

TOMÁS ALBUQUERQUE AZEVEDO

PROTOCOLO DE AUTENTICAÇÃO SEGURO DE UM SISTEMA

BODYCOM™

São Paulo

2015

TOMÁS ALBUQUERQUE AZEVEDO

PROTOCOLO DE AUTENTICAÇÃO SEGURO DE UM SISTEMA

BODYCOM™

Trabalho apresentado à Escola Politécnica

da Universidade de São Paulo para

graduação em Engenharia de Computação.

São Paulo

2015

TOMÁS ALBUQUERQUE AZEVEDO

PROTOCOLO DE AUTENTICAÇÃO SEGURO DE UM SISTEMA

BODYCOM™

Trabalho apresentado à Escola Politécnica

da Universidade de São Paulo para

graduação em Engenharia de Computação.

Engenharia de Computação e Sistemas

Digitais

Orientador: Prof. Dr. Marcos A. Simplicio Jr.

Coorientador: Prof. Dr. Paulo S. L. M.

Barreto

São Paulo

2015

FICHA CATALOGRÁFICA

Azevedo, Tomás Albuquerque

Protocolo de autenticação seguro de um sistema BodyCom™ / T. A. Azevedo --

São Paulo, 2015.

61 p.

Trabalho de Formatura - Escola Politécnica da Universidade de São Paulo.

Departamento de Engenharia de Computação e Sistemas Digitais.

1.Criptografia 2.Tecnologia BodyCom™ 3.Cifra de bloco Speck 4.Aplicação de controle

de acesso I.Universidade de São Paulo. Escola Politécnica.

Departamento de Engenharia de Computação e Sistemas Digitais II.t.

DEDICATÓRIA

Dedico este trabalho à minha mãe, Cristina, pelo apoio

e compreensão em todas as minhas escolhas.

Ao meu pai, José Osório, que foi o parceiro que não

tive no projeto e a pessoa que me inspirou a ser

engenheiro.

À minha namorada e amiga, Mariana, pelo

companheirismo e força dada sempre, e por toda sua

dedicação no banner deste trabalho.

E aos meus amigos que me acompanharam e me

apoiaram durante essa longa jornada que percorri na

Poli

AGRADECIMENTOS

À minha família pelo apoio de sempre e pelas discussões sempre muito

proveitosas que me tornaram a pessoa que sou.

Aos meus professores e orientadores, Marcos Simplicio e Paulo Barreto pela

orientação, dedicação e disposição durante todos os momentos necessários.

Ao meu orientador durante meu intercâmbio na University of Birmingham,

Flavio Garcia, que teve a ideia inicial para o projeto e que gentilmente me

emprestou o kit de desenvolvimento para a continuação do projeto aqui no

Brasil.

Finalmente, a todos os professores e colegas do curso de Engenharia de

Computação da Escola Politécnica da USP, que me acompanharam e me

guiaram durante todos esses anos.

RESUMO

Em 2013, a Microchip Technology Inc. lançou uma tecnologia inovadora que

realiza a comunicação entre uma placa base e suas unidades-móveis que

utiliza o corpo humano como meio de transmissão. Essa tecnologia pode ser

aplicada a diversas situações de controle de acesso para facilitar sua

usabilidade.

Acreditando no potencial dessa inovação e verificando que a aplicação modelo

não realiza essa comunicação de modo seguro, esse projeto tem como objetivo

estudar possíveis protocolos de segurança que sejam viáveis junto ao kit de

desenvolvimento disponibilizado pela Microchip e incluir esse protocolo na

aplicação modelo de forma a torná-la segura.

Ainda, o projeto propõe duas contribuições originais, a primeira refere-se a uma

melhoria para plataformas leves no protocolo simétrico proposto por Lim e Lee

e a segunda consiste na implementação para plataformas de 8 bits em

linguagem C da cifra Speck, proposta em 2013 pela NSA.

Palavras-chave: Criptografia, Tecnologia BodyCom™, Cifra de bloco Speck,

Aplicação de controle de acesso

ABSTRACT

In 2013, Microchip Technology Inc. launched an innovative technology which

makes possible communication between a centralized controller and its mobile

units utilizing the human body as the transmission medium. This technology can

be applied to multiple access control scenarios improving their usability.

Believing in this innovation’s potential and verifying that the demo application

does not provide a secure communication, this project’s objectives are to study

security protocols that are viable when inserted into the development kit

provided by Microchip and actually implement this protocol into the application

so that it becomes secure.

Furthermore, the project proposes two original contributions: the first being an

improvement for lightweight applications in the symmetric protocol proposed by

Lim and Lee and the second an implementation for 8-bit platforms in C

programming language of the Speck cipher, proposed in 2013 by the NSA,

Palavras-chave: Criptography, BodyCom™ Technology, Block chipher Speck,

Access control application

LISTA DE FIGURAS

Figura 1 - Kit de desenvolvimento da tecnologia BodyCom™ 9

Figura 2 - Especificação de memórias dos microprocessadores utilizados 10

Figura 3 - Trecho do código-fonte com o tamanho máximo de dados em um

pacote de transmissão. .. 11

Figura 4 - Protocolo original da aplicação DEMO ... 13

Figura 5 - Ilustração do exemplo de provas de conhecimento-zero 21

Figura 6 - Diagrama de exemplificação do protocolo Lim-Lee 28

Figura 7 - Diagrama de exemplificação do protocolo Lim-Lee melhorado 29

Figura 8 - Comparação de desempenho entre Simon, Speck e AES com

tamanhos de chave e bloco de 128 bits. .. 32

Figura 9 - Esquema principal da aplicação reformulada 37

Figura 10 - Protocolo de segurança Lim-Lee melhorado integrado à aplicação

BodyCom.. 42

Figura 11 - Consumo típico de energia da unidade-móvel. 46

LISTA DE TABELAS

Tabela 1 - Resultados dos testes do protocolo de curvas elípticas 18

Tabela 2 - Resultados dos testes do protocolo de polinômios multivariados

quadráticos ... 20

Tabela 3 - Resultados dos testes do protocolo PKP no PIC16 24

Tabela 4 - Resultados dos testes do protocolo PKP no PIC24 25

Tabela 5 - Relação do tamanho de bloco, tamanho de chave e número de

rodadas da cifra Speck ... 33

Tabela 6 - Ocupações de memória e tempos de execução da implementação

original da cifra Speck .. 35

Tabela 7 - Resultados dos testes do protocolo Lim-Lee melhorado no PIC16 . 35

Tabela 8 - Testes dos geradores de números pseudoaleatórios estudados 40

Tabela 9 - Testes de desempenho das aplicações BodyCom™ 44

Tabela 10 - Resultados dos testes do protocolo PKP v20.05.15 no PIC16 53

Tabela 11 - Resultados dos testes do protocolo PKP v20.05.15 no PIC24 53

Tabela 12 - Resultados dos testes do protocolo PKP v24.05.15 no PIC16 54

Tabela 13 - Resultados dos testes do protocolo PKP v24.05.15 no PIC24 55

Tabela 14 - Resultados dos testes do protocolo PKP v25.05.15 no PIC16 56

Tabela 15 - Resultados dos testes do protocolo PKP v25.05.15 no PIC24 57

Tabela 16 - Resultados dos testes do protocolo PKP v27.05.15 no PIC16 58

Tabela 17 - Resultados dos testes do protocolo PKP v27.05.15 no PIC24 59

Tabela 18 - Resultados dos testes do protocolo PKP v09.06.15 no PIC16 60

Tabela 19 - Resultados dos testes do protocolo PKP v09.06.15 no PIC24 61

SUMÁRIO

1 INTRODUÇÃO .. 1

1.1 Objetivo ... 1

1.2 Motivação .. 1

1.3 Justificativa ... 2

1.4 Metodologia de trabalho .. 4

1.5 Organização .. 5

2 ASPECTOS CONCEITUAIS ... 7

3 ESPECIFICAÇÃO DO PROJETO .. 9

3.1 Limitações ... 9

3.2 Protocolo de comunicação da aplicação DEMO................................ 12

3.3 Cenários de vulnerabilidade .. 13

3.4 Liberação de memória na aplicação DEMO 14

4 PROCURA E VIABILIDADE DE PROTOCOLOS DE

SEGURANÇA ... 17

4.1 Protocolos assimétricos .. 17

4.1.1 Criptografia de Curvas Elípticas ... 17

4.1.2 Protocolo de Identificação baseado em Polinômios Multivariados

Quadráticos .. 19

Definição .. 19

Testes .. 19

Conclusão .. 20

4.1.3 Problema de Núcleo Permutado ... 20

Definição .. 20

Especificação .. 22

Testes .. 24

4.2 Protocolos simétricos .. 26

4.2.1 Protocolo de Lim-Lee.. 26

Definição .. 26

Propostas de melhorias ... 28

Especificação do protocolo aprimorado ... 29

Desenvolvimento do protocolo .. 31

Implementação da cifra Speck .. 32

Testes .. 35

5 DESENVOLVIMENTO DO PROJETO 37

5.1 Reformulação da aplicação DEMO ... 37

5.2 Geração de números pseudoaleatórios ... 39

5.3 Integração do protocolo de segurança com a aplicação 41

5.4 Testes .. 43

5.4.1 Testes de desempenho .. 43

5.4.2 Análise do consumo de energia ... 45

5.4.3 Investigação do problema com a aplicação 47

6 CONSIDERAÇÕES FINAIS .. 49

REFERÊNCIAS BIBLIOGRÁFICAS ... 51

APÊNDICES ... 53

A TESTES DO PROTOCOLO PKP .. 53

A.1 Versão de 20/05/2015 ... 53

A.2 Versão de 24/05/2015 ... 54

A.3 Versão de 25/05/2015 ... 56

A.4 Versão de 27/05/2015 ... 58

A.5 Versão de 09/06/2015 ... 60

1

1 INTRODUÇÃO

1.1 Objetivo

O sistema BodyCom™ da Microchip utiliza uma tecnologia inovadora de curto

alcance que permite a comunicação entre um controle centralizado (base) e

uma unidade-móvel sem-fio, utilizando o corpo humano como o meio de

transmissão. A solução é inovadora pois possibilita a criação de sistemas cuja

autenticação se dá através do corpo humano. Por exemplo, poderia-se

desenvolver aplicações que destravam uma porta quando o usuário, com uma

unidade-móvel em seu bolso, encosta na maçaneta, sendo que a comunicação

entre a maçaneta e a unidade-móvel é estabelecida com sucesso pelo corpo

do usuário, destravando a porta.

O objetivo do projeto é investigar o funcionamento do Kit de desenvolvimento

da tecnologia BodyCom™ da Microchip, identificando e testando sua

segurança. Ainda, o projeto tem o objetivo de criar um protocolo de

autenticação seguro, entre a unidade-móvel e o controle centralizado, baseado

nessa tecnologia.

1.2 Motivação

A tecnologia BodyCom™ pode ser utilizada em diversos tipos de aplicações já

existentes no mercado com outros tipos de tecnologia, como aplicações de

segurança pessoal, aplicações médicas, de gerenciamento de perfil de usuário

e de controle de acesso.

Dentre as aplicações de segurança pessoal, podem ser ressaltadas as

aplicações que requerem o acionamento de algum componente por um usuário

de modo seguro, como ferramentas elétricas, computadores e armas de fogo.

Nesse caso, apenas o usuário com a posse de uma unidade-móvel registrada

na base conseguiria acionar o funcionamento do componente. A tecnologia

poderia ser utilizada para, por exemplo, ligar uma furadeira, onde ela só

2

poderia ser ligada pela pessoa com posse da unidade-móvel, impossibilitando

que pessoas não autorizadas, crianças no caso, liguem a furadeira. Outra

aplicação sugerida seria colocar o controle centralizado em uma arma para

garantir que apenas o policial que possui a unidade-móvel (acoplada, por

exemplo, a seu relógio) consiga dispará-la (METZ, 2013). Além dessa

aplicação, uma empresa italiana diz estar utilizando a tecnologia BodyCom™

para assegurar que os motociclistas não andem sem capacete, com uma

unidade-móvel acoplada no capacete e o controle centralizado no guidão da

motocicleta (METZ, 2013).

Em aplicações médicas, a tecnologia BodyCom™ pode ser utilizada para

controlar o acesso aos quartos dos hospitais e ainda monitorar pacientes. Em

aplicações de gerenciamento de perfil, a tecnologia pode ser utilizada para

separar as informações referentes a cada uma das “unidades-móveis”. Nesse

caso, se cada usuário possuir uma unidade-móvel a plataforma que possui o

controle centralizado como, por exemplo, um vídeo game ou esteira de

exercício, consegue identificar o usuário apenas pelo toque e gerenciar suas

ações separadamente.

A tecnologia BodyCom™ pode ser utilizada para aplicações de controle de

acesso como, por exemplo, o controle de acesso a carros e casas. Nesses

caso, o acesso seria garantido ao usuário que possuir uma unidade-móvel

cadastrada após o toque na maçaneta da porta. Dessa forma, como o sistema

promete transmitir a informação entre o controle centralizado e a unidade-

móvel de um modo seguro, exatamente por utilizar o corpo humano como meio

de transmissão e porque “não há um canal mais seguro que o corpo humano”,

a tecnologia BodyCom™ ajuda a prevenir o problema de ataque de

retransmissão (replay attack), muito comum nos sistemas de segurança de

entrada remota sem chave, como em automóveis (GOMEZ, 2013).

1.3 Justificativa

O projeto foi idealizado e iniciado como um projeto de pesquisa durante o

intercâmbio do proponente na University of Birmingham, no Reino Unido, sob a

3

orientação do Prof. Dr. Flavio Garcia. O intercâmbio teve duração de um ano,

mas o projeto de pesquisa ocorreu durante as férias de verão e, portanto,

durante dois meses e meio. Assim, devido ao curto prazo, o projeto não pôde

ser finalizado, de modo que o projeto de formatura fará a continuação e

ampliação do projeto iniciado no exterior.

A tecnologia inovadora BodyCom™ permite que sua implementação não

necessite de um design com RF antena nem cristais externos para estabilizar a

frequência do canal de transmissão, pois a frequência utilizada é muito baixa. A

tecnologia está de acordo com as radiações emitidas no corpo e não causa

danos ao organismo, pois a corrente elétrica transmitida é mínima. Como a

comunicação é feita pelo corpo humano, não é necessário um transceptor sem

fio e isso, atrelado ao fato de não utilizar campos indutivos de alta tensão para

realizar a transmissão faz com que a solução da Microchip tenha um consumo

muito baixo de energia. Ainda, como a tecnologia utiliza uma autenticação

bidirecional através do corpo humano, ela se torna muito mais segura que

outras tecnologias que possibilitam os ataques de retransmissão.

No entanto, apesar do fato de utilizar o corpo humano como meio de

transmissão trazer segurança para o sistema, ele por si só não é totalmente à

prova de ataques, por isso, a tecnologia suporta a utilização de criptografia

para adicionar ainda mais segurança às suas aplicações. No entanto, nenhum

protocolo de segurança padrão é utilizado na aplicação DEMO do kit de

desenvolvimento e as aplicações que utilizam esse código-fonte, apesar de

estarem protegidas de ataques de retransmissão pela transmissão pelo corpo

humano, não estão protegidas por ataques que forcem a transmissão de

pacotes modificando o número de identificação. Nesse caso, é possível

quebrar a segurança da aplicação DEMO com força bruta até encontrar algum

número de identificação que esteja registrado no controle centralizado.

Portanto, a elaboração de um protocolo de segurança utilizando criptografia é

extremamente importante para que a tecnologia se torne ainda mais segura e

ganhe mais importância no mercado.

4

Um resultado importante do trabalho desenvolvido é uma contribuição original:

melhorias de segurança e de implementação propostas para o protocolo de

identificação Lim-Lee. Essa contribuição é descrita na seção 5.1.2.

1.4 Metodologia de trabalho

A metodologia de trabalho utilizada no projeto de formatura seguiu as seguintes

etapas:

1. Levantamento das limitações de hardware e software do kit de

desenvolvimento:

Tratando-se de microcontroladores, que possuem limitações de

hardware como baixa disponibilidade de memória e de software como

uma linguagem C para dispositivos (Embedded C Language) que é

ligeiramente diferente da linguagem C padrão, suas limitações são os

maiores desafios do projeto. Como diversos os algoritmos de criptografia

(em especial os assimétricos) são complexos e ocupam um espaço

considerável na memória, os mesmos podem não caber na memória dos

microprocessadores. Portanto, foi necessário levar em consideração os

seguintes aspectos do kit de desenvolvimento:

 Tamanhos das memórias de dados (ROM e RAM);

 Tamanho da memória de programa;

 Detalhes da linguagem C embutida (tamanho máximo dos

inteiros, se engloba unsigned ou signed, etc...);

 Detalhes do tamanho e formato dos pacotes do canal de

transmissão;

2. Estudo da aplicação DEMO do kit de desenvolvimento BodyCom™:

Foi estudado o código-fonte da aplicação DEMO do kit de

desenvolvimento BodyCom™, que simula a comunicação através do

5

corpo humano, para verificar se não havia nenhum mecanismo de

segurança já implementado. Constatado que não, o estudo da aplicação

DEMO foi importante para a determinação do melhor modo de

desenvolvimento do protocolo de segurança junto com a aplicação.

3. Estudo de viabilidade de protocolos de segurança:

Nesta etapa estudou-se primeiramente a viabilidade de protocolos

assimétricos de criptografia e após constatada sua inviabilidade com o

kit de desenvolvimento, estudou-se a viabilidade de protocolos

simétricos de criptografia.

4. Desenvolvimento e testes da aplicação

Desenvolveu-se a aplicação segura utilizando a tecnologia BodyCom™

introduzindo um protocolo de segurança à aplicação DEMO do kit de

desenvolvimento. Após o desenvolvimento foram realizados testes de

integridade da segurança da nova aplicação.

5. Conclusões:

Após o desenvolvimento do projeto, com base nas dificuldades e

soluções encontradas, fez-se uma análise do trabalho executado, o que

permitiu extrair ideias e conclusões sobre o desenvolvimento do sistema.

1.5 Organização

A seção 2 descreve os aspectos conceituais do projeto para melhor

entendimento do funcionamento da tecnologia.

Na seção 3 é apresentada a especificação do projeto, com as limitações da

tecnologia e da placa de desenvolvimento e seus impactos, os cenários de

vulnerabilidade a serem solucionados pelo projeto e a especificação em alto

nível do protocolo de segurança a ser desenvolvido.

6

Na seção 4 são avaliados esquemas de criptografia assimétrica e simétrica

para identificação de entidades, e sua viabilidade tecnológica para a plataforma

adotada neste projeto. Ainda na seção 4, são apresentadas melhorias originais

para o protocolo de Lim-Lee e uma implementação original da cifra Speck em

linguagem C para aplicações de 8 bits.

A seção 5 apresenta o desenvolvimento e os testes do projeto, com a

implementação do protocolo de segurança junto à aplicação DEMO que utiliza

a tecnologia BodyCom™.

Na seção 6 são apresentadas as conclusões gerais do trabalho.

7

2 ASPECTOS CONCEITUAIS

A tecnologia BodyCom™ utiliza uma frequência de 125 kHz para realizar a

comunicação entre a base (controle centralizado) e a wireless unit (unidade-

móvel) através do corpo humano, transformando-o em um emissor de baixa

frequência, graças a sua alta permissividade a baixas frequências.

Ao tocar o sensor de toque da base, o usuário inicia o sistema de

comunicação, eliminando a necessidade de iniciar o processo manualmente, o

que é comum com sistemas de altas frequências (BAILEY, 2014).

Pequenas correntes são transmitidas através do corpo humano, gerando um

campo eletromagnético na superfície da pele do usuário, possibilitando a

comunicação com uma unidade-móvel quando a pele do usuário se aproxima a

cerca de poucos centímetros ou a toca. Então, a wireless unit identifica o sinal

recebido e envia outro sinal para a base identificá-la.

9

3 ESPECIFICAÇÃO DO PROJETO

A Microchip disponibiliza um kit de desenvolvimento para a tecnologia

BodyCom™, como pode ser visto na Figura 1. O Kit consiste em (1) uma placa

que representa o controle centralizado da tecnologia, composta principalmente

pelo sensor de toque que ativa a comunicação, o microprocessador que torna a

comunicação possível e uma tela de LCD para uma melhor interação com o

usuário, e (2) por duas placas wireless menores que representam duas

“unidades-móveis” da tecnologia. O kit vem pré-programado com um programa

DEMO que simula as funcionalidades da tecnologia e ainda possui um modo

DEBUG. O código-fonte do programa DEMO é disponibilizado para qualquer

usuário que queira reprogramar o kit. É por meio desse kit que o projeto será

desenvolvido, modificando o código-fonte para adicionar a funcionalidade de

uma comunicação segura utilizando criptografia simétrica ou assimétrica.

Figura 1 - Kit de desenvolvimento da tecnologia BodyCom™

3.1 Limitações

Com a datasheet dos microprocessadores da placa base (PIC16LF1829) e das

unidades-móveis (PIC16LF1827) foi possível determinar o tamanho da

10

memória disponível para o projeto, como pode ser visto na Figura 2. O

microprocessador da placa base suporta aproximadamente 8KB de memória

ROM, enquanto o microprocessador das unidades-móveis possuem 4KB de

memória ROM. Esse é um tamanho considerável para armazenar o código do

programa, no entanto o tamanho da memória RAM também é muito importante

para o desempenho de uma criptografia assimétrica, que requer muito mais

memória RAM que uma criptografia simétrica, e o chip da placa base possui

uma ocupação máxima de 1KB de RAM, enquanto o chip das unidades-móveis

possuem apenas 384 bytes de RAM máxima, sem descontar o espaço de

memória já ocupado pela aplicação DEMO.

Avaliações preliminares sugeriram que esquemas assimétricos de identificação

poderiam exceder o espaço de RAM disponível na placa de desenvolvimento

da BodyCom™, que é de apenas 1 KB na placa base e 384 bytes na placa das

unidades-móveis. Por esse motivo, optou-se por investigar protocolos de

autenticação não apenas usando criptografia assimétrica, mas também

protocolos com criptografia simétrica e aumentar a flexibilidade de escolha.

Figura 2 - Especificação de memórias dos microprocessadores utilizados
(Tabela retirada da datasheet dos PICs e reduzida para caber na página)

11

Outro fator importante de limitação da placa de desenvolvimento da

BodyCom™ é o tamanho máximo de cada pacote de dados de transmissão

entre a placa base e cada unidade-móvel. O pacote de transmissão de dados

da placa de desenvolvimento é composto por 1 byte que designa o tipo de

comando realizado, 4 bytes que correspondem ao endereço da unidade-móvel,

1 byte correspondente ao tamanho dos dados transmitidos e o restante

correspondente aos dados em si (Bailey, 2014). Após a análise do código-

fonte, foi constatado, como mostra a Figura 3, que o tamanho máximo de

dados que podem ser colocados em um pacote de transmissão é de 16 bytes.

A escolha de cifras simétricas será norteada por essa métrica de espaço de

memória do dispositivo.

Figura 3 - Trecho do código-fonte com o tamanho máximo de dados em um pacote de
transmissão.

A obtenção de uma licença PRO para o compilador XC8 da Microchip sem

nenhum custo foi um avanço muito bem vindo no projeto, pois era algo que

havia causado um empecilho previamente já que o código-fonte do kit de

desenvolvimento da BodyCom™ só cabia na placa base com a compilação em

modo PRO. No entanto, foi possível identificar que o código-fonte original

ocupa 83,5% da capacidade de memória do microprocessador da placa base

(6841 bytes dos 8KB totais) e isso pode causar algum empecilho ao inserir o

código de autenticação. Portanto, na primeira etapa do projeto também foi

inserida a tarefa de limpeza com código-fonte do kit de desenvolvimento para

que todas as funcionalidades que não são relevantes ao desenvolvimento do

projeto sejam removidas e apenas a funcionalidade de transmissão de dados

pelo corpo humano permaneça no código. Só após a realização dessa etapa, e

12

consequentemente com a liberação da memória do microprocessador para a

possibilidade de armazenar tanto o código de transmissão de dados quanto o

código de criptografia e segurança, é que o projeto seguiu para a segunda

etapa.

Além das limitações do kit de desenvolvimento que dificultam a elaboração do

protocolo de segurança desenvolvido em software, também é necessário levar

em consideração o consumo de energia do sistema. O sistema em si consome

pouca energia pelas razões citadas anteriormente, mas a adição de um

protocolo de autenticação pode aumentar um pouco esse consumo. Será

necessário, então, quantificar esse aumento e verificar se ele causa grande

modificação no consumo. É necessário que o sistema consuma o mínimo de

energia possível para que ele possa ser o mais portátil (menores baterias) e

dure o maior tempo possível sem precisar trocar suas baterias.

3.2 Protocolo de comunicação da aplicação DEMO

O protocolo original de comunicação da aplicação DEMO do kit BodyCom™

utiliza apenas o endereço da unidade-móvel para realizar a autenticação. Ao

detectar um toque no painel, a base envia pacotes PING com o endereço de

cada uma das unidades-móveis cadastradas na base. O comando PING é

apenas um comando que possui o endereço da unidade-móvel no campo

“Address” do pacote de transferência de dados e o campo de dados,

“DataBuffer”, vazio. Caso o usuário que tocou no sensor da base tenha uma

unidade-móvel cadastrada em sua posse, a unidade-móvel identifica o pacote

recebido e, caso o endereço coincida com o seu endereço, ela envia um pacote

semelhante ao pacote PING, com seu próprio endereço e com o campo de

dados vazio, de volta para a base. A Figura 4 exemplifica esse simples

protocolo, sendo a base (controle centralizado) representada pela letra A e uma

unidade-móvel pela letra B.

13

Figura 4 - Protocolo original da aplicação DEMO

O endereçamento dos pacotes na aplicação de demonstração é unilateral, ou

seja, o campo de endereço do pacote é sempre preenchido com o endereço da

unidade-móvel, independente da direção que o pacote percorre. Por isso, a

placa de controle centralizado (letra A) trata o campo de endereço como

destinatário ao enviar o pacote e como origem ao recebê-lo, e as unidades-

móveis (letra B) tratam o campo de endereço de forma contrária, como origem

ao enviar o pacote e como destinatário ao recebê-lo.

Percebe-se que o protocolo original não possui quase nenhuma segurança a

não ser por não se comunicar com unidades-móveis que não tenham seu

endereço pré-cadastrados na base. A base não envia pacotes para unidade-

móveis que não estejam cadastradas em sua memória, no entanto, a base não

verifica se o endereço de um pacote recebido está entre os endereços

cadastrados.

O protocolo seguro desenvolvido nesse projeto utiliza o campo de dados do

pacote de transferência para trocar informações criptografadas entre a base e a

unidade-móvel para realizar a autenticação. O campo de endereço, “Address”,

do pacote de transferência de dados não é criptografado, mas isso não afeta a

segurança do protocolo.

3.3 Cenários de vulnerabilidade

A proposta desse projeto visa acrescentar segurança a uma tecnologia

inovadora que já é relativamente segura por si só. No entanto, a tecnologia,

apesar de ser segura contra ataques que interceptam o sinal de transmissão, já

𝒂𝒅𝒅𝒓𝑩

𝑷𝑰𝑵𝑮 = 𝒂𝒅𝒅𝒓𝑩

A B

14

que o sinal passa pelo corpo humano, não possui nenhuma segurança contra

outros tipos de ataque.

Consideremos o cenário de controle de acesso de um usuário a sua casa.

Nesse cenário, a aplicação DEMO recebe o pacote da unidade-móvel com o

seu endereço de 4 bytes. O controle centralizado localizado na maçaneta da

porta recebe o pacote e verifica o endereço para ver se é válido e, em caso

positivo, o acesso é garantido. Assim, um ataque de força bruta obteria

sucesso no controle de acesso, porque encontrar o endereço correto iterando

entre os possíveis endereços de 4 bytes requer um processamento bem

pequeno.

Além disso, por se tratar de um protocolo unilateral que não verifica se o

endereço do pacote recebido é o mesmo do pacote enviado, um ataque por

uma aplicação, que simula uma unidade-móvel que constantemente envia

pacotes, poderia garantir acesso à placa base enviando um pacote com

qualquer endereço, o que torna a aplicação de demonstração mais vulnerável.

Portanto, a elaboração de um protocolo de segurança com autenticação é

muito importante para garantir que o sistema que incorpore a tecnologia seja

mais seguro e para que a tecnologia se torne mais acessível.

3.4 Liberação de memória na aplicação DEMO

A aplicação DEMO, que veio com o kit de desenvolvimento BodyCom™, ocupa

6841 bytes dos 8192 bytes disponíveis de memória ROM e 490 bytes dos 1024

bytes disponíveis de memória RAM do chip PIC16LF1829 do controle

centralizado do kit e ocupa 1763 bytes dos 4096 bytes de ROM e 175 dos 384

bytes de RAM do chip PIC16LF1827 das unidades-móveis. Esse é o principal

limitador na inclusão e desenvolvimento de um protocolo de segurança que

ocupe tão pouca memória disponível. O protocolo desenvolvido para a base do

kit deve ter no máximo 1.3KB de memória ROM e 534 bytes de memória RAM

e o protocolo desenvolvido para as unidades-móveis devem ter no máximo

2333 bytes de ROM e 209 bytes de RAM, um tamanho bem pequeno quando

15

se trata de segurança, onde geralmente um algoritmo mais complexo e mais

seguro possui uma ocupação de memória maior. Por esse motivo, foi

necessário remover as partes da aplicação DEMO que foram julgadas

desnecessárias para o projeto e deixar apenas o código necessário para que a

funcionalidade do BodyCom™ seja realizada.

A primeira parte do código a ser retirada foi a parte referente ao menu de

debug da aplicação, um menu que informa ao usuário da aplicação diversas

informações sobre ela, mas que apenas traz informações adicionais e

desnecessárias para a comunicação em si. Ao se retirar essa parte, a

aplicação diminuiu consideravelmente de tamanho e passou a ocupar 5022

bytes de memória ROM e 436 bytes de memória RAM, possibilitando ao

protocolo de segurança ter no máximo 3181 bytes de ROM e 588 bytes de

RAM.

Ao serem removidas as funcionalidades de utilização do display LCD, o código

foi reduzido para uma ocupação de 3941 bytes de memória ROM e 342 bytes

de memória RAM, possibilitando o protocolo de segurança ter no máximo 4251

bytes de ROM e 682 bytes de RAM. Como a funcionalidade de display LCD

mostra-se útil para a demonstração da aplicação e como protocolos simétricos

ainda cabem junto à aplicação DEMO mesmo com as funcionalidades de

display, essa versão reduzida do código não foi utilizada.

17

4 PROCURA E VIABILIDADE DE PROTOCOLOS DE

SEGURANÇA

4.1 Protocolos assimétricos

A criptografia simétrica produz algoritmos bem mais leves que a criptografia

assimétrica. No entanto a segurança de um algoritmo simétrico é mais limitada

que a de um algoritmo assimétrico, dado que se adota uma chave

compartilhada que pode ser extraída de um dos componentes e utilizada nos

demais, enquanto em um algoritmo assimétrico cada componente tem sua

própria chave de uso exclusivo. Por esse motivo, foram avaliados vários

algoritmos de criptografia assimétrica, procurando um que fosse leve o

suficiente para rodar no kit BodyCom™, conforme relatado a seguir.

4.1.1 Criptografia de Curvas Elípticas

O aluno do IME Gustavo Zanon juntamente com seu orientador de iniciação

científica e coorientador desse projeto, Dr. Paulo S. L. M. Barreto, obtiveram

resultados promissores com criptografia assimétrica de curvas elípticas,

conseguindo rodar uma autenticação com aproximadamente 800 bytes de

memória RAM simulando em um computador, cerca de 200 bytes a menos que

os 1024 bytes máximos do chip PIC16 do kit BodyCom™.

A criptografia de curvas elípticas (ECC) proporciona o desenvolvimento de um

algoritmo com criptografia assimétrica, sendo, portanto, mais seguro que um

algoritmo com criptografia simétrica. A ECC se baseia em utilizar curvas

elípticas de Edwards, da forma = com coordenadas sobre

um corpo finito, para criar esquemas de encriptação e assinatura. A aritmética

com pontos de curvas desse tipo permite definir multiplicação de um ponto

da curva por um escalar inteiro , de tal maneira que encontrar o valor de a

partir dos pontos e é computacionalmente inviável, exigindo tempo

exponencialmente grande no número de bits das coordenadas.

18

Os testes realizados no computador foram promissores, mas não foi possível

compilar o código para o PIC16, pois a memória ROM ocupada ultrapassava a

memória máxima do chip. Então, para testar o desenvolvimento do código, foi

utilizado outro chip da Microchip, um PIC24FJ32GA002, um chip de 16-bits

com 32KB de memória ROM (o quádruplo o PIC16) e 8KB de memória RAM (8

vezes mais que o PIC16).

Os testes do algoritmo de curvas elípticas, apresentados na Tabela 1 no PIC24

revelaram um tamanho aproximado de 11500 bytes de memória ROM e 1000

bytes de memória RAM, como pode ser observado na tabela abaixo. Apesar da

ocupação de memória RAM estar dentro da capacidade do PIC16 em algumas

versões, a ocupação de memória ROM é bem maior que os 8KB máximos do

PIC16, sendo, portanto, impossível de realizar tais testes mesmo com o chip

vazio, ainda mais incluindo o algoritmo junto com o código demo do kit

BodyCom™. Portanto, o algoritmo de criptografia de curvas elípticas revelou-se

inviável para o projeto e outros algoritmos assimétricos começaram a serem

considerados.

Tabela 1 - Resultados dos testes do protocolo de curvas elípticas

PIC24 - Otimização por espaço

RAM Size (Bytes) ROM Size (Bytes)

v29.04.15 986 12786

v30.04.15 986 11499

v04.05.15 1020 11415

v05.05.15 1020 11499

V17.05.15 1020 11514

19

4.1.2 Protocolo de Identificação baseado em Polinômios Multivariados

Quadráticos

Outro algoritmo assimétrico que foi considerado com potencial para rodar no

PIC16 do kit BodyCom™ foi um protocolo de identificação baseado em

polinômios multivariados quadráticos apresentado na dissertação de mestrado

do Fábio Monteiro, do IME-USP, (MONTEIRO, 2012).

Definição

Esse protocolo “consiste em resolver um sistema de equações polinomiais

multivariadas quadráticas sobre um corpo finito. Até hoje não se conhece

algoritmo, nem mesmo quântico, de tempo polinomial que possa resolver esse

problema, fazendo com que sistemas criptográficos baseados nessa primitiva

mereçam ser investigados e desenvolvidos como reais candidatos a proverem

nossa criptografia pós-quântica” (MONTEIRO, 2012).

Na tese de Monteiro, foi apresentada uma versão aprimorada do protocolo

MQID-3, apresentado por Sakumoto, Shirai e Hiwatari em 2011, na qual é

obtida uma redução de comunicação de aproximadamente 9%.

Testes

A Tabela 2 mostra os testes realizados tanto no PIC24 quanto no PIC 16. Os

testes das primeiras versões só puderam ser realizados o PIC24, pois suas

ocupações ultrapassavam as ocupações máximas do PIC16. No entanto, a

terceira versão contou com melhorias no algoritmo que fizeram com que sua

ocupação chegasse a 3330 bytes de memória ROM e 458 bytes de memória

RAM no PIC24. Foi possível compilar essa versão para o PIC16 e os

resultados de ocupação obtidos foram promissores: 4051 bytes de memória

ROM e 624 bytes de memória RAM. Apesar de estarem apenas 3100 bytes

livres na aplicação do kit BodyCom™ após a retirada da funcionalidade de

debug da aplicação DEMO, talvez algumas melhorias poderiam ser aplicadas

20

ao protocolo de Sakumoto-Monteiro para que o código atingisse essa

ocupação. No entanto, ao rodar o teste, o seu tempo de execução mostrou-se

da ordem de um minuto e meio para o PIC24 e incríveis 20 minutos para o

PIC16, sendo um tempo muito alto para a execução de aplicações com o kit

BodyCom™ – um minuto e meio é um tempo extremamente grande e inviável

para uma autenticação.

Tabela 2 - Resultados dos testes do protocolo de polinômios multivariados quadráticos

PIC16 - Otimização por espaço PIC24 - Otimização por espaço

RAM Size

(Bytes)
ROM Size

(Bytes)
Time
(min)

RAM Size
(Bytes)

ROM Size
(Bytes)

Time
(min)

v17.05.15 1382 15735

v18.05.15 1314 13389 01:17

v19.05.15 624 4051 20:00 458 3330 01:16

Conclusão

Os tempos desfavoráveis de execução aliados à improbabilidade de melhorar

esses tempos com quaisquer melhorias concebíveis no protocolo levaram à

recomendação de descartar essa vertente, e investigar um último protocolo

assimétrico para uso potencial no projeto: o esquema de identificação do

Probema de Núcleos Permutados (Permuted Kernel Problem – PKP).

4.1.3 Problema de Núcleo Permutado

O problema de núcleo permutado (Permuted Kernel Problem – PKP) foi

proposto primeiramente por Adi Shamir em 1989 (SHAMIR, 1989) e mostrou-se

ser um protocolo assimétrico eficiente para estabelecer identidades de usuários

a assinar mensagens digitalmente, utilizando chaves públicas e privadas

compactas e provas de conhecimento-zero.

Definição

Em criptografia, uma prova de conhecimento-zero é um método utilizado para

autenticação que possibilita uma parte provar para outra que uma declaração é

21

verdadeira sem revelar nada além da veracidade da declaração. Um exemplo

famoso e simples que apresenta a ideia geral de uma prova de conhecimento-

zero foi publicado primeiramente por Louis C. Guillou e Jean-Jacques

Quisquater em 1988, e se baseia na situação em que um usuário deseja

provar para um usuário que possui uma chave secreta, mas sem revelá-la.

Na história, há uma caverna em formato circular com a entrada por um lado e

uma porta trancada do lado oposto (como é ilustrado na figura abaixo).

Os caminhos da caverna são rotulados A e B.

1. O usuário entra na caverna, enquanto o usuário espera do lado de

fora, e escolhe um dos caminhos A ou B aleatoriamente.

2. O usuário entra na caverna e escolhe aleatoriamente um caminho, A

ou B, pelo qual ele deseje que o usuário retorne.

3. Se o usuário tiver posse da chave secreta que abre a porta, ele poderá

retornar pelo caminho escolhido por em 100% das vezes. Em caso

contrário, como o caminho foi escolhido aleatoriamente no passo 2, o

usuário tem 50% de chance do caminho escolhido por ele ser o mesmo

caminho escolhido por .

A segurança do protocolo é estabelecida pelo número de vezes que ele é

realizado. A chance do usuário acertar o caminho escolhido por em todas as

vezes nas quais o protocolo é realizado diminui exponencialmente e, portanto,

se o protocolo for executado 20 ou 30 vezes a segurança é grande o suficiente

para ser aceita em protocolos computacionais, dependendo do nível de

(Ilustrações retiradas de: https://en.wikipedia.org/wiki/Zero-knowledge_proof)

Figura 5 - Ilustração do exemplo de provas de conhecimento-zero

22

segurança esperado. Assim, ao final de todas as execuções do protocolo, se o

usuário acertar todos os caminhos escolhidos por , ele é autenticado; em

caso contrário, a primeira vez que o usuário errar o caminho escolhido, o

protocolo é interrompido e a autenticação falha.

O problema de núcleo permutado de Shamir utiliza provas de conhecimento-

zero mais complexas que a exemplificada para estabelecer autenticação entre

dois usuários, mas a ideia básica é a mesma. Os usuários que participam do

protocolo devem estabelecer previamente uma matriz e um número primo .

Como o protocolo foi desenvolvido com base em permutações da matriz ,

cada usuário escolhe uma permutação aleatória da matriz (que serve como

chave secreta) e um vetor aleatório tal que uma permutação de seja

pertencente à . Então, utilizando provas de conhecimento-zero, os usuários

podem comprovar suas identidades um ao outro provando seu conhecimento

da permutação secreta sem que bisbilhoteiros e verificadores desonestos

obtenham .

Especificação

O protocolo do problema de núcleo permutado desenvolvido para esse projeto

tem como base as especificações definidas pelo seu criador, Adi Shamir

(SHAMIR, 1989), mas também considera os estudos da segurança do

protocolo e as melhorias propostas por Thierry Baritaud e sua equipe

(BARITAUD, et al., 1993) e por Guillaume Poupard (POUPARD, 1997).

O esquema opera da seguinte forma entre Alice e Beto. Inicialmente, Alice e

Beto escolhem

 um número primo ,

 uma dimensão inteira ,

 uma matriz de dimensão e componentes inteiros módulo ,

 uma função de hash .

Alice então escolhe como chave secreta uma permutação aleatória sobre

valores, e como chave pública um vetor de dimensão e componentes

23

inteiros módulo p tal que . Numa instância do protocolo de

identificação, em que Alice quer provar sua identidade a Beto, ambos repetem

o seguinte protocolo:

1. Alice escolhe um vetor aleatório de dimensão e componentes

inteiros módulo , e também uma permutação aleatória . Alice envia

para Beto os valores de hash = , = .

2. Beto escolhe um valor aleatório módulo e pede a Alice o valor de

 = .

3. Ao receber a resposta de Alice, Beto escolhe um bit aleatório e

pede para Alice enviar se = , ou então se = . No primeiro

caso, Beto confere se = , e no segundo caso Beto

confere se = .

Alice será sempre capaz de responder corretamente o valor de . Um

impostor que queira se fazer passar por Alice só terá 50% de chance de

responder corretamente. Repetindo esse processo k vezes, a probabilidade de

um falsário personificar Alice é de apenas , um valor que pode ser tornado

arbitrariamente pequeno.

Um aspecto interessante deste protocolo é que o falsário poderia tentar violar a

segurança recuperando a chave privada de Alice a partir de e de , uma

vez que, por definição, ., ou seja, = . Contudo,

conforme indicado por Shamir no artigo em que ele propõe o protocolo, esse

problema é NP-difícil, e portanto intratável.

O protocolo acima faz uso de uma função de hash . Para esse projeto,

avaliaram-se para a função o algoritmo Keccak (SHA-3) e construções

baseadas nas cifras de bloco AES, Speck e Curupira2, todas operando no

modo Matyas-Meyer-Oseas (MMO) devido à sua simplicidade e segurança.

Adotou-se um número de = repetições do protocolo para se obter um

nível de segurança razoável para aplicações com a tecnologia do kit

BodyCom™.

24

Testes

Os testes do protocolo foram realizados tanto no PIC24 quanto no PIC16 nas

diversas versões do algoritmo. A Tabela 3 e a Tabela 4 mostram os testes de

memória e tempo da versão do protocolo que obteve os melhores resultados.

Tabela 3 - Resultados dos testes do protocolo PKP no PIC16

 PIC16

 PKP v27.05.15 (otimização de
espaço)

PKP v27.05.15 (otimização de
velocidade)

 RAM Size
(Bytes)

ROM Size
(Bytes)

Time (s)
RAM Size

(Bytes)
ROM Size

(Bytes)
Time (s)

Keccak 702 3439 23.1000 702 3877 19.6000

AES 512 3283 4.0325 512 3848 3.3650

Speck 128 429 2244 3.3490 429 2503 2.7860

Speck 96 417 2208 2.5610 417 2451 2.2540

Speck 80 411 2177 2.3385 411 2400 2.0740

Curupira2 (s/

tabelas)
421 2385 2.3560 421 2694 2.1185

Curupira2 (c/

TABS)
416 2576 1.5485 416 2895 1.3165

Curupira2 (c/

TABS, TAB0)
416 2601 1.5390 416 2920 1.3025

Curupira2 (c/

TABS, TAB0,

TABX)

412 2836 1.4695 412 3146 1.2450

25

Tabela 4 - Resultados dos testes do protocolo PKP no PIC24

 PIC24

 PKP v27.05.15 (otimização de
espaço)

PKP v27.05.15 (otimização de
velocidade)

 RAM Size
(Bytes)

ROM Size
(Bytes)

Time (s)
RAM Size

(Bytes)
ROM Size

(Bytes)
Time (s)

Keccak 550 3045 1.4200 550 3201 1.4169

AES 380 3168 0.3100 380 3303 0.3031

Speck 128 348 2493 0.3590 348 2613 0.3613

Speck 96 336 2439 0.3040 336 2556 0.3048

Speck 80 330 2421 0.2770 330 2538 0.2783

Curupira2 (s/
tabelas)

336 2787 0.5259 336 2985 0.5282

Curupira2 (c/
TABS)

336 2991 0.2190 336 3165 0.2155

Curupira2 (c/
TABS, TAB0)

336 3039 0.2170 336 3213 0.2160

Curupira2 (c/
TABS, TAB0,

TABX)
336 3390 0.2116 336 3573 0.2086

Ao analisar os resultados dos testes, pode-se perceber que o desempenho no

PIC24 é muito melhor do que no PIC16 em todos os tipos de cifra utilizados.

Percebe-se também que a ocupação de memória ROM no PIC16 é um pouco

melhor do que no PIC24 na maioria dos casos. Na questão da ocupação de

memória ROM, acredita-se que essa divergência ocorre devido a utilização de

uma compilação em modo PRO (já que há uma licença para o compilador do

PIC16), que costuma gerar códigos até 40% menores do que uma compilação

em modo FREE (utilizada no PIC24 pela falta de licença). Essa ocupação

variou entre 2200 e 3500 bytes e como há apenas 2900 bytes livres na

aplicação DEMO do kit BodyCom™ até o momento, nem todas as versões

poderão ser utilizadas junto com o demo. Já na questão de desempenho, a

enorme divergência de tempos de execução do algoritmo entre os dois PICs

deve ter ocorrido devido a certas operações que não devem ser definidas no

PIC16 e para aproximar esse desempenho do PIC24 seria necessário realizar

tais operações em ASSEMBLY.

26

A ocupação de memória RAM da versão com Keccak é a única que ultrapassa

a ocupação disponível de memória RAM (588 bytes), então essa versão não

será considerada. A ocupação de memória ROM ficou bem abaixo da

disponível em alguns casos, então esse critério foi contornado. O problema

está no desempenho das versões no PIC16. Com os melhores tempos das

versões no PIC24 seria possível incluir esse protocolo para diversas

aplicações, pois um tempo de resposta entre 0,2 e 0,3 segundos é um tempo

aceitável. No entanto, o melhor tempo no PIC16 é de 1,5 segundos, sendo o

melhor tempo para uma versão que também caiba com folga no chip 2,3

segundos, o que são tempos inviáveis para algumas aplicações. Mesmo assim,

há algumas aplicações, como o simples acesso à portas, que aceitam um

tempo de resposta em torno de 1 e 2 segundos, portanto ainda é possível

utilizar esse protocolo com o kit BodyCom™ e como essa é uma solução

assimétrica, é uma solução mais segura do que uma simétrica.

4.2 Protocolos simétricos

4.2.1 Protocolo de Lim-Lee

Chae Hoon Lim e Pil Joong Lee do Departamento de Engenharia Elétrica da

Universidade de Ciência e Tecnologia de Pohang, na Coreia do Sul, publicaram

o artigo Several practical protocols for authentication and key exchange em

1995 com 5 protocolos de autenticação e troca de chaves para diferentes

aplicações (LIM & LEE, 1995). No protocolo 1 é apresentada uma autenticação

leve e muito eficiente para algoritmos simétricos e por isso esse foi o protocolo

escolhido para exploração neste projeto.

Definição

No protocolo 1 de Lim-Lee define-se como uma chave simétrica

compartilhada pelos usuários e uma cifra de bloco, portanto denota

uma encriptação da mensagem com a chave secreta . Ainda, define-se

como uma cadeia aleatória de dados escolhida pelo usuário e como o

identificador (endereço) do usuário . Por fim, definem-se os operadores e

27

como concatenação e a operação ou-exclusivo (XOR) entre cadeias,

respectivamente.

O protocolo de Lim-Lee está exemplificado na Figura 6 e detalhado nos passos

abaixo.

1. O usuário escolhe uma cadeia aleatória e envia ao usuário essa

cadeia encriptada com a chave , .

2. O usuário então recebe a mensagem, a decripta com a chave

compartilhada e recupera . Ele então calcula uma nova chave

 pela concatenação de e , escolhe a cadeia aleatória ,

e envia ao usuário a mensagem
 , da concatenação do

identificador de com a cadeia aleatória de encriptada com a nova

chave .

3. O usuário calcula a chave , com a chave simétrica

compartilhada e a cadeia aleatória do passo 1 para decriptar a

mensagem enviada por . Ele então verifica se o identificador enviado

 equivale ao seu identificador. Em caso positivo, ele calcula a chave

 e envia ao usuário a mensagem
 .

4. Por fim, o usuário recebe a mensagem de e calcula a chave

 com a chave simétrica compartilhada e a cadeia aleatória

do passo 2 para decriptar a mensagem enviada por . Com a mensagem

decriptada, o usuário verifica se a cadeia aleatória extraída da

decriptação coincide com a cadeia escolhida no passo 2. Em caso

positivo, a autenticação foi estabelecida com sucesso e os usuários

podem trocar mensagens com segurança.

28

Figura 6 - Diagrama de exemplificação do protocolo Lim-Lee

Lim e Lee ainda analisam os ataques que poderiam ser tentados contra o

protocolo e como a segurança do protocolo impede esses ataques. “Um

atacante se passando pelo usuário poderia iniciar o protocolo apenas

enviando uma cadeia aleatória de sua escolha ou enviar uma transmissão

observada anteriormente, por outras comunicações pelo protocolo. Em ambos

os casos, o atacante não consegue enviar uma resposta legítima no passo 3

por causa da nova cadeia aleatória enviada pelo usuário de forma encriptada

no passo 2” (LIM & LEE, 1995). Ainda, a adição do identificador do recebedor

no protocolo, o protege contra ataques paralelos, pois o torna direcionalmente

dependente, impossibilitando a passagem de um atacante como um usuário,

pois a reutilização de uma mensagem em outra comunicação se torna inútil.

Propostas de melhorias

Esta seção descreve uma contribuição original deste trabalho: melhorias de

segurança e de implementação do protocolo de identificação Lim-Lee.

O protocolo de Lim-Lee realiza as operações
 e

 , e com

isso ele assume que a cifra utilizada é capaz de cifrar mensagens de tamanhos

variáveis. Cifras desse tipo requerem uma complexidade maior e com isso uma

ocupação de memória maior e em um projeto no qual a ocupação de memória

é uma das maiores preocupações, o protocolo analisado apresenta uma falha

determinante.

𝑬𝑲𝒋 𝑰𝑫𝒊 𝑹𝒋

𝑬𝑲 𝑹𝒊

 𝑖
𝑬𝑲𝒊

 𝑹𝒊

𝑗

29

O protocolo também posterga a detecção de sucesso ou falha de decriptação

até o último passo do protocolo, aumentando muito o tempo de detecção de

uma falha no protocolo.

Ambos os problemas citados podem ser resolvidos com algumas modificações

no protocolo. No primeiro passo, propõe-se invocar ao invés de

 e no terceiro passo propõe-se invocar
 ao invés de

para que, desse modo, as cadeias a serem cifradas tenham sempre o mesmo

tamanho. Assim, uma cifra que seja capaz de cifrar apenas mensagens de

tamanhos fixos pode ser utilizada no protocolo, podendo ser uma cifra bem

mais leve que uma cifra de tamanhos variáveis. Essas modificações também

resolvem o segundo problema citado ao incluir a cadeia identificadora no

primeiro passo do protocolo, garantindo assim que o protocolo prossiga apenas

se o enviado por coincidir com a cadeia identificadora de , falhando já no

passo 2 em caso contrário. Um esquema ilustrativo pode ser observado na

Figura 7.

Figura 7 - Diagrama de exemplificação do protocolo Lim-Lee melhorado

Especificação do protocolo aprimorado

Notação:

 é uma chave simétrica de bits compartilhadas pelos

usuários.

 é uma cifra de bloco, com chaves de bits e

blocos de bits.

𝑬𝑲𝒋 𝑰𝑫𝒊 𝑹𝒋

𝑬𝑲 𝑰𝑫𝒋 𝑹𝒊

𝑖
𝑬𝑲𝒊

 𝑰𝑫𝒋 𝑹𝒊

𝑗

30



 denota a amostragem uniformemente aleatória de uma

cadeia binária de bits.

 é um identificador, unívoco e de bits, do usuário .

Protocolo:

1. O usuário escolhe

 e envia o criptograma para o

usuário .

2. O usuário recupera e do criptograma acima, e verifica o

identificador . Se essa verificação for bem sucedida, o usuário

calcula , escolhe

 , e envia o criptograma

 para o usuário .

3. O usuário verifica o identificador recuperado do criptograma acima.

Se essa verificação for bem sucedida, o usuário calcula

(), e envia o criptograma
 para o usuário .

4. O usuário recupera e do criptograma acima, e verifica se eles

coincidem com os valores correspondentes recuperados no passo 2.

As relações entre os tamanhos devem ser = , de modo que

 (e analogamente permutando e), e para possibilitar o

mascaramento da chave nas formas e . A concatenação de zeros

() no cálculo das chaves e é realizada para que os operandos da

operação ou-exclusivo sejam de mesmo tamanho.

No caso da aplicação desse protocolo no projeto, como o pacote de

transferência de dados já é definido com um tamanho de 16 bytes, é possível

utilizar uma cifra de no máximo 16 bytes, como por exemplo AES128 e

Speck128 (com uma cifra de bloco e chave de 16 bytes) ou Curupira 2 (com

uma cifra de bloco e chave de 12 bytes). Como o endereço (identificador) de

cada unidade-móvel e da base já é definido na aplicação com um tamanho de

4 bytes, a cadeia aleatória deveria ter um tamanho de 12 bytes caso o

31

algoritmo utilizado fosse AES128 ou Speck128 e 8 bytes caso o algoritmo

utilizado fosse o Curupira 2. Como parte da mensagem cifrada enviada contém

o identificador do usuário, a segurança do protocolo depende do tamanho da

cadeia aleatória que é concatenada ao identificador. Com isso, ao utilizar o

Curupira 2 como cifra, a segurança do protocolo seria de 64 bits (8 bytes) e ao

utilizar uma cifra de bloco de tamanho 16 bytes (AES128 ou Speck128), a

segurança do protocolo seria de 96 bits (12 bytes).

Desenvolvimento do protocolo

Optou-se por utilizar uma cifra de 128 bits (AES ou Speck) pelo fato de sua

segurança ser maior que uma cifra de 96 bits (Curupira 2). Primeiramente, o

protocolo foi desenvolvido em linguagem C para ser testado inteiramente no

microchip PIC16LF1829, chip da base do kit BodyCom™, e só após a certeza

de viabilidade do protocolo, suas etapas foram divididas entre os chips

PIC16LF1829 (base) e PIC16LF1827 (unidade-móvel) para que o protocolo

fosse testado junto com a funcionalidade de transmissão pela pele humana do

kit BodyCom™.

Primeiramente, foi necessário obter um código do algoritmo de criptografia,

AES ou Speck, desenvolvido para rodar em plataformas de 8 bits e pequeno o

suficiente para caber nas limitações de memória do kit. Foram encontradas

diversas implementações do algoritmo AES128, mas todas demonstraram

problemas ao serem executadas no chip do kit BodyCom™: ou o código

continha apenas a funcionalidade de encriptação, mas não a de decriptação,

ou o código mostrou-se muito grande para o chip, ou o código não executava

com sucesso na aplicação. Por isso, seria necessário codificar a própria

implementação do algoritmo AES128 para utilizá-lo.

Ao invés disso, optou-se por utilizar a cifra Speck, um algoritmo de criptografia

desenvolvido pela NSA (National Security Agency) em 2013 especificamente

para aplicações leves e para desempenho ótimo de software e hardware em

microcontroladores (BEAULIEU, et al., 2013). Apesar de ser uma cifra muito

recente, Speck já passou por algumas análises e Itai Dinur realizou diversos

32

ataques à cifra em seu trabalho Improved Differential Cryptanalysis of Round-

Reduced Speck (DINUR, 2014) e a cifra não mostrou nenhuma vulnerabilidade

até o momento. Beaulieu et al. obtiveram resultados muito bons de

desempenho e ocupação na comparação do Speck128 com o AES128 em uma

plataforma de 8 bits, como mostra a Figura 8 (retirada do artigo original

(BEAULIEU, et al., 2013)). O código do Speck mostrou-se cerca de 52% menor

em ocupação de memória flash que o AES e com uma taxa de transferência

(throughput) 42% maior, e por esse motivo optou-se primeiramente pela

implementação do algoritmo Speck em linguagem C para plataformas de 8 bits

ao invés do algoritmo AES.

Figura 8 - Comparação de desempenho entre Simon, Speck e AES com tamanhos de chave e
bloco de 128 bits.

Implementação da cifra Speck

A cifra Speck é baseada em rodadas de cálculos e o número de rodadas para a

realização da cifração é dependente dos tamanhos do bloco e da chave de

criptografia, de acordo com a Tabela 5.

33

Tabela 5 - Relação do tamanho de bloco, tamanho de chave e número de rodadas da cifra
Speck

Tamanho do
Bloco (bits)

Tamanho da
Chave (bits)

Número de
rodadas

32 64 22

48
72 22

96 23

64
96 26

128 27

96
96 28

144 29

128

128 32

192 33

256 34

As operações utilizadas em cada rodada de cálculo da cifra são:

 OU-EXCLUSIVO (XOR) bit a bit, representado por .

 Adição em módulo , sendo a metade do tamanho do bloco,

representada por .

 Rotações bit a bit para a esquerda e para a direita, representadas por

e , respectivamente, para bits.

Na cifração do Speck, o bloco recebido é divido em duas partes e , sendo

a segunda parte do bloco e a primeira parte, e as operações são realizadas

entre essas partes e a chave de acordo com os algoritmos de cifração

abaixo, sendo correspondente à encriptação e
 correspondente à

decriptação (que utiliza a subtração modular ao invés da adição).

 = ()

 = (())

As quantidades de rotações são = e = se o tamanho do bloco for 32

bites e = e = caso contrário.

34

Para que a implementação do código ficasse a mais compacta possível, em

vista das limitações de hardware, foi descartado o bloco de 32 bits e também

os casos em que o tamanho da chave é diferente do tamanho do bloco.

A cada rodada da cifra Speck o algoritmo de cifração é aplicado tanto à chave

quanto à mensagem. No caso da chave, ela é dividida nas partes e e o

número da rodada em questão é utilizado como . No caso da mensagem, ela

também é dividida em duas partes e a segunda parte da chave que acabou de

ser atualizada é utilizada como .

Beaulieu et al. realizaram uma implementação da cifra Speck em um

microcontrolador AVR de 8 bits, mas a implementação foi realizada em

linguagem assembly para a obtenção de desempenho ótimo (BEAULIEU, et

al., 2014), então não foi possível utilizá-la. Song realizou uma implementação

em linguagem C das cifras Simon e Speck e a disponibilizou como código

aberto. Contudo, a implementação foi feita para plataformas de 32 bits e, além

disso, a implementação de Speck só contava com a encriptação, faltando a

decriptação. Portanto, esta também não pôde ser utilizada neste projeto.

Por esta razão, foi necessário realizar uma implementação própria da cifra

Speck em linguagem C para uma plataforma de 8 bits, que também será

disponibilizada como código aberto. A grande dificuldade da implementação

deu-se em realizar as operações de adição e subtração modular maiores que 8

bits (módulo 64 no caso de um bloco de 128 bits) e as operações de rotação.

Por fim, o código implementado é mais uma contribuição original do projeto e

as ocupações de memória e tempos de execução podem ser vistas na Tabela

6.

35

Tabela 6 - Ocupações de memória e tempos de execução da implementação original da cifra
Speck

PIC16

Speck128 (otimização de
espaço)

Speck128 (otimização de
velocidade)

RAM Size
(Bytes)

ROM Size
(Bytes)

Time
(s)

RAM Size
(Bytes)

ROM Size
(Bytes)

Time
(s)

Encrypt - 32MHz 117 557 0.0068 117 565 0.0062

Encrypt - 16MHz 117 557 0.0134 117 565 0.0122

Encrypt - 8MHz 117 557 0.0266 117 565 0.0243

Decrypt - 32MHz 117 736 0.0155 117 795 0.0130

Decrypt - 16MHz 117 736 0.0309 117 795 0.0258

Decrypt - 8MHz 117 736 0.0614 117 795 0.0509

Testes

Os testes do protocolo simétrico Lim-Lee com a cifra Speck no PIC 16

mostraram-se muito promissores, como pode ser observado na Tabela 7.

Tabela 7 - Resultados dos testes do protocolo Lim-Lee melhorado no PIC16

PIC16

Lim-Lee (otimização de espaço)
Lim-Lee (otimização de

velocidade)

RAM Size
(Bytes)

ROM Size
(Bytes)

Time (s)
RAM Size

(Bytes)
ROM Size

(Bytes)
Time (s)

Speck128
– 32MHz

194 1683 0.0778 194 1826 0.0663

Speck128
– 8MHz

194 1683 0.3057 194 1826 0.2590

Pode-se observar que, para testes do protocolo completo na placa base do kit

(PIC16LF1829), o protocolo simétrico Lim-Lee mostrou-se dentro de todas as

limitações impostas pelo hardware do kit BodyCom™ nos três aspectos: 194

bytes de memória RAM dos 534 bytes disponíveis na base e dos 209 bytes

disponíveis nas unidades-móvies, 1683 bytes de memória ROM dos 1351 bytes

disponíveis na base e dos 2333 disponíveis nas unidades-móveis, e um tempo

de execução de 0,07 segundos com um clock de 32MHz na plataforma, um

36

tempo pequeno o suficiente para as aplicações da tecnologia BodyCom™. No

entanto, a aplicação DEMO fornecida funciona apenas com um clock de 8MHz,

o que aumenta o tempo de execução significantemente para 0,26 segundos

com otimização de velocidade. Mesmo assim, esse tempo de execução

mostra-se viável para a maioria das aplicações possíveis com a tecnologia

BodyCom™. Com isso, o protocolo Lim-Lee com a cifra Speck128 torna-se o

principal candidato a protocolo do projeto.

37

5 DESENVOLVIMENTO DO PROJETO

O desenvolvimento do projeto consiste na inclusão do protocolo Lim-Lee

melhorado, que foi o único protocolo estudado a se mostrar viável com as

limitações impostas pelo kit de desenvolvimento da BodyCom™, na aplicação

DEMO fornecida pela Microchip.

5.1 Reformulação da aplicação DEMO

Ao analisar o código-fonte da aplicação DEMO, observou-se que a aplicação

não suporta o envio de múltiplos pacotes para uma única unidade-móvel e, por

isso, foi necessário redesenhar a aplicação principal para que ela conseguisse

suportar o protocolo Lim-Lee. O esquema de recepção e envio da aplicação

reformulada desenvolvida para a placa base se encontra na Figura 9.

Timeout

Pacote 1M

recebido e

validado

Pacote 2B enviado

Pacote 1M recebido, mas

com erro de autenticação

Pacote 1M

recebido e

validado

Recebendo

Pacote 1M

Esperando

Toque

Enviando

Pacote 2B

Recebendo

Pacote 2M

Mostra

Mensagem

Toque identificado e

pacote de ping enviado

Timeout

Timeout Pacote 2M

recebido, mas

com erro de

autenticação

Figura 9 - Esquema principal da aplicação reformulada

38

O loop principal da aplicação reformulada chama infinitamente a função que

implementa o esquema apresentado, dividido em 5 estados:

 Esperando Toque: Esse é o estado inicial da função principal e nele o

programa checa se o sensor de toque foi pressionado. Em caso positivo,

um pacote de ping é enviado para a primeira unidade-móvel registrada

na placa base, um timer é estabelecido e o estado 2 é habilitado.

 Recebendo Pacote 1M: O segundo estado espera pelo recebimento do

primeiro pacote da unidade-móvel que o estado 1 “pingou”. Caso o

pacote seja recebido e validado sem erros pelo processo de

autenticação, o estado 3 é habilitado. Caso o pacote seja recebido, mas

algum erro de autenticação seja encontrado, uma mensagem de erro é

acionada e o estado 5 é habilitado, para que a mensagem seja

mostrada. Caso nenhum pacote seja recebido dentro do tempo

estabelecido, ocasionando um timeout, o estado 1 é habilitado

novamente para que a próxima unidade-móvel cadastrada na placa base

seja “pingada”.

 Enviando Pacote 2B: O terceiro estado da aplicação reformulada

apenas envia o segundo pacote da placa base à unidade-móvel,

estabelece um timer para receber a resposta e habilita o estado 4. Esse

estado é necessário, o segundo pacote não foi enviado logo após a

recepção do pacote 1M, porque é necessário um tempo para que a

unidade-móvel esteja pronta para receber um segundo pacote.

 Recebendo Pacote 2M: O quarto estado da aplicação espera pelo

recebimento do segundo pacote vindo da unidade-móvel. Caso o pacote

seja recebido e passe pela autenticação com sucesso, o acesso é

garantido, uma mensagem de sucesso é acionada e o estado 5 é

habilitado, para que a mensagem seja mostrada. Caso o pacote seja

recebido, mas falhe na autenticação, uma mensagem de erro é acionada

e o estado 5 é habilitado para mostrar a mensagem. Caso nenhum

pacote seja recebido até o final do timer, uma mensagem de timeout é

acionada e o estado 5 é habilitado para mostrar essa mensagem.

39

 Mostra Mensagem: O quinto e último estado apenas espera que o timer

acionado no estado anterior seja atingido para que a mensagem seja

mostrada por tempo suficiente e então habilita o estado inicial

novamente para que a aplicação esteja pronta para o próximo acesso.

Além de realizar a reformulação da função principal da aplicação para que a

integração com o protocolo de autenticação seguro seja possível, foi

necessário corrigir alguns erros encontrados na aplicação de demonstração,

como a contagem de timeout feita na interrupção de forma equivocada.

Também foi corrigido o erro da falta de verificação do endereço do pacote na

aplicação DEMO. Como foi explicado anteriormente, a aplicação de

demonstração não realiza a verificação do endereço do pacote enviado e do

pacote recebido, que devem ser os mesmos, de forma a tornar a aplicação

vulnerável a certos ataques. Portanto, na aplicação reformulada, todos os

pacotes recebidos têm seu endereço verificado com o endereço do pacote

anteriormente enviado e, caso não haja sucesso na verificação, o protocolo é

terminado com um erro.

5.2 Geração de números pseudoaleatórios

O protocolo de Lim-Lee melhorado prevê a geração de números

pseudoaleatórios para seu funcionamento. Como geradores de números

pseudoaleatórios (PRNG – Pseudo-Random Number Generator) têm ocupação

de memória e desempenho distintos dependendo de seu grau de segurança,

assim como cifras, foi necessário realizar um estudo breve de escolha de um

gerador que fosse viável junto às limitações e à segurança do projeto.

Foram considerados três PRNG para estudo: o gerador do compilador do kit de

desenvolvimento XC8, um gerador desenvolvido por Robert Jenkins (JENKINS,

[2009?]) e um gerador utilizando a própria cifra Speck implementada. A Tabela 8

mostra os testes de ocupação de memória e desempenho dos geradores de

números pseudoaleatórios considerados.

40

Tabela 8 - Testes dos geradores de números pseudoaleatórios estudados

PIC16LF1829 (base)

PRNG (otimização de
espaço)

PRNG (otimização de
velocidade)

RAM Size
(Bytes)

ROM
Size

(Bytes)

Time
(ms)

RAM Size
(Bytes)

ROM Size
(Bytes)

Time
(ms)

Jenkins ranval() 48 560 2.2324 48 643 2.0713

XC8 rand() 23 293 2.8273 23 304 2.7606

Speck128 - - 26.6100 - - 24.2500

Os resultados dos testes realizados com os geradores consideram a geração

de um número de 12 bytes, que é necessário no protocolo Lim-Lee.

O gerador do compilador XC8 foi considerado devido à sua baixa ocupação de

memória, um fator determinante para o projeto, devido às limitações do kit de

desenvolvimento. No entanto, não é possível saber se esse gerador passou em

algum teste estatístico de segurança, então sua utilização não é aconselhável.

O gerador de Jenkins passou no teste DIEHARD, um teste razoável para fins

criptográficos, porém não há indícios de que tenha passado no teste NIST, que

é o teste determinante para garantir segurança criptográfica a um gerador de

números pseudoaleatórios. No entanto, é o gerador de desempenho mais

rápido encontrado e, caso a transmissão de dados seja muito lenta, esse

gerador é uma opção a ser considerada.

O terceiro gerador analisado utiliza a cifra Speck para gerar um número

aleatório, utilizando como chave de criptografia a semente a ser passada e

como mensagem a ser encriptada, um contador. Ao utilizar uma cifra, esse

gerador torna-se criptograficamente seguro e como a cifra já é utilizada no

protocolo de Lim-Lee, sua ocupação de memória não precisa ser considerada.

No entanto, seu tempo de execução é muito maior que o dos outros geradores,

portanto, se esse é um fator crítico do projeto, talvez não seja interessante

considerá-lo.

41

Em suma, se a prioridade do projeto for segurança, é aconselhável utilizar o

gerador por Speck e, se a prioridade for desempenho, é aconselhável utilizar o

gerador de Jenkins. Nesse projeto, o gerador a ser utilizado será determinado

após os testes da aplicação, mas de qualquer forma, a semente a ser utilizada

no gerador será um timer de 16 bits das placas, a ser iniciado junto à

inicialização de hardware, e o gerador será iniciado assim que o primeiro toque

na placa base ocorrer ou assim que a unidade-móvel acordar pela primeira vez,

de forma a ter a semente mais aleatória possível.

5.3 Integração do protocolo de segurança com a aplicação

Ao realizar a integração do protocolo de Lim-Lee melhorado com a aplicação

reformulada, mostrada na Figura 10, problemas foram encontrados. A placa

base enviava o primeiro pacote à unidade-móvel, a unidade-móvel recebia o

pacote e enviava seu primeiro pacote, porém a placa base não o recebia. Após

uma análise superficial, foi observado que para atrasos maiores que 15

milissegundos, ou a unidade-móvel não consegue enviar o pacote ou a base

não consegue recebê-lo. Já o oposto não ocorre, a placa base não tem

problemas para enviar um pacote com qualquer atraso e a unidade-móvel

consegue recebê-lo.

Esse erro na aplicação DEMO dificulta a introdução de um protocolo de

autenticação pelo fato da criptografia necessitar de certo tempo para ser

calculada. O projeto escolheu utilizar a cifra mais leve e rápida encontrada e,

mesmo assim, uma encriptação de Speck128 no ambiente de desenvolvimento

leva 25ms para ser calculada e uma decriptação leva cerca de 50ms, ambas

gerando atrasos muito maiores do que a aplicação suporta.

Uma solução seria aumentar o clock das placas para 32MHz. No entanto, o

propósito da unidade-móvel é ser um dispositivo pequeno e que tenha uma

bateria duradoura e o aumento da velocidade do clock aumentaria muito o

consumo de bateria, inviabilizando essa solução.

42

Uma solução viável para o problema, porém não ideal, seria a redução do

número de rodadas da cifra Speck de forma que a redução no tempo de

cifração se torne aceitável para a aplicação. Essa solução ocasiona em uma

redução significativa na segurança disponibilizada pela cifra Speck, pois a

segurança está ligada diretamente ao número de rodadas e a todos os testes

pelos quais a cifra foi submetida e passou. O número de rodadas estabelecido

pelos criadores, no caso da Speck128, foi de 32 rodadas, mas para que as

Figura 10 - Protocolo de segurança Lim-Lee melhorado integrado à aplicação BodyCom

43

rotinas de encriptação e decriptação da Speck128 atinjam tempos de execução

aceitáveis para que a aplicação seja executada sem erro, o número de rodadas

deve ser reduzido de 32 para 8.

Essa solução viável pode ser realizada para efeito de demonstração da

aplicação funcionando no kit de desenvolvimento, mas a solução ideal para o

problema seria analisar a fundo e em baixo nível as funções que realizam a

comunicação entre a placa base e as unidades-móveis para encontrar o erro e

corrigí-lo, de forma que o protocolo atinja sua segurança desejada.

5.4 Testes

5.4.1 Testes de desempenho

Para realizar os testes de desempenho foi escolhido utilizar um timer de 16 bits

da placa base rodando com um clock de 256kHz e, para controlar o overflow do

timer, foi utilizado um contador que era incrementado a cada interrupção de

overflow. Dessa forma, os tempos de execução de cada parte do protocolo

puderam ser medidos com maior precisão.

Para contornar o erro da aplicação com o atraso na montagem do pacote na

unidade-móvel, o protocolo foi montado de forma particular. O protocolo foi

montado completo do lado da placa base, com todos os passos do protocolo

Lim-Lee e utilizando a cifra Speck128 com os 32 rounds pressupostos pela

NSA. Como o erro ocorre do lado da unidade-móvel, para realizar os testes de

desempenho, optou-se por substituir as rotinas que causam o atraso

(encriptação e decriptação do Speck) por blocos fixos esperados, e no tempo

de execução total foram somados os tempos individuais dessas rotinas. Dessa

forma, foi possível prever o tempo de execução da aplicação reformulada por

completo. Nesse caso, o gerador de números pseudoaleatórios escolhido foi o

gerador por Speck, devido a uma segurança maior.

Outro teste de desempenho realizado foi com a aplicação reformulada

reduzida, utilizando um número de rodadas da cifra Speck, de forma a não

44

ocasionar um atraso maior que 15 milissegundos na unidade-móvel e não

acarretar em um erro na aplicação. Para esse teste foi necessário utilizar 8

rounds na cifra Speck e foi escolhido utilizar o gerador de números

pseudoaleatórios Jenkins (JENKINS, [2009?]), por ser um gerador muito mais

rápido e ter uma segurança razoável. Nesse teste é possível observar o

desempenho da aplicação reformulada com segurança de ponta a ponta,

apesar de a segurança ser diminuída pelo número de rounds reduzido.

A Tabela 9 mostra os resultados dos testes descritos acima e o teste de

desempenho da aplicação original para comparação.

Tabela 9 - Testes de desempenho das aplicações BodyCom™

Teste Desempenho (otimização de velocidade)

TOTAL

(ms)

Manipulação dos Dados Transmissão e
Recepção (ms)

Unidade-Móvel (ms) Base (ms)

Aplicação
Reformulada

Completa
1204.00 130.40 191.00 882.60

Aplicação
Reformulada

Reduzida
967.80 21.20 61.40 885.20

Aplicação
Original

212.17 0.00 0.00 212.17

Os resultados apresentados na Tabela 9 mostram as médias de todos os

resultados realizados. Pode-se observar que o tempo de execução da

manipulação de dados da aplicação reformulada completa, 320ms, aproxima-

se do tempo de execução do teste do protocolo Lim-Lee melhorado, 259ms, o

que era esperado, pois o protocolo de Lim-Lee melhorado considera apenas a

execução do protocolo sem a transmissão dos dados, o mesmo que a

manipulação dos dados considera. O tempo da aplicação reformulada completa

é um pouco maior, pois inclui o tempo de execução de geração do número

pseudoaleatório, que seria da ordem de 50ms para ambos os lados, e ainda

um tempo a mais de processamento das instruções que validam o comando e

o endereço dos pacotes.

45

Ao analisar os tempos de execução da manipulação de dados para a aplicação

reformulada reduzida, percebe-se que eles são bem menores do que os

tempos da aplicação completa. Isso é esperado, devido à aplicação reduzida

utilizar uma cifra Speck com quatro vezes menos rodadas e por utilizar um

gerador de números pseudoaleatórios bem mais rápido.

Os tempos de execução médios das aplicações reformuladas mostraram-se

maiores do que o esperado, pois tempos da ordem de 1 segundo são muito

grandes para algumas aplicações, como é o caso da aplicação em uma arma

policial que necessita de um tempo de reação muito baixo. No entanto, nota-se

que o tempo de transmissão e recepção não diminui entre as aplicações

reformuladas e faz parte 75% do tempo total de execução na aplicação

completa e mais de 90% na aplicação reduzida, e é, portanto, o grande

responsável pelo tempo da ordem de 1 segundo das aplicações.

A aplicação original não realiza nenhuma manipulação de dados pelo fato de

não transmitir nenhum pacote com dados entre os dispositivos e, portanto, seu

tempo total de execução é praticamente todo realizado pela transmissão e

recepção. Ainda assim, transmitindo e recebendo apenas dois pacotes sem

dados (um da base e outro da unidade-móvel), o tempo de execução é de

212ms, então os tempos de 880ms das aplicações reformuladas são

esperados, já que elas enviam 1 pacote sem dados e 3 pacotes com 16 bytes

de dados.

Em suma, o protocolo de segurança incluído junto à aplicação é executado em

um tempo pequeno o suficiente para a maioria das aplicações de controle de

acesso. Porém, a aplicação de demonstração realiza as transmissões e

recepções de pacotes muito devagar e isso diminui o leque de aplicações que

o protocolo de autenticação seguro proporciona.

5.4.2 Análise do consumo de energia

O consumo de energia é de suma importância para a unidade-móvel. Se a

aplicação reformulada não realizar um consumo de energia controlado, a

bateria da unidade-móvel acabará rapidamente e terá que ser trocada com

46

uma frequência inconveniente para o usuário. Dessa forma, foi necessário

realizar a análise do consumo de energia da unidade-móvel com a nova

aplicação para garantir que a utilização do protocolo de autenticação seguro

seja viável com a tecnologia BodyCom™.

O consumo típico de energia da unidade-móvel pode ser observado na Figura

11, que foi retirada do documento de introdução à tecnologia BodyCom™

(BAILEY, 2014). Nela, observa-se que, durante o período de repouso, a

unidade-móvel consome apenas 3μA de energia e isso permite que sua bateria

dure um longo tempo, pois ela passa seu maior tempo de vida dormindo.

Também é possível observar que, durante o período em que a unidade-móvel

está acordada, são consumidos 27mA durante a transmissão de dados e

1.3mA durante o resto o tempo.

Sendo assim, foi calculado que, para a nova aplicação reformulada, a unidade-

móvel fica acordada por uma média de 1560 milissegundos. Desse tempo,

490ms são gastos com a transmissão de pacotes (245ms para cada pacote) e

os restantes 1070ms são gastos com o recebimento e a manipulação de

dados. Portanto, para uma transação típica da aplicação reformulada, a

unidade-móvel consome 0,004mAh.

De acordo com a datasheet (HITACHI MAXWELL, LTD., 2008) da bateria

utilizada pela unidade-móvel, CR2032, para uma tensão de até 2,0V a bateria

aguenta um consumo de 220mAh. No entanto, foi constatado que a unidade-

móvel para de transmitir pacotes com uma tensão de 2,9V, portanto seu

consumo máximo seria em torno de 151mAh. Supondo um consumo médio de

Figura 11 - Consumo típico de energia da unidade-móvel.

47

4 transações por dia, seria uma média de 120 transações e um consumo de

0,48mAh por mês vindo das transações. Já o consumo em estado de repouso

seriam de 0,003mA por 720 horas de um mês, ou seja, de 2,16mAh por mês.

Isso totaliza um consumo de 2,64mAh por mês da unidade-móvel e significa

que, considerando um consumo médio de 4 transações por dia da aplicação, a

bateria da unidade-móvel duraria por 57 meses, ou seja, mais de 4 anos e

meio. Supondo um consumo mais intenso de 10 transações diárias, o consumo

não diminuiria tanto, pois a maior parte dele ainda seria consumida pela

unidade-móvel em estado de repouso, e a bateria duraria 44 meses, ou seja,

um pouco mais de 3 anos e meio.

Portanto, o consumo de energia na unidade-móvel continua aceitável para a

aplicação reformulada e, mesmo para aplicações de uso mais intenso, não

ocasionaria um período de troca de bateria inconveniente para o usuário.

5.4.3 Investigação do problema com a aplicação

A aplicação foi analisada mais a fundo com o objetivo de encontrar o motivo do

problema encontrado na aplicação, em que um atraso maior que 15

milissegundos na criação do pacote na unidade-móvel impede o recebimento

pela base.

Para realizar essa análise, foi construída uma rotina de rastreamento em todos

os passos das rotinas de transmissão e recepção de pacote da aplicação.

Dessa forma, um buffer era preenchido com diferentes caracteres dependendo

do estado da transmissão e recepção que era executado. Assim que a

transmissão ou a recepção terminavam, o buffer era exibido na tela LCD da

placa base para que fossem avaliados se todos os estados esperados em uma

transmissão ou recepção com sucesso eram executados em um cenário de

erro. Para analisar a transmissão e a recepção na unidade-móvel, a mesma

função de rastreamento foi utilizada, porém, o buffer foi enviado no campo de

dados do pacote. Dessa forma, utilizando a comunicação serial EUSART

disponível, foi possível visualizar o conteúdo do pacote em um computador.

48

No entanto, não foi possível identificar uma anormalidade nos passos da

transmissão e recepção de nenhum dos dispositivos e, por esta razão, não foi

possível identificar a causa do erro na aplicação.

Apesar disso, ao analisar mais a fundo a aplicação que faz possível a

tecnologia BodyCom™, foi possível identificar alguns erros de programação de

software cometidos:

 Rotina que controle o toque trata o timeout de forma equivocada, sendo

necessária ser chamada inúmeras vezes para que um timeout seja

acionado, além do cálculo de jitter também ser feito de forma

equivocada.

 A tecnologia de transmissão utiliza um decodificador Manchester, mas a

transmissão e a recepção são realizadas inteiramente por software bit a

bit. Dessa forma, a chance da transmissão falhar aumenta, visto que o

mesmo software contém outros erros e de fato falha, como o erro do

atraso no pacote confirma.

Em suma, essa análise mostra que a tecnologia BodyCom™ ainda está em

evolução, porque há alguns erros a serem corrigidos. Além disso, talvez a

migração de uma transmissão feita por hardware ao invés de software seja

uma opção para que o tempo gasto nas transmissões e recepções de pacotes

diminua. Ainda assim, a tecnologia mostra um grande potencial para diversas

aplicações mesmo com alguns erros e quando esses erros forem corrigidos o

leque de opções aumentará ainda mais.

49

6 CONSIDERAÇÕES FINAIS

A tecnologia BodyCom™ é uma nova tecnologia, criada em 2013 pela

Microchip, que possibilita uma abordagem diferenciada a aplicações de

controle de acesso. No entanto, aplicações de controle de acesso precisam ser

seguras e, ao analisar o kit de desenvolvimento que a Microchip disponibiliza,

foi constatado que, apesar da tecnologia utilizar o corpo humano como meio de

transmissão e este ser um meio muito seguro, a aplicação de demonstração

não realizava nenhum protocolo de autenticação seguro e, portanto, estava

exposta a ataques maliciosos. O projeto buscou explorar exatamente essas

vulnerabilidades da aplicação de demonstração e propôs um protocolo de

autenticação seguro para que a aplicação se tornasse viável a um ramo aind

maior de aplicações.

Após verificar a inviabilidade de protocolos assimétricos serem utilizados, o

projeto encontrou um protocolo simétrico que coubesse dentro das limitações

impostas pelo kit de desenvolvimento, que possui capacidade de memória e

processamento muito limitados. O projeto propôs melhorias originais ao

protocolo simétrico escolhido, de forma a torná-lo mais adequado para

aplicações muito leves, e ainda desenvolveu uma implementação original em

linguagem C da cifra Speck, uma cifra desenvolvida em 2013 para performance

ótima em plataformas pequenas.

Os testes na aplicação reformulada desenvolvida mostraram que um erro na

implementação da tecnologia existe e que limita muito qualquer protocolo de

segurança a ser associado a ela. Também, foi constatado que a

implementação da tecnologia realiza a transmissão de pacotes inteiramente por

software e provavelmente é isso que acarreta o grande tempo gasto durante

essas transmissões.

Apesar de todas as complicações e limitações da tecnologia, foi possível

desenvolver um protocolo seguro viável tanto em termos de desempenho

quanto em termos de consumo de bateria por parte da unidade-móvel para

50

diversas aplicações. Além disso, pelo fato da tecnologia ser muito recente e

ainda estar em evolução, seus erros devem ser corrigidos e seu hardware deve

ser melhorado, e quando forem, o potencial da tecnologia crescerá muito e o

protocolo desenvolvido neste projeto poderá ser utilizado para aumentá-lo

ainda mais.

51

REFERÊNCIAS BIBLIOGRÁFICAS

BAILEY, B., 2014. AN1391: Introduction to the BodyCom Technology.

Microchip Technology Inc..

BARITAUD, T., CAMPANA, M., CHAUVAUD, P. & GILBERT, H., 1993. On the

Security of Permuted Kernel Identification Scheme. Centre National d’Etudes

des Télécommunications.

BEAULIEU, R. et al., 2013. The Simon and Speck Families of Lightweight Block

Ciphers. National Security Agency, USA.

BEAULIEU, R. et al., 2014. The Simon and Speck Block Ciphers on AVR 8-bit

Microcontrollers. National Security Agency, USA.

DINUR, I., 2014. Improved Differential Cryptanalysis of Round-Reduced Speck.

Départment d'Informatique, École Normale Supérieure.

GOMEZ, K., 2013. BodyCom Technology is world's first to use huma body as a

low-power communication channel. [Online]

Disponível em: http://www.pacetoday.com.au/news/bodycom-technology-is-

world-s-first-to-use-human-b

[Acesso em 25 Outubro 2015].

HITACHI MAXWELL, LTD., 2008. Maxwell Lithium Manganese Dioxide Battery

CR2032 Datasheet. s.l.:s.n.

JENKINS, R., [2009?]. Bob Jenkin's Web Site. [Online]

Disponível em: http://burtleburtle.net/bob/rand/smallprng.html

[Acesso em 24 Novembro 2015].

LIM, C. & LEE, P., 1995. Several practical protocols for authentication and key

exchange. Department of Electrical Engineering, Pohang University of Science

and Technology.

52

METZ, R., 2013. Authentication System Would Use the Body to Secure Guns

and Gadgets. [Online]

Disponível em: http://www.technologyreview.com/news/512056/authentication-

system-would-use-the-body-to-secure-guns-and-gadgets/

[Acesso em 25 Outubro 2015].

MICROCHIP TECHNOLOGY INC., 2013. BodyCom Technology. [Online]

Disponível em: http://www.microchip.com/pagehandler/en-

us/technology/embeddedsecurity/technology/bodycom.html

[Acesso em 25 Outubro 2015].

MONTEIRO, F. S., 2012. Protocolo de Identificação baseado em Polinômios

Multivariáveis Quadráticos. Dissertação de Mestrado - Instituto de Matemática

e Estatística, Universidade de São Paulo.

POUPARD, G., 1997. A Realistic Security Analysis of Identification Schemes

based on Combinatorial Problems. Ecole Normale Superieure, Laboratoire

d'Informatique.

RILEY, M., 2013. BodyCom Development Kit. [Online]

Disponível em: http://www.drdobbs.com/security/bodycom-development-

kit/240153458

[Acesso em 2015 Outubro 2015].

SHAMIR, A., 1989. An Efficient Identification Scheme Based on Permuted

Kernels. Applied Mathematics Department - The Weizmann Institute of Science.

SONG, G., 2014. Simon & Speck block cipher implementation open source

code in C. [Online]

Disponível em: https://github.com/GSongHashrate/SimonSpeck

[Acesso em 25 Outubro 2015].

53

APÊNDICES

A TESTES DO PROTOCOLO PKP

Testes das diferentes versões do algoritmo de Problema de Núcleos

Permutados (PKP).

A.1 Versão de 20/05/2015

Tabela 10 - Resultados dos testes do protocolo PKP v20.05.15 no PIC16

 PIC16

PKP v20.05.15 (otimização de

espaço)
PKP v20.05.15 (otimização de

velocidade)

RAM Size

(Bytes)
ROM Size

(Bytes)
Time (s)

RAM Size
(Bytes)

ROM Size
(Bytes)

Time (s)

Keccak 678 3313 35.3900 678 3731 30.3900

Tabela 11 - Resultados dos testes do protocolo PKP v20.05.15 no PIC24

 PIC24

PKP v20.05.15 (otimização de

espaço)
PKP v20.05.15 (otimização de

velocidade)

RAM Size

(Bytes)
ROM Size

(Bytes)
Time (s)

RAM Size
(Bytes)

ROM Size
(Bytes)

Time (s)

Keccak 526 2895 2.2800 526 2955 2.1980

54

A.2 Versão de 24/05/2015

Tabela 12 - Resultados dos testes do protocolo PKP v24.05.15 no PIC16

 PIC16

PKP v24.05.15 (otimização de

espaço)
PKP v24.05.15 (otimização de

velocidade)

RAM Size

(Bytes)
ROM Size

(Bytes)
Time (s)

RAM Size
(Bytes)

ROM Size
(Bytes)

Time (s)

Keccak 674 3294 34.6400 674 3708 29.7850

AES 487 3220 6.2040 487 3776 5.1410

Speck 128 402 2161 5.1340 402 2431 4.2460

Speck 96 390 2111 3.9390 390 2334 3.4510

Curupira2 (s/

tabelas)
396 2311 3.7400 396 2615 3.2880

Curupira2 (c/

TABS)
391 2484 2.2560 391 2794 1.9510

Curupira2 (c/

TABS, TAB0)
391 2509 2.2480 391 2891 1.9250

Curupira2 (c/

TABS, TAB0,

TABX)

387 2748 2.2180 387 3052 1.8520

55

Tabela 13 - Resultados dos testes do protocolo PKP v24.05.15 no PIC24

 PIC24

PKP v24.05.15 (otimização de

espaço)
PKP v24.05.15 (otimização de

velocidade)

RAM Size

(Bytes)
ROM Size

(Bytes)
Time (s)

RAM Size
(Bytes)

ROM Size
(Bytes)

Time (s)

Keccak 580 2706 2.2640 580 2784 2.2030

AES 410 2796 0.5580 410 2898 0.5470

Speck 128 378 2133 0.6243 378 2208 0.6185

Speck 96 366 2079 0.5451 366 2151 0.5358

Curupira2 (s/

tabelas)
366 2427 0.9016 366 2580 0.9038

Curupira2 (c/

TABS)
366 2631 0.3952 366 2760 0.3890

Curupira2 (c/

TABS, TAB0)
366 2679 0.3963 366 2808 0.3891

Curupira2 (c/

TABS, TAB0,

TABX)

366 3030 0.3825 366 3168 0.3883

56

A.3 Versão de 25/05/2015

Tabela 14 - Resultados dos testes do protocolo PKP v25.05.15 no PIC16

 PIC16

PKP v25.05.15 (otimização de

espaço)
PKP v25.05.15 (otimização de

velocidade)

RAM Size

(Bytes)
ROM Size

(Bytes)
Time (s)

RAM Size
(Bytes)

ROM Size
(Bytes)

Time (s)

Keccak 817 3403 23.2190 817 3825 19.9280

AES 627 3265 4.7260 627 3812 3.9720

Speck 128 544 2211 3.6740 544 2441 3.2370

Speck 96 532 2175 3.1520 532 2389 2.8000

Speck 80 527 2178 2.8530 527 2400 2.5510

Curupira2 (s/

tabelas)
538 2424 3.0580 538 2728 2.7270

Curupira2 (c/

TABS)
533 2592 1.9750 533 2903 1.7230

Curupira2 (c/

TABS, TAB0)
533 2617 1.9650 533 2928 1.7180

Curupira2 (c/

TABS, TAB0,

TABX)

529 2850 1.9360 529 3154 1.6520

57

Tabela 15 - Resultados dos testes do protocolo PKP v25.05.15 no PIC24

 PIC24

PKP v25.05.15 (otimização de

espaço)
PKP v25.05.15 (otimização de

velocidade)

RAM Size

(Bytes)
ROM Size

(Bytes)
Time (s)

RAM Size
(Bytes)

ROM Size
(Bytes)

Time (s)

Keccak 660 2913 1.5230 660 2994 1.4380

AES 490 3009 0.3241 490 3111 0.3184

Speck 128 458 2346 0.3793 458 2421 0.3783

Speck 96 458 2292 0.3291 458 2364 0.3248

Speck 80 458 2274 0.2889 458 2346 0.2950

Curupira2 (s/

tabelas)
446 2640 0.5373 446 2793 0.5378

Curupira2 (c/

TABS)
446 2844 0.2324 446 2973 0.2371

Curupira2 (c/

TABS, TAB0)
446 2892 0.2424 446 3021 0.2375

Curupira2 (c/

TABS, TAB0,

TABX)

446 3243 0.2345 446 3381 0.2304

58

A.4 Versão de 27/05/2015

Tabela 16 - Resultados dos testes do protocolo PKP v27.05.15 no PIC16

 PIC16

PKP v27.05.15 (otimização de

espaço)
PKP v27.05.15 (otimização de

velocidade)

RAM Size

(Bytes)
ROM Size

(Bytes)
Time (s)

RAM Size
(Bytes)

ROM Size
(Bytes)

Time (s)

Keccak 702 3439 23.1000 702 3877 19.6000

AES 512 3283 4.0325 512 3848 3.3650

Speck 128 429 2244 3.3490 429 2503 2.7860

Speck 96 417 2208 2.5610 417 2451 2.2540

Speck 80 411 2177 2.3385 411 2400 2.0740

Curupira2 (s/

tabelas)
421 2385 2.3560 421 2694 2.1185

Curupira2 (c/

TABS)
416 2576 1.5485 416 2895 1.3165

Curupira2 (c/

TABS, TAB0)
416 2601 1.5390 416 2920 1.3025

Curupira2 (c/

TABS, TAB0,

TABX)

412 2836 1.4695 412 3146 1.2450

59

Tabela 17 - Resultados dos testes do protocolo PKP v27.05.15 no PIC24

 PIC24

PKP v27.05.15 (otimização de

espaço)
PKP v27.05.15 (otimização de

velocidade)

RAM Size

(Bytes)
ROM Size

(Bytes)
Time (s)

RAM Size
(Bytes)

ROM Size
(Bytes)

Time (s)

Keccak 550 3045 1.4200 550 3201 1.4169

AES 380 3168 0.3100 380 3303 0.3031

Speck 128 348 2493 0.3590 348 2613 0.3613

Speck 96 336 2439 0.3040 336 2556 0.3048

Speck 80 330 2421 0.2770 330 2538 0.2783

Curupira2 (s/

tabelas)
336 2787 0.5259 336 2985 0.5282

Curupira2 (c/

TABS)
336 2991 0.2190 336 3165 0.2155

Curupira2 (c/

TABS, TAB0)
336 3039 0.2170 336 3213 0.2160

Curupira2 (c/

TABS, TAB0,

TABX)

336 3390 0.2116 336 3573 0.2086

60

A.5 Versão de 09/06/2015

Tabela 18 - Resultados dos testes do protocolo PKP v09.06.15 no PIC16

 PIC16

PKP v09.06.15 (otimização de

espaço)
PKP v09.06.15 (otimização de

velocidade)

RAM Size

(Bytes)
ROM Size

(Bytes)
Time (s)

RAM Size
(Bytes)

ROM Size
(Bytes)

Time (s)

Keccak 709 3516 23.0900 709 3956 19.7040

AES 519 3354 4.1000 519 3927 3.4300

Speck 128 435 2316 3.4020 435 2587 2.8580

Speck 96 424 2270 2.6200 424 2509 2.3200

Speck 80 418 2253 2.4010 418 2483 2.1240

Curupira2 (s/

tabelas)
428 2464 2.4760 428 2772 2.2520

Curupira2 (c/

TABS)
423 2641 2.4690 423 2960 1.3830

Curupira2 (c/

TABS, TAB0)
423 2666 1.5780 423 2985 1.3680

Curupira2 (c/

TABS, TAB0,

TABX)

419 2901 1.5410 419 3217 1.3120

61

Tabela 19 - Resultados dos testes do protocolo PKP v09.06.15 no PIC24

 PIC24

PKP v09.06.15 (otimização de

espaço)
PKP v09.06.15 (otimização de

velocidade)

RAM Size

(Bytes)
ROM Size

(Bytes)
Time (s)

RAM Size
(Bytes)

ROM Size
(Bytes)

Time (s)

Keccak 550 3237 1.4720 550 3363 1.4280

AES 380 3333 0.2665 380 3480 0.2627

Speck 128 348 2670 0.3166 348 2790 0.3133

Speck 96 348 2616 0.2658 348 2733 0.2631

Speck 80 348 2598 0.2455 348 2715 0.2628

Curupira2 (s/

tabelas)
336 2964 0.4539 336 3162 0.4535

Curupira2 (c/

TABS)
336 3168 0.1893 336 3342 0.1866

Curupira2 (c/

TABS, TAB0)
336 3216 0.1893 336 3390 0.1852

Curupira2 (c/

TABS, TAB0,

TABX)

336 3567 0.1826 336 3750 0.1794

