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“Inteligência é a capacidade de se adap-
tar à mudança.”

-- Stephen Hawking



RESUMO

O pêndulo invertido, um dos problemas mais difundidos na engenharia, é frequen-
temente selecionado para atuar como plataforma didática de ensino na área de controle,
principalmente em função de seu caráter não linear e de equiĺıbrio instável. Além disso, a
construção de um protótipo não demanda custos elevados e nem requer alta complexidade.
Nesse contexto, o projeto consiste em desenvolver uma plataforma didática de testes a
fim de explorar técnicas de aprendizagem por reforço e de optimização para problemas
de controle não lineares de equiĺıbrio instável, e compará-las com técnicas clássicas. Para
isso, foi modelado e constrúıdo um pêndulo invertido rotacional pasśıvel de ser reprodu-
zido em laboratório.

Palavras-Chave – Pêndulo invertido rotacional, controle clássico, aprendizagem por re-
forço, Q-Learning, swing up.



ABSTRACT

The inverted pendulum, one of the most widespread problems in engineering, is often
selected to serve as a didactic platform in the control field, mainly due to its non-linear
character and unstable balance. Furthermore, the construction of a prototype does not
demand high costs nor require high complexity. In this context, the project consists of
developing a didactic platform aimed at exploring reinforcement learning and optimization
for non-linear control problems of unstable equilibrium, and comparing them with classical
techniques. For this purpose, it was built a rotary inverted pendulum structure capable
of being reproduced in a laboratory.

Keywords – Rotary inverted pendulum, classical control, reinforcement learning, Q-
Learning, swing up.
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1 INTRODUÇÃO

1.1 Contextualização

O pêndulo invertido consiste em um dos problemas fundamentais da engenharia [8].

Amplamente estudado e utilizado como exemplo no contexto didático, sua importância

advém primordialmente da variedade de aplicações teóricas e práticas nas quais o modelo

pode ser introduzido. Enquanto seu valor teórico surge do caráter não linear e instável do

sistema, sua relevância prática deriva de uma série de aplicações reais. Os autores ainda

ressaltam a vantagem do custo reduzido e simplicidade de construção do protótipo em

um laboratório.

Além de traduzir de forma simplificada uma dinâmica complexa, o processo de mo-

delagem do pêndulo invertido abrange uma ampla gama de tópicos abordados na teoria

de controle clássico [9], auxiliando de maneira eficiente na elaboração de uma plataforma

didática.

Um exemplo de aplicação do pêndulo invertido no contexto didático pode observado

na Figura 1, em que é utilizada a plataforma FRDM-K64F da NXP para implementação

de um controle digital LQR em um laboratório de controle aplicado [1]. Além disso, outra

abordagem interessante consiste no controle por meio de inteligência artificial, devido à

capacidade do protótipo de proporcionar e replicar testes de maneira automática, requisito

essencial na aprendizagem por reforço.
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Figura 1: Pêndulo invertido rotacional ou Pêndulo de Furuta, extráıdo de [1].

Nesse contexto, torna-se posśıvel realizar análises e comparações tanto da otimização

da estrutura mecânica quanto do desempenho do algoritmo de controle. Em função disso,

o modelo é frequentemente selecionado para testar novos métodos de controle, tais como

controle ótimo, controle fuzzy, controle através de redes neurais, controle preditivo e

métodos h́ıbridos como combinações dos anteriores [8].

Quanto às diversas aplicações do pêndulo invertido no mundo real, nota-se exemplos

nos âmbitos econômico e social, nos quais os mais recorrentes se apresentam em áreas

como transporte e mobilidade, envolvendo dispositivos como o Segway [8–10] e foguetes

(lançamento e pouso) [11], sistemas de aux́ılio à locomoção humana (suporte para andar)

[8, 10], transporte de objetos através de drones [4] e até construções de larga escala [12].

As Figuras 2a, 2b e 3 ilustram exemplos de aplicações.
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(a) Modelo de pêndulo invertido para
locomoção humana, extráıdo de [13].

(b) Inverted Pendulum Moving Robot,
extráıdo de [14].

Figura 2: Exemplos de aplicações com o estudo da dinâmica do pêndulo invertido

Figura 3: Lançamento de foguete, extráıdo de [2].

Por fim, evidenciada a relevância do modelo no contexto da engenharia [8], o pêndulo

invertido rotacional foi selecionado como objeto de estudo deste projeto, proporcionando

um ambiente simultaneamente simples e completo para se realizar as análises descritas a

seguir.
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1.2 Estado da Arte

1.2.1 Construção

Conforme enfatizado, o pêndulo invertido e o pêndulo invertido rotacional são pro-

blemas clássicos de controle e largamente estudados. Por conta disso, existem no mercado

plataformas de estudo que incluem a mecânica, o hardware e o software necessários para

estudar a dinâmica e o controle de tais problemas. Para focar os esforços no estudo es-

pecificamente do controle da estrutura e não na sua prototipagem e fabricação é comum

encontrar publicações que utilizam tais plataformas.

Os trabalhos [15, 16] utilizam a plataforma ilustrada na Figura 4a, que possui como

estrutura mecânica basicamente dois perfis de metal. A atuação do pêndulo é feita por

meio de um motor DC escovado e o sensoriamento do ângulo do pêndulo, e do eixo do

motor são feitos através de encoders.

Já a QUBE-Servo RIP platform é uma plataforma comercial mais recente e utilizada

em [17,18]. O sistema possui caracteŕısticas similares à citada anteriormente, como utilizar

um motor DC escovado como atuador, e encoders para obter as posições do pêndulo e

eixo do motor.

(a) Plataforma utilizada por [15, 16],
extráıdo de [19].

(b) Plataforma utilizada por [17, 18],
extráıdo de [17].

Figura 4: Exemplos de estruturas comerciais para o estudo da dinâmica do pêndulo
invertido rotacional

1.2.2 Modelagem

A dinâmica do pêndulo invertido rotacional é altamente não-linear, porém, uma vez

que o objetivo é estabilizar o pêndulo na posição de equiĺıbrio instável, é comum utilizar
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um modelo linearizado. Em contra partida, quando o objetivo é levar o pêndulo da

posição de equiĺıbrio estável para a de equiĺıbrio instável, já não é posśıvel trabalhar com

um modelo linearizado.

Os trabalhos [3,15–17] tem como objetivo controlar o pêndulo na posição de equiĺıbrio

instável, portanto, utilizam a estratégia de linearização e trabalham com o espaço de

estados. Para encontrar as equações de movimento linearizadas, os trabalhos [3, 15, 17]

utilizam as Equações de Euler-Lagrange. Já em [16] os autores optam por encontrar as

equações não lineares que descrevem o movimento da estrutura e em seguida linearizá-las.

Os modelos dos trabalhos citados anteriormente incluem a dinâmica da estrutura do

pêndulo e do motor DC, possuindo como variável de controle o valor de tensão a qual

o motor DC é submetido, e como estados, os valores de posição e velocidade angular

medidos pelos encoders.

1.2.3 Técnicas clássicas de controle

Como citado anteriormente, o controle do pêndulo invertido pode ter como objetivo

manter o pêndulo próximo da posição de equiĺıbrio instável, ou levá-lo da posição de

equiĺıbrio estável para a de equiĺıbrio instável. Para cada situação existe um conjunto de

técnicas que podem ser utilizadas.

Para manter o pêndulo na posição de equiĺıbrio instável é comum utilizar algorit-

mos como: controle Proporcional-Integral-Derivativo (PID), Regulador Quadrático Linear

(RQL) e Alocação de Polos (AP).

Uma das técnicas utilizadas em [16] é o controle PID, com uma configuração de dois

controladores em série. Esta configuração é necessária pois deseja-se controlar não apenas

a posição do pêndulo, mas também a posição ou a velocidade do braço. Em [16], o segundo

controlador foi utilizado para a posição do braço.

Já o RQL, utilizado em [3,15–17], se caracteriza por encontrar uma regra de controle

ótima para transferir o sistema de um estado inicial até um estado final minimizando

determinados parâmetros. Os parâmetros geralmente utilizados são: o erro entre estado

atual e estado desejado; e a energia gasta no processo.
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Uma vantagem do RQL é o fato de se poder controlar mais de um estado ao mesmo

tempo, que como já mencionado, é necessário para o controle do pêndulo invertido rota-

cional. Porém, uma desvantagem deste método é a necessidade de se encontrar matrizes

que ponderam a prioridade de controle entre estados, e a forma mais comum de encontrar

esta matriz é através de tentativa e erro, como é feito em [3,15–17].

Na Figura 5 pode-se observar a resposta obtida pelo pêndulo invertido rotacional

de [3] utilizando o controlador RQL desenvolvido, no qual houve uma perturbação em

formato de degrau entre os instantes 1 e 3 segundos.

Figura 5: Resposta da planta desenvolvida por [3] utilizando um controlador RQL, ex-
tráıdo de [4].

Para realizar o controle com o objetivo de levar o pêndulo da posição de equiĺıbrio

instável para a de equiĺıbrio estável as técnicas citadas anteriormente não são eficazes.

Uma abordagem comum é basear o controle na energia total do pêndulo, ou seja, na soma

das energias cinética e potencial. Toma-se como referência a energia total do pêndulo

na posição vertical superior e o controle é feito com base na energia total instantânea do

sistema em relação à referência, tentando sempre diminuir tal diferença.

[5] desenvolve um modelo de pêndulo invertido a fim de testar uma derivação da

abordagem de controle citada anteriormente. Conforme os resultados apresentados, reduz-

se o tempo necessário para o pêndulo ir da posição vertical inferior para a superior ao

considerar posśıveis atritos e resistências do sistema. Dessa forma, é introduzido um ganho

no esforço de controle quando o pêndulo se encontra distante da posição de equiĺıbrio

superior.
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Observa-se na Figura 6 os resultados obtidos da simulação realizada por [5], cuja

posição inicial do pêndulo foi a vertical inferior e a posição final, a vertical superior. LP

é a curva que representa a utilização do algoritmo mais comum, e E, a utilização do

algoritmo proposto.

Figura 6: Simulação feita por [5] comparando dois algoritmos de controle, extráıda de [5].

1.2.4 Técnicas de aprendizado por reforço

Apesar de não constituir uma tecnologia recente, a inteligência artificial tem ganhado

mais relevância e ambiente para aplicação com o aumento da capacidade de processamento

computacional, requisito importante no processo de aprendizagem de máquinas. Assim,

tem apresentado uma crescente influência em manufatura e processos industriais, sendo

uma de suas aplicações o projeto de controladores através de aprendizagem por reforço

[20].

Conforme ressaltado anteriormente, uma das caracteŕısticas que amplia a comple-

xidade no desenvolvimento e implementação dos controladores para o pêndulo invertido

rotacional consiste na determinação dos parâmetros de controle a serem utilizados, prin-

cipalmente no RQL, no qual as possibilidades de combinações são elevadas.

Por meio da aprendizagem por reforço, tal processo de determinação dos parâmetros

é eliminado, o que implica redução do esforço humano comumente envolvido no projeto

[20], principalmente ao considerar um sistema de natureza instável e não linear. Dessa

maneira, em [20] é desenvolvido um controlador para um pêndulo invertido rotacional

através da combinação de uma rede neural artificial com aprendizagem por reforço, além

de estabelecer uma comparação com um controlador convencional quanto ao algoritmo de

swing-up e de estabilização.
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A aprendizagem profunda, por sua vez, atualmente permite escalar a aprendizagem

por reforço para problemas previamente intratáveis [21]. Em [6] se propõe a combinação

de ambas com o objetivo de melhorar o desempenho no controle, ou seja, utiliza o pêndulo

invertido rotacional como um ambiente para implementar o processo de aprendizagem por

reforço profunda. O algoritmo de controle desenvolvido na aplicação é o Deep Q-Network,

que utiliza uma rede neural convolucional para inferir as ações do agente da aprendizagem

e implementa o processo de aprendizagem por reforço do controle do pêndulo.

Após a execução do processo de aprendizagem, em [6] se propõe a utilização de

um controlador PID a fim de implementar aprendizagem por imitação e assim agilizar o

procedimento, comparando-se com o algoritmo sem imitação. Ambos os procedimentos

obtiveram sucesso em controlar o pêndulo na posição instável, sendo que os resultados

obtidos em ambas as tarefas podem ser observados nas Figuras 7 e 8, sendo que a segunda

ilustra o comportamento do sistema controlado pelo algoritmo com imitação. A partir

das figuras, se observa que o procedimento de aprendizagem sem imitação é finalizado

com 599 episódios, enquanto o procedimento com imitação termina após 340 episódios.

Assim, o erro é reduzido mais rapidamente e como conclusão se infere que a estratégia da

aprendizagem por imitação reduz o tempo de aprendizagem de forma eficiente [6].

Figura 7: Aprendizagem da Deep Q-Network sem imitação, extráıdo de [6].
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Figura 8: Aprendizagem da Deep Q-Network com imitação, extráıdo de [6].
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2 OBJETIVOS

O objetivo do projeto é construir uma plataforma didática de testes que possua a

estrutura de pêndulo invertido rotacional e utilizá-la para proporcionar e consolidar o

ensino de técnicas de controle.

Inicialmente, com o objetivo de proporcionar o aprendizado em controle clássico,

busca-se elaborar um algoritmo para manter o pêndulo na posição de equiĺıbrio instável.

Pretendendo-se implementar inicialmente o controle proporcional integrativo derivativo

(PID).

Na sequência, o projeto também deve abranger o estudo da dinâmica de levar o

pêndulo da posição de equiĺıbrio estável para a de equiĺıbrio instável. Para isso pretende-se

introduzir algoritmos comumente empregados no contexto, que são baseados na avaliação

da energia do sistema. São conhecidos como algoritmos de ’Swing-up’.

Posteriormente, pretende-se propor o mesmo controle através da abordagem da in-

teligência artificial, com o desenvolvimento de algoritmos de aprendizagem por reforço.

Neste caso, os algoritmos podem ser aplicados tanto para manter o pêndulo equilibrado

na posição instável, quanto para levá-lo até esta posição.

Por fim, pretende-se analisar e comparar os resultados de todas as abordagens através

de aspectos como: energia total gasta e robustez. Assim, o projeto deve elucidar con-

siderações quanto às vantagens e desvantagens do uso de técnicas de aprendizado por

reforço para este problema em relação às técnicas de controle clássico.
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3 FUNDAMENTAÇÃO TEÓRICA

3.1 Modelo do pêndulo invertido

As equações (3.1) e (3.2) que descrevem o comportamento não linear de todo o

sistema, foram obtidas em [8] utilizando equações cinemáticas, dinâmicas, o motor DC

modelado na equação (3.3) e desprezando as forças de atrito. A nomenclatura utilizada

está ilustrada na Figura 9 e descrita na Tabela 1.

Figura 9: Parâmetros utilizados no modelo da estrutura.

α̈ =
1

ac− b2 cos2 α
(ad sinα− b2 sinα cosαα̇2 − be cosαθ̇ + bf cosαVm) (3.1)

θ̈ =
1

ac− b2 cos2 α
(bc sinαα̇ + bd sinα cosα− ceθ̇ + cfVm) (3.2)

Em que: a = Jeq +Mpr
2, b = MpLpr, c = Jp +MpL

2
p, d = MpgLp, e = KtKm

Rm
, f = Kt

Rm
.

τoutput =
Kt(Vm −Kmθ̇)

Rm

(3.3)
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Variável Descrição
g Aceleração da gravidade
Jeq Momento de inércia da montagem braço/pêndulo em relação ao eixo do motor
Jp Momento de inércia do pêndulo em relação ao seu eixo de rotação
Kt Constante corrente-torque do motor
Km Constante de força contra eletromotriz do motor
Lp Distância entre centro de massa do pêndulo e seu eixo de rotação
Mp Massa do pêndulo
r Comprimento do braço da estrutura
Rm Resistência da armadura do motor
Vm Tensão a qual o motor é submetido

α Ângulo que varia em torno do eixo z,
definido entre o pêndulo e a posição de equiĺıbrio instável

θ Ângulo do braço da estrutura que varia em torno do eixo y
τoutput Torque fornecido pelo motor

Tabela 1: Variáveis utilizadas no modelo da estrutura.

3.2 Método de controle: LQR

Dado o sistema dinâmico linear representado por ẋ = Ax+Bu, em que x é o vetor de

estados, u a entrada, e as matrizes A e B representam o modelo dinâmico em particular,

o Regulador Quadrático Linear, do inglês Linear Quadratic Regulator tem como objetivo

encontrar o vetor u que minimize a função de custo quadrático dado pela expressão (3.4).

JQRL =

∫ ∞
0

(xTQx+ uTRu)dt (3.4)

Portanto, através da matriz Q, se impõe quais estados terão prioridade em serem

levados para a origem, ou anulados, de forma que quanto maior o valor do elemento da

diagonal de Q, maior será a prioridade para o estado correspondente. De forma análoga,

quanto maior o valor do elemento da diagonal de R, maior será a minimização do esforço

de controle correspondente.

Considerando a formulação de Euler Lagrange para o seguinte problema de mini-

mização:

min
u

∫ T

0

L(x, u)dt+ Φ(x(T )), sujeito a ẋ = f(x, u) (3.5)

A solução u deve satisfazer as seguintes restrições:
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
Hu = 0

λ̇T = −Hx

λ(T ) = φx(x(T ))

(3.6)

em que H = L+ λTf .

Para utilizar tais fórmulas na minimização de (3.4), define-seH = 1
2

(
xTQx+ uTRu

)
+

λT (Ax+Bu). Assim, a primeira restrição indicará que:

u = −R−1BTλ (3.7)

Já a segunda restrição e a definição de λ(t) da seguinte forma: λ(t) = P (t)x(t),

indicará:

Ṗ + PA+ ATP − PBR−1BTP +Q = 0 (3.8)

Considerando T → ∞ e Ṗ = 0, obtém-se a Equação de Riccati, uma equação não

linear de primeira ordem:

PA+ ATP − PBR−1BTP +Q = 0 (3.9)

Assim, encontrando a solução de (3.9) de forma regressiva no tempo, é posśıvel de-

terminar a lei de controle, que será dada por:

u = −R−1BTPx = KLQR x (3.10)

Nota-se que apesar de ser necessário utilizar as matrizes A e B para encontrar a lei de

controle, é posśıvel utilizar o Regulador Quadrático Linear em sistemas não linearizados,

uma vez que para encontrar u, basta conhecer x.

3.3 Método de controle: Swing-up

O problema do pêndulo invertido pode ser subdividido em dois: controlá-lo na posição

de equiĺıbrio instável, e levá-lo da posição vertical inferior para a posição vertical superior,
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movimento chamado de swing up. Para executar a segunda tarefa, diversas soluções já

foram propostas, porém uma das mais utilizadas é o controle não linear baseado em

energia.

Tomando como base os parâmetros mostrados na Figura 9 e na Tabela 1, a equação

de movimento do pêndulo pode ser descrita da seguinte forma:

Jpα̈−Mp g Lp sin(θ) +Mpτoutput Lp r cos(α) = 0 (3.11)

Já a equação de Energia (cinética e potencial gravitacional), pode ser escrita da

seguinte forma:

E =
1

2
Jp α̇

2 +Mp g Lp(cos(α)− 1) (3.12)

Derivando a equação (3.12) e substituindo α̈ da equação (3.11), obtém-se:

dE

dt
= Jp α̇ α̈−Mp g Lp α̇ sin(α) = −Mp τoutput Lp r α̇ cos(α) (3.13)

Como citado em [5], existem formas de se encontrar leis de controle baseadas na

função de Lyapunov, porém pode-se apenas garantir que dE
dt

seja positivo. Ou seja:

u = −ksign(α̇ cosα) (3.14)

Onde k é um parâmetro ajustável e:

sign(x) =

1, se x >= 0

−1, se x < 0
(3.15)

Como também citado por [5], por conta de posśıveis resistências e atritos do sistema,

pode ser que mais energia deva ser transferida ao pêndulo para se chegar na posição de

equiĺıbrio instável. Para isso, a seguinte otimização é sugerida:

u = −k

[
1 +

(
α

π

)2
]
sign(α̇ cos(α)) (3.16)
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3.4 Aprendizado por reforço

3.4.1 Introdução

Aprendizado por reforço pode ser interpretado como um treinamento de modelos de

Aprendizado de Máquina para a execução de uma determinada tarefa. A principal carac-

teŕıstica de tal treinamento é que não é necessário classificar a ação tomada pelo modelo,

ou agente, como correta ou incorreta, mas apenas retornar ao modelo uma recompensa

positiva ou negativa, de acordo com o objetivo final da tarefa. Para isso, estrutura-se o

problema como a seguir.

O agente observa os estados St e a recompensa recebida Rt de um determinado

ambiente e através da sua poĺıtica, baseada em um grupo de parâmetros θ, executa uma

ação At. Tal ação alterará os estados do ambiente para St+1, que de acordo com o objetivo

do agente gerará a recompensa Rt+1. Tal estrutura e parâmetros podem ser observadas

na Figura 10.

Figura 10: Modelo de aprendizado de máquina e respectivos parâmetros. Adaptado de [7]

Esta sequência de acontecimentos é chamada de ”episódio” e após um determinado

número de episódios, as recompensas são acumuladas e a poĺıtica de ações do agente é

avaliada. Caso o objetivo do agente não seja atingido, os parâmetros θ da poĺıtica de

ações são alterados e todo o processo se repete de forma iterativa.

3.4.2 Algoritmo: Q-Learning

O Q-Learning constitui um dos algoritmos mais comuns para a implementação de

aprendizado por reforço, cujo objetivo se baseia em determinar qual a melhor ação a ser

tomada, dado um estado espećıfico. Dessa forma, ao interagir com o ambiente, o agente

busca aprender uma poĺıtica que maximize a recompensa total esperada.
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Inicialmente, uma vez definidos o ambiente, o agente, as posśıveis ações a serem

tomadas e a função de recompensa, é necessário construir uma tabela de valores, conhecida

como Q-Table. Tal tabela relaciona os estados com as ações, atribuindo um valor referente

às recompensas adquiridas para as ações em determinado estado. Como inicialmente o

ambiente é desconhecido, pode-se inicializar a tabela com valores arbitrários.

Na sequência, o algoritmo pressupõe que o agente tome uma ação, que inicialmente é

aleatória, dado o desconhecimento. Tal ação implicará uma recompensa conforme definida

no ambiente, que permitirá a consequente atualização da tabela, caracterizando a relação

da ação com aquele estado. A atualização, por sua vez, é implementada com base na

equação de Bellman, que relaciona o valor de um estado com a máxima recompensa

esperada e o valor do estado anterior, aliado a um fator de desconto, que objetiva reduzir

seu valor conforme o número de ações tomadas até o instante atual [22].

A equação de Bellman na forma determińıstica está apresentada na equação 3.17,

em que λ constitui o fator de desconto e s′ o próximo estado.

V (s) = maxa(R(s, a) + λV (s′)) (3.17)

em que R(S, a) é a recompensa obtida por estar no estado s e tomar a ação a.

O valor de um estado consiste no maior entre todos os valores Q posśıveis obtidos

na tabela. Assim, torna-se posśıvel reescrever a equação analisando o valor Q de uma

posição na tabela em função dos mesmos parâmetros, mas considerando o par ação-estado,

conforme a equação 3.18.

Q(s, a) = R(s, a) + λmaxa′Q(s′, a′) (3.18)

Por fim, considerando a diferença temporal entre o novo valor obtido e o referente ao

instante anterior, inclui-se uma taxa de aprendizado α que multiplica a diferença e soma

ao valor prévio, obtendo-se a equação 3.19, que expõe a atualização de fato implementada

na tabela.

Qt(s, a) = Qt−1(s, a) + α(R(s, a) + λmaxa′Q(s′, a′)−Qt−1(s, a)) (3.19)

Uma vez atualizado o valor, o processo se repete de forma iterativa ao longo do pro-

cesso de aprendizado, atualizando os valores da tabela até que determinado objetivo seja
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atingido ou a aprendizagem seja interrompida. Conforme descrito, inicialmente as ações

realizadas são aleatórias, entretanto, conforme se avança no processo de aprendizagem, as

ações passam a ser tomadas considerando os valores já conhecidos da tabela.

Ao fim do processo, a partir da Q-Table obtida com as atualizações, é posśıvel sele-

cionar a melhor ação a ser tomada pelo agente em determinado estado no ambiente.

3.4.3 Aprimoramentos do modelo

3.4.3.1 Deep Reinforcement Learning (Deep Q-Learning)

O algoritmo Q-Learning atua de forma satisfatória em contextos que abordam am-

bientes simples, com um número reduzido de estados e ações posśıveis. Uma vez que o

ambiente se torna mais complexo (com o crescimento da quantidade de ações e estados),

o número de combinações se eleva significativamente, tornando inviável a aplicação do

algoritmo. Nesse contexto, se introduz o Deep Q-Learning, um algoritmo desenvolvido a

fim de fornecer um aproximador para os valores Q, por meio da implementação de redes

neurais [22].

Dessa forma, o Deep Q-Learning pressupõe a substituição da Q-Table por uma rede

neural, cujas entradas são os estados e como sáıda obtém-se os valores Q (referentes à

tabela) relacionados às ações. A partir dos valores extráıdos como sáıdas, é posśıvel

realizar uma comparação com os valores previamente estimados e atualizar os pesos ao

longo das camadas da rede por meio de um algoritmo como retropropagação ou gradiente

descendente.

Com o objetivo de construir uma rede neural, torna-se necessário o estabelecimento

de uma função de custo, novamente baseada na equação de Bellman, mas neste caso

buscando minimizar o quadrado da diferença entre os lados da equação 3.18. A função de

custo resultante é representada pela equação 3.20, em que a aproximação de Q é indicada

como Q(s, a; θ), no qual θ representa os pesos treináveis da rede.

custo = [Q(s, a; θ)− (R(s, a) + λmaxa′Q(s′, a′; θ))]2 (3.20)

Uma vez estabelecida a função de custo, a fim de realizar o treinamento é necessário

considerar ainda o conceito de experience replay, que consiste na compreensão equivocada

do ambiente pelo agente em função de uma posśıvel sequência de estados interdependentes
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e similares. A solução envolve uma não atualização imediata dos pesos da rede a cada

episódio. Ao longo do treinamento os episódios são salvos e após determinado limite, é

efetuada uma amostragem aleatória pelo agente, que seleciona apenas esses episódios para

aprendizagem. Tal procedimento evita o posśıvel enviesamento proveniente da sequência

de estados, permitindo um treinamento eficiente da rede.

Por fim, enquanto o processo de seleção da ação a ser tomada no Q-Learning envolve

apenas a escolha do maior valor Q, no Deep Q-Learning a seleção requer um tratamento

dos valores Q por uma função, como a softmax ou a ε-greedy [22]. Tal tratamento ob-

jetiva alterar a forma de seleção das ações ao curso do treinamento, passando de ações

aleatórias (enquanto o conhecimento do ambiente é limitado) para ações considerando o

conhecimento já adquirido sobre o ambiente e os pesos atualizados da rede neural.

3.4.3.2 Imitation Learning

Os algoritmos de aprendizagem por reforço previamente descritos possuem bom de-

sempenho em situações que envolvem uma função de recompensa bem definida com ele-

vada frequência de ocorrência, através da qual é posśıvel se aproximar à melhor poĺıtica.

Em alguns casos, no entanto, as recompensas podem ser bem esparsas, o que dificulta o

processo de aprendizagem. Nesses contextos é posśıvel desenvolver manualmente novas

funções de recompensas cujas frequências de ocorrência são superiores.

O desenvolvimento manual das funções também é relevante em cenários nos quais não

há uma função direta de recompensa, tais como aprendizagem de véıculos autônomos [23].

Todavia, o processo de determinação da nova função de forma a satisfazer o comporta-

mento desejado pode ser complexo. Nesse contexto, pode-se introduzir como solução um

algoritmo de Imitation Learning. Ao invés de promover o aprendizado por meio de recom-

pensas esparsas ou especificando manualmente uma função de recompensa, o algoritmo

propõe o aprendizado com base em um conjunto de demonstrações fornecidas por um

expert (normalmente humano), buscando aprender a melhor poĺıtica seguindo suas ações.

Nesse sentido, a aprendizagem pode ocorrer de forma mais eficiente.

Um algoritmo de Imitation Learning pode ser implementado através de diferentes

métodos, tais como Behavioural Cloning, Direct Policy Learning e Inverse Reinforcement

Learning, entre outros.

A primeira abordagem constitui a forma mais simples de Imitation Learning, além de
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ser eficiente. O processo de aprendizagem da poĺıtica do expert pelo algoritmo Behavioural

Cloning se baseia em aprendizagem supervisionada, com a divisão das demonstrações

em pares estado-ação e a consequente definição de uma função de custo, que se objetiva

minimizar. No entanto, uma de suas suposições principais consiste na distribuição idêntica

e independente dos pares estado-ação, o que pode não se aplicar em diversos modelos.

Além disso, a suposição implica que erros em diferentes estados se somam, possivelmente

levando o agente a estados nos quais o expert nunca esteve, induzindo um comportamento

indefinido.

Já o algoritmo Direct Policy Learning não apresenta a mesma limitação, ao pressupor

um acesso em tempo real ao expert, de forma que avalie as ações tomadas pelo agente

durante a aprendizagem. Dessa forma torna-se posśıvel corrigir os erros antes que estados

desconhecidos sejam atingidos. Todavia, tal procedimento pode não ser plauśıvel, uma

vez que a interatividade com o expert em diversas situações não é dispońıvel.

O algoritmo Inverse Reinforcement Learning, por sua vez, propõe uma aprendizagem

da função de recompensa do ambiente com base nas demonstrações e com isso determinar

a poĺıtica ótima. Dessa forma, ao longo do processo de aprendizado busca-se estimar

os parâmetros referentes à função que causariam o comportamento do agente. Uma

vez estimados, a partir da função torna-se posśıvel estabelecer uma poĺıtica de forma

a maximizá-la. Na sequência, deve-se compará-la com a poĺıtica do expert e atualizar

a função de recompensa. Este processo pode ser repetido de forma iterativa até que

a poĺıtica seja satisfatória, com ações do agente induzindo respostas semelhantes as do

expert.
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4 METODOLOGIA

O procedimento a ser adotado no desenvolvimento do projeto se baseia na ordem de

requisitos definidos na seção 2. A construção do pêndulo invertido rotacional demanda

inicialmente o projeto simultâneo da mecânica e da eletrônica inseridas, exigindo a de-

finição e caracterização dos componentes envolvidos. Tal determinação, por sua vez, exige

estabelecimento dos requisitos a serem satisfeitos, o que implica a estimação dos esforços

no protótipo. Dessa forma, com o intuito de promover a estimação, a etapa inicial consiste

na modelagem do sistema e definição de seus requisitos e parâmetros relevantes.

Uma vez bem delimitados os requisitos, é posśıvel realizar simulações da dinâmica do

sistema com inserção dos esforços de controle, elucidando as especificações necessárias aos

componentes mecânicos e eletrônicos para que satisfaçam os requisitos. Ao fim dessa etapa

deve ser plauśıvel a caracterização da lista de componentes assim como o desenvolvimento

e as implementações dos projetos mecânico e eletrônico.

Na sequência, com o protótipo f́ısico já finalizado, torna-se viável a execução dos

projetos computacional e de controle, envolvendo a definição do microcontrolador a ser

utilizado bem como o desenvolvimento dos algoritmos de controle a serem implementados.

Tal processo permite enfim a realização dos testes, além das análises de resultados obtidos

com suas respectivas comparações propostas, como tempo de estabilização, energia total

gasta e robustez. Com isso obtém-se embasamento para as especificações da plataforma

didática como objetivo do projeto.

4.1 Parâmetros e requisitos

Conforme ressaltado anteriormente, a definição dos parâmetros e requisitos envol-

vidos consiste um uma etapa inicial e essencial ao projeto. Suas especificações podem

ser estabelecidas com base em projetos prévios que envolvem a construção de pêndulos
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Parâmetro Valor Justificativa

Tempo de
execução (Swing
Up)

< 10 [s] Tempo suficiente para execução
do algoritmo conforme simulações
e projetos prévios [24].

Esforço de con-
trole

< 1 [Nm] Reduz a necessidade de motor
com custo elevado.

Preço < 1000 [R$] Orçamento suficiente para a cons-
trução de diversos protótipos, tor-
nando plauśıvel a replicação em
laboratório.

Dimensões <400x200x200 [mm] Deve ser adequada para mani-
pulação em uma bancada de la-
boratório.

Tabela 2: Tabela de requisitos do projeto.

invertidos rotacionais [24] e conforme requisitos essenciais no controle do pêndulo, como

em sua capacidade de estabilização vertical.

Dessa forma, os parâmetros estudados e requisitos puderam ser classificados conforme

a Tabela 2.

Já a validação dos valores das três linhas iniciais apresentadas na Tabela 2 podem

ser verificadas por meio das simulações implementadas e detalhadas na seção 7.1.
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5 PROJETO MECÂNICO

Uma vez encontradas as equações dinâmicas do sistema, torna-se necessário obter os

parâmetros Mp, Jp, Lp, r e Jeq. Para isso, uma primeira proposta da estrutura do sistema

foi modelada no software de CAD 3D SOLIDWORKS, no qual os materiais, dimensões e

posicionamento das peças da estrutura foram especificados, sendo assim posśıvel obter os

parâmetros apresentados na Tabela 3.

Variável Valor Descrição
r 0.16 [m] Comprimento do braço da estrutura
Lp 0.075 [m] Distância entre centro de massa do pêndulo e seu eixo de rotação
Jeq 0.00012839 [kg.m2] Momento de inércia da montagem braço/pêndulo em relação ao eixo do motor
Jp 0.00005027 [kg.m2] Momento de inércia do pêndulo em relação ao seu eixo de rotação
Mp 0.022 [kg] Massa do pêndulo

Tabela 3: Parâmetros extráıdos do modelo da estrutura.

Na Figura 11 pode-se observar a proposta desenvolvida da estrutura, que possui

181.3 mm de altura e uma distância entre o eixo do motor e o eixo do pêndulo, na posição

vertical, de 112 mm. As peças destacadas em vermelho foram produzidas com impressora

3D. O pêndulo e o eixo do encoder, que possuem a mesma cor, têm diâmetros de 8 mm

e foram produzidos em aço, as peças em marrom foram fabricadas em madeira, e o braço

(cinza) foi produzido em alumı́nio.
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Figura 11: Primeira proposta da estrutura modelada no software SOLIDWORKS

Optou-se por utilizar um rolamento axial para diminuir as cargas sobre o eixo do

motor e um acoplamento comercial para unir o eixo do encoder ao eixo horizontal do

pêndulo. As caracteŕısticas tanto do rolamento, quanto do acoplamento se encontram nas

tabelas 4 e 5, respectivamente.

Modelo 51105
Altura 11 mm
Diâmetro interno 25 mm
Diâmetro externo 42 mm

Tabela 4: Especificações do rolamento axial utilizado

Modelo AC-1925AL
Diâmetro eixo 1 6 mm
Diâmetro eixo 2 8 mm
Altura 25 mm
Diâmetro Externo 19mm
Velocidade Máxima 6.000RPM
Material Alumı́nio
Torque Máximo 10 Kg/cm

Tabela 5: Especificações do acoplamento

5.1 Fabricação

Após a impressão das peças em 3D, o corte das chapas de madeira, e dos eixos de

aço, notou-se que a fabricação do braço, inicialmente proposta em alumı́nio, poderia ser
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feita com chapa de MDF de 3mm, sem que a perda de rigidez afetasse o desempenho da

estrutura.

Com todas as peças fabricadas, a primeira versão da estrutura, mostrada na Figura

12 foi montada e testada. Seu desempenho mecânico foi satisfatório, com o motor sendo

capaz de mover o braço com facilidade, e o pêndulo de se mover livremente. Além disso,

nenhum dos elementos apresentou folgas ou instabilidades significativas.

Figura 12: Protótipo da estrutura

O único ponto a se ressaltar é a fixação do cabo do encoder. Uma vez que este apre-

senta natureza mais ŕıgida do que o esperado, caso na montagem da estrutura ele não seja

posicionado adequadamente, ele exercerá um torque resistivo que afeta significativamente

o movimento do braço. A Figura 13 exemplifica uma forma de posicionar o cabo para

que este problema não ocorra.
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Figura 13: Posição adequada do cabo do encoder

Os desenhos de fabricação de todos os componentes da estrutura se encontram no

anexo A.
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6 PROJETO ELETRÔNICO

6.1 Escolha de componentes

Com as equações dinâmicas do sistema e com os parâmetros mecânicos definidos,

obteve-se o esforço necessário para o controle do pêndulo invertido e consequentemente a

relação rotação-torque exigida, sendo assim posśıvel definir o motor a ser utilizado.

As especificações do motor escolhido podem ser observadas na Tabela 6.

Tensão nominal DC 6 V
Velocidade nominal 280 rpm
Corrente nominal 0.13A
Torque de Stall 10 kg.cm
Corrente de Stall 3.2 A
Redução 1:34
Resolução do encoder 341.2

Tabela 6: Especificações do motor selecionado

Na sequência foram realizados testes de leitura dos sinais dos encoders por um

ArduinoUnoR3, que demonstrou-se eficaz. Dessa forma optou-se pela sua introdução

no projeto.

Algumas de suas especificações são ilustradas pela tabela 7.

Microcontrolador ATmega328
Memória Flash 32Kb
Velocidade de Clock 16MHz
Comunicação I2C, SPI, UART

Tabela 7: Especificações do ArduinoUnoR3
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Uma vez que o ArduinoUnoR3 não apresenta capacidade computacional suficiente

para a implementação de algoritmos de inteligência artificial, definiu-se que o mesmo atu-

aria recebendo, interpretando e enviando sinais. Dessa forma, a tarefa referente ao proces-

samento foi delegada a um computador, cuja comunicação se dá via serial. O processador

utilizado então passou a consistir em um Intel(R)Core(TM)i7− 8750HCPU@2.20GHz.

Por fim, escolheu-se um módulo de ponte H baseado no CI L298N para servir como

driver do motor, e um encoder para ser acoplado ao pêndulo cujas principais caracteŕısticas

podem ser observadas na Tabela 8.

Modelo LPD3806-600BM-G5-24C
Resolução 600 PPR
Alimentação 5-24V DC
Rotação máxima 5000 rpm

Tabela 8: Especificações do encoder acoplado ao pêndulo

6.2 Diagrama elétrico

Seguindo as especificações dos componentes bem como os requisitos de projeto, foi

posśıvel projetar e construir o diagrama elétrico do sistema, que é ilustrado pela Figura

14.

A partir do diagrama é posśıvel observar que o Arduino Uno R3 realiza a alimentação

elétrica de circuito do encoder individual e do encoder do motor, cujas tensões são de 5V

e 3.3V , respectivamente. Além disso, recebe os sinais de ambos os canais dos encoders,

que são transmitidos através dos pinos D2 a D5.

Já a Ponte H recebe a alimentação elétrica de potência do sistema, que é de 6V , e

a transmite ao motor (M1+ e M1−) por meio dois pinos 2 e 3 (OUT1 e OUT2). O

controle do sentido de rotação do motor é efetuado através de sinais enviados pelos pinos

D7 e D8 do Arduino Uno R3, e a velocidade de rotação é controlada pelo ńıvel de tensão

atribúıdo pelo pino D11, que atua com PWM.
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Figura 14: Diagrama elétrico.
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7 PROJETO DE CONTROLE

7.1 Simulações

Conforme descrição da metodologia na seção 4, uma vez realizada a modelagem

do pêndulo, foi necessário implementar simulações de seu controle. Assim, foi posśıvel

estabelecer e validar os requisitos para a consequente definição e caracterização da lista

de componentes. Para tal, foi utilizado o aux́ılio do ambiente de programação gráfica

Simulink, integrado ao MATLAB.

No software, com o objetivo de promover as simulações foi inicialmente inserida a

dinâmica do pêndulo, conforme modelagem descrita na seção 3.1. As equações não lineares

de movimento foram seccionadas em dois blocos principais cujas funções se referem às duas

variáveis que representam os graus de liberdade do sistema, α e θ. O diagrama de blocos

desenvolvido para descrever a dinâmica pode ser observado na Figura 15.



40

Figura 15: Diagrama de blocos com equações de movimento (Simulink).
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É importante ressaltar que o diagrama inicial se baseava no esforço de controle re-

presentado pelo torque, uma vez que um dos objetivos era promover a identificação do

esforço necessário para a escolha do motor. Uma vez identificado e selecionado o motor foi

posśıvel inserir a sua dinâmica no modelo e traduzir o valor de torque para uma tensão,

que representa de fato o esforço de controle utilizado.

Dessa forma, as entradas do diagrama consistem nos parâmetros do modelo do

pêndulo, das especificações do motor e de seu esforço de controle, representado pelo valor

da tensão atribúıda. Os parâmetros referentes ao pêndulo foram determinados de acordo

com os dados extráıdos do modelo da estrutura mecânica, conforme detalhado na seção

5 e expostos na Tabela 3.

As demais funções presentes na Figura 15 se referem a uma correção numérica das

variáveis. Já os blocos restantes consistem nas integrações das variáveis e, por fim, foi

inserido um atraso no transporte do sinal de α, com o objetivo de representar o atraso de

leitura do encoder.

Após a inserção do modelo, foram desenvolvidos e implementados blocos referentes

aos algoritmos descritos previamente e essenciais ao controle do pêndulo, o algoritmo de

swing-up e o de balanceamento na estabilização vertical.

Com respeito ao balanceamento, foi criado um bloco que implementa o controle Re-

gulador Quadrático Linear, cuja matriz Q foi otimizada de forma iterativa com o objetivo

de reduzir o tempo de estabilização do pêndulo assim como o esforço de controle. Sua

constituição final pode ser observada na equação 7.1. Suas linhas se referem aos estados

θ, α, θ̇ e α̇, respectivamente em ordem superior a inferior. Para a matriz R foi atribúıdo

o valor 1.

Q =


0.01 0 0 0

0 10 0 0

0 0 2 0

0 0 0 5

 (7.1)

Quanto ao controle de swing up, foi desenvolvida uma função que implementa a

lógica de controle não linear baseada em energia e detalhada na seção 3.3. Assim como o

diagrama que representa a dinâmica, a função depende dos parâmetros da estrutura e do
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motor. Já o ganho k, analogamente à matriz Q, foi determinado de forma iterativa, e o

valor que atingiu o melhor desempenho simulado foi de 20.

A fim de determinar em que instante cada controle é utilizado, foi inserido ainda

um bloco switch que seleciona o módulo de controle (balanceamento ou swing up). A

mudança ocorre conforme deflexão do ângulo do pêndulo, optando pelo balanceamento

apenas quando inferior a 10°. O diagrama de blocos completo pode ser observado na

Figura 16.
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Figura 16: Diagrama de blocos completo (Simulink).

Pode-se notar ainda no diagrama a inclusão de blocos de saturação, de conversão

de unidades (radianos para graus) e tratamentos para visualização, com aux́ılio de um
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modelo mecânico simplificado desenvolvido no software SOLIDWORKS. As saturações

foram inseridas com o objetivo de regular e evitar picos dos esforços de controle. Por fim,

foi inclúıdo um bloco para adicionar um sinal de rúıdo branco ao modelo, de forma que

represente oscilações e imperfeições inerentes ao sistema real.

A seguir são apresentadas nas Figuras 17 a 22 os resultados das simulações realizadas

nos quais o valor de α inicial consistiu em 180°, 90° e 10°, respectivamente, sendo 180° ou

-180° a posição do pêndulo de equiĺıbrio estável e 0° a posição de equiĺıbrio instável. As

figuras exibem o sinal de α e a tensão aplicadas para cada simulação efetuada.

Figura 17: Ângulo do pêndulo na simulação do controle com valor de α inicial de 180°.

Todas as simulações apresentadas decorrem em um peŕıodo total de 5 segundos. Os

picos observados nos gráficos referentes ao sinal de α ocorrem em função da passagem do

pêndulo pela posição de equiĺıbrio estável, no qual o ângulo se altera instantaneamente

de 180° para -180°, ou o contrário. Já as irregularidades observadas se devem à presença

de rúıdo branco.

Observa-se que os esforços de controle foram limitados com saturação de 6V , uma

vez que consiste na tensão máxima de atuação do motor selecionado.
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Figura 18: Ângulo do pêndulo na simulação do controle com valor de α inicial de 90°.

Figura 19: Ângulo do pêndulo na simulação do controle com valor de α inicial de 10°.

Conforme ilustrado pelas Figuras 17 e 18, a fim de atingir a região de equiĺıbrio

instável (entre 10° e -10°), foi necessária apenas uma oscilação do braço para α inicial de

180° e 90°. Ambos controles de swing up exigiram cerca de 1 segundo para que o bloco

de switch efetuasse a troca para o LQR, já acionado desde o ińıcio na simulação com α
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inicial de 10°. Pela Figura 19 nota-se um rápido equiĺıbrio com a subsequente presença

do rúıdo branco.

Figura 20: Tensão do motor na simulação do controle com valor de α inicial de 180°.

Figura 21: Tensão do motor na simulação do controle do pêndulo com valor de α inicial
de 90°.

Os sinais de tensão das Figuras 20 e 21 apresentam picos nos instantes em que α
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= 180°, o que é coerente com a função de controle swing up implementada. Além disso

atingem novamente o limite de 6V quando realizada a mudança de controle do pêndulo.

Figura 22: Tensão do motor na simulação do controle do pêndulo com valor de α inicial
de 10°.

Nota-se pela figura 22, no qual utilizou-se apenas o controle de balanceamento (LQR),

que as tensões aplicadas foram inferiores, não atingindo em qualquer instante o limite de

6V estabelecido pelo motor.
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8 PROJETO COMPUTACIONAL

8.1 Interface: Computador - Arduino

Como já mencionado anteriormente, utilizou-se um Arduino Uno R3 para ler e ar-

mazenar as posições e velocidades dos dois encoders, e controlar a tensão imposta nos

terminais do motor DC através de uma ponte H baseada no chip L298N. Além disso,

foi utilizado um computador para processar as leituras dos encoders e de acordo com o

algoritmo utilizado, obter a tensão desejada para ser imposta nos terminais do motor.

Dessa forma tornou-se necessário estabelecer uma comunicação entre o computador

e o Arduino, a qual se deu por meio do uso de comunicação serial através de um cabo

USB e da arquitetura mestre escravo.

O Arduino, exercendo o papel de escravo, ao mesmo tempo que conta os pulsos de

ambos os encoders através de rotinas de interrupção, aguarda que uma nova mensagem

via serial seja recebida. Esta mensagem é composta exclusivamente por um valor de -255

a 255, cujo módulo será proporcional à tensão imposta ao motor DC, e o sinal determinará

a polaridade, ou a direção que o motor irá assumir.

Após receber tal mensagem e impor a respectiva tensão aos terminais do motor

através da ponte H, o Arduino retorna outra mensagem serial para o computador sendo

composta por quatro números: dois com a contagem de pulsos atuais de cada encoder, e

dois com a variação temporal de tais contagens. Com isso, torna-se posśıvel determinar

os ângulos e velocidades atuais de cada encoder.

O script desenvolvido e implementado para se comunicar com o Arduino e processar

as informações necessárias foi escrito em Python e dividido em classes. A classe Encoder é

responsável pela comunicação e seu código, assim como os demais utilizados neste projeto,

pode ser observado no repositório do projeto.

https://github.com/tcc-andre-fernando/tcc/blob/main/Controle/classes.py
https://github.com/tcc-andre-fernando/tcc
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8.2 Implementação Controle Clássico

O método de controle clássico selecionado e implementado foi o Proporcional Deri-

vativo (PD), porém, como se deseja controlar tanto a posição do pêndulo quanto a do

braço, optou-se por utilizar dois controladores em paralelo. Dessa forma, cada controla-

dor recebe a posição e a velocidade da respectiva estrutura e calcula o esforço de controle

necessário individualmente. Em seguida, ambos os esforços calculados são somados para

se obter a tensão que se deseja impor ao motor DC.

A classe utilizada para implementação dos dois controladores PD é a classe PID. E

o script responsável pela implementação dos dois controladores em paralelo e por toda a

dinâmica do teste é o CC-PID-Pendulum.py.

8.3 Implementação Swing-Up

A implementação do algoritmo de Swing-Up se deu a partir da equação 3.16. Para

isso, inicialmente definiu-se um laço que fosse interrompido caso o módulo da posição an-

gular do pêndulo seja inferior a 10°, assim, o pêndulo se encontraria próximo ao equiĺıbrio.

Neste laço executa-se o cálculo da equação, em que realiza-se o produto entre um ganho e

o sinal da multiplicação do cosseno da posição angular pela velocidade angular do pêndulo.

Vale notar que o ganho é associado ao valor de PWM a ser enviado ao motor, assim,

conforme a posição e direção de rotação, a entrada de controle atribúıda ao motor oscila

apenas entre dois valores, o ganho positivo e o ganho negativo. O script responsável pela

implementação do algoritmo é o SwingUp.py.

8.4 Implementação Q-Learning

A sequência de eventos do ińıcio ao fim de um episódio implementada no script

responsável pela execução do algoritmo Q-Learning pode ser observada no fluxograma da

Figura 23.

https://github.com/tcc-andre-fernando/tcc/blob/2015d5142fbfc5f3d6844f24828273943a484ae6/Controle/classes.py#L143
https://github.com/tcc-andre-fernando/tcc/blob/main/Controle/CC-PID-Pendulum.py
https://github.com/tcc-andre-fernando/tcc/blob/main/Controle/SwingUp.py
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Figura 23: Fluxograma da lógica de um episódio do algoritmo Q-Learning

Como se pode observar, no inicio de cada episódio o algoritmo aguarda até que

determinada condição seja satisfeita, sendo ela: o módulo do ângulo do pêndulo ser inferior

a 15 graus. Portanto, para se iniciar um episódio é necessário levar manualmente o pêndulo

para esta posição.

Uma vez iniciado, o episódio apenas se encerrará caso as seguintes condições sejam

satisfeitas: o módulo da posição do pêndulo for superior a 15 graus ou o módulo da posição

do braço for superior a 180 graus.

Durante a execução do episódio, pode-se observar a realização de um ciclo, que se

inicia com a execução de uma ação e a consequente obtenção de um novo estado. Em

seguida verifica-se se a condição de parada foi satisfeita, em caso negativo, o cálculo da

recompensa e a atualização da Q-Table são executados e por fim é realizada a obtenção

de uma nova ação.
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A decisão de se obter uma ação aleatória ou uma ação baseada na Q-Table segue

uma probabilidade definida pela variável epsilon, de forma que a cada episódio, a variável

é decrementada linearmente, diminuindo assim a probabilidade de se tomar uma ação

aleatória.

A classe responsável por implementar os métodos utilizados pelo algoritmo Q-Learning

é a PartialQLearning e o script responsável por toda a dinâmica de aprendizagem

através deste método é o PartialQL-Pendulum.py.

8.4.1 Decisões de projeto

Conforme estabelecido pelo algoritmo Q-Learning, em sua implementação é necessário

definir suas principais atribuições, tais como a função de recompensa a ser utilizada, a

forma de decaimento da variável epsilon ao longo dos episódios e outros hiperparâmetros.

A seguir, explicita-se estas decisões e as justificativas de cada uma.

Apesar de haver formas alternativas de se realizar o decremento da variável epsilon ao

longo dos episódios, como levando em consideração os resultados parciais do aprendizado,

por exemplo, o mais comum é decrementá-la de forma linear. Neste projeto optou-se pelo

decremento linear, de forma que epsilon no começo do treinamento é igual a 1, e ao se

executar o episódio que representa 80% do treinamento, epsilon é igual a zero. Assim os

20% finais dos episódios são realizados tomando ações exclusivamente não aleatórias.

Para a escolha da função recompensa, ou seja, a função que avalia a ação tomada,

testou-se algumas alternativas, dentre elas: funções que penalizavam de forma linear o

afastamento do pêndulo de seu ponto de equiĺıbrio, e incentivavam a aproximação, levando

em consideração posição e velocidade angular; funções binárias que consideravam apenas a

posição do pêndulo, recompensando positivamente quando o pêndulo se localizava dentro

de uma determinada distância do seu ponto de equiĺıbrio; e funções incrementais, que

basicamente recompensavam cada ação tomada de acordo com o tempo decorrido desde

o começo do episódio.

Por conta de um número grande de ações serem tomadas em um curto intervalo de

tempo e a inércia do sistema ser relativamente grande, a avaliação de uma ação em função

dos estados correntes do sistema se torna uma tarefa complexa.

https://github.com/tcc-andre-fernando/tcc/blob/2015d5142fbfc5f3d6844f24828273943a484ae6/Controle/classes.py#L163
https://github.com/tcc-andre-fernando/tcc/blob/main/Controle/PartialQL-Pendulum.py
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Funções que avaliam o conjunto de todas as ações realizadas desde o ińıcio do episódio

se tornam mais simples e justas, apesar de diminúırem a velocidade de aprendizado, uma

vez que se trata de uma recompensa média.

Para contornar tal problema, optou-se por uma função recompensa que leva em

consideração o estado atual da planta, e o estado após um número definido de iterações.

Ou seja, a recompensa é dada à iteração atual, de acordo com o estado atual e um estado

futuro do pêndulo.

O algoritmo Q-Learning, como se sabe, precisa de estados e ações discretas, de forma

que quanto maior o número de ações e de estados, maior será a Q-Table e maior o tempo

necessário de aprendizagem para atingir os objetivos desejados.

Diante disso, seria inviável haver um estado para cada número de pulsos em uma volta

do encoder, assim como uma ação para cada posśıvel valor de PWM. Por isso, optou-se

por aumentar a discretização com aux́ılio de um controlador PD, a fim de diminuir ao

máximo o tamanho da Q-Table, sem que se perdesse a capacidade de estabilização do

pêndulo.

Para esta tarefa, utilizou-se um controlador PD capaz de estabilizar o pêndulo através

de estados e ações não discretizados, de forma que aumentou-se a discretização tanto dos

estados quanto das ações até um grau em que ainda fosse posśıvel estabilizar o pêndulo

através do controlador. Obtendo assim a discretização utilizada no projeto.

8.4.2 Problemas e soluções adotadas

8.4.2.1 Frequência de ações e aleatoriedade

Como já mencionado anteriormente, a plataforma desenvolvida neste trabalho exe-

cuta muitas ações em um pequeno intervalo de tempo, ao mesmo tempo que a inércia do

sistema é relativamente grande. Em outras palavras, a influência de cada ação instantânea

no movimento do pêndulo é muito pequena, o que dificulta sua avaliação.

Esta caracteŕıstica somada à tomada de ações aleatórias, dificulta ainda mais a ava-

liação de cada ação, especialmente na parte inicial do treinamento, quando epsilon ainda

é alto. Dessa forma, para um mesmo estado, diferentes ações podem ser tomadas em um

curto intervalo de tempo.
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A solução adotada para este problema foi escolher aleatoriamente, no ińıcio de cada

episódio, uma ação para cada estado. Assim, para um determinado estado, quando houver

a necessidade de se executar uma ação aleatória, sempre se executará a ação previamente

associada.

Esta solução resolve parcialmente o problema, uma vez que, quando epsilon for

próximo de 0.5, para um mesmo estado, haverá 50% de chance de se executar uma ação

não aleatória (a ação com maior Q-Value), e 50% de se executar uma ação aleatória (

associada previamente ao estado), de forma que em um curto intervalo de tempo ambas

podem ser executadas alternadamente, dificultando a avaliação das ações.

Diante disso, optou-se por além da solução adotada anteriormente, no ińıcio de cada

episódio determinar quais estados implicarão ações aleatórias (escolhidas previamente) e

quais implicarão ações não aleatórias (com maior Q-Value). Dessa forma, a probabili-

dade de um episódio ser escolhido para executar uma ação aleatória ou não aleatória é

determinada por epsilon.

8.4.2.2 Q-Table simétrica

Outro problema enfrentado foi o tempo de aprendizado que se mostrou demasiada-

mente grande. Uma medida tomada para diminúı-lo foi considerar que a Q-Table final

seria simétrica, e esta hipótese é coerente uma vez que, desconsiderando imperfeições

mecânicas, o problema do pêndulo invertido é simétrico.

Portanto, para se determinar o estado do pêndulo, considerou-se as variáveis associa-

das ao braço (como anteriormente), o módulo do ângulo do pêndulo em relação à vertical,

e sua velocidade angular, de forma que esta é considerada positiva quando o pêndulo se

aproxima da posição de equiĺıbrio instável e negativa quando se afasta.

Desta forma, um estado desta nova abordagem será equivalente a dois estados da

abordagem anterior, o que reduz o tamanho da Q-Table pela metade, implicando redução

também do tempo de aprendizagem.

8.4.2.3 Descarte da posição do braço

Ao longo do desenvolvimento, notou-se também que não era relevante determinar a

posição na qual o braço se encontra no momento de equiĺıbrio do pêndulo. Dessa forma,
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desconsiderou-se esses estados, reduzindo em uma dimensão a Q-Table e agilizando o

processo de aprendizagem.

8.4.2.4 Adição de botão e LED

Durante os testes e treinamentos, constatou-se que alguns pulsos do encoder do

pêndulo estavam sendo perdidos, apesar do Arduino realizar esta tarefa através de ro-

tinas de interrupção e não executar outras tarefas complexas no seu laço principal.

Por conta disso, dois componentes foram adicionados ao circuito: um LED e um

botão. Assim, com uma alteração no script do Arduino, uma vez que o pêndulo se

encontre na posição de equiĺıbrio estável, o LED acende. Dessa forma, passou a ser

posśıvel identificar a perda de pulsos e recalibrar a posição do pêndulo através do botão

adicionado.

8.5 Implementação controlador h́ıbrido

Como alternativa ao modelo baseado exclusivamente no algoritmo Q-Learning, desenvolveu-

se também um modelo h́ıbrido, que utiliza tanto inteligência artificial, quanto controle

clássico para se obter o esforço de controle desejado.

Para o desenvolvimento do controlador h́ıbrido, utilizou-se um modelo de inteligência

artificial similar ao descrito na seção anterior, porém que recebe como entrada apenas a

posição do pêndulo.

Em paralelo, executa-se um controlador similar ao descrito na seção 8.2, porém que

não recebe como entrada a posição do pêndulo, ou que possui a constante relacionada a

este estado nula.

Por fim, ambos os esforços de controle calculados são somados para se obter a tensão

que será imposta ao motor DC.
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9 RESULTADOS

9.1 Swing-Up

Os resultados obtidos para a realização da dinâmica de Swing-up através do método

descrito na seção 8.3, podem ser observados na Figura 24.

Figura 24: Desempenho obtido na realização da dinâmica de SwingUp

Como se pode observar, para o pêndulo chegar na posição de 0 graus, foram ne-

cessários aproximadamente 8 segundos.

9.2 Controle clássico

Através da implementação do controlador mencionado na Seção 8.2, ou seja, dois

controladores Proporcionais Derivativos que trabalham em paralelo, obteve-se a resposta

apresentada pela Figura 25. Pode-se observar um comportamento do pêndulo pouco

oscilatório em relação a outros resultados que serão mostrados a seguir. Além disso nota-

se o sucesso do controlador em levar o pêndulo até uma posição de equiĺıbrio estático e o

braço até uma posição próxima à zero graus.
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Figura 25: Desempenho obtido através do duplo controlador PD

Vale ressaltar que este resultado foi obtido com os controladores sendo configurados

com as seguintes constantes: PP êndulo = 15, DP êndulo = 1.6, PBraço = 1, DBraço = 12.

9.3 Inteligência Artificial

A implementação de controladores baseados exclusivamente no algoritmo Q-Learning

não trouxeram resultados satisfatórios, conforme discutido a seguir. Por isso, optou-se

pelo desenvolvimento do controlador h́ıbrido, descrito na Seção 8.5.

Uma vez que este ainda possui parte de seu comportamento baseado em inteligência

artificial, é posśıvel efetuar a comparação entre controladores proposta neste trabalho.

9.3.1 Q-Learning

A Figura 26 ilustra o desempenho de alguns modelos desenvolvidos de controladores

baseados exclusivamente no algoritmo Q-Learning, de forma que cada um possui uma

função de recompensa e hiperparâmetros espećıficos.
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Figura 26: Desempenho de diversos modelos testados

Na Figura 26, o eixo Y expressa a quantidade de iterações realizadas até o episódio

se encerrar, ou seja, expressa um ı́ndice proporcional ao tempo de duração do episódio.

Diante disso, nota-se que de forma geral existe um aumento no desempenho de cada

episódio ao longo dos treinamentos, porém nenhum modelo se destaca ou obtém resultados

comparáveis aos obtidos com o controlador PD.

Figura 27: Desempenho do modelo V445

Tomando como exemplo o modelo V445, destacado na Figura 27, nota-se com mais

clareza que seu desempenho entre o episódio inicial e o centésimo episódio é pior do que

entre os episódios 100 e 200. O que mostra uma evolução no treinamento. Porém logo

após o episódio 200 nota-se uma queda abrupta no desempenho, fato que se repete após

o episódio 400. Estes resultados evidenciam a dificuldade deste algoritmo em evoluir e

obter resultados comparáveis aos obtidos com o controlador PD.



58

Como o desempenho deste modelo foi destacado com fim de exemplo, destaca-se

também sua função de recompensa explicitada em forma de tópicos a seguir:

• Se após 25 iterações, o módulo da posição do pêndulo for menor do que 4 graus

e o módulo da velocidade do pêndulo for menor do que 25 graus por segundo, a

recompensa atual será: 0.7 − 0.125 ∗ |PP |. Onde PP é a posição do pêndulo em

graus após 25 iterações.

• Se após 25 iterações, o módulo da posição do pêndulo for menor do que 4 graus

e o módulo da velocidade do pêndulo for maior do que 25 graus por segundo, a

recompensa atual será: 1.5 − 0.125 ∗ |PP | − 0.04 ∗ |V P |. Onde V P é a velocidade

do pêndulo em graus por segundo após 25 iterações.

• Se após 25 iterações, o módulo da posição do pêndulo for maior do que 4 graus,

mas inferior ao módulo da posição atual (pêndulo se aproximando da posição de

equiĺıbrio), e o módulo da velocidade for menor do que 25 graus por segundo, a

recompensa será: 0.2.

• Se após 25 iterações, o módulo da posição do pêndulo for maior do que 4 graus,

mas inferior ao módulo da posição atual (pêndulo se aproximando da posição de

equiĺıbrio), e o módulo da velocidade angular for maior do que 25 graus por segundo,

a recompensa será: 1− 0.04|V P |.

• Se o módulo da posição do pêndulo após 25 iterações for superior ao módulo da

posição atual (pêndulo se afastando da posição de equiĺıbrio), a recompensa será:

1− |PP | ∗ 0.25.

9.3.2 Q-Learning h́ıbrido

A Figura 28 ilustra o desempenho obtido através do algoritmo h́ıbrido. Destaca-se

que ela possui as mesmas métricas utilizadas nas figuras apresentadas anteriormente, ou

seja, no eixo X tem-se os episódios do treinamento, e no eixo Y o ı́ndice de desempenho

obtido em cada episódio.

Diante disso, é posśıvel notar que a velocidade de aprendizado em comparação ao

modelo anterior foi maior, e a qualidade dos resultados melhor, uma vez que no episódio

133 já se obteve um ı́ndice de desempenho na ordem de 6000, o que em termos práticos,

significa que o objetivo do modelo foi atingido.
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Figura 28: Desempenho obtido através do controlador h́ıbrido

A seguir, com o intuito de explicitar a evolução dos resultados no processo de apren-

dizagem, e apresentar tal processo com mais detalhes, destaca-se o comportamento do

pêndulo durante quatro episódios deste processo: Na Figura 29, em um estágio inicial

da aprendizagem, ilustra-se o comportamento do pêndulo no episódio 3. Na Figura 30,

ilustra-se o comportamento no episódio 90.

Figura 29: Desempenho controlador h́ıbrido no episódio 3
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Figura 30: Desempenho controlador h́ıbrido no episódio 90

Na Figura 31, em um estágio final do treinamento, ilustra-se o desempenho no

episódio 126. Por fim, a Figura 32 apresenta o desempenho do pêndulo no último episódio

do treinamento, que durou aproximadamente 25 segundos e precisou ser interrompido ma-

nualmente.

Figura 31: Desempenho controlador h́ıbrido no episódio 126
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Figura 32: Desempenho controlador h́ıbrido no episódio 133

Nota-se que durante o último episódio, o pêndulo se manteve na maior parte do tempo

na região entre 4o e −4o, e a velocidade angular entre 25o/s e −25o/s, devido à função

de recompensa utilizada, descrita na seção 9.3.1. Destaca-se também que as recompensas

dadas ao longo do último episódio são majoritariamente maiores do que zero, ao contrário

dos episódios 3, 90 e 126 destacados nas outras figuras.
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10 DISCUSSÃO

Conforme apresentado no Caṕıtulo 9, o algoritmo utilizado para a execução da

dinâmica de swing-up foi capaz de levar o pêndulo da posição de equiĺıbrio estável até a

posição de equiĺıbrio instável.

Porém, uma vez que a plataforma desenvolvida não possui a capacidade de rotacionar

o braço indefinidamente, buscou-se impor restrições em relação aos ângulos máximos de

giro desta peça. Como consequência, o algoritmo passou a falhar em sua tarefa, indicando

que apesar de ser capaz de executar a rotina de swing-up, não se comporta bem quando

certas restrições são impostas.

Já em relação ao controlador baseado exclusivamente no algoritmo Q-Learning, ape-

sar de demonstrar certa evolução no processo de aprendizagem, não foi capaz de equilibrar

o pêndulo indefinidamente, como os controladores h́ıbrido e duplo-PD.

Acredita-se que este insucesso se deu majoritariamente por conta da não utilização

de uma função de recompensa adequada, e em menor escala, por não se ter utilizado

hiperparâmetros adequados.

No processo de criação e teste de diferentes modelos, notou-se uma melhora significa-

tiva no desempenho do algoritmo Q-Learning, quando se passou a avaliar a iteração atual

com base em um estado futuro. Assim, superou-se a dificuldade imposta pela inércia da

planta.

Porém, acredita-se que só esta medida não seja suficiente para avaliar de forma justa

e precisa o desempenho de determinada iteração, sendo necessário ainda levar em conta

outros fatores que não se conseguiu definir neste projeto.

Além disso, notou-se que os hiperparâmetros, apesar de não terem sido muito explo-

rados neste trabalho, influenciam uma parcela considerável do processo de aprendizagem,
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sendo responsáveis por acelerá-lo ou torná-lo mais lento, por exemplo.

Em relação à comparação entre os controladores h́ıbrido e duplo-PD, destaca-se ini-

cialmente o comportamento da posição do pêndulo. As Figuras 33 e 34 destacam 10

segundos dos testes realizados com tais controladores.

Figura 33: Posição do pêndulo em relação ao tempo (duplo-PD)

Figura 34: Posição do pêndulo em relação ao tempo (controlador h́ıbrido)

Nota-se que quando o controlador duplo-PD é utilizado, a frequência de oscilação do

pêndulo é menor, inclusive não oscilando em alguns momentos. Porém, também pode-se

observar que a amplitude das oscilações é menor quando o controlador h́ıbrido é utilizado.

Já em relação à comparação entre o gasto de energia pelos controladores, optou-se

por calcular um ı́ndice baseado na integração do módulo da porcentagem de largura de

pulso imposta ao motor DC, uma vez que sua corrente não foi medida.
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Figura 35: PWM e ı́ndice de energia (duplo-PD)

Figura 36: PWM e ı́ndice de energia (controlador h́ıbrido)

As Figuras 35 e 36 apresentam em sua parte superior a porcentagem de largura de

pulso imposta ao motor, de forma que os valores negativos indicam apenas que a tensão

foi aplicada de maneira inversa. E em sua parte inferior, o ı́ndice calculado através da

integração do módulo desta porcentagem.

Nota-se que após 10 segundos, o ı́ndice de energia calculado para o controlador duplo-

PD é da ordem de 40.000 unidades, e para o controlador h́ıbrido, de 65.000 unidades.

Conclui-se que o segundo gasta mais energia do que o primeiro.

Além das comparações quantitativas realizadas anteriormente, destaca-se uma com-

paração qualitativa em relação à robustez dos dois métodos em relação a pequenas mu-

danças mecânicas da plataforma.
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Após algum tempo de utilização do aparato, a flange que fixa o braço ao eixo do motor

passa a apresentar uma pequena folga, que cresce com a utilização do equipamento. Diante

deste fato, notou-se que, mesmo com uma folga relativamente grande, o método h́ıbrido

continua se comportando bem, ainda sendo capaz de manter o pêndulo equilibrado. O

mesmo não ocorre com o controlador baseado no método clássico, que nestas condições

passa a apresentar oscilações e até a incapacidade de equilibrar o pêndulo.

Por fim, destaca-se o comportamento oscilatório apresentado pelo pêndulo quando

controlado pelo método h́ıbrido, e a provável relação deste comportamento com a função

de recompensa utilizada, descrita na seção 9.3.1. Tal conclusão pode ser inferida conforme

apresentado na seção 9, em que na maior parte do tempo o pêndulo oscila na região em

que as recompensas são positivas.
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11 CONCLUSÃO

A fim de ser utilizado como plataforma didática, este projeto proporciona uma série

de fatores que auxiliam na consolidação do ensino de técnicas de controle. Um exemplo

prático seria a criação de uma experiência de laboratório.

Com o fornecimento de projetos mecânico, elétrico e de computação implementados e

unidos uma estrutura robusta, é posśıvel desenvolver e testar diversos métodos de controle,

conforme citado na seção 1.1, além dos executados neste trabalho.

Componente Custo
Motor 142, 40 R$

Encoder 170, 00 R$
Ponte H 37, 30 R$

Acoplamento 30, 90 R$
Arduino 30, 90 R$
Jumpers 10, 00 R$

Chapas e parafusos 52, 00 R$
Rolamentos 23, 00 R$

Impressão 3D 35, 00 R$
Fonte de tensão 48, 90 R$

Total 581, 3 R$

Tabela 9: Custo dos componentes do projeto.

Em conjunto com os resultados apresentados na seção 9, as Tabelas 9 e 10 evidenciam

como os requisitos de projeto definidos na Tabela 2 foram satisfeitos.

Dimensão Valor
Largura 200 [mm]

Comprimento 200 [mm]
Altura 300 [mm]

Tabela 10: Dimensões do protótipo.
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Uma vez que os requisitos propostos foram atingidos, torna-se viável replicar a es-

trutura para atender a demanda de um laboratório de controle. Consequentemente, é

posśıvel propor o desenvolvimento de algoritmos e suas análises de resultado.

Vale ressaltar que o processo de treinamento de algoritmos de inteligência artificial

requer um tempo consideravelmente maior em relação aos de controle clássico. Dessa

forma, é posśıvel seccionar o projeto em etapas distintas.

Assim, seria proposto a realização da experiência com uma fase de implementação de

algoritmos e uma de realização dos treinamentos e testes. Ainda seria posśıvel o forneci-

mento de uma Q-Table ou uma rede neural pré-treinada, agilizando todo o procedimento.

Outro fator de sucesso no desenvolvimento da plataforma foi a implementação de

comunicação através do Arduino. Com o procedimento via serial, não foi observada

qualquer instabilidade na leitura dos encoders e no envio dos esforços de controle ao longo

de todo o projeto.

Quanto ao projeto computacional, a implementação dos algoritmos demonstrou ser

bem eficaz, inclusive no contexto do Q-Learning. Apesar do resultado deste algoritmo

individualmente não haver sido satisfatório, foi posśıvel notar a eficiente introdução de

todos os algoritmos, com curto tempo de execução e de obtenção de resultados, conciliando

com um uso adequado das bibliotecas inseridas. Além disso, o código foi bem seccionado

em classes e métodos com tarefas bem definidas, tornando simples sua manutenção e

refatoração.

Enfatiza-se que a instabilidade do pêndulo obtida por meio do Q-Learning se deu por

conta dos hiperparâmetros e principalmente da função de recompensa. Responsável pelo

comportamento esperado da inteligência artificial, a função de recompensa deve abranger

todos os objetivos a serem atingidos. Por exemplo, notou-se que a energia gasta com

o método de controle h́ıbrido foi superior a do controle clássico, mas tal resultado era

plauśıvel, uma vez que não foi inclúıdo na rotina uma lógica que otimizasse o uso de

energia.

Um fator determinante para o sucesso obtido com o método h́ıbrido apresentado

na seção 8.5 foi o delay introduzido na avaliação das ações pela função de recompensa.

Apenas após sua implementação foi posśıvel equilibrar o pêndulo com a introdução da in-

teligência artificial, evidenciando como a inércia do sistema impediu o êxito do algoritmo.
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Por fim, observou-se que o método h́ıbrido demonstrou ser consideravelmente mais

robusto do que o PD, uma vez que é menos suscet́ıvel a pequenas mudanças mecânicas.

Assim, não se observou necessário reavaliar os ganhos de controle e corrigir as imperfeições

mecânicas com a frequência realizada com o controle PD.

11.1 Trabalhos futuros

Uma vez que foi necessário dar prioridade para alguns tópicos em detrimento de

outros, e que devido ao cronograma do trabalho não foi posśıvel refazer determinadas

estruturas ou testar diferentes algoritmos e variáveis, destaca-se aqui algumas sugestões

de trabalhos futuros.

O algoritmo utilizado para a dinâmica de SwingUp, apesar de ter sido capaz de

realizar sua tarefa, não se comportou bem quando restrições em relação a ângulos máximos

de rotação do braço foram impostos. Por isso, sugere-se o desenvolvimento de algoritmos

que suportem este tipo de restrição, ou até o treinamento de modelos de inteligência

artificial para realizar tal tarefa. Outra solução ainda seria projetar a plataforma de

maneira que permitisse a rotação indefinida do braço.

Em relação à mecânica do projeto, destaca-se que a peça desenvolvida para a conexão

entre o braço e o eixo do motor passa a apresentar folgas após um certo peŕıodo de

utilização da plataforma. Assim, tornou-se necessário a desmontagem da estrutura do

braço e o reaperto dos parafusos ocasionalmente. Desta forma sugere-se a utilização de

uma flange comercial ou a fabricação de tal peça em metal.

Em relação ao motor utilizado, destaca-se a presença de folgas em sua redução, o que

dificulta a tarefa de equilibrar o pêndulo. Por isso, sugere-se a utilização de um motor

sem redução, ou uma redução com menos folga, apesar de ambas opções representarem

um aumento no custo do projeto.

Ainda em relação ao motor, sugere-se que sua corrente seja medida para que todos

os estados da planta sejam obtidos, sendo assim posśıvel implementar o controlador LQR.

Outra solução seria a substituição do motor DC por um motor de passo.

Em relação ao algoritmo Q-Learning, sugere-se uma maior exploração dos hiper-

parâmetros e de um entendimento mais aprofundado da influência de cada um no processo
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de aprendizagem. Por fim, poderia ser realizado um estudo da possibilidade de atualizar

a Q-Table de forma off-line, ou seja, após o fim de cada episódio.
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