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RESUMO

Pizani, L. M. Estudo sobre métodos para aceleracao de um algoritmo de re-
construcao de imagens de tomossintese digital mamaria baseado em hardware
GPU e programacao CUDA . 2020. 73p. Monografia (Trabalho de Conclusao de
Curso) - Escola de Engenharia de Sdo Carlos, Universidade de Sdo Paulo, Sao Carlos,
2020.

Este trabalho tem como objetivo explorar algumas das funcionalidades do CUDA toolkit,
utilizando uma toolboz de reconstrucao de imagens de tomossintese digital maméaria desen-
volvida para MATLAB. Foram testadas diferentes abordagens nesse processo, modificando
o algoritmo empregado nos testes a fim de aumentar seu grau de paralelismo e permitir a
aplicacao de algumas das principais ferramentas disponibilizadas pelo CUDA toolkit, como
shared memory, texture objects e streams. Como o algoritmo utilizados nos testes tem a
funcao de gerar projegoes 2D, foram aplicadas métricas de comparacao de imagens em
todos as projecoes geradas utilizando as imagens do algoritmo original como controle, a
fim de validar os resultados. Foram calculados os tempos médios de cada abordagem e os
valores obtidos foram comparados para permitir uma analise de quais métodos apresen-
taram os melhores resultados e quais fatores mais influenciaram no tempo de execucao.
Com os testes foi possivel concluir que, dependendo do algoritmo utilizado, a redugao de
tempo na execucao do algoritmo pode chegar a mais de 180 vezes ao empregar CUDA.
Os resultados mais significativos foram consequéncia das mudancgas que aumentaram o
grau de paralelismo do algoritmo, porém o uso de ferramentas mais especificas do CUDA
toolkit também podem fazer uma diferenca de até 1,8 vezes quando aplicadas nas condigoes

certas.

Palavras-chave: GPU, programagao paralela, CUDA, tomossintese digital mamaéria.






ABSTRACT

Pizani, L. M. Study on methods for accelerating an image reconstruction
algorithm for digital breast tomosynthesis based on GPU hardware and CUDA
programming. 2020. 73p. Undergraduate Final Project, Sao Carlos School of Engineering,
University of Sao Paulo, Sao Carlos, Brazil, 2020.

This work aims to explore some of the CUDA toolkit features, using the toolbox for
reconstruction of digital breast tomosynthesis images developed in MATLAB. Different
approaches were tested in this process, modifying the algorithm used in the tests to increase
its degree of parallelism and allow the application of some of the main tools available by
CUDA toolkit, such as shared memory, texture objects and streams. In order to validate
this work, the accelerated projection images were compared against the results provided
by the original toolbox. For each acceleration method, the average execution time was
evaluated in order to choose the best algorithm, and also what are the most important
factors that impact the acceleration procedure. Depending on the technique applied, the
time reduction factor, in the algorithm execution, can reach more than 180 times, when
using GPU with the CUDA toolkit. The higher speed improvements were achieved due to
the higher parallelism applied in the algorithms. Moreover, specific CUDA techniques can

also increase the speedup up to 1.8 times, when applied in the right manner.

Keywords: GPU, parallel programming, CUDA toolkit, digital breast tomosynthesis.
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1 INTRODUCAO

1.1 Contextualizacao e Motivacao

Em 1965 o cofundador da Intel, Gordon Earle Moore, montou um grafico que
descrevia a quantidade de transistores que era possivel integrar em um tnico chip desde
1959, ano da invengao do circuito integrado, até entdao. Observando a tendéncia do grafico
Moore previu que a quantidade de transistores por chip dobraria a cada ano, previsao
essa que veio a se tornar conhecida como Lei de Moore (Huang et al., 2010; Yao, 2004).
Posteriormente essa previsao foi revisada e o periodo de tempo necessario para dobrar a
quantidade de transistores em um chip foi alterada para dois anos (Denning and Lewis,
2017; McCool et al., 2012).

A Lei de Moore se mostrou uma estimativa razoavel durante décadas, entretanto
o aumento no nimero de componentes nao foi o tnico responsavel pelo crescimento
exponencial na velocidade de processamento observada, sendo o aumento da frequéncia
de chaveamento dos transistores, também chamada de frequéncia de clock, um fator
igualmente relevante (Theis and Solomon, 2010; Ramanathan et al., 2015; Denning and
Lewis, 2017). Durante muito tempo esses dois fatores foram suficientes para manter
a elevada taxa de desenvolvimento tecnologico praticamente inalterada, porém ambos

possuem limites fisicos fundamentais.

Transistores menores necessitam de menos energia, mas isso requer que a tensao
de operacao diminua juntamente com o tamanho dos transistores, o que pode afetar sua
operacao, uma vez que é necessaria uma tensao minima para que o componente mude
sua caracteristica condutiva corretamente e represente o nivel 1égico que deveria (Theis
and Solomon, 2010; Ramanathan et al., 2015). Além disso as altas velocidades de clock
induzem grandes variagoes de corrente, o que implica em maiores correntes de fuga e
em um consumo de energia que nao diminui na mesma propor¢ao que a dimensao dos
transistores. Em outras palavras aumentar o nimero de componentes em um chip de area
fixa, como um processador por exemplo, também aumenta seu consumo de energia e, como
consequéncia, gera mais calor(Huang et al., 2010; Ramanathan et al., 2015; Yao, 2004).
Esse aumento progressivo no consumo de poténcia e geracao de calor dos processadores é

chamado pela Intel de power wall.

Ao juntar as limitagdes da power wall com a laténcia de acesso a memoria é possivel
entender porque a industria passou a fixar a tensao de alimentacao dos transistores e parou
de simplesmente aumentar sua velocidade de chaveamento, mesmo que ainda continuem
diminuindo seu tamanho (Theis and Solomon, 2010; Ramanathan et al., 2015). Sabendo

da impossibilidade de manter o crescimento exponencial da velocidade de processamento
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pelos meios supracitados foi necessario a ado¢ao de um novo paradigma.

Uma opcao muito estudada recentemente ¢ a integracao de chips tridimensionais,
uma nova tecnologia que, em vez de integrar todos os transistores de um chip lado a lado
em um mesmo plano, visa empilhar verticalmente varios desses planos. Essa tecnologia
possibilita maior densidade de componentes por chip e novas organizacoes de circuitos,
porém isso também resulta em um drastico aumento na dissipagao de calor no componente,
fator que ja é preocupante mesmo nas tecnologias bidimensionais (Ahmed and Schuegraf,
2011; Loh et al., 2007; Huang et al., 2010).

Outra opc¢ao ¢ diminuir os esforcos em desenvolver maquinas com um tnico proces-
sador cada vez mais poderoso e concentra-los em desenvolver computadores com varios
nucleos de processamento, e é exatamente isso que a industria tem feito nos ultimos anos
(Adve et al., 2008). Praticamente todos os computadores modernos ja se utilizam deste
principio, possuindo pelo menos um recurso paralelo em seu hardware, de fato chips multi-
core estao tao difundidos atualmente que até no simples ato de comprar um smartphone
novo é comum se deparar com a escolha de processadores dualcore, quadcore e até octacore
(McCool et al., 2012), embora nem todo mundo saiba o que essas terminologias significam.
Os processadores multicore, como sao chamados, podem nao ser necessariamente mais
rapidos que um modelo de um nucleo dos mais avancados, mas utilizando do principio de
programacao paralela podem apresentar desempenho geral superior (Keckler et al., 2009;

Geer, 2005).

A programacao paralela consiste de dividir grandes tarefas em fragoes menores
e mais simples, que sao executadas de forma independente entre si, concomitantemente,
e em diferentes nicleos de processamento. Desta forma diretivas de loop, por exemplo,
dependendo de sua natureza, podem ter todos seus ciclos efetuados de uma tinica vez, pou-
pando grande quantidade de tempo. Contudo poucas sao as ferramentas que efetivamente

foram desenvolvidas pensando em programacao em paralelo (McCool et al., 2012).

As primeiras linguagens de maquina eram fundamentalmente seriais, ou seja,
efetuavam tarefas consecutivas sequencialmente, até mesmo diretivas de loop eram apenas
uma forma abreviada de executar tarefas sequenciais uma grande quantidade de vezes.
Com o passar do tempo a serializagao se arraigou no processo de programacao de tal
forma que a maioria dos recursos e dos conhecimentos sobre programacao difundidos até
hoje sao essencialmente serializados, mesmo que o hardware utilizado possua alto grau de
paralelismo (McCool et al., 2012).

Isso porém esta mudando, recentemente o paralelismo vem sendo cada vez mais
utilizado em varios dominios, incluindo computagao grafica, computacao de alto desempe-
nho e também em ambas combinadas (Adve et al., 2008). As chamadas GPUs (Graphics
Processing Unit) sdo processadores altamente especializados em renderizagao de imagens,

efetuando grandes quantidades de calculos de ponto flutuante rapidamente, chegando até
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a alcancar a casa dos GFLOPS (10° Floating-point Operations Per Second) (McClanahan,
2010; Shah and Yousaf, 2019). Uma vez que o célculo da cor de um pixel na tela é independe
da cor dos demais pixels, a paralelizacao das placas gréaficas foi a escolha légica, escolha
essa que tem feito com que o desenvolvimento das GPUs acelerasse ainda mais que o
previsto pela Lei de Moore (McClanahan, 2010; Brodtkorb et al., 2013).

De fato a tecnologia das placas graficas cresceram tao rapidamente que tem
também sido utilizada em computacao de proposito geral juntamente com as CPUs
(Central Processing Unit), recebendo assim o nome de GPGPU (General Purpose Graphics
Processing Unit)(Brodtkorb et al., 2013). As GPGPUs nao sdo a tnica alternativa para
programar paralelamente de forma eficiente, mas tendem a ser as mais utilizadas, uma
vez que placas graficas ja sao facilmente encontradas em computadores atuais por padrao,
nao necessitando de um hardware completamente avesso ao cotidiano da maioria dos

programadores, como é o caso das FPGAs (Field Programmable Gate Array), por exemplo
(Brodtkorb et al., 2013).

Os maiores fabricantes de placas graficas atualmente sao dois, AMD e NVIDIA,
porém a NVIDIA tem apresentado mais destaque no meio académico devido a concepgao
de sua arquitetura de computagao paralela propria, chamada CUDA (Compute Unified
Device Architecture) (Brodtkorb et al., 2013).

A demanda por custo computacional vem crescendo rapidamente e é seguro dizer
que vai continuar crescendo, principalmente no meio académico, no qual novos algoritmos
cada vez mais complexos sao desenvolvidos a todo momento. Esses novos algoritmos
necessitam ser cada vez mais velozes, uma vez que para serem refinados e validados sao
necessarios iniimeros testes, do contrario todo o processo de desenvolvimento sera lento e

dispendioso.

Além disso, a simples aplicabilidade de um algoritimo pode depender de sua
velocidade, como é o caso das aplicacoes médicas, ja que muitas vezes os médicos e seus
pacientes necessitam dos resultados de exames o mais rapido possivel. O processo de
reconstrucao de tomossintese digital mamaria, por exemplo, composto por métodos de
projecao, retroprojecao e técnicas de filtragem de ruido, ja é conhecido ha bastante tempo,
mas devido ao seu alto custo computacional tardou a ser foco de pesquisas (Vimieiro,
Rodrigo de Barros, 2019).

Os processos iterativos de reconstrucao sao lentos sequencialmente mesmo quando
executados em CPUs modernas, mas acarretam em grandes beneficios no &mbito da satude,
uma vez que tem por objetivo gerar imagens para o rastreio do cancer de mama (Vimieiro,
Rodrigo de Barros, 2019). Por esse motivo sao 6timas opgoes para se acelerar usando
programacao paralela, e a tecnologia CUDA, além de permitir isso, proporciona uma
experiéncia de programagao familiar ao usuario, permitindo que ele programe em uma

linguagem que ja domine (Arora, 2012).
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1.2 Objetivo

O presente trabalho visa investigar o funcionamento de algumas das diferentes
ferramentas e métodos de optimizagao e aceleracao de cddigo que a NVIDIA disponibiliza
através do CUDA Toolkit, utilizando como objeto de estudo uma toolboz de reconstrugao
de tomissintese digital mamaria que, em trabalhos anteriores, ja foi testada em um modelo
de programagao serial. Contudo, como o objetivo deste trabalho é entender como empregar
CUDA de forma efetiva, o tinico algoritmo utilizado nos testes foi o que gera as projegoes,
a fim de que, futuramente, os aprendizados deste trabalho possam ser aplicados para

acelerar o processo de reconstrugao por completo.

1.3 Organizacao da Monografia

Além deste capitulo o presente trabalho esta dividido em mais 4 secg¢des, que sao

respectivamente Teoria, Materiais e Métodos, Resultados e Conclusao.

O Capitulo 2, Teoria, apresenta de maneira detalhada os conceitos da programacao
paralela, bem como sua aplicacao por meio das novas diretivas de C++ proporcionadas pela
arquitetura CUDA. Nesse capitulo também sao explicados os conceitos basicos a respeito
de reconstrucao de imagens de tomossintese digital mamaria, de forma breve e resumida,
apenas a fim de orientar adequadamente o leitor e possibilitar melhor entendimento da

seccao de Resultados.

O Capitulo 3, Materiais e Métodos, descreve como foi a abordagem utilizada para
efetuar a traducgao dos codigos seriais previamente estudados em codigos paralelizados por
meio de CUDA.

O Capitulo 4, Resultados, tem a finalidade de expor os resultados obtidos durante

o decorrer do trabalho e discorrer a respeito deles.

Por fim no Capitulo 5, Conclusao, é apresentada uma visao geral de como se

procedeu o trabalho e se ele alcancou as expectativas.
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Esta secdo visa apresentar os conceitos fundamentais sobre os quais o presente
trabalho se sustenta e sem os quais nao seria possivel discorrer sobre as segoes que se
seguem. Primeiramente é apresentada a arquitetura das placas de video da NVIDIA,
seguida do principio de funcionamento do CUDA e por fim o algoritmo utilizado na

andlise.

2.1 Unidades de Processamento Grafico

As placas de video sao projetadas para efetuar quantidades massivas de calculos
por segundo, a fim de renderizar imagens de alta resolu¢ao sem comprometer a sua taxa
de quadros, um problema inerente de video-games. De fato a evolucao das placas graficas
foi, de inicio, quase que exclusivamente impulsionada pelos video-games, mas quando seu
potencial computacional foi percebido, elas passaram a ser utilizadas para as mais diversas

aplicagoes (Owens et al., 2008).

A crescente demanda por capacidade de processamento grafico continua a impulsio-
nar o desenvolvimento de placas graficas cada vez mais poderosas, conforme demonstrado
nas figuras 1 e 2 (NVIDIA, 2020).

Figura 1: Comparativo entre quantidade de operacoes em ponto flutuante por segundo em

CPU e em GPU.
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Fonte: NVIDIA (2020).
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Figura 2: Comparativo entre largura de banda de meméria em CPU e em GPU.
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Fonte: NVIDIA (2020).

2.1.1 Historico

Conforme seu nome sugere, as primeiras graphics processing units (GPUs) pos-
sulam hardware dedicado a renderizacao grafica, sendo concebidas para efetuar operacoes
utilizando apenas primitivas geométricas, mais especificamente pontos, linhas e triangulos.
Formas geométricas complexas por sua vez eram divididas em multiplas faces triangulares,
cujo brilho, matiz e saturagao eram calculadas e direcionadas a seus respectivos pizels
(Arora, 2012; Kim et al., 2012).

As primeiras GPUs trabalhavam com uma quantidade significativamente limitada de
operagoes, que tinham como 1inico propdsito converter estruturas no espaco tridimensional
em imagens bidimensionais (Owens et al., 2008). Era dificil desenvolver e optimizar
programas voltados a GPUs, mas quando tais programas funcionavam eles demonstravam
uma incrivel melhora no quesito de velocidade quando comparado com codigos similares
que eram executados em CPU, o que conduziu ao desenvolvimento de novas e intuitivas

formas de programar em GPU (Owens et al., 2008).

Quando as GPUs comegaram a ser usadas para aplicacoes nao graficas, tais aplica-
¢oOes tinham que ser reformuladas para se adequar linguagens de shaders, como OpenGL
ou DirectX por exemplo, sendo necessario descrever problemas de todos os tipos através
de primitivas graficas apenas. A dificuldade de se fazer isso levou ao desenvolvimento de
outras formas de utilizar as GPUs visando facilitar o processo (Nickolls and Dally, 2010;
Kim et al., 2012).
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Figura 3: Cronologia das linguagens de programacao de GPUs.
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Fonte: Owens et al. (2008).

O avanc¢o no hardware das GPUs também foi direcionado no sentido de melhorar
sua programabilidade, inclusive para aplicagoes de uso geral, possibilitando até mesmo o
surgimento de ferramentas com CUDA, DirectCompute, and OpenCL, que atualmente sao
as predominantes no uso de GPGPUs (Owens et al., 2008). O CUDA toolkit da NVIDIA
permite ao programador utilizar uma abordagem mais tradicional ao lidar com sua GPU,
de forma que ele possa programar em uma linguagem ja familiar a ele, como C ou Fortran,
por exemplo (Kim et al., 2012). A figura 3 ilustra de forma simplificada a cronologia do

desenvolvimento das linguagens de programagcao de GPUs.

2.2 Arquitetura Das placas graficas da NVIDA

A evolugao da arquitetura das GPUs e das CPUs tomaram dire¢gdes bem diferentes.
As CPUs evoluiram para executar uma tnica tarefa por vez, uma apds a outra, sistemati-
camente, aplicando todos seus recursos e potencial em cada operacgao, de forma a tomar
a menor quantidade de tempo possivel em cada tarefa. As GPUs por sua vez utilizam
seus recursos para executar grandes quantidades de trabalho independente entre si a cada
ciclo, isso porque a resolugao das imagens que deve renderizar continuam crescendo, mas
a quantidade de imagens que o olho humano consegue perceber por segundo se mantém
inalterada (Owens et al., 2008) Essa diferenca de paradigma teve consequéncias claras no

hardware dos dispositivos, conforme ilustra a figura 4.

O fluxo de trabalho das GPUs pode ser definido como do tipo feed-forward de

miultiplas etapas, ou seja, os resultados obtidos a cada ciclo de trabalho efetuado por
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uma GPU sao diretamente usados no ciclo seguinte e assim sucessivamente. Ao seguir
esse modelo de funcionamento todos os ciclos de trabalho demandam elevado grau de
paralelismo para atuar com eficiéncia, e nao por coincidéncia, o hardware das GPUs foi
desenvolvido para proporcionar exatamente isso. Quando comparada com as CPUs, a
execugao de cada tarefa é mais lenta, mas nesse meio tempo a quantidade de trabalho
executado tende a ser muito maior, tornando o processo como um todo mais rapido em

diversas situagoes (Owens et al., 2008).

Figura 4: Comparativo entre o hardware das GPUs e das CPUs.
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Fonte: NVIDIA (2020).

A arquitetura das GPUs da NVIDIA ¢ formada basicamente por um conjunto
de streaming multiprocessors (SMs), DRAM (Dynamic Random Access Memory) de alta
largura de banda e registradores, conforme demonstrado na figura 5 (Arora, 2012). Os
diferentes modelos de GPUs da NVIDIA variam no niimero de streaming multiprocessors
(SMs) e na quantidade de meméria RAM. Quanto mais numerosos sao os SMs em uma
GPU, melhor sua performance computacional, e quanto mais meméria a GPU possui,

maior sua memory bandwidth (Nickolls and Dally, 2010).

A comunicagao entre CPU e GPU se da por meio de barramento PCle (Peripheral
Component Interconnect Express), enquanto a comunicagao entre GPUs é feita pela inter-
face NVLink. O acesso a memoria DRAM da GPU por parte dos seus SMs é interfaceado
por controladores de memoéria que trabalham de forma independente uns dos outros,

permitindo acessos paralelos e direcionados, mas que mantém alta a largura de banda
(Nickolls and Dally, 2010).

Cada thread representa um fluxo de operacoes paralelo as demais threads, tendo
seus proprios registradores, memoria, pilha, endereco de instrugao e flags (Nickolls and
Dally, 2010). A quantidade de threads que compdem um thread block é definida pelo
usuario, até um limite que pode variar a depender do modelo de GPU utilizado, como

sera visto mais adiante. J& as chamadas warps sao conjuntos de 32 threads executadas
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Figura 5: Exemplo de uma arquitetura de GPU.
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Fonte: adaptada de NVIDIA (2016).

simultaneamente por um mesmo SM, o que pode ter mais ou menos threads que as de um
thread block (Arora, 2012).

GigaThread é a unidade responsavel por direcionar CUDA threads a SMs disponiveis,
distribuindo o trabalho da melhor forma possivel. Os SM por sua vez organizam as threads
em blocos e as executam. Conforme cada thread block termina de executar suas tarefas e
liberam os recursos de seu respectivo SM, a GigaThread atribui a esse SM novas tarefas
(Nickolls and Dally, 2010).

Os SMs das GPUs modernas sao compostos basicamente por unidades de processa-
mento, unidades de gerenciamento e memoria (Nickolls and Dally, 2010). Algumas dessas

unidades sao:

o CUDA cores: sao os nucleos de processamento da GPU, realizam um calculo aritmé-

tico de nimero inteiro ou de flutuante (32bits) a cada ciclo de trabalho;

o Special function units: sao projetadas para rapido calculo de fungoes de raiz quadrada,

seno, cosseno, exponencial e logaritmica usando ponto flutuante;

o Load/store units: executam instrugdes de acesso a memoria. Essas unidades combinam

o acesso multiplas threads por vez, de forma a minimizar o nimero de acessos;

o Double precision unit: efetuam calculos aritméticos de ponto flutuante com 64bits;
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e Warp scheduler: seleciona, a cada ciclo de trabalho, uma warp para executar instru-

coes;

e Dispatch units: despacham instrugoes retiradas da fila do instruction cache as warps

que irdo executa-las.

Figura 6: Exemplo de um streaming multiprocessor.
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Fonte: adaptada de NVIDIA (2016).

Os SMs compartilham entre si memoria cache de segundo nivel interfaceada com a
DRAM da GPU, mas cada SM também possui sua propria memoria cache de primeiro nivel.
Cada SM ¢ independente e dispoe de ntucleos de processamento e memoria o suficiente
para rodar um ou mais CUDA thread blocks. Somando o potencial de todos os SM de uma

GPU é possivel rodar milhares de threads simultaneamente (Nickolls and Dally, 2010).

A shared memory contida nos SMs, como seu nome sugere, é compartilhada entre
todas as threads em um mesmo thread block. O rapido acesso a shared memory aumenta
significativamente a performance de muitas aplicagdes, enquanto ao mesmo tempo diminui
a requisigao de dados na DRAM (Nickolls and Dally, 2010).
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2.3 CUDA toolkit

CUDA é uma plataforma de computacao desenvolvida pela NVIDIA capaz de
aplicar o elevado potencial de paralelizacao das placas de video em computagao de uso
geral de forma simples e eficiente (NVIDIA, 2020).

Seu toolkit possui de um conjunto muito amplo de ferramentas para expressar
paralelismo, mesmo usando de linguagens intrinsecamente seriais para isso, o que permite
ao programador criar algoritmos eficientes e com elevado grau de paralelismo utilizando
uma linguagem ja familiar (Nickolls and Dally, 2010).

Figura 7: Linguagens de programagao e aplicagoes suportadas pelo CUDA toolkit.
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Fonte: NVIDIA (2020).

EMBEDDED DATA CENTER

Programas desenvolvidos com CUDA usam o modelo de Programacao Heterogénea,
ou seja, uma parte deles roda sequencialmente na CPU enquanto a outra parte roda
na GPU utilizando threads paralelas, conforme ilustrado na figura 8. A CPU é o host,
responsavel por coordenar todo o fluxo de execu¢do em um programa que utiliza CUDA
(NVIDIA, 2020). A parte sequencial desses programas opera como em qualquer linguagem

serial, o diferencial aqui é a utilizacao da GPU, que serd abordada utilizando linguagem C.
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Figura 8: Fluxo de execucao de um programa utilizando CUDA.
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A CPU instancia os chamados kernels, que sao fungoes descritas de forma serial no
programa, mas que utilizam multiplas threads ao ser executadas na GPU, referenciada
daqui em diante como device (NVIDIA, 2020). Para chamar um kernel deve-se usar a

seguinte sintaxe:

// Declaracao do Kernel
__global _ void Nome (definig¢do das entradas){

}

void main () {

// Chamada do Kernel
Nome <<< block, thread, shared, stream[i] >>> (entradas);
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O especificador " global  "é usado junto com a declaracao do kernel para
diferencia-lo de uma funcao normal, significando que ele é visto por ambos dispositivos.

Também existem os especificadores " host  '"e '

device ", 0 uso do primeiro ou de
nenhum tem o mesmo significado, o de uma funcao exclusivamente do host, enquanto o
segundo é uma fungao exclusiva do device e que deve ser chamada por um kernel (NVIDIA,

2020).

Ja os argumentos entre < < < ... > > > definem como o device vai trabalhar
com o kernel. Os dois tltimos argumentos serdao discutidos mais adiante, ja os outros dois
definem, respectivamente, a quantidade de thread blocks em uma grid e a quantidade
de threads em um thread block. Como tanto a grid quanto os thread blocks podem ser
unidimensionais, bidimensionais ou tridimensionais, os argumentos utilizados sao do
tipo "dim3", estruturas de dados compostas por 3 variaveis do tipo "size t"que indicam

respectivamente a quantidade de elementos nas dimensoes x, y e z (NVIDIA, 2020).

A forma como as threads sao organizadas para gerar thread blocks e grids pode
ser vista na figura 9. Cada thread conhece sua posicao em um thread block, assim como
cada thread block conhece o nimero de threads que o compoem e sua posi¢do na grid,
informagoes essas acessiveis ao usuario também por meio de variaveis do tipo "dim3",
"threadldx", "blockDim"e "blockldx", respectivamente (NVIDIA, 2020).

Figura 9: Formacao de uma grid de threads paralelas.
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Fonte: NVIDIA (2020).
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A forma como as diferentes threads usam recursos de meméria do device é chamada
de Hierarquia de Memoéria. Conforme demonstrado pela figura 10, meméria local s6 pode
ser acessada pela thread em que foi criada, shared memory sé pode ser acessada por threads
que pertengam a um mesmo thread block e global memory pode ser acessada por todas as
threads (NVIDIA, 2020).

A funcado cudaMalloc é usada no host para alocar global memory dinamicamente
na DRAM do device, enquanto a fungao cudaMemcpy copia dados do host para o device e
vice versa. Por outro lado a memoria local e a shared memory sao declaradas nos kernels
(NVIDIA, 2020), conforme se segue.

1 __global _ void kernel (definigdo das entradas){

2

3 // Posicdo da thread nas dimensdes x, y e z

4 int x = blockDim.x % blockldx.x 4+ threadldx.x; // meméria local
5 int y = blockDim.y % blockldx.y + threadldx.y; // meméria local
6 int z = blockDim.z % blockldx.z + threadldx.z; // meméria local
8 // shared memory

9 __shared___ float shared _mem [];

10

11}

12 void main () {

14 float* h_mem; // host memory
15

16 float* d_mem; // global memory
17

18 // aloca n bytes na global memory do device

19 cudaMalloc (( void **)& d_mem, n);

20

21 // copia n bytes de h mem para d_mem

22 cudaMemcpy (d_mem, h mem, n, cudaMemcpyHostToDevice) ;
23

24 }

E considerada uma boa pratica diferenciar meméria exclusiva do host (CPU)
da global memory (GPU), pois elas s6 podem ser acessadas pelos dispositivos ao qual
pertencem. Um padrao frequentemente adotado é utilizar o prefixo "d_"no nome de
variaveis que armazenam global memory e o prefixo "h_ "nas variaveis exclusivas do host

(NVIDIA, 2020).
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Figura 10: Hierarquia de meméria.
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A quantidade de bytes de shared memory a serem alocados é o terceiro argumento
entre < < < ... > > > mencionado anteriormente. A vantagem em se utilizar shared
memory e memoria local em relagao a global memory é que as primeiras sdo armazenadas
em registradores que ja se encontram nos SMs e por isso os dados percorrem um trajeto

menor até as threads, aumentando a velocidade dos acessos (NVIDIA, 2020).

Existem também outras formas de se manejar acessos a memoria, que sao utilizando
constant memory, pinned memory ou texture memory. A constant memory é armazenada
diretamente no device, mas diferentemente da shared memory ela é acessivel a todas as
threads. Por outro lado ela possui uma série de desvantagens, dentre elas a impossibilidade de
ser alocada dinamicamente e possuir uma capacidade de armazenamento significativamente

baixa, 64KB apenas. Além disso o acesso a constant memory é limitado, se muitas threads
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tentarem acessar enderecos de constant memory diferentes ao mesmo tempo, sua utilizagao

fica prejudicada e o processo pode ficar mais lento do que seria com a global memory

(NVIDIA, 2020).

Figura 11: Localizagdo dos diferentes tipos de memoéria.
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De fato a constant memory é um recurso ttil em situagdes bem especificas apenas.

O comando para alocar esse tipo de memoria é feito no host utilizando o especificador

n

constant__ "e os dados enderecados nesse espaco de memoria colocados 14 sao copiados

de algum endere¢o de memoria da host por meio da fungdo cudaMemcpyToSymbol

(NVIDIA, 2020), conforme se segue.

2 __constant___ float c mem[512];

4 void main(){

// constant memory

// host memory

6 float* h_mem;

7

8 // copia n bytes de h_mem para c_mem
9 cudaMemcpyToSymbol (¢_mem, h _mem, n);

Os Texture objects sao geralmente uma alternativa mais viavel. Criados para

referenciar e manejar o acesso a terture memory, eles sao criados a partir de cuda arrays e

estruturas de dados que contém uma série de caracteristicas a seu respeito. O cuda arrays

por sua vez sao vetores 1D, 2D ou 3D optimizados para o acesso a texture memory e também

sao criados com base em descritivos contidos em uma estrutura de dados (NVIDIA, 2020).

Para maiores detalhes sobre ambas as estruturas é recomendavel consultar a documentagao
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do toolkit no site da NVIDIA (2020), mas um breve exemplo de como utilizar tezture

object é apresentado abaixo:

__global__ void kernel (cudaTextureObject_t tex){ ... }
void main (){

//Estrutura de dados que especifica o tipo de varidvel
// a ser armazenado pelo cuda array, float no caso
cudaChannelFormatDesc channelDesc =

cudaCreateChannelDesc<float >();
//Declaracao e alocag¢ao de meméria do cuda Array
cudaArray *xd_ cudaArray;
cudaMalloc3DArray(&d_cudaArray, &channelDesc,

make cudaExtent(bytes), 0);

//Estrutura de dados que Array
cudaMemcpy3DParms copyParams = { 0 };
cudaMemcpy3D(&copyParams) ;

//Estruturas de dados que descrevem o texture object
cudaResourceDesc texRes;

cudaTextureDesc texDescr ;

// Efetivamente criando o texture object
cudaTextureObject_t tex;
cudaCreateTextureObject (&tex , &texRes, &texDescr, NULL) ;

Armazenada diretamente no device, a texture memory nao sé é projetada para
permitir multiplos acessos simultaneos a um mesmo enderego de memoria de forma eficiente,
como também é organizada de forma a optimizar esses acessos a enderegos adjacentes.
Para acessar enderecos de texture memory é necessario utilizar as fungoes tex1D, tex2D ou
tex3D, a depender do niimero de dimensoes do texture object. A forma como tais fungdes
fazem os acessos pode ser configuradas para acessos a enderecos precisos ou até mesmo
aproximar e interpolar resultados (NVIDIA, 2020).

A pinned memory por sua vez é um tipo de memoria pertencente ao host, mas que
possui um diferencial importante em relacao a pageable memory, que é o tipo de memoria
padrao. Como a figura 12 ilustra, o device ndo pode diretamente acessar pageable memory,

por isso todas as transferéncias dados entre dispositivos sao feitas por intermédio de pinned
memory (NVIDIA, 2020).
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Figura 12: Funcionamento da pinned memory.
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void main () {

// pinned memory

float xh_pinned;

// aloca n bytes de pinned memory em h_ pinned
cudaMallocHost (( void #x*)&h_Pinned, n) );

// copia n bytes de h_Pageable para h_Pinned
memcpy (h_ Pinned, h_Pageable, n, cudaMemcpyHostToHost) ;

Dados armazenados em pinned memory tendem a permanecer 14 apenas durante as
transferéncias, mas gravar informacao diretamente em pinned memory tem suas vantagens,
mas para isso devem ser criados streams extras. Streams sao como devices virtuais que
partilham o trabalho de um device fisico, mas cada stream tem seu préprio fluxo de
trabalho e atua independentemente das demais, ou seja, um mesmo device pode nao s6
sobrepor tarefas de um mesmo tipo, mas também executar atividades completamente
distintas concomitantemente (NVIDIA, 2020).

Quando nada é especificado todas as operacoes sao executadas na stream nula, que
atua de modo sincrono, sempre esperando a ultima tarefa ser concluida antes de iniciar
a préoxima. As streams criadas por outro lado operam de forma assincrona, isso significa
que enquanto uma stream transfere dados do host para o device, outra pode executar um
kernel, optimizando o processo, conforme representado na figura 13 (NVIDIA, 2020). O

trecho de codigo abaixo exemplifica o uso de 8 streams para sobrepor tarefas.
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1 int main ()

2 {
3

4

wt

const int num_ streams = 8§;

cudaStream_ t streams|[nStreams]; // Declara 8 streams

for (int i = 0; i < nStreams; i++) {

cudaStreamCreate(&streams[i]); // Cria uma stream

int offset = i * n / nStreams;

// Transferéncia assincrona de meméria
cudaMemcpyAsync(&d mem|offset ], &h pinned[offset],
(n / nStreams + 1) x sizeof(float),

cudaMemcpyHostToDevice, stream|[i])

kernel<<<block , thread, shared, streams[i]|>>>(entradas);

cudaStreamDestroy (stream[i]); // Destréi uma stream

Figura 13: Sobreposicao de tarefas com o uso de streams.
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Fonte: NVIDIA (2020).

Devido a natureza cadtica do uso de streams assincronas existem as chamadas

barreiras, que sao primitivas de sincronizagao, para garantir que as streams tenham

terminado suas tarefas quando necessario. Quando uma stream termina suas tarefas e

atinge uma barreira, ela permanece ociosa até que as outras streams também atinjam a

mesma barreira, sem poder continuar (NVIDIA, 2020).

Apesar de todas as threads serem independentes entre si nem todas sdo executadas

exatamente ao mesmo tempo, sendo executadas de forma ligeiramente deslocadas no
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tempo, o que em algumas situagoes pode ser um problema. Para contornar esse problema
existem também barreiras de sincronizacao que atuam apenas em threads de um mesmo
kernel, bem como as atomic functions (NVIDIA, 2020).

As barreiras costumam ser suficientes quando todas as threads escrevem em endere-
¢os de memoria diferentes, mesmo que uma thread modifique um endereco lido por outra,
isso porque todas as leituras de memoria podem ser efetuadas antes da escrita (NVIDIA,

2020), conforme abaixo.

__global__ void kernel (float* array)

{
int x = blockDim.x % blockldx.x + threadldx.x ;
float tmp = array|[x];
__syncthreads () ; // barreira

array [x+1] = tmp;

Por outro lado quando muitas threads modificam um mesmo endereco de meméria
pode-se usar atomic functions. Esse tipo especial de funcao é projetado especificamente
para efetuar célculos de um mesmo tipo envolvendo muitas variaveis, como num somatorio

por exemplo, conforme pode ser visto abaixo (NVIDIA, 2020).

__global__ void somatorio (float* array, float sum)
{
int x = blockDim.x % blockldx.x + threadldx.x ;
atomicAdd(&sum, array [x]);
}

Apesar de serem muito 1teis nas situagoes para as quais foram projetadas, as
atomic functions possuem uma baixa variedade de operagoes que podem ser feitas, além
de limitarem a velocidade dos kernels por terem que sincronizar acessos de memoria e por

esse motivo devem ser usadas apenas quando necessario (NVIDIA, 2020).

Existem ainda muitas outras ferramentas disponibilizadas pelo CUDA toolkit
que nao foram abordadas aqui pois nao serdao abordadas neste trabalho. Um maior
detalhamento sobre as ferramentas apresentadas aqui, bem como outras funcionalidades,
pode ser encontrado na documentacao do CUDA toolkit através do url: https://docs.

nvidia.com/cuda/.
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Cancer é a denominagao dada a um conjunto de doencas cuja principal caracteristica
é o aumento descontrolado do niimero de células no tecido que a enfermidade ataca, podendo
inclusive criar tumores e se espalhar para outras regioes do corpo. Dentre os diversos tipos
existentes, o cancer de mama foi aquele com a maior taxa de mortalidade entre mulheres
no ano de 2017 no Brasil e estima-se que até o final de 2020 serdo diagnosticados mais de
66 mil casos da doenca (INCA, 2020).

A deteccao do cancer de mama em sua etapa inicial possibilita que sejam feitos
tratamentos menos invasivos e aumenta a taxa de recuperacao dos pacientes, por isso seu
diagnostico ¢ tao importante e é recomendado que mulheres entre 50 e 69 anos fagam

exames de rastreamento a cada dois anos, mesmo na auséncia de sintomas (INCA, 2020).

O exame mais conhecido que atende a essa finalidade ¢ a mamografia, que con-
siste da obtencao de uma simples imagem radiografica da mama, e como toda imagem
radiografica, possui limitagoes. Uma radiografia é a representacao bidimensional de uma
estrutura tridimensional, e isso por si s6 implica em perda de informacao, tornando possivel
que estruturas se sobreponham umas as outras e impossibilite um diagnodstico preciso

(Vedantham S. and et al, 2015; ASC, 2020).

Figura 14: Aquisicao das projecoes por um equipamento de tomossintese.
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Para contornar esse problema foi desenvolvida a tomossintese digital mamaria,
uma técnica que visa reconstruir o volume 3D do objeto de analise a partir da captura de
multiplas imagens radiograficas (projegoes). Para obter as imagens necessarias ao algoritmo
de reconstrugao o tubo emissor de raios X varia levemente sua posicao em relacao ao objeto
seguindo a trajetéria de um arco, capturando vérias projegoes 2D do objeto tridimensional

em diferentes pontos dessa trajetéria (Vimieiro R. B. et al., 2019).

Como pode-se observar na figura 14, o objeto verde foi completamente obstruido
pelo objeto vermelho na projecao "B'", mas é parcialmente visivel nas projecoes "A'e
"C'devido a variacao angular do emissor de raios X. Depois de adquiridas as proje¢oes
é possivel aplica-las em um algoritmo de reconstrucao capaz de inferir a geometria dos

objetos capturados (Vimieiro, Rodrigo de Barros, 2019).
O Laboratério de Visao Computacional (LAVI), da Escola de Engenharia de Sao

Carlos, Universidade de Sao Paulo, desenvolveu uma toolbox de reconstrucao de imagens
para tomossintese digital mamaria utilizando a linguagem do MATLAB, toolbox essa
que pode executar todas as etapas compreendidas por um exame de tomossintese digital
mamaria, sendo capaz até mesmo de efetuar a aquisicao de projecoes ao utilizar um
phantom virtual j4 composto por diversas fatias como objeto de estudo. Além disso a
toolbox também permite alterar a geometria do sistema para corresponder a qualquer
equipamento de tomossintese no mercado, assim como selecionar o método a ser utilizado

para a reconstrucao.

A toolbox esta disponivel no GitHub do LAVI pelo url: https://github.com/
LAVI-USP/DBT-Reconstruction e seu processo de desenvolvimento, bem como os testes

efetuados para sua validacao, podem ser encontrados em detalhes nos trabalhos de Vimieiro
et al. (2019) e Vimieiro, Rodrigo de Barros (2019).

Como o presente trabalho se desenvolve a partir da aplicagdo de uma das funciona-
lidades da toolbox, mais especificamente o algoritmo que cria as proje¢oes, é importante

estudar algumas de suas caracteristicas mais atentamente.

2.4.1 Geometria do Equipamento

A toolbox consegue se adaptar a geometria de qualquer equipamento de tomossintese
mamaria, sendo ele um equipamento ja consolidado no mercado ou nao, e isso se deve a
uma simples estrutura de dados que contem todas as caracteristicas de um equipamento
de tomossintese, inclusive caracteristicas do processo de funcionamento, como por exemplo
o numero de projecoes adquiridas e o nimero de fatias que o objeto reconstruido deve

possuir.


https://github.com/LAVI-USP/DBT-Reconstruction
https://github.com/LAVI-USP/DBT-Reconstruction
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Figura 15: Geometria de um equipamento de tomossintese digital mamaria.
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A figura 15 ilustra simplificadamente como é a geometria de um equipamento

utilizado em um exame de tomossintese digital mamaria, enquanto a tabela 1 compreende

os principais parametros contidos na estrutura de dados que descreve o sistema.

Tabela 1: Principais parametros que descrevem o sistema.

Parametro Significado
nx Numero de voxels no eixo X (colunas)
ny Nuamero de voxels no eixo Y (linhas)
nz Numero de fatias
nu Numero de detectores no eixo X (colunas)
nv  Nuamero de detectores no eixo Y (linhas)
dx Tamanho real de um tnico voxel no eixo X (mm)
dy Tamanho real de um tnico voxel no eixo Y (mm)
dz Tamanho real de um tnico voxel no eixo Z (mm)
du Tamanho real de um tnico detector no eixo X (mm)
dv  Tamanho real de um tnico detector no eixo Y (mm)
DSD Disténcia do emissor de raios X até o plano do detector (mm)
DSO Distancia do emissor de raios X até o topo do objeto (mm)
DDR Distancia do detector até o eixo de rotacao do emissor de raios X (mm)
DSR Distancia do emissor de raios X até seu eixo de rotagao (mm)
DAG Espago entre o detector e a mesa que apoia o objeto (mm)
nProj Numero de projecoes
tubeAngle Variacao angular total do emissor de raios X (graus)
tubeDeg  Angulagao do emissor de raios X em cada projegao (graus)
detAngle Variagao angular total do detector (graus)
detectorDeg  Angulagao do detector em cada projecao (graus)

Fonte: adaptada de Vimieiro, Rodrigo de Barros (2019).
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2.4.2  Algoritmos

Outra caracteristica importante da toolbor é o conjunto de algoritmos que o
compoOem, em especial os algoritmos de projecao e retroprojecao. Um operador de projecao
geométrico, de maneira geral, é aquele que representa um objeto de N dimensées em um
espaco de N - 1 dimensoes, no caso o algoritmo utilizado projeta um objeto 3D no plano
bidimensional de um detector, conforme a figura 14. A retroprojecao por sua vez faz o
oposto da projecao, buscando reconstruir o objeto original, fatia por fatia, com base em

suas projegoes (Vimieiro, Rodrigo de Barros, 2019).

O método mais simples de reconstrucao é aquele que simplesmente utiliza do
algoritmo de projecao seguido do algoritmo de retroprojecao, sem se preocupar com o
ruido gerado nesse processo, mas existem variantes desse método que buscam aprimora-lo,
gerando resultados mais precisos e confidveis, alguns dos quais também estao disponiveis
para uso na toolboz. Os métodos de reconstrucao iterativos tem se mostrado promissores,
mas demandam elevado custo computacional, pois executam projecao e retroprojecao
repetidas vezes em busca da convergéncia dos resultados (Vimieiro, Rodrigo de Barros,

2019), o que os tornam perfeitos candidatos para optimizar com a utilizagdo de CUDA.

O presente trabalho, porém, nao aborda a retroprojecao, visto que seu objetivo
¢ meramente investigativo e nao almeja necessariamente resultados, mas sim estudar as
ferramentas de que o toolkit da NVIDIA dispoe. Por esse motivo apenas o algoritmo de
projecao serd estudado mais a fundo, uma vez que é a mais simples das opgoes. Apds fazer
os devidos testes e descobrir quais abordagens funcionam e quais nao funcionam, fica aqui,
para quem interessar, a sugestao de aplicar esse aprendizado para acelerar a execugao do

método iterativo de reconstrucao.

Algoritmo 1: Projecao
Entrada: Volume3D, Parametros

Saida: Projecoes
Inicio
para cada Projecio € Projecoes faga
6 < Angulo da Projecéo;
para cada Fatia € Volume3D faga
Calcular Y; e X; V (y, x) € Projecao ;
CalculariejV (Y, X);
Projecao < Projecao + Interpolagao( Fatia, (i, j) );
fim

fim

Fim

Fonte: adaptada de Vimieiro, Rodrigo de Barros (2019).



2.4 Reconstrugdo de Imagens para Tomossintese Digital Mamdria 43

O pseudocodigo acima ilustra como é feito o processo de aquisicao das projegoes
por parte da toolboz, para cada posicao assumida pelo emissor de raios X, o algoritmo
percorre todas as fatias do objeto tridimensional (Volume3D) aplicando o método Pizel
Driven (Vimieiro, Rodrigo de Barros, 2019).

Esse método por sua vez calcula as coordenadas (Y;, X;) que as projegdes 2D de
cada fatia ocupam no detector e varre todos os vozxels dessas fatias projetando seu centro
no detector com o uso das equagoes 2.1 e 2.2 (Vimieiro R. B. et al., 2019). Ambos os
equacionamentos podem ser deduzidos a partir de simples semelhanga de tridangulo com

base no sistema apresentado na figura 15.

Z(DSR.sen(0) +Y)
DSR.cos(0) + DDR — Z

Yi(0,Y,Z) =Y + (2.1)

X(DSR.cos(8) + DDR)
X0, X,7) = 2.2
{(0,X,2) DSR.cos(0) + DDR — Z (22)

As equagoes 2.3 e 2.4 por sua vez convertem as coordenadas da imagem (y0, x0)
em pizels (i, j) para que, por fim, o valor dos vozels projetados possam ser repartidos entre

os pixels correspondentes por meio de interpolacao linear.

Y.
= 2.
i dy—i—yO (2.3)

X
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3 MATERIAIS E METODOS

Esta se¢io aborda o software MATLAB e as ferramentas de phantoms 3D utilizadas
durante o desenvolvimento do presente trabalho, além de detalhar os procedimentos
tomados para sua execucgao. De modo geral o hardware empregado na execucao deste

trabalho é descrito na tabela 2, bem como as veroes de software utilizados.

Tabela 2: Componentes de hardware e versdes de software utilizados.

Processador Intel Core i5 - 6600k
Placa de video GeForce GTX 1060 6GB
Memo6ria RAM 16 GB

Sistema operacional Windows 7
MATLAB R2018a
CUDA toolkit 9.0

3.1 Phantoms 3D

Phantoms sao objetos de estudo desenvolvidos especialmente para simular uma
estrutura tridimensional ou bidimensional composta por diferentes tecidos da anatomia
humada, com o objetivo de permitir estudos consistentes a respeito de novas metodologias

para exames sem a necessidade que testes sejam feitos diretamente em pacientes.

Figura 16: Representacao dos phantoms utilizados.

(a) Phantom virtual de Shepp-Logan (b) Phantom fisico BR3D
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Fonte: Shepp and Logan (1974). Fonte: CIRS (2013).
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O presente trabalho utilizou em seus testes os mesmos phantoms 3D empregados
na validagao da toolbox desenvolvida pelo LAVI. O primeiro é uma versao do phantom
virtual de Shepp and Logan (1974) adaptada por SCHABEL (2006) para gerar um objeto
virtual 3D com a quantidade de fatias que forem necessarias, enquanto o segundo é o
phantom 3D fisico modelo BR3D criado pela CIRS (2013). Por se tratar de um phantom

fisico, o uso do phantom BR3D se deu através de fatias ja reconstruidas.

Como pode ser visto na tabela 3, que contém as especificacdes do sistema usado
nos testes de cada phantom, o phantom Shepp-Logan ¢é consideravelmente menor que o
BR3D, isso é importante para comparar a eficiéncia do uso de CUDA em situagoes que

exigem mais e menos processamento.

Tabela 3: Parametros que descrevem os sistemas de cada phantom.

Parametro Shepp-Logan ~ BR3D

nx 128 1058
ny 128 1978
nz 128 107
nu 280 2394
nv 350 3062
dx Imm 0,1mm
dy Imm 0,1mm
dz 10mm 0,5mm
du Imm 0,1mm
dv Imm 0,1mm
DSD 6600mm 660mm
DSO 5100mm 580,5mm
DDR 400mm 40mm
DSR 6200mm 620mm
DAG 220mm 22mm
nProj 9 9
tubeAngle 2,5° 25
detAngle 0° 0°

Fonte: toolboz (Vimieiro, Rodrigo de Barros, 2019).

3.2 MATLAB

MATLAB é um software voltado a programacao baseada em matrizes com uma
vasta gama de funcionalidades. Como o desenvolvimento da toolboz, cujo algoritmo de
projecao é o objeto de estudo aqui, foi feito em MATLAB, é esperado que o presente
trabalho também faca uso de MATLAB.

Dentre todas as funcionalidades do MATLAB, as que devem ser destacadas sao as
que fazem uso do potencial de computagao paralela das GPUs. Abaixo segue uma breve
explicagao sobre as fungoes usadas neste trabalho, mas uma descricao mais detalhada
pode ser encontrada na documentacdo do MATLAB, no site da MathWorks (2020).



3.2 MATLAB A7

A funcao "gpuDevice" deve ser a primeira a ser utilizada, pois é responsavel por
informar ao usuario se o MATLAB reconhece alguma placa de video e, se sim, também
disponibiliza suas caracteristicas, informacoes essenciais para este trabalho. A tabela 4
contém o resultado gerado por essa fun¢do no computador usado no desenvolvimento deste
trabalho.

Tabela 4: Resultado da fungao "gpuDevice".

Parametro Descricao
Name ’'GeForce GTX 1060 6GB’
Index 1
ComputeCapability 6.1’
SupportsDouble 1
DriverVersion 11
ToolkitVersion 9
MaxThreadsPerBlock 1024
MaxShmemPerBlock 49152
MaxThreadBlockSize [1024 1024 64]
MaxGridSize [2.1475e+09 65535 65535
SIMDWidth 32
TotalMemory 6.4425e+-09
AvailableMemory 5.4431e+09
MultiprocessorCount 10
ClockRateKHz 1809500
ComputeMode ’Default’
GPUOverlapsTransfers 1
KernelExecutionTimeout
CanMapHostMemory
DeviceSupported
DeviceSelected

1
1
1
1

A funcao "gpuArray' por sua vez cria objetos chamados de gpuArray, que sao
armazenados na memoéria da GPU em vez da CPU, enquanto a funcao "gather' faz
o processo inverso. Quando o MATLAB usa esse tipo de variavel para efetuar certas
operagoes, ele naturalmente as executa na GPU, contanto que tais operagoes tenham
suporte para isso. Porém outra forma de se usar esses objetos é como entrada da funcao

'arrayfun’, conforme se segue:

2 d_input = gpuArray( h_input ); % salva h_input na GPU
% executa o arquivo projection.m e salva o resultado em d_output
d_output = arrayfun(@projection, d_input);

5 h_output = gather( d_output ); % salva d_output na CPU
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Essa funcao

interpreta um algoritmo escrito em MATLAB, no caso o arquivo

"projection.m", e o executa em multiplas threads, uma para cada conjunto de elementos

dos vetores de entrada instanciados pelas mesmas coordenadas. Se por exemplo um

"arrayfun'receber como entrada a funcdo F e os vetores A e B, entao ela executara

F(A(1),B(1)) em uma thread, F(A(2),B(2)) em outra e assim sucessivamente. Se o niimero

de elementos de A e

B forem diferentes a operacao nao ira funcionar adequadamente. Vale

ressaltar que as variaveis de entrada e de saidas dessa fungdo devem ser do tipo gpuArray.

Outra funcionalidade do MATLAB ¢ func¢ao "mex", cuja finalidade é chamar fungoes

em C, C++ ou Fortran como se fossem func¢oes do préprio MATLAB, contanto que esses

arquivos estejam escritos com a sintaxe adequada.

% compila o c6digo projection .cpp

mex projection .cpp

% executa o co6digo projection.cpp

output = projection (input);

A funcao "mex" compila o arquivo de entrada, no caso "projection.cpp’, e cria um

arquivo MEX de extensao ".mexw64" no diretério de trabalho, o qual é interpretado e

executado pelo MATLAB como qualquer outra funcdo. Os arquivos C e C++ destinados

a serem usados desta forma devem substituir sua funcao "main"pela "mexFunction', cuja

sintaxe é apresentada abaixo.

#include "mex.h'

void mexFunction(int nlhs, mxArray xplhs[], int nrhs,

const mxArray xprhs|])

A fun¢dao "mexFunction" é inserida pela biblioteca "mex.h" e faz o trabalho de

interfacear os argumentos de entrada e saida do arquivo com os providenciados pelo

MATLAB. A tabela

5 descreve o significado de cada um de seus argumentos.

Tabela 5: Argumentos de uma "mexFunction".

Parametro Descricao
prhs Vetor de argumentos de entrada
plhs Vetor de argumentos de saida
nrhs Numero de argumentos ou de elementos do vetor de entrada
nlhs Numero de argumentos ou de elementos do vetor de saida

Fonte: adaptada de MathWorks (2020).
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A funcao "mex"de fato funciona muito bem nos tipos de arquivos para os quais foi
projetada, mas a extensao utilizada pelo CUDA toolkit é ".cu", mesmo que a linguagem de
programacao empregada seja C ou C++. Para contornar esse problema foi desenvolvida
a fungdo "mexcuda', que tem suporte para CUDA. A sintaxe da fungdao "mexcuda' no

MATLAB é a mesma que da "mex", mas difere no arquivo a ser compilado, como se segue:

#include "mex.h'
#include "gpu/mxGPUArray.h'
void mexFunction(int nlhs, mxArray xplhs|[], int nrhs,

const mxArray xprhs|[])

// Inicializa a API de GPU do MATLAB
mxInitGPU () ;

Para usar a funcdo "mexcuda', contudo, é necessario garantir que o MATLAB
tenha acesso as bibliotecas do CUDA toolkit, cuja versao deve ser compativel com a do
MATLAB, de a cordo com a tabela fornecida em sua documentagao (MathWorks, 2020),
mas que também pode ser acessada diretamente pelo url: https://www.mathworks. com/

help/parallel-computing/gpu-support-by-release.html.

A linha de cédigo abaixo atribui a variavel "MW __NVCC_PATH'o diretério do
compilador NVCC, garantindo que o MATLAB o reconheca e possa fazer uso do CUDA

toolkit corretamente.

setenv ( 'MW_NVOC _PATH' , 'CUDA_ dir\CUDA\v9.0\ bin ") ;

3.3 Metodologia

Este trabalho visa investigar o potencial computacional das GPUs utilizando
como objeto de estudo uma toolboxr desenvolvida em MATLAB, entdo é natural se-
guir uma metodologia que também aborde as funcionalidades do MATLAB. A meto-
dologia empregada aqui foi a mesma apresentada na pagina "lllustrating Three Ap-
proaches to GPU Computing: The Mandelbrot Set" da documentacao do MATLAB,
acessivel pelo url: https://www.mathworks.com/help/parallel-computing/examples/

illustrating-three-approaches-to-gpu-computing-the-mandelbrot-set.html.


https://www.mathworks.com/help/parallel-computing/gpu-support-by-release.html
https://www.mathworks.com/help/parallel-computing/gpu-support-by-release.html
https://www.mathworks.com/help/parallel-computing/examples/illustrating-three-approaches-to-gpu-computing-the-mandelbrot-set.html
https://www.mathworks.com/help/parallel-computing/examples/illustrating-three-approaches-to-gpu-computing-the-mandelbrot-set.html
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O método consiste em comparar o tempo de execucao entre as diferentes abordagens
de uso da GPU pelo software ao resolver um mesmo problema. Para isso foram empregadas
as fungoes "gpuArray', "arrayfun' e "mexcuda', descritas na secao acima, na execucao do

algoritmo de projecao.

A titulo de validar os resultados obtidos por cada uma das abordagens, o cédigo
original foi utilizado como controle, ou seja, todas as projecoes geradas por outros métodos
foram comparadas com as originais. O critério utilizado para a validacao foi aplicar as
métricas de comparacgao de imagem “Pico da Relagdo Sinal Ruido” (PSNR - Peak Signal
to Noise Ratio) e o "Indice de Similaridade Estrutural" (SSIM - Structural Similarity
Indez).

A métrica PSNR interpreta as diferencas de intensidade entre cada pizel das
imagens degradadas e da imagem original e entrega um valor em dB que expressa o quao
pura é a imagem testada. Alguns tipos de degradacao, porém, podem influenciar mais a
visualizacao de imagens do que outros, mesmo que estejam presentes em menor intensidade,
e por isso também foi utilizada a métrica SSIM, que foi projetada especificamente para
avaliar a qualidade visual de imagens. A SSIM entrega um valor entre -1 e 1, sendo que -1

significa que as imagens nao possuem similaridade, enquanto 1 indica que sao elas idénticas
(Zhou Wang et al., 2004).

Para aplicar gpuArray bastou usar variaveis salvas na memoéria da GPU como
entrada do algoritmo de projecao, mas para usar a funcao "mexcuda’o cédigo originalmente
escrito em MATLAB foi completamente traduzido para C+-+, o que de maneira geral
foi uma simples adaptagao de sintaxe, uma vez que a maioria das primitivas e fungoes
utilizadas sao comuns a ambas as linguagens. Entretanto a funcao "interp2" fugiu a essa
regra e teve de ser escrita manualmente em C++. Tal fungdo, da forma que foi empregada,
interpola linearmente os pizels de uma imagem em suas coordenadas correspondentes
no detector, que foram calculadas previamente. A figura 17 representa visualmente o
funcionamento de uma interpolagao bilinear, cujo equacionamento presente em 3.1 serviu

de base para o desenvolvimento do algoritmo 2, que foi escrito em C++-.

Apods constatado que o codigo de projecao feito em C++ funcionou, foi hora de
adapta-lo de forma a utilizar multiplas threads com CUDA. Para isso foram criados kernels
para cada etapa que necessitaria de um nuimero distinto de threads, sendo elas o calculo de
Y, o calculo de X e os calculos de interpolagao. O uso da fun¢ao "arrayfun' no MATLAB
foi similar a esta etapa em especifico, mas se limitou aos calculos de X; e Y;, uma vez
que a funcao de interpolagao exige acesso a mais de um pixel por vez, o que a funcao

"arrayfun' nao foi projetada para fazer.
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Algoritmo 2: Interpolagao

Entrada: Fatia, X;, Y;
Saida: Interpolacao
Inicio
para cada j € X; faca
x1 < a parte inteira de j;
x2 +—x1+1;
alfal < a parte fracionaria de j;
alfa2 < 1 - alfal;
para cada i € Y; faga
y1l < a parte inteira de i;
y2 <yl + 1;
betal <— a parte fracionaria de i;
beta2 < 1 - betal;
se (yl,x1) € Fatia entdo
| Q11 < Fatia(yl,x1);
senao
QL+ 0;
fim
se (y1,22) € Fatia entao
‘ Q21 <+ Fatia(yl,x2);
senao
Q21+ 0;
fim
se (y2,x1) € Fatia entdo
| Q12 « Fatia(y2,x1);
senao
Q12+ 0;
fim
se (y2,22) € Fatia entao
‘ Q22 <+ Fatia(y2,x2);
senao
Q22+ 0;
fim
Interpolagdao + Interpolagao + (Q11 * alfa2*beta2) +
(Q21 * alfal*beta2) + (Q12 * alfa2*betal) + (Q22 * alfal*betal);
fim
fim

Fim
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Figura 17: Interpolacao Bilinear.
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Fonte: K.T. Gribbon et al. (2003).

Xoy=01—-2)1—-y)A+2(1—-y)B+ (1 —2)yC +zyD (3.1)

Aqui é importante ressaltar que o uso da atomic function "atomicAdd'foi necessario
no kernel responsavel pela execucao do algoritmo de interpolagao, uma vez que muitas

threads simultaneas tém que escrever no mesmo endereco de memoria.

Depois de testadas as modifica¢coes mencionadas acima, foram também feitas outras
adaptacgoes do sentido de aumentar o nivel de paralelismo dos algoritmos em CUDA. Um
codigo foi adaptado para langar em cada operagao uma quantidade de threads suficiente
para executar os calculos de todas as fatias simultaneamente, dispensando o uso de um loop
executado na CPU, enquanto outro c6édigo langou em cada operacao uma quantidade de
threads ainda maior, a fim de executar os calculos de todas as fatias de todas as projegoes

simultaneamente, dispensando o uso de ambos os loops.

Dentre todas as versoes de codigo criadas, algumas foram escolhidas para se
aplicar ferramentas mais pontuais de CUDA, tais quais shared memory, texture memory
e streams. O uso de shared memory nao exigiu mudancas significativas no c6digo, mas
como a vantagem proposta no uso de multiplas streams era executar trechos do algoritmo
simultaneamente com transferéncia de dados entre dispositivos, foi necessario inverter a

posi¢ao dos loops das fatias com o das projecoes, conforme demonstrado no algoritmo 3.

A adaptacao foi feita pois a obtencdo da primeira projecao ja necessitava de acesso
a todos os dados que seriam transferidos para a GPU durante a execucao de todo o
algoritmo, desperdicando grande parte do potencial de sobreposicao disponibilizado pela
ferramenta. Ao alterar o algoritmo dessa forma, as fatias podem ser copiadas na memoria

da GPU em etapas e, teoricamente, executar o codigo mais rapidamente.
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Algoritmo 3: Projecao Adaptada
Entrada: Volume3D, Parametros

Saida: Projecoes

Inicio

para cada Fatia € Volume3D faga

para cada Projecao € Projecoes faga

6 < Angulo da Projecéo;

Calcular Y; e X; V (y, x) € Projecao ;
CalculariejV (Y5, X;);

Projegao <— Projecao + Interpolagao( Fatia, (i, j) );
fim

fim

Fim

O uso de texture memory por sua vez exigiu a aplicacao de varias outras ferramentas
e de uma série de descritivos contidos em estruturas de dados, mas abriu a possibilidade para
estudos interessantes, como a possibilidade de se efetuar a interpolacao sem a necessidade

de aplicar o algoritmo 2.

O modelo da placa de video faz bastante diferenca no uso de muitas das ferramen-
tas do CUDA toolkit, como por exemplo a quantidade de streams que a GPU consegue
langar. Por esse motivo todas as informacoes pertinentes foram pesquisadas nas tabe-
las "Feature Support per Compute Capability'e "Technical Specifications per Compute
Capability "presentes na documentagdo do CUDA toolkit (NVIDIA, 2020), ndo apenas
garantindo que o modelo de placa grafica empregada no desenvolvimento deste trabalho
conseguiria utilizar os recursos pretendidos, mas também que sua execucao fosse feita

dentro dos limites para os quais foi projetada.
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4 RESULTADOS E DISCUSSOES

Esta secao apresenta os resultados obtidos seguindo a metodologia supracitada de
forma ordenada, discorrendo brevemente sobre cada um deles. A figura 18 ilustra duas
das projegoes geradas pelo algoritmo original, enquanto a tabela 6 apresenta o tempo (7¢)

levado para a obtencao das projecgoes.

Figura 18: Projecoes obtidas com o algoritmo de controle.

(b) BR3D

(a) Shepp and Logan (1974)

Tabela 6: Tempo (7,), em segundos, que o algoritmo de controle demorou para ser execu-

tado.
Phantom Média Variancia Desvio Padrao
Shepp-Logan 1,39 0,01 0,09
BR3D 204,18 21,15 4,60

4.1 Utilizando os recursos do MATLAB

Antes de se utilizar CUDA foram feitos testes mais simples, utilizando recursos de
programacao paralela do proprio MATLAB. A tabela 7 mostra os resultados da aplicagao
das métricas comparativas em cada projecao obtida, no caso todas as técnicas utilizadas
para a obtencao das projecoes usando as ferramentas de programacao em GPU préprias do
MATLARB resultaram nos mesmos valores em cada uma das projecoes. Todos os resultados
foram extremamente elevados, o que significa que as projecoes podem até ser consideradas

idénticas as de controle.
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Tabela 7: Resultados da aplicagdo de métricas comparativas em cada uma das 9 projecoes
adquiridas usando a GPU diretamente no MATLAB com as suas correspondentes
de controle.

Shepp-Logan BR3D
Projecao PSNR SSIM PSNR SSIM
1 164,21 1,00 148,29 1,00
2 164,05 1,00 148,55 1,00
3 164,90 1,00 148,53 1,00
4 164,36 1,00 148,40 1,00
5 164,06 1,00 148,36 1,00
6 164,85 1,00 148,44 1,00
7 164,28 1,00 148,61 1,00
8 164,37 1,00 148,67 1,00
9 164,18 1,00 148,43 1,00

A tabela 8 apresenta o tempo de execucao (77) obtido com o algoritmo de controle
ao alocar meméria na GPU com o uso da fungao "gpuArray', ja o tempo (73) da tabela 9

é relativo nao s6 ao uso da funcao "gpuArray', mas também da funcao "arrayfun'.

Tabela 8: Tempo (7}), em segundos, que o algoritmo de controle demorou para ser execu-
tado ao usar gpuArray como tipo de variavel de entrada.

Phantom  Média Varidncia Desvio Padrao (7./11)
Shepp-Logan 0,71 0,00 0,02 1,96
BR3D 98,00 1,58 1,26 2,08

Tabela 9: Tempo (T3), em segundos, que o algoritmo de controle demorou para ser execu-
tado ao usar a funcao "arrayfun'para calcular X e Y.

Phantom  Média Varidncia Desvio Padrao (7./71)
Shepp-Logan 0,95 0,00 0,02 1,47
BR3D 15,59 0,00 0,03 13,10

Apesar da simplicidade desse processo, os resultados se mostraram bastante positi-
vos, reduzindo praticamente a metade o tempo de execugao no uso de ambos os phantoms
somente ao disponibilizar para o MATLAB meméria alocada na GPU. O uso da fungao
"arrayfun"por outro lado teve resultados mais contrastantes entre os phantoms, acelerando

muito mais o phantom BR3D que o de Shepp-logan.

Isso se deve ao fato de que o phantom de Shepp-Logan é consideravelmente pequeno
e consequentemente o tempo de execuc¢ao do algoritmo também é, por isso o tempo
acrescido pelo uso da fungao "arrayfun'foi proporcionalmente maior que o do phantom

BR3D, sendo perceptivel em um, mas nao no outro.
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4.2 Utilizando CUDA

Para utilizar CUDA foi necessario primeiro adaptar o c6digo original escrito em
MATLAB para C++, utilizando algumas das peculiaridades exigidas pelos arquivos MEX
descridas na secao de Materiais e Métodos. Uma das projecoes resultantes de cada phantom

pode ser vista na figura 19.

Figura 19: Projecoes obtidas com o algoritmo feito em C++.
(b) BR3D

(a) Shepp and Logan (1974)

Embora as projecoes sejam visualmente muito parecidas com as de controle, o
mapa de SSIM deixa claro que nao sao realmente idénticas. Apesar disso as diferencas sao
tao sutis que, para melhor visualizacao, foi necessario ajustar seu contraste manualmente,
conforme a figura 20. Para ilustrar os valores reais do mapa de SSIM, sem ajuste de

contraste, foi plotado também um histograma também.

A fim de evitar que os reais valores da métrica SSIM fossem disfarcados também
foi aplicada uma mascara com a forma do phantom sobre a projecao, uma vez que a area
de interesse das projecoes é uma regiao menor da imagem. A métrica PSNR, por sua
vez, foi aplicada em recortes retangulares que enquadraram a area de interesse. Esses
procedimentos foram tomados na aquisicao das métricas de comparagao de imagem para

todas as projecoes de ambos os phantoms.
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Figura 20: Mapa de SSIM de uma das projecoes do phantom BR3D, feita em C++.

(a) Mapa de SSIM com maéscara e

ajuste de contraste (b) Histograma sem ajuste de contraste.

7 x10°

A tabela 10 por sua vez mostra os resultados da aplicacao das métricas compara-
tivas em cada projecao obtida e, apesar de nao serem tao elevados quanto antes, ainda

demonstram um alto grau de proximidade.

Tabela 10: Resultados da aplicacao de métricas comparativas em cada uma das 9 projecoes
adquiridas com os métodos que usaram C+-+, mas nao usaram shared memory,
com as suas correspondentes de controle.

Shepp-Logan BR3D
Projecao PSNR SSIM PSNR SSIM
1 42.43 0,97 55,33 0,99
2 42,02 0,97 55,60 0,99
3 41,61 0,97 55,70 0,99
4 41,35 0,97 55,58 0,99
5 40,73 0,97 55,41 0,99
6 40,32 0,97 55,565 0,99
7 40,09 0,97 55,59 0,99
8 39,80 0,97 55,48 0,99
9 39,87 0,96 55,14 0,99

Analisando os resultados é possivel inferir que se tratam de erros de arredondamento,
uma vez que as projecoes do phantom BR3D, cujo valor dos pizels possui mais casas antes da
virgula, sofreu bem menos influéncia. Apesar de parte dessa diferenca no arredondamento
poder ser simples consequéncia da utilizagao de diferengas na linguagem MATLAB e C++,
o maior responsavel por isso ¢ o uso de ponto flutuante de precisao simples no cédigo em
C++.
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A escolha de se utilizar precisao simples foi devida a maior quantidades de ntcleos
de processamento desse tipo na GPU utilizada nos testes, bem como a baixa influéncia dessa
conversao nas imagens, como mostrado anteriormente. A tabela 11 mostra os resultados
obtidos com a execuc¢ao do algoritmo escrito em C++. Nela é possivel reparar que a
simples conversao de linguagem ja melhorou o desempenho do algoritmo e isso também se
deve principalmente a utilizacao de ponto flutuante de precisao simples nos calculos. Essa
modificagao foi feita pois a placa de video utilizada possui mais nicleos para calculos de

ponto flutuante de precisao simples do que de precisao dupla.

Tabela 11: Tempo (73), em segundos, que o algoritmo feito em C++ demorou para ser

executado.
Phantom  Média Varidncia Desvio Padrao (7./T3)
Shepp-Logan 0,76 0,00 0,00 1,83
BR3D 51,34 0,01 0,10 3,98

Os testes seguintes foram feitos adaptando este codigo de forma a permitir que
fosse executado em GPU, mas mantendo a qualidade das proje¢oes. As tabelas 12 a 14
demonstram os resultados obtidos adaptando os célculos de aquisicao das coordenadas X
e Y e de interpolacao para serem feitos de forma paralela com CUDA. Nesta etapa ainda
foi utilizado um loop para as fatias, ou seja, os calculos ainda foram feitos uma fatia de

cada vez.

Tabela 12: Tempo (T}), em segundos, que o algoritmo feito em C++ demorou para ser
executado usando CUDA somente nos calculos da interpolacao, fatia por fatia.

Phantom  Média Varidncia Desvio Padrao (7./7})
Shepp-Logan 3,70 0,00 0,05 0,38
BR3D 268,08 2,09 1,44 0,76

Tabela 13: Tempo (75), em segundos, que o algoritmo feito em C++ demorou para ser
executado usando CUDA somente nos calculos de X e Y, fatia por fatia.

Phantom  Média Varidncia Desvio Padrao (7./75)
Shepp-Logan 1,08 0,00 0,00 1,29
BR3D 50,42 0,00 0,06 4,05

Tabela 14: Tempo (Ts), em segundos, que o algoritmo feito em C++ demorou para ser
executado usando CUDA nos célculos de X, Y e interpolacao, fatia por fatia.

Phantom  Média Varidncia Desvio Padrao (7./T5)
Shepp-Logan 0,62 0,00 0,01 2,23
BR3D 34,57 0,01 0,08 5,90
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Pode-se observar com esses dados que, quando a GPU nao é utilizada para realizar
quantidades realmente muito grandes de calculos simultaneos, ela pode nao apresentar
ganhos significativos em relagao a execugao na CPU, podendo inclusive demorar ainda
mais para fazé-los. Em todos os trés casos o desempenho da execugao com phantom BR3D
foi melhor em relacdo ao phantom de Shepp-Logan justamente por proporcionar maior

quantidade de célculos a cada etapa.

Também ¢é possivel perceber que a execugao dos calculos de coordenadas de forma
paralela melhorou mais o desempenho geral do algoritmo que o calculo da interpolagao,
mesmo o numero de threads simultaneas exigidas para tal sendo menor, o que significa
que a complexidade dos cédlculos efetuados em paralelo também faz bastante diferenca no

desempenho.

O algoritmo que efetuou ambos os calculos em paralelo obteve os melhores resultados,
por esse motivo também foi aplicado na aquisicao dos dados da tabela 16, com a diferenca
que o tultimo também utilizou de shared memory. Apesar da variacao no algoritmo C++
em si nao ter visualmente resultado em mudanca significativa nas projecoes, a utilizacao

das métricas apontou uma ligeira mudanca, conforme demonstra a tabela 15.

Tabela 15: Resultados da aplicacao de métricas comparativas em cada uma das 9 projecoes
adquiridas com os métodos que usaram C++ e shared memory com as suas
correspondentes de controle.

Shepp-Logan BR3D
Projecao PSNR SSIM PSNR SSIM
1 42,80 0,96 55,35 0,99
2 42,38 0,96 55,62 0,99
3 42,03 0,96 55,71 0,99
4 41,74 0,97 55,60 0,99
5 41,14 0,96 55,43 0,99
6 40,73 0,97 55,568 0,99
7 40,51 0,96 55,62 0,99
8 40,21 0,96 55,52 0,99
9 40,24 0,96 55,18 0,99

Tabela 16: Tempo (77), em segundos, que o algoritmo feito em C++ demorou para ser
executado usando CUDA nos célculos de X, Y e interpolacao, fatia por fatia,
com uso de shared memory.

Phantom  Média Varidncia Desvio Padrao (7./17) (1s/1%)
Shepp-Logan 0,36 0,00 0,00 3,83 1,72
BR3D 19,15 0,01 0,10 10,66 1,80
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O simples uso de shared memory foi suficiente para melhorar a velocidade de
execucao do mesmo algoritmo em torno de 1.75 vezes, mesmo quando a quantidade de
acessos simultaneos a enderecos de meméria nao era tao elevada (caso do phantom de
Shepp-Logan). Isso aconteceu nao s6 porque a shared memory fica fisicamente mais proxima
dos SMs, mas também porque ela por si s6 é composta de registradores mais rapidos que

a DRAM da global memory e seu uso alivia o nimero de acessos da DRAM.

A foma como a shared memory armazena dados também foi suficiente para alterar
ligeiramente as imagens resultantes e, embora tal diferenca seja diminuta, é interessante

perceber como a memoria utilizada influencia nos calculos.

As tabelas 17 e 18 por sua vez apresentam os resultados dos testes feitos com esse
mesmo algoritmo ao utilizar texture memory em vez e shared memory. Nao foi possivel
obter projecgoes satisfatorias com texture memory utilizando o phantom BR3D porque a
quantidade desse tipo de memoria disponivel na placa grafica empregada nao foi suficiente
para armazenar uma unica fatia do phantom, por isso as conclusoes tomadas serao referentes

apenas ao uso do phantom de Shepp-Logan.

Tabela 17: Tempo (T3), em segundos, que o algoritmo feito em C++ demorou para ser
executado usando CUDA nos célculos de X, Y e interpolacao, fatia por fatia,
com uso de texture memory.

Phantom  Média Varidncia Desvio Padrao (7./Tg) (Ts/T3)
Shepp-Logan 0,59 0,00 0,01 2,36 1,05
BR3D - - - - -

Tabela 18: Tempo (Ty), em segundos, que o algoritmo feito em C++ demorou para ser
executado usando CUDA nos céalculos de X, Y e interpolacao, fatia por fatia,
com uso de texture memory diretamente no calculo da interpolacao.

Phantom  Média Varidncia Desvio Padrao (T./Ty) (Ts/Ty) (T3/T5)
Shepp-Logan 0,54 0,00 0,01 2,55 1,14 1,08
BR3D - ; ; ] ; ;

Nenhum dos métodos acelerou a execucao em mais do que 1,15 vezes em relagao
ao Tg, obtido empregando o mesmo algoritmo, mas sem fazer uso de texture memory. Ao
empregar a terture memory apenas para acessos de memoria, mantendo o uso do algoritmo
2 nos calculos de interpolagao, as métricas de qualidade de imagem apontaram os mesmos
resultados dos algoritmos feitos em C++ apresentados anteriormente. Porém ao usar a
ferramenta de interpolacao propria da texture memory parte das projegoes foi corrompida,
contendo valores esdriixulos, isso quando tais valores ainda eram lidos como valor numérico
pelo MATLAB e nao NaN (not a number).
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Figura 21: Exemplo de proje¢do obtida com uso da ferramenta de interpolagdo propria da
texture memory.

(a) Escala ajustada automaticamente. (b) Escala ajustada entre 0 e 35.

A figura 21 mostra lado a lado uma mesma projecao obtida usando a ferramenta de
calculo de interpolagao da texture memory plotadas de duas formas distintas, uma deixando
o intervalo de intensidade entre os pizels pretos e brancos ser ajustado automaticamente
para compreender os valores maximo e minimo presentes na imagem, enquanto a outra foi

ajustada para que todos os pizels cujo valor ¢ menor que zero seja completamente preto.

A figura 22 por sua vez ilustra a diferenca entre a projecdo mostrada na figura 21

com sua correspondente de controle, com e sem editar os pizels da area corrompida.

Figura 22: Diferenca entre a projecao da figura 21 e sua correspondente de controle.

(a) Sem editar a area corrompida. (b) Editando a area corrompida.
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Ao tentar aplicar as métricas PSNR e SSIM para avaliar a qualidade de projegoes
como as apresentadas acima, as func¢oes proprias do MATLAB, que também foram
empregadas nos demais testes, simplesmente falharam em chegar a algum valor conclusivo.
Apesar disso, a prépria NVIDIA (2020) na documentagao do CUDA toolkit enfatiza que
a interpolagao feita pela texture memory é de baixa precisdo, entao mesmo na auséncia

desse problema os resultados provavelmente teriam métricas inferiores.

Sabendo que nao houveram problemas ao empregar a terture memory apenas
para acessos de memoria, o que resultou inclusive em imagens de qualidade equivalente a
dos demais métodos testados, é possivel inferir que o problema nao ocorreu por falta de

memoria.

Posteriormente o algoritmo foi modificado para se aumentar ainda mais seu grau
de paralelismo, de forma que todos os cédlculos das fatias foram feitos simultaneamente
a cada execucao do loop das projecoes. Os resultados obtidos nos testes desse algoritmo,

usando e sem usar shared memory, se encontram nas tabelas 19 e 20.

Tabela 19: Tempo (7)), em segundos, que o algoritmo feito em C++ demorou para ser
executado usando CUDA nos calculos de X, Y e interpolacao, todas as fatias
simultaneamente, sem usar shared memory.

Phantom  Média Varidncia Desvio Padrao (T./T10) (Ts/T10)
Shepp-Logan 0,05 0,00 0,00 29,33 13,12
BR3D 1,99 0,00 0,01 102,67 17,39

Tabela 20: Tempo (T}1), em segundos, que o algoritmo feito em C++ demorou para ser
executado usando CUDA nos calculos de X, Y e interpolacao, todas as fatias
simultaneamente, usando shared memory.

Phantom  Média Varidncia Desvio Padrao (7./711) (Tv0/T11)
Shepp-Logan 0,05 0,00 0,00 26,28 0,90
BR3D 2,67 0,00 0,01 76,40 0,74

Aumentar o grau de paralelismo do algoritmo reduziu drasticamente seu tempo de
execuc¢ao, chegando a aumentar sua velocidade em até 17 vezes em relagao a sua versao
anterior e 102 vezes em relacao ao algoritmo de controle. Desta vez, porém, o uso de shared

memory prejudicou seu desempenho.

Isso aconteceu porque, ao aumentar o grau de paralelismo do algoritmo, o tempo
levado para cada acesso de memoria fez menos diferenca, uma vez que agora mais acessos
sao efetuados simultaneamente. Além disso, para usar shared memory foi necessario aplicar
primitivas de sincronizacao (barreiras) na execugao das threads, o que provoca atrasos
que diminuem a velocidade do algoritmo. Contudo, se os algoritmos em cada thread
fossem complexos ao ponto de exigir uma quantidade bem maior de acessos de memoria, o

resultado seria diferente.
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Tabela 21: Tempo (T}2), em segundos, que o algoritmo feito em C++ demorou para ser
executado usando CUDA nos calculos de X, Y e interpolacao, todas as fatias
simultaneamente, alterando a disposi¢ao das threads e thread blocks.

Phantom Média Varidncia Desvio Padrao (T./T12) (Ti0/Th2)
Shepp-Logan 0,02 0,00 0,00 72,18 2,46
BR3D 1,10 0,00 0,01 186,29 1,81

Os resultados que se encontram na tabela 21, por sua vez, sdo referentes ao mesmo
algoritmo utilizado na tabela 19, efetuando os calculos de todas as fatias de uma vez e
sem usar shared memory. A diferenca aqui é a forma como as threads e thread blocks foram
organizados na grid. Nas versoes anteriores tal organizacao variava bastante em cada
chamada de cada kernel, a fim de facilitar o entendimento do codigo e seu desenvolvimento,
ja o codigo da tabela 21 mantém uma melhor consisténcia nessa organizacao, langando

sempre uma quantidade de thread blocks na dimensao x maior do que nas dimensoes y e z.

Essa mudanca foi feita inicialmente para garantir que a placa de video utilizada
conseguisse instanciar a quantidade de thread block necessarias ao executar todas as
proje¢oes simultaneamente, isso porque a dimensao x é aquela que permite maior quantidade
de thread blocks, conforme demonstra a tabela 4. Entretanto pode-se perceber com essa
mudanca que, até mesmo a simples disposicao das threads na grid pode fazer uma diferenca

consideravel no resultado final.

Tabela 22: Tempo (T}3), em segundos, que o algoritmo feito em C++ demorou para ser
executado usando CUDA nos calculos de X, Y e interpolacao, todas as projegoes

simultaneamente.
Phantom Média Varidncia Desvio Padrao (T./T13) (T12/T13)
Shepp-Logan 0,02 0,00 0,00 69,31 0,96
BR3D 1,10 0,00 0,01 185,03 0,96

O algoritmo utilizado para obter os resultado da tabela 22 foi feito sem a presenca
de loop algum, a fim de executar os calculos de todas as fatias de todas as projegoes ao
mesmo tempo. Neste caso, entretanto, aumentar o grau de paralelismo do cédigo desta

vez nao melhorou seu desempenho, na verdade o piorou ligeiramente.

Ao executar os calculos de todas as projecoes simultaneamente, muitas threads
requisitaram acesso aos mesmos enderegos de memoria, congestionando os barramentos da
DRAM e fazendo com que muitas threads tivessem que esperar as outras terminarem suas

tarefas antes que pudessem, sequer efetuar a leitura de memoria.

Outro fator que pode ter contribuido para esse resultado é o uso da atomic function
que efetuou os somatérios. Apesar desta mesma funcao ter sido utilizada em todos os
outros algoritmos, a maior quantidade de acessos que esta funcao teve que gerenciar

possivelmente agravou as consequéncias de sua natureza sincronizada.
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A tabela 23 apresenta os resultados obtidos ao empregar um algoritmo similar
ao 3, mas com a diferenca de que executa todas as projecoes simultaneamente e uma
fatia de cada vez. Como existem mais fatias que projegoes, apenas efetuar essa mudanca
reduziria significativamente o grau de paralelismo do algoritmo, entao os calculos de todas

a coordenadas X e Y foram feitos de forma paralela e fora do loop das fatias.

E interessante ver como essa abordagem resultou em um tempo de execu¢ao menor
que o T3y quando foi usado o phantom menor, mas ao usar o phantom BR3D os tempos

foram praticamente iguais.

Tabela 23: Tempo (T}4), em segundos, que o algoritmo feito em C++ demorou para ser
executado usando CUDA nos calculos de X, Y e interpolacao, todas as projegoes
simultaneamente, mas uma fatia de cada vez.

Phantom  Média Varidncia Desvio Padrao (7./T14) (T10/T14)
Shepp-Logan 0,04 0,00 0,00 37,96 1,29
BR3D 1,98 0,00 0,01 102,91 1,00

A tabela 24 mostra os resultados executando o algoritmo da tabela 23, mas desta
vez sobrepondo execucao e transferéncia e dados ao usar miltiplas streams, o que nao foi
suficiente para melhorar os resultados, em vez disso os piorou ligeiramente, consequéncia
do custo computacional agregado para se criar e gerenciar as streams. Além disso, o tempo
consumido na execuc¢ao dos cédlculos pode ter sido consideravelmente maior que o tempo

da transferéncia de dados, tornando a econimia de tempo minima.

Tabela 24: Tempo (T}5), em segundos, que o algoritmo feito em C++ demorou para ser
executado usando CUDA nos calculos de X, Y e interpolacao, todas as projegoes
simultaneamente, mas uma fatia de cada vez, utilizando multiplas streams.

Phantom  Média Varidncia Desvio Padrao (T./T15) (T14/Ti5)
Shepp-Logan 0,04 0,00 0,00 33,89 0,89
BR3D 2,17 0,00 0,02 93,91 0,91

Por fim a tabela 25 apresenta um resumo dos resultados obtidos ao empregar cada
um dos métodos testados neste trabalho, enquanto as figuras 23 e 24, referentes ao phantom
de Shepp-Logan e ao phantom BR3D respectivamente, ilustram tais resultados de forma

grafica.
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Tabela 25: Tempo de execugao obtido em cada método.

Nome Descrigao Shepp-Logan BR3D
Tc Original da toolbox 1.39s 204.18s
T1 Usando gpuArray no MATLAB 0.71s 98.00s
T2 Usando arrayfun no MATLAB 0.95s 15.59s
T3 C++ sem CUDA 0.76s 51.34s
T4 Célculo da interpolacao com CUDA 3.70s 268.08s
T5 Célculo das coordenadas com CUDA 1.08s 50.42s
T6 Célculos da interpolacdo e das coordenadas com CUDA 0.62s 34.57s
T7 Algoritmo T6 usando shared memory 0.36s 19.15s
T8 Algoritmo T6 usando texture memory apenas para acessar dados 0.59s -
T9 Algoritmo T6 usando texture memory no calculo da interpolagao 0.54s -
T10  Efetuando todos os célculos de todas as fatias em paralelo com CUDA 0.05s 1.99s
T11  Algoritmo T10 usando shared memory 0.05s 2.67s
T12  Algoritmo T10 alterando a organizagao das threads 0.02s 1.10s
T13  Efetuando todas as proje¢des em paralelo com CUDA 0.02s 1.10s
T14  Algoritmo 3 efetuando todas as projegoes em paralelo com CUDA 0.04s 1.98s
T15  Algoritmo T14 usando 32 streams 0.04s 2.17s

Figura 23: Tempos de execugao do phantom de Shepp-Logan para cada método testado.
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Figura 24: Tempos de execugao do phantom BR3D para cada método testado.
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5 CONCLUSAO

O presente trabalho teve como principal objetivo investigar o potencial compu-
tacional das placas graficas, utilizando como objeto de estudo uma toolbox desenvolvida
para reconstrucao de imagens de tomossintese digital maméaria. A principal ferramenta
empregada nesse estudo foi GPU, utilizada majoritariamente com CUDA, mas como a
toolbox foi desenvolvida em MATLAB, algumas das funcionalidades deste software também

foram testadas.

Apesar da simplicidade das ferramentas de programacao em GPU do MATLAB,
elas se mostraram muito mais eficientes que o esperado, chegando a acelerar o algoritmo de
projecao em até 13 vezes. Embora esse nao seja todo o potencial das GPU, como mostrado
no decorrer deste trabalho, esta metodologia ainda proporcionou um ganho de tempo

consideravel sem a necessidade de empregar grande esfor¢o para isso.

O uso de CUDA, por sua vez, exigiu muito mais atencdo e empenho, as vezes
aumentando o tempo de execugao do algoritmo em vez de diminui-lo, mas quando usado
de maneira certa foi capaz de acelerar sua execucao em até 186 vezes. No decorrer dos
testes ficou claro que, de modo geral, alteragoes na forma como os algoritmos sao escritos
influenciam muito mais no seu tempo de execucao do que o uso de ferramentas como

streams e texture objects.

Isso acontece porque, diferentemente das CPUs, as GPUs sao projetadas para
executar grandes quantidades de operagoes independentes entre si a cada ciclo de trabalho,
entao é esperado que modificar a estrutura dos algoritmos a fim de aumentar seu grau
de paralelismo acelere a execucao. Contudo existem muitos outros fatores que interferem
na eficiéncia de um cédigo CUDA, o que torna dificil prever exatamente que tipo de

abordagem ¢é a mais adequada sem testar as opcoes.

Alguns dos fatores que devem ser levados em consideragao na hora de escrever um
c6digo em CUDA sao a complexidade dos algoritmos de cada kernel, a organizagao das
threads na grid e se diferentes threads requisitam acesso a um mesmo endereco de memoria.
Contudo o uso de ferramentas mais especificas também pode ter um impacto consideravel
no tempo de execucao do algoritmo quando aplicadas nas circunstancias certas, como

demonstrado nos testes feitos com shared memory.
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