efetuar essa mudança
reduziria significativamente o grau de paralelismo do algoritmo, então os cálculos de todas
a coordenadas X e Y foram feitos de forma paralela e fora do loop das fatias.

É interessante ver como essa abordagem resultou em um tempo de execução menor
que o T10 quando foi usado o phantom menor, mas ao usar o phantom BR3D os tempos
foram praticamente iguais.

Tabela 23: Tempo (T14), em segundos, que o algoritmo feito em C++ demorou para ser
executado usando CUDA nos cálculos de X, Y e interpolação, todas as projeções
simultaneamente, mas uma fatia de cada vez.

Phantom Média Variância Desvio Padrão (Tc/T14) (T10/T14)
Shepp-Logan 0,04 0,00 0,00 37,96 1,29

BR3D 1,98 0,00 0,01 102,91 1,00

A tabela 24 mostra os resultados executando o algoritmo da tabela 23, mas desta
vez sobrepondo execução e transferência e dados ao usar múltiplas streams, o que não foi
suficiente para melhorar os resultados, em vez disso os piorou ligeiramente, consequência
do custo computacional agregado para se criar e gerenciar as streams. Além disso, o tempo
consumido na execução dos cálculos pode ter sido consideravelmente maior que o tempo
da transferência de dados, tornando a econimia de tempo mínima.

Tabela 24: Tempo (T15), em segundos, que o algoritmo feito em C++ demorou para ser
executado usando CUDA nos cálculos de X, Y e interpolação, todas as projeções
simultaneamente, mas uma fatia de cada vez, utilizando múltiplas streams.

Phantom Média Variância Desvio Padrão (Tc/T15) (T14/T15)
Shepp-Logan 0,04 0,00 0,00 33,89 0,89

BR3D 2,17 0,00 0,02 93,91 0,91

Por fim a tabela 25 apresenta um resumo dos resultados obtidos ao empregar cada
um dos métodos testados neste trabalho, enquanto as figuras 23 e 24, referentes ao phantom
de Shepp-Logan e ao phantom BR3D respectivamente, ilustram tais resultados de forma
gráfica.
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Tabela 25: Tempo de execução obtido em cada método.
Nome Descrição Shepp-Logan BR3D
Tc Original da toolbox 1.39s 204.18s
T1 Usando gpuArray no MATLAB 0.71s 98.00s
T2 Usando arrayfun no MATLAB 0.95s 15.59s
T3 C++ sem CUDA 0.76s 51.34s
T4 Cálculo da interpolação com CUDA 3.70s 268.08s
T5 Cálculo das coordenadas com CUDA 1.08s 50.42s
T6 Cálculos da interpolação e das coordenadas com CUDA 0.62s 34.57s
T7 Algoritmo T6 usando shared memory 0.36s 19.15s
T8 Algoritmo T6 usando texture memory apenas para acessar dados 0.59s -
T9 Algoritmo T6 usando texture memory no cálculo da interpolação 0.54s -
T10 Efetuando todos os cálculos de todas as fatias em paralelo com CUDA 0.05s 1.99s
T11 Algoritmo T10 usando shared memory 0.05s 2.67s
T12 Algoritmo T10 alterando a organização das threads 0.02s 1.10s
T13 Efetuando todas as projeções em paralelo com CUDA 0.02s 1.10s
T14 Algoritmo 3 efetuando todas as projeções em paralelo com CUDA 0.04s 1.98s
T15 Algoritmo T14 usando 32 streams 0.04s 2.17s

Figura 23: Tempos de execução do phantom de Shepp-Logan para cada método testado.
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Figura 24: Tempos de execução do phantom BR3D para cada método testado.
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5 CONCLUSÃO

O presente trabalho teve como principal objetivo investigar o potencial compu-
tacional das placas gráficas, utilizando como objeto de estudo uma toolbox desenvolvida
para reconstrução de imagens de tomossíntese digital mamária. A principal ferramenta
empregada nesse estudo foi GPU, utilizada majoritariamente com CUDA, mas como a
toolbox foi desenvolvida em MATLAB, algumas das funcionalidades deste software também
foram testadas.

Apesar da simplicidade das ferramentas de programação em GPU do MATLAB,
elas se mostraram muito mais eficientes que o esperado, chegando a acelerar o algoritmo de
projeção em até 13 vezes. Embora esse não seja todo o potencial das GPU, como mostrado
no decorrer deste trabalho, esta metodologia ainda proporcionou um ganho de tempo
considerável sem a necessidade de empregar grande esforço para isso.

O uso de CUDA, por sua vez, exigiu muito mais atenção e empenho, as vezes
aumentando o tempo de execução do algoritmo em vez de diminuí-lo, mas quando usado
de maneira certa foi capaz de acelerar sua execução em até 186 vezes. No decorrer dos
testes ficou claro que, de modo geral, alterações na forma como os algoritmos são escritos
influenciam muito mais no seu tempo de execução do que o uso de ferramentas como
streams e texture objects.

Isso acontece porque, diferentemente das CPUs, as GPUs são projetadas para
executar grandes quantidades de operações independentes entre si a cada ciclo de trabalho,
então é esperado que modificar a estrutura dos algoritmos a fim de aumentar seu grau
de paralelismo acelere a execução. Contudo existem muitos outros fatores que interferem
na eficiência de um código CUDA, o que torna difícil prever exatamente que tipo de
abordagem é a mais adequada sem testar as opções.

Alguns dos fatores que devem ser levados em consideração na hora de escrever um
código em CUDA são a complexidade dos algoritmos de cada kernel, a organização das
threads na grid e se diferentes threads requisitam acesso a um mesmo endereço de memória.
Contudo o uso de ferramentas mais específicas também pode ter um impacto considerável
no tempo de execução do algoritmo quando aplicadas nas circunstancias certas, como
demonstrado nos testes feitos com shared memory.
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