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RESUMO 

 

 

Em 2013, a Microchip Technology Inc. lançou uma tecnologia inovadora que 

realiza a comunicação entre uma placa base e suas unidades-móveis que 

utiliza o corpo humano como meio de transmissão. Essa tecnologia pode ser 

aplicada a diversas situações de controle de acesso para facilitar sua 

usabilidade. 

 

Acreditando no potencial dessa inovação e verificando que a aplicação modelo 

não realiza essa comunicação de modo seguro, esse projeto tem como objetivo 

estudar possíveis protocolos de segurança que sejam viáveis junto ao kit de 

desenvolvimento disponibilizado pela Microchip e incluir esse protocolo na 

aplicação modelo de forma a torná-la segura. 

 

Ainda, o projeto propõe duas contribuições originais, a primeira refere-se a uma 

melhoria para plataformas leves no protocolo simétrico proposto por Lim e Lee 

e a segunda consiste na implementação para plataformas de 8 bits  em 

linguagem C da cifra Speck, proposta em 2013 pela NSA. 

 

Palavras-chave: Criptografia, Tecnologia BodyCom™, Cifra de bloco Speck, 

Aplicação de controle de acesso 

 





 

ABSTRACT 

 

 

In 2013, Microchip Technology Inc. launched an innovative technology which 

makes possible communication between a centralized controller and its mobile 

units utilizing the human body as the transmission medium. This technology can 

be applied to multiple access control scenarios improving their usability. 

 

Believing in this innovation’s potential and verifying that the demo application 

does not provide a secure communication, this project’s objectives are to study 

security protocols that are viable when inserted into the development kit 

provided by Microchip and actually implement this protocol into the application 

so that it becomes secure. 

 

Furthermore, the project proposes two original contributions: the first being an 

improvement for lightweight applications in the symmetric protocol proposed by 

Lim and Lee and the second an implementation for 8-bit platforms in C 

programming language of the Speck cipher, proposed in 2013 by the NSA, 

 

Palavras-chave: Criptography, BodyCom™ Technology, Block chipher Speck, 

Access control application 
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1 INTRODUÇÃO 

1.1 Objetivo 

O sistema BodyCom™ da Microchip utiliza uma tecnologia inovadora de curto 

alcance que permite a comunicação entre um controle centralizado (base) e 

uma unidade-móvel sem-fio, utilizando o corpo humano como o meio de 

transmissão. A solução é inovadora pois possibilita a criação de sistemas cuja 

autenticação se dá através do corpo humano. Por exemplo, poderia-se 

desenvolver aplicações que destravam uma porta quando o usuário, com uma 

unidade-móvel em seu bolso, encosta na maçaneta, sendo que a comunicação 

entre a maçaneta e a unidade-móvel é estabelecida com sucesso pelo corpo 

do usuário, destravando a porta. 

 

O objetivo do projeto é investigar o funcionamento do Kit de desenvolvimento 

da tecnologia BodyCom™ da Microchip, identificando e testando sua 

segurança. Ainda, o projeto tem o objetivo de criar um protocolo de 

autenticação seguro, entre a unidade-móvel e o controle centralizado, baseado 

nessa tecnologia. 

1.2 Motivação 

A tecnologia BodyCom™ pode ser utilizada em diversos tipos de aplicações já 

existentes no mercado com outros tipos de tecnologia, como aplicações de 

segurança pessoal, aplicações médicas, de gerenciamento de perfil de usuário 

e de controle de acesso. 

 

Dentre as aplicações de segurança pessoal, podem ser ressaltadas as 

aplicações que requerem o acionamento de algum componente por um usuário 

de modo seguro, como ferramentas elétricas, computadores e armas de fogo. 

Nesse caso, apenas o usuário com a posse de uma unidade-móvel registrada 

na base conseguiria acionar o funcionamento do componente. A tecnologia 

poderia ser utilizada para, por exemplo, ligar uma furadeira, onde ela só 
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poderia ser ligada pela pessoa com posse da unidade-móvel, impossibilitando 

que pessoas não autorizadas, crianças no caso, liguem a furadeira. Outra 

aplicação sugerida seria colocar o controle centralizado em uma arma para 

garantir que apenas o policial que possui a unidade-móvel (acoplada, por 

exemplo, a seu relógio) consiga dispará-la (METZ, 2013). Além dessa 

aplicação, uma empresa italiana diz estar utilizando a tecnologia BodyCom™ 

para assegurar que os motociclistas não andem sem capacete, com uma 

unidade-móvel acoplada no capacete e o controle centralizado no guidão da 

motocicleta (METZ, 2013). 

 

Em aplicações médicas, a tecnologia BodyCom™ pode ser utilizada para 

controlar o acesso aos quartos dos hospitais e ainda monitorar pacientes. Em 

aplicações de gerenciamento de perfil, a tecnologia pode ser utilizada para 

separar as informações referentes a cada uma das “unidades-móveis”. Nesse 

caso, se cada usuário possuir uma unidade-móvel a plataforma que possui o 

controle centralizado como, por exemplo, um vídeo game ou esteira de 

exercício, consegue identificar o usuário apenas pelo toque e gerenciar suas 

ações separadamente. 

 

A tecnologia BodyCom™ pode ser utilizada para aplicações de controle de 

acesso como, por exemplo, o controle de acesso a carros e casas. Nesses 

caso, o acesso seria garantido ao usuário que possuir uma unidade-móvel 

cadastrada após o toque na maçaneta da porta. Dessa forma, como o sistema 

promete transmitir a informação entre o controle centralizado e a unidade-

móvel de um modo seguro, exatamente por utilizar o corpo humano como meio 

de transmissão e porque “não há um canal mais seguro que o corpo humano”, 

a tecnologia BodyCom™ ajuda a prevenir o problema de ataque de 

retransmissão (replay attack), muito comum nos sistemas de segurança de 

entrada remota sem chave, como em automóveis (GOMEZ, 2013). 

1.3 Justificativa 

O projeto foi idealizado e iniciado como um projeto de pesquisa durante o 

intercâmbio do proponente na University of Birmingham, no Reino Unido, sob a 
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orientação do Prof. Dr. Flavio Garcia. O intercâmbio teve duração de um ano, 

mas o projeto de pesquisa ocorreu durante as férias de verão e, portanto, 

durante dois meses e meio. Assim, devido ao curto prazo, o projeto não pôde 

ser finalizado, de modo que o projeto de formatura fará a continuação e 

ampliação do projeto iniciado no exterior. 

 

A tecnologia inovadora BodyCom™ permite que sua implementação não 

necessite de um design com RF antena nem cristais externos para estabilizar a 

frequência do canal de transmissão, pois a frequência utilizada é muito baixa. A 

tecnologia está de acordo com as radiações emitidas no corpo e não causa 

danos ao organismo, pois a corrente elétrica transmitida é mínima. Como a 

comunicação é feita pelo corpo humano, não é necessário um transceptor sem 

fio e isso, atrelado ao fato de não utilizar campos indutivos de alta tensão para 

realizar a transmissão faz com que a solução da Microchip tenha um consumo 

muito baixo de energia. Ainda, como a tecnologia utiliza uma autenticação 

bidirecional através do corpo humano, ela se torna muito mais segura que 

outras tecnologias que possibilitam os ataques de retransmissão. 

 

No entanto, apesar do fato de utilizar o corpo humano como meio de 

transmissão trazer segurança para o sistema, ele por si só não é totalmente à 

prova de ataques, por isso, a tecnologia suporta a utilização de criptografia 

para adicionar ainda mais segurança às suas aplicações. No entanto, nenhum 

protocolo de segurança padrão é utilizado na aplicação DEMO do kit de 

desenvolvimento e as aplicações que utilizam esse código-fonte, apesar de 

estarem protegidas de ataques de retransmissão pela transmissão pelo corpo 

humano, não estão protegidas por ataques que forcem a transmissão de 

pacotes modificando o número de identificação. Nesse caso, é possível 

quebrar a segurança da aplicação DEMO com força bruta até encontrar algum 

número de identificação que esteja registrado no controle centralizado. 

 

Portanto, a elaboração de um protocolo de segurança utilizando criptografia é 

extremamente importante para que a tecnologia se torne ainda mais segura e 

ganhe mais importância no mercado. 
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Um resultado importante do trabalho desenvolvido é uma contribuição original: 

melhorias de segurança e de implementação propostas para o protocolo de 

identificação Lim-Lee. Essa contribuição é descrita na seção 5.1.2. 

 

1.4 Metodologia de trabalho 

A metodologia de trabalho utilizada no projeto de formatura seguiu as seguintes 

etapas: 

 

1. Levantamento das limitações de hardware e software do kit de 

desenvolvimento: 

 

Tratando-se de microcontroladores, que possuem limitações de 

hardware como baixa disponibilidade de memória e de software como 

uma linguagem C para dispositivos (Embedded C Language) que é 

ligeiramente diferente da linguagem C padrão, suas limitações são os 

maiores desafios do projeto. Como diversos os algoritmos de criptografia 

(em especial os assimétricos) são complexos e ocupam um espaço 

considerável na memória, os mesmos podem não caber na memória dos 

microprocessadores. Portanto, foi necessário levar em consideração os 

seguintes aspectos do kit de desenvolvimento: 

 

 Tamanhos das memórias de dados (ROM e RAM); 

 Tamanho da memória de programa; 

 Detalhes da linguagem C embutida (tamanho máximo dos 

inteiros, se engloba unsigned ou signed, etc...); 

 Detalhes do tamanho e formato dos pacotes do canal de 

transmissão; 

 

2. Estudo da aplicação DEMO do kit de desenvolvimento BodyCom™: 

 

Foi estudado o código-fonte da aplicação DEMO do kit de 

desenvolvimento BodyCom™, que simula a comunicação através do 
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corpo humano, para verificar se não havia nenhum mecanismo de 

segurança já implementado. Constatado que não, o estudo da aplicação 

DEMO foi importante para a determinação do melhor modo de 

desenvolvimento do protocolo de segurança junto com a aplicação. 

 

3. Estudo de viabilidade de protocolos de segurança: 

 

Nesta etapa estudou-se primeiramente a viabilidade de protocolos 

assimétricos de criptografia e após constatada sua inviabilidade com o 

kit de desenvolvimento, estudou-se a viabilidade de protocolos 

simétricos de criptografia. 

 

4. Desenvolvimento e testes da aplicação 

 

Desenvolveu-se a aplicação segura utilizando a tecnologia BodyCom™ 

introduzindo um protocolo de segurança à aplicação DEMO do kit de 

desenvolvimento. Após o desenvolvimento foram realizados testes de 

integridade da segurança da nova aplicação. 

 

5. Conclusões: 

 

Após o desenvolvimento do projeto, com base nas dificuldades e 

soluções encontradas, fez-se uma análise do trabalho executado, o que 

permitiu extrair ideias e conclusões sobre o desenvolvimento do sistema. 

1.5 Organização 

A seção 2 descreve os aspectos conceituais do projeto para melhor 

entendimento do funcionamento da tecnologia. 

 

Na seção 3 é apresentada a especificação do projeto, com as limitações da 

tecnologia e da placa de desenvolvimento e seus impactos, os cenários de 

vulnerabilidade a serem solucionados pelo projeto e a especificação em alto 

nível do protocolo de segurança a ser desenvolvido. 
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Na seção 4 são avaliados esquemas de criptografia assimétrica e simétrica 

para identificação de entidades, e sua viabilidade tecnológica para a plataforma 

adotada neste projeto. Ainda na seção 4, são apresentadas melhorias originais 

para o protocolo de Lim-Lee e uma implementação original da cifra Speck em 

linguagem C para aplicações de 8 bits. 

 

A seção 5 apresenta o desenvolvimento e os testes do projeto, com a 

implementação do protocolo de segurança junto à aplicação DEMO que utiliza 

a tecnologia BodyCom™. 

 

Na seção 6 são apresentadas as conclusões gerais do trabalho. 
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2 ASPECTOS CONCEITUAIS 

A tecnologia BodyCom™ utiliza uma frequência de 125 kHz para realizar a 

comunicação entre a base (controle centralizado) e a wireless unit (unidade-

móvel) através do corpo humano, transformando-o em um emissor de baixa 

frequência,  graças a sua alta permissividade a baixas frequências. 

 

Ao tocar o sensor de toque da base, o usuário inicia o sistema de 

comunicação, eliminando a necessidade de iniciar o processo manualmente, o 

que é comum com sistemas de altas frequências (BAILEY, 2014). 

 

Pequenas correntes são transmitidas através do corpo humano, gerando um 

campo eletromagnético na superfície da pele do usuário, possibilitando a 

comunicação com uma unidade-móvel quando a pele do usuário se aproxima a 

cerca de poucos centímetros ou a toca. Então, a wireless unit identifica o sinal 

recebido e envia outro sinal para a base identificá-la. 
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3 ESPECIFICAÇÃO DO PROJETO 

A Microchip disponibiliza um kit de desenvolvimento para a tecnologia 

BodyCom™, como pode ser visto na Figura 1. O Kit consiste em (1) uma placa 

que representa o controle centralizado da tecnologia, composta principalmente 

pelo sensor de toque que ativa a comunicação, o microprocessador que torna a 

comunicação possível e uma tela de LCD para uma melhor interação com o 

usuário, e (2) por duas placas wireless menores que representam duas 

“unidades-móveis” da tecnologia. O kit vem pré-programado com um programa 

DEMO que simula as funcionalidades da tecnologia e ainda possui um modo 

DEBUG. O código-fonte do programa DEMO é disponibilizado para qualquer 

usuário que queira reprogramar o kit. É por meio desse kit que o projeto será 

desenvolvido, modificando o código-fonte para adicionar a funcionalidade de 

uma comunicação segura utilizando criptografia simétrica ou assimétrica. 

 

Figura 1 - Kit de desenvolvimento da tecnologia BodyCom™ 

3.1 Limitações 

Com a datasheet dos microprocessadores da placa base (PIC16LF1829) e das 

unidades-móveis (PIC16LF1827) foi possível determinar o tamanho da 
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memória disponível para o projeto, como pode ser visto na Figura 2. O 

microprocessador da placa base suporta aproximadamente 8KB de memória 

ROM, enquanto o microprocessador das unidades-móveis possuem 4KB de 

memória ROM. Esse é um tamanho considerável para armazenar o código do 

programa, no entanto o tamanho da memória RAM também é muito importante 

para o desempenho de uma criptografia assimétrica, que requer muito mais 

memória RAM que uma criptografia simétrica, e o chip da placa base possui 

uma ocupação máxima de 1KB de RAM, enquanto o chip das unidades-móveis 

possuem apenas 384 bytes de RAM máxima, sem descontar o espaço de 

memória já ocupado pela aplicação DEMO. 

 

Avaliações preliminares sugeriram que esquemas assimétricos de identificação 

poderiam exceder o espaço de RAM disponível na placa de desenvolvimento 

da BodyCom™, que é de apenas 1 KB na placa base e 384 bytes na placa das 

unidades-móveis. Por esse motivo, optou-se por investigar protocolos de 

autenticação não apenas usando criptografia assimétrica, mas também 

protocolos com criptografia simétrica e aumentar a flexibilidade de escolha. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 2 - Especificação de memórias dos microprocessadores utilizados 
(Tabela retirada da datasheet dos PICs e reduzida para caber na página) 
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Outro fator importante de limitação da placa de desenvolvimento da 

BodyCom™ é o tamanho máximo de cada pacote de dados de transmissão 

entre a placa base e cada unidade-móvel. O pacote de transmissão de dados 

da placa de desenvolvimento é composto por 1 byte que designa o tipo de 

comando realizado, 4 bytes que correspondem ao endereço da unidade-móvel, 

1 byte correspondente ao tamanho dos dados transmitidos e o restante 

correspondente aos dados em si (Bailey, 2014). Após a análise do código-

fonte, foi constatado, como mostra a Figura 3, que o tamanho máximo de 

dados que podem ser colocados em um pacote de transmissão é de 16 bytes. 

A escolha de cifras simétricas será norteada por essa métrica de espaço de 

memória do dispositivo. 

 

 

Figura 3 - Trecho do código-fonte com o tamanho máximo de dados em um pacote de 
transmissão. 

 

A obtenção de uma licença PRO para o compilador XC8 da Microchip sem 

nenhum custo foi um avanço muito bem vindo no projeto, pois era algo que 

havia causado um empecilho previamente já que o código-fonte do kit de 

desenvolvimento da BodyCom™ só cabia na placa base com a compilação em 

modo PRO. No entanto, foi possível identificar que o código-fonte original 

ocupa 83,5% da capacidade de memória do microprocessador da placa base 

(6841 bytes dos 8KB totais) e isso pode causar algum empecilho ao inserir o 

código de autenticação. Portanto, na primeira etapa do projeto também foi 

inserida a tarefa de limpeza com código-fonte do kit de desenvolvimento para 

que todas as funcionalidades que não são relevantes ao desenvolvimento do 

projeto sejam removidas e apenas a funcionalidade de transmissão de dados 

pelo corpo humano permaneça no código. Só após a realização dessa etapa, e 
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consequentemente com a liberação da memória do microprocessador para a 

possibilidade de armazenar tanto o código de transmissão de dados quanto o 

código de criptografia e segurança, é que o projeto seguiu para a segunda 

etapa. 

 
Além das limitações do kit de desenvolvimento que dificultam a elaboração do 

protocolo de segurança desenvolvido em software, também é necessário levar 

em consideração o consumo de energia do sistema. O sistema em si consome 

pouca energia pelas razões citadas anteriormente, mas a adição de um 

protocolo de autenticação pode aumentar um pouco esse consumo. Será 

necessário, então, quantificar esse aumento e verificar se ele causa grande 

modificação no consumo. É necessário que o sistema consuma o mínimo de 

energia possível para que ele possa ser o mais portátil (menores baterias) e 

dure o maior tempo possível sem precisar trocar suas baterias. 

3.2 Protocolo de comunicação da aplicação DEMO 

O protocolo original de comunicação da aplicação DEMO do kit BodyCom™ 

utiliza apenas o endereço da unidade-móvel para realizar a autenticação. Ao 

detectar um toque no painel, a base envia pacotes PING com o endereço de 

cada uma das unidades-móveis cadastradas na base. O comando PING é 

apenas um comando que possui o endereço da unidade-móvel no campo 

“Address” do pacote de transferência de dados e o campo de dados, 

“DataBuffer”, vazio. Caso o usuário que tocou no sensor da base tenha uma 

unidade-móvel cadastrada em sua posse, a unidade-móvel identifica o pacote 

recebido e, caso o endereço coincida com o seu endereço, ela envia um pacote 

semelhante ao pacote PING, com seu próprio endereço e com o campo de 

dados vazio, de volta para a base. A Figura 4 exemplifica esse simples 

protocolo, sendo a base (controle centralizado) representada pela letra A e uma 

unidade-móvel pela letra B. 
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Figura 4 - Protocolo original da aplicação DEMO 

 

O endereçamento dos pacotes na aplicação de demonstração é unilateral, ou 

seja, o campo de endereço do pacote é sempre preenchido com o endereço da 

unidade-móvel, independente da direção que o pacote percorre. Por isso, a 

placa de controle centralizado (letra A) trata o campo de endereço como 

destinatário ao enviar o pacote e como origem ao recebê-lo, e as unidades-

móveis (letra B) tratam o campo de endereço de forma contrária, como origem 

ao enviar o pacote e como destinatário ao recebê-lo. 

 

Percebe-se que o protocolo original não possui quase nenhuma segurança a 

não ser por não se comunicar com unidades-móveis que não tenham seu 

endereço pré-cadastrados na base. A base não envia pacotes para unidade-

móveis que não estejam cadastradas em sua memória, no entanto, a base não 

verifica se o endereço de um pacote recebido está entre os endereços 

cadastrados. 

 

O protocolo seguro desenvolvido nesse projeto utiliza o campo de dados do 

pacote de transferência para trocar informações criptografadas entre a base e a 

unidade-móvel para realizar a autenticação. O campo de endereço, “Address”, 

do pacote de transferência de dados não é criptografado, mas isso não afeta a 

segurança do protocolo. 

3.3 Cenários de vulnerabilidade 

A proposta desse projeto visa acrescentar segurança a uma tecnologia 

inovadora que já é relativamente segura por si só. No entanto, a tecnologia, 

apesar de ser segura contra ataques que interceptam o sinal de transmissão, já 

𝒂𝒅𝒅𝒓𝑩 

𝑷𝑰𝑵𝑮 = 𝒂𝒅𝒅𝒓𝑩 

A B 
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que o sinal passa pelo corpo humano, não possui nenhuma segurança contra 

outros tipos de ataque. 

 

Consideremos o cenário de controle de acesso de um usuário a sua casa. 

Nesse cenário, a aplicação DEMO recebe o pacote da unidade-móvel com o 

seu endereço de 4 bytes. O controle centralizado localizado na maçaneta da 

porta recebe o pacote e verifica o endereço para ver se é válido e, em caso 

positivo, o acesso é garantido. Assim, um ataque de força bruta obteria 

sucesso no controle de acesso, porque encontrar o endereço correto iterando 

entre os possíveis endereços de 4 bytes requer um processamento bem 

pequeno. 

 

Além disso, por se tratar de um protocolo unilateral que não verifica se o 

endereço do pacote recebido é o mesmo do pacote enviado, um ataque por 

uma aplicação, que simula uma unidade-móvel que constantemente envia 

pacotes, poderia garantir acesso à placa base enviando um pacote com 

qualquer endereço, o que torna a aplicação de demonstração mais vulnerável. 

 

Portanto, a elaboração de um protocolo de segurança com autenticação é 

muito importante para garantir que o sistema que incorpore a tecnologia seja 

mais seguro e para que a tecnologia se torne mais acessível. 

3.4 Liberação de memória na aplicação DEMO 

A aplicação DEMO, que veio com o kit de desenvolvimento BodyCom™, ocupa 

6841 bytes dos 8192 bytes disponíveis de memória ROM e 490 bytes dos 1024 

bytes disponíveis de memória RAM do chip PIC16LF1829 do controle 

centralizado do kit e ocupa 1763 bytes dos 4096 bytes de ROM e 175 dos 384 

bytes de RAM do chip PIC16LF1827 das unidades-móveis. Esse é o principal 

limitador na inclusão e desenvolvimento de um protocolo de segurança que 

ocupe tão pouca memória disponível. O protocolo desenvolvido para a base do 

kit deve ter no máximo 1.3KB de memória ROM e 534 bytes de memória RAM 

e o protocolo desenvolvido para as unidades-móveis devem ter no máximo 

2333 bytes de ROM e 209 bytes de RAM, um tamanho bem pequeno quando 
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se trata de segurança, onde geralmente um algoritmo mais complexo e mais 

seguro possui uma ocupação de memória maior. Por esse motivo, foi 

necessário remover as partes da aplicação DEMO que foram julgadas 

desnecessárias para o projeto e deixar apenas o código necessário para que a 

funcionalidade do BodyCom™ seja realizada. 

 

A primeira parte do código a ser retirada foi a parte referente ao menu de 

debug da aplicação, um menu que informa ao usuário da aplicação diversas 

informações sobre ela, mas que apenas traz informações adicionais e 

desnecessárias para a comunicação em si. Ao se retirar essa parte, a 

aplicação diminuiu consideravelmente de tamanho e passou a ocupar 5022 

bytes de memória ROM e 436 bytes de memória RAM, possibilitando ao 

protocolo de segurança ter no máximo 3181 bytes de ROM e 588 bytes de 

RAM. 

 

Ao serem removidas as funcionalidades de utilização do display LCD, o código 

foi reduzido para uma ocupação de 3941 bytes de memória ROM e 342 bytes 

de memória RAM, possibilitando o protocolo de segurança ter no máximo 4251 

bytes de ROM e 682 bytes de RAM. Como a funcionalidade de display LCD 

mostra-se útil para a demonstração da aplicação e como protocolos simétricos 

ainda cabem junto à aplicação DEMO mesmo com as funcionalidades de 

display, essa versão reduzida do código não foi utilizada. 
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4 PROCURA E VIABILIDADE DE PROTOCOLOS DE 

SEGURANÇA 

4.1 Protocolos assimétricos 

A criptografia simétrica produz algoritmos bem mais leves que a criptografia 

assimétrica. No entanto a segurança de um algoritmo simétrico é mais limitada 

que a de um algoritmo assimétrico, dado que se adota uma chave 

compartilhada que pode ser extraída de um dos componentes e utilizada nos 

demais, enquanto em um algoritmo assimétrico cada componente tem sua 

própria chave de uso exclusivo. Por esse motivo, foram avaliados vários 

algoritmos de criptografia assimétrica, procurando um que fosse leve o 

suficiente para rodar no kit BodyCom™, conforme relatado a seguir. 

4.1.1 Criptografia de Curvas Elípticas 

O aluno do IME Gustavo Zanon juntamente com seu orientador de iniciação 

científica e coorientador desse projeto, Dr. Paulo S. L. M. Barreto, obtiveram 

resultados promissores com criptografia assimétrica de curvas elípticas, 

conseguindo rodar uma autenticação com aproximadamente 800 bytes de 

memória RAM simulando em um computador, cerca de 200 bytes a menos que 

os 1024 bytes máximos do chip PIC16 do kit BodyCom™. 

 

A criptografia de curvas elípticas (ECC) proporciona o desenvolvimento de um 

algoritmo com criptografia assimétrica, sendo, portanto, mais seguro que um 

algoritmo com criptografia simétrica.  A ECC se baseia em utilizar curvas 

elípticas de Edwards, da forma       =         com coordenadas sobre 

um corpo finito, para criar esquemas de encriptação e assinatura. A aritmética 

com pontos de curvas desse tipo permite definir multiplicação de um ponto   

da curva por um escalar inteiro  , de tal maneira que encontrar o valor de   a 

partir dos pontos   e    é computacionalmente inviável, exigindo tempo 

exponencialmente grande no número de bits das coordenadas. 
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Os testes realizados no computador foram promissores, mas não foi possível 

compilar o código para o PIC16, pois a memória ROM ocupada ultrapassava a 

memória máxima do chip. Então, para testar o desenvolvimento do código, foi 

utilizado outro chip da Microchip, um PIC24FJ32GA002, um chip de 16-bits 

com 32KB de memória ROM (o quádruplo o PIC16) e 8KB de memória RAM (8 

vezes mais que o PIC16). 

 

Os testes do algoritmo de curvas elípticas, apresentados na Tabela 1 no PIC24 

revelaram um tamanho aproximado de 11500 bytes de memória ROM e 1000 

bytes de memória RAM, como pode ser observado na tabela abaixo. Apesar da 

ocupação de memória RAM estar dentro da capacidade do PIC16 em algumas 

versões, a ocupação de memória ROM é bem maior que os 8KB máximos do 

PIC16, sendo, portanto, impossível de realizar tais testes mesmo com o chip 

vazio, ainda mais incluindo o algoritmo junto com o código demo do kit 

BodyCom™. Portanto, o algoritmo de criptografia de curvas elípticas revelou-se 

inviável para o projeto e outros algoritmos assimétricos começaram a serem 

considerados. 

 

Tabela 1 - Resultados dos testes do protocolo de curvas elípticas 

 

 

PIC24 - Otimização por espaço 

 

RAM Size (Bytes) ROM Size (Bytes) 

v29.04.15 986 12786 

v30.04.15 986 11499 

v04.05.15 1020 11415 

v05.05.15 1020 11499 

V17.05.15 1020 11514 
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4.1.2 Protocolo de Identificação baseado em Polinômios Multivariados 

Quadráticos 

 

Outro algoritmo assimétrico que foi considerado com potencial para rodar no 

PIC16 do kit BodyCom™ foi um protocolo de identificação baseado em 

polinômios multivariados quadráticos apresentado na dissertação de mestrado 

do Fábio Monteiro, do IME-USP, (MONTEIRO, 2012). 

 

Definição 

 

Esse protocolo “consiste em resolver um sistema de equações polinomiais 

multivariadas quadráticas sobre um corpo finito. Até hoje não se conhece 

algoritmo, nem mesmo quântico, de tempo polinomial que possa resolver esse 

problema, fazendo com que sistemas criptográficos baseados nessa primitiva 

mereçam ser investigados e desenvolvidos como reais candidatos a proverem 

nossa criptografia pós-quântica” (MONTEIRO, 2012). 

 

Na tese de Monteiro, foi apresentada uma versão aprimorada do protocolo 

MQID-3, apresentado por Sakumoto, Shirai e Hiwatari em 2011, na qual é 

obtida uma redução de comunicação de aproximadamente 9%. 

 

Testes 

 

A Tabela 2 mostra os testes realizados tanto no PIC24 quanto no PIC 16. Os 

testes das primeiras versões só puderam ser realizados o PIC24, pois suas 

ocupações ultrapassavam as ocupações máximas do PIC16. No entanto, a 

terceira versão contou com melhorias no algoritmo que fizeram com que sua 

ocupação chegasse a 3330 bytes de memória ROM e 458 bytes de memória 

RAM no PIC24. Foi possível compilar essa versão para o PIC16 e os 

resultados de ocupação obtidos foram promissores: 4051 bytes de memória 

ROM e 624 bytes de memória RAM. Apesar de estarem apenas 3100 bytes 

livres na aplicação do kit BodyCom™ após a retirada da funcionalidade de 

debug da aplicação DEMO, talvez algumas melhorias poderiam ser aplicadas 



20 
 

ao protocolo de Sakumoto-Monteiro para que o código atingisse essa 

ocupação. No entanto, ao rodar o teste, o seu tempo de execução mostrou-se 

da ordem de um minuto e meio para o PIC24 e incríveis 20 minutos para o 

PIC16, sendo um tempo muito alto para a execução de aplicações com o kit 

BodyCom™ – um minuto e meio é um tempo extremamente grande e inviável 

para uma autenticação. 

  

Tabela 2 - Resultados dos testes do protocolo de polinômios multivariados quadráticos 

 

 
PIC16 - Otimização por espaço PIC24 - Otimização por espaço 

 
RAM Size 

(Bytes) 
ROM Size 

(Bytes) 
Time 
(min) 

RAM Size 
(Bytes) 

ROM Size 
(Bytes) 

Time 
(min) 

v17.05.15       1382 15735   

v18.05.15       1314 13389 01:17  

v19.05.15 624 4051 20:00  458 3330 01:16  

 

Conclusão 

 

Os tempos desfavoráveis de execução aliados à improbabilidade de melhorar 

esses tempos com quaisquer melhorias concebíveis no protocolo levaram à 

recomendação de descartar essa vertente, e investigar um último protocolo 

assimétrico para uso potencial no projeto: o esquema de identificação do 

Probema de Núcleos Permutados (Permuted Kernel Problem – PKP). 

4.1.3 Problema de Núcleo Permutado 

O problema de núcleo permutado (Permuted Kernel Problem – PKP) foi 

proposto primeiramente por Adi Shamir em 1989 (SHAMIR, 1989) e mostrou-se 

ser um protocolo assimétrico eficiente para estabelecer identidades de usuários 

a assinar mensagens digitalmente, utilizando chaves públicas e privadas 

compactas e provas de conhecimento-zero. 

 

Definição 

 

Em criptografia, uma prova de conhecimento-zero é um método utilizado para 

autenticação que possibilita uma parte provar para outra que uma declaração é 
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verdadeira sem revelar nada além da veracidade da declaração. Um exemplo 

famoso e simples que apresenta a ideia geral de uma prova de conhecimento-

zero foi publicado primeiramente por Louis C. Guillou e Jean-Jacques 

Quisquater em 1988, e se baseia na situação em que um usuário   deseja 

provar para um usuário   que possui uma chave secreta, mas sem revelá-la. 

 

Na história, há uma caverna em formato circular com a entrada por um lado e 

uma porta trancada do lado oposto (como é ilustrado na figura abaixo). 

 

 

 

Os caminhos da caverna são rotulados A e B. 

 

1. O usuário   entra na caverna, enquanto o usuário   espera do lado de 

fora, e escolhe um dos caminhos A ou B aleatoriamente. 

2. O usuário   entra na caverna e escolhe aleatoriamente um caminho, A 

ou B, pelo qual ele deseje que o usuário   retorne. 

3. Se o usuário   tiver posse da chave secreta que abre a porta, ele poderá 

retornar pelo caminho escolhido por   em 100% das vezes. Em caso 

contrário, como o caminho foi escolhido aleatoriamente no passo 2, o 

usuário   tem 50% de chance do caminho escolhido por ele ser o mesmo 

caminho escolhido por  . 

 

A segurança do protocolo é estabelecida pelo número de vezes que ele é 

realizado. A chance do usuário   acertar o caminho escolhido por   em todas as 

vezes nas quais o protocolo é realizado diminui exponencialmente e, portanto, 

se o protocolo for executado 20 ou 30 vezes a segurança é grande o suficiente 

para ser aceita em protocolos computacionais, dependendo do nível de 

(Ilustrações retiradas de: https://en.wikipedia.org/wiki/Zero-knowledge_proof) 

Figura 5 - Ilustração do exemplo de provas de conhecimento-zero 
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segurança esperado. Assim, ao final de todas as execuções do protocolo, se o 

usuário   acertar todos os caminhos escolhidos por  , ele é autenticado; em 

caso contrário, a primeira vez que o usuário   errar o caminho escolhido, o 

protocolo é interrompido e a autenticação falha. 

 

O problema de núcleo permutado de Shamir utiliza provas de conhecimento-

zero mais complexas que a exemplificada para estabelecer autenticação entre 

dois usuários, mas a ideia básica é a mesma. Os usuários que participam do 

protocolo devem estabelecer previamente uma matriz   e um número primo  . 

Como o protocolo foi desenvolvido com base em permutações da matriz  , 

cada usuário escolhe uma permutação aleatória   da matriz (que serve como 

chave secreta) e um vetor aleatório   tal que uma permutação de   seja 

pertencente à  . Então, utilizando provas de conhecimento-zero, os usuários 

podem comprovar suas identidades um ao outro provando seu conhecimento 

da permutação secreta   sem que bisbilhoteiros e verificadores desonestos 

obtenham  . 

 

Especificação 

 

O protocolo do problema de núcleo permutado desenvolvido para esse projeto 

tem como base as especificações definidas pelo seu criador, Adi Shamir 

(SHAMIR, 1989), mas também considera os estudos da segurança do 

protocolo e as melhorias propostas por Thierry Baritaud e sua equipe 

(BARITAUD, et al., 1993) e por Guillaume Poupard (POUPARD, 1997). 

 

O esquema opera da seguinte forma entre Alice e Beto. Inicialmente, Alice e 

Beto escolhem 

 um número primo  , 

 uma dimensão inteira  , 

 uma matriz   de dimensão     e componentes inteiros módulo  , 

 uma função de hash  . 

Alice então escolhe como chave secreta uma permutação aleatória   sobre   

valores, e como chave pública um vetor   de dimensão   e componentes 



23 
 

inteiros módulo p tal que             . Numa instância do protocolo de 

identificação, em que Alice quer provar sua identidade a Beto, ambos repetem 

o seguinte protocolo: 

1. Alice escolhe um vetor aleatório   de dimensão   e componentes 

inteiros módulo  , e também uma permutação aleatória . Alice envia 

para Beto os valores de hash   =        ,   =           . 

2. Beto escolhe um valor aleatório   módulo   e pede a Alice o valor de 

 =             . 

3. Ao receber a resposta   de Alice, Beto escolhe um bit aleatório   e 

pede para Alice enviar   se  =  , ou então    se  =  . No primeiro 

caso, Beto confere se           =   , e no segundo caso Beto 

confere se                =   . 

 

Alice será sempre capaz de responder corretamente o valor de  . Um 

impostor que queira se fazer passar por Alice só terá 50% de chance de 

responder corretamente. Repetindo esse processo k vezes, a probabilidade de 

um falsário personificar Alice é de apenas    , um valor que pode ser tornado 

arbitrariamente pequeno. 

 

Um aspecto interessante deste protocolo é que o falsário poderia tentar violar a 

segurança recuperando a chave privada   de Alice a partir de   e de  , uma 

vez que, por definição,            ., ou seja,        =  . Contudo, 

conforme indicado por Shamir no artigo em que ele propõe o protocolo, esse 

problema é NP-difícil, e portanto intratável. 

 

O protocolo acima faz uso de uma função de hash  . Para esse projeto, 

avaliaram-se para a função   o algoritmo Keccak (SHA-3) e construções 

baseadas nas cifras de bloco AES, Speck e Curupira2, todas operando no 

modo Matyas-Meyer-Oseas (MMO) devido à sua simplicidade e segurança. 

 

Adotou-se um número de  =    repetições do protocolo para se obter um 

nível de segurança razoável para aplicações com a tecnologia do kit 

BodyCom™. 
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Testes 

 

Os testes do protocolo foram realizados tanto no PIC24 quanto no PIC16 nas 

diversas versões do algoritmo. A Tabela 3 e a Tabela 4 mostram os testes de 

memória e tempo da versão do protocolo que obteve os melhores resultados. 

 

Tabela 3 - Resultados dos testes do protocolo PKP no PIC16 

 

 PIC16 

 PKP v27.05.15 (otimização de 
espaço) 

PKP v27.05.15 (otimização de 
velocidade) 

 RAM Size 
(Bytes) 

ROM Size 
(Bytes) 

Time (s) 
RAM Size 

(Bytes) 
ROM Size 

(Bytes) 
Time (s) 

Keccak 702 3439 23.1000 702 3877 19.6000 

AES 512 3283 4.0325 512 3848 3.3650 

Speck 128 429 2244 3.3490 429 2503 2.7860 

Speck 96 417 2208 2.5610 417 2451 2.2540 

Speck 80 411 2177 2.3385 411 2400 2.0740 

Curupira2 (s/ 

tabelas) 
421 2385 2.3560 421 2694 2.1185 

Curupira2 (c/ 

TABS) 
416 2576 1.5485 416 2895 1.3165 

Curupira2 (c/ 

TABS, TAB0) 
416 2601 1.5390 416 2920 1.3025 

Curupira2 (c/ 

TABS, TAB0, 

TABX) 

412 2836 1.4695 412 3146 1.2450 
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Tabela 4 - Resultados dos testes do protocolo PKP no PIC24 

 

 PIC24 

 PKP v27.05.15 (otimização de 
espaço) 

PKP v27.05.15 (otimização de 
velocidade) 

 RAM Size 
(Bytes) 

ROM Size 
(Bytes) 

Time (s) 
RAM Size 

(Bytes) 
ROM Size 

(Bytes) 
Time (s) 

Keccak 550 3045 1.4200 550 3201 1.4169 

AES 380 3168 0.3100 380 3303 0.3031 

Speck 128 348 2493 0.3590 348 2613 0.3613 

Speck 96 336 2439 0.3040 336 2556 0.3048 

Speck 80 330 2421 0.2770 330 2538 0.2783 

Curupira2 (s/ 
tabelas) 

336 2787 0.5259 336 2985 0.5282 

Curupira2 (c/ 
TABS) 

336 2991 0.2190 336 3165 0.2155 

Curupira2 (c/ 
TABS, TAB0) 

336 3039 0.2170 336 3213 0.2160 

Curupira2 (c/ 
TABS, TAB0, 

TABX) 
336 3390 0.2116 336 3573 0.2086 

 

Ao analisar os resultados dos testes, pode-se perceber que o desempenho no 

PIC24 é muito melhor do que no PIC16 em todos os tipos de cifra utilizados. 

Percebe-se também que a ocupação de memória ROM no PIC16 é um pouco 

melhor do que no PIC24 na maioria dos casos. Na questão da ocupação de 

memória ROM, acredita-se que essa divergência ocorre devido a utilização de 

uma compilação em modo PRO (já que há uma licença para o compilador do 

PIC16), que costuma gerar códigos até 40% menores do que uma compilação 

em modo FREE (utilizada no PIC24 pela falta de licença). Essa ocupação 

variou entre 2200 e 3500 bytes e como há apenas 2900 bytes livres na 

aplicação DEMO do kit BodyCom™ até o momento, nem todas as versões 

poderão ser utilizadas junto com o demo. Já na questão de desempenho, a 

enorme divergência de tempos de execução do algoritmo entre os dois PICs 

deve ter ocorrido devido a certas operações que não devem ser definidas no 

PIC16 e para aproximar esse desempenho do PIC24 seria necessário realizar 

tais operações em ASSEMBLY. 
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A ocupação de memória RAM da versão com Keccak é a única que ultrapassa 

a ocupação disponível de memória RAM (588 bytes), então essa versão não 

será considerada. A ocupação de memória ROM ficou bem abaixo da 

disponível em alguns casos, então esse critério foi contornado. O problema 

está no desempenho das versões no PIC16. Com os melhores tempos das 

versões no PIC24 seria possível incluir esse protocolo para diversas 

aplicações, pois um tempo de resposta entre 0,2 e 0,3 segundos é um tempo 

aceitável. No entanto, o melhor tempo no PIC16 é de 1,5 segundos, sendo o 

melhor tempo para uma versão que também caiba com folga no chip 2,3 

segundos, o que são tempos inviáveis para algumas aplicações. Mesmo assim, 

há algumas aplicações, como o simples acesso à portas, que aceitam um 

tempo de resposta em torno de 1 e 2 segundos, portanto ainda é possível 

utilizar esse protocolo com o kit BodyCom™ e como essa é uma solução 

assimétrica, é uma solução mais segura do que uma simétrica. 

4.2 Protocolos simétricos 

4.2.1 Protocolo de Lim-Lee 

Chae Hoon Lim e Pil Joong Lee do Departamento de Engenharia Elétrica da 

Universidade de Ciência e Tecnologia de Pohang, na Coreia do Sul, publicaram 

o artigo Several practical protocols for authentication and key exchange em 

1995 com 5 protocolos de autenticação e troca de chaves para diferentes 

aplicações (LIM & LEE, 1995). No protocolo 1 é apresentada uma autenticação 

leve e muito eficiente para algoritmos simétricos e por isso esse foi o protocolo 

escolhido para exploração neste projeto. 

 

Definição 

 

No protocolo 1 de Lim-Lee define-se como   uma chave simétrica 

compartilhada pelos usuários e   uma cifra de bloco, portanto       denota 

uma encriptação da mensagem   com a chave secreta  . Ainda, define-se 

como    uma cadeia aleatória de dados escolhida pelo usuário   e     como o 

identificador (endereço) do usuário  . Por fim, definem-se os operadores   e   
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como concatenação e a operação ou-exclusivo (XOR) entre cadeias, 

respectivamente. 

 

O protocolo de Lim-Lee está exemplificado na Figura 6 e detalhado nos passos 

abaixo. 

 

1. O usuário   escolhe uma cadeia aleatória    e envia ao usuário   essa 

cadeia encriptada com a chave  ,       . 

2. O usuário   então recebe a mensagem, a decripta com a chave 

compartilhada   e recupera   . Ele então calcula uma nova chave 

        pela concatenação de   e   , escolhe a cadeia aleatória   , 

e envia ao usuário   a mensagem    
        , da concatenação do 

identificador de   com a cadeia aleatória de   encriptada com a nova 

chave   . 

3. O usuário   calcula a chave        , com a chave simétrica 

compartilhada   e a cadeia aleatória    do passo 1 para decriptar a 

mensagem enviada por  . Ele então verifica se o identificador enviado 

    equivale ao seu identificador. Em caso positivo, ele calcula a chave 

        e envia ao usuário   a mensagem    
    . 

4. Por fim, o usuário   recebe a mensagem de   e calcula a chave    

      com a chave simétrica compartilhada   e a cadeia aleatória    

do passo 2 para decriptar a mensagem enviada por  . Com a mensagem 

decriptada, o usuário   verifica se a cadeia aleatória    extraída da 

decriptação coincide com a cadeia    escolhida no passo 2. Em caso 

positivo, a autenticação foi estabelecida com sucesso e os usuários 

podem trocar mensagens com segurança. 

 



28 
 

 

Figura 6 - Diagrama de exemplificação do protocolo Lim-Lee 

 

Lim e Lee ainda analisam os ataques que poderiam ser tentados contra o 

protocolo e como a segurança do protocolo impede esses ataques. “Um 

atacante se passando pelo usuário   poderia iniciar o protocolo apenas 

enviando uma cadeia aleatória de sua escolha ou enviar uma transmissão 

observada anteriormente, por outras comunicações pelo protocolo. Em ambos 

os casos, o atacante não consegue enviar uma resposta legítima no passo 3 

por causa da nova cadeia aleatória enviada pelo usuário   de forma encriptada 

no passo 2” (LIM & LEE, 1995). Ainda, a adição do identificador do recebedor 

no protocolo, o protege contra ataques paralelos, pois o torna direcionalmente 

dependente, impossibilitando a passagem de um atacante como um usuário, 

pois a reutilização de uma mensagem em outra comunicação se torna inútil. 

 

Propostas de melhorias 

 

Esta seção descreve uma contribuição original deste trabalho: melhorias de 

segurança e de implementação do protocolo de identificação Lim-Lee. 

 

O protocolo de Lim-Lee realiza as operações    
         e    

    , e com 

isso ele assume que a cifra utilizada é capaz de cifrar mensagens de tamanhos 

variáveis. Cifras desse tipo requerem uma complexidade maior e com isso uma 

ocupação de memória maior e em um projeto no qual a ocupação de memória 

é uma das maiores preocupações, o protocolo analisado apresenta uma falha 

determinante. 

 

𝑬𝑲𝒋 𝑰𝑫𝒊  𝑹𝒋  

𝑬𝑲 𝑹𝒊  

 𝑖 
𝑬𝑲𝒊

 𝑹𝒊  

 

𝑗 
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O protocolo também posterga a detecção de sucesso ou falha de decriptação 

até o último passo do protocolo, aumentando muito o tempo de detecção de 

uma falha no protocolo. 

 

Ambos os problemas citados podem ser resolvidos com algumas modificações 

no protocolo. No primeiro passo, propõe-se invocar            ao invés de 

       e no terceiro passo propõe-se invocar    
         ao invés de    

     

para que, desse modo, as cadeias a serem cifradas tenham sempre o mesmo 

tamanho. Assim, uma cifra que seja capaz de cifrar apenas mensagens de 

tamanhos fixos pode ser utilizada no protocolo, podendo ser uma cifra bem 

mais leve que uma cifra de tamanhos variáveis. Essas modificações também 

resolvem o segundo problema citado ao incluir a cadeia identificadora     no 

primeiro passo do protocolo, garantindo assim que o protocolo prossiga apenas 

se o     enviado por   coincidir com a cadeia identificadora de  , falhando já no 

passo 2 em caso contrário. Um esquema ilustrativo pode ser observado na 

Figura 7. 

 

 

Figura 7 - Diagrama de exemplificação do protocolo Lim-Lee melhorado 
 

Especificação do protocolo aprimorado 

 

Notação: 

 

          é uma chave simétrica de   bits compartilhadas pelos 

usuários. 

                        é uma cifra de bloco, com chaves de   bits e 

blocos de   bits. 

𝑬𝑲𝒋 𝑰𝑫𝒊  𝑹𝒋  

𝑬𝑲 𝑰𝑫𝒋  𝑹𝒊  

𝑖 
𝑬𝑲𝒊

 𝑰𝑫𝒋  𝑹𝒊  

 

𝑗 
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   

 
        denota a amostragem uniformemente aleatória de uma 

cadeia  binária    de   bits. 

            é um identificador, unívoco e de   bits, do usuário  .  

 

Protocolo: 

 

1. O usuário   escolhe   

 
        e envia o criptograma            para o 

usuário  . 

2. O usuário   recupera     e    do criptograma acima, e verifica o 

identificador    . Se essa verificação for bem sucedida, o usuário   

calcula               , escolhe   

 
       , e envia o criptograma 

   
         para o usuário  . 

3. O usuário   verifica o identificador     recuperado do criptograma acima. 

Se essa verificação for bem sucedida, o usuário   calcula      

(       ), e envia o criptograma    
         para o usuário  . 

4. O usuário   recupera     e    do criptograma acima, e verifica se eles 

coincidem com os valores correspondentes recuperados no passo 2. 

 

As relações entre os tamanhos devem ser    =  , de modo que        

       (e analogamente permutando   e  ), e     para possibilitar o 

mascaramento da chave   nas formas    e   . A concatenação de zeros 

(       ) no cálculo das chaves    e    é realizada para que os operandos da 

operação ou-exclusivo sejam de mesmo tamanho. 

 

No caso da aplicação desse protocolo no projeto, como o pacote de 

transferência de dados já é definido com um tamanho de 16 bytes, é possível 

utilizar uma cifra de no máximo 16 bytes, como por exemplo AES128 e 

Speck128 (com uma cifra de bloco e chave de 16 bytes) ou Curupira 2 (com 

uma cifra de bloco e chave de 12 bytes). Como o endereço (identificador) de 

cada unidade-móvel e da base já é definido na aplicação com um tamanho de 

4 bytes, a cadeia aleatória deveria ter um tamanho de 12 bytes caso o 
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algoritmo utilizado fosse AES128 ou Speck128 e 8 bytes caso o algoritmo 

utilizado fosse o Curupira 2. Como parte da mensagem cifrada enviada contém 

o identificador do usuário, a segurança do protocolo depende do tamanho da 

cadeia aleatória que é concatenada ao identificador. Com isso, ao utilizar o 

Curupira 2 como cifra, a segurança do protocolo seria de 64 bits (8 bytes) e ao 

utilizar uma cifra de bloco de tamanho 16 bytes (AES128 ou Speck128), a 

segurança do protocolo seria de 96 bits (12 bytes). 

 

Desenvolvimento do protocolo 

 

Optou-se por utilizar uma cifra de 128 bits (AES ou Speck) pelo fato de sua 

segurança ser maior que uma cifra de 96 bits (Curupira 2). Primeiramente, o 

protocolo foi desenvolvido em linguagem C para ser testado inteiramente no 

microchip PIC16LF1829, chip da base do kit BodyCom™, e só após a certeza 

de viabilidade do protocolo, suas etapas foram divididas entre os chips 

PIC16LF1829 (base) e PIC16LF1827 (unidade-móvel) para que o protocolo 

fosse testado junto com a funcionalidade de transmissão pela pele humana do 

kit BodyCom™. 

 

Primeiramente, foi necessário obter um código do algoritmo de criptografia, 

AES ou Speck, desenvolvido para rodar em plataformas de 8 bits e pequeno o 

suficiente para caber nas limitações de memória do kit. Foram encontradas 

diversas implementações do algoritmo AES128, mas todas demonstraram 

problemas ao serem executadas no chip do kit BodyCom™: ou o código 

continha apenas a funcionalidade de encriptação, mas não a de decriptação, 

ou o código mostrou-se muito grande para o chip, ou o código não executava 

com sucesso na aplicação. Por isso, seria necessário codificar a própria 

implementação do algoritmo AES128 para utilizá-lo. 

 

Ao invés disso, optou-se por utilizar a cifra Speck, um algoritmo de criptografia 

desenvolvido pela NSA (National Security Agency) em 2013 especificamente 

para aplicações leves e para desempenho ótimo de software e hardware em 

microcontroladores (BEAULIEU, et al., 2013). Apesar de ser uma cifra muito 

recente, Speck já passou por algumas análises e Itai Dinur realizou diversos 
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ataques à cifra em seu trabalho Improved Differential Cryptanalysis of Round-

Reduced Speck (DINUR, 2014) e a cifra não mostrou nenhuma vulnerabilidade 

até o momento. Beaulieu et al. obtiveram resultados muito bons de 

desempenho e ocupação na comparação do Speck128 com o AES128 em uma 

plataforma de 8 bits, como mostra a Figura 8 (retirada do artigo original 

(BEAULIEU, et al., 2013)). O código do Speck mostrou-se cerca de 52% menor 

em ocupação de memória flash que o AES e com uma taxa de transferência 

(throughput) 42% maior, e por esse motivo optou-se primeiramente pela 

implementação do algoritmo Speck em linguagem C para plataformas de  8 bits 

ao invés do algoritmo AES. 

 

 

Figura 8 - Comparação de desempenho entre Simon, Speck e AES com tamanhos de chave e 
bloco de 128 bits. 

 

Implementação da cifra Speck 

 

A cifra Speck é baseada em rodadas de cálculos e o número de rodadas para a 

realização da cifração é dependente dos tamanhos do bloco e da chave de 

criptografia, de acordo com a Tabela 5. 
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Tabela 5 - Relação do tamanho de bloco, tamanho de chave e número de rodadas da cifra 
Speck 

 

Tamanho do 
Bloco (bits) 

Tamanho da 
Chave (bits) 

Número de 
rodadas 

32 64 22 

48 
72 22 

96 23 

64 
96 26 

128 27 

96 
96 28 

144 29 

128 

128 32 

192 33 

256 34 

 

As operações utilizadas em cada rodada de cálculo da cifra são: 

 OU-EXCLUSIVO (XOR) bit a bit, representado por  . 

 Adição em módulo   , sendo   a metade do tamanho do bloco, 

representada por  . 

 Rotações bit a bit para a esquerda e para a direita, representadas por    

e    , respectivamente, para   bits. 

 

Na cifração do Speck, o bloco recebido é divido em duas partes   e  , sendo   

a segunda parte do bloco e   a primeira parte, e as operações são realizadas 

entre essas partes e a chave   de acordo com os algoritmos de cifração 

abaixo, sendo    correspondente à encriptação e   
   correspondente à 

decriptação (que utiliza a subtração modular ao invés da adição). 

 

       = (                           ) 

  

  
       = (  (              )          ) 

 

As quantidades de rotações são  =   e  =   se o tamanho do bloco for 32 

bites e  =   e  =   caso contrário. 
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Para que a implementação do código ficasse a mais compacta possível, em 

vista das limitações de hardware, foi descartado o bloco de 32 bits e também 

os casos em que o tamanho da chave é diferente do tamanho do bloco. 

 

A cada rodada da cifra Speck o algoritmo de cifração é aplicado tanto à chave 

quanto à mensagem. No caso da chave, ela é dividida nas partes   e   e o 

número da rodada em questão é utilizado como  . No caso da mensagem, ela 

também é dividida em duas partes e a segunda parte da chave que acabou de 

ser atualizada é utilizada como  . 

 

Beaulieu et al. realizaram uma implementação da cifra Speck em um 

microcontrolador AVR de 8 bits, mas a implementação foi realizada em 

linguagem assembly para a obtenção de  desempenho ótimo (BEAULIEU, et 

al., 2014), então não foi possível utilizá-la. Song realizou uma implementação 

em linguagem C das cifras Simon e Speck e a disponibilizou como código 

aberto. Contudo, a implementação foi feita para plataformas de 32 bits e, além 

disso, a implementação de Speck só contava com a encriptação, faltando a 

decriptação. Portanto, esta também não pôde ser utilizada neste projeto. 

Por esta razão, foi necessário realizar uma implementação própria da cifra 

Speck em linguagem C para uma plataforma de 8 bits, que também será 

disponibilizada como código aberto. A grande dificuldade da implementação 

deu-se em realizar as operações de adição e subtração modular maiores que 8 

bits (módulo 64 no caso de um bloco de 128 bits) e as operações de rotação. 

Por fim, o código implementado é mais uma contribuição original do projeto e 

as ocupações de memória e tempos de execução podem ser vistas na Tabela 

6. 
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Tabela 6 - Ocupações de memória e tempos de execução da implementação original da cifra 
Speck 

 

 

PIC16 

 

Speck128 (otimização de 
espaço) 

Speck128 (otimização de 
velocidade) 

 

RAM Size 
(Bytes) 

ROM Size 
(Bytes) 

Time 
(s) 

RAM Size 
(Bytes) 

ROM Size 
(Bytes) 

Time 
(s) 

Encrypt - 32MHz 117 557 0.0068 117 565 0.0062 

Encrypt - 16MHz 117 557 0.0134 117 565 0.0122 

Encrypt - 8MHz 117 557 0.0266 117 565 0.0243 

Decrypt - 32MHz 117 736 0.0155 117 795 0.0130 

Decrypt  - 16MHz 117 736 0.0309 117 795 0.0258 

Decrypt  - 8MHz 117 736 0.0614 117 795 0.0509 

 

Testes 

 

Os testes do protocolo simétrico Lim-Lee com a cifra Speck no PIC 16 

mostraram-se muito promissores, como pode ser observado na Tabela 7. 

 

Tabela 7 - Resultados dos testes do protocolo Lim-Lee melhorado no PIC16 

 

 

PIC16 

 

Lim-Lee (otimização de espaço) 
Lim-Lee (otimização de 

velocidade) 

 

RAM Size 
(Bytes) 

ROM Size 
(Bytes) 

Time (s) 
RAM Size 

(Bytes) 
ROM Size 

(Bytes) 
Time (s) 

Speck128 
– 32MHz 

194 1683 0.0778 194 1826 0.0663 

Speck128 
– 8MHz 

194 1683 0.3057 194 1826 0.2590 

 

Pode-se observar que, para testes do protocolo completo na placa base do kit 

(PIC16LF1829), o protocolo simétrico Lim-Lee mostrou-se dentro de todas as 

limitações impostas pelo hardware do kit BodyCom™ nos três aspectos: 194 

bytes de memória RAM dos 534 bytes disponíveis na base e dos 209 bytes 

disponíveis nas unidades-móvies, 1683 bytes de memória ROM dos 1351 bytes 

disponíveis na base e dos 2333 disponíveis nas unidades-móveis, e um tempo 

de execução de 0,07 segundos com um clock de 32MHz na plataforma, um 
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tempo pequeno o suficiente para as aplicações da tecnologia BodyCom™. No 

entanto, a aplicação DEMO fornecida funciona apenas com um clock de 8MHz, 

o que aumenta o tempo de execução significantemente para 0,26 segundos 

com otimização de velocidade. Mesmo assim, esse tempo de execução 

mostra-se viável para a maioria das aplicações possíveis com a tecnologia 

BodyCom™. Com isso, o protocolo Lim-Lee com a cifra Speck128 torna-se o 

principal candidato a protocolo do projeto. 
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5 DESENVOLVIMENTO DO PROJETO 

O desenvolvimento do projeto consiste na inclusão do protocolo Lim-Lee 

melhorado, que foi o único protocolo estudado a se mostrar viável com as 

limitações impostas pelo kit de desenvolvimento da BodyCom™, na aplicação 

DEMO fornecida pela Microchip. 

5.1 Reformulação da aplicação DEMO 

Ao analisar o código-fonte da aplicação DEMO, observou-se que a aplicação 

não suporta o envio de múltiplos pacotes para uma única unidade-móvel e, por 

isso, foi necessário redesenhar a aplicação principal para que ela conseguisse 

suportar o protocolo Lim-Lee. O esquema de recepção e envio da aplicação 

reformulada desenvolvida para a placa base se encontra na Figura 9. 

 

 

Timeout 

Pacote 1M 

recebido e 

validado 

Pacote 2B enviado 

Pacote 1M recebido, mas 

com erro de autenticação 

Pacote 1M 

recebido e 

validado 

Recebendo 

Pacote 1M 

Esperando 

Toque 

Enviando 

Pacote 2B 

Recebendo 

Pacote 2M 

Mostra 

Mensagem 

Toque identificado e 

pacote de ping enviado 

Timeout 

Timeout Pacote 2M 

recebido, mas 

com erro de 

autenticação 

Figura 9 - Esquema principal da aplicação reformulada 
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O loop principal da aplicação reformulada chama infinitamente a função que 

implementa o esquema apresentado, dividido em 5 estados: 

 

 Esperando Toque: Esse é o estado inicial da função principal e nele o 

programa checa se o sensor de toque foi pressionado. Em caso positivo, 

um pacote de ping é enviado para a primeira unidade-móvel registrada 

na placa base, um timer é estabelecido e o estado 2 é habilitado. 

 Recebendo Pacote 1M: O segundo estado espera pelo recebimento do 

primeiro pacote da unidade-móvel que o estado 1 “pingou”. Caso o 

pacote seja recebido e validado sem erros pelo processo de 

autenticação, o estado 3 é habilitado. Caso o pacote seja recebido, mas 

algum erro de autenticação seja encontrado, uma mensagem de erro é 

acionada e o estado 5 é habilitado, para que a mensagem seja 

mostrada. Caso nenhum pacote seja recebido dentro do tempo 

estabelecido, ocasionando um timeout, o estado 1 é habilitado 

novamente para que a próxima unidade-móvel cadastrada na placa base 

seja “pingada”. 

 Enviando Pacote 2B: O terceiro estado da aplicação reformulada 

apenas envia o segundo pacote da placa base à unidade-móvel, 

estabelece um timer para receber a resposta e habilita o estado 4. Esse 

estado é necessário, o segundo pacote não foi enviado logo após a 

recepção do pacote 1M, porque é necessário um tempo para que a 

unidade-móvel esteja pronta para receber um segundo pacote. 

 Recebendo Pacote 2M: O quarto estado da aplicação espera pelo 

recebimento do segundo pacote vindo da unidade-móvel. Caso o pacote 

seja recebido e passe pela autenticação com sucesso, o acesso é 

garantido, uma mensagem de sucesso é acionada e o estado 5 é 

habilitado, para que a mensagem seja mostrada. Caso o pacote seja 

recebido, mas falhe na autenticação, uma mensagem de erro é acionada 

e o estado 5 é habilitado para mostrar a mensagem. Caso nenhum 

pacote seja recebido até o final do timer, uma mensagem de timeout é 

acionada e o estado 5 é habilitado para mostrar essa mensagem. 
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 Mostra Mensagem: O quinto e último estado apenas espera que o timer 

acionado no estado anterior seja atingido para que a mensagem seja 

mostrada por tempo suficiente e então habilita o estado inicial 

novamente para que a aplicação esteja pronta para o próximo acesso. 

 

Além de realizar a reformulação da função principal da aplicação para que a 

integração com o protocolo de autenticação seguro seja possível, foi 

necessário corrigir alguns erros encontrados na aplicação de demonstração, 

como a contagem de timeout feita na interrupção de forma equivocada. 

 

Também foi corrigido o erro da falta de verificação do endereço do pacote na 

aplicação DEMO. Como foi explicado anteriormente, a aplicação de 

demonstração não realiza a verificação do endereço do pacote enviado e do 

pacote recebido, que devem ser os mesmos, de forma a tornar a aplicação 

vulnerável a certos ataques. Portanto, na aplicação reformulada, todos os 

pacotes recebidos têm seu endereço verificado com o endereço do pacote 

anteriormente enviado e, caso não haja sucesso na verificação, o protocolo é 

terminado com um erro. 

 

5.2 Geração de números pseudoaleatórios 

O protocolo de Lim-Lee melhorado prevê a geração de números 

pseudoaleatórios para seu funcionamento. Como geradores de números 

pseudoaleatórios (PRNG – Pseudo-Random Number Generator) têm ocupação 

de memória e desempenho distintos dependendo de seu grau de segurança, 

assim como cifras, foi necessário realizar um estudo breve de escolha de um 

gerador que fosse viável junto às limitações e à segurança do projeto. 

 

Foram considerados três PRNG para estudo: o gerador do compilador do kit de 

desenvolvimento XC8, um gerador desenvolvido por Robert Jenkins (JENKINS, 

[2009?]) e um gerador utilizando a própria cifra Speck implementada. A Tabela 8 

mostra os testes de ocupação de memória e desempenho dos geradores de 

números pseudoaleatórios considerados. 
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Tabela 8 - Testes dos geradores de números pseudoaleatórios estudados 

 

 

PIC16LF1829 (base) 

 

PRNG (otimização de 
espaço) 

PRNG (otimização de 
velocidade) 

 

RAM Size 
(Bytes) 

ROM 
Size 

(Bytes) 

Time 
(ms) 

RAM Size 
(Bytes) 

ROM Size 
(Bytes) 

Time 
(ms) 

Jenkins ranval() 48 560 2.2324 48 643 2.0713 

XC8 rand() 23 293 2.8273 23 304 2.7606 

Speck128 - - 26.6100 - - 24.2500 

 

Os resultados dos testes realizados com os geradores consideram a geração 

de um número de 12 bytes, que é necessário no protocolo Lim-Lee. 

 

O gerador do compilador XC8 foi considerado devido à sua baixa ocupação de 

memória, um fator determinante para o projeto, devido às limitações do kit de 

desenvolvimento. No entanto, não é possível saber se esse gerador passou em 

algum teste estatístico de segurança, então sua utilização não é aconselhável. 

 

O gerador de Jenkins passou no teste DIEHARD, um teste razoável para fins 

criptográficos, porém não há indícios de que tenha passado no teste NIST, que 

é o teste determinante para garantir segurança criptográfica a um gerador de 

números pseudoaleatórios. No entanto, é o gerador de desempenho mais 

rápido encontrado e, caso a transmissão de dados seja muito lenta, esse 

gerador é uma opção a ser considerada. 

 

O terceiro gerador analisado utiliza a cifra Speck para gerar um número 

aleatório, utilizando como chave de criptografia a semente a ser passada e 

como mensagem a ser encriptada, um contador. Ao utilizar uma cifra, esse 

gerador torna-se criptograficamente seguro e como a cifra já é utilizada no 

protocolo de Lim-Lee, sua ocupação de memória não precisa ser considerada. 

No entanto, seu tempo de execução é muito maior que o dos outros geradores, 

portanto, se esse é um fator crítico do projeto, talvez não seja interessante 

considerá-lo. 
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Em suma, se a prioridade do projeto for segurança, é aconselhável utilizar o 

gerador por Speck e, se a prioridade for desempenho, é aconselhável utilizar o 

gerador de Jenkins. Nesse projeto, o gerador a ser utilizado será determinado 

após os testes da aplicação, mas de qualquer forma, a semente a ser utilizada 

no gerador será um timer de 16 bits das placas, a ser iniciado junto à 

inicialização de hardware, e o gerador será iniciado assim que o primeiro toque 

na placa base ocorrer ou assim que a unidade-móvel acordar pela primeira vez, 

de forma a ter a semente mais aleatória possível. 

5.3 Integração do protocolo de segurança com a aplicação 

Ao realizar a integração do protocolo de Lim-Lee melhorado com a aplicação 

reformulada, mostrada na Figura 10, problemas foram encontrados. A placa 

base enviava o primeiro pacote à unidade-móvel, a unidade-móvel recebia o 

pacote e enviava seu primeiro pacote, porém a placa base não o recebia. Após 

uma análise superficial, foi observado que para atrasos maiores que 15 

milissegundos, ou a unidade-móvel não consegue enviar o pacote ou a base 

não consegue recebê-lo. Já o oposto não ocorre, a placa base não tem 

problemas para enviar um pacote com qualquer atraso e a unidade-móvel 

consegue recebê-lo. 

 

Esse erro na aplicação DEMO dificulta a introdução de um protocolo de 

autenticação pelo fato da criptografia necessitar de certo tempo para ser 

calculada. O projeto escolheu utilizar a cifra mais leve e rápida encontrada e, 

mesmo assim, uma encriptação de Speck128 no ambiente de desenvolvimento 

leva 25ms para ser calculada e uma decriptação leva cerca de 50ms, ambas 

gerando atrasos muito maiores do que a aplicação suporta. 

 

Uma solução seria aumentar o clock das placas para 32MHz. No entanto, o 

propósito da unidade-móvel é ser um dispositivo pequeno e que tenha uma 

bateria duradoura e o aumento da velocidade do clock aumentaria muito o 

consumo de bateria, inviabilizando essa solução. 
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Uma solução viável para o problema, porém não ideal, seria a redução do 

número de rodadas da cifra Speck de forma que a redução no tempo de 

cifração se torne aceitável para a aplicação. Essa solução ocasiona em uma 

redução significativa na segurança disponibilizada pela cifra Speck, pois a 

segurança está ligada diretamente ao número de rodadas e a todos os testes 

pelos quais a cifra foi submetida e passou. O número de rodadas estabelecido 

pelos criadores, no caso da Speck128, foi de 32 rodadas, mas para que as 

Figura 10 - Protocolo de segurança Lim-Lee melhorado integrado à aplicação BodyCom 
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rotinas de encriptação e decriptação da Speck128 atinjam tempos de execução 

aceitáveis para que a aplicação seja executada sem erro, o número de rodadas 

deve ser reduzido de 32 para 8. 

 

Essa solução viável pode ser realizada para efeito de demonstração da 

aplicação funcionando no kit de desenvolvimento, mas a solução ideal para o 

problema seria analisar a fundo e em baixo nível as funções que realizam a 

comunicação entre a placa base e as unidades-móveis para encontrar o erro e 

corrigí-lo, de forma que o protocolo atinja sua segurança desejada. 

5.4 Testes 

5.4.1 Testes de desempenho 

Para realizar os testes de desempenho foi escolhido utilizar um timer de 16 bits 

da placa base rodando com um clock de 256kHz e, para controlar o overflow do 

timer, foi utilizado um contador que era incrementado a cada interrupção de 

overflow. Dessa forma, os tempos de execução de cada parte do protocolo 

puderam ser medidos com maior precisão. 

 

Para contornar o erro da aplicação com o atraso na montagem do pacote na 

unidade-móvel, o protocolo foi montado de forma particular. O protocolo foi 

montado completo do lado da placa base, com todos os passos do protocolo 

Lim-Lee e utilizando a cifra Speck128 com os 32 rounds pressupostos pela 

NSA. Como o erro ocorre do lado da unidade-móvel, para realizar os testes de 

desempenho, optou-se por substituir as rotinas que causam o atraso 

(encriptação e decriptação do Speck) por blocos fixos esperados, e no tempo 

de execução total foram somados os tempos individuais dessas rotinas. Dessa 

forma, foi possível prever o tempo de execução da aplicação reformulada por 

completo. Nesse caso, o gerador de números pseudoaleatórios escolhido foi o 

gerador por Speck, devido a uma segurança maior. 

 

Outro teste de desempenho realizado foi com a aplicação reformulada 

reduzida, utilizando um número de rodadas da cifra Speck, de forma a não 



44 
 

ocasionar um atraso maior que 15 milissegundos na unidade-móvel e não 

acarretar em um erro na aplicação. Para esse teste foi necessário utilizar 8 

rounds na cifra Speck e foi escolhido utilizar o gerador de números 

pseudoaleatórios Jenkins (JENKINS, [2009?]), por ser um gerador muito mais 

rápido e ter uma segurança razoável. Nesse teste é possível observar o 

desempenho da aplicação reformulada com segurança de ponta a ponta, 

apesar de a segurança ser diminuída pelo número de rounds reduzido. 

 

A Tabela 9 mostra os resultados dos testes descritos acima e o teste de 

desempenho da aplicação original para comparação. 

 

Tabela 9 - Testes de desempenho das aplicações BodyCom™ 

 

 

Teste Desempenho  (otimização de velocidade) 

 
TOTAL 

(ms) 

Manipulação dos Dados Transmissão e 
Recepção (ms) 

 

Unidade-Móvel (ms) Base (ms) 

Aplicação 
Reformulada 

Completa 
1204.00 130.40 191.00 882.60 

Aplicação 
Reformulada 

Reduzida 
967.80 21.20 61.40 885.20 

Aplicação 
Original 

212.17 0.00 0.00 212.17 

 

Os resultados apresentados na Tabela 9 mostram as médias de todos os 

resultados realizados. Pode-se observar que o tempo de execução da 

manipulação de dados da aplicação reformulada completa, 320ms, aproxima-

se do tempo de execução do teste do protocolo Lim-Lee melhorado, 259ms, o 

que era esperado, pois o protocolo de Lim-Lee melhorado considera apenas a 

execução do protocolo sem a transmissão dos dados, o mesmo que a 

manipulação dos dados considera. O tempo da aplicação reformulada completa 

é um pouco maior, pois inclui o tempo de execução de geração do número 

pseudoaleatório, que seria da ordem de 50ms para ambos os lados, e ainda 

um tempo a mais de processamento das instruções que validam o comando e 

o endereço dos pacotes. 
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Ao analisar os tempos de execução da manipulação de dados para a aplicação 

reformulada reduzida, percebe-se que eles são bem menores do que os 

tempos da aplicação completa. Isso é esperado, devido à aplicação reduzida 

utilizar uma cifra Speck com quatro vezes menos rodadas e por utilizar um 

gerador de números pseudoaleatórios bem mais rápido. 

 

Os tempos de execução médios das aplicações reformuladas mostraram-se 

maiores do que o esperado, pois tempos da ordem de 1 segundo são muito 

grandes para algumas aplicações, como é o caso da aplicação em uma arma 

policial que necessita de um tempo de reação muito baixo. No entanto, nota-se 

que o tempo de transmissão e recepção não diminui entre as aplicações 

reformuladas e faz parte 75% do tempo total de execução na aplicação 

completa e mais de 90% na aplicação reduzida, e é, portanto, o grande 

responsável pelo tempo da ordem de 1 segundo das aplicações. 

 

A aplicação original não realiza nenhuma manipulação de dados pelo fato de 

não transmitir nenhum pacote com dados entre os dispositivos e, portanto, seu 

tempo total de execução é praticamente todo realizado pela transmissão e 

recepção. Ainda assim, transmitindo e recebendo apenas dois pacotes sem 

dados (um da base e outro da unidade-móvel), o tempo de execução é de 

212ms, então os tempos de 880ms das aplicações reformuladas são 

esperados, já que elas enviam 1 pacote sem dados e 3 pacotes com 16 bytes 

de dados. 

 

Em suma, o protocolo de segurança incluído junto à aplicação é executado em 

um tempo pequeno o suficiente para a maioria das aplicações de controle de 

acesso. Porém, a aplicação de demonstração realiza as transmissões e 

recepções de pacotes muito devagar e isso diminui o leque de aplicações que 

o protocolo de autenticação seguro proporciona. 

5.4.2 Análise do consumo de energia 

O consumo de energia é de suma importância para a unidade-móvel. Se a 

aplicação reformulada não realizar um consumo de energia controlado, a 

bateria da unidade-móvel acabará rapidamente e terá que ser trocada com 
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uma frequência inconveniente para o usuário. Dessa forma, foi necessário 

realizar a análise do consumo de energia da unidade-móvel com a nova 

aplicação para garantir que a utilização do protocolo de autenticação seguro 

seja viável com a tecnologia BodyCom™. 

 

O consumo típico de energia da unidade-móvel pode ser observado na Figura 

11, que foi retirada do documento de introdução à tecnologia BodyCom™ 

(BAILEY, 2014). Nela, observa-se que, durante o período de repouso, a 

unidade-móvel consome apenas 3μA de energia e isso permite que sua bateria 

dure um longo tempo, pois ela passa seu maior tempo de vida dormindo. 

Também é possível observar que, durante o período em que a unidade-móvel 

está acordada, são consumidos 27mA durante a transmissão de dados e 

1.3mA durante o resto o tempo. 

 

Sendo assim, foi calculado que, para a nova aplicação reformulada, a unidade-

móvel fica acordada por uma média de 1560 milissegundos. Desse tempo, 

490ms são gastos com a transmissão de pacotes (245ms para cada pacote) e 

os restantes 1070ms são gastos com o recebimento e a manipulação de 

dados. Portanto, para uma transação típica da aplicação reformulada, a 

unidade-móvel consome 0,004mAh. 

 

De acordo com a datasheet (HITACHI MAXWELL, LTD., 2008) da bateria 

utilizada pela unidade-móvel, CR2032, para uma tensão de até 2,0V a bateria 

aguenta um consumo de 220mAh. No entanto, foi constatado que a unidade-

móvel para de transmitir pacotes com uma tensão de 2,9V, portanto seu 

consumo máximo seria em torno de 151mAh. Supondo um consumo médio de 

Figura 11 - Consumo típico de energia da unidade-móvel. 
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4 transações por dia, seria uma média de 120 transações e um consumo de 

0,48mAh por mês vindo das transações. Já o consumo em estado de repouso 

seriam de 0,003mA por 720 horas de um mês, ou seja, de 2,16mAh por mês. 

Isso totaliza um consumo de 2,64mAh por mês da unidade-móvel e significa 

que, considerando um consumo médio de 4 transações por dia da aplicação, a 

bateria da unidade-móvel duraria por 57 meses, ou seja, mais de 4 anos e 

meio. Supondo um consumo mais intenso de 10 transações diárias, o consumo 

não diminuiria tanto, pois a maior parte dele ainda seria consumida pela 

unidade-móvel em estado de repouso, e a bateria duraria 44 meses, ou seja, 

um pouco mais de 3 anos e meio. 

 

Portanto, o consumo de energia na unidade-móvel continua aceitável para a 

aplicação reformulada e, mesmo para aplicações de uso mais intenso, não 

ocasionaria um período de troca de bateria inconveniente para o usuário. 

5.4.3 Investigação do problema com a aplicação 

A aplicação foi analisada mais a fundo com o objetivo de encontrar o motivo do 

problema encontrado na aplicação, em que um atraso maior que 15 

milissegundos na criação do pacote na unidade-móvel impede o recebimento 

pela base. 

 

Para realizar essa análise, foi construída uma rotina de rastreamento em todos 

os passos das rotinas de transmissão e recepção de pacote da aplicação. 

Dessa forma, um buffer era preenchido com diferentes caracteres dependendo 

do estado da transmissão e recepção que era executado. Assim que a 

transmissão ou a recepção terminavam, o buffer era exibido na tela LCD da 

placa base para que fossem avaliados se todos os estados esperados em uma 

transmissão ou recepção com sucesso eram executados em um cenário de 

erro. Para analisar a transmissão e a recepção na unidade-móvel, a mesma 

função de rastreamento foi utilizada, porém, o buffer foi enviado no campo de 

dados do pacote. Dessa forma, utilizando a comunicação serial EUSART 

disponível, foi possível visualizar o conteúdo do pacote em um computador. 
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No entanto, não foi possível identificar uma anormalidade nos passos da 

transmissão e recepção de nenhum dos dispositivos e, por esta razão, não foi 

possível identificar a causa do erro na aplicação. 

 

Apesar disso, ao analisar mais a fundo a aplicação que faz possível a 

tecnologia BodyCom™, foi possível identificar alguns erros de programação de 

software cometidos: 

 Rotina que controle o toque trata o timeout de forma equivocada, sendo 

necessária ser chamada inúmeras vezes para que um timeout seja 

acionado, além do cálculo de jitter também ser feito de forma 

equivocada. 

 A tecnologia de transmissão utiliza um decodificador Manchester, mas a 

transmissão e a recepção são realizadas inteiramente por software bit a 

bit. Dessa forma, a chance da transmissão falhar aumenta, visto que o 

mesmo software contém outros erros e de fato falha, como o erro do 

atraso no pacote confirma. 

 

Em suma, essa análise mostra que a tecnologia BodyCom™ ainda está em 

evolução, porque há alguns erros a serem corrigidos. Além disso, talvez a 

migração de uma transmissão feita por hardware ao invés de software seja 

uma opção para que o tempo gasto nas transmissões e recepções de pacotes 

diminua. Ainda assim, a tecnologia mostra um grande potencial para diversas 

aplicações mesmo com alguns erros e quando esses erros forem corrigidos o 

leque de opções aumentará ainda mais. 
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6 CONSIDERAÇÕES FINAIS 

A tecnologia BodyCom™ é uma nova tecnologia, criada em 2013 pela 

Microchip, que possibilita uma abordagem diferenciada a aplicações de 

controle de acesso. No entanto, aplicações de controle de acesso precisam ser 

seguras e, ao analisar o kit de desenvolvimento que a Microchip disponibiliza, 

foi constatado que, apesar da tecnologia utilizar o corpo humano como meio de 

transmissão e este ser um meio muito seguro, a aplicação de demonstração 

não realizava nenhum protocolo de autenticação seguro e, portanto, estava 

exposta a ataques maliciosos. O projeto buscou explorar exatamente essas 

vulnerabilidades da aplicação de demonstração e propôs um protocolo de 

autenticação seguro para que a aplicação se tornasse viável a um ramo aind 

maior de aplicações. 

 

Após verificar a inviabilidade de protocolos assimétricos serem utilizados, o 

projeto encontrou um protocolo simétrico que coubesse dentro das limitações 

impostas pelo kit de desenvolvimento, que possui capacidade de memória e 

processamento muito limitados. O projeto propôs melhorias originais ao 

protocolo simétrico escolhido, de forma a torná-lo mais adequado para 

aplicações muito leves, e ainda desenvolveu uma implementação original em 

linguagem C da cifra Speck, uma cifra desenvolvida em 2013 para performance 

ótima em plataformas pequenas. 

 

Os testes na aplicação reformulada desenvolvida mostraram que um erro na 

implementação da tecnologia existe e que limita muito qualquer protocolo de 

segurança a ser associado a ela. Também, foi constatado que a 

implementação da tecnologia realiza a transmissão de pacotes inteiramente por 

software e provavelmente é isso que acarreta o grande tempo gasto durante 

essas transmissões. 

 

Apesar de todas as complicações e limitações da tecnologia, foi possível 

desenvolver um protocolo seguro viável tanto em termos de desempenho 

quanto em termos de consumo de bateria por parte da unidade-móvel para 
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diversas aplicações. Além disso, pelo fato da tecnologia ser muito recente e 

ainda estar em evolução, seus erros devem ser corrigidos e seu hardware deve 

ser melhorado, e quando forem, o potencial da tecnologia crescerá muito e o 

protocolo desenvolvido neste projeto poderá ser utilizado para aumentá-lo 

ainda mais. 
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APÊNDICES 

A TESTES DO PROTOCOLO PKP 

Testes das diferentes versões do algoritmo de Problema de Núcleos 

Permutados (PKP). 

 

A.1 Versão de 20/05/2015 

 

Tabela 10 - Resultados dos testes do protocolo PKP v20.05.15 no PIC16 

 

 PIC16 

 
PKP v20.05.15 (otimização de 

espaço) 
PKP v20.05.15 (otimização de 

velocidade) 

 
RAM Size 

(Bytes) 
ROM Size 

(Bytes) 
Time (s) 

RAM Size 
(Bytes) 

ROM Size 
(Bytes) 

Time (s) 

Keccak 678 3313 35.3900 678 3731 30.3900 

 

Tabela 11 - Resultados dos testes do protocolo PKP v20.05.15 no PIC24 

 

 PIC24 

 
PKP v20.05.15 (otimização de 

espaço) 
PKP v20.05.15 (otimização de 

velocidade) 

 
RAM Size 

(Bytes) 
ROM Size 

(Bytes) 
Time (s) 

RAM Size 
(Bytes) 

ROM Size 
(Bytes) 

Time (s) 

Keccak 526 2895 2.2800 526 2955 2.1980 
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A.2 Versão de 24/05/2015 

 

Tabela 12 - Resultados dos testes do protocolo PKP v24.05.15 no PIC16 

 

 PIC16 

 
PKP v24.05.15 (otimização de 

espaço) 
PKP v24.05.15 (otimização de 

velocidade) 

 
RAM Size 

(Bytes) 
ROM Size 

(Bytes) 
Time (s) 

RAM Size 
(Bytes) 

ROM Size 
(Bytes) 

Time (s) 

Keccak 674 3294 34.6400 674 3708 29.7850 

AES 487 3220 6.2040 487 3776 5.1410 

Speck 128 402 2161 5.1340 402 2431 4.2460 

Speck 96 390 2111 3.9390 390 2334 3.4510 

Curupira2 (s/ 

tabelas) 
396 2311 3.7400 396 2615 3.2880 

Curupira2 (c/ 

TABS) 
391 2484 2.2560 391 2794 1.9510 

Curupira2 (c/ 

TABS, TAB0) 
391 2509 2.2480 391 2891 1.9250 

Curupira2 (c/ 

TABS, TAB0, 

TABX) 

387 2748 2.2180 387 3052 1.8520 
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Tabela 13 - Resultados dos testes do protocolo PKP v24.05.15 no PIC24 

 

 PIC24 

 
PKP v24.05.15 (otimização de 

espaço) 
PKP v24.05.15 (otimização de 

velocidade) 

 
RAM Size 

(Bytes) 
ROM Size 

(Bytes) 
Time (s) 

RAM Size 
(Bytes) 

ROM Size 
(Bytes) 

Time (s) 

Keccak 580 2706 2.2640 580 2784 2.2030 

AES 410 2796 0.5580 410 2898 0.5470 

Speck 128 378 2133 0.6243 378 2208 0.6185 

Speck 96 366 2079 0.5451 366 2151 0.5358 

Curupira2 (s/ 

tabelas) 
366 2427 0.9016 366 2580 0.9038 

Curupira2 (c/ 

TABS) 
366 2631 0.3952 366 2760 0.3890 

Curupira2 (c/ 

TABS, TAB0) 
366 2679 0.3963 366 2808 0.3891 

Curupira2 (c/ 

TABS, TAB0, 

TABX) 

366 3030 0.3825 366 3168 0.3883 
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A.3 Versão de 25/05/2015 

 

Tabela 14 - Resultados dos testes do protocolo PKP v25.05.15 no PIC16 

 

 PIC16 

 
PKP v25.05.15 (otimização de 

espaço) 
PKP v25.05.15 (otimização de 

velocidade) 

 
RAM Size 

(Bytes) 
ROM Size 

(Bytes) 
Time (s) 

RAM Size 
(Bytes) 

ROM Size 
(Bytes) 

Time (s) 

Keccak 817 3403 23.2190 817 3825 19.9280 

AES 627 3265 4.7260 627 3812 3.9720 

Speck 128 544 2211 3.6740 544 2441 3.2370 

Speck 96 532 2175 3.1520 532 2389 2.8000 

Speck 80 527 2178 2.8530 527 2400 2.5510 

Curupira2 (s/ 

tabelas) 
538 2424 3.0580 538 2728 2.7270 

Curupira2 (c/ 

TABS) 
533 2592 1.9750 533 2903 1.7230 

Curupira2 (c/ 

TABS, TAB0) 
533 2617 1.9650 533 2928 1.7180 

Curupira2 (c/ 

TABS, TAB0, 

TABX) 

529 2850 1.9360 529 3154 1.6520 
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Tabela 15 - Resultados dos testes do protocolo PKP v25.05.15 no PIC24 

 

 PIC24 

 
PKP v25.05.15 (otimização de 

espaço) 
PKP v25.05.15 (otimização de 

velocidade) 

 
RAM Size 

(Bytes) 
ROM Size 

(Bytes) 
Time (s) 

RAM Size 
(Bytes) 

ROM Size 
(Bytes) 

Time (s) 

Keccak 660 2913 1.5230 660 2994 1.4380 

AES 490 3009 0.3241 490 3111 0.3184 

Speck 128 458 2346 0.3793 458 2421 0.3783 

Speck 96 458 2292 0.3291 458 2364 0.3248 

Speck 80 458 2274 0.2889 458 2346 0.2950 

Curupira2 (s/ 

tabelas) 
446 2640 0.5373 446 2793 0.5378 

Curupira2 (c/ 

TABS) 
446 2844 0.2324 446 2973 0.2371 

Curupira2 (c/ 

TABS, TAB0) 
446 2892 0.2424 446 3021 0.2375 

Curupira2 (c/ 

TABS, TAB0, 

TABX) 

446 3243 0.2345 446 3381 0.2304 
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A.4 Versão de 27/05/2015 

 

Tabela 16 - Resultados dos testes do protocolo PKP v27.05.15 no PIC16 

 

 PIC16 

 
PKP v27.05.15 (otimização de 

espaço) 
PKP v27.05.15 (otimização de 

velocidade) 

 
RAM Size 

(Bytes) 
ROM Size 

(Bytes) 
Time (s) 

RAM Size 
(Bytes) 

ROM Size 
(Bytes) 

Time (s) 

Keccak 702 3439 23.1000 702 3877 19.6000 

AES 512 3283 4.0325 512 3848 3.3650 

Speck 128 429 2244 3.3490 429 2503 2.7860 

Speck 96 417 2208 2.5610 417 2451 2.2540 

Speck 80 411 2177 2.3385 411 2400 2.0740 

Curupira2 (s/ 

tabelas) 
421 2385 2.3560 421 2694 2.1185 

Curupira2 (c/ 

TABS) 
416 2576 1.5485 416 2895 1.3165 

Curupira2 (c/ 

TABS, TAB0) 
416 2601 1.5390 416 2920 1.3025 

Curupira2 (c/ 

TABS, TAB0, 

TABX) 

412 2836 1.4695 412 3146 1.2450 
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Tabela 17 - Resultados dos testes do protocolo PKP v27.05.15 no PIC24 

 

 PIC24 

 
PKP v27.05.15 (otimização de 

espaço) 
PKP v27.05.15 (otimização de 

velocidade) 

 
RAM Size 

(Bytes) 
ROM Size 

(Bytes) 
Time (s) 

RAM Size 
(Bytes) 

ROM Size 
(Bytes) 

Time (s) 

Keccak 550 3045 1.4200 550 3201 1.4169 

AES 380 3168 0.3100 380 3303 0.3031 

Speck 128 348 2493 0.3590 348 2613 0.3613 

Speck 96 336 2439 0.3040 336 2556 0.3048 

Speck 80 330 2421 0.2770 330 2538 0.2783 

Curupira2 (s/ 

tabelas) 
336 2787 0.5259 336 2985 0.5282 

Curupira2 (c/ 

TABS) 
336 2991 0.2190 336 3165 0.2155 

Curupira2 (c/ 

TABS, TAB0) 
336 3039 0.2170 336 3213 0.2160 

Curupira2 (c/ 

TABS, TAB0, 

TABX) 

336 3390 0.2116 336 3573 0.2086 
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A.5 Versão de 09/06/2015 

 

Tabela 18 - Resultados dos testes do protocolo PKP v09.06.15 no PIC16 

 

 PIC16 

 
PKP v09.06.15 (otimização de 

espaço) 
PKP v09.06.15 (otimização de 

velocidade) 

 
RAM Size 

(Bytes) 
ROM Size 

(Bytes) 
Time (s) 

RAM Size 
(Bytes) 

ROM Size 
(Bytes) 

Time (s) 

Keccak 709 3516 23.0900 709 3956 19.7040 

AES 519 3354 4.1000 519 3927 3.4300 

Speck 128 435 2316 3.4020 435 2587 2.8580 

Speck 96 424 2270 2.6200 424 2509 2.3200 

Speck 80 418 2253 2.4010 418 2483 2.1240 

Curupira2 (s/ 

tabelas) 
428 2464 2.4760 428 2772 2.2520 

Curupira2 (c/ 

TABS) 
423 2641 2.4690 423 2960 1.3830 

Curupira2 (c/ 

TABS, TAB0) 
423 2666 1.5780 423 2985 1.3680 

Curupira2 (c/ 

TABS, TAB0, 

TABX) 

419 2901 1.5410 419 3217 1.3120 
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Tabela 19 - Resultados dos testes do protocolo PKP v09.06.15 no PIC24 

 

 PIC24 

 
PKP v09.06.15 (otimização de 

espaço) 
PKP v09.06.15 (otimização de 

velocidade) 

 
RAM Size 

(Bytes) 
ROM Size 

(Bytes) 
Time (s) 

RAM Size 
(Bytes) 

ROM Size 
(Bytes) 

Time (s) 

Keccak 550 3237 1.4720 550 3363 1.4280 

AES 380 3333 0.2665 380 3480 0.2627 

Speck 128 348 2670 0.3166 348 2790 0.3133 

Speck 96 348 2616 0.2658 348 2733 0.2631 

Speck 80 348 2598 0.2455 348 2715 0.2628 

Curupira2 (s/ 

tabelas) 
336 2964 0.4539 336 3162 0.4535 

Curupira2 (c/ 

TABS) 
336 3168 0.1893 336 3342 0.1866 

Curupira2 (c/ 

TABS, TAB0) 
336 3216 0.1893 336 3390 0.1852 

Curupira2 (c/ 

TABS, TAB0, 

TABX) 

336 3567 0.1826 336 3750 0.1794 

 


