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Resumo
Este trabalho de conclusão de curso visa caracterizar a modelagem matemática básica de
uma célula a combustível de membrana polimérica, e realizar simulações em ambiente
computacional Matlab-Simulink. O objetivo da simulação é de conhecer a influência dos
parâmetros empíricos, inerentes à fabricação da célula, na curva de polarização (tensão
versus corrente) de uma célula a combustível de membrana polimérica genérica. Ao
obter-se um ambiente de simulação com dados representativos, foi possível utilizá-los em
treinamento e validação de redes neurais artificiais. As redes neurais artificiais utilizadas
neste trabalho, visam generalizar o modelo matemático proposto, de forma simples, para
aplicações que focam em baixo custo e rápido processamento de dados.

Palavras-chave: Célula a combustível; hidrogênio; modelagem; simulação computacional;
sistemas inteligentes; redes neurais artificiais.





Abstract
This term paper aims to characterize the mathematical modeling of a polymeric membrane
fuel cell, and perform simulations using computing environments on Matlab-Simulink.
The simulation’s objective is to know the influence of empirical parameters, related to
the fabrication of the cell, on a generic polymeric membrane fuel cell polarization curve
(voltage versus current). Achieving a simulation environment with representative data, it
was possible to use them on artificial neural networks training and validation. The neural
networks that were used on this term paper, aim to generalize the proposed mathematical
model, in a simple way, for applications that focus in low costs and fast data processing.

Key-words: Fuel cell; hydrogen; modelling; computacional simulation; intelligent systems;
artificial neural networks.
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1 Introdução

No Brasil, o sistema elétrico é gerenciado em grandes blocos de energia, seja
na geração, transmissão ou na distribuição de energia elétrica. São geradas enormes
quantidades de energia elétrica para atender a demanda do país, e a distribuição dessa
energia tem caráter de ser centralizada, devido à maioria da geração advir de hidrelétricas.
Isto é, poucos pontos de geração para uma potência elevada. O trabalho aborda células
combustíveis de baixa potência e temperatura de operação, o que justifica a pesquisa de
células com tais características, para que elas possam ser introduzidas de forma eficiente
e facilitada no cotidiano da população. As células a combustível podem ser bastante
propensas para o uso domiciliar. Outro fator beneficente para o uso doméstico é de que as
células são silenciosas, e diferentemente de geradores à combustão, o processo de conversão
de energia da célula converte energia química em energia elétrica.

Pode-se notar que cada vez mais o número de aparelhos eletrônicos aumenta, por
exemplo smartphones, tablets, notebooks e etc. Pode-se então fazer uso dessas células para
geração distribuída, que é caracterizada por ser a distribuição de energia gerada próxima ao
local de consumo, com vários blocos de geração de pequenas potências, com característica
de geração descentralizada, antagonizando o cenário atual. Em um caso mais específico,
um usuário pode gerar sua própria energia, de forma independente da rede, e pode vender
sua energia se quiser, por exemplo. Dessa forma, uma maior implantação de células a
combustível adiaria investimentos de grande porte em energia elétrica, além de propiciar
maior economia, uma vez que não seria necessária a construção de linhas de transmissão.

Uma célula a combustível é um elemento que converte energia química em elétrica.
Seu combustível na maioria dos casos é o hidrogênio, mas há aplicações que usam metanol,
hidrocarbonetos, e outros compostos que possuam hidrogênio em sua composição. A célula
a combustível pode ser utilizada em centrais de fornecimento, instalações remotas, energia
distribuída, propulsão de veículos e unidades de serviço auxiliar, de forma eficiente e com
a vantagem da co-geração (aproveitamento térmico) (ALDABO, 2004).

Neste trabalho, será utilizado como modelo de referência uma célula a combustível
de membrana de troca de prótons, conhecida pela sua sigla em inglês, PEMFC (Protons
exchange membrane fuel cell). A célula presente no laboratório (figura 1), foi gentilmente
doada ao LAT (Laboratório de Alta Tensão) por um grupo de pesquisa do departamento
de química da universidade (IQSC). Trata-se de uma PEMFC que não precisa de adução
forçada de ar oxigênio, pois o ar entra por suas laterais através de pequenas vilosidades
presentes na placa de difusão de gases, como é possível verificar na figura 2.
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Figura 1 – Célula a combustível presente no laboratório

Figura 2 – Célula a combustível presente no laboratório - Perfil para visualização de
entrada de ar na placa de difusão de gases

1.1 Funcionamento da célula a combustível
As células a combustível são equipamentos eletroquímicos que convertem energia

química em energia elétrica, água e calor. Possuem características inerentes aos motores,
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pois funcionam enquanto há combustível para alimentá-las e também relativas às baterias,
pois produzem eletricidade a partir de um combustível, sem, no entanto, haver combustão
ou geração de ruídos (ALI; SALMAN, 2006). Os principais combustíveis utilizados pela
célula, hidrogênio e oxigênio, são abundantes na natureza. O oxigênio pode ser retirado
diretamente do ar. O hidrogênio pode ser obtido de diversas fontes: eletrólise da água, gás
natural, propano, metanol ou derivados do petróleo.

Existem diversos tipos de células a combustível, todas contendo uma membrana ou
eletrólito, que é colocado entre dois eletrodos. As células podem ser classificadas quanto
ao tipo de aplicações, eletrólito ou temperatura que utilizam em seu funcionamento. As
células de carbonato fundido e de óxido sólido são células de altas temperaturas, e são
utilizadas em estações estacionárias de geração de energia. Já as células alcalinas e as de
membrana polimérica (PEMFC), são células de baixas temperaturas de operação (CELE
et al., 2010) e usadas em aplicações domiciliares, laboratoriais e automotivas. A célula de
membrana polimérica (PEMFC), que será abordada neste trabalho, utiliza uma membrana
de Nafion como eletrólito, que possibilita a interação entre as moléculas de hidrogênio
e de oxigênio. Utiliza ainda um catalizador de platina, que acelera a reação química do
processo de geração de eletricidade.

Um problema característico deste tipo de tecnologia é a obtenção e o armazenamento
do hidrogênio. Naturalmente, o hidrogênio se encontra combinado com outros elementos
químicos, e faz-se necessário separá-lo para a utilização na célula. Pode-se usar então o
metanol (rico em hidrogênio) como combustível da célula, reduzindo assim a complexidade
do sistema como um todo. Nesta modelagem, no entanto, serão considerados apenas o
hidrogênio puro e o oxigênio como combustíveis.

O rendimento de uma PEMFC chega a 80%, se o calor gerado pela célula puder
ser utilizado (CELE et al., 2010). As restrições das aplicações práticas destas células
concentram-se no elevado custo de produção, na obtenção e armazenamento do gás
hidrogênio e na influência da temperatura na condutividade iônica e na estabilidade
mecânica da célula. Apesar destes inconvenientes, a célula combustível tem um futuro
muito promissor, uma vez que poderá suprir demandas locais de energia elétrica (baixas
potências), bem como pode ser utilizada em automóveis e aparelhos portáteis.

1.2 Características elétricas da célula

A tensão elétrica de saída da célula é contínua, e depende da quantidade de corrente
de carga e do fluxo de combustível que lhe atravessa na reação. Portanto, é necessário um
sistema de gerenciamento e controle, para que se tenha funcionalidade do fornecimento de
energia elétrica. A curva do gráfico tensão vs. densidade de corrente é denominada curva
de polarização, que fornece a característica típica do comportamento da célula. Quando
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esta se encontra em circuito aberto, apresenta uma tensão elétrica em seus terminais, que
é denominada tensão elétrica de Nernst. Ao se conectar uma carga na célula, a tensão
elétrica produzida assume valores diferentes da tensão de Nernst, e torna-se cada vez menor
com o aumento da corrente de carga. Esta diferença entre a tensão real de saída da célula
e a tensão de Nernst é devida às perdas do sistema, como a resistência elétrica própria da
célula. Há as perdas ôhmicas, as perdas de ativação (que ocorre para baixas densidades de
corrente) e as perdas por concentração (caracterizadas por diferentes concentrações dos
reagentes ao longo dos canais que os conduzem) (LARMINIE; DICKS, 2003).

Basicamente, a célula a combustível de membrana polimérica opera da seguinte
forma, didaticamente. Ao adentrar no ânodo, os átomos de hidrogênio, compostos de um
elétron e um próton, se dividem. A membrana polimérica aceita somente passagem de
prótons, que tomam rumo ao cátodo. Os elétrons, são obrigados a passar por um circuito
externo (carga elétrica da célula) para chegarem ao cátodo. No cátodo, com a admissão
de prótons (íons 𝐻+), elétrons pelo circuito e gás oxigênio, ocorre a formação de água.
A movimentação de elétrons por um circuito externo é o que resulta na transferência de
potência elétrica pela célula. A figura 3 ilustra a descrição feita anteriormente.

Figura 3 – Funcionamento básico de uma célula a combustível
(Adaptado de http://www.ipv.pt/millenium/Millenium29/21.pdf) - Acessada em

28/08/2016

Neste trabalho serão utilizadas algumas constantes, de conhecimento geral. A
tabela 1, exprime os valores das constantes universais utilizadas.



29

Tabela 1 – Tabela de constantes usadas no trabalho

Parâmetro Valor
Δ𝐻 −285, 8 𝑘𝐽/𝑚𝑜𝑙
Δ𝑆 −0, 16328 𝑘𝐽/𝑚𝑜𝑙.𝐾
𝑛 2 elétrons
𝐹 96485, 3365 𝐶𝑜𝑢𝑙𝑢𝑚𝑏/𝑚𝑜𝑙
𝑅 8.3144621 𝐽/𝑚𝑜𝑙.𝐾

𝑀𝐻2 2, 02.10−3 𝑘𝑔/𝑚𝑜𝑙
𝑀𝑂2 32.10−3 𝑘𝑔/𝑚𝑜𝑙
𝑀𝐻2𝑂 18, 02.10−3 𝑘𝑔/𝑚𝑜𝑙
𝜌𝐻2 0, 08235 𝑘𝑔/𝑚3

1.3 Utilização de redes neurais artificiais

Uma rede neural artificial (RNA) é uma ferramenta de um conjunto de artifícios
computacionais denominados sistemas inteligentes, que utilizam recursos de computação e
programação para simular a resolução de problemas tal qual o cérebro humano faz. Avanços
científicos na área de neurologia, fizeram a humanidade conhecer melhor a composição
celular e o trânsito de impulsos no cérebro humano. Isso motivou o desenvolvimento de
pesquisas relacionadas a conceber um método para simular o funcionamento do cérebro
humano, iniciadas em meados do século XX por Hebb (1949)

O objetivo deste trabalho é utilizar os dados da simulação computacional do modelo
da célula para treinar redes neurais. Os dados de entrada da rede são diversos pontos de
tensão e de corrente, referentes à operação da célula e sua curva de polarização. As saídas
são os parâmetros empíricos da célula, descritos na modelagem. Com um modelo correto
de funcionamento, e com dados para simulação e treinamento da rede, pode-se determinar
parâmetros de células reais, com base nos dados de bancada. Isto possibilita, por exemplo,
um consumidor aferir os dados de um determinado fabricante de células a combustível, ou
um grupo de pesquisa conhecer de fato os parâmetros de uma célula experimental recém
montada.

O resultado após treinamento e validação de uma rede neural é uma matriz de
pesos sinápticos e os vetores de limiares de ativação. Simplesmente matrizes e vetores
apenas. A vantagem da abordagem deste trabalho ser focada em redes neurais, é diminuir
o custo, seja ele financeiro ou de processamento. Certamente foi necessário o uso de Matlab
para simular o modelo e treinar a rede, mas após essas etapas, pode-se tomar as matrizes
obtidas e descarregá-las na memória de algum microcontrolador, que por exemplo execute
um algoritmo que controle a malha de saída de potência de uma célula a combustível.
Monitorar o comportamento da célula e prever seus parâmetros enquanto a mesma opera,
pode ser de grande valia para futuras aplicações, inclusive para monitorar se existe a



30

necessidade de uma futura manutenção no sistema da célula. O microcontrolador teria
em sua memória as matrizes, e faria operações básicas de multiplicação e adição para
obter os parâmetros empíricos por exemplo. Comparado à solução por ajuste de curvas,
economiza-se financeiramente e em velocidade na obtenção de resultados utilizar uma
abordagem de programar as matrizes das redes neurais em microcontroladores.
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2 Desenvolvimento teórico

Células a combustível, conceitualmente operam de forma simples. Uma célula a
combustível converte de energia eletroquímica presente em algum tipo de combustível em
energia elétrica na forma de corrente contínua (CC). O combustível de operação é o gás
hidrogênio, que será uma entrada do sistema. A célula também necessita de gás oxigênio
para funcionar. De forma básica, o hidrogênio se combina com o oxigênio formando água,
e energia é produzida no processo, tanto térmica (perdas), como elétrica. Pode-se notar
que o processo de conversão de energia, é justamente o inverso da eletrólise. Será dado a
seguir o embasamento teórico necessário, que justifica o uso da equação de Nernst, para o
estudo em específico. A equação da reação química global é denotada a seguir:

𝐻2 + 1
2𝑂2 + 2𝑒− → 𝐻2𝑂 + 2𝑒− (2.1)

2.1 Energia do hidrogênio
A reação química da célula libera energia porque os estados energéticos anteriores

eram maiores. Pode-se notar que a molécula de hidrogênio é altamente energética em
relação a seu peso (ALDABO, 2004). A energia liberada pela reação química relaciona-
se à variação da entalpia (Δ𝐻). Quimicamente, a variação da entalpia depende dos
coeficientes estequiométricos da reação, e da entalpia de formação dos reagentes e produtos.
Por definição, a entalpia de formação de espécies elementares é igual a zero, e como os
reagentes são gases elementares, a variação da entalpia da reação dependerá apenas da
entalpia de formação da água

Δ𝐻 = 𝐻𝑓𝐻2𝑂
− 𝐻𝑓𝐻2

− 1
2 · 𝐻𝑓𝑂2

⇒ Δ𝐻 = 𝐻𝑓𝐻2𝑂
(2.2)

Se o produto da reação for vapor de água, parte da energia disponível será usada
para a vaporização da água. As equações químicas seguintes mostram a energia da reação,
para cada caso. Foi fixada uma temperatura de reação de 25∘𝐶.

𝐻2(𝑔) + 1
2𝑂2(𝑔) → 𝐻2𝑂(𝑙) + 285, 8 𝑘𝐽 Formação de água líquida (2.3)

𝐻2(𝑔) + 1
2𝑂2(𝑔) → 𝐻2𝑂(𝑔) + 241, 818 𝑘𝐽 Formação de vapor d’água (2.4)
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2.2 Energia livre de Gibbs

Para entender sobre o funcionamento da Célula, e sobre a espontaneidade da reação,
faz-se uso do conceito da energia livre de Gibbs.

A energia livre de Gibbs é uma grandeza que define o total de energia associada a
um sistema termodinâmico disponível para realizar trabalho útil. A variação da energia
livre também diz se a reação ocorrerá de forma natural (espontânea) ou forçada. Se a
variação da energia for positiva, o processo não é espontâneo. Porém, se a variação for
negativa, o processo será espontâneo, que é o caso do funcionamento da célula combustível.
As moléculas de hidrogênio possuem um alto estado energético, e ao entrarem em contato
com o oxigênio, se combinam, estabelecendo um menor estado de energia. A variação da
energia livre depende apenas dos estados iniciais e finais, portanto define-se a variação da
energia livre de Gibbs.

Δ𝐺 = 𝐺𝑓 − 𝐺𝑖 (2.5)

Onde 𝐺𝑓 é a energia final, e 𝐺𝑖 é a energia inicial. Analisando a variação da energia é
possível saber mais sobre o processo.

⎧⎨⎩ Δ𝐺 < 0 Espontâneo
Δ𝐺 > 0 Não Espontâneo

(2.6)

2.3 Energia livre de Gibbs para representar o trabalho útil

Sabe-se que a energia livre de Gibbs está relacionada ao trabalho útil possível de
ser realizado pelo sistema (no caso trabalho elétrico 𝑊𝐸𝐿), portanto

𝑊𝐸𝐿 = −Δ𝐺 (2.7)

A carga que passa durante a reação é o número de mols de elétrons vezes a carga
do elétron

𝑞 = 𝑛 · 𝑁𝐴𝑣𝑜𝑔𝑎𝑑𝑟𝑜 · 𝑞𝑒− ⇒ 𝑞 = 𝑛𝐹 (2.8)

Onde 𝐹 é a constante de Faraday e 𝑛 é o número de elétrons envolvidos na equação
química global (no caso, são 2). Sabe-se que o trabalho elétrico se relaciona à carga da
seguinte forma

𝑊𝐸𝐿 = 𝑞𝑉𝑜 (2.9)
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É importante ressaltar que 𝑉𝑜 é denotação de tensão elétrica. Com as três equações
acima descritas, consegue-se obter, após feitas as substituições, que

Δ𝐺 = −𝑛𝐹.𝑉𝑜. (2.10)

A forma útil da equação que será usada é

𝑉𝑜 = −Δ𝐺

𝑛𝐹
. (2.11)

Que representa a tensão de saída em função da variação da Energia Livre de Gibbs. Usando
somente (2.11) obtém-se 𝑉𝑜 = 1, 482 𝑉 teóricos. Esse potencial é conhecido como potencial
termoneutro (BARBIR, 2013). Ele é o máximo de tensão elétrica teórica possível de se
obter da reação com o hidrogênio. Porém nesse estudo, serão imputadas as diversas perdas
do processo, que são necessárias para a modelagem. A temperatura afeta consideravelmente
o ponto de operação da célula.

2.4 Efeito da temperatura
A energia livre de Gibbs está muito relacionada à temperatura, de fato nessa

abordagem ela depende da entalpia e da entropia da reação também. Pois de acordo
com a entropia, um aumento na temperatura aumenta o nível de desordem da reação,
fazendo com que parte da energia seja utilizada neste processo. A equação com o efeito da
temperatura é deduzida abaixo.

Δ𝐺 = Δ𝐻 − 𝑇Δ𝑆 (2.12)

⇒ 𝑉𝑜 = −
(︃

Δ𝐻

𝑛𝐹
− 𝑇Δ𝑆

𝑛𝐹

)︃
(2.13)

Por exemplo, à 25 ∘𝐶 a variação da entropia é de −0, 16328 𝑘𝐽/(𝑚𝑜𝑙 · 𝐾). Isso
implica em Δ𝐺 útil de −237, 34 𝑘𝐽/𝑚𝑜𝑙, e portanto a tensão de saída será 1, 23𝑉 , para
estas condições.

2.5 Efeito da pressão
A pressão das espécies da reação tem efeito na tensão de saída. Utilizando conceitos

de termodinâmica, sabe-se que:

𝑑𝐺 = 𝑉𝑚 · 𝑑𝑃. (2.14)
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Onde 𝑉𝑚 é o volume molar de uma dada amostra, assim como 𝑃 é a pressão e 𝐺 é a
energia livre de Gibbs. Será feita recorrência da fórmula universal dos gases:

𝑃𝑉𝑚 = 𝑅𝑇. (2.15)

Manipulando a equação(2.15) pode-se obter(2.14) escrita de outra forma:

𝑑𝐺 = 𝑅𝑇
𝑑𝑃

𝑃
⇒ 𝐺 = 𝐺𝑜 + 𝑅𝑇 ln 𝑃

𝑃𝑜

. (2.16)

A equação(2.16) descrita acima poderia ser melhor aproveitada se fosse descrita de
forma variável, pois a análise é feita para a variação da Energia Livre de Gibbs. Para isso
serão usados os coeficientes estequiométricos da equação química global (BARBIR, 2013).
Será apresentada uma equação de uma reação química genérica, e efeito dos coeficientes
estequiométricos sobre a energia livre de Gibbs:

𝑗 · 𝐴 + 𝑘 · 𝐵 → 𝑚 · 𝐶 + 𝑛 · 𝐷, (2.17)

⇒ Δ𝐺 = Δ𝐺𝑜 + 𝑅𝑇 ln

⎡⎢⎣
(︁

𝑃𝐶

𝑃𝑜

)︁𝑚
·
(︁

𝑃𝐷

𝑃𝑜

)︁𝑛

(︁
𝑃𝐴

𝑃𝑜

)︁𝑗
·
(︁

𝑃𝐵

𝑃𝑜

)︁𝑘

⎤⎥⎦. (2.18)

As pressões que são argumento do logarítmo natural na equação(2.18) são descritas
na forma de pressão parcial, isto é, a pressão absoluta dividida por uma pressão de
referência 𝑃𝑜 (geralmente 1 𝑎𝑡𝑚). A partir deste ponto, todas as pressões presentes nas
seguinte equações e os parâmetros de pressão serão dados em termos de pressões parciais.
Em termos da PEMFC:

Δ𝐺 = Δ𝐺𝑜 + 𝑅𝑇 · ln
⎡⎣ 𝑃𝐻20

𝑃𝐻2 · 𝑃
1
2

𝑂2

⎤⎦. (2.19)

2.6 Equação de Nernst
Utilizando as equações de potencial padrão, de efeito da temperatura e de efeito da

pressão, obtém-se a Equação de Nernst. Ela será a base do modelo utilizado, e representa
fielmente os parâmetros básicos de entrada e saída de uma célula convencional

𝑉𝑛𝑒𝑟𝑛𝑠𝑡 = 𝑉𝑜 + 𝑅𝑇

𝑛𝐹
· ln

⎛⎝𝑃𝐻2 · 𝑃
1
2

𝑂2

𝑃𝐻20

⎞⎠ (2.20)

É importante notar que o argumento do logarítmo da equação(2.19) inverteu na
Equação de Nernst devido ao sinal negativo presente em (2.11).
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2.7 Eficîencia da célula
A eficiência termodinâmica pode ser calculada da seguinte forma:

𝜂𝑐𝑒𝑙𝑙 = Δ𝐺

Δ𝐻
(2.21)

Em teoria, a eficiência é de 83 % à 25 ∘𝐶. Não consegue se atingir esta eficiência na
prática, pois há perdas no sistema, que serão discutidas. Uma abordagem para o cálculo da
célula em questão é utilizar a tensão de saída em circuito aberto e dividi-la pelo potencial
termoneutro. O erro passível de ser cometido nessa aproximação é devido à precisão de
casas decimais utilizadas e à temperatura padrão utilizada para determinar a variação da
entalpia.

𝜂𝑐𝑒𝑙𝑙 = 𝑉𝑎𝑏𝑒𝑟𝑡𝑜

1, 4812 𝑉
(2.22)

2.8 Perdas na célula
Sabe-se que a célula a combustível fornecerá uma tensão de saída segundo a equação

de Nernst (2.20). Essa tensão contudo é somente para circuito aberto, e não representa de
forma fidedigna a realidade da célula em operação, quando é drenada corrente elétrica da
mesma. As perdas de tensão da célula podem ser modeladas de acordo com o ponto de
operação de corrente da mesma, como feito em (BARBIR, 2013; NEHRIR; WANG, 2009).

As perdas que serão consideradas são perdas por ativação, ôhmicas e por concen-
tração. Essas perdas podem ser modeladas como quedas de tensão presentes na célula de
tal forma:

𝑉saída = 𝑉Nernst − 𝑉act − 𝑉ohm − 𝑉conc. (2.23)

As perdas por ativação ocorrem devido à inércia dos reagentes no sistema da
célula, e portanto afetam bastante o desempenho da célula para correntes pequenas,
inerentes ao início do funcionamento da célula. Elas têm valor considerável para pequenos
valores de corrente, mas com correntes maiores essas perdas diminuem, em proporção. Sua
modelagem proposta é descrita abaixo pela equação (2.24). Seus parâmetros empíricos são:
𝛼, denominado coeficiente de transferência de carga; e 𝐼𝑜, denominada corrente de troca.

𝑉𝑎𝑐𝑡 = 𝑅𝑇

𝛼𝑛𝐹
· ln

(︂
𝐼

𝐼𝑜

)︂
(2.24)

As perdas ôhmicas ocorrem devido à resistência elétrica que a célula oferece ao
elétrons. São perdas de resistência intrínseca à célula e também devido à resistência do
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cátodo do ânodo e dos elementos de conexão do circuito. Seu parâmetro empírico pode ser
sintetizado apenas por 𝑅𝑖, que representa a contribuição de todos os elementos resistivos
de perda. As perdas dependem da corrente que flui pela célula, e da própria resistência da
mesma, logo:

𝑉𝑜ℎ𝑚 = 𝑅𝑖.𝐼 (2.25)

As perdas por concentração ocorrem devido à lentidão do sistema em repor os
reagentes da reação. Isso pois quanto maior a corrente drenada, maior é a quantidade
de fluxo de hidrogênio demandada, e para a concepção estrutural da célula há um limite
do quanto a mesma pode transportar e repor o hidrogênio demandado. Seu parâmetro
empírico de modelagem é a corrente de corte ou limitante (ou threshold do inglês): 𝐼𝑡ℎ.
Esse tipo de perda é característico de altos valores de corrente, sendo um fator limitante
superior para condução de corrente e portanto transferência de energia.

𝑉𝑐𝑜𝑛𝑐 = 𝑅𝑇

𝑛𝐹
· ln

(︂
𝐼𝑡ℎ

𝐼𝑡ℎ − 𝐼

)︂
(2.26)

Portanto, através das equações de perdas modeladas acima, pode-se obter uma boa
estimativa da tensão de saída da célula de acordo com parâmetros de entrada e corrente
de carga, conforme descrito pela equação (2.23).

2.9 Consumo de gases

É de extrema importância aos grupos de pesquisa conhecer o consumo dos gases,
principalmente do hidrogênio, o combustível, assim como apresentado por Larminie e Dicks
(2003). Conhecer o consumo de hidrogênio poderá dizer se haverá desperdício de hidrogênio
em ensaios futuros de grupos de pesquisa, pois se o fluxo de hidrogênio for muito maior do
que o hidrogênio demandado, o seu excesso será ejetado pela saída do ânodo da célula. Se
a célula a combustível não possuir um sistema de readmissão do hidrogênio excedente, o
mesmo será desperdiçado.

2.9.1 Consumo de hidrogênio

A corrente drenada da célula está intimamente ligada ao consumo de hidrogênio
pois ele é a única fonte de elétrons livres do sistema. A carga elétrica total transferida
pela reação química é dada pelo coeficiente estequiométrico dos elétrons da reação global
(𝑛), pela carga de um mol de elétrons dada pela constante de Faraday (Coulumb/mol)
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multiplicada por um mol de hidrogênio (denotado por 𝐻2):

𝑄𝑒𝑙 = 2𝐹.𝐻2. (2.27)

Na forma diferencial, (2.27) se torna:

𝑑𝑄𝑒𝑙 = 2𝐹.𝑑𝐻2. (2.28)

Derivando a equação acima no tempo, obtemos uma equação que relaciona corrente
(carga pelo tempo) com hidrogênio:

𝐼 = 2𝐹.𝛿𝐻2 , (2.29)

ou simplesmente

𝛿𝐻2 = 𝐼

2𝐹
𝑚𝑜𝑙/𝑠. (2.30)

Onde 𝛿𝐻2 é a taxa de consumo de hidrogênio, em mols por segundo. Porém deseja-se
adequar a equação (2.30) para obter-se dimensões de consumo mais palpáveis. Para isso,
multiplica-se a equação (2.30) pela massa molar do gás hidrogênio (𝑀𝐻2) que é conhecida
e representada na tabela 1:

𝛿𝐻2 = 𝑀𝐻2𝐼

2𝐹
𝑘𝑔/𝑠. (2.31)

A equação (2.31) representa, de forma aceitável, a taxa de consumo do combustível
da célula do tipo PEM.

2.9.2 Consumo de oxigênio

De forma análoga ao consumo de hidrogênio, o consumo de oxigênio pode ser
descrito através da constante de Faraday, da corrente de carga e da massa molar do
oxigênio, salvo uma alteração estequiométrica:

𝛿𝑂2 = 𝑀𝑂2𝐼

4𝐹
𝑘𝑔/𝑠. (2.32)

Caso se utilize o ar ambiente ao invés de oxigênio puro, aplica-se uma constante
de proporcionalidade, que representa a porcentagem da contribuição do oxigênio no ar
atmosférico:

𝛿𝐴𝑟 = 𝑀𝑂2𝐼

4𝐹
· 1

0, 21 𝑘𝑔/𝑠. (2.33)
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2.9.3 Produção de água

Sabe-se que um produto da reação química da célula é a água, e ela possui o mesmo
coeficiente estequiométrico que o hidrogênio na reação química (2.1). Portanto a equação
de produção de água será similar, ponderada pela massa molecular da água:

𝛿𝐻2𝑂 = 𝑀𝐻2𝑂𝐼

2𝐹
𝑘𝑔/𝑠. (2.34)

Um exemplo prático é feito em (LARMINIE; DICKS, 2003), onde mostra-se que
um conjunto de células de 1 𝑘𝑊 operando com tensão de 0, 7 𝑉 produz 0, 48 𝑘𝑔 de água
em uma hora, praticamente meio litro.

2.10 Ponto de máxima potência
Dependendo da aplicação, é de interesse conhecer-se o ponto máximo de potência

da célula. Antes desse ponto, a potência é menor devido a uma corrente baixa, e após
esse ponto a potência é menor também pois a potência dissipada pelas perdas supera a
potência útil do circuito externo. Para encontrar este ponto, toma-se a equação (2.23) e
ela é multiplicada pela corrente, conseguindo assim potência:

𝑃útil = 𝐼.𝑉𝑠𝑎í𝑑𝑎 = 𝐼.(𝑉𝑁𝑒𝑟𝑛𝑠𝑡 − 𝑉𝑎𝑐𝑡 − 𝑉𝑜ℎ𝑚 − 𝑉𝑐𝑜𝑛𝑐). (2.35)

Para se encontrar o ponto de máxima potência, basta derivar (2.35) em relação à
corrente, e igualar a expressão a zero:

𝑑𝑃útil

𝑑𝐼
= 0. (2.36)

Com auxílio das equações (2.24), (2.25) e (2.26) de perdas já exibidas, resolve-se a
derivada de (2.36). O resultado que se obtém é o máximo ponto de potência:

Δ𝐻 − 𝑇Δ𝑆

𝑅𝑇
= ln (𝑃𝐻2𝑃

1
2

𝑂2)− 1
𝛼

[︂
ln
(︂

𝐼

𝐼𝑜

)︂
+ 1

]︂
− 2𝑛𝑅𝑖𝐼𝐹

𝑅𝑇
− ln

(︂
1 − 𝐼

𝐼𝑡ℎ

)︂
+ 𝐼

𝐼 − 𝐼𝑡ℎ

. (2.37)

Por fim, resolve-se a equação (2.37) utilizando um método numérico para resolução
de equações não lineares. Dadas as condições de operação e os parâmetros empíricos,
determina-se com precisão o ponto de máxima potência. Os resultados desta manipulação
matemática são apresentados no capítulo 5 deste trabalho.

Derivar a equação de potência da célula e igualar a zero, matematicamente expressa
a possibilidade de encontrar-se um ponto de máximo ou de mínimo local. Isto não é
suficiente para afirmar-se que o resultado da equação (2.37) resultará em um ponto de
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máxima potência, pois pode acusar um ponto mínimo. Para isso, é necessário derivar
novamente a equação (2.35) em relação à corrente, e analisar se o resultado é negativo ou
positivo. Se a segunda derivada for negativa, pode-se concluir que o ponto encontrado é
um ponto de máximo, pois indica a tendência da taxa de crescimento da curva, que em
um ponto de máximo, é decair. Com base em (2.37), sabe-se que:

𝑑𝑃útil

𝑑𝐼
= −Δ𝐻 − 𝑇Δ𝑆

𝑅𝑇
+ln (𝑃𝐻2𝑃

1
2

𝑂2)− 1
𝛼

[︂
ln
(︂

𝐼

𝐼𝑜

)︂
+ 1

]︂
−2𝑛𝑅𝑖𝐼𝐹

𝑅𝑇
−ln

(︂
1 − 𝐼

𝐼𝑡ℎ

)︂
+ 𝐼

𝐼 − 𝐼𝑡ℎ

.

(2.38)

Derivando-se novamente a equação acima, em relação à corrente, encontra-se:

𝑑2𝑃útil

𝑑𝐼2 = 0 − 1
𝛼𝐼

− 2𝑛𝑅𝑖𝐹

𝑅𝑇
− 1

𝐼𝑡ℎ

· 𝐼𝑡ℎ

𝐼𝑡ℎ − 𝐼
+ (𝐼 − 𝐼𝑡ℎ) − 𝐼

(𝐼 − 𝐼𝑡ℎ)2 , (2.39)

que simplifica-se da seguinte forma

𝑑2𝑃útil

𝑑𝐼2 = − 1
𝛼𝐼

− 2𝑛𝑅𝑖𝐹

𝑅𝑇
− 1

𝐼𝑡ℎ − 𝐼
− 𝐼𝑡ℎ

(𝐼 − 𝐼𝑡ℎ)2 . (2.40)

A equação (2.40) terá sempre resultado negativo. Todos os seus termos têm índice
negativo, e dependem apenas de constantes que são sempre positivas, ou da corrente, que
pela definição de sinal e modelagem, vai ser sempre positiva pois seu sentido de condução
não mudará. Há um termo onde há a presença de 𝐼𝑡ℎ − 𝐼. Este termo sempre será positivo,
pois o universo de discurso da variável de corrente, 𝐼, é definido de 0 até 𝐼𝑡ℎ. Desta forma
a corrente nunca ultrapassará um valor maior que o limiar de corrente, pois até conforme
o modelo descreve, este é um valor de máxima condução de corrente da célula. Portanto, é
plausível afirmar que

𝑑2𝑃útil

𝑑𝐼2 < 0 , (2.41)

ou seja, o ponto encontrado pela equação (2.37) sempre será um ponto de máximo,
para valores de corrente dentro dos limites de operação.
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3 Simulação computacional

Neste capítulo será introduzido o método utilizado para realizar a simulação, tal
como os meios utilizados, as considerações feitas e o método de operação da célula. Na
maioria das modelagens de diversos sistemas, é comum se partir de um modelo ideal
e simples, e após isso são caracterizadas e modeladas as imperfeições e características
específicas do sistema, a fim de se obter o melhor custo benefício da aproximação.

3.1 Considerações para modelagem
Para o uso de um modelo mais simplificado em simulação computacional, serão

reputados alguns tópicos acerca do modelo e do funcionamento da PEMFC, conforme
proposto por NEHRIR e WANG (2009).

a) Tratamento unidimensional do fluxo de gases da célula

b) Gases são ideais e têm distribuição uniforme

c) Pressão é constante nos canais de fluxo de gás

d) Tanto 𝐻2 como 𝑂2 são umidificados

e) A célula opera em temperaturas menores que 100∘𝐶 e o produto da reação sai na
forma líquida (𝑃𝐻2𝑂 = 1)

f) As propriedades e cálculos que concernem temperaturas utilizarão a temperatura
média da célula (não em um ponto específico). As variações de temperatura dentro
da célula serão desconsideradas, e o calor específico médio da célula é tomado como
constante

g) Será utilizado o ar presente na atmosfera como fonte de oxigênio (𝑃𝑂2 = 0, 21)

3.2 Uso do Simulink
Para criar-se o modelo computacional, foi utilizada a ferramenta de simulações do

Matlab, o Simulink. O simulink é útil para a simulação para gerar vetores de dados com
facilidade, e também para trabalhos futuros, onde há a possibilidade de se refinar o modelo
considerando seus transientes, devido ao efeito capacitivo. Nele foi criado um ambiente de
trabalho, um projeto, onde estão contidos os blocos das funções matemáticas e tudo que é
necessário para a transformação da teoria em prática. Desta forma, a simulação apenas
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trata a célula em regime permanente, e a forma temporal na qual o simulink trabalha
entra de acordo com a curva de polarização clássica de células a combustível.

No ambiente, há um bloco de função especial, que calcula a tensão de saída da
célula, numericamente, segundo a equação de Nernst, dada as entradas (temperatura e
pressões). A figura 4 mostra o bloco em questão, cuja saída é um valor numérico para
tensão. O código do cálculo está no apêndice A deste documento para visualização.

Figura 4 – Bloco calculador da tensão de Nernst

Após o cálculo, o valor da tensão é subtraído das perdas existentes, já explicitadas
neste trabalho. Os blocos das perdas estão logo abaixo do bloco de Nernst. O valor
final de tensão passa por um bloco de uso elétrico, cuja finalidade é criar uma fonte de
tensão controlada, segundo o valor numérico. Essa tensão é a saída final da célula. Por
conveniência, colocou-se todos os blocos de cálculo (Nernst, perdas e conversão para tensão
no ambiente) em um único bloco. A figura 5 mostra o bloco da célula internamente em
sua totalidade.
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Figura 5 – Visão geral do bloco da célula no simulink

Para simular a célula sob operações de diferentes valores de correntes, foi inserido
em seus terminais, uma fonte de corrente controlada variável, que atua como carga na
célula, conforme elaborado no trabalho de Smarssaro (2007). O padrão de variação de
corrente escolhido foi uma rampa, que faz com que a corrente suba seu valor em um a
cada segundo de simulação. Assim com blocos de medição é possível mandar os dados
para o espaço de trabalho e traçar gráficos que serão expostos nos resultados e usados
nas redes neurais. É importante ressaltar que para uma melhor precisão na análise dos
resultados variantes, foi utilizado um tempo de passo de 0, 01 segundos, ou seja, passos
de 10 𝑚𝐴 de corrente na curva de polarização da célula. A figura 6 mostra o esquema de
ligação da fonte de corrente e seu funcionamento.
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Figura 6 – Visão geral do bloco de funcionamento da célula no simulink

A próxima seção entrará em detalhes dos resultados obtidos em simulação, quanto
à variação dos parâmetros empíricos e outros fatores.
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3.3 Influência do coeficiente de transferência de carga (𝛼)
A figura 7 mostra a influência do coeficiente de transferência de carga na tensão

de saída, que relaciona-se com as perdas por ativação. Nota-se que é desejável que este
parâmetro seja o maior possível, melhorando a eficiência e diminuindo as perdas de tensão.
Este parâmetro varia de 0 a 1, indicando a eficiência na troca de carga elétrica no cátodo
e no ânodo. Pode-se observar que o parâmetro afeta a curva de polarização principalmente
no valor de tensão para correntes pequenas. A inclinação da curva preaticamente fica
constante, tampouco o limiar de condução. Este tipo de perda, conforme comentado
anteriormente, é notório para pequenos valores de corrente, como pode-se ver na figura 7.
Quanto menor for 𝛼, maiores são as perdas no início da condução.

Figura 7 – Influência do coeficiente de transferência de carga na tensão de saída
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3.4 Influência da corrente de troca (𝐼𝑜)
A figura 8 mostra a influência da corrente de troca na tensão de saída. Nota-se

que esse parâmetro afeta diretamente a ativação da célula para correntes baixas, como
previsto. E com menores correntes de troca, há maiores perdas, perdas estas que não afetam
a inclinação da curva. Percebe-se que são somente perdas subtrativas. Esta tendência
confirma-se pelo fato desta perda ser modelada pela corrente dividida pela corrente de
troca, como argumento de um logaritmo. Diferentemente do coeficiente de transferência de
carga, a corrente de troca apresenta uma linearidade com a corrente, pois são argumentos
do logaritmo.

Figura 8 – Influência da corrente de troca na tensão de saída
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3.5 Influência da resistência interna (𝑅𝑖)
A figura 9 mostra a influência da resistência interna na tensão de saída. Pode-se

notar que a resistência afeta diretamente com a inclinação das curvas de tensão, que
mantêm praticamente o mesmo ponto de partida para corrente nula, e que também são
limitadas pela mesma corrente de corte no final. Para menores resistências, menores são
as perdas, e melhor eficiência atinge-se no conjunto da célula.

Figura 9 – Influência da resistência interna na tensão de saída
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3.6 Influência da corrente limitante (𝐼𝑡ℎ)
A figura 10 mostra a influência da corrente limitante na tensão de saída. Percebe-se

que para o início de condução de corrente e correntes medianas não há muito efeito deste
parâmetro. Porém, ele é um fator limitante superior de condução de corrente, como pode-se
ver. A tensão efetiva da célula cai abruptamente quando a corrente chega no seu valor de
limiar, indicando que não é possível de se conduzir mais corrente. A modelagem consegue
representar muito bem este fenômeno, como é apresentado abaixo, graficamente.

Figura 10 – Influência da corrente limitante na tensão de saída
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3.7 Influência da temperatura (𝑇 )
A figura 11 mostra a influência da temperatura na tensão de saída. Para valores

menores de temperatura, há um maior aproveitamento da célula, característico da célula
com membrana de troca de prótons. Nota-se que para altas temperaturas, a utilização da
célula é praticamente inviável, e inclusive foge do escopo de modelagem (tensão teórica
negativa, caso impossível).

Figura 11 – Influência da temperatura na tensão de saída
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3.8 Influência da pressão do combustível (𝑃𝐻2)
A figura 11 mostra a influência da pressão do gás hidrogênio na tensão de saída.

Pode-se notar que o aumento da pressão é bom para aumentar-se a tensão de saída,
contudo um grande aumento da pressão proporciona uma pequena elevação na tensão.
Isso é muito importante para direcionar grupos de pesquisa, quanto ao uso de hidrogênio.
Pois dependendo das condições, pode-se gastar mais energia para obter maior pressão do
que a energia ganha pela elevação da tensão, tornando menos eficiente o sistema.

Figura 12 – Influência da pressão do combustível na tensão de saída
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3.9 Influência do uso de oxigênio puro (𝑃𝑂2)

A figura 11 mostra a influência do uso de oxigênio puro na tensão de saída, em
comparação com o uso de ar ambiente. Percebe-se que a diferença é muito pequena. A
aplicação de oxigênio puro seria viável somente para células com alta potência, isto é, um
conjunto (stack) de células, ou se a célula em questão fosse sensível ao ponto de demandar
oxigênio puro para operar. Conclui-se que usar o ar ambiente é a melhor alternativa,
para uma única célula. Todavia é importante observar que ao usar-se ar ambiente para
alimentação a vazão mássica há de ser maior, para suprir o oxigênio demandado, conforme
demonstrado no capítulo anterior. Isto resulta na necessidade de maiores tubulações de
admissão de ar, ou na diminuição da corrente limiar de condução, de forma equivalente.

Figura 13 – Influência do uso de oxigênio puro na tensão de saída

3.10 Uso de curve fitting

Utilizou-se a ferramenta de ajuste de curvas do Matlab, em conjunto com os
dados de figuras do artigo de Paganin, Ticianelli e Gonzalez (1996), como uma forma
de encontrar-se os valores dos parâmetros empíricos de uma célula a combustível, porém
ainda utilizando ferramentas matemáticas para o mesmo. A ferramenta permite o usuário
digitar uma expressão matemática, dar os pontos x e y, no caso bidimensional, e inserir
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na equação coeficientes para serem determinados. O programa executa um algoritmo, e
retorna, se possível, os parâmetros da equação de entrada da melhor curva que passa
pelos pontos dados, com erro quadrático mínimo. O intuito dessa abordagem é mostrar a
facilidade em estimar os parâmetros, mas sob as desvantagens de usar algoritmos de alto
processamento e softwares pagos.

No trabalho de Paganin, Ticianelli e Gonzalez (1996), foi feito um modelo similar
da célula, porém sem a presença da corrente de limiar 𝐼𝑡ℎ, responsável pelas perdas por
concentração. Na modelagem utilizada há a presença de um termo denominado ”curva
de tafel”, que basicamente é um parâmetro que generaliza todas as constantes do modelo
em uma só (constante de Faraday, 𝛼, constante dos gases, etc...). Resumidamente, o
modelo em seu artigo exprime um modelo que considera: o potencial sem perdas; as perdas
ôhmicas; e as de ativação. Sendo assim utilizou-se somente o modelo com tais perdas
para o ajuste de curvas. A equação (3.1) abaixo, que foi utilizada no programa, utiliza
o potencial padrão (com temperatura e pressões da tabela 1), e as perdas por ativação
e ôhmicas. Para tratamento do programa, titulou-se a corrente como sendo a variável 𝑥,
enquanto a tensão de saída como a variável 𝑦.

𝑦(𝑥) = 1, 2288 − 𝑅𝑖.𝑥 − 0, 012846288 · 1
𝛼

· log
(︂

𝑥

𝐼𝑜

)︂
(3.1)

Foi feito ajuste de curva em dados das figuras 3, 4 e 5 do artigo de Paganin,
Ticianelli e Gonzalez (1996), e seus resultados são apresentados respectivamente pelas
figuras 14, 15 e 16. E os resultados encontrados são apresentados na tabela 2 abaixo.

Figura 14 – Ajuste de curva realizado em dados do artigo (fig. 3)
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Figura 15 – Ajuste de curva realizado em dados do artigo (fig. 4)

Figura 16 – Ajuste de curva realizado em dados do artigo (fig. 5)

Tabela 2 – Tabela de dados de ajuste de curva refentes às figuras do artigo

Figura do artigo 𝛼 𝐼𝑜 [𝐴/𝑐𝑚2] 𝑅𝑖 [Ω/𝑐𝑚2]
3 0,476 4,373e-8 0,3368
4 0,4142 6,493e-9 1,269
5 0,5075 1,7481e-8 0,3763
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4 Redes neurais artificiais

Neste capítulo será introduzido o funcionamento de uma rede neural básica, e será
feita explicação de uma rede neural mais complexa, que foi utilizada neste trabalho. Serão
comentados também diversos aspectos referentes à topologia, e treinamento.

4.1 Motivação histórica para o desenvolvimento de RNAs

De forma similar ao funcionamento biológico do cérebro, uma rede neural artificial
tenta simular o funcionamento dos neurônios e suas conexões sinápticas. Um neurônio
basicamente é uma célula capaz de mandar impulsos elétricos a outros neurônios, se este
for devidamente estimulado. No cérebro, os neurônios estão dispostos em rede, na forma
de uma malha. Um neurônio se conecta com vários outros para transmitir impulsos e o
mesmo recebe conexões para recebê-los. Essas conexões denominam-se sinapses. Diz-se que
um neurônio é ativado se o mesmo recebe impulsos de entrada suficientes para atingir seu
limiar de ativação. Dependendo da combinação de neurônios ativos que estão transmitindo
sinal a um neurônio específico, o mesmo pode se ativar ou não, dependendo da configuração
de suas sinapses. A figura 17 mostra como é um neurônio. Destaque aos dendritos, que
recebem os impulsos e aos axônios, que transmitem a resposta do neurônio.

Figura 17 – Ilustração de um neurônio (SILVA; SPATTI; FLAUZINO, 2010)

4.2 Rede Perceptron

Para fins de introdução ao tema, será explicitada a arquitetura e funcionamento do
tipo de rede neural mais básico, uma rede Perceptron. Em uma RNA, o neurônio faz o
papel de um combinador linear. As sinapes biológicas se transformam em pesos sinápticos,



56

que são simplesmente fatores multiplicativos, de ganho, dos sinais de entrada do neurônio.
O limiar de ativação é um valor numérico, no qual a combinação linear dos sinais de
entrada é suficiente para ativar o neurônio. Define-se por função de ativação, como sendo
uma função matemática aplicada ao resultado da combinação linear do neurônio. No
caso da rede Perceptron simples, utilizam-se funções degrau, por possuírem característica
binária. A figura 18 ilustra como é o funcionamento da rede Perceptron.

Figura 18 – Ilustração de uma rede Perceptron (SILVA; SPATTI; FLAUZINO, 2010)

Conforme descrito por SILVA, SPATTI e FLAUZINO (2010), para se obter a
saída da rede, primeiramente apresentam-se um conjunto de valores que representam as
variáveis de entrada do neurônio. Cada entrada (𝑥1, 𝑥2 . . . 𝑥𝑛) então é multiplicada pelo
seu respectivo peso sináptico (𝑤1, 𝑤2 . . . 𝑤𝑛), que varia de 0 a 1. Obtém-se o potencial de
ativação (𝑢), produzido pela soma ponderada dos sinais de entrada, somando-se o limiar de
ativação (𝜃). Por fim, aplica-se a função de ativação desejada ”𝑔(.)”, que define a resposta
do neurônio e atua como um limitador da saída do neurônio.

Costuma-se utilizar a função degrau como função de ativação da rede Perceptron,
descrita pela equação (4.1):

𝑔(𝑢) =

⎧⎨⎩ 1, se 𝑢 ≥ 0
0, se 𝑢 < 0

. (4.1)

É comum utilizar-se também a função degrau bipolar, descrita pela equação 4.2:

𝑔(𝑢) =

⎧⎨⎩ 1, se 𝑢 ≥ 0
−1, se 𝑢 < 0

. (4.2)
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Figura 19 – Gráficos ilustrativos das funções degrau e degrau bipolar (SILVA; SPATTI;
FLAUZINO, 2010)

Desta forma, pode-se definir matematicamente a saída da combinação linear da
rede e sua saída de resposta da seguinte forma:

⎧⎪⎪⎨⎪⎪⎩
𝑢 =

𝑛∑︁
𝑖=1

𝑤𝑖 · 𝑥𝑖 − 𝜃

𝑦 = 𝑔(𝑢)
. (4.3)

4.2.1 Treinamento da rede Perceptron

Para a rede funcionar devidamente, é necessário treiná-la. Para isto é necessário
coletar dados de entrada que se julguem interessantes para a tomada de decisão da rede.
São coletados os dados de entrada do determinado processo, e a saída de resposta desta
entrada. É necessário reproduzir diferentes pontos de operação, e eventos do processo
que deseja-se mapear. Nesta coleta de dados deve tentar contemplar ao máximo todas as
possibilidades do processo, para que a célula consiga uma boa generalização dos resultados.

Para o treinamento computacional, os pesos sinápticos da rede são inicializados
aleatoriamente, para mitigar as chances de um viés no resultado do treinamento (por
exemplo uma solução que busca o mínimo de uma função retornar sempre um mínimo local,
não o mínimo global). Costuma-se inicializar o limiar de ativação no valor de uma unidade
negativa, isso porque o limiar é somado às entradas ponderadas, o que justifica ele ser
iniciado com um valor negativo, pois comumente após o treinamento seu valor é negativo.
Se ele fosse positivo, para qualquer entrada, a combinação linear seria positiva (entrada
sempre positiva). Isto faria com que a rede sempre resultasse na mesma saída, utilizando-se
funções de ativação binárias. Todavia pode-se inicializar o limiar com valores positivos. O
algoritmo de treinamento irá justamente ajustar os limiares e os pesos sinápticos. Porém
quanto mais longe os pesos e o limiares forem inicializados do resultado de ajuste, que
inicialmente é desconhecido, serão necessárias mais iterações do algoritmo para ajuste.

É comum tratar os dados de entrada como um vetor, e os pesos sinápticos também
(em redes mais complexas são matrizes). É comum tratar o limiar de ativação como uma
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entrada também, junto com os dados de entrada, pois o mesmo é somado na combinação
linear dos pesos sinápticos. A ilustração da figura 18 mostra o limiar sendo adicionado ao
fim, apenas por motivos didáticos.

Conforme descrito por SILVA, SPATTI e FLAUZINO (2010), o processo de trei-
namento de uma rede Perceptron simples segue a regra de aprendizado de Hebb. Com
a rede inicializada com parâmetros aleatórios, inserem-se as entradas do treinamento, e
compara-se a saída obtida com a saída desejada. Quanto mais divergente a saída da rede
for do esperado maior vai ser o ajuste na fase de treinamento. O que se ajusta são os pesos
sinápticos e os limiares do neurônio. Trata-se de um processo que será repetido sequencial-
mente, para todas as amostras de treinamento, até que a saída da rede Perceptron atinja
um erro pequeno satisfatório perante as saídas desejadas. Cada iteração do algoritmo com
todas as entradas é denominada de época. Matematicamente, o ajuste nos pesos e limiares
se dá de forma iterativa, na seguinte maneira:

⎧⎨⎩ 𝑤𝑎𝑡𝑢𝑎𝑙
𝑖 = 𝑤𝑎𝑛𝑡𝑒𝑟𝑖𝑜𝑟

𝑖 + 𝜂.(𝑑(𝑘) − 𝑦).𝑥(𝑘)

𝜃𝑎𝑡𝑢𝑎𝑙
𝑖 = 𝜃𝑎𝑛𝑡𝑒𝑟𝑖𝑜𝑟

𝑖 + 𝜂.(𝑑(𝑘) − 𝑦).𝑥(𝑘) . (4.4)

Sendo 𝑤𝑖 os pesos sinápticos, 𝜃𝑖 o limiar do neurônio, 𝑥(𝑘) o vetor contendo a k-ésima
amostra de treinamento, 𝑑(𝑘) a saída desejada para a k-ésima amostra de treinamento, 𝑦 a
saída da rede e 𝜂 a taxa de aprendizagem da rede.

De acordo com a equação (4.4), nota-se que o procedimento da rede Perceptron se
dá de forma sucessiva, e depende do fator de aprendizagem da rede. Quanto maior este
parâmetro for, maior será o ajuste nos pesos sinápticos. A escolha do valor numérico para
aprendizagem é arbitrária, e depende muito da experiência do projetista da rede e das
definições do treinamento da rede.

No caso da rede simples Perceptron, que funciona comumente como um classifica-
dor, sabe-se que sua resolução de respostas é apenas válida para problemas linearmente
separáveis, devido à presença de somente um neurônio, que no caso planar, irá definir uma
reta que separa duas regiões de respostas. Ainda no caso planar (duas entradas), pode-se
mostrar o processo de convergência da rede, da primeira época de treinamento, com erro
alto, até a última, com baixo erro, conforme figura 20
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Figura 20 – Ilustração do processo de convergência (SILVA; SPATTI; FLAUZINO, 2010)

Outro aspecto interessante do processo de treinamento, mediante diferentes topolo-
gias de rede e inicialização aleatória dos parâmetros, é que podem existir infinitas soluções
aceitáveis, muito próximas umas das outras. Portanto cada treinamento feito com a rede,
mesmo atingindo o mesmo critério de erro, não possuirá os mesmos pesos sinápticos que
algum outro. A figura 21 ilustra um exemplo onde há uma região de separabilidade das
soluções que aceita mais de uma resposta plausível.

Figura 21 – Ilustração da região de separabilidade (SILVA; SPATTI; FLAUZINO, 2010)

Parte dos dados coletados para o treinamento, irão ser utilizados para efetivamente
treinar a célula, enquanto outra parte, uma porcentagem menor, será utilizada para validar
o treinamento. Isto é necessário pois caso a rede seja testada com dados que foram usados
em seu treinamento, a mesma irá acertar muito bem, pois foi treinada para atingir um
erro ínfimo com tais dados. É parte da escolha do projetista da rede, além de testar a
topologia de rede mais viável, escolher também se optará por possuir um treinamento
mais assertivo, com menor validação de dados, ou de possuir um treinamento mais pobre,
com melhoria na validação da generalização da rede. Isto também depende da quantidade
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de amostras. Um número alto de amostras tende a dar mais confiança para aumentar-se a
proporção de dados selecionados para validação, em alguns casos.

4.3 Rede Perceptron multi camadas utilizada no projeto

Na seção anterior foi mostrado o funcionamento de uma rede Perceptron simples,
e o processo de treinamento supervisionado, a caráter de simples introdução de redes
neurais. Entretanto, conforme a modelagem é proposta, o equacionamento da célula a
combustível possui suas não linearidades, dessa forma é necessário utilizar-se de uma rede
com mais recursos, no caso, uma Perceptron multi camadas (PMC). Esta topologia de
rede introduz mais neurônios, em camadas intermediárias, denominadas camadas ocultas,
situadas entre a camada de entrada e a de saída. Esta será a topologia utilizada com os
dados de simulação, pois este tipo de rede é muito versátil. Em questão de funcionamento,
uma rede PMC atua com o mesmo princípio da rede Perceptron simples, com pesos
sinápticos limiares e neurônios agregadores. Porém uma PMC conterá mais camadas de
neurônios que gerarão mais conexões sinápticas entre outros neurônios, assimilando-se
mais ainda com conexões de uma rede no cérebro. Todo neurônio possui uma conexão com
outro neurônio de uma camada posterior.

O fluxo de informações em uma rede PMC inicia-se nas camadas de entrada,
seguindo para as intermediárias, até as de saída. Sendo assim, a saída de uma camada
anterior de neurônios será a entrada de sua camada posterior de neurônios, e assim por
diante. As camadas escondidas assim como as de saída podem possuir mais de um neurônio.
A figura 22 ilustra uma rede PMC, com duas camadas escondidas e mais de uma saída.

Figura 22 – Generalização de uma rede Perceptron multi camadas (SILVA; SPATTI;
FLAUZINO, 2010)
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O processo de treinamento de uma rede PMC utiliza um algoritmo denominado
backpropagation. Com uma fase de geração de saída da rede propagando suas entradas
(foward), e uma propagação reversa, ajustando os limiares segundo o erro encontrado
(backward). Para este processo de treinamento será necessário derivar alguns termos, que
dependem das funções de ativação. Para isso é necessário utilizar funções de ativação
contínuas e diferenciáveis em todo o seu domínio. Uma função escolhida neste trabalho
para ser utilizada é a função tangente hiperbólica, que assemelha-se à função degrau
bipolar. Esta função é a função de ativação escolhida para todos os neurônios de todo tipo
de rede neste trabalho, com exceção da função de ativação do neurônio de saída. É comum
utilizar na camada de saída, uma função do tipo rampa, apenas para combinar as saídas
da camada neural anterior, o que ocorreu, no caso.

Figura 23 – Gráfico da função tangente hiperbólica
(Fonte: http://math.feld.cvut.cz/mt/txtb/4/txe3ba4f.htm - Acessada em
28/08/2016)

O desenvolvimento matemático do algoritmo de treinamento da rede PMC utiliza
uma extensa e complexa série de equações a fim de se minimizar o erro da rede. De forma
resumida, a equação (4.5) sintetiza o processo de treinamento de uma rede PMC, ilustrada
pela figura 24.

𝑊
(𝑘)
𝑗𝑖 = 𝑊

(𝑘)
𝑗𝑖 + 𝜂 · 𝛿

(𝑘)
𝑗 · 𝑌

(𝑘−1)
𝑖 (4.5)
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Figura 24 – Denominação de parâmetros para treinamento de uma rede PMC (SILVA;
SPATTI; FLAUZINO, 2010)

Onde 𝑊
(𝑘)
𝑗𝑖 é a matriz de pesos sinápticos que antecede a k-ésima camada de neurônios;

𝜂 é a taxa de aprendizagem da rede; 𝑌
(𝑘−1)

𝑖 é a saída da camada de neurônios anterior
à k-ésima camada; e 𝛿

(𝑘)
𝑗 é o gradiente local aplicado em relação ao j-ésimo neurônio da

camada de neurônios posterior. Trata-se de um desenvolvimento muito complexo, que será
poupado. A demonstração e equacionamento completos podem ser verificados na obra
de SILVA, SPATTI e FLAUZINO (2010). O Matlab possui um ambiente para treinamento
de redes neurais de diversas topologias e diversos algoritmos para melhorar a rapidez. Basta
preparar as amostras e utilizar alguns comandos específicos. A preparação e execução do
treinamento da rede serão mostrados no capítulo seguinte.
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5 Resultados

Neste capítulo serão apresentados os resultados do trabalho apresentado, e a
validação das propostas feitas. Será primeiramente mostrada a eficácia do equacionamento
do ponto de máxima potência, e logo em seguida serão mostrados os resultados obtidos
realizando treinamentos em redes neurais de diversas topologias.

5.1 Confirmação do ponto de máxima potência

Conforme mostado na seção 2.10, é possível encontrar um ponto de máxima operação
de potência da célula a combustível. Pode-se encontrar diversos tipos de curva de potência
da célula no apêndice C. Porém para demonstração gráfica, utiliza-se uma curva de potência
onde é notória a presença de um máximo local, para validar a eficácia da equação (2.37),
na qual foi possível de se comparar o resultado da equação resolvida numericamente com
a simulação no simulink. Os resultados foram muito precisos, conforme mostrado pela
figura 25. Pode-se ver que o erro é muito pequeno, apenas devido à aproximação de ponto
flutuante. Estes resultados são fidedignos e portanto muito úteis para trabalhos futuros.

Figura 25 – Visualização dos pontos de máxima potência calculados frente à simulação
(pontos em asterisco advêm da resolução numérica)
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5.2 Treinamento das redes
Utilizou-se a simulação do ambiente Simulink para gerar os dados de treinamento e

de validação para a rede neural. Foram mudados os parâmetros empíricos da célula, para
gerar os dados. Utilizou-se uma rede para cada tipo de parâmetro empírico (𝛼, 𝑅𝑖𝑛 𝑒 𝐼𝑡ℎ).
Não conseguiu-se uma boa generalização para o parâmetro 𝐼𝑜. Contudo, este parâmetro
pode ser encontrado com programas de ajuste de curva, conforme mostrado anteriormente.

A generalização que pretende-se obter com a rede neural é uma generalização
simples, apenas para indicar a possibilidade de um futuro refinamento na topologia da rede
e na geração de dados para treinamento. Sendo assim, criou-se uma rede PMC para cada
parâmetro a ser mapeado, com uma única saída. E ao gerar os dados de treinamento para
cada parâmetro, os outros parâmetros foram afixados em valores arbitrários, conforme
apresentado na tabela 3.

Tabela 3 – Parâmetros constantes na simulação

Parâmetro Valor
𝑇 298, 15 𝐾

𝑃𝐻2 1, 5
𝑃𝑂2 0, 21
𝛼 0, 5
𝐼𝑜 3, 10−6 𝐴/𝑐𝑚2

𝑅𝑖 0, 15 Ω.𝑐𝑚2

𝐼𝑡ℎ 1, 6 𝐴/𝑐𝑚2

Ou seja, por exemplo, ao serem simuladas diferentes topologias de funcionamento da célula,
com apenas o parâmetro 𝛼 variando, fixou-se a temperatura em 298, 15 𝐾, a resistência
em 0, 15 Ω.𝑐𝑚2, e etc...

Serão apresentados abaixo os valores do parâmetros escolhidos para gerar os dados
de simulação e validação de dados abaixo, denotados em forma vetorial.

𝛼 𝑡𝑟𝑒𝑖𝑛𝑎𝑚𝑒𝑛𝑡𝑜 = [0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1]𝑇

𝛼 𝑡𝑒𝑠𝑡𝑒 = [0,15 0,25 0,35 0,45 0,55 0,65 0,75 0,85 0,95]𝑇
(5.1)

𝑅𝑖 𝑡𝑟𝑒𝑖𝑛𝑎𝑚𝑒𝑛𝑡𝑜 = [0,10 0,15 0,30 0,50 0,70 0,80 0,90 1,00 2,00 5,00]𝑇

𝑅𝑖 𝑡𝑒𝑠𝑡𝑒 = [0,20 0,45 0,65 0,85 1,50 2,50 4,00]𝑇
(5.2)

𝐼𝑡ℎ 𝑡𝑟𝑒𝑖𝑛𝑎𝑚𝑒𝑛𝑡𝑜 = [0,3 0,5 0,8 1,0 1,2 1,4 1,6 1,8]𝑇

𝐼𝑡ℎ 𝑡𝑒𝑠𝑡𝑒 = [0,4 0,6 0,9 1,1 1,3 1,5 1,7]𝑇
(5.3)
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Simulando estas diferentes topologias, foram salvos os dados da curva de polarização
da célula a combustível, para cada caso. Devido à corrente mínima (0, 001 𝑚𝐴/𝑐𝑚2)
estipulada, ao limite de corrente definido (1, 799 𝑚𝐴/𝑐𝑚2) e aos passos de tempo (0, 01 𝑠),
os dados salvos apresentam sempre a mesma quantidade de pontos, 187 pontos de entrada
(contendo informações de temperatura de operação e pressão também). Por motivos
de viabilidade de implementação de uma rede neural, optou-se por utilizar cada ponto
da amostragem como sendo uma entrada específica da célula. Trata-se de um número
grande de entradas em uma rede neural, o que justifica certa demora para o algoritmo de
treinamento completar, contudo os resultados obtidos tendem a generalizar os parâmetros
necessários. Nos primeiros testes, tentou-se optar por introduzir apenas uma entrada de
tensão na rede neural, que, para representar uma curva de polarização, era necessário
entrar ponto a ponto e manter a mesma saída, para um conjunto de treinamento. Tal
abordagem não resultou em generalizações por parte da rede, portanto foi abdicada.

O programa Matlab utilizado para treinamento das redes neurais se encontra anexo
no apêndice B. Para o trabalho ficar enxuto, neste apêndice há apenas o código que treina
a rede do parâmetro 𝛼. Os outros códigos são muito idênticos, apenas diferindo na coleta
de dados do vetor geral com todos dados. Neste programa há um processo de alinhamento
dos vetores de entrada e saída e de teste, assim como obtenção de seus valores máximos
e mínimos para escalonamento. O programa encontra-se comentado, explicando seus
trechos para melhor reprodutibilidade dos resultados. Durante o treinamento utilizou-se
por conveniência a taxa de aprendizagem como 10, e o número máximo tolerável de épocas
para treinamento como 100 épocas. A figura 26 mostra a toolbox do Matlab treinando uma
rede. Destaca-se a topologia de redes no topo, o número de épocas, o tempo decorrido, e o
erro quadrático da atual topologia da rede. Ao finalizar o treinamento (seja por número
máximo de épocas, erro quadrático atingido ou outro fator) o programa dá sequência e
utiliza a rede para inserir o vetor de teste. O programador após executar o algoritmo, pode
visualizar e comparar os resultados obtidos.
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Figura 26 – Ilustração do treinamento de uma rede neural via Matlab

5.3 Estudo de topologia de rede com menor erro

É uma boa prática realizar diversos treinamentos em uma rede com determinada
topologia, devido à inicialização aleatória dos parâmetros. Outro fator que agrega valor ao
treinamento, é mapear a melhor topologia de rede. Demonstrar isto em forma de tabela é
muito útil pois desta forma consegue-se decidir a melhor topologia. Às vezes opta-se por
uma topologia que realize treinamento mais rápido, outra vezes por uma topologia com
menor erro relativo, ou seja, uma melhor generalização. Escolheu-se para este trabalho
como melhor resultado de topologia de rede, as redes de cada parâmetro que apresentaram
o menor erro médio relativo.

O erro médio relativo das amostras de teste frente às de saída da rede é calculado
da seguinte forma: toma-se o valor absoluto da subtração entre um valor de validação
e um valor de saída da rede. Feito isto, divide-se o resultado pelo valor de validação e
multiplica-se por 100, para obter-se a porcentagem. O processo é repetido para os outros
valores de validação e seus respectivos valores de saída. No final, tira-se a média deste
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conjunto de dados para obter-se o erro médio relativo. A equação abaixo mostra tal
processo em notação de programação Matlab.

𝑒𝑟𝑟𝑜 = 𝑚𝑒𝑎𝑛2(100 * 𝑎𝑏𝑠((𝑉 𝑒𝑡𝑜𝑟 𝑇 𝑒𝑠𝑡𝑒 − 𝑉 𝑒𝑡𝑜𝑟 𝑆𝑎í𝑑𝑎)./𝑉 𝑒𝑡𝑜𝑟 𝑇 𝑒𝑠𝑡𝑒)) (5.4)

Abaixo há as tabelas que auxiliaram na escolha da melhor topologia de rede.

Tabela 4 – Estudo de melhor topologia de treinamento da rede do parâmetro 𝛼

Parâmetro
desejado

Topologia
de rede

Taxa de
aprendizagem

Épocas de
treinamento

Tempo de
treinamento

[mm:ss]

Erro médio
quadrático
realizando

treinamento[%]

Erro médio relativo
das amostras

de treinamento [%]

𝛼 15-10-15 10 100 02:15 4,52e-5 0,9039
𝛼 10-10-15 10 100 00:56 4,92e-7 0,2499
𝛼 10-10-10 10 92 00:49 8,06e-8 0,1406
𝛼 10-10 10 100 00:45 2,05e-5 0,5545
𝛼 20-20 10 100 04:48 7,15e-4 3,3657

Tabela 5 – Estudo de melhor topologia de treinamento da rede do parâmetro 𝑅𝑖

Parâmetro
desejado

Topologia
de rede

Taxa de
aprendizagem

Épocas de
treinamento

Tempo de
treinamento

[mm:ss]

Erro médio
quadrático
realizando

treinamento[%]

Erro médio relativo
das amostras

de treinamento [%]

𝑅𝑖 15-10-15 10 100 02:13 1,18 60,8389
𝑅𝑖 10-10-15 10 100 00:56 6,02e-4 14,4168
𝑅𝑖 10-10-10 10 19 00:08 3,58e-11 15,8983
𝑅𝑖 10-10 10 75 00:32 8,85e-8 33,9327
𝑅𝑖 20-20 10 100 04:36 4,19e-2 6,0121
𝑅𝑖 10-15 10 48 00:22 1,94e-8 12,6954

Tabela 6 – Estudo de melhor topologia de treinamento da rede do parâmetro 𝐼𝑡ℎ

Parâmetro
desejado

Topologia
de rede

Taxa de
aprendizagem

Épocas de
treinamento

Tempo de
treinamento

[mm:ss]

Erro médio
quadrático
realizando

treinamento[%]

Erro médio relativo
das amostras

de treinamento [%]

𝐼𝑡ℎ 10-15-15 10 11 00:06 1,59e-17 7,5168
𝐼𝑡ℎ 15-10-15 10 20 00:28 9,2e-3 9,4037
𝐼𝑡ℎ 10-10-10 10 66 00:33 9,84e-4 5,0611
𝐼𝑡ℎ 10-10 10 5 00:01 5,05e-3 13,7596
𝐼𝑡ℎ 20-20 10 2 00:03 9,41e-3 12.8372
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5.4 Melhores redes e topologias encontradas
Serão apresentadas as redes que obtiveram o melhor desempenho, segundo critério

estabelecido previamente.

Para a rede do parâmetro 𝛼, obteve-se o menor erro relativo, frente as outras
redes dos outros parâmetros. A rede escolhida possui erro relativo de apenas 0, 14 %
aproximadamente. Sua topologia possui três camadas neurais escondidas, com dez neurônios
cada. Conforme mostrado na equação (5.1), foram usados dados escolhidos arbitrariamente
para validar a rede. Abaixo há os mesmos dados, em conjunto com os dados de resultado
da rede, para comparação e validação da eficácia da rede.

𝛼 𝑡𝑒𝑠𝑡𝑒 = [0,1500 0,2500 0,3500 0,4500 0,5500 0,6500 0,7500 0,8500 0,9500]𝑇

𝛼 𝑟𝑒𝑑𝑒 = [0,1257 0,2505 0,3502 0,4499 0,5498 0,6498 0,7500 0,8504 0,9502]𝑇
(5.5)

Para a rede do parâmetro 𝑅𝑖, obteve-se o maior erro relativo, frente as outras redes
dos outros parâmetros. A rede escolhida possui erro relativo de 6, 01 % aproximadamente.
Ainda assim é um erro baixo, porém não tão baixo quanto o atingido pela rede acima.
Sua topologia possui apenas duas camadas neurais escondidas, com vinte neurônios cada.
Supõe-se que esta topologia de rede foi a melhor para o caso da resistência pois o efeito da
resistência é puramente linear. Desta forma não são necessários muitos neurônios para
mapear um ganho multiplicativo básico. De forma similar ao que foi feito na rede anterior,
mostram-se os resultados para comparação e validação.

𝑅𝑖 𝑡𝑒𝑠𝑡𝑒 = [0,2000 0,4500 0,6500 0,8500 1,500 2,5000 4,0000]𝑇

𝑅𝑖 𝑟𝑒𝑑𝑒 = [0,1550 0,5027 0,6507 0,8209 1,6310 2,8070 4,1337]𝑇
(5.6)

Para a rede do parâmetro 𝐼𝑡ℎ, obteve-se erro relativo mediano, comparado às
outras redes dos outros parâmetros. A rede escolhida possui erro relativo de 5, 06 %
aproximadamente. Um valor de erro similar ao da resistência da célula. Sua topologia possui
três camadas neurais escondidas, com dez neurônios cada. Estima-se que esta topologia
de rede foi a melhor para o caso da corrente limitante pois de acordo a modelagem, este
parâmetro influi na tensão de forma não linear, segundo o logaritmo. Desta forma foram
necessárias mais camadas para mapear as nuanças do modelo matemático. De forma
similar ao que foi feito na rede anterior, mostram-se os resultados para comparação e
validação.

𝐼𝑡ℎ 𝑡𝑒𝑠𝑡𝑒 = [0,4000 0,6000 0,9000 1,1000 1,3000 1,5000 1,7000]𝑇

𝐼𝑡ℎ 𝑟𝑒𝑑𝑒 = [0,3229 0,6248 0,8247 0,9975 1,3195 1,5473 1,7893]𝑇
(5.7)
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6 Conclusão

Os resultados obtidos na simulação foram de encontro com o comportamento que
esperava-se atingir, segundo a bibliografia estudada de células a combustível. Isso valida a
modelagem realizada, principalmente para a curva de polarização da célula. Pode-se notar
também que os dados obtidos na simulação conseguiram treinar as redes neurais com erros
aceitáveis, seguindo as considerações de modelagem e geração de dados para treinamento.

O Matlab foi uma ferramenta importante neste trabalho. Começando pelo seu
uso em simulações simplórias, até obter-se o modelo usado (mais refinado), e finalmente
partindo para utilizá-lo para executar o algoritmo de treinamento de redes neurais.

Quanto ao resultado final e principal, a generalização e validação das redes neurais,
pode-se dizer que o trabalho atingiu seu objetivo de forma egrégia. Apesar de não conseguir
uma topologia que generalizasse a corrente de troca da célula, conseguiu-se uma boa
generalização para os outros parâmetros, principalmente para o coeficiente de troca de
carga. Acredita-se que as topologias de rede treinadas para a corrente de troca não
representavam fielmente a magnitude do universo de discurso da variável nos dados de
treinamento. Foram feitas tentativas de treinamento com o parâmetro variando de 3.10−12

até 3.10−3 𝑚𝐴/𝑐𝑚2. A rede pode ainda ter realizado o fenômeno de overfitting, onde
ocorre um treinamento excessivo, fazendo com que a rede acerte muito bem nos dados de
treinamento, mas perca totalmente generalização para outros dados (rede ”viciada”). Essa
possibilidade foi mitigada, ao diminuir-se a tolerância de erro durante o treinamento da
rede durante a fase de testes, porém o erro alto ainda persistia.

Pode-se notar que as topologias mais extensas e complexas de redes neurais (mais
camadas, mais neurônios) foram necessárias para mapear com baixo erro parâmetros
empíricos com caráter não linear. Enquanto para uma perda linear, resistiva, a rede com
menor erro relativo foi uma rede simples, com duas camadas escondidas.

Há o destaque à dedução matemática do ponto de máxima potência da célula. Foi
realizada uma derivação simples, porém poderosa para aplicações futuras, principalmente
para plantas de controladores e algoritmos de rastreamento de máximo ponto de potência
(MPPT). Nos testes realizados no Matlab, o equacionamento encontrado apontou com
acurácia o ponto de máxima potência. É importante ressaltar que a equação (2.37)
representa o ponto de máxima potência referente à modelagem proposta neste trabalho.
Para diferentes tipos de modelos, recomenda-se realizar a primeira derivada para obter a
equação, e a segunda derivada para validação.

Para trabalhos futuros propõe-se refinar o modelo da simulação no Matlab, incluindo
efeitos transitórios, devido à capacitância da célula. Também há a possibilidade de mapear
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os parâmetros de uma célula a combustível, e criar um controlador de tensão de saída
com base nos parâmetros da célula (visando eficiência ou máxima potência). Há também
a proposta de melhoria no tratamento de dados para treinamento de futuras redes, com
diferentes topologias.
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APÊNDICE A – Código do bloco de Nernst

function Vnernst = Nernst(T,Ph2,Po2)

%#codegen

%Constantes

R = 8.3144621; %Constante Universal dos Gases

H = −286.02e3; % Entalpia da reacao do hidrogenio

S = −0.16328e3; % Entropia do hidrogenio

F = 96485.3365; % Constante de Faraday

n = 2; % Numero de eletrons envolvidos na reacao

Vnernst = −((H−T*S)/(n*F)) + ((R*T)/(n*F))*log(Ph2*sqrt(Po2));

end
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APÊNDICE B – Código para realizar
treinamento da rede PMC

clc % Preambulo para limpeza da area de trabalho e da tela

clear all

close all

%Definicoes

load('treinamentoalpha.mat'); % Arquivo de dados do Matlab que contem os

%pontos de treinamento e de teste obtidos no simulink

W = vetor_entrada; % vetor_entrada e o nome da matriz contendo os pontos de

polarizacao da curva

W(isnan(W)) = 0 ; % Devido ao uso do simulink e de condicoes de corrente de

simulacao maiores que a

%conducao possivel o vetor de entrada pode conter valores nao numericos.

%Esta linha de codigo limpa tais valores

clear vetor_entrada %Limpa−se da memoria o vetor de entrada, pois ele sera

utilizado no fim do programa

vet_entrada = W(:,1:183)'; % O vetor de entrada da celula, recebe os dados

da matriz geral,

%de acordo com o estipulado na simulacao

vet_desejado = W(:,184)'; % O vetor desejado, utilizado no treinamento

recebe o vetor de dados

%conforme descrito no trabalho

xmin = min(vet_entrada'); %Definem−se os maximos e minimos para a rede

xmax = max(vet_entrada');

%Inicializar a rede

net = newff( [xmin' xmax'],... % Comando para setup da rede. Ver

documentacao Matlab

%para maiores detalhes

[20 20 1],...

{'tansig' 'tansig' 'purelin'},...

'trainlm');

%Parametros internos

net.trainParam.epochs = 100;

net.trainParam.goal = 1e−7;
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net.trainParam,lr = 10;

net.trainParam.show = 5;

%Treinamento da rede

net = train(net, vet_entrada, vet_desejado);

%Teste e validacao

load('testealpha.mat'); %Carrega os dados de teste

V = vetor_entrada; %Processo similar ao de dados de entrada da rede

V(isnan(V)) = 0 ;

clear vetor_entrada

vet_teste_entrada = V(:,1:183)';

vet_teste_desejado = V(:,184)';

vet_saida = sim(net, vet_teste_entrada); % Comando que usa como input as

entradas de teste

%e recebe a saida da rede
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APÊNDICE C – Gráficos obtidos em
simulação

Figura 27 – Influência do coeficiente de transferência de carga na tensão de saída
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Figura 28 – Influência do coeficiente de transferência de carga na potência de saída

Figura 29 – Influência do coeficiente de transferência de carga na eficiência
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Figura 30 – Influência da corrente de troca na tensão de saída

Figura 31 – Influência da corrente de troca na potência de saída
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Figura 32 – Influência da corrente de troca na eficiência

Figura 33 – Influência da resistência interna na tensão de saída
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Figura 34 – Influência da resistência interna na potência de saída

Figura 35 – Influência da resistência interna na eficiência
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Figura 36 – Influência da corrente limitante na tensão de saída

Figura 37 – Influência da corrente limitante na potência de saída
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Figura 38 – Influência da corrente limitante na eficiência

Figura 39 – Influência da temperatura na tensão de saída
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Figura 40 – Influência da temperatura na potência de saída

Figura 41 – Influência da temperatura na eficiência
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Figura 42 – Influência da pressão do combustível na tensão de saída

Figura 43 – Influência da pressão do combustível na potência de saída
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Figura 44 – Influência da pressão do combustível na eficiência

Figura 45 – Influência do uso de oxigênio puro na tensão de saída
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Figura 46 – Influência do uso de oxigênio puro na potência de saída

Figura 47 – Influência do uso de oxigênio puro na eficiência
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