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RESUMO

O péndulo invertido, um dos problemas mais difundidos na engenharia, é frequen-
temente selecionado para atuar como plataforma didatica de ensino na area de controle,
principalmente em funcao de seu carater nao linear e de equilibrio instavel. Além disso, a
construcao de um protétipo nao demanda custos elevados e nem requer alta complexidade.
Nesse contexto, o projeto consiste em desenvolver uma plataforma didatica de testes a
fim de explorar técnicas de aprendizagem por reforco e de optimizacao para problemas
de controle nao lineares de equilibrio instavel, e comparé-las com técnicas classicas. Para
isso, foi modelado e construido um péndulo invertido rotacional passivel de ser reprodu-
zido em laboratorio.

Palavras-Chave — Péndulo invertido rotacional, controle cldssico, aprendizagem por re-
forco, Q)-Learning, swing up.



ABSTRACT

The inverted pendulum, one of the most widespread problems in engineering, is often
selected to serve as a didactic platform in the control field, mainly due to its non-linear
character and unstable balance. Furthermore, the construction of a prototype does not
demand high costs nor require high complexity. In this context, the project consists of
developing a didactic platform aimed at exploring reinforcement learning and optimization
for non-linear control problems of unstable equilibrium, and comparing them with classical
techniques. For this purpose, it was built a rotary inverted pendulum structure capable
of being reproduced in a laboratory.

Keywords — Rotary inverted pendulum, classical control, reinforcement learning, @)-
Learning, swing up.
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1 INTRODUCAO

1.1 Contextualizacao

O péndulo invertido consiste em um dos problemas fundamentais da engenharia [8].
Amplamente estudado e utilizado como exemplo no contexto didatico, sua importancia
advém primordialmente da variedade de aplicagoes tedricas e praticas nas quais o modelo
pode ser introduzido. Enquanto seu valor tedérico surge do carater nao linear e instavel do
sistema, sua relevancia pratica deriva de uma série de aplicacoes reais. Os autores ainda
ressaltam a vantagem do custo reduzido e simplicidade de construcao do prototipo em

um laboratorio.

Além de traduzir de forma simplificada uma dinamica complexa, o processo de mo-
delagem do péndulo invertido abrange uma ampla gama de tépicos abordados na teoria
de controle classico [9], auxiliando de maneira eficiente na elaborac¢ao de uma plataforma

didatica.

Um exemplo de aplicacao do péndulo invertido no contexto didatico pode observado
na Figurall, em que é utilizada a plataforma FRDM-K64F da NXP para implementagao
de um controle digital LQR em um laboratdrio de controle aplicado [1]. Além disso, outra
abordagem interessante consiste no controle por meio de inteligéncia artificial, devido a
capacidade do protétipo de proporcionar e replicar testes de maneira automaética, requisito

essencial na aprendizagem por reforco.
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{

Figura 1: Péndulo invertido rotacional ou Péndulo de Furuta, extraido de ||

Nesse contexto, torna-se possivel realizar anélises e comparagoes tanto da otimizacao
da estrutura mecanica quanto do desempenho do algoritmo de controle. Em funcao disso,
o modelo é frequentemente selecionado para testar novos métodos de controle, tais como
controle 6timo, controle fuzzy, controle através de redes neurais, controle preditivo e

métodos hibridos como combinagdes dos anteriores [§].

Quanto as diversas aplicagoes do péndulo invertido no mundo real, nota-se exemplos
nos ambitos econdmico e social, nos quais os mais recorrentes se apresentam em areas
como transporte e mobilidade, envolvendo dispositivos como o Seqway e foguetes
(langamento e pouso) [11], sistemas de auxilio a locomogao humana (suporte para andar)
[8,/10], transporte de objetos através de drones [4] e até construgoes de larga escala [12].
As Figuras [24] 2B] e [3] ilustram exemplos de aplicagoes.
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(a) Modelo de péndulo invertido para (b) Inverted Pendulum Moving Robot,
locomogao humana, extraido de [13]. extraido de [14].

Figura 2: Exemplos de aplicagoes com o estudo da dinamica do péndulo invertido

Figura 3: Lancamento de foguete, extraido de .

Por fim, evidenciada a relevancia do modelo no contexto da engenharia , o péndulo
invertido rotacional foi selecionado como objeto de estudo deste projeto, proporcionando
um ambiente simultaneamente simples e completo para se realizar as analises descritas a

seguir.
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1.2 Estado da Arte

1.2.1 Construcao

Conforme enfatizado, o péndulo invertido e o péndulo invertido rotacional sao pro-
blemas cléassicos de controle e largamente estudados. Por conta disso, existem no mercado
plataformas de estudo que incluem a mecanica, o hardware e o software necessarios para
estudar a dinamica e o controle de tais problemas. Para focar os esforcos no estudo es-
pecificamente do controle da estrutura e nao na sua prototipagem e fabricacao é comum

encontrar publicacoes que utilizam tais plataformas.

Os trabalhos [15[16] utilizam a plataforma ilustrada na Figura [a] que possui como
estrutura mecanica basicamente dois perfis de metal. A atuacao do péndulo é feita por
meio de um motor DC escovado e o sensoriamento do angulo do péndulo, e do eixo do

motor sdo feitos através de encoders.

Ja a QUBE-Servo RIP platform é uma plataforma comercial mais recente e utilizada
em [17/18]. O sistema possui caracteristicas similares a citada anteriormente, como utilizar
um motor DC escovado como atuador, e encoders para obter as posigoes do péndulo e

eixo do motor.

(a) Plataforma utilizada por , (b) Plataforma utilizada por ,
extraido de . extraido de .

Figura 4: Exemplos de estruturas comerciais para o estudo da dinamica do péndulo
invertido rotacional

1.2.2 Modelagem

A dinamica do péndulo invertido rotacional é altamente nao-linear, porém, uma vez

que o objetivo é estabilizar o péndulo na posicao de equilibrio instavel, é comum utilizar
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um modelo linearizado. Em contra partida, quando o objetivo é levar o péndulo da
posicao de equilibrio estavel para a de equilibrio instavel, ja nao é possivel trabalhar com

um modelo linearizado.

Os trabalhos [3}/15H17] tem como objetivo controlar o péndulo na posi¢ao de equilibrio
instavel, portanto, utilizam a estratégia de linearizacao e trabalham com o espaco de
estados. Para encontrar as equagoes de movimento linearizadas, os trabalhos [3,|15,/17]
utilizam as Equagoes de Euler-Lagrange. J& em [16] os autores optam por encontrar as

equacgoes nao lineares que descrevem o movimento da estrutura e em seguida lineariza-las.

Os modelos dos trabalhos citados anteriormente incluem a dinamica da estrutura do
péndulo e do motor DC, possuindo como variavel de controle o valor de tensao a qual
o motor DC é submetido, e como estados, os valores de posi¢ao e velocidade angular

medidos pelos encoders.

1.2.3 Técnicas classicas de controle

Como citado anteriormente, o controle do péndulo invertido pode ter como objetivo
manter o péndulo proximo da posicao de equilibrio instavel, ou leva-lo da posicao de
equilibrio estavel para a de equilibrio instavel. Para cada situagao existe um conjunto de

técnicas que podem ser utilizadas.

Para manter o péndulo na posicao de equilibrio instavel é comum utilizar algorit-

mos como: controle Proporcional-Integral-Derivativo (PID), Regulador Quadratico Linear

(RQL) e Alocacao de Polos (AP).

Uma das técnicas utilizadas em [16] é o controle PID, com uma configuragao de dois
controladores em série. Esta configuracao é necessaria pois deseja-se controlar nao apenas
a posi¢ao do péndulo, mas também a posi¢ao ou a velocidade do brago. Em [16], o segundo

controlador foi utilizado para a posigao do brago.

Ja o RQL, utilizado em [3,/15-17], se caracteriza por encontrar uma regra de controle
Otima para transferir o sistema de um estado inicial até um estado final minimizando
determinados parametros. Os parametros geralmente utilizados sao: o erro entre estado

atual e estado desejado; e a energia gasta no processo.



16

Uma vantagem do RQL é o fato de se poder controlar mais de um estado ao mesmo
tempo, que como ja mencionado, é necessario para o controle do péndulo invertido rota-
cional. Porém, uma desvantagem deste método é a necessidade de se encontrar matrizes
que ponderam a prioridade de controle entre estados, e a forma mais comum de encontrar

esta matriz é através de tentativa e erro, como ¢ feito em [3|[15H17].

Na Figura [5 pode-se observar a resposta obtida pelo péndulo invertido rotacional
de [3] utilizando o controlador RQL desenvolvido, no qual houve uma perturbagao em

formato de degrau entre os instantes 1 e 3 segundos.

L
T T T T
i i i i i i 1 I
O 1 2 3 4 5 53 7 8 9 10
Time (seconds)
ALPHA
1 T T T T T T T T
_1 | 1 | 1 1 1 L 1 L
o 1 2 3 4 5 6 7 8 k=] 10

Time (seconds)

Figura 5: Resposta da planta desenvolvida por [3] utilizando um controlador RQL, ex-
traido de [4].

Para realizar o controle com o objetivo de levar o péndulo da posicao de equilibrio
instavel para a de equilibrio estavel as técnicas citadas anteriormente nao sao eficazes.
Uma abordagem comum € basear o controle na energia total do péndulo, ou seja, na soma
das energias cinética e potencial. Toma-se como referéncia a energia total do péndulo
na posigao vertical superior e o controle é feito com base na energia total instantanea do

sistema em relacao a referéncia, tentando sempre diminuir tal diferenca.

desenvolve um modelo de péndulo invertido a fim de testar uma derivacao da
abordagem de controle citada anteriormente. Conforme os resultados apresentados, reduz-
se o tempo necessario para o péndulo ir da posicao vertical inferior para a superior ao
considerar possiveis atritos e resisténcias do sistema. Dessa forma, é introduzido um ganho
no esfor¢o de controle quando o péndulo se encontra distante da posicao de equilibrio

superior.
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Observa-se na Figura |§| os resultados obtidos da simulagao realizada por [5], cuja
posic¢ao inicial do péndulo foi a vertical inferior e a posicao final, a vertical superior. LP
¢ a curva que representa a utilizagao do algoritmo mais comum, e E, a utilizagao do

algoritmo proposto.

R T I T T T ]

(=]

—_—— e ——

Pendulum angle (rad)
=)

)

41 1
0 1 2 X 4 5 6
T(s)

Figura 6: Simulagao feita por [5] comparando dois algoritmos de controle, extraida de [5].

1.2.4 Técnicas de aprendizado por reforco

Apesar de nao constituir uma tecnologia recente, a inteligéncia artificial tem ganhado
mais relevancia e ambiente para aplicagao com o aumento da capacidade de processamento
computacional, requisito importante no processo de aprendizagem de méaquinas. Assim,
tem apresentado uma crescente influéncia em manufatura e processos industriais, sendo

uma de suas aplicagoes o projeto de controladores através de aprendizagem por reforco
[20].

Conforme ressaltado anteriormente, uma das caracteristicas que amplia a comple-
xidade no desenvolvimento e implementacao dos controladores para o péndulo invertido
rotacional consiste na determinacao dos parametros de controle a serem utilizados, prin-

cipalmente no RQL, no qual as possibilidades de combinacoes sao elevadas.

Por meio da aprendizagem por reforco, tal processo de determinagao dos parametros
é eliminado, o que implica redugao do esforco humano comumente envolvido no projeto
[20], principalmente ao considerar um sistema de natureza instével e nao linear. Dessa
maneira, em [20] é desenvolvido um controlador para um péndulo invertido rotacional
através da combinacao de uma rede neural artificial com aprendizagem por reforco, além
de estabelecer uma comparacao com um controlador convencional quanto ao algoritmo de

swing-up e de estabilizacao.
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A aprendizagem profunda, por sua vez, atualmente permite escalar a aprendizagem
por reforco para problemas previamente intrataveis . Em @ se propoe a combinac¢ao
de ambas com o objetivo de melhorar o desempenho no controle, ou seja, utiliza o péndulo
invertido rotacional como um ambiente para implementar o processo de aprendizagem por
reforco profunda. O algoritmo de controle desenvolvido na aplicacao é o Deep Q-Network,
que utiliza uma rede neural convolucional para inferir as a¢oes do agente da aprendizagem

e implementa o processo de aprendizagem por reforco do controle do péndulo.

Apos a execucao do processo de aprendizagem, em @ se propoe a utilizacao de
um controlador PID a fim de implementar aprendizagem por imitacao e assim agilizar o
procedimento, comparando-se com o algoritmo sem imitacao. Ambos os procedimentos
obtiveram sucesso em controlar o péndulo na posicao instavel, sendo que os resultados
obtidos em ambas as tarefas podem ser observados nas Figuras[7]e[§] sendo que a segunda
ilustra o comportamento do sistema controlado pelo algoritmo com imitagao. A partir
das figuras, se observa que o procedimento de aprendizagem sem imitagao é finalizado
com 599 episddios, enquanto o procedimento com imitacao termina apds 340 episodios.
Assim, o erro é reduzido mais rapidamente e como conclusao se infere que a estratégia da

aprendizagem por imitagao reduz o tempo de aprendizagem de forma eficiente ﬂﬁﬂ

10°

10-_; _ |\ S A A EMA_Loss
.
10° é i *%J*"wﬁﬁl}p*.jﬂl\

ol b

Episodes

Figura 7: Aprendizagem da Deep @Q-Network sem imitagao, extraido de [@]
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Figura 8: Aprendizagem da Deep ()-Network com imitagao, extraido de [@
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2 OBJETIVOS

O objetivo do projeto é construir uma plataforma didatica de testes que possua a
estrutura de péndulo invertido rotacional e utiliza-la para proporcionar e consolidar o

ensino de técnicas de controle.

Inicialmente, com o objetivo de proporcionar o aprendizado em controle classico,
busca-se elaborar um algoritmo para manter o péndulo na posicao de equilibrio instavel.
Pretendendo-se implementar inicialmente o controle proporcional integrativo derivativo

(PID).

Na sequéncia, o projeto também deve abranger o estudo da dinamica de levar o
péndulo da posicao de equilibrio estavel para a de equilibrio instavel. Para isso pretende-se
introduzir algoritmos comumente empregados no contexto, que sao baseados na avaliacao

da energia do sistema. Sao conhecidos como algoritmos de ’Swing-up’.

Posteriormente, pretende-se propor o mesmo controle através da abordagem da in-
teligéncia artificial, com o desenvolvimento de algoritmos de aprendizagem por reforco.
Neste caso, os algoritmos podem ser aplicados tanto para manter o péndulo equilibrado

na posicao instavel, quanto para leva-lo até esta posicao.

Por fim, pretende-se analisar e comparar os resultados de todas as abordagens através
de aspectos como: energia total gasta e robustez. Assim, o projeto deve elucidar con-
sideragoes quanto as vantagens e desvantagens do uso de técnicas de aprendizado por

reforco para este problema em relacao as técnicas de controle classico.



21

3 FUNDAMENTACAO TEORICA

3.1 Modelo do péndulo invertido

As equagoes (3.1) e (3.2) que descrevem o comportamento nao linear de todo o
sistema, foram obtidas em [8] utilizando equagdes cinemdticas, dinamicas, o motor DC
modelado na equagao (3.3) e desprezando as forcas de atrito. A nomenclatura utilizada

estd ilustrada na Figura[9 e descrita na Tabela

M,

Centro de gravidade B

Figura 9: Parametros utilizados no modelo da estrutura.

1 .
& = —————(adsina — b*sin a cos ai? — be cos af + bf cos aVy,) (3.1)
ac — b? cos? «

. 1 .
0= m(bcsinad—i—bdsinacosa—ce@—i—chm) (3.2)

Em que: a = Jo,+ Myr?, b= M,L,r, c = Jp+MpL§, d= MygL,, e = —Kfal,im> f= &

m

Ky(V,, — K,0)

Toutput =
Ry,

(3.3)
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Variavel Descrigao
g Aceleragao da gravidade
Jeq Momento de inércia da montagem brago/péndulo em relagao ao eixo do motor
Ip Momento de inércia do péndulo em relacao ao seu eixo de rotagao
K, Constante corrente-torque do motor
K, Constante de forca contra eletromotriz do motor
L, Distancia entre centro de massa do péndulo e seu eixo de rotacao

Massa do péndulo

Comprimento do braco da estrutura

Tensao a qual o motor é submetido

M,

’
R, Resisténcia da armadura do motor
Vin

«

Angulo que varia em torno do eixo z,
definido entre o péndulo e a posicao de equilibrio instavel

0 Angulo do brago da estrutura que varia em torno do eixo y

Toutput Torque fornecido pelo motor

Tabela 1: Variaveis utilizadas no modelo da estrutura.

3.2 Meétodo de controle: LQR

Dado o sistema dinamico linear representado por & = Az + Bu, em que x é o vetor de
estados, u a entrada, e as matrizes A e B representam o modelo dinamico em particular,
o Regulador Quadratico Linear, do inglés Linear Quadratic Regulator tem como objetivo

encontrar o vetor u que minimize a funcao de custo quadratico dado pela expressao (13.4)).

Jont = / (+7Qx + u” Ru)dt (3.4)
0

Portanto, através da matriz (), se impoe quais estados terao prioridade em serem
levados para a origem, ou anulados, de forma que quanto maior o valor do elemento da
diagonal de (), maior sera a prioridade para o estado correspondente. De forma andloga,
quanto maior o valor do elemento da diagonal de R, maior serd a minimizacao do esforco

de controle correspondente.
Considerando a formulacao de Euler Lagrange para o seguinte problema de mini-

mizagao:

u

min/o L(z,u)dt + ®(x(T)), sujeito a & = f(z,u) (3.5)

A solucao u deve satisfazer as seguintes restrigoes:
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em que H =L+ \'f.

Para utilizar tais férmulas na minimizagao de (3.4), define-se H = § (27 Qz + u” Ru)+

M (Az + Bu). Assim, a primeira restricao indicara que:

u=—R'BT) (3.7)

Ja a segunda restricao e a definicdo de A(t) da seguinte forma: A(t) = P(t)z(t),
indicara:

P+ PA+ATP - PBR'B'P+Q =0 (3.8)

Considerando T — oo e P = 0, obtém-se a Equacao de Riccati, uma equagao nao

linear de primeira ordem:

PA+ AP - PBR'BTP+Q =0 (3.9)

Assim, encontrando a solugao de (3.9) de forma regressiva no tempo, é possivel de-

terminar a lei de controle, que sera dada por:

u=—-R'B"Pr=Kigr (3.10)

Nota-se que apesar de ser necessario utilizar as matrizes A e B para encontrar a lei de
controle, é possivel utilizar o Regulador Quadratico Linear em sistemas nao linearizados,

uma vez que para encontrar u, basta conhecer z.

3.3 Meétodo de controle: Swing-up

O problema do péndulo invertido pode ser subdividido em dois: controld-lo na posi¢ao

de equilibrio instavel, e leva-lo da posicao vertical inferior para a posicao vertical superior,
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movimento chamado de swing up. Para executar a segunda tarefa, diversas solucoes ja
foram propostas, porém uma das mais utilizadas é o controle nao linear baseado em

energia.

Tomando como base os parametros mostrados na Figura [ e na Tabela[I] a equagao

de movimento do péndulo pode ser descrita da seguinte forma:

Jpét — My, g L, sin(0) + M, Toutput Ly 7 cos(a) =0 (3.11)

Ja a equagao de Energia (cinética e potencial gravitacional), pode ser escrita da

seguinte forma:

1
E = §Jp & + M, g L,(cos(a) — 1) (3.12)

Derivando a equagao (3.12)) e substituindo & da equagao (3.11]), obtém-se:

dE

o J, & & — M, g L, &sin(a) = —M,, Toupur Lp 7 & cos(a) (3.13)

Como citado em [5], existem formas de se encontrar leis de controle baseadas na
funcao de Lyapunov, porém pode-se apenas garantir que ‘;—]f seja positivo. Ou seja:
u = —ksign(d cos ) (3.14)

Onde k£ é um parametro ajustavel e:

l,se x >=0
sign(x) = (3.15)
—1,sex <0

Como também citado por [5], por conta de possiveis resisténcias e atritos do sistema,
pode ser que mais energia deva ser transferida ao péndulo para se chegar na posicao de

equilibrio instavel. Para isso, a seguinte otimizacao é sugerida:

u = —k

1+ (%)1 sign( cos(a)) (3.16)
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3.4 Aprendizado por reforco

3.4.1 Introducao

Aprendizado por refor¢co pode ser interpretado como um treinamento de modelos de
Aprendizado de Méquina para a execucao de uma determinada tarefa. A principal carac-
teristica de tal treinamento é que nao é necessario classificar a agao tomada pelo modelo,
ou agente, como correta ou incorreta, mas apenas retornar ao modelo uma recompensa
positiva ou negativa, de acordo com o objetivo final da tarefa. Para isso, estrutura-se o

problema como a seguir.

O agente observa os estados S; e a recompensa recebida R; de um determinado
ambiente e através da sua politica, baseada em um grupo de parametros 6, executa uma
agao A;. Tal agao alterara os estados do ambiente para S;1, que de acordo com o objetivo

do agente gerara a recompensa R;.;. Tal estrutura e parametros podem ser observadas

na Figura [10]

_l Agente |

Estado Recompensa Acio
E Rr+l (
] .
< Syt Ambiente ]4—

Figura 10: Modelo de aprendizado de méquina e respectivos parametros. Adaptado de [7]

Esta sequéncia de acontecimentos é chamada de ”episédio” e apds um determinado
nimero de episédios, as recompensas sao acumuladas e a politica de agoes do agente é
avaliada. Caso o objetivo do agente nao seja atingido, os parametros 6 da politica de

acoes sao alterados e todo o processo se repete de forma iterativa.

3.4.2 Algoritmo: @Q-Learning

O Q-Learning constitui um dos algoritmos mais comuns para a implementacao de
aprendizado por reforco, cujo objetivo se baseia em determinar qual a melhor acao a ser
tomada, dado um estado especifico. Dessa forma, ao interagir com o ambiente, o agente

busca aprender uma politica que maximize a recompensa total esperada.
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Inicialmente, uma vez definidos o ambiente, o agente, as possiveis acoes a serem
tomadas e a funcao de recompensa, é necessario construir uma tabela de valores, conhecida
como -Table. Tal tabela relaciona os estados com as agoes, atribuindo um valor referente
as recompensas adquiridas para as agoes em determinado estado. Como inicialmente o

ambiente é desconhecido, pode-se inicializar a tabela com valores arbitrarios.

Na sequéncia, o algoritmo pressupoe que o agente tome uma agao, que inicialmente é
aleatoria, dado o desconhecimento. Tal agao implicard uma recompensa conforme definida
no ambiente, que permitird a consequente atualizacao da tabela, caracterizando a relacao
da acao com aquele estado. A atualizacao, por sua vez, é implementada com base na
equacao de Bellman, que relaciona o valor de um estado com a méaxima recompensa
esperada e o valor do estado anterior, aliado a um fator de desconto, que objetiva reduzir

seu valor conforme o nimero de ages tomadas até o instante atual [22].

A equacao de Bellman na forma deterministica estd apresentada na equagao [3.17],

em que A constitui o fator de desconto e s o proximo estado.

V(s) = maz,.(R(s,a) + A\V(s')) (3.17)

em que R(S,a) é a recompensa obtida por estar no estado s e tomar a agao a.

O valor de um estado consiste no maior entre todos os valores Q possiveis obtidos
na tabela. Assim, torna-se possivel reescrever a equacao analisando o valor Q de uma
posi¢ao na tabela em fungao dos mesmos parametros, mas considerando o par acao-estado,

conforme a equacao |3.18]

Q(s,a) = R(s,a) + dmaz,Q(s',a’) (3.18)

Por fim, considerando a diferenca temporal entre o novo valor obtido e o referente ao
instante anterior, inclui-se uma taxa de aprendizado a que multiplica a diferenca e soma
ao valor prévio, obtendo-se a equacao |3.19 que expoe a atualizagao de fato implementada

na tabela.

Qi(s,a) = Qi_1(s,a) + a(R(s,a) + dmazyQ(s',a") — Qi_1(s,a)) (3.19)

Uma vez atualizado o valor, o processo se repete de forma iterativa ao longo do pro-

cesso de aprendizado, atualizando os valores da tabela até que determinado objetivo seja
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atingido ou a aprendizagem seja interrompida. Conforme descrito, inicialmente as acoes
realizadas sao aleatdrias, entretanto, conforme se avanca no processo de aprendizagem, as

acoes passam a ser tomadas considerando os valores ja conhecidos da tabela.

Ao fim do processo, a partir da @-Table obtida com as atualizacoes, é possivel sele-

cionar a melhor acao a ser tomada pelo agente em determinado estado no ambiente.

3.4.3 Aprimoramentos do modelo

3.4.3.1 Deep Reinforcement Learning (Deep Q-Learning)

O algoritmo @-Learning atua de forma satisfatéria em contextos que abordam am-
bientes simples, com um nimero reduzido de estados e agoes possiveis. Uma vez que o
ambiente se torna mais complexo (com o crescimento da quantidade de agdes e estados),
o nimero de combinagoes se eleva significativamente, tornando inviavel a aplicacao do
algoritmo. Nesse contexto, se introduz o Deep @-Learning, um algoritmo desenvolvido a
fim de fornecer um aproximador para os valores (), por meio da implementacao de redes

neurais [22].

Dessa forma, o Deep Q)-Learning pressupoe a substituicao da @)-Table por uma rede
neural, cujas entradas sdo os estados e como saida obtém-se os valores ) (referentes a
tabela) relacionados as agoes. A partir dos valores extraidos como saidas, é possivel
realizar uma comparacao com os valores previamente estimados e atualizar os pesos ao
longo das camadas da rede por meio de um algoritmo como retropropagacao ou gradiente

descendente.

Com o objetivo de construir uma rede neural, torna-se necessario o estabelecimento
de uma funcao de custo, novamente baseada na equacao de Bellman, mas neste caso
buscando minimizar o quadrado da diferenca entre os lados da equacao A funcao de
custo resultante é representada pela equacao |3.20, em que a aproximacao de Q é indicada

como (s, a; ), no qual @ representa os pesos treindveis da rede.

custo = [Q(s,a;0) — (R(s,a) + Mmaz,Q(s',d’;0))] (3.20)

Uma vez estabelecida a func¢ao de custo, a fim de realizar o treinamento é necessario
considerar ainda o conceito de experience replay, que consiste na compreensao equivocada

do ambiente pelo agente em funcao de uma possivel sequéncia de estados interdependentes
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e similares. A solucao envolve uma nao atualizacao imediata dos pesos da rede a cada
episddio. Ao longo do treinamento os episddios sao salvos e apds determinado limite, é
efetuada uma amostragem aleatoria pelo agente, que seleciona apenas esses episodios para
aprendizagem. Tal procedimento evita o possivel enviesamento proveniente da sequéncia

de estados, permitindo um treinamento eficiente da rede.

Por fim, enquanto o processo de selecao da acao a ser tomada no @)-Learning envolve
apenas a escolha do maior valor Q, no Deep Q-Learning a selecao requer um tratamento
dos valores Q por uma funcao, como a softmaz ou a e-greedy [22]. Tal tratamento ob-
jetiva alterar a forma de selecao das agoes ao curso do treinamento, passando de agoes
aleatérias (enquanto o conhecimento do ambiente é limitado) para agdes considerando o

conhecimento ja adquirido sobre o ambiente e os pesos atualizados da rede neural.

3.4.3.2 Imatation Learning

Os algoritmos de aprendizagem por reforco previamente descritos possuem bom de-
sempenho em situagoes que envolvem uma funcao de recompensa bem definida com ele-
vada frequéncia de ocorréncia, através da qual é possivel se aproximar a melhor politica.
Em alguns casos, no entanto, as recompensas podem ser bem esparsas, o que dificulta o
processo de aprendizagem. Nesses contextos é possivel desenvolver manualmente novas

funcoes de recompensas cujas frequéncias de ocorréncia sao superiores.

O desenvolvimento manual das fungoes também é relevante em cendrios nos quais nao
hé uma fungao direta de recompensa, tais como aprendizagem de veiculos autonomos [23].
Todavia, o processo de determinacao da nova funcao de forma a satisfazer o comporta-
mento desejado pode ser complexo. Nesse contexto, pode-se introduzir como solugao um
algoritmo de Imitation Learning. Ao invés de promover o aprendizado por meio de recom-
pensas esparsas ou especificando manualmente uma funcao de recompensa, o algoritmo
propoe o aprendizado com base em um conjunto de demonstracoes fornecidas por um
expert (normalmente humano), buscando aprender a melhor politica seguindo suas agoes.

Nesse sentido, a aprendizagem pode ocorrer de forma mais eficiente.
Um algoritmo de Imitation Learning pode ser implementado através de diferentes
métodos, tais como Behavioural Cloning, Direct Policy Learning e Inverse Reinforcement

Learning, entre outros.

A primeira abordagem constitui a forma mais simples de Imitation Learning, além de
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ser eficiente. O processo de aprendizagem da politica do expert pelo algoritmo Behavioural
Cloning se baseia em aprendizagem supervisionada, com a divisao das demonstracoes
em pares estado-agao e a consequente definicao de uma funcao de custo, que se objetiva
minimizar. No entanto, uma de suas suposicoes principais consiste na distribuicao idéntica
e independente dos pares estado-acao, o que pode nao se aplicar em diversos modelos.
Além disso, a suposi¢ao implica que erros em diferentes estados se somam, possivelmente
levando o agente a estados nos quais o ezpert nunca esteve, induzindo um comportamento

indefinido.

Ja o algoritmo Direct Policy Learning nao apresenta a mesma limitacao, ao pressupor
um acesso em tempo real ao expert, de forma que avalie as acoes tomadas pelo agente
durante a aprendizagem. Dessa forma torna-se possivel corrigir os erros antes que estados
desconhecidos sejam atingidos. Todavia, tal procedimento pode nao ser plausivel, uma

vez que a interatividade com o expert em diversas situacoes nao é disponivel.

O algoritmo Inverse Reinforcement Learning, por sua vez, propoe uma aprendizagem
da funcao de recompensa do ambiente com base nas demonstragoes e com isso determinar
a politica 6tima. Dessa forma, ao longo do processo de aprendizado busca-se estimar
os parametros referentes a funcao que causariam o comportamento do agente. Uma
vez estimados, a partir da funcao torna-se possivel estabelecer uma politica de forma
a maximiza-la. Na sequéncia, deve-se compara-la com a politica do expert e atualizar
a funcao de recompensa. FEste processo pode ser repetido de forma iterativa até que
a politica seja satisfatéria, com acoes do agente induzindo respostas semelhantes as do

expert.
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4 METODOLOGIA

O procedimento a ser adotado no desenvolvimento do projeto se baseia na ordem de
requisitos definidos na se¢ao [2] A construgao do péndulo invertido rotacional demanda
inicialmente o projeto simultaneo da mecanica e da eletronica inseridas, exigindo a de-
finicao e caracterizacao dos componentes envolvidos. Tal determinacao, por sua vez, exige
estabelecimento dos requisitos a serem satisfeitos, o que implica a estimagao dos esforgos
no protétipo. Dessa forma, com o intuito de promover a estimagao, a etapa inicial consiste

na modelagem do sistema e definicao de seus requisitos e parametros relevantes.

Uma vez bem delimitados os requisitos, é possivel realizar simulacoes da dinamica do
sistema com insercao dos esforgos de controle, elucidando as especificagoes necessarias aos
componentes mecanicos e eletronicos para que satisfacam os requisitos. Ao fim dessa etapa
deve ser plausivel a caracterizacao da lista de componentes assim como o desenvolvimento

e as implementacoes dos projetos mecanico e eletronico.

Na sequéncia, com o protétipo fisico ja finalizado, torna-se viavel a execucao dos
projetos computacional e de controle, envolvendo a definicao do microcontrolador a ser
utilizado bem como o desenvolvimento dos algoritmos de controle a serem implementados.
Tal processo permite enfim a realizagao dos testes, além das andlises de resultados obtidos
com suas respectivas comparacoes propostas, como tempo de estabilizagao, energia total
gasta e robustez. Com isso obtém-se embasamento para as especificagoes da plataforma

didatica como objetivo do projeto.

4.1 Parametros e requisitos

Conforme ressaltado anteriormente, a definicao dos parametros e requisitos envol-
vidos consiste um uma etapa inicial e essencial ao projeto. Suas especificagoes podem

ser estabelecidas com base em projetos prévios que envolvem a construcao de péndulos



] Parametro \ Valor \ Justificativa

Tempo de < 10 [s] Tempo suficiente para execucao

execugao (Swing do algoritmo conforme simulagoes

Up) e projetos prévios [24].

Esfor¢o de con- < 1 [Nm)] Reduz a necessidade de motor

trole com custo elevado.

Prego < 1000 [R$] Orcamento suficiente para a cons-
trucao de diversos prototipos, tor-
nando plausivel a replicagao em
laboratério.

Dimensdes <400x200x200 [mm] | Deve ser adequada para mani-
pulagao em uma bancada de la-
boratorio.

Tabela 2: Tabela de requisitos do projeto.
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invertidos rotacionais [24] e conforme requisitos essenciais no controle do péndulo, como

em sua capacidade de estabilizacao vertical.

Dessa forma, os parametros estudados e requisitos puderam ser classificados conforme

a Tabela 2

Ja a validacao dos valores das trés linhas iniciais apresentadas na Tabela [2] podem

ser verificadas por meio das simulagoes implementadas e detalhadas na secao [7.1]
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5 PROJETO MECANICO

Uma vez encontradas as equagoes dinamicas do sistema, torna-se necessario obter os
parametros M, J,, Ly, r e Joq. Para isso, uma primeira proposta da estrutura do sistema
foi modelada no software de CAD 3D SOLIDWORKS, no qual os materiais, dimensoes e
posicionamento das pecas da estrutura foram especificados, sendo assim possivel obter os

parametros apresentados na Tabela [3]

Variavel Valor Descrigao
r 0.16 [m] Comprimento do brago da estrutura
L, 0.075 [m] Distancia entre centro de massa do péndulo e seu eixo de rotagao
Jeq 0.00012839 [kg.m?] | Momento de inércia da montagem brago/péndulo em relagao ao eixo do motor
Ip 0.00005027 [kg.m? Momento de inércia do péndulo em relacao ao seu eixo de rotacao
M, 0.022 [kg] Massa do péndulo

Tabela 3: Parametros extraidos do modelo da estrutura.

Na Figura pode-se observar a proposta desenvolvida da estrutura, que possui
181.3 mm de altura e uma distancia entre o eixo do motor e o eixo do péndulo, na posicao
vertical, de 112 mm. As pecas destacadas em vermelho foram produzidas com impressora
3D. O péndulo e o eixo do encoder, que possuem a mesma cor, tém diametros de 8 mm
e foram produzidos em aco, as pecas em marrom foram fabricadas em madeira, e o brago

(cinza) foi produzido em aluminio.
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Figura 11: Primeira proposta da estrutura modelada no software SOLIDWORKS

Optou-se por utilizar um rolamento axial para diminuir as cargas sobre o eixo do
motor e um acoplamento comercial para unir o eixo do encoder ao eixo horizontal do
péndulo. As caracteristicas tanto do rolamento, quanto do acoplamento se encontram nas

tabelas [4] e [f] respectivamente.

Modelo 51105

Altura 11 mm
Diametro interno | 25 mm
Diametro externo | 42 mm

Tabela 4: Especificacoes do rolamento axial utilizado

Modelo AC-1925AL
Didmetro eixo 1 6 mm
Didmetro eixo 2 8 mm
Altura 25 mm
Diametro Externo 19mm
Velocidade Méaxima | 6.000RPM
Material Aluminio
Torque Maximo 10 Kg/cm

Tabela 5: Especificacoes do acoplamento

5.1 Fabricacao

Apos a impressao das pecas em 3D, o corte das chapas de madeira, e dos eixos de

aco, notou-se que a fabricagdo do braco, inicialmente proposta em aluminio, poderia ser
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feita com chapa de MDF de 3mm, sem que a perda de rigidez afetasse o desempenho da

estrutura.

Com todas as pecas fabricadas, a primeira versao da estrutura, mostrada na Figura
foi montada e testada. Seu desempenho mecanico foi satisfatério, com o motor sendo
capaz de mover o braco com facilidade, e o péndulo de se mover livremente. Além disso,

nenhum dos elementos apresentou folgas ou instabilidades significativas.

Figura 12: Protétipo da estrutura

O tnico ponto a se ressaltar é a fixacao do cabo do encoder. Uma vez que este apre-
senta natureza mais rigida do que o esperado, caso na montagem da estrutura ele nao seja
posicionado adequadamente, ele exercerda um torque resistivo que afeta significativamente
o movimento do braco. A Figura exemplifica uma forma de posicionar o cabo para

que este problema nao ocorra.
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Figura 13: Posigao adequada do cabo do encoder

Os desenhos de fabricacao de todos os componentes da estrutura se encontram no

anexo A.



36

6 PROJETO ELETRONICO

6.1 Escolha de componentes

Com as equacgoes dinamicas do sistema e com os parametros mecanicos definidos,
obteve-se o esforco necessario para o controle do péndulo invertido e consequentemente a

relacao rotagao-torque exigida, sendo assim possivel definir o motor a ser utilizado.

As especificagoes do motor escolhido podem ser observadas na Tabela [0}

Tensao nominal DC 6V
Velocidade nominal 280 rpm
Corrente nominal 0.13A
Torque de Stall 10 kg.cm
Corrente de Stall 3.2 A
Reducao 1:34
Resolucao do encoder 341.2

Tabela 6: Especificacoes do motor selecionado

Na sequéncia foram realizados testes de leitura dos sinais dos encoders por um
ArduinoUnoR3, que demonstrou-se eficaz. Dessa forma optou-se pela sua introdugao

no projeto.

Algumas de suas especificagoes sao ilustradas pela tabela [7]

Microcontrolador ATmega328
Memoria Flash 32Kb
Velocidade de Clock 16MHz
Comunicag¢ao 12C, SPI, UART

Tabela 7: Especificagoes do ArduinoUnoR3
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Uma vez que o ArduinoUnoR3 nao apresenta capacidade computacional suficiente
para a implementacao de algoritmos de inteligéncia artificial, definiu-se que o mesmo atu-
aria recebendo, interpretando e enviando sinais. Dessa forma, a tarefa referente ao proces-

samento foi delegada a um computador, cuja comunicacao se da via serial. O processador

utilizado entao passou a consistir em um Intel(R)Core(T'M)i7—8750HC PUQ2.20GH z.

Por fim, escolheu-se um modulo de ponte H baseado no CI L298N para servir como
driver do motor, e um encoder para ser acoplado ao péndulo cujas principais caracteristicas

podem ser observadas na Tabela

Modelo LPD3806-600BM-G5-24C
Resolucao 600 PPR
Alimentacao 5-24V DC
Rotacao maxima 5000 rpm

Tabela 8: Especificacoes do encoder acoplado ao péndulo

6.2 Diagrama elétrico

Seguindo as especificacoes dos componentes bem como os requisitos de projeto, foi

possivel projetar e construir o diagrama elétrico do sistema, que é ilustrado pela Figura

14

A partir do diagrama é possivel observar que o Arduino Uno R3 realiza a alimentagao
elétrica de circuito do encoder individual e do encoder do motor, cujas tensoes sao de 5V
e 3.3V, respectivamente. Além disso, recebe os sinais de ambos os canais dos encoders,

que sao transmitidos através dos pinos D2 a D5.

Ja a Ponte H recebe a alimentacgao elétrica de poténcia do sistema, que é de 6V, e
a transmite ao motor (M1+ e M1—) por meio dois pinos 2 e 3 (OUT1 e OUT2). O
controle do sentido de rotacao do motor é efetuado através de sinais enviados pelos pinos
D7 e D8 do Arduino Uno R3, e a velocidade de rotacao é controlada pelo nivel de tensao

atribuido pelo pino D11, que atua com PWM.
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7 PROJETO DE CONTROLE

7.1 Simulacoes

Conforme descricao da metodologia na secao uma vez realizada a modelagem
do péndulo, foi necessario implementar simulacoes de seu controle. Assim, foi possivel
estabelecer e validar os requisitos para a consequente definicdo e caracterizacao da lista
de componentes. Para tal, foi utilizado o auxilio do ambiente de programacao grafica

Simulink, integrado ao MATLAB.

No software, com o objetivo de promover as simulagoes foi inicialmente inserida a
dinamica do péndulo, conforme modelagem descrita na se¢ao[3.1} As equagdes nao lineares
de movimento foram seccionadas em dois blocos principais cujas fungoes se referem as duas
variaveis que representam os graus de liberdade do sistema, o e . O diagrama de blocos

desenvolvido para descrever a dinamica pode ser observado na Figura
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E importante ressaltar que o diagrama inicial se baseava no esfor¢co de controle re-
presentado pelo torque, uma vez que um dos objetivos era promover a identificacao do
esforgo necessario para a escolha do motor. Uma vez identificado e selecionado o motor foi
possivel inserir a sua dinamica no modelo e traduzir o valor de torque para uma tensao,

que representa de fato o esforco de controle utilizado.

Dessa forma, as entradas do diagrama consistem nos parametros do modelo do
péndulo, das especificagbes do motor e de seu esforco de controle, representado pelo valor
da tensao atribuida. Os parametros referentes ao péndulo foram determinados de acordo
com os dados extraidos do modelo da estrutura mecanica, conforme detalhado na secao
e expostos na Tabela [3]

As demais fungoes presentes na Figura [15| se referem a uma correcao numérica das
variaveis. Ja os blocos restantes consistem nas integracoes das variaveis e, por fim, foi
inserido um atraso no transporte do sinal de a;, com o objetivo de representar o atraso de

leitura do encoder.

Apos a insercao do modelo, foram desenvolvidos e implementados blocos referentes
aos algoritmos descritos previamente e essenciais ao controle do péndulo, o algoritmo de

swing-up e o de balanceamento na estabilizacao vertical.

Com respeito ao balanceamento, foi criado um bloco que implementa o controle Re-
gulador Quadratico Linear, cuja matriz () foi otimizada de forma iterativa com o objetivo
de reduzir o tempo de estabilizacao do péndulo assim como o esforco de controle. Sua
constituigao final pode ser observada na equagao [7.1} Suas linhas se referem aos estados
0, a, 0 e @, respectivamente em ordem superior a inferior. Para a matriz R foi atribuido

o valor 1.

0.01 0

(7.1)

e}

—_

e}
S NN O O
o o O O

Quanto ao controle de swing up, foi desenvolvida uma funcao que implementa a
l6gica de controle nao linear baseada em energia e detalhada na se¢ao [3.3] Assim como o

diagrama que representa a dinamica, a funcao depende dos parametros da estrutura e do
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motor. Ja o ganho k, analogamente a matriz (), foi determinado de forma iterativa, e o

valor que atingiu o melhor desempenho simulado foi de 20.

A fim de determinar em que instante cada controle é utilizado, foi inserido ainda
um bloco switch que seleciona o médulo de controle (balanceamento ou swing up). A
mudanca ocorre conforme deflexao do angulo do péndulo, optando pelo balanceamento

apenas quando inferior a 10°. O diagrama de blocos completo pode ser observado na
Figura [16]
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Figura 16: Diagrama de blocos completo (Simulink).

Pode-se notar ainda no diagrama a inclusao de blocos de saturacao, de conversao

de unidades (radianos para graus) e tratamentos para visualizagdo, com auxilio de um
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modelo mecanico simplificado desenvolvido no software SOLIDWORKS. As saturacoes
foram inseridas com o objetivo de regular e evitar picos dos esforcos de controle. Por fim,

foi incluido um bloco para adicionar um sinal de ruido branco ao modelo, de forma que

represente oscilagoes e imperfei¢oes inerentes ao sistema real.

A seguir sdo apresentadas nas Figuras[17] a[22] os resultados das simulagoes realizadas
nos quais o valor de « inicial consistiu em 180°, 90° e 10°, respectivamente, sendo 180° ou
-180° a posicao do péndulo de equilibrio estavel e 0° a posicao de equilibrio instavel. As
figuras exibem o sinal de « e a tensao aplicadas para cada simulagao efetuada.

Angulo [] Simulagio do dngulo u (ag = 180°)

180

120

90 f |
60
30 //

60
|

90

=120

-150

L] 21 24 27 30 33 36 39 42 45 48

0

03

06

Tempo [s]

Figura 17: Angulo do péndulo na simulacao do controle com valor de « inicial de 180°.

Todas as simulacoes apresentadas decorrem em um periodo total de 5 segundos. Os
picos observados nos graficos referentes ao sinal de oo ocorrem em funcao da passagem do

péndulo pela posicao de equilibrio estavel, no qual o angulo se altera instantaneamente
de 180° para -180°, ou o contréario. Ja as irregularidades observadas se devem a presenca

de ruido branco.

Observa-se que os esforgos de controle foram limitados com saturacao de 6V, uma

vez que consiste na tensao maxima de atuagao do motor selecionado.
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Angulo [1] Simulagio do angulo u (etg = 90°)

180

150
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120

-150

-180

0 03 06 09 12 15 18 21 24 27 30 33 36 39 42 45 48 Tempo [s]

Figura 18: Angulo do péndulo na simulacio do controle com valor de « inicial de 90°.

Angulo [] Simulag¢do do angulo o (cg = 10°)
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Figura 19: Angulo do péndulo na simulacao do controle com valor de « inicial de 10°.

Conforme ilustrado pelas Figuras e [I8, a fim de atingir a regiao de equilibrio
instével (entre 10° e -10°), foi necessaria apenas uma oscilagao do brago para « inicial de
180° e 90°. Ambos controles de swing up exigiram cerca de 1 segundo para que o bloco

de switch efetuasse a troca para o LQR, ja acionado desde o inicio na simulagao com «



inicial de 10°. Pela Figura [19| nota-se um répido equilibrio com a subsequente presenca

do ruido branco.

Tensdo [V]

Simulagao da tensdo (a, = 180°)

[}

06 08 12 15 18 21 24 27 30 33 35 3 a2 a5 1z rempol]
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Figura 20: Tensao do motor na simulagao do controle com valor de « inicial de 180°.

Tensdo [V]

Simulagio da tenséo (ey = 90°)

o

\/ \

|

et

06 09 12 15 18 21 24 27 30 33 36 39 42 45 48 Tempo [5]

Figura 21: Tensao do motor na simulacao do controle do péndulo com valor de « inicial

de 90°.

Os sinais de tensao das Figuras [20] e 2I] apresentam picos nos instantes em que «
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= 180°, o que é coerente com a funcao de controle swing up implementada. Além disso

atingem novamente o limite de 6V quando realizada a mudanca de controle do péndulo.

Tensdo [V] Simulagfo da tensiio (og = 10°)

= Tempo [s]
] 03 06 09 12 15 18 21 24 27 30 33 i6 38 42 45 48

Figura 22: Tensao do motor na simulagao do controle do péndulo com valor de « inicial
de 10°.

Nota-se pela figura , no qual utilizou-se apenas o controle de balanceamento (LQR),
que as tensoes aplicadas foram inferiores, nao atingindo em qualquer instante o limite de

6V estabelecido pelo motor.
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8 PROJETO COMPUTACIONAL

8.1 Interface: Computador - Arduino

Como ja mencionado anteriormente, utilizou-se um Arduino Uno R3 para ler e ar-
mazenar as posigoes e velocidades dos dois encoders, e controlar a tensao imposta nos
terminais do motor DC através de uma ponte H baseada no chip L298N. Além disso,
foi utilizado um computador para processar as leituras dos encoders e de acordo com o

algoritmo utilizado, obter a tensao desejada para ser imposta nos terminais do motor.

Dessa forma tornou-se necessario estabelecer uma comunicagao entre o computador
e o Arduino, a qual se deu por meio do uso de comunicagao serial através de um cabo

USB e da arquitetura mestre escravo.

O Arduino, exercendo o papel de escravo, ao mesmo tempo que conta os pulsos de
ambos os encoders através de rotinas de interrupgao, aguarda que uma nova mensagem
via serial seja recebida. Esta mensagem é composta exclusivamente por um valor de -255
a 255, cujo modulo serd proporcional a tensao imposta ao motor DC, e o sinal determinara

a polaridade, ou a dire¢ao que o motor ird assumir.

Apébs receber tal mensagem e impor a respectiva tensao aos terminais do motor
através da ponte H, o Arduino retorna outra mensagem serial para o computador sendo
composta por quatro nimeros: dois com a contagem de pulsos atuais de cada encoder, e
dois com a variacao temporal de tais contagens. Com isso, torna-se possivel determinar

os angulos e velocidades atuais de cada encoder.

O script desenvolvido e implementado para se comunicar com o Arduino e processar
as informacoes necessarias foi escrito em Python e dividido em classes. A classe Encoder é
responsavel pela comunicacao e seu cédigo, assim como os demais utilizados neste projeto,

pode ser observado no repositorio do projetol



https://github.com/tcc-andre-fernando/tcc/blob/main/Controle/classes.py
https://github.com/tcc-andre-fernando/tcc
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8.2 Implementacao Controle Classico

O método de controle cléssico selecionado e implementado foi o Proporcional Deri-
vativo (PD), porém, como se deseja controlar tanto a posicao do péndulo quanto a do
braco, optou-se por utilizar dois controladores em paralelo. Dessa forma, cada controla-
dor recebe a posicao e a velocidade da respectiva estrutura e calcula o esforco de controle
necessario individualmente. Em seguida, ambos os esforcos calculados sao somados para

se obter a tensao que se deseja impor ao motor DC.

A classe utilizada para implementacao dos dois controladores PD ¢é a classe PID. E
o script responsavel pela implementacao dos dois controladores em paralelo e por toda a

dinamica do teste é o CC-PID-Pendulum.py.

8.3 Implementacao Swing-Up

A implementagdo do algoritmo de Swing-Up se deu a partir da equagao [3.16] Para
isso, inicialmente definiu-se um lago que fosse interrompido caso o médulo da posi¢ao an-
gular do péndulo seja inferior a 10°, assim, o péndulo se encontraria préximo ao equilibrio.
Neste laco executa-se o calculo da equagao, em que realiza-se o produto entre um ganho e

o sinal da multiplicacao do cosseno da posicao angular pela velocidade angular do péndulo.

Vale notar que o ganho ¢ associado ao valor de PWM a ser enviado ao motor, assim,
conforme a posicao e direcao de rotagao, a entrada de controle atribuida ao motor oscila
apenas entre dois valores, o ganho positivo e o ganho negativo. O script responséavel pela

implementagao do algoritmo é o [SwingUp.py.

8.4 Implementacao Q-Learning

A sequéncia de eventos do inicio ao fim de um episédio implementada no script
responsavel pela execucao do algoritmo @)-Learning pode ser observada no fluxograma da

Figura [23]


https://github.com/tcc-andre-fernando/tcc/blob/2015d5142fbfc5f3d6844f24828273943a484ae6/Controle/classes.py#L143
https://github.com/tcc-andre-fernando/tcc/blob/main/Controle/CC-PID-Pendulum.py
https://github.com/tcc-andre-fernando/tcc/blob/main/Controle/SwingUp.py
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Figura 23: Fluxograma da logica de um episédio do algoritmo Q)-Learning

Como se pode observar, no inicio de cada episédio o algoritmo aguarda até que
determinada condicao seja satisfeita, sendo ela: o modulo do angulo do péndulo ser inferior
a 15 graus. Portanto, para se iniciar um episodio é necessario levar manualmente o péndulo

para esta posicao.

Uma vez iniciado, o episodio apenas se encerrara caso as seguintes condicoes sejam
satisfeitas: o modulo da posi¢ao do péndulo for superior a 15 graus ou o moédulo da posicao

do braco for superior a 180 graus.

Durante a execugao do episoédio, pode-se observar a realizacao de um ciclo, que se
inicia com a execucao de uma acao e a consequente obtencao de um novo estado. Em
seguida verifica-se se a condi¢ao de parada foi satisfeita, em caso negativo, o calculo da
recompensa e a atualizacao da @)-Tuable sao executados e por fim é realizada a obtencao

de uma nova agao.
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A decisao de se obter uma acao aleatéria ou uma acao baseada na ()-Table segue
uma probabilidade definida pela variavel epsilon, de forma que a cada episédio, a variavel
¢ decrementada linearmente, diminuindo assim a probabilidade de se tomar uma acao

aleatoria.

A classe responsavel por implementar os métodos utilizados pelo algoritmo Q-Learning

¢ a PartialQLearning e o script responsavel por toda a dinamica de aprendizagem

através deste método é o [PartialQL-Pendulum.py.

8.4.1 Decisoes de projeto

Conforme estabelecido pelo algoritmo @-Learning, em sua implementacao é necessario
definir suas principais atribuicoes, tais como a funcao de recompensa a ser utilizada, a
forma de decaimento da variavel epsilon ao longo dos episddios e outros hiperparametros.

A seguir, explicita-se estas decisoes e as justificativas de cada uma.

Apesar de haver formas alternativas de se realizar o decremento da variavel epsilon ao
longo dos episédios, como levando em consideracao os resultados parciais do aprendizado,
por exemplo, o mais comum é decrementa-la de forma linear. Neste projeto optou-se pelo
decremento linear, de forma que epsilon no comeco do treinamento é igual a 1, e ao se
executar o episédio que representa 80% do treinamento, epsilon ¢ igual a zero. Assim os

20% finais dos episodios sao realizados tomando agoes exclusivamente nao aleatérias.

Para a escolha da funcao recompensa, ou seja, a funcao que avalia a acao tomada,
testou-se algumas alternativas, dentre elas: funcoes que penalizavam de forma linear o
afastamento do péndulo de seu ponto de equilibrio, e incentivavam a aproximacao, levando
em consideracao posicao e velocidade angular; funcoes binarias que consideravam apenas a
posicao do péndulo, recompensando positivamente quando o péndulo se localizava dentro
de uma determinada distancia do seu ponto de equilibrio; e func¢oes incrementais, que
basicamente recompensavam cada agao tomada de acordo com o tempo decorrido desde

o comeco do episddio.

Por conta de um ntmero grande de acoes serem tomadas em um curto intervalo de
tempo e a inércia do sistema ser relativamente grande, a avaliagao de uma acao em funcao

dos estados correntes do sistema se torna uma tarefa complexa.


https://github.com/tcc-andre-fernando/tcc/blob/2015d5142fbfc5f3d6844f24828273943a484ae6/Controle/classes.py#L163
https://github.com/tcc-andre-fernando/tcc/blob/main/Controle/PartialQL-Pendulum.py

52

Funcoes que avaliam o conjunto de todas as acoes realizadas desde o inicio do episédio
se tornam mais simples e justas, apesar de diminuirem a velocidade de aprendizado, uma

vez que se trata de uma recompensa média.

Para contornar tal problema, optou-se por uma funcao recompensa que leva em
consideracao o estado atual da planta, e o estado apds um ntimero definido de iteragoes.
Ou seja, a recompensa é dada a iteracao atual, de acordo com o estado atual e um estado

futuro do péndulo.

O algoritmo @Q)-Learning, como se sabe, precisa de estados e agoes discretas, de forma
que quanto maior o nimero de acoes e de estados, maior serd a (- Table e maior o tempo

necessario de aprendizagem para atingir os objetivos desejados.

Diante disso, seria inviavel haver um estado para cada nimero de pulsos em uma volta
do encoder, assim como uma agao para cada possivel valor de PWM. Por isso, optou-se
por aumentar a discretizagdo com auxilio de um controlador PD, a fim de diminuir ao
maximo o tamanho da Q-Table, sem que se perdesse a capacidade de estabilizacao do

péndulo.

Para esta tarefa, utilizou-se um controlador PD capaz de estabilizar o péndulo através
de estados e agoes nao discretizados, de forma que aumentou-se a discretizacao tanto dos
estados quanto das agoes até um grau em que ainda fosse possivel estabilizar o péndulo

através do controlador. Obtendo assim a discretizagao utilizada no projeto.

8.4.2 Problemas e solucoes adotadas

8.4.2.1 Frequéncia de agoes e aleatoriedade

Como ja mencionado anteriormente, a plataforma desenvolvida neste trabalho exe-
cuta muitas acoes em um pequeno intervalo de tempo, ao mesmo tempo que a inércia do
sistema é relativamente grande. Em outras palavras, a influéncia de cada agao instantanea

no movimento do péndulo é muito pequena, o que dificulta sua avaliacao.

Esta caracteristica somada a tomada de acgoes aleatérias, dificulta ainda mais a ava-
liacao de cada agao, especialmente na parte inicial do treinamento, quando epsilon ainda
é alto. Dessa forma, para um mesmo estado, diferentes acoes podem ser tomadas em um

curto intervalo de tempo.
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A solucao adotada para este problema foi escolher aleatoriamente, no inicio de cada
episédio, uma acao para cada estado. Assim, para um determinado estado, quando houver
a necessidade de se executar uma agao aleatéria, sempre se executara a acao previamente

associada.

Esta solucao resolve parcialmente o problema, uma vez que, quando epsilon for
préximo de 0.5, para um mesmo estado, haverd 50% de chance de se executar uma acao
nao aleatéria (a acdo com maior @Q-Value), e 50% de se executar uma agao aleatéria (
associada previamente ao estado), de forma que em um curto intervalo de tempo ambas

podem ser executadas alternadamente, dificultando a avaliagao das agoes.

Diante disso, optou-se por além da solucao adotada anteriormente, no inicio de cada
episédio determinar quais estados implicarao agoes aleatdrias (escolhidas previamente) e
quais implicardo ac¢oes nao aleatérias (com maior @-Value). Dessa forma, a probabili-
dade de um episédio ser escolhido para executar uma acao aleatéria ou nao aleatoria é

determinada por epsilon.

8.4.2.2 (Q-Table simétrica

Outro problema enfrentado foi o tempo de aprendizado que se mostrou demasiada-
mente grande. Uma medida tomada para diminui-lo foi considerar que a @-Table final
seria simétrica, e esta hipotese é coerente uma vez que, desconsiderando imperfeigoes

mecanicas, o problema do péndulo invertido é simétrico.

Portanto, para se determinar o estado do péndulo, considerou-se as variaveis associa-
das ao brago (como anteriormente), o médulo do angulo do péndulo em relagao a vertical,
e sua velocidade angular, de forma que esta é considerada positiva quando o péndulo se

aproxima da posicao de equilibrio instavel e negativa quando se afasta.

Desta forma, um estado desta nova abordagem sera equivalente a dois estados da
abordagem anterior, o que reduz o tamanho da @)-Table pela metade, implicando reducao

também do tempo de aprendizagem.

8.4.2.3 Descarte da posicao do braco

Ao longo do desenvolvimento, notou-se também que nao era relevante determinar a

posicao na qual o brago se encontra no momento de equilibrio do péndulo. Dessa forma,



54

desconsiderou-se esses estados, reduzindo em uma dimensao a @)-Table e agilizando o

processo de aprendizagem.
8.4.2.4 Adicao de botao e LED

Durante os testes e treinamentos, constatou-se que alguns pulsos do encoder do
péndulo estavam sendo perdidos, apesar do Arduino realizar esta tarefa através de ro-

tinas de interrupgao e nao executar outras tarefas complexas no seu lago principal.

Por conta disso, dois componentes foram adicionados ao circuito: um LED e um
botao. Assim, com uma alteracao no script do Arduino, uma vez que o péndulo se
encontre na posicao de equilibrio estavel, o LED acende. Dessa forma, passou a ser
possivel identificar a perda de pulsos e recalibrar a posicao do péndulo através do botao

adicionado.

8.5 Implementacao controlador hibrido

Como alternativa ao modelo baseado exclusivamente no algoritmo -Learning, desenvolveu-
se também um modelo hibrido, que utiliza tanto inteligéncia artificial, quanto controle

classico para se obter o esfor¢o de controle desejado.

Para o desenvolvimento do controlador hibrido, utilizou-se um modelo de inteligéncia
artificial similar ao descrito na secao anterior, porém que recebe como entrada apenas a

posicao do péndulo.

Em paralelo, executa-se um controlador similar ao descrito na secao porém que
nao recebe como entrada a posicao do péndulo, ou que possui a constante relacionada a

este estado nula.

Por fim, ambos os esforcos de controle calculados sao somados para se obter a tensao

que sera imposta ao motor DC.
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9 RESULTADOS

9.1 Swing-Up

Os resultados obtidos para a realizacao da dinamica de Swing-up através do método

descrito na se¢ao [8.3] podem ser observados na Figura [24]
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Figura 24: Desempenho obtido na realizacao da dinamica de SwingUp

Como se pode observar, para o péndulo chegar na posi¢ao de 0 graus, foram ne-

cessarios aproximadamente 8 segundos.

9.2 Controle classico

Através da implementagao do controlador mencionado na Secao [8.2] ou seja, dois
controladores Proporcionais Derivativos que trabalham em paralelo, obteve-se a resposta
apresentada pela Figura [25] Pode-se observar um comportamento do péndulo pouco
oscilatorio em relagao a outros resultados que serao mostrados a seguir. Além disso nota-
se o sucesso do controlador em levar o péndulo até uma posicao de equilibrio estatico e o

brago até uma posicao proxima a zero graus.
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Figura 25: Desempenho obtido através do duplo controlador PD

Vale ressaltar que este resultado foi obtido com os controladores sendo configurados

com as seguintes constantes: Ppsnguio = 15, Dpendguio = 1.6, Praco = 1, DBraco = 12.

9.3 Inteligéncia Artificial

A implementacao de controladores baseados exclusivamente no algoritmo @)-Learning
nao trouxeram resultados satisfatorios, conforme discutido a seguir. Por isso, optou-se

pelo desenvolvimento do controlador hibrido, descrito na Secao [8.5]

Uma vez que este ainda possui parte de seu comportamento baseado em inteligéncia

artificial, é possivel efetuar a comparacao entre controladores proposta neste trabalho.

9.3.1 Q-Learning

A Figura 26| ilustra o desempenho de alguns modelos desenvolvidos de controladores
baseados exclusivamente no algoritmo @-Learning, de forma que cada um possui uma

funcao de recompensa e hiperparametros especificos.
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Figura 26: Desempenho de diversos modelos testados

Na Figura [20] o eixo Y expressa a quantidade de iteragoes realizadas até o episédio

se encerrar, ou seja, expressa um indice proporcional ao tempo de duragao do episédio.

Diante disso, nota-se que de forma geral existe um aumento no desempenho de cada

episédio ao longo dos treinamentos, porém nenhum modelo se destaca ou obtém resultados

comparaveis aos obtidos com o controlador PD.

Desempenho [max]

1200 A

1000 1

800 +

600 4

Recompensa

400 +

Desempenho

0 100 200
Episédios

Figura 27: Desempenho do modelo V445

Tomando como exemplo o modelo V445, destacado na Figura nota-se com mais

clareza que seu desempenho entre o episddio inicial e o centésimo episddio é pior do que

entre os episodios 100 e 200. O que mostra uma evolucao no treinamento. Porém logo

apds o episodio 200 nota-se uma queda abrupta no desempenho, fato que se repete apds

o episddio 400. Estes resultados evidenciam a dificuldade deste algoritmo em evoluir e

obter resultados comparaveis aos obtidos com o controlador PD.
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Como o desempenho deste modelo foi destacado com fim de exemplo, destaca-se

também sua funcao de recompensa explicitada em forma de tépicos a seguir:

e Se ap0s 25 iteracoes, o médulo da posicao do péndulo for menor do que 4 graus
e o modulo da velocidade do péndulo for menor do que 25 graus por segundo, a
recompensa atual serd: 0.7 — 0.125 % |[PP|. Onde PP é a posi¢ao do péndulo em

graus apos 25 iteracoes.

e Se apods 25 iteragoes, o modulo da posicao do péndulo for menor do que 4 graus
e o modulo da velocidade do péndulo for maior do que 25 graus por segundo, a
recompensa atual serd: 1.5 — 0.125 x |[PP| — 0.04 « |V P|. Onde V P é a velocidade

do péndulo em graus por segundo apds 25 iteragoes.

e Se ap0s 25 iteracoes, o mdédulo da posicao do péndulo for maior do que 4 graus,
mas inferior ao médulo da posigdo atual (péndulo se aproximando da posi¢ao de
equilibrio), e o médulo da velocidade for menor do que 25 graus por segundo, a

recompensa sera: 0.2.

e Se apos 25 iteracoes, o médulo da posicao do péndulo for maior do que 4 graus,
mas inferior ao médulo da posigdo atual (péndulo se aproximando da posi¢ao de
equilibrio), e o médulo da velocidade angular for maior do que 25 graus por segundo,

a recompensa sera: 1 — 0.04|V P|.

e Se o modulo da posicao do péndulo apds 25 iteragoes for superior ao moédulo da
posi¢ao atual (péndulo se afastando da posi¢ao de equilibrio), a recompensa sera:
1 —|PP|*0.25.

9.3.2 Q-Learning hibrido

A Figura [2§ ilustra o desempenho obtido através do algoritmo hibrido. Destaca-se
que ela possui as mesmas métricas utilizadas nas figuras apresentadas anteriormente, ou
seja, no eixo X tem-se os episdédios do treinamento, e no eixo Y o indice de desempenho

obtido em cada episodio.

Diante disso, é possivel notar que a velocidade de aprendizado em comparagao ao
modelo anterior foi maior, e a qualidade dos resultados melhor, uma vez que no episédio
133 ja se obteve um indice de desempenho na ordem de 6000, o que em termos praticos,

significa que o objetivo do modelo foi atingido.
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Figura 28: Desempenho obtido através do controlador hibrido

A seguir, com o intuito de explicitar a evolugao dos resultados no processo de apren-
dizagem, e apresentar tal processo com mais detalhes, destaca-se o comportamento do
péndulo durante quatro episddios deste processo: Na Figura [29, em um estagio inicial
da aprendizagem, ilustra-se o comportamento do péndulo no episédio 3. Na Figura |30,

ilustra-se o comportamento no episédio 90.
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Figura 29: Desempenho controlador hibrido no episédio 3
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Figura 30: Desempenho controlador hibrido no episédio 90
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Na Figura em um estagio final do treinamento, ilustra-se o desempenho no

episodio 126. Por fim, a Figura |32 apresenta o desempenho do péndulo no iltimo episédio

do treinamento, que durou aproximadamente 25 segundos e precisou ser interrompido ma-

nualmente.
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Figura 31: Desempenho controlador hibrido no episédio 126



61

Input

Pendulo

| — Posigao

Degrees
o

0 {+—— Posigéo

Degrees

0.0 4 | i | iR | LR |

—0.5 4

Time [s]

Figura 32: Desempenho controlador hibrido no episédio 133

Nota-se que durante o ultimo episddio, o péndulo se manteve na maior parte do tempo
na regiao entre 4° e —4°, e a velocidade angular entre 25°/s e —25°/s, devido a fungao
de recompensa utilizada, descrita na secao [9.3.1, Destaca-se também que as recompensas
dadas ao longo do ultimo episddio sao majoritariamente maiores do que zero, ao contrario

dos episodios 3, 90 e 126 destacados nas outras figuras.
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10 DISCUSSAO

Conforme apresentado no Capitulo [9] o algoritmo utilizado para a execugao da
dinamica de swing-up foi capaz de levar o péndulo da posicao de equilibrio estavel até a

posicao de equilibrio instavel.

Porém, uma vez que a plataforma desenvolvida nao possui a capacidade de rotacionar
o braco indefinidamente, buscou-se impor restricoes em relacao aos angulos maximos de
giro desta peca. Como consequéncia, o algoritmo passou a falhar em sua tarefa, indicando
que apesar de ser capaz de executar a rotina de swing-up, nao se comporta bem quando

certas restricoes sao impostas.

J& em relagao ao controlador baseado exclusivamente no algoritmo @-Learning, ape-
sar de demonstrar certa evolugao no processo de aprendizagem, nao foi capaz de equilibrar

o péndulo indefinidamente, como os controladores hibrido e duplo-PD.

Acredita-se que este insucesso se deu majoritariamente por conta da nao utilizacao
de uma funcao de recompensa adequada, e em menor escala, por nao se ter utilizado

hiperparametros adequados.

No processo de criacao e teste de diferentes modelos, notou-se uma melhora significa-
tiva no desempenho do algoritmo @Q)-Learning, quando se passou a avaliar a iteracao atual
com base em um estado futuro. Assim, superou-se a dificuldade imposta pela inércia da

planta.

Porém, acredita-se que s6 esta medida nao seja suficiente para avaliar de forma justa
e precisa o desempenho de determinada iteracao, sendo necessario ainda levar em conta

outros fatores que nao se conseguiu definir neste projeto.

Além disso, notou-se que os hiperparametros, apesar de nao terem sido muito explo-

rados neste trabalho, influenciam uma parcela consideravel do processo de aprendizagem,
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sendo responsaveis por acelera-lo ou torna-lo mais lento, por exemplo.

Em relagao a comparacao entre os controladores hibrido e duplo-PD, destaca-se ini-
cialmente o comportamento da posicao do péndulo. As Figuras e destacam 10

segundos dos testes realizados com tais controladores.
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Figura 33: Posigao do péndulo em rela¢ao ao tempo (duplo-PD)
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Figura 34: Posigao do péndulo em rela¢ao ao tempo (controlador hibrido)

Nota-se que quando o controlador duplo-PD é utilizado, a frequéncia de oscilacao do
péndulo é menor, inclusive nao oscilando em alguns momentos. Porém, também pode-se

observar que a amplitude das oscilagoes € menor quando o controlador hibrido é utilizado.

Ja em relacao a comparacao entre o gasto de energia pelos controladores, optou-se
por calcular um indice baseado na integracao do médulo da porcentagem de largura de

pulso imposta ao motor DC, uma vez que sua corrente nao foi medida.
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Figura 36: PWM e indice de energia (controlador hibrido)

As Figuras [35] e [36] apresentam em sua parte superior a porcentagem de largura de
pulso imposta ao motor, de forma que os valores negativos indicam apenas que a tensao
foi aplicada de maneira inversa. E em sua parte inferior, o indice calculado através da

integracao do médulo desta porcentagem.

Nota-se que apds 10 segundos, o indice de energia calculado para o controlador duplo-
PD é da ordem de 40.000 unidades, e para o controlador hibrido, de 65.000 unidades.

Conclui-se que o segundo gasta mais energia do que o primeiro.

Além das comparagoes quantitativas realizadas anteriormente, destaca-se uma com-
paracgao qualitativa em relacao a robustez dos dois métodos em relacao a pequenas mu-

dancas mecanicas da plataforma.
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Apés algum tempo de utilizacao do aparato, a flange que fixa o brago ao eixo do motor
passa a apresentar uma pequena folga, que cresce com a utilizacao do equipamento. Diante
deste fato, notou-se que, mesmo com uma folga relativamente grande, o método hibrido
continua se comportando bem, ainda sendo capaz de manter o péndulo equilibrado. O
mesmo nao ocorre com o controlador baseado no método clédssico, que nestas condigoes

passa a apresentar oscilagoes e até a incapacidade de equilibrar o péndulo.

Por fim, destaca-se o comportamento oscilatério apresentado pelo péndulo quando
controlado pelo método hibrido, e a provavel relacao deste comportamento com a funcao
de recompensa utilizada, descrita na se¢ao[0.3.1] Tal conclusido pode ser inferida conforme
apresentado na se¢ao 9, em que na maior parte do tempo o péndulo oscila na regiao em

que as recompensas sao positivas.
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11 CONCLUSAO

A fim de ser utilizado como plataforma didatica, este projeto proporciona uma série
de fatores que auxiliam na consolidacao do ensino de técnicas de controle. Um exemplo

pratico seria a criacao de uma experiéncia de laboratorio.

Com o fornecimento de projetos mecanico, elétrico e de computacao implementados e
unidos uma estrutura robusta, é possivel desenvolver e testar diversos métodos de controle,

conforme citado na segao [I.1], além dos executados neste trabalho.

Componente Custo
Motor 142,40 RS
Encoder 170,00 R$
Ponte H 37,30 R$
Acoplamento 30,90 R$
Arduino 30,90 R$
Jumpers 10,00 RS
Chapas e parafusos | 52,00 R$
Rolamentos 23,00 R$
Impressao 3D 35,00 R$
Fonte de tensao 48,90 R$

| Total | 581,3 RS |

Tabela 9: Custo dos componentes do projeto.

Em conjunto com os resultados apresentados na se¢ao[d] as Tabelas [0 e[I0]evidenciam

como os requisitos de projeto definidos na Tabela [2| foram satisfeitos.

Dimensao Valor
Largura 200 [mm)]
Comprimento | 200 [mm]|
Altura 300 [mm]

Tabela 10: Dimensoes do protdétipo.
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Uma vez que os requisitos propostos foram atingidos, torna-se viavel replicar a es-
trutura para atender a demanda de um laboratério de controle. Consequentemente, é

possivel propor o desenvolvimento de algoritmos e suas andlises de resultado.

Vale ressaltar que o processo de treinamento de algoritmos de inteligéncia artificial
requer um tempo consideravelmente maior em relacao aos de controle classico. Dessa

forma, é possivel seccionar o projeto em etapas distintas.

Assim, seria proposto a realizagao da experiéncia com uma fase de implementagao de
algoritmos e uma de realizacao dos treinamentos e testes. Ainda seria possivel o forneci-

mento de uma -Table ou uma rede neural pré-treinada, agilizando todo o procedimento.

Outro fator de sucesso no desenvolvimento da plataforma foi a implementacao de
comunicacao através do Arduino. Com o procedimento via serial, nao foi observada
qualquer instabilidade na leitura dos encoders e no envio dos esforcos de controle ao longo

de todo o projeto.

Quanto ao projeto computacional, a implementacao dos algoritmos demonstrou ser
bem eficaz, inclusive no contexto do @-Learning. Apesar do resultado deste algoritmo
individualmente nao haver sido satisfatério, foi possivel notar a eficiente introducao de
todos os algoritmos, com curto tempo de execucao e de obtencao de resultados, conciliando
com um uso adequado das bibliotecas inseridas. Além disso, o cédigo foi bem seccionado
em classes e métodos com tarefas bem definidas, tornando simples sua manutencao e

refatoracgao.

Enfatiza-se que a instabilidade do péndulo obtida por meio do @-Learning se deu por
conta dos hiperparametros e principalmente da funcao de recompensa. Responséavel pelo
comportamento esperado da inteligéncia artificial, a funcao de recompensa deve abranger
todos os objetivos a serem atingidos. Por exemplo, notou-se que a energia gasta com
o método de controle hibrido foi superior a do controle cldssico, mas tal resultado era
plausivel, uma vez que nao foi incluido na rotina uma légica que otimizasse o uso de

energia.

Um fator determinante para o sucesso obtido com o método hibrido apresentado
na secao foi o delay introduzido na avaliacao das agoes pela funcao de recompensa.
Apenas apds sua implementacao foi possivel equilibrar o péndulo com a introducao da in-

teligéncia artificial, evidenciando como a inércia do sistema impediu o éxito do algoritmo.
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Por fim, observou-se que o método hibrido demonstrou ser consideravelmente mais
robusto do que o PD, uma vez que é menos suscetivel a pequenas mudancas mecanicas.
Assim, nao se observou necessario reavaliar os ganhos de controle e corrigir as imperfeicoes

mecanicas com a frequéncia realizada com o controle PD.

11.1 Trabalhos futuros

Uma vez que foi necessario dar prioridade para alguns topicos em detrimento de
outros, e que devido ao cronograma do trabalho nao foi possivel refazer determinadas
estruturas ou testar diferentes algoritmos e varidveis, destaca-se aqui algumas sugestoes

de trabalhos futuros.

O algoritmo utilizado para a dinamica de SwingUp, apesar de ter sido capaz de
realizar sua tarefa, nao se comportou bem quando restri¢coes em relacao a angulos maximos
de rotacao do brago foram impostos. Por isso, sugere-se o desenvolvimento de algoritmos
que suportem este tipo de restricao, ou até o treinamento de modelos de inteligéncia
artificial para realizar tal tarefa. Outra solucao ainda seria projetar a plataforma de

maneira que permitisse a rotacao indefinida do braco.

Em relagao a mecanica do projeto, destaca-se que a peca desenvolvida para a conexao
entre o brago e o eixo do motor passa a apresentar folgas apés um certo periodo de
utilizacao da plataforma. Assim, tornou-se necessario a desmontagem da estrutura do
braco e o reaperto dos parafusos ocasionalmente. Desta forma sugere-se a utilizacao de

uma flange comercial ou a fabricacao de tal pega em metal.

Em relacao ao motor utilizado, destaca-se a presenca de folgas em sua reducao, o que
dificulta a tarefa de equilibrar o péndulo. Por isso, sugere-se a utilizacao de um motor
sem reducao, ou uma reducao com menos folga, apesar de ambas opgoes representarem

um aumento no custo do projeto.

Ainda em relagao ao motor, sugere-se que sua corrente seja medida para que todos
os estados da planta sejam obtidos, sendo assim possivel implementar o controlador LQR.

Outra solucao seria a substituicao do motor DC por um motor de passo.

Em relacao ao algoritmo @Q-Learning, sugere-se uma maior exploracao dos hiper-

parametros e de um entendimento mais aprofundado da influéncia de cada um no processo
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de aprendizagem. Por fim, poderia ser realizado um estudo da possibilidade de atualizar

a @-Table de forma off-line, ou seja, apos o fim de cada episddio.
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