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Resumo

Este trabalho de conclusao de curso visa caracterizar a modelagem matematica basica de
uma célula a combustivel de membrana polimérica, e realizar simulagoes em ambiente
computacional Matlab-Simulink. O objetivo da simulacao é de conhecer a influéncia dos
pardmetros empiricos, inerentes a fabricacao da célula, na curva de polarizagao (tensao
versus corrente) de uma célula a combustivel de membrana polimérica genérica. Ao
obter-se um ambiente de simulacao com dados representativos, foi possivel utiliza-los em
treinamento e validagao de redes neurais artificiais. As redes neurais artificiais utilizadas
neste trabalho, visam generalizar o modelo mateméatico proposto, de forma simples, para

aplicagoes que focam em baixo custo e rapido processamento de dados.

Palavras-chave: Célula a combustivel; hidrogénio; modelagem; simulagdo computacional;

sistemas inteligentes; redes neurais artificiais.






Abstract

This term paper aims to characterize the mathematical modeling of a polymeric membrane
fuel cell, and perform simulations using computing environments on Matlab-Simulink.
The simulation’s objective is to know the influence of empirical parameters, related to
the fabrication of the cell, on a generic polymeric membrane fuel cell polarization curve
(voltage versus current). Achieving a simulation environment with representative data, it
was possible to use them on artificial neural networks training and validation. The neural
networks that were used on this term paper, aim to generalize the proposed mathematical

model, in a simple way, for applications that focus in low costs and fast data processing.

Key-words: Fuel cell; hydrogen; modelling; computacional simulation; intelligent systems;

artificial neural networks.
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1 Introducao

No Brasil, o sistema elétrico é gerenciado em grandes blocos de energia, seja
na geracao, transmissao ou na distribuicao de energia elétrica. Sao geradas enormes
quantidades de energia elétrica para atender a demanda do palis, e a distribuicao dessa
energia tem cardter de ser centralizada, devido a maioria da geracao advir de hidrelétricas.
Isto é, poucos pontos de geracdo para uma poténcia elevada. O trabalho aborda células
combustiveis de baixa poténcia e temperatura de operacao, o que justifica a pesquisa de
células com tais caracteristicas, para que elas possam ser introduzidas de forma eficiente
e facilitada no cotidiano da populacdo. As células a combustivel podem ser bastante
propensas para o uso domiciliar. Outro fator beneficente para o uso doméstico é de que as
células sao silenciosas, e diferentemente de geradores a combustao, o processo de conversao

de energia da célula converte energia quimica em energia elétrica.

Pode-se notar que cada vez mais o nimero de aparelhos eletronicos aumenta, por
exemplo smartphones, tablets, notebooks e etc. Pode-se entao fazer uso dessas células para
geracao distribuida, que é caracterizada por ser a distribuicdo de energia gerada proxima ao
local de consumo, com varios blocos de geracao de pequenas poténcias, com caracteristica
de geracao descentralizada, antagonizando o cenario atual. Em um caso mais especifico,
um usuario pode gerar sua prépria energia, de forma independente da rede, e pode vender
sua energia se quiser, por exemplo. Dessa forma, uma maior implantacao de células a
combustivel adiaria investimentos de grande porte em energia elétrica, além de propiciar

maior economia, uma vez que nao seria necessaria a construgao de linhas de transmissao.

Uma célula a combustivel é um elemento que converte energia quimica em elétrica.
Seu combustivel na maioria dos casos é o hidrogénio, mas ha aplicagdes que usam metanol,
hidrocarbonetos, e outros compostos que possuam hidrogénio em sua composi¢ao. A célula
a combustivel pode ser utilizada em centrais de fornecimento, instalagoes remotas, energia
distribuida, propulsao de veiculos e unidades de servico auxiliar, de forma eficiente e com

a vantagem da co-geragao (aproveitamento térmico) (ALDABO, 2004).

Neste trabalho, sera utilizado como modelo de referéncia uma célula a combustivel
de membrana de troca de prétons, conhecida pela sua sigla em inglés, PEMFC (Protons
exchange membrane fuel cell). A célula presente no laboratério (figura 1), foi gentilmente
doada ao LAT (Laboratério de Alta Tensao) por um grupo de pesquisa do departamento
de quimica da universidade (IQSC). Trata-se de uma PEMFC que nao precisa de adugao
forcada de ar oxigénio, pois o ar entra por suas laterais através de pequenas vilosidades

presentes na placa de difusao de gases, como ¢é possivel verificar na figura 2.
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Figura 2 — Célula a combustivel presente no laboratério - Perfil para visualizacao de
entrada de ar na placa de difusao de gases

1.1 Funcionamento da célula a combustivel

As células a combustivel sao equipamentos eletroquimicos que convertem energia

quimica em energia elétrica, agua e calor. Possuem caracteristicas inerentes aos motores,
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pois funcionam enquanto ha combustivel para alimenta-las e também relativas as baterias,
pois produzem eletricidade a partir de um combustivel, sem, no entanto, haver combustao
ou geragao de ruidos (ALI; SALMAN, 2006). Os principais combustiveis utilizados pela
célula, hidrogénio e oxigénio, sdo abundantes na natureza. O oxigénio pode ser retirado
diretamente do ar. O hidrogénio pode ser obtido de diversas fontes: eletrélise da dgua, gas

natural, propano, metanol ou derivados do petroleo.

Existem diversos tipos de células a combustivel, todas contendo uma membrana ou
eletrélito, que é colocado entre dois eletrodos. As células podem ser classificadas quanto
ao tipo de aplicagoes, eletrolito ou temperatura que utilizam em seu funcionamento. As
células de carbonato fundido e de éxido sélido sao células de altas temperaturas, e sao
utilizadas em estacoes estacionarias de geracao de energia. Ja as células alcalinas e as de
membrana polimérica (PEMFC), sao células de baixas temperaturas de operagao (CELE
et al., 2010) e usadas em aplicagoes domiciliares, laboratoriais e automotivas. A célula de
membrana polimérica (PEMFC), que serd abordada neste trabalho, utiliza uma membrana
de Nafion como eletrolito, que possibilita a interacao entre as moléculas de hidrogénio
e de oxigénio. Utiliza ainda um catalizador de platina, que acelera a reacao quimica do

processo de geracao de eletricidade.

Um problema caracteristico deste tipo de tecnologia é a obtencao e o armazenamento
do hidrogénio. Naturalmente, o hidrogénio se encontra combinado com outros elementos
quimicos, e faz-se necessario separa-lo para a utilizagao na célula. Pode-se usar entao o
metanol (rico em hidrogénio) como combustivel da célula, reduzindo assim a complexidade
do sistema como um todo. Nesta modelagem, no entanto, serao considerados apenas o

hidrogénio puro e o oxigénio como combustiveis.

O rendimento de uma PEMFC chega a 80%, se o calor gerado pela célula puder
ser utilizado (CELE et al., 2010). As restrigoes das aplicagoes praticas destas células
concentram-se no elevado custo de producao, na obtengao e armazenamento do gas
hidrogénio e na influéncia da temperatura na condutividade ionica e na estabilidade
mecanica da célula. Apesar destes inconvenientes, a célula combustivel tem um futuro
muito promissor, uma vez que poderd suprir demandas locais de energia elétrica (baixas

poténcias), bem como pode ser utilizada em automéveis e aparelhos portateis.

1.2 Caracteristicas elétricas da célula

A tensdo elétrica de saida da célula é continua, e depende da quantidade de corrente
de carga e do fluxo de combustivel que lhe atravessa na reagao. Portanto, é necessario um
sistema de gerenciamento e controle, para que se tenha funcionalidade do fornecimento de
energia elétrica. A curva do grafico tensao vs. densidade de corrente é denominada curva

de polarizacao, que fornece a caracteristica tipica do comportamento da célula. Quando
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esta se encontra em circuito aberto, apresenta uma tensao elétrica em seus terminais, que
é denominada tensao elétrica de Nernst. Ao se conectar uma carga na célula, a tensao
elétrica produzida assume valores diferentes da tensao de Nernst, e torna-se cada vez menor
com o aumento da corrente de carga. Esta diferenca entre a tensao real de saida da célula
e a tensao de Nernst é devida as perdas do sistema, como a resisténcia elétrica propria da
célula. Ha as perdas 6hmicas, as perdas de ativacao (que ocorre para baixas densidades de
corrente) e as perdas por concentragao (caracterizadas por diferentes concentragoes dos
reagentes ao longo dos canais que os conduzem) (LARMINIE; DICKS, 2003).

Basicamente, a célula a combustivel de membrana polimérica opera da seguinte
forma, didaticamente. Ao adentrar no anodo, os atomos de hidrogénio, compostos de um
elétron e um préton, se dividem. A membrana polimérica aceita somente passagem de
protons, que tomam rumo ao catodo. Os elétrons, s@o obrigados a passar por um circuito
externo (carga elétrica da célula) para chegarem ao catodo. No catodo, com a admissao
de prétons (fons HT), elétrons pelo circuito e gas oxigénio, ocorre a formacio de agua.
A movimentacao de elétrons por um circuito externo é o que resulta na transferéncia de

poténcia elétrica pela célula. A figura 3 ilustra a descrigao feita anteriormente.

B Carga elétrica

“e- g-
- -

8- - - .
Cambustive%T l lAr{Dxigenm

Eletrdlito
Anodo Catodo

Figura 3 — Funcionamento béasico de uma célula a combustivel
(Adaptado de http://www.ipv.pt/millenium/Millenium29/21.pdf) - Acessada em
28/08/2016

Neste trabalho serao utilizadas algumas constantes, de conhecimento geral. A

tabela 1, exprime os valores das constantes universais utilizadas.
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Tabela 1 — Tabela de constantes usadas no trabalho

Parametro Valor
AH —285,8 kJ/mol
AS —0, 16328 kJ/mol. K
n 2 elétrons
F 96485, 3365 C'oulumb/mol
R 8.3144621 J/mol. K
My, 2,02.107° kg/mol
Mo, 32.107° kg/mol
M0 18,02.107* kg/mol
PH, 0,08235 kg/m?

1.3 Utilizacao de redes neurais artificiais

Uma rede neural artificial (RNA) é uma ferramenta de um conjunto de artificios
computacionais denominados sistemas inteligentes, que utilizam recursos de computacao e
programacao para simular a resolucao de problemas tal qual o cérebro humano faz. Avancos
cientificos na area de neurologia, fizeram a humanidade conhecer melhor a composicao
celular e o transito de impulsos no cérebro humano. Isso motivou o desenvolvimento de
pesquisas relacionadas a conceber um método para simular o funcionamento do cérebro

humano, iniciadas em meados do século XX por Hebb (1949)

O objetivo deste trabalho ¢ utilizar os dados da simulagdo computacional do modelo
da célula para treinar redes neurais. Os dados de entrada da rede sao diversos pontos de
tensao e de corrente, referentes a operagao da célula e sua curva de polarizacao. As saidas
sao os parametros empiricos da célula, descritos na modelagem. Com um modelo correto
de funcionamento, e com dados para simulagao e treinamento da rede, pode-se determinar
parametros de células reais, com base nos dados de bancada. Isto possibilita, por exemplo,
um consumidor aferir os dados de um determinado fabricante de células a combustivel, ou
um grupo de pesquisa conhecer de fato os parametros de uma célula experimental recém

montada.

O resultado apoés treinamento e validagao de uma rede neural é uma matriz de
pesos sinapticos e os vetores de limiares de ativagao. Simplesmente matrizes e vetores
apenas. A vantagem da abordagem deste trabalho ser focada em redes neurais, é diminuir
o custo, seja ele financeiro ou de processamento. Certamente foi necessario o uso de Matlab
para simular o modelo e treinar a rede, mas apds essas etapas, pode-se tomar as matrizes
obtidas e descarrega-las na memoria de algum microcontrolador, que por exemplo execute
um algoritmo que controle a malha de saida de poténcia de uma célula a combustivel.
Monitorar o comportamento da célula e prever seus parametros enquanto a mesma opera,

pode ser de grande valia para futuras aplicagoes, inclusive para monitorar se existe a
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necessidade de uma futura manutencao no sistema da célula. O microcontrolador teria
em sua memoria as matrizes, e faria operagoes basicas de multiplicacao e adi¢ao para
obter os parametros empiricos por exemplo. Comparado a solucao por ajuste de curvas,
economiza-se financeiramente e em velocidade na obtencao de resultados utilizar uma

abordagem de programar as matrizes das redes neurais em microcontroladores.
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?2 Desenvolvimento tedrico

Células a combustivel, conceitualmente operam de forma simples. Uma célula a
combustivel converte de energia eletroquimica presente em algum tipo de combustivel em
energia elétrica na forma de corrente continua (CC). O combustivel de operagao é o gas
hidrogénio, que serd uma entrada do sistema. A célula também necessita de gas oxigénio
para funcionar. De forma bésica, o hidrogénio se combina com o oxigénio formando agua,
e energia é produzida no processo, tanto térmica (perdas), como elétrica. Pode-se notar
que o processo de conversao de energia, ¢ justamente o inverso da eletrélise. Sera dado a
seguir o embasamento tedrico necessario, que justifica o uso da equacao de Nernst, para o

estudo em especifico. A equacao da reacao quimica global é denotada a seguir:

1
H2+ 5024—267 — HQO—|—2€7 (21)

2.1 Energia do hidrogénio

A reagdo quimica da célula libera energia porque os estados energéticos anteriores
eram maiores. Pode-se notar que a molécula de hidrogénio ¢é altamente energética em
relagao a seu peso (ALDABO, 2004). A energia liberada pela reagdo quimica relaciona-
se & variagdo da entalpia (AH). Quimicamente, a variacao da entalpia depende dos
coeficientes estequiométricos da reagao, e da entalpia de formacao dos reagentes e produtos.
Por definicao, a entalpia de formacao de espécies elementares é igual a zero, e como os
reagentes sao gases elementares, a variagao da entalpia da reacao dependerd apenas da

entalpia de formagao da dgua

1
~ . H;

Og

AH =Hy, ,— Hy

Hy T 9 = AH = HfHQO (22)

Se o produto da reagao for vapor de agua, parte da energia disponivel sera usada
para a vaporizacao da agua. As equagdes quimicas seguintes mostram a energia da reacao,

para cada caso. Foi fixada uma temperatura de reacao de 25°C.

1
Hy(g) + 502(9) — Hy0(l) +285,8 kJ Formagao de agua liquida (2.3)

1
Hy(g) + 502(9) — Hy0(g) + 241,818 kJ Formagao de vapor d’agua (2.4)
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2.2 Energia livre de Gibbs

Para entender sobre o funcionamento da Célula, e sobre a espontaneidade da reacao,

faz-se uso do conceito da energia livre de Gibbs.

A energia livre de Gibbs é uma grandeza que define o total de energia associada a
um sistema termodinamico disponivel para realizar trabalho ttil. A variacdo da energia
livre também diz se a reagao ocorrerd de forma natural (espontdnea) ou forgada. Se a
variacao da energia for positiva, o processo nao é espontaneo. Porém, se a variagao for
negativa, o processo sera espontaneo, que é o caso do funcionamento da célula combustivel.
As moléculas de hidrogénio possuem um alto estado energético, e ao entrarem em contato
com o oxigénio, se combinam, estabelecendo um menor estado de energia. A variacdo da
energia livre depende apenas dos estados iniciais e finais, portanto define-se a variacdo da

energia livre de Gibbs.

AG =Gy — G, (2.5)

Onde Gy ¢ a energia final, e G; é a energia inicial. Analisando a variagao da energia ¢

possivel saber mais sobre o processo.

(2.6)

AG <0 Espontaneo
AG >0 Nao Espontaneo

2.3 Energia livre de Gibbs para representar o trabalho atil

Sabe-se que a energia livre de Gibbs esta relacionada ao trabalho 1til possivel de

ser realizado pelo sistema (no caso trabalho elétrico Wgy,), portanto

Wep = —AG (2.7)

A carga que passa durante a reacao é o numero de mols de elétrons vezes a carga

do elétron

g=mn- NAvogadro “Qe- = = nk’ (28)
Onde F' ¢é a constante de Faraday e n é o nimero de elétrons envolvidos na equacao

quimica global (no caso, sdo 2). Sabe-se que o trabalho elétrico se relaciona a carga da

seguinte forma

WEL = qu (29)
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E importante ressaltar que V,, é denotacao de tensdo elétrica. Com as trés equagoes

acima descritas, consegue-se obter, apods feitas as substituicoes, que

AG = —nF.V,. (2.10)

A forma 1til da equacao que sera usada é

—AG
Vo= nF

(2.11)

Que representa a tensao de saida em fungao da variacao da Energia Livre de Gibbs. Usando
somente (2.11) obtém-se V,, = 1,482 V tedricos. Esse potencial é conhecido como potencial
termoneutro (BARBIR, 2013). Ele é o méximo de tensdo elétrica tedrica possivel de se
obter da reacao com o hidrogénio. Porém nesse estudo, serao imputadas as diversas perdas
do processo, que sao necessarias para a modelagem. A temperatura afeta consideravelmente

o ponto de operacgao da célula.

2.4 Efeito da temperatura

A energia livre de Gibbs estd muito relacionada a temperatura, de fato nessa
abordagem ela depende da entalpia e da entropia da reagao também. Pois de acordo
com a entropia, um aumento na temperatura aumenta o nivel de desordem da reacao,
fazendo com que parte da energia seja utilizada neste processo. A equacao com o efeito da

temperatura é deduzida abaixo.

AG = AH — TAS (2.12)
AH TAS
:>V°__<nF_ np> (2.13)

Por exemplo, a 25 °C' a variacao da entropia é de —0, 16328 kJ/(mol - K). Isso
implica em AG til de —237,34 kJ/mol, e portanto a tensao de saida serd 1,23V, para

estas condigoes.

2.5 Efeito da pressao

A pressao das espécies da reacao tem efeito na tensao de saida. Utilizando conceitos

de termodinamica, sabe-se que:

dG =V, - dP. (2.14)
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Onde V,, é o volume molar de uma dada amostra, assim como P é a pressao e G é a

energia livre de Gibbs. Sera feita recorréncia da férmula universal dos gases:

PV,, = RT. (2.15)

Manipulando a equagao(2.15) pode-se obter(2.14) escrita de outra forma:

P P
dG = RT — = G =G, + RT'In . (2.16)

A equagao(2.16) descrita acima poderia ser melhor aproveitada se fosse descrita de
forma variavel, pois a andlise ¢ feita para a variacdo da Energia Livre de Gibbs. Para isso
serao usados os coeficientes estequiométricos da equacao quimica global (BARBIR, 2013).
Sera apresentada uma equacao de uma reagao quimica genérica, e efeito dos coeficientes

estequiométricos sobre a energia livre de Gibbs:

j-A+k-B—m-C+n-D, (2.17)

()" ()
= AG = AG,+ RTIn |~fr Lo/ | (2.18)
(%) (%)
P, P,
As pressoes que sao argumento do logaritmo natural na equagao(2.18) sao descritas
na forma de pressdo parcial, isto é, a pressao absoluta dividida por uma pressao de
referéncia P, (geralmente 1 atm). A partir deste ponto, todas as pressoes presentes nas

seguinte equacgoes e os parametros de pressao serao dados em termos de pressoes parciais.
Em termos da PEMFC:

PHQO

AG =AG,+ RT -In T
Py, - B3,

. (2.19)

2.6 Equacao de Nernst

Utilizando as equacoes de potencial padrao, de efeito da temperatura e de efeito da
pressao, obtém-se a Equacao de Nernst. Ela sera a base do modelo utilizado, e representa

fielmente os parametros basicos de entrada e saida de uma célula convencional

1

RT Py, - P2

Vnernst = ‘/;) + —- In <H2 02) (220)
nkF

E importante notar que o argumento do logaritmo da equacao(2.19) inverteu na

Equagao de Nernst devido ao sinal negativo presente em (2.11).
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2.7 Eficiencia da célula

A eficiéncia termodinamica pode ser calculada da seguinte forma:

AG

cell — "~ 77 2.21
Neell AH ( )

Em teoria, a eficiéncia é de 83 % & 25 °C'. Nao consegue se atingir esta eficiéncia na
pratica, pois ha perdas no sistema, que serao discutidas. Uma abordagem para o célculo da
célula em questao é utilizar a tensao de saida em circuito aberto e dividi-la pelo potencial
termoneutro. O erro passivel de ser cometido nessa aproximagao é devido a precisao de
casas decimais utilizadas e a temperatura padrao utilizada para determinar a variacao da

entalpia.

V:zberto

_aberto (2.22)
1,4812 V

Neell =

2.8 Perdas na célula

Sabe-se que a célula a combustivel fornecera uma tensao de saida segundo a equagao
de Nernst (2.20). Essa tensdo contudo é somente para circuito aberto, e ndo representa de
forma fidedigna a realidade da célula em operagdo, quando é drenada corrente elétrica da
mesma. As perdas de tensao da célula podem ser modeladas de acordo com o ponto de
operagao de corrente da mesma, como feito em (BARBIR, 2013; NEHRIR; WANG, 2009).

As perdas que serao consideradas sao perdas por ativacao, Ohmicas e por concen-
tracao. Essas perdas podem ser modeladas como quedas de tensao presentes na célula de

tal forma:

‘/;aida - VNernst - V;mt - ‘/ohm - ‘/conc‘ (223)

As perdas por ativacao ocorrem devido a inércia dos reagentes no sistema da
célula, e portanto afetam bastante o desempenho da célula para correntes pequenas,
inerentes ao inicio do funcionamento da célula. Elas tém valor consideravel para pequenos
valores de corrente, mas com correntes maiores essas perdas diminuem, em proporgao. Sua
modelagem proposta é descrita abaixo pela equagao (2.24). Seus pardmetros empiricos sdo:

«, denominado coeficiente de transferéncia de carga; e I,, denominada corrente de troca.

RT I
Voet = Pyl In (I> (2.24)

As perdas ohmicas ocorrem devido a resisténcia elétrica que a célula oferece ao

elétrons. Sao perdas de resisténcia intrinseca a célula e também devido a resisténcia do
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catodo do anodo e dos elementos de conexao do circuito. Seu parametro empirico pode ser
sintetizado apenas por R;, que representa a contribuicao de todos os elementos resistivos
de perda. As perdas dependem da corrente que flui pela célula, e da propria resisténcia da

mesma, logo:

Vo = Ri 1 (2.25)

As perdas por concentracao ocorrem devido a lentidao do sistema em repor os
reagentes da reacao. Isso pois quanto maior a corrente drenada, maior ¢ a quantidade
de fluxo de hidrogénio demandada, e para a concepcao estrutural da célula ha um limite
do quanto a mesma pode transportar e repor o hidrogénio demandado. Seu parametro
empirico de modelagem é a corrente de corte ou limitante (ou threshold do inglés): Iy,.
Esse tipo de perda é caracteristico de altos valores de corrente, sendo um fator limitante

superior para conducao de corrente e portanto transferéncia de energia.

RT In
=2 2.2
Veone = 25 - 1n. (Ith - 1> (2.26)

Portanto, através das equagoes de perdas modeladas acima, pode-se obter uma boa
estimativa da tensao de saida da célula de acordo com parametros de entrada e corrente

de carga, conforme descrito pela equagao (2.23).

2.9 Consumo de gases

E de extrema importancia aos grupos de pesquisa conhecer o consumo dos gases,
principalmente do hidrogénio, o combustivel, assim como apresentado por Larminie e Dicks
(2003). Conhecer o consumo de hidrogénio podera dizer se havera desperdicio de hidrogénio
em ensaios futuros de grupos de pesquisa, pois se o fluxo de hidrogénio for muito maior do
que o hidrogénio demandado, o seu excesso serd ejetado pela saida do anodo da célula. Se
a cé¢lula a combustivel nao possuir um sistema de readmissao do hidrogénio excedente, o

mesmo sera desperdicado.

2.9.1 Consumo de hidrogénio

A corrente drenada da célula esta intimamente ligada ao consumo de hidrogénio
pois ele é a tnica fonte de elétrons livres do sistema. A carga elétrica total transferida
pela reacao quimica é dada pelo coeficiente estequiométrico dos elétrons da reacao global

(n), pela carga de um mol de elétrons dada pela constante de Faraday (Coulumb/mol)
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multiplicada por um mol de hidrogénio (denotado por Hy):

Qe = 2F.H,. (2.27)

Na forma diferencial, (2.27) se torna:

dQe = 2F.dH,. (2.28)

Derivando a equacao acima no tempo, obtemos uma equagao que relaciona corrente

(carga pelo tempo) com hidrogénio:

I =2F.¢y,, (2.29)
ou simplesmente
I
Op, = Y mol/s. (2.30)

Onde dp, é a taxa de consumo de hidrogénio, em mols por segundo. Porém deseja-se
adequar a equagao (2.30) para obter-se dimensoes de consumo mais palpaveis. Para isso,
multiplica-se a equagao (2.30) pela massa molar do gas hidrogénio (My,) que é conhecida

e representada na tabela 1:

M, I
Y

kg/s. (2.31)

A equagao (2.31) representa, de forma aceitével, a taxa de consumo do combustivel
da célula do tipo PEM.

2.9.2 Consumo de oxigénio

De forma andloga ao consumo de hidrogénio, o consumo de oxigénio pode ser
descrito através da constante de Faraday, da corrente de carga e da massa molar do

oxigénio, salvo uma alteracdo estequiométrica:

Mo, T
= 2 . 2.32
o, = 2= kg/s (2:32)

Caso se utilize o ar ambiente ao invés de oxigénio puro, aplica-se uma constante
de proporcionalidade, que representa a porcentagem da contribuicao do oxigénio no ar

atmosférico:

kg/s. (2.33)
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2.9.3 Producao de agua

Sabe-se que um produto da reacao quimica da célula é a agua, e ela possui o mesmo
coeficiente estequiométrico que o hidrogénio na reagao quimica (2.1). Portanto a equagao

de producao de agua sera similar, ponderada pela massa molecular da dgua:

Mp,0l
2F

Um exemplo pratico é feito em (LARMINIE; DICKS, 2003), onde mostra-se que

um conjunto de células de 1 kW operando com tensao de 0,7 V produz 0,48 kg de agua

dH,0 = kg/s. (2.34)

em uma hora, praticamente meio litro.

2.10 Ponto de maxima poténcia

Dependendo da aplicacao, é de interesse conhecer-se o ponto maximo de poténcia
da célula. Antes desse ponto, a poténcia é menor devido a uma corrente baixa, e apds
esse ponto a poténcia é menor também pois a poténcia dissipada pelas perdas supera a
poténcia util do circuito externo. Para encontrar este ponto, toma-se a equagao (2.23) e

ela é multiplicada pela corrente, conseguindo assim poténcia:

Pﬁtil = I-‘/saida = I~(VNernst - Vact - V:)hm - ‘/conc)- (235)

Para se encontrar o ponto de méxima poténcia, basta derivar (2.35) em relagao a

corrente, e igualar a expressao a zero:

dPytin
dl

— 0. (2.36)

Com auxilio das equagoes (2.24), (2.25) e (2.26) de perdas ja exibidas, resolve-se a

derivada de (2.36). O resultado que se obtém é o maximo ponto de poténcia:

AH —TAS vooaq ] 2RI F I I
Y 1n(PoPi)——|In(~ |————In(1-—— . (2.
T n (P, FPg,) a{“<10>+ } RT n( Ith>+l—lm (237

Por fim, resolve-se a equagao (2.37) utilizando um método numérico para resolu¢ao
de equacoes nao lineares. Dadas as condi¢coes de operagao e os parametros empiricos,
determina-se com precisao o ponto de maxima poténcia. Os resultados desta manipulacao

matematica sao apresentados no capitulo 5 deste trabalho.

Derivar a equacao de poténcia da célula e igualar a zero, matematicamente expressa
a possibilidade de encontrar-se um ponto de maximo ou de minimo local. Isto nao é

suficiente para afirmar-se que o resultado da equagao (2.37) resultara em um ponto de
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maxima poténcia, pois pode acusar um ponto minimo. Para isso, é necessario derivar
novamente a equagao (2.35) em relacdo a corrente, e analisar se o resultado é negativo ou
positivo. Se a segunda derivada for negativa, pode-se concluir que o ponto encontrado é
um ponto de maximo, pois indica a tendéncia da taxa de crescimento da curva, que em

um ponto de maximo, é decair. Com base em (2.37), sabe-se que:

APy AH —TAS L1 I MR, F I I
_ In Py P2 )— = |In (=) 4+ 1|20 g (- & .

dl rr T (PmFS,)— [n(10>+ ] RT n( Ith)+l—lth
(2.38)

Derivando-se novamente a equagdo acima, em relagdo a corrente, encontra-se:

d? Py 1 2nR; F 1 I I —1y)—1
til :0_7_ﬂ_7. th ( th) ’ (2.39)
d[2 O[I RT [th Ith i ([ — Ith)2
que simplifica-se da seguinte forma
d? Py 1 2nR; F 1 1
L e S (2.40)
dI2 aof RT  Ip—1 (I-—1Iy)?

A equagao (2.40) terd sempre resultado negativo. Todos os seus termos tém indice
negativo, e dependem apenas de constantes que sao sempre positivas, ou da corrente, que
pela definicao de sinal e modelagem, vai ser sempre positiva pois seu sentido de conducao
nao mudara. H4 um termo onde ha a presenca de I;, — I. Este termo sempre sera positivo,
pois o universo de discurso da variavel de corrente, I, é definido de 0 até I;;,. Desta forma
a corrente nunca ultrapassard um valor maior que o limiar de corrente, pois até conforme
o modelo descreve, este é um valor de maxima condugao de corrente da célula. Portanto, é

plausivel afirmar que

d? Py
dl?

<0, (2.41)

ou seja, o ponto encontrado pela equagao (2.37) sempre sera um ponto de maximo,

para valores de corrente dentro dos limites de operacao.
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3 Simulacao computacional

Neste capitulo sera introduzido o método utilizado para realizar a simulacao, tal
como os meios utilizados, as consideragoes feitas e o método de operacao da célula. Na
maioria das modelagens de diversos sistemas, ¢ comum se partir de um modelo ideal
e simples, e apds isso sao caracterizadas e modeladas as imperfeicoes e caracteristicas

especificas do sistema, a fim de se obter o melhor custo beneficio da aproximacao.

3.1 Consideracoes para modelagem

Para o uso de um modelo mais simplificado em simulagao computacional, serao
reputados alguns tépicos acerca do modelo e do funcionamento da PEMFC, conforme
proposto por NEHRIR e WANG (2009).

a) Tratamento unidimensional do fluxo de gases da célula
b) Gases sdo ideais e tém distribuigdo uniforme
c) Pressao é constante nos canais de fluxo de gas

d) Tanto Hs como O, sdo umidificados

e) A célula opera em temperaturas menores que 100°C' e o produto da reacao sai na

forma liquida (Pg,0 = 1)

f) As propriedades e cdlculos que concernem temperaturas utilizarao a temperatura
média da célula (ndo em um ponto especifico). As variagoes de temperatura dentro
da célula serao desconsideradas, e o calor especifico médio da célula é tomado como

constante

g) Serd utilizado o ar presente na atmosfera como fonte de oxigénio (Pp, = 0,21)

3.2 Uso do Simulink

Para criar-se o modelo computacional, foi utilizada a ferramenta de simulagoes do
Matlab, o Simulink. O simulink é 1til para a simulacao para gerar vetores de dados com
facilidade, e também para trabalhos futuros, onde ha a possibilidade de se refinar o modelo
considerando seus transientes, devido ao efeito capacitivo. Nele foi criado um ambiente de
trabalho, um projeto, onde estao contidos os blocos das fung¢oes matematicas e tudo que é

necessario para a transformacao da teoria em pratica. Desta forma, a simulacdo apenas
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trata a célula em regime permanente, e a forma temporal na qual o simulink trabalha

entra de acordo com a curva de polarizagao classica de células a combustivel.

No ambiente, ha um bloco de func¢ao especial, que calcula a tensao de saida da
célula, numericamente, segundo a equagao de Nernst, dada as entradas (temperatura e
pressoes). A figura 4 mostra o bloco em questdo, cuja saida é um valor numérico para

tensao. O cédigo do calculo estd no apéndice A deste documento para visualizagao.

D

Temperatura

D,

Pressfo Hidrogénio

&D

Po2

Pressfo Oxigénio

4

Mems

Wnernst

Tensdo de Referéncia da Célula

Figura 4 — Bloco calculador da tensao de Nernst

Apos o calculo, o valor da tensao é subtraido das perdas existentes, ja explicitadas
neste trabalho. Os blocos das perdas estao logo abaixo do bloco de Nernst. O valor
final de tensao passa por um bloco de uso elétrico, cuja finalidade é criar uma fonte de
tensao controlada, segundo o valor numérico. Essa tensao ¢é a saida final da célula. Por
conveniéncia, colocou-se todos os blocos de célculo (Nernst, perdas e conversao para tensao

no ambiente) em um tdnico bloco. A figura 5 mostra o bloco da célula internamente em

sua totalidade.




D

Temperatura

D

Presz 3o Hidragénio

D

Pressio Oxigénio

PhZ 4 whamst
Mernst

Pol

43

]

Tersdo de Saida

CarrenteMumeriag

FsF

—hl} X

Ters3o de R eferéncia da Celula

2705

.

Al

Alpha *

I

In i)

L~

From

B loglu)

Inciy

Queda por Ativagio

P

Queda Ativagao

V/

R interna

V/

RinF

izobrecarga n

log(u)

—
CormenteMumerica -

In1

Queda por Concentragdo

[IN=

Queda resistiva

Ly ]

Queda Concentragio

Figura 5 — Visao geral do bloco da célula no simulink
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Para simular a célula sob operagoes de diferentes valores de correntes, foi inserido

em seus terminais, uma fonte de corrente controlada variavel, que atua como carga na

célula, conforme elaborado no trabalho de Smarssaro (2007). O padrao de varia¢ao de

corrente escolhido foi uma rampa, que faz com que a corrente suba seu valor em um a

cada segundo de simula¢ao. Assim com blocos de medicao é possivel mandar os dados

para o espago de trabalho e tracar graficos que serdo expostos nos resultados e usados

nas redes neurais. EE importante ressaltar que para uma melhor precisao na analise dos

resultados variantes, foi utilizado um tempo de passo de 0,01 segundos, ou seja, passos

de 10 mA de corrente na curva de polarizacao da célula. A figura 6 mostra o esquema de

ligacao da fonte de corrente e seu funcionamento.
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Figura 6 — Visao geral do bloco de funcionamento da célula no simulink

A préxima secao entrard em detalhes dos resultados obtidos em simulacdo, quanto

a variacao dos parametros empiricos e outros fatores.
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3.3 Influéncia do coeficiente de transferéncia de carga («)

A figura 7 mostra a influéncia do coeficiente de transferéncia de carga na tensao
de saida, que relaciona-se com as perdas por ativacao. Nota-se que é desejavel que este
pardmetro seja o maior possivel, melhorando a eficiéncia e diminuindo as perdas de tensao.
Este parametro varia de 0 a 1, indicando a eficiéncia na troca de carga elétrica no catodo
e no anodo. Pode-se observar que o parametro afeta a curva de polarizacao principalmente
no valor de tensao para correntes pequenas. A inclinagao da curva preaticamente fica
constante, tampouco o limiar de conduc¢ao. Este tipo de perda, conforme comentado
anteriormente, ¢ notério para pequenos valores de corrente, como pode-se ver na figura 7.

Quanto menor for «, maiores sao as perdas no inicio da conducao.

Tensao dos terminais por Corrente de carga

151

afa=0,1
alfa =025
afa=0,5
afa=0,75
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=
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Densidade de corrente [Ncmz]

Figura 7 — Influéncia do coeficiente de transferéncia de carga na tensao de saida
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3.4 Influéncia da corrente de troca (/,)

A figura 8 mostra a influéncia da corrente de troca na tensao de saida. Nota-se
que esse parametro afeta diretamente a ativagao da célula para correntes baixas, como
previsto. E com menores correntes de troca, ha maiores perdas, perdas estas que nao afetam
a inclinacao da curva. Percebe-se que sao somente perdas subtrativas. Esta tendéncia
confirma-se pelo fato desta perda ser modelada pela corrente dividida pela corrente de
troca, como argumento de um logaritmo. Diferentemente do coeficiente de transferéncia de

carga, a corrente de troca apresenta uma linearidade com a corrente, pois sao argumentos
do logaritmo.

Tensao dos terminais por Corrente de carga
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Figura 8 — Influéncia da corrente de troca na tensao de saida
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3.5 Influéncia da resisténcia interna (R;)

A figura 9 mostra a influéncia da resisténcia interna na tensao de saida. Pode-se
notar que a resisténcia afeta diretamente com a inclinacdo das curvas de tensao, que
mantém praticamente o mesmo ponto de partida para corrente nula, e que também sao
limitadas pela mesma corrente de corte no final. Para menores resisténcias, menores sao

as perdas, e melhor eficiéncia atinge-se no conjunto da célula.

Tensao dos terminais por Corrente de carga

Tensio [V]

D 1 1 1 1 ™ 1 1 1 |

0 02 0.4 0.6 0.8 1 12 14 16

Densidade de corrente [Ncmz]

Figura 9 — Influéncia da resisténcia interna na tensao de saida
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3.6 Influéncia da corrente limitante (1;;,)

A figura 10 mostra a influéncia da corrente limitante na tensao de saida. Percebe-se
que para o inicio de conducao de corrente e correntes medianas nao ha muito efeito deste
parametro. Porém, ele é um fator limitante superior de conducao de corrente, como pode-se
ver. A tensao efetiva da célula cai abruptamente quando a corrente chega no seu valor de
limiar, indicando que nao é possivel de se conduzir mais corrente. A modelagem consegue

representar muito bem este fendomeno, como é apresentado abaixo, graficamente.

Tensao dos terminais por Corrente de carga
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Figura 10 — Influéncia da corrente limitante na tensao de saida
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3.7 Influéncia da temperatura (7')

A figura 11 mostra a influéncia da temperatura na tensao de saida. Para valores
menores de temperatura, hd um maior aproveitamento da célula, caracteristico da célula
com membrana de troca de protons. Nota-se que para altas temperaturas, a utilizacao da

célula é praticamente invidvel, e inclusive foge do escopo de modelagem (tensao teérica
negativa, caso impossivel).

Tensao dos terminais por Corrente de carga
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Figura 11 — Influéncia da temperatura na tensao de saida
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3.8 Influéncia da pressdo do combustivel (Pp;,)

A figura 11 mostra a influéncia da pressao do gas hidrogénio na tensao de saida.
Pode-se notar que o aumento da pressao é bom para aumentar-se a tensao de saida,
contudo um grande aumento da pressao proporciona uma pequena elevacao na tensao.
Isso é muito importante para direcionar grupos de pesquisa, quanto ao uso de hidrogénio.
Pois dependendo das condigoes, pode-se gastar mais energia para obter maior pressao do

que a energia ganha pela elevacao da tensao, tornando menos eficiente o sistema.

Tensao dos terminais por Corrente de carga
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Figura 12 — Influéncia da pressao do combustivel na tensao de saida
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3.9 Influéncia do uso de oxigénio puro (FPp,)

A figura 11 mostra a influéncia do uso de oxigénio puro na tensao de saida, em
comparagao com o uso de ar ambiente. Percebe-se que a diferenga é muito pequena. A
aplicacao de oxigénio puro seria viavel somente para células com alta poténcia, isto é, um
conjunto (stack) de células, ou se a célula em questao fosse sensivel ao ponto de demandar
oxigénio puro para operar. Conclui-se que usar o ar ambiente é a melhor alternativa,
para uma unica célula. Todavia é importante observar que ao usar-se ar ambiente para
alimentacao a vazao massica ha de ser maior, para suprir o oxigénio demandado, conforme
demonstrado no capitulo anterior. Isto resulta na necessidade de maiores tubulagoes de

admissao de ar, ou na diminui¢do da corrente limiar de condugao, de forma equivalente.

Tensao dos terminais por Corrente de carga
121

POZ2 = 0.21
11 PO2 =1

Tensdo [V]
=
w

=
oo

0.7

0.6

D. 5 I I I 1 I I I |
0 02 0.4 0.6 0.8 1 12 14 1.6

Densidade de corrente [Ncmz]

Figura 13 — Influéncia do uso de oxigénio puro na tensao de saida

3.10 Uso de curve fitting

Utilizou-se a ferramenta de ajuste de curvas do Matlab, em conjunto com os
dados de figuras do artigo de Paganin, Ticianelli e Gonzalez (1996), como uma forma
de encontrar-se os valores dos parametros empiricos de uma célula a combustivel, porém
ainda utilizando ferramentas matematicas para o mesmo. A ferramenta permite o usuario

digitar uma expressao matematica, dar os pontos x e y, no caso bidimensional, e inserir
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na equacao coeficientes para serem determinados. O programa executa um algoritmo, e
retorna, se possivel, os parametros da equacgao de entrada da melhor curva que passa
pelos pontos dados, com erro quadratico minimo. O intuito dessa abordagem é mostrar a
facilidade em estimar os parametros, mas sob as desvantagens de usar algoritmos de alto

processamento e softwares pagos.

No trabalho de Paganin, Ticianelli e Gonzalez (1996), foi feito um modelo similar
da célula, porém sem a presenca da corrente de limiar I, responsavel pelas perdas por
concentracao. Na modelagem utilizada ha a presenca de um termo denominado "curva
de tafel”, que basicamente é um paradmetro que generaliza todas as constantes do modelo
em uma s6 (constante de Faraday, «, constante dos gases, etc...). Resumidamente, o
modelo em seu artigo exprime um modelo que considera: o potencial sem perdas; as perdas
Ohmicas; e as de ativagao. Sendo assim utilizou-se somente o modelo com tais perdas
para o ajuste de curvas. A equacdo (3.1) abaixo, que foi utilizada no programa, utiliza
o potencial padrao (com temperatura e pressoes da tabela 1), e as perdas por ativagao
e 6hmicas. Para tratamento do programa, titulou-se a corrente como sendo a variavel x,

enquanto a tensao de saida como a variavel y.

1
y(x) = 1,2288 — Ry.x — 0,012846288 - — - log (f) (3.1)
(67 o

Foi feito ajuste de curva em dados das figuras 3, 4 e 5 do artigo de Paganin,
Ticianelli e Gonzalez (1996), e seus resultados sdo apresentados respectivamente pelas

figuras 14, 15 e 16. E os resultados encontrados sao apresentados na tabela 2 abaixo.

0.9 *  Dados experimentais [ -
Ajuste de curva

Tensao [V]
o]
£
T

=~
=
T

0.4 I I I I I I I I I I i
0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 09 1

Densidade de corrente [A/cm?]

Figura 14 — Ajuste de curva realizado em dados do artigo (fig. 3)
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Figura 15 — Ajuste de curva realizado em dados do artigo (fig. 4)
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Figura 16 — Ajuste de curva realizado em dados do artigo (fig. 5)

Tabela 2 — Tabela de dados de ajuste de curva refentes as figuras do artigo

Figura do artigo a I, [A)em?] R; [Q/cm?)
3 0,476 4.373¢-8 0,3368
4 0,4142  6,493¢-9 1,269

5 0,5075 1,7481e-8 0,3763
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4 Redes neurais artificiais

Neste capitulo sera introduzido o funcionamento de uma rede neural basica, e sera
feita explicagdo de uma rede neural mais complexa, que foi utilizada neste trabalho. Serao

comentados também diversos aspectos referentes a topologia, e treinamento.

4.1 Motivacao historica para o desenvolvimento de RNAs

De forma similar ao funcionamento biolégico do cérebro, uma rede neural artificial
tenta simular o funcionamento dos neurdnios e suas conexoes sinapticas. Um neurdnio
basicamente é uma célula capaz de mandar impulsos elétricos a outros neurdnios, se este
for devidamente estimulado. No cérebro, os neuronios estao dispostos em rede, na forma
de uma malha. Um neuro6nio se conecta com varios outros para transmitir impulsos e o
mesmo recebe conexoes para recebé-los. Essas conexdes denominam-se sinapses. Diz-se que
um neurdnio ¢ ativado se o mesmo recebe impulsos de entrada suficientes para atingir seu
limiar de ativagao. Dependendo da combinacao de neurdnios ativos que estao transmitindo
sinal a um neuronio especifico, o mesmo pode se ativar ou nao, dependendo da configuracao
de suas sinapses. A figura 17 mostra como é um neurdnio. Destaque aos dendritos, que

recebem os impulsos e aos axonios, que transmitem a resposta do neuronio.

Membrana celular

Nucleo celular

Citoplasma
Terminagdes sinapticas
Axdnio

Dendritos Soma

Figura 17 — lustragao de um neurénio (SILVA; SPATTI; FLAUZINO, 2010)

4.2 Rede Perceptron

Para fins de introducao ao tema, serd explicitada a arquitetura e funcionamento do
tipo de rede neural mais basico, uma rede Perceptron. Em uma RNA, o neurdnio faz o

papel de um combinador linear. As sinapes biolégicas se transformam em pesos sinapticos,
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que sao simplesmente fatores multiplicativos, de ganho, dos sinais de entrada do neurdnio.
O limiar de ativacao ¢ um valor numérico, no qual a combinagao linear dos sinais de
entrada é suficiente para ativar o neurdnio. Define-se por funcao de ativacao, como sendo
uma funcdo matematica aplicada ao resultado da combinacao linear do neurénio. No
caso da rede Perceptron simples, utilizam-se fun¢oes degrau, por possuirem caracteristica

binaria. A figura 18 ilustra como é o funcionamento da rede Perceptron.

X, o w,

X, == w, Ys{ g() —>vy

X, o0— w

Figura 18 — Ilustragao de uma rede Perceptron (SILVA; SPATTI; FLAUZINO, 2010)

Conforme descrito por SILVA, SPATTI e FLAUZINO (2010), para se obter a
saida da rede, primeiramente apresentam-se um conjunto de valores que representam as
variaveis de entrada do neuronio. Cada entrada (z1, ... x,) entdo é multiplicada pelo
seu respectivo peso sinaptico (wq, ws . .. w,), que varia de 0 a 1. Obtém-se o potencial de
ativagao (u), produzido pela soma ponderada dos sinais de entrada, somando-se o limiar de
ativagao (¢). Por fim, aplica-se a funcao de ativacao desejada ”¢(.)”, que define a resposta

do neurdnio e atua como um limitador da saida do neuronio.

Costuma-se utilizar a fun¢ao degrau como funcao de ativagao da rede Perceptron,

descrita pela equacao (4.1):

1 se u>0
w) — ) = 4.1
9(u) {O, se u<0 (4.1

E comum utilizar-se também a funcdo degrau bipolar, descrita pela equacio 4.2:

(4.2)

1, se u>0
-1, se u<0
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Figura 19 — Gréficos ilustrativos das fungoes degrau e degrau bipolar (SILVA; SPATTTI,;
FLAUZINO, 2010)

Desta forma, pode-se definir matematicamente a saida da combinacao linear da

rede e sua saida de resposta da seguinte forma:

n
u:Zwi'xi—Q
i=1

y = g(u)

(4.3)

4.2.1 Treinamento da rede Perceptron

Para a rede funcionar devidamente, é necessario treina-la. Para isto é necessario
coletar dados de entrada que se julguem interessantes para a tomada de decisao da rede.
Sao coletados os dados de entrada do determinado processo, e a saida de resposta desta
entrada. E necessdrio reproduzir diferentes pontos de operacdo, e eventos do processo
que deseja-se mapear. Nesta coleta de dados deve tentar contemplar ao maximo todas as

possibilidades do processo, para que a célula consiga uma boa generalizagao dos resultados.

Para o treinamento computacional, os pesos sinapticos da rede sao inicializados
aleatoriamente, para mitigar as chances de um viés no resultado do treinamento (por
exemplo uma solugao que busca o minimo de uma funcao retornar sempre um minimo local,
nao o minimo global). Costuma-se inicializar o limiar de ativagdo no valor de uma unidade
negativa, isso porque o limiar é somado as entradas ponderadas, o que justifica ele ser
iniciado com um valor negativo, pois comumente apds o treinamento seu valor é negativo.
Se ele fosse positivo, para qualquer entrada, a combinagao linear seria positiva (entrada
sempre positiva). Isto faria com que a rede sempre resultasse na mesma saida, utilizando-se
funcoes de ativacao bindrias. Todavia pode-se inicializar o limiar com valores positivos. O
algoritmo de treinamento ira justamente ajustar os limiares e os pesos sinapticos. Porém
quanto mais longe os pesos e o limiares forem inicializados do resultado de ajuste, que

inicialmente é desconhecido, serao necessarias mais iteracoes do algoritmo para ajuste.

E comum tratar os dados de entrada como um vetor, e os pesos sinapticos também

(em redes mais complexas sao matrizes). E comum tratar o limiar de ativagdo como uma
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entrada também, junto com os dados de entrada, pois o0 mesmo é somado na combinacao
linear dos pesos sinapticos. A ilustragdo da figura 18 mostra o limiar sendo adicionado ao

fim, apenas por motivos didaticos.

Conforme descrito por SILVA, SPATTI e FLAUZINO (2010), o processo de trei-
namento de uma rede Perceptron simples segue a regra de aprendizado de Hebb. Com
a rede inicializada com parametros aleatorios, inserem-se as entradas do treinamento, e
compara-se a salda obtida com a saida desejada. Quanto mais divergente a saida da rede
for do esperado maior vai ser o ajuste na fase de treinamento. O que se ajusta sao os pesos
sinapticos e os limiares do neuronio. Trata-se de um processo que sera repetido sequencial-
mente, para todas as amostras de treinamento, até que a saida da rede Perceptron atinja
um erro pequeno satisfatério perante as saidas desejadas. Cada iteracdo do algoritmo com
todas as entradas é denominada de época. Matematicamente, o ajuste nos pesos e limiares

se da de forma iterativa, na seguinte maneira:

wlqtual — w;znterio?“ + n(d(k) — y)x(k)

H?tual — eéznterior + 77<d(k‘) . y)l‘(k) (44)

Sendo w; 0s pesos sindpticos, 0; o limiar do neurdnio, 2*) o vetor contendo a k-ésima
amostra de treinamento, d* a saida desejada para a k-ésima amostra de treinamento, y a

saida da rede e i a taxa de aprendizagem da rede.

De acordo com a equagdo (4.4), nota-se que o procedimento da rede Perceptron se
da de forma sucessiva, e depende do fator de aprendizagem da rede. Quanto maior este
parametro for, maior serd o ajuste nos pesos sinapticos. A escolha do valor numérico para
aprendizagem ¢é arbitraria, e depende muito da experiéncia do projetista da rede e das

defini¢des do treinamento da rede.

No caso da rede simples Perceptron, que funciona comumente como um classifica-
dor, sabe-se que sua resolucao de respostas é apenas valida para problemas linearmente
separaveis, devido a presenca de somente um neurénio, que no caso planar, ird definir uma
reta que separa duas regides de respostas. Ainda no caso planar (duas entradas), pode-se
mostrar o processo de convergéncia da rede, da primeira época de treinamento, com erro

alto, até a ultima, com baixo erro, conforme figura 20
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Figura 20 — Iustracao do processo de convergéncia (SILVA; SPATTI; FLAUZINO, 2010)

Outro aspecto interessante do processo de treinamento, mediante diferentes topolo-
gias de rede e inicializagao aleatoria dos parametros, é que podem existir infinitas solugoes
aceitaveis, muito préximas umas das outras. Portanto cada treinamento feito com a rede,
mesmo atingindo o mesmo critério de erro, nao possuirda os mesmos pesos sinapticos que
algum outro. A figura 21 ilustra um exemplo onde ha uma regido de separabilidade das

solugoes que aceita mais de uma resposta plausivel.
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Figura 21 — Ilustragao da regidao de separabilidade (SILVA; SPATTI; FLAUZINO, 2010)

Parte dos dados coletados para o treinamento, irdo ser utilizados para efetivamente
treinar a célula, enquanto outra parte, uma porcentagem menor, sera utilizada para validar
o treinamento. Isto é necessario pois caso a rede seja testada com dados que foram usados
em seu treinamento, a mesma ird acertar muito bem, pois foi treinada para atingir um
erro {nfimo com tais dados. E parte da escolha do projetista da rede, além de testar a
topologia de rede mais viavel, escolher também se optard por possuir um treinamento
mais assertivo, com menor validacao de dados, ou de possuir um treinamento mais pobre,

com melhoria na validacao da generalizacao da rede. Isto também depende da quantidade
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de amostras. Um niimero alto de amostras tende a dar mais confianca para aumentar-se a

proporc¢ao de dados selecionados para validacao, em alguns casos.

4.3 Rede Perceptron multi camadas utilizada no projeto

Na sec¢ao anterior foi mostrado o funcionamento de uma rede Perceptron simples,
e o processo de treinamento supervisionado, a carater de simples introducao de redes
neurais. Entretanto, conforme a modelagem ¢é proposta, o equacionamento da célula a
combustivel possui suas nao linearidades, dessa forma é necessario utilizar-se de uma rede
com mais recursos, no caso, uma Perceptron multi camadas (PMC). Esta topologia de
rede introduz mais neurdnios, em camadas intermediarias, denominadas camadas ocultas,
situadas entre a camada de entrada e a de saida. Esta serd a topologia utilizada com os
dados de simulacao, pois este tipo de rede é muito versatil. Em questao de funcionamento,
uma rede PMC atua com o mesmo principio da rede Perceptron simples, com pesos
sindpticos limiares e neuronios agregadores. Porém uma PMC contera mais camadas de
neurdnios que gerarao mais conexoes sinapticas entre outros neuronios, assimilando-se
mais ainda com conexdes de uma rede no cérebro. Todo neurénio possui uma conexao com

outro neuronio de uma camada posterior.

O fluxo de informagoes em uma rede PMC inicia-se nas camadas de entrada,
seguindo para as intermediarias, até as de saida. Sendo assim, a saida de uma camada
anterior de neuronios sera a entrada de sua camada posterior de neuronios, e assim por
diante. As camadas escondidas assim como as de saida podem possuir mais de um neurdnio.

A figura 22 ilustra uma rede PMC, com duas camadas escondidas e mais de uma saida.

g 3
Entradas }ds allf?l'\ié
do PMC °
_- F.
\ C d |
Camada de an;ea szir:jzura
entrada i
12 Camada Neural 22 Camada Neural
Escondida Escondida

Figura 22 — Generalizacdo de uma rede Perceptron multi camadas (SILVA; SPATTI,
FLAUZINO, 2010)
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O processo de treinamento de uma rede PMC utiliza um algoritmo denominado
backpropagation. Com uma fase de geracao de saida da rede propagando suas entradas
(foward), e uma propagacao reversa, ajustando os limiares segundo o erro encontrado
(backward). Para este processo de treinamento serd necessario derivar alguns termos, que
dependem das funcoes de ativagao. Para isso é necessario utilizar func¢oes de ativagao
continuas e diferencidveis em todo o seu dominio. Uma fung¢ao escolhida neste trabalho
para ser utilizada é a fungdo tangente hiperbdlica, que assemelha-se a funcao degrau
bipolar. Esta fun¢ao é a funcao de ativacao escolhida para todos os neurdnios de todo tipo
de rede neste trabalho, com excecao da funcio de ativacio do neurénio de saida. E comum
utilizar na camada de saida, uma funcao do tipo rampa, apenas para combinar as saidas

da camada neural anterior, o que ocorreu, no caso.

tanh(x)

Figura 23 — Grafico da funcao tangente hiperbdlica
(Fonte: http://math.feld.cvut.cz/mt/txtb/4/txe3badf.htm - Acessada em
28/08/2016)

O desenvolvimento matematico do algoritmo de treinamento da rede PMC utiliza
uma extensa e complexa série de equacoes a fim de se minimizar o erro da rede. De forma
resumida, a equagao (4.5) sintetiza o processo de treinamento de uma rede PMC, ilustrada

pela figura 24.

w k)

J

W 4oy Y (4.5)
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Figura 24 — Denominagao de pardmetros para treinamento de uma rede PMC (SILVA;

SPATTI; FLAUZINO, 2010)

Onde VVJ(Zk ) 6 a matriz de pesos sinapticos que antecede a k-ésima camada de neuronios;
n é a taxa de aprendizagem da rede; Yi(k_l) ¢ a salda da camada de neuronios anterior
a k-ésima camada; e (5J(-k) ¢ o gradiente local aplicado em relacao ao j-ésimo neurénio da
camada de neurdnios posterior. Trata-se de um desenvolvimento muito complexo, que sera
poupado. A demonstracao e equacionamento completos podem ser verificados na obra
de SILVA, SPATTI e FLAUZINO (2010). O Matlab possui um ambiente para treinamento
de redes neurais de diversas topologias e diversos algoritmos para melhorar a rapidez. Basta
preparar as amostras e utilizar alguns comandos especificos. A preparacao e execugao do

treinamento da rede serao mostrados no capitulo seguinte.
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5 Resultados

Neste capitulo serao apresentados os resultados do trabalho apresentado, e a
validagdo das propostas feitas. Sera primeiramente mostrada a eficacia do equacionamento
do ponto de maxima poténcia, e logo em seguida serdo mostrados os resultados obtidos

realizando treinamentos em redes neurais de diversas topologias.

5.1 Confirmacdo do ponto de maxima poténcia

Conforme mostado na sec¢ao 2.10, é possivel encontrar um ponto de maxima operacao
de poténcia da célula a combustivel. Pode-se encontrar diversos tipos de curva de poténcia
da célula no apéndice C. Porém para demonstragao grafica, utiliza-se uma curva de poténcia
onde é notoria a presenga de um maximo local, para validar a eficdcia da equagao (2.37),
na qual foi possivel de se comparar o resultado da equacgao resolvida numericamente com
a simulacao no simulink. Os resultados foram muito precisos, conforme mostrado pela
figura 25. Pode-se ver que o erro é muito pequeno, apenas devido a aproximacao de ponto

flutuante. Estes resultados sao fidedignos e portanto muito tteis para trabalhos futuros.

Poténcia por Corrente de carga

R=0725

07k R=03 |i- ........... SUURRR ........ .........
R=05 | : : : : :

=
[a3]
T

R=075

=
m
T

D4k ........... ........ ........... I .......... ..........

Densidade de potdncia [VWom?)

0.z 0.4 0.6 0.8 1 1.2 1.4 1.6
Densidade de corrente [Ncmz]

Figura 25 — Visualizagdo dos pontos de maxima poténcia calculados frente a simulagao
(pontos em asterisco advém da resolugdo numérica)
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5.2 Treinamento das redes

Utilizou-se a simulagdo do ambiente Simulink para gerar os dados de treinamento e
de validagao para a rede neural. Foram mudados os parametros empiricos da célula, para
gerar os dados. Utilizou-se uma rede para cada tipo de pardmetro empirico (a, R;, e Iy).
Nao conseguiu-se uma boa generalizagao para o parametro I,. Contudo, este parametro

pode ser encontrado com programas de ajuste de curva, conforme mostrado anteriormente.

A generalizacdo que pretende-se obter com a rede neural é uma generalizacao
simples, apenas para indicar a possibilidade de um futuro refinamento na topologia da rede
e na geracao de dados para treinamento. Sendo assim, criou-se uma rede PMC para cada
parametro a ser mapeado, com uma tUnica saida. E ao gerar os dados de treinamento para
cada parametro, os outros parametros foram afixados em valores arbitrarios, conforme

apresentado na tabela 3.

Tabela 3 — Parametros constantes na simulacao

Parametro Valor

T 298,15 K
Py, 1.5
Po, 0,21

« 0,5

I, 3,1076 A/cm?
R; 0,15 Q.cm?
Iy 1,6 A/em?

Ou seja, por exemplo, ao serem simuladas diferentes topologias de funcionamento da célula,
com apenas o parametro « variando, fixou-se a temperatura em 298, 15 K, a resisténcia

em 0,15 Q.cm?, e etc...

Serao apresentados abaixo os valores do parametros escolhidos para gerar os dados

de simulacao e validacao de dados abaixo, denotados em forma vetorial.

Q treinamento = 10,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1}T

(5.1)
O geste = [0,15 0,25 0,35 0,45 0,55 0,65 0,75 0,85 0,95]"
R; treimamento = [0,10 0,15 0,30 0,50 0,70 0,80 0,90 1,00 2,00 5,00]" 52)
R; teste = [0,20 0,45 0,65 0,85 1,50 2,50 4,00]" '
L treinamento = [0,30,50,81,01,21,41,61,8]"
(5.3)

L, teste = 0,4 0,6 0,9 1,1 1,3 1,5 1,7]T
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Simulando estas diferentes topologias, foram salvos os dados da curva de polarizacao
da célula a combustivel, para cada caso. Devido & corrente minima (0,001 mA/cm?)
estipulada, ao limite de corrente definido (1,799 mA/cm?) e aos passos de tempo (0,01 s),
os dados salvos apresentam sempre a mesma quantidade de pontos, 187 pontos de entrada
(contendo informagoes de temperatura de operagdo e pressao também). Por motivos
de viabilidade de implementagao de uma rede neural, optou-se por utilizar cada ponto
da amostragem como sendo uma entrada especifica da célula. Trata-se de um ntmero
grande de entradas em uma rede neural, o que justifica certa demora para o algoritmo de
treinamento completar, contudo os resultados obtidos tendem a generalizar os parametros
necessarios. Nos primeiros testes, tentou-se optar por introduzir apenas uma entrada de
tensao na rede neural, que, para representar uma curva de polarizacao, era necessario
entrar ponto a ponto e manter a mesma saida, para um conjunto de treinamento. Tal

abordagem nao resultou em generalizagdes por parte da rede, portanto foi abdicada.

O programa Matlab utilizado para treinamento das redes neurais se encontra anexo
no apéndice B. Para o trabalho ficar enxuto, neste apéndice ha apenas o codigo que treina
a rede do pardmetro . Os outros codigos sdo muito idénticos, apenas diferindo na coleta
de dados do vetor geral com todos dados. Neste programa hé um processo de alinhamento
dos vetores de entrada e saida e de teste, assim como obtencao de seus valores maximos
e minimos para escalonamento. O programa encontra-se comentado, explicando seus
trechos para melhor reprodutibilidade dos resultados. Durante o treinamento utilizou-se
por conveniéncia a taxa de aprendizagem como 10, e o niimero maximo toleravel de épocas
para treinamento como 100 épocas. A figura 26 mostra a toolbox do Matlab treinando uma
rede. Destaca-se a topologia de redes no topo, o nimero de épocas, o tempo decorrido, e o
erro quadrético da atual topologia da rede. Ao finalizar o treinamento (seja por nimero
méximo de épocas, erro quadratico atingido ou outro fator) o programa dé sequéncia e
utiliza a rede para inserir o vetor de teste. O programador apods executar o algoritmo, pode

visualizar e comparar os resultados obtidos.
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4\ Neural Network Training (nntraintool) — O *
Neural Network
Larper L Layer ; Layar . Loy )
Ingud [ | | Oulpus
e - lar e
.4 G
ME*OH e gl g n
Algorithms
Training: Levenberg-Marquardt (trainlm)
Performance: Mean Squared Error  (mze)
Calculations:  MATLAB
Progress
Epoch: 0 || 30iterations | 100
Time: | 0:00:41 |
Performance: 139 | 9.95e-06 | 1.00e-05
Gradient o0y [ OB | 1.00e-07
Mu: 0.00100 | 1.00 | 1.00e<10
Validation Checks: 0 | 0 | &
Plots
Performance (plotperform)
Training State (plottrainstate)
Regression (plotregression)
1 epochs
v Opening Regression Plot
@ Stop Training @ cancel

Figura 26 — Ilustracdao do treinamento de uma rede neural via Matlab

5.3 Estudo de topologia de rede com menor erro

E uma boa prética realizar diversos treinamentos em uma rede com determinada
topologia, devido a inicializacao aleatoria dos parametros. Outro fator que agrega valor ao
treinamento, ¢ mapear a melhor topologia de rede. Demonstrar isto em forma de tabela é
muito Gtil pois desta forma consegue-se decidir a melhor topologia. As vezes opta-se por
uma topologia que realize treinamento mais rapido, outra vezes por uma topologia com
menor erro relativo, ou seja, uma melhor generalizagao. Escolheu-se para este trabalho
como melhor resultado de topologia de rede, as redes de cada parametro que apresentaram

o menor erro médio relativo.

O erro médio relativo das amostras de teste frente as de saida da rede é calculado
da seguinte forma: toma-se o valor absoluto da subtracao entre um valor de validagao
e um valor de saida da rede. Feito isto, divide-se o resultado pelo valor de validagao e
multiplica-se por 100, para obter-se a porcentagem. O processo é repetido para os outros

valores de validacao e seus respectivos valores de saida. No final, tira-se a média deste
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conjunto de dados para obter-se o erro médio relativo. A equacao abaixo mostra tal

processo em notagao de programacao Matlab.

erro = mean2(100 * abs((Vetor reste — Vetor saiaa)-/V etor resie)) (5.4)
Abaixo hé as tabelas que auxiliaram na escolha da melhor topologia de rede.

Tabela 4 — Estudo de melhor topologia de treinamento da rede do parametro «

Tempo de Erro médio Erro médio relativo

Parametro Topologia Taxa de Epocas de . quadratico
. . . treinamento . das amostras
desejado de rede  aprendizagem treinamento realizando i
[mm:ss| . de treinamento [%)]
treinamento|[%)|
a 15-10-15 10 100 02:15 4,52e-5 0,9039
o 10-10-15 10 100 00:56 4,92e-7 0,2499
! 10-10-10 10 92 00:49 8,06e-8 0,1406
! 10-10 10 100 00:45 2,05e-5 0,5545
! 20-20 10 100 04:48 7,15e-4 3,3657

Tabela 5 — Estudo de melhor topologia de treinamento da rede do parametro R;

E cdi L1 .
Tempo de 11O edio Erro médio relativo

Parametro Topologia Taxa de Epocas de . quadratico
. . . trelnamento . das amostras
desejado de rede  aprendizagem treinamento realizando .
[mm:ss] : de treinamento [%)]
treinamento|[%)]
R; 15-10-15 10 100 02:13 1,18 60,8389
R; 10-10-15 10 100 00:56 6,02e-4 14,4168
R; 10-10-10 10 19 00:08 3,58e-11 15,8983
R; 10-10 10 75 00:32 8,85e-8 33,9327
R; 20-20 10 100 04:36 4,19e-2 6,0121
R; 10-15 10 48 00:22 1,94e-8 12,6954

Tabela 6 — Estudo de melhor topologia de treinamento da rede do parametro I,

B . 1
Tempo de rro médio Erro médio relativo

Parametro Topologia Taxa de Epocas de . quadratico
. . , treinamento . das amostras
desejado de rede  aprendizagem treinamento realizando .
[mm:ss] . de treinamento [%]
treinamento|%)]
L, 10-15-15 10 11 00:06 1,59e-17 7,5168
L, 15-10-15 10 20 00:28 9,2e-3 9,4037
L, 10-10-10 10 66 00:33 9,84e-4 5,0611
I 10-10 10 5 00:01 5,05e-3 13,7596

Iip 20-20 10 2 00:03 9,41e-3 12.8372
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5.4 Melhores redes e topologias encontradas

Serao apresentadas as redes que obtiveram o melhor desempenho, segundo critério

estabelecido previamente.

Para a rede do parametro «, obteve-se o menor erro relativo, frente as outras
redes dos outros pardmetros. A rede escolhida possui erro relativo de apenas 0,14 %
aproximadamente. Sua topologia possui trés camadas neurais escondidas, com dez neuronios
cada. Conforme mostrado na equagao (5.1), foram usados dados escolhidos arbitrariamente
para validar a rede. Abaixo hé os mesmos dados, em conjunto com os dados de resultado

da rede, para comparacao e validacao da eficidcia da rede.

a teste = 0,1500 0,2500 0,3500 0,4500 0,5500 0,6500 0,7500 0,8500 0,9500]"
O rege = [0,1257 0,2505 0,3502 0,4499 0,5498 0,6498 0,7500 0,8504 0,9502]"

Para a rede do parametro R;, obteve-se o maior erro relativo, frente as outras redes
dos outros parametros. A rede escolhida possui erro relativo de 6,01 % aproximadamente.
Ainda assim é um erro baixo, porém nao tao baixo quanto o atingido pela rede acima.
Sua topologia possui apenas duas camadas neurais escondidas, com vinte neurénios cada.
Supoe-se que esta topologia de rede foi a melhor para o caso da resisténcia pois o efeito da
resisténcia é puramente linear. Desta forma nao sdo necessarios muitos neurénios para
mapear um ganho multiplicativo basico. De forma similar ao que foi feito na rede anterior,

mostram-se os resultados para comparagao e validacao.

R; teste = [0,2000 0,4500 0,6500 0,8500 1,500 2,5000 4,OOOO]T

(5.6)
Ri reqe = [0,1550 0,5027 0,6507 0,8209 1,6310 2,8070 4,1337]"

Para a rede do parametro I;,, obteve-se erro relativo mediano, comparado as
outras redes dos outros pardmetros. A rede escolhida possui erro relativo de 5,06 %
aproximadamente. Um valor de erro similar ao da resisténcia da célula. Sua topologia possui
trés camadas neurais escondidas, com dez neurdnios cada. Estima-se que esta topologia
de rede foi a melhor para o caso da corrente limitante pois de acordo a modelagem, este
parametro influi na tensdo de forma nao linear, segundo o logaritmo. Desta forma foram
necessarias mais camadas para mapear as nuancas do modelo mateméatico. De forma
similar ao que foi feito na rede anterior, mostram-se os resultados para comparacao e

validacao.

Lip, teste = 10,4000 0,6000 0,9000 1,1000 1,3000 1,5000 1,7000}T

(5.7)
L rede = [0,3229 0,6248 0,8247 0,9975 1,3195 1,5473 1,7893]"
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6 Conclusao

Os resultados obtidos na simulacao foram de encontro com o comportamento que
esperava-se atingir, segundo a bibliografia estudada de células a combustivel. Isso valida a
modelagem realizada, principalmente para a curva de polarizacao da célula. Pode-se notar
também que os dados obtidos na simulacao conseguiram treinar as redes neurais com erros

aceitaveis, seguindo as consideracoes de modelagem e geracao de dados para treinamento.

O Matlab foi uma ferramenta importante neste trabalho. Comecando pelo seu
uso em simulagoes simplorias, até obter-se o modelo usado (mais refinado), e finalmente

partindo para utiliza-lo para executar o algoritmo de treinamento de redes neurais.

Quanto ao resultado final e principal, a generalizacao e validagdo das redes neurais,
pode-se dizer que o trabalho atingiu seu objetivo de forma egrégia. Apesar de ndao conseguir
uma topologia que generalizasse a corrente de troca da célula, conseguiu-se uma boa
generalizagdo para os outros parametros, principalmente para o coeficiente de troca de
carga. Acredita-se que as topologias de rede treinadas para a corrente de troca nao
representavam fielmente a magnitude do universo de discurso da variavel nos dados de
treinamento. Foram feitas tentativas de treinamento com o pardmetro variando de 3.1072
até 3.107* mA/cm?. A rede pode ainda ter realizado o fenémeno de overfitting, onde
ocorre um treinamento excessivo, fazendo com que a rede acerte muito bem nos dados de
treinamento, mas perca totalmente generalizacao para outros dados (rede "viciada”). Essa
possibilidade foi mitigada, ao diminuir-se a tolerancia de erro durante o treinamento da

rede durante a fase de testes, porém o erro alto ainda persistia.

Pode-se notar que as topologias mais extensas e complexas de redes neurais (mais
camadas, mais neurdnios) foram necessarias para mapear com baixo erro parametros
empiricos com carater nao linear. Enquanto para uma perda linear, resistiva, a rede com

menor erro relativo foi uma rede simples, com duas camadas escondidas.

Ha o destaque a deducao matematica do ponto de maxima poténcia da célula. Foi
realizada uma derivacao simples, porém poderosa para aplicagoes futuras, principalmente
para plantas de controladores e algoritmos de rastreamento de maximo ponto de poténcia
(MPPT). Nos testes realizados no Matlab, o equacionamento encontrado apontou com
acuricia o ponto de mdxima poténcia. E importante ressaltar que a equacio (2.37)
representa o ponto de maxima poténcia referente a modelagem proposta neste trabalho.
Para diferentes tipos de modelos, recomenda-se realizar a primeira derivada para obter a

equacao, e a segunda derivada para validacao.

Para trabalhos futuros propoe-se refinar o modelo da simulacao no Matlab, incluindo

efeitos transitérios, devido a capacitancia da célula. Também héa a possibilidade de mapear
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os parametros de uma célula a combustivel, e criar um controlador de tensao de saida
com base nos parametros da célula (visando eficiéncia ou maxima poténcia). H4 também
a proposta de melhoria no tratamento de dados para treinamento de futuras redes, com

diferentes topologias.



71

Referencias

ALDABO, R. Célula Combustivel a Hidrogénio: Fonte de Energia da Nova Era. [S.1]:
Artliber, 2004. ISBN 9788588098220. Citado 2 vezes nas paginas 25 e 31.

ALIL, D. M.; SALMAN, S. K. Investigation into modelling of a fuel cell stack system. In:
Proceedings of the 41st International Universities Power Engineering Conference. [S.1.:
s.n.], 2006. v. 1, p. 137-141. Citado na pégina 27.

BARBIR, F. PEM Fuel Cells: Theory and Practice. [S.1.]: Academic Press, 2013. ISBN
9780123877109. Citado 3 vezes nas paginas 33, 34 e 35.

CELE, N. P. et al. The state of the art proton exchange membrane fuel cells for clean
energy. In: Energy Conference and Exhibition (EnergyCon), 2010 IEEE International.
[S.1.: s.n.], 2010. p. 865-869. Citado na pagina 27.

HEBB, D. O. The Organization of Behavior. New York: John Wiley, 1949. Citado na
pagina 29.

LARMINIE, J.; DICKS, A. Fuel Cell Systems Explained. [S.1.]: J. Wiley, 2003. ISBN
9780768012590. Citado 3 vezes nas paginas 28, 36 e 38.

NEHRIR, H.; WANG, C. Modeling and Control of Fuel Cells: Distributed Generation
Applications. [S.1.]: Wiley, 2009. ISBN 9780470233283. Citado 2 vezes nas paginas 35 e 41.

PAGANIN, V. A.; TICIANELLI, E. A.; GONZALEZ, E. R. Development and
electrochemical studies of gas diffusion electrodes for polymer electrolyte fuel cells. Journal
of Applied Electrochemistry, v. 26, n. 3, p. 297-304, 1996. ISSN 1572-8838. Citado 2 vezes
nas paginas 51 e 52.

SILVA, 1. N. D.; SPATTI, D. H.; FLAUZINO, R. A. Redes neurais artificiais para
engenharia e ciéncias aplicadas - Curso pratico. [S.1.]: ARTLIBER, 2010. ISBN
9788588098534. Citado 7 vezes nas paginas 55, 56, 57, 58, 59, 60 e 62.

SMARSSARO, T. R. Simulagao de células a combustivel em matlab/simulink®.
Dissertacao (Trabalho de Conclusdo de Curso) — Universidade federal do Espirito Santo,
2007. Citado na pagina 43.






Apéndices






75

APENDICE A - Cédigo do bloco de Nernst

function Vnernst = Nernst (T,Ph2,Po2)

$#codegen

%$Constantes

R = 8.3144621; %Constante Universal dos Gases

H = —286.02e3; % Entalpia da reacao do hidrogenio
S = —0.16328e3; % Entropia do hidrogenio

F = 96485.3365; % Constante de Faraday
n = 2; % Numero de eletrons envolvidos na reacao

Vnernst = —((H-T*S)/ (n*F)) + ((R+T)/ (n*F))*log(Ph2xsqgrt (Po2));

end
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APENDICE B - Cédigo para realizar

treinamento da rede PMC

o

clc % Preambulo para limpeza da area de trabalho e da tela
clear all

close all

$Definicoes

load('treinamentoalpha.mat'); % Arquivo de dados do Matlab que contem os

$pontos de treinamento e de teste obtidos no simulink

W = vetor_entrada; % vetor_entrada e o nome da matriz contendo os pontos de
polarizacao da curva

W(isnan(W)) = 0 ; % Devido ao uso do simulink e de condicoes de corrente de

simulacao maiores que a

$conducao possivel o vetor de entrada pode conter valores nao numericos.

$Esta linha de codigo limpa tais wvalores

clear vetor_entrada %Limpa—se da memoria o vetor de entrada, pois ele sera
utilizado no fim do programa

vet_entrada = W(:,1:183)"'; % O vetor de entrada da celula, recebe os dados
da matriz geral,

%$de acordo com o estipulado na simulacao

vet_desejado = W(:,184)"'; % O vetor desejado, utilizado no treinamento
recebe o vetor de dados

$conforme descrito no trabalho

xmin = min(vet_entrada'); %Definem—se o0s maximos e minimos para a rede

xmax = max (vet_entrada');

$Inicializar a rede
net = newff( [xmin' xmax'], ... % Comando para setup da rede. Ver
documentacao Matlab
$para maiores detalhes
[20 20 11,...
{'tansig' 'tansig' 'purelin'}, ...

'trainlm');
$Parametros internos

net.trainParam.epochs = 100;

net.trainParam.goal = le—7;
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net.trainParam, lr = 10;

net.trainParam.show = 5;

$Treinamento da rede

net = train(net, vet_entrada, vet_desejado);

$Teste e validacao

load('testealpha.mat'); %Carrega os dados de teste

V = vetor_entrada; %Processo similar ao de dados de entrada da rede

V(isnan(Vv)) = 0 ;

clear vetor_entrada

vet_teste_entrada = V(:,1:183)";

vet_teste_desejado = V(:,184)"';

vet_saida = sim(net, vet_teste_entrada); % Comando que usa como input as
entradas de teste

%$e recebe a saida da rede
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Figura 27 — Influéncia do coeficiente de transferéncia de carga na tensao de saida
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Figura 28 — Influéncia do coeficiente de transferéncia de carga na poténcia de saida
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Figura 29 — Influéncia do coeficiente de transferéncia de carga na eficiéncia
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Figura 31 — Influéncia da corrente de troca na poténcia de saida
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Figura 32 — Influéncia da corrente de troca na eficiéncia
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Figura 33 — Influéncia da resisténcia interna na tensao de saida
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Figura 34 — Influéncia da resisténcia interna na poténcia de saida
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Figura 35 — Influéncia da resisténcia interna na eficiéncia
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Figura 37 — Influéncia da corrente limitante na poténcia de saida
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Figura 39 — Influéncia da temperatura na tensao de saida
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Figura 40 — Influéncia da temperatura na poténcia de saida
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Figura 41 — Influéncia da temperatura na eficiéncia
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Figura 42 — Influéncia da pressao do combustivel na tensao de saida
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Figura 43 — Influéncia da pressao do combustivel na poténcia de saida
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Figura 44 — Influéncia da pressao do combustivel na eficiéncia
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Figura 45 — Influéncia do uso de oxigénio puro na tensao de saida
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Figura 46 — Influéncia do uso de oxigénio puro na poténcia de saida
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Figura 47 — Influéncia do uso de oxigénio puro na eficiéncia
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