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RESUMO 

A ocorrência de eventos naturais extremos vem ao longo dos anos resultando em desastres 
que geram danos socioeconômicos de grande relevância. O Rio Grande do Sul, que já têm 
sofrido com a ocorrência de desastres, vivenciou neste ano o mais expressivo de sua história 
tendo, nesse contexto, os maiores danos humanos ocasionados pelas inundações. Diante 
desse cenário e acreditando que o fortalecimento da fase de prevenção dentro do ciclo dos 
desastres, como aquela que tem maior potencial para impactar na redução dos danos 
socioeconômicos, vislumbra-se a adoção de Inteligência Artificial como ferramenta para a 
previsão de níveis de inundação de forma a possibilitar a emissão de alertas com antecipação 
capaz de salvar muitas vidas. Com esse propósito o presente estudo avaliou o uso da rede 
neural recorrente Long Short-Term Memory (LSTM) para a predição de nível do rio Caí 
especificamente no trecho localizado no município de São Sebastião do Caí/RS. Para seu 
treinamento e predição, utilizou-se uma série temporal composta por dados de 32 anos de 
precipitação e nível provenientes, das estações pluviométricas e fluviométrica da Agência 
Nacional de Águas (ANA), ambas localizadas na bacia hidrográfica do referido rio. Visando o 
refinamento do conjunto de dados, realizou-se uma análise exploratória identificando 
outliers e ausências de valores. Realizou-se também o pré-processamento do conjunto de 
dados que contemplou a sua divisão em conjunto de treinamento e de teste a normalização 
desses dois conjuntos e a transformação para o padrão exigido pela rede neural. A etapa 
seguinte consistiu no treinamento do modelo LSTM utilizando o conjunto de treino, dessa 
maneira, identificando os melhores hiperparâmetros a serem utilizados na predição, sendo 
esta a etapa final aplicada tanto ao conjunto de treino, quanto ao de teste. Os resultados 
encontrados foram avaliados com base nas medida Erro Médio Quadrático (MSE), no Raiz 
do Erro Médio Quadrático (RMSE) e Coeficiente de Nash-Sutcliffe (NSE), cujos valores 
encontrados apresentaram-se bastantes satisfatórios, sendo MSE (0,0035), RMSE (0,059) e 
NSE (0,87). A rede neural LSTM gerou resultados muito bons para valores recorrentes de 
nível, contudo valores extemos máximos ficaram um pouco subestimados, sendo esse o 
ponto a ser melhor desenvolvido. Como sugestão de trabalhos futuros está a adoção de uma 
série temporal mais volumosa e que seja composta por dados oriundos de fontes indiretas 
como sensoriamento remoto, como forma de contornar a restrição de amostras de dados 
de valores extremos, consequentemente ampliando a série temporal. 

 

 

Palavras-Chave: rede neural recorrente, RNN, LSTM, predição de nível, precipitação, 
desastre natural, inundação 
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ABSTRACT 

The occurrence of extreme natural events has, over the years, resulted in disasters that 
cause significant socioeconomic damage. Rio Grande do Sul, which has already suffered from 
the occurrence of disasters, experienced this year the most significant disaster in its history, 
with the greatest human losses caused by flooding. In this context, and believing that 
strengthening the prevention phase within the disaster cycle is the approach with the 
greatest potential to reduce socioeconomic damage, the adoption of Artificial Intelligence is 
envisioned as a tool for forecasting flood levels to enable the issuance of early warnings 
capable of saving many lives. With this purpose, the present study evaluated the use of the 
Long Short-Term Memory (LSTM) recurrent neural network to predict the level of the Caí 
River, specifically in the section located in the municipality of São Sebastião do Caí/RS. For 
its training and prediction, a time series comprising 32 years of precipitation and water level 
data was used, sourced from the rainfall and river gauge stations of the National Water 
Agency (ANA), both located in the river’s hydrographic basin. To refine the dataset, an 
exploratory analysis was conducted to identify outliers and missing values. Subsequently, 
the dataset underwent preprocessing, which included dividing it into a training set  and a 
test set, normalizing both sets, and transforming them into the format required by the neural 
network. The next step involved training the LSTM model using the training set, thereby 
identifying the best hyperparameters to be used for prediction. This final step was applied 
to both the training and test sets. The results were evaluated based on the Mean Squared 
Error (MSE), Root Mean Squared Error (RMSE), and Nash-Sutcliffe Efficiency Coefficient 
(NSE). The values obtained were highly satisfactory: MSE (0.0035), RMSE (0.059), and NSE 
(0.87). The LSTM neural network produced very good results for recurring level values. 
Nevertheless, maximum extreme values were slightly underestimated. This decline in model 
performance is attributed to the limited sample size of maximum extreme values, which may 
not have been sufficient for the network’s learning process. As a suggestion for future work, 
adopting a larger time series that includes data from indirect sources, such as remote 
sensing, is proposed. This approach could address the limitation of extreme data samples 
and consequently expand the time series. 

 
 

 
Key-Words: Recorrent Network Neural, RNN, Long Short-Term Memory, LSTM,forecasting 
flood level,  precipitation, natural desaster, flood 
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1 INTRODUÇÃO 

 

Países em todo o mundo são assolados por desastres, sejam de origem antropogênica 

ou natural. Ao considerar-se, na avaliação de risco, a multiplicidade de diferentes fatores 

socioeconômicos, políticos, de infraestrutura institucional, além dos ambientais, constata-se 

maior vulnerabilidade associada aos países pobres e em desenvolvimento, conforme a 

publicação World Risk Report (2023). 

Os desastres podem ser classificados como naturais, tecnológicos e híbridos, sendo, 

respectivamente, resultantes da ocorrência de um fenômeno natural extremo, das ações 

antrópicas ou da relação entre desastres naturais e tecnológicos, conforme Monte (2022). 

Em relação aos híbridos, são definidos pela ocorrência de um desastre natural que leva à 

ocorrência de um tecnológico. Salienta-se, ainda, que a compreensão da temática que 

envolve os desastres necessita também do entendimento de outros conceitos igualmente 

importantes como perigo, vulnerabilidade e risco, uma vez que os fenômenos naturais e 

antrópicos por si só não resultam em um desastre, mas sua ocorrência sobre um sistema 

social vulnerável sim. Segundo Monte (2022), a premissa de perigo é a relação do fenômeno 

natural sobre um sistema social, podendo causar um potencial dano ao bem-estar da 

comunidade, sendo medido e definido por sua natureza, localização, extensão, magnitude 

intensidade, frequência e duração. Já a vulnerabilidade relaciona-se ao sistema social, ou 

seja, à população de uma determinada área e a relação que desenvolve com o território, 

estando, desse modo, diretamente relacionada à capacidade de resposta, à capacidade de 

enfrentamento, à resiliência, à capacidade de adaptação e susceptibilidade, definindo, 

assim, quais serão os possíveis danos que um fenômeno poderá ocasionar (MONTE, MICHEL 

E GOLDEFUN, 2018). No que tange ao risco, pode-se citar que decorre da relação entre 

perigo e vulnerabilidade, uma vez que está associado à exposição de uma comunidade a um 

fenômeno natural ou tecnológico, gerador do perigo, e à situação de vulnerabilidade em que 

a população se encontra (MONTE, 2022).  

No Brasil a Secretaria Nacional de Proteção e Defesa Civil, órgão vinculado ao 

Ministério da Integração e do Desenvolvimento, busca universalizar o conhecimento em 
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proteção e defesa civil e, para tanto, estabeleceu a Classificação e Codificação Brasileira de 

Desastres (COBRADE) que segue a divisão entre naturais e tecnológicos (BRASIL, 2012|). 

Diante do exposto e considerando a extensão de conteúdo que envolve essa temática, o 

presente estudo está direcionado aos desastres naturais. Conforme a COBRADE, esses 

podem ser subdivididos em cinco grupos: geológicos, hidrológicos, meteorológicos, 

climatológicos e biológicos, os quais se diferenciam conforme a natureza do fenômeno de 

origem. Visando delinear ainda mais o tema, os esforços desta pesquisa são direcionados 

aos desastres hidrológicos, especificamente as inundações. Cabe salientar que esse grupo é 

dividido em três subgrupos: inundação, enxurrada e alagamento, e a motivação pela escolha 

do estudo sobre inundação baseia-se no quantitativo de danos humanos que desses eventos 

decorrem. 

Segundo o World Risk Report (2023), que considera a vulnerabilidade obtida a partir 

de indicadores sociais, políticos, econômicos, e também a partir da exposição ao perigo 

natural relacionado a diversos fenômenos, o Brasil apresenta um índice de risco de desastres 

classificado como muito alto, ocupando a 40º posição em um ranking de 193 países. De 

acordo com o Atlas Digital de Desastres Naturais, no período de 1991 a 2022, o Brasil 

registrou um total de 57.581 ocorrências de desastres, sendo 28,4% referente ao grupo 

hidrológico. As inundações foram responsáveis pelo maior número de desalojados1 e 

desabrigados2 totalizando 3,62 milhões de pessoas, sendo que na contabilização total do 

número de pessoas que de algum modo foram atingidas pelos eventos, registra-se o valor 

de 20,15 milhões de afetados.  Em âmbito nacional, o Rio Grande do Sul foi um dos estados 

mais afetados por desastres naturais nas últimas décadas, principalmente por eventos de 

inundação, conforme detalhado no Capítulo 2 deste documento. Em particular, o município 

de São Sebastião do Caí foi um dos municípios com maior número de registros de danos 

humanos ocasionados por inundações associadas à bacia hidrográfica do Rio Caí. Esse 

cenário, somado à disponibilidade de dados hidrometeorológicos históricos da região, 

motivaram a realização deste trabalho e a definição do município São Sebastião do Caí como 

área de interesse. 

 
1 Desalojado – pessoa que precisou deixar sua residência, mas foi hospedada na casa de familiares ou amigos. 

2 Desabrigados – pessoa que precisou deixar sua residência e ser alocada em abrigo fornecido pelo poder 

público. 
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No contexto do ciclo de proteção e defesa civil relacionado a desastres naturais, que 

compreende a prevenção, a mitigação, a preparação, a resposta e a recuperação, percebe-

se que, nos últimos anos, estudos foram desenvolvidos, sobretudo no que tange à 

prevenção, etapa do ciclo capaz de reduzir danos humanos e prejuízos nas comunidades que 

possuem elevado risco, tendo ou não sido atingidas por algum desastre. O governo do Estado 

do Rio Grande do Sul lançou a publicação denominada Desastres Naturais do Rio Grande do 

Sul, cujo foco foi o de mapear as ocorrências de desastres naturais, além de analisar sua 

distribuição e frequência no território como forma de subsidiar o planejamento de ações da 

defesa civil estadual (RIO GRANDE DO SUL, 2022). Já o governo federal lançou em 2023 a 

plataforma denominada Atlas de Desastres no Brasil, a qual possibilita a visualização de 

dados sobre desastres de forma estruturada, contribuindo para o diagnóstico e 

planejamento de ações preventivas (BRASIL, 2023). Quando se avaliam estudos voltados à 

previsão de inundações, encontra-se soluções baseadas em modelos hidrológicos que 

auxiliam o provimento de informações importantes na gestão de recursos hídricos de forma 

integrada. É o caso de Fagundes (2021) que buscou desenvolver um sistema de previsão do 

aumento de nível do Rio do Boi, localizado em Santa Catarina, baseando-se em um modelo 

hidrológico-hidrodinâmico acoplado a dados de previsão por conjunto. Brunner et al (2021), 

discutiram os desafios do uso desses modelos para previsão de inundações e de secas. 

Modelos hidrológicos são uma representação matemática do ciclo hidrológico utilizada para 

compreender as relações existentes entre forçantes climatológicas e processos ambientais 

e hidrológicos (TSCHIEDEL, 2022). Ainda, segundo o autor, esses modelos podem ser 

classificados quanto a sua variabilidade espacial e representação de processos de escala da 

bacia hidrográfica, fazendo-se necessário o uso de variáveis como precipitação, 

evapotranspiração, infiltração, armazenamento de água e escoamento que podem ser 

provenientes tanto de medições diretas , quanto de fontes secundárias como sensoriamento 

remoto, além da utilização de dados para representação da topografia da área da bacia 

hidrográfica estudada, obtidos a partir de modelos digitais de elevação (MDE).  

Contudo, a realização de pesquisas embasadas em modelos matemáticos mais 

robustos, como os modelos hidrológicos de base física, requer grande esforço e capacitação 

para compreensão da estrutura do modelo, de sua dinâmica de funcionamento, além das 

variáveis condicionantes utilizadas para previsão de inundações. Visando o entendimento de 

abordagens mais simplificadas, quando comparadas aos modelos hidrológicos, constatou-se 
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alguns estudos que aplicaram conceitos de inteligência artificial (IA) por meio de técnicas de 

aprendizado de máquina (machine learning) e aprendizado profundo (deep learning), para a 

obtenção de variáveis de interesse no contexto de desastres. 

Sambati et al. (2019), desenvolveram uma aplicação destinada à previsão de risco de 

alagamento e inundação na Região Metropolitana de São Paulo (RMSP) a partir do uso de 

uma das técnicas de aprendizado de máquina, conhecida como KNN (K-Nearest Neighbor). 

Segundo os autores, para o desenvolvimento da aplicação, além do conhecimento 

relacionado à técnica de IA, também foi necessária a validação e qualificação dos dados 

utilizados como variáveis de entrada no modelo de previsão, utilizando, para tanto, dados 

de precipitação, de descargas elétricas, mapas de susceptibilidade de inundação e 

alagamento, além de adoção de um modelo baseado em linguagem natural para extração 

de informações das redes sociais acerca de pontos de alagamento e inundação, utilizando 

essas informações para o treinamento do modelo desenvolvido. Ainda nessa temática, 

porém utilizando aprendizado profundo, destaca-se o estudo desenvolvido por Schimdt et 

al. (2021), que desenvolveram uma aplicação baseada na técnica de redes neurais 

adversárias para criação de imagens de inundações em qualquer ponto de uma cidade, 

utilizando como base imagens do Google Street View3, com o objetivo de promover a 

conscientização da população quanto à indução de desastres desse tipo em decorrência das 

mudanças climáticas. De acordo com os autores, a aplicação denominada ClimateGam 

permite que o usuário consulte um local através do endereço e então verifique como essa 

localização ficaria em caso de inundação. Cabe, ainda, destacar um sistema de alerta de 

inundação baseado em inteligência artificial, com técnica de aprendizado de máquina, 

elaborado pela empresa Google em parceria com o Serviço Geológico do Brasil (PHEBO, 

2022). Segundo a autora, tal sistema emitirá alertas sobre previsão de inundação em tempo 

real a partir de consultas do usuário às plataformas Google4 e Maps5 para mais de 60 

localidades no Brasil.  

Embora a estrutura dos modelos de inteligência artificial não seja elementar, 

acredita-se que sua adoção possibilite o desenvolvimento mais simplificado de sistemas de 

 
3 Google Street View – disponível em: https://www.google.com.br/maps 

4 Google – disponível em: https://www.google.com.br 

5 Maps – disponível em: https://www.google.com.br/maps 
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alertas, quando comparado aos modelos hidrológicos existentes. Em particular, alguns 

estudos têm explorado técnicas de aprendizado profundo baseadas em redes neurais, tais 

como os trabalhos de Alberton et al. (2021) e Liang et al. (2018), apresentados em mais 

detalhes no Capítulo 2. Os resultados apresentados por esses estudos indicam que soluções 

baseadas em Redes Neurais Recorrentes (RRN, do inglês Recurrent Neural Networks) são 

abordagens promissoras, o que motivou a elaboração da seguinte questão de pesquisa, 

relacionada à área de interesse deste estudo:  

"É possível prever cotas de inundação, no município gaúcho de São 

Sebastião do Caí, a partir da modelagem de variáveis de precipitação e nível 

fluviométrico utilizando Rede Neural Recorrente, especificamente a 

arquitetura LSTM (Long-Short Term Memory)? 

 Os resultados confirmam que a utilização dessa técnica pode representar a 

simplificação do trabalho de previsão de eventos de inundação, uma vez que não necessita 

a calibração de variáveis para representação de processos de escala da bacia hidrográfica, 

como necessitam os modelos hidrológicos. Logo, este trabalho teve como objetivo geral a 

avaliação do uso de técnica de aprendizado profundo baseada em RNN, utilizando o modelo 

LSTM para modelagem de variáveis hidrometeorológicas, visando a previsão de cotas de 

inundação dentro de limiares tipicamente obtidos a partir do uso de técnicas de simulação 

tradicionais.  
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2 FUNDAMENTAÇÃO TEÓRICA E REVISÃO DE LITERATURA 

 

Neste capítulo serão abordados tópicos relacionados à contextualização dos 

desastres naturais, trazendo um breve diagnóstico do Rio Grande do Sul no que tange ao 

tema, além da abordagem de modelos hidrológicos utilizados para previsão de inundações 

e por fim o uso de técnicas de redes neurais aplicadas à hidrologia, em especial previsão de 

cotas de inundação. 

 

2.1 Contextualização 

 

Em muitas partes do mundo, a ocorrência de eventos naturais extremos vem ao 

longo do tempo resultando em desastres que geram danos socioeconômicos de grande 

relevância.  Ao mesmo tempo, os efeitos de médio e longo prazo das alterações climáticas 

não só resultarão no aumento da frequência como também no aumento da intensidade 

desses eventos, implicando em um maior número de pessoas potencialmente atingidas e 

susceptíveis a desastres no futuro (World Risk Index, 2023). Segundo BRASIL (1999), o termo 

“desastre” pode ser interpretado como o resultado de “eventos adversos, naturais ou 

provocados pelo homem, sobre um ecossistema vulnerável, causando danos humanos, 

materiais e ambientais e consequentes prejuízos econômicos e sociais”. Considerando-se 

apenas os desastres naturais Tominaga, Santoro e Amaral (2015) os definem como “o 

resultado do impacto de fenômenos naturais extremos ou intensos sobre um sistema social, 

causando sérios danos e prejuízos que excedem a capacidade da comunidade ou sociedade 

atingida em conviver com o impacto”.  

A mensuração da intensidade de um desastre se dá pela quantificação dos danos 

humanos, materiais, ambientais e também pelos prejuízos econômicos públicos e privados 

associados. Conforme BRASIL (1999) a intensidade de um desastre vai depender da interação 

entre a magnitude do evento e o grau de vulnerabilidade do sistema social atingido por esse 

evento. A vulnerabilidade está associada à capacidade que uma população possui de se 

recuperar após a afetação por um desastre natural, estando diretamente relacionada à 

organização nas esferas política, institucional, econômica, social e ambiental. (World Risk 

Index, 2023)  
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 Seguindo na avaliação do relatório World Risk Index (2023), verifica-se que os 

países que possuem o maior índice de risco de desastres naturais são Filipinas, Indonésia e 

Índia, sendo esse índice uma medida que considera a exposição da população ao fenômeno 

natural adverso e a vulnerabilidade desse grupo. O Brasil, segundo a publicação, ocupa a 40º 

posição entre os 193 países avaliados, classificando-se como um país de risco muito alto para 

desastres naturais. Isso fica evidenciado quando se avalia um período de 31 anos (1991 a 

2022) de reconhecimento federal de decretos de situação de emergência6 ou de estado de 

calamidade pública7, totalizando 62.273 decretos de desastres que atingiram 10.462.600 

pessoas, de acordo com o Atlas Digital de Desastres no Brasil. Nesse período, destacam-se 

os estados de Minas Gerais e Rio Grande do Sul como os de maiores quantitativos de 

decretos reconhecidos, sendo respectivamente 7.995 e 7.565. A Figura 1 ilustra a 

distribuição do número de decretos reconhecidos no período citado.   

 

Figura 1. Ocorrências de desastres no Brasil no período de 1991 a 2022 

 

Fonte: Atlas Digital de Desastres no Brasil/MIDR – Elaborado pela autora 

 
6 Situação de Emergência: Reconhecimento legal pelo poder público de situação anormal provocada por 
desastres, causando danos suportáveis e superáveis pela comunidade afetada (BRASIL, 1999) 
 
7 Estado de Calamidade Pública: Reconhecimento legal pelo poder público de situação anormal provocada por 
desastre, causando sérios danos à comunidade afetada, inclusive à incolumidade e à vida de seus integrantes. 
(BRASIL, 1999) 
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O Rio Grande do Sul é um dos estados mais atingidos por desastres naturais conforme 

pode ser observado na Figura 1. Quando se avaliam as informações pertinentes ao estado, 

disponíveis no Sistema Integrado de Informações sobre Desastres (S2iD), referentes ao 

período de 2003 a 2023, verifica-se o reconhecimento federal de 5.124 decretos decorrentes 

da situação de urgência ocasionada especificamente por desastres naturais. Aprofundando-

se a análise para verificação dos danos8 ocasionados por esses eventos, constata-se que 

235.783 pessoas diretamente afetadas, resultando em 67 mortes, 1.533 feridos, 1.599 

enfermos, 93 desaparecidos, 23.755 desabrigados e 208.736 desalojados, além disso, um 

total de 248.699 habitações danificadas ou destruídas. Analisando-se os tipos de desastres 

naturais que acometeram o estado no período supracitado, observa-se o maior número de 

ocorrências de enxurrada, vendaval, chuva intensa, granizo e inundação (Figura 2). 

 

Figura 2. Número de ocorrências, por tipo de desastre natural, no período de 2003 a 2023. 

 

Fonte: S2iD/MIDR  

 

Em uma avaliação dos danos humanos ocasionados pelos diferentes tipos de 

desastres naturais no Rio Grande do Sul, constata-se que os eventos de inundação e chuvas 

intensas são responsáveis por 78,4% dos danos humanos (Figura 3). Adicionalmente, na 

 
8 Dados de danos humanos e materiais e de prejuízos econômicos são restritos ao período de 2017-2023, 
conforme disponibilização do Sistema Integrado de Informações sobre Desastres. 
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Figura 4 é apresentada a distribuição das ocorrências dos desastres de inundação no Estado, 

em que é possível observar que a região do município de São Sebastião do Caí é uma das que 

mais registrou eventos de inundações nos últimos anos. 

 

Figura 3: Proporção de danos humanos conforme os tipos de desastres naturais 

 

Fonte: S2iD/MIDR  

 

Figura 4: Distribuição das ocorrências de inundação no Rio Grande do Sul, no período de 2003-2023 

 

Fonte: Atlas Digital de Desastres no Brasil/MIDR – Elaborado pela autora 
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Dessa forma, a motivação do presente estudo parte da conexão existente entre o 

elevado percentual de danos humanos ocasionados por eventos de inundação e a relação 

direta que este processo tem com eventos de chuva intensa, em um contexto tecnológico 

cada vez mais abrangente que permite o uso de técnicas de IA para beneficiar diretamente 

populações vulneráveis a partir da previsão de níveis. 

Neste sentido, salienta-se que essa motivação se mostrou ainda mais fortificada 

considerando os eventos catastróficos sofridos pelo Estado do Rio Grande do Sul ao final do 

mês de abril e durante o mês de maio de 2024. Segundo Paiva et al (2024) em algumas 

regiões foram registrados acumulados superiores a 900 mm, distribuídos por um período de 

35 dias, sendo esse valor 10 vezes superior à precipitação média esperada. O resultado desse 

evento de precipitação intenso foi o maior desastre natural já vivenciado pelo estado. No 

que tange ao total de municípios atingidos, segundo o Mapa Único do Plano Rio Grande 

(MUP-RS) do total de 497 municípios, apenas 45 (9,1%) não tiveram a decretação de 

calamidade pública ou de situação emergência. O painel destaca ainda que 970.788 pessoas 

foram diretamente atingidas, o que 8,9% da população total e salientando, ainda, que a área 

atingida foi de 16.387 km2 representando 6,1% da área total do estado. A Figura 5 ilustra a 

mancha decorrente dos desastres de inundação e movimentos de massa referentes ao 

evento acima citado. 
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Figura 5. Área diretamente atingida pelos desastres de inundação e movimentos de massa. 

 

Fonte. IBGE, SPGG-RS – Elaborado pela autora 

 

2.2 Modelos Hidrológicos 

 

Modelos hidrológicos são tipicamente divididos em dois módulos: o módulo de 

balanço hídrico, o qual transforma chuva em vazão e o módulo de propagação que 

transforma vazão em nível (cota) em uma dada seção de interesse. O módulo de balanço 

hídrico tem como principal base a representação de fenômenos como a precipitação, a 

evapotranspiração e o balanço de água subsuperficial, bem como armazenamento 

subterrâneo. Já o módulo de propagação tem o intuito de verificar características associadas 

ao deslocamento das ondas de cheia para jusante podendo serem utilizadas abordagens 

mais complexas que envolvem o uso das equações de Saint-Venant ou mais simplificadas 

(TSCHIEDEL, 2022).  

Nesse contexto, a consolidação de um modelo hidrológico para uma dada área de 

interesse exige considerável esforço, além de dados de entrada consistentes. Uma vez 

estabelecido o modelo hidrológico, também se destaca a etapa de calibração que exige um 

conhecimento substancial do analista para avaliação das diferenças entre o resultado 
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simulado e o dado observado. Portanto, a análise dos resultados simulados necessita 

conhecimento prévio das relações existentes nos módulos e submódulos presentes em um 

modelo hidrológico (TSCHIEDEL, 2022).  

Em adição, aponta-se a dificuldade em obter-se longas séries históricas completas de 

dados observacionais, o que pode comprometer diretamente o resultado da simulação (KIM 

e KIM, 2021). A necessidade de calibração de um grande número de parâmetros, 

conjuntamente com a carência de dados hidrológicos tem sido apontados como fatores que 

complexificam a previsão de cheias a partir de modelos hidrológicos. (ALBERTON, SEVERO e 

MELO, 2021).  

  

2.3 Redes Neurais 

 

A adoção de redes neurais na hidrologia tem sido recorrente em estudos aplicados à 

previsão de inundações, ao gerenciamento de águas subterrâneas, à qualidade da água, e à 

previsão de precipitações, entre outros, desde o início dos anos 2000, conforme observado 

nos estudos de SPERB et al. (1999) e de GOVINDARAJU (2000). Segundo Cruz, Rodrigues e 

Versani (2010) as técnicas de redes neurais são promissoras nos estudos hidrológicos, pois 

utilizam dados de entrada mais simplificados, diferentemente dos modelos hidrológicos que 

necessitam de uma série de parâmetros como topografia do terreno, tipo de solo, 

estabelecimento de coeficientes, entre outros, tornando o processo de previsão mais 

trabalhoso. Neste sentido, no presente observa-se o uso de redes neurais como uma 

alternativa viável e consolidada de predição de variáveis hidrológicas como vazões e níveis 

(MEDEIROS et al., 2023; BOUIX, C.P. 2024). Contudo, apesar de ser apontada como uma 

promissora alternativa para estudos desse domínio, o processamento de redes neurais 

artificiais também necessita de uma base de dados rica em amostras. Shen (2018), afirma 

que as vantagens do aprendizado profundo aumentam à medida que aumenta o número de 

exemplos que são processados. No entanto, Gama e Pedrollo (2018) salientam que existe 

um número ideal de variáveis para que a rede obtenha um ponto ótimo de desenvolvimento, 

ressaltando que quantidades superiores a esse número ideal podem comprometer o 

desempenho. 
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Redes neurais são modelos matemáticos que possibilitam a modelagem de 

comportamentos temporais complexos e não lineares. Essas técnicas foram consolidadas 

diante da evolução de hardwares disponíveis comercialmente, além da consolidação de 

grandes bases de dados (NIELSEN, 2021). Sua origem foi inspirada nas ciências biológicas, 

sendo comparadas ao funcionamento do cérebro humano, conforme destaca Rohn e Mine 

(2003). A estrutura básica de uma rede neural pode ser observada na Figura 6 que ilustra de 

forma simplificada seu funcionamento.  

 

Figura 6.: Estrutura genérica de uma rede neural 

 

Fonte: Adaptado de Rohn e Mine (2003)  

 

Os nós da Camada de Entrada representam os dados de entrada (vetores de valores), 

os quais são processados pelos neurônios localizados nas camadas ocultas. Antes deste 

processamento, os valores de entrada são multiplicados por pesos (vetor de pesos), 

representados pelas arestas. É importante destacar que a figura ilustra apenas uma camada 

oculta, porém as redes neurais profundas utilizadas em aprendizado profundo possuem 

múltiplas camadas intermediárias, as quais são compostas por n neurônios cada uma. Os 

valores de todas as entradas em um único nó (neurônio) são somados e passados para uma 
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função de ativação não linear (NIESLEN, 2021). Em resumo, o neurônio recebe as variáveis 

de entrada, já com a aplicação dos pesos e aplica sobre esse conjunto uma função de 

ativação.  

A Figura 7 apresenta um recorte visual referente ao primeiro nó de entrada, 

ilustrando a multiplicação dos valores de entrada pelos pesos que os conectam aos 

neurônios. Desse modo, observa-se que o que ocorre é uma multiplicação de matrizes. 

Especificamente nesse exemplo, de uma matriz de 4x1, representando a multiplicação do 

vetor de entrada por 4 pesos, uma vez que se tem quatro neurônios na camada oculta. Ao 

final, aplica-se uma camada que combinará quatro entradas (oriundas dos 4 neurônios) em 

duas saídas (NIELSEN, 2021).   

 

Figura 7: Esquema de representação do 1° nó de entrada na rede neural 

 

Fonte:  Adaptado de Rohn e Mine (2003)  

 

Rohn e Mine (2003) compararam as entradas recebidas por um neurônio artificial aos 

estímulos que um neurônio natural recebe, destacando que o sinal que chegará aos núcleos 

do neurônio equivalerá ao número de entradas recebidas. Além disso, os autores 

destacaram que os pesos agregados aos atributos poderiam corresponder aos dendritos 

realizando suas sinapses em uma comparação ao sistema natural. Tais pesos refletem a 

importância de determinada entrada a um neurônio. 

As redes neurais possuem distintas arquiteturas que variam conforme o modelo 

teórico sob os quais foram embasadas. Em particular, quando se busca um modelo para 
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previsões de eventos hidrológicos, é importante considerar abordagem mais adequada à 

análise de dados temporais, dentre as arquiteturas utilizadas de aprendizado profundo. 

Nesse sentido, Nielsen (2021) cita a rede Multilayer Perceptron (MLP), a Rede Neural 

Convolucional (CNN do inglês Convolutional Neural Network) e a Rede Neural Recorrente 

(RNN do inglês Recurrent Neural Network), salientando que as duas últimas, por serem mais 

recentes em relação à primeira são mais comumente utilizadas. Corroborando com a autora, 

Brownlee (2020) também utiliza as três redes para demonstrações de modelos aplicados a 

séries temporais. 

Conforme anteriormente destacado, o uso dessa ferramenta aplicado ao domínio 

hidrológico não é recente. Rohn e Mine (2003), utilizaram uma rede neural recorrente para 

previsão de chuvas em um horizonte de curtíssimo prazo, apontando como aspecto positivo 

o fato de que não é necessário conhecimento detalhado sobre as relações entre as variáveis 

envolvidas e o problema. Rocha, Mine e Kavisky (2015), avaliaram o potencial de uma rede 

neural artificial do tipo Perceptron para obtenção de dados de vazão mensal a partir do 

processamento de variáveis geradas por um modelo climático regional, recomendando, 

diante dos resultados positivos, o uso da ferramenta para descrição do processo chuva-vazão 

com cenários climáticos, ressaltando ainda a vantagem econômica e operacional de 

implementação. Contudo, Nielsen (2021) reforça que apesar de a técnica demonstrar grande 

eficiência para processamento de séries temporais, ainda é imprescindível que se realize o 

pré-processamento dos dados, antes de sua aplicação. 

A RNN, de interesse neste estudo dado o objetivo geral definido no Capítulo 1, 

constitui-se como um modelo em que os mesmos parâmetros são aplicados repetidamente, 

mesmo quando as entradas são alteradas com a passagem do tempo (NIELSEN, 2021). A 

autora destaca ainda as arquiteturas Gated Recurrent Unit (GRU) e a Long Short-Term 

Memory (LSTM), cujas diferenças básicas apontam para a maior rapidez de processamento 

característico à GRU, mas melhor desempenho da LSTM por dispor de mais parâmetros. 

Estudos aplicados à hidrologia têm demonstrado bons resultados com uso de RNN, 

sobretudo com a adoção da arquitetura LSTM. Segundo KIM (2021), LSTM pode ser indicada 

para as situações em que se necessita estimar a vazão de um rio localizado em uma 

determinada região, para a qual não se dispõe de um conjunto massivo de dados exigidos 

por modelos hidrológicos. Em sua análise, a rede neural demonstrou resultados promissores 

ao estimar dados de vazão, quando comparados aos mesmos dados obtidos a partir de um 
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modelo hidrológico. Huang et.al (2023), avaliando desafios na previsão da dinâmica de 

recarga de água subterrânea, propuseram o uso do modelo LSTM, comparando-o com 

outros modelos de aprendizado de máquina, relatando a superioridade dos resultados 

processados em relação aos demais.  

Em outro estudo, apresentado por Liang et al. (2018), o modelo LSTM foi utilizado 

para predizer a variação diária do nível de água do lago Dongting localizado na China, 

utilizando como dado de entrada níveis históricos e dados observados de vazão, 

apresentando resultados semelhantes aos obtidos a partir de modelagem hidrodinâmica, 

com a vantagem de ser um processo mais otimizado uma vez que, diferentemente dos 

modelos hidrodinâmicos, não exige uma quantidade substancial de parâmetros, calibração 

do modelo e recursos computacionais.  Por fim, destaca-se o estudo de Alberton et al.(2021), 

no qual os autores avaliaram dois modelos de redes neurais, LSTM e MLP, para predição do 

nível do rio Itajaí-Açu localizado no município de Blumenau em Santa Catarina, considerando 

como dados de entrada informações de precipitação e nível ao longo de pontos da bacia 

hidrográfica. O estudo concluiu que ambos os modelos podem ser aplicados à finalidade 

proposta, mas destacou o modelo LSTM que, com simples pré-processamento dos dados, foi 

capaz de prever com alta precisão o nível da água do rio durante eventos de cheia, 

apresentando melhores resultados quando comparado ao MLP.  

Os exemplos supracitados fundamentam a escolha da rede LSTM na aplicação do 

presente estudo. Perante o exposto, o entendimento de sua arquitetura é de extrema 

relevância uma vez que, em etapas posteriores, será realizado o desenvolvimento das 

análises temporais utilizando-a como modelo de processamento. Assim sendo, cabe 

destacar que as RNN são redes que contêm loops que permitem que uma memória anterior 

de entrada persista influenciando na saída. Contudo, muitas vezes a informação anterior 

acaba decaindo à medida que o treinamento vai ocorrendo, o que acontece quando o 

gradiente usado para atualização da rede se torna pequeno à medida que os resultados do 

processamento vão sendo propagados, refletindo na camada de saída. Visando solucionar 

este problema, denominado dissipação do gradiente, foi desenvolvida a arquitetura LSTM 

(LIANG et al, 2018). 

Segundo Hochreiter e Schmidhuber (1997) apud Migliato (2021), a LSTM surgiu com 

a intenção de resolver diversos problemas relacionados ao aprendizado utilizando dados 

sequenciais, de modo a obter-se um modelo que fosse efetivo e escalável. Os autores 
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ressaltaram ainda que diferentemente de outros tipos de redes neurais que possuem 

núcleos de processamento (neurônios), as LSTM são compostas por blocos de memória 

conectados por meio de camadas, tendo como ponto preponderante o estado da célula (cell 

state). A Figura 8 ilustra essa estrutura, enquanto que a Figura 9 exemplifica o 

funcionamento de um bloco de memória LSTM. Após estas figuras, as explicações das 

variáveis associadas são realizadas a partir do exposto em Migliato (2021), Liang et al. (2018) 

e Brownlee (2020). 

 
Figura 8: Esquema ilustrativo da estrutura de blocos de memória da rede LSTM 

 

Fonte:  Adaptado de Liang et al. (2018)  

 

Figura 9. Esquema de funcionamento de um bloco de memória de uma rede LSTM 

 

Fonte: Adaptado de Liang et al. (2018)  
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Na Figura 9, “xt” representa o vetor de entrada no tempo “t” e “ht-1” representa a 

camada escondida anterior no tempo t-1. Os blocos de memória possuem três portões que 

são o portão de esquecimento (forget gate), o portão de entrada (input gate) e o portão de 

saída (output gate). 

A primeira etapa é dedicada à seleção de qual informação será repassada ao estado 

da célula, por meio de uma função logística, ou seja, o portão de entrada recebe xt e ht-1 que 

são multiplicados pela função logística, a qual consiste em uma função sigmoide (𝜎). Desse 

modo, produz-se um sinal (ft) que possui como saída valores entre 0 e 1, em que 0 significa 

que a informação será totalmente descartada e 1 que será totalmente considerada. Esse 

sinal é multiplicado por cada valor do estado da célula anterior (Ct-1), determinando o 

quanto do estado da célula anterior será considerado no estado atual (Ct). A seguir a 

equação do portão de esquecimento (forget gate) (1), onde wf é o peso de entrada e bf  é 

o peso do viés, e a equação da função logística (2). 

 

𝑓𝑡 = 𝜎(𝑤𝑓[ℎ𝑡−1,𝑥𝑡] + 𝑏𝑓)           Equação 1 

  

𝜎(𝑥) =
1

1 + 𝑒−𝑥
                        

Equação 2 

 

A segunda etapa do processamento consiste na decisão do quanto a nova informação 

será mantida no estado da célula (Ct). Essa etapa é dividida em dois momentos. No primeiro 

momento, o portão de entrada recebe xt no tempo t e ht-1 multiplicando-os por matrizes 

de peso Wi as quais são somadas a um viés bi e processadas por outra função sigmoide, 

novamente produzindo uma saída entre 0 e 1. A seguinte equação é dada no portão de 

entrada (input gate): 

 

𝜎𝑖𝑡 = 𝜎(𝑤𝑖[ℎ𝑡−1,𝑥𝑡] + 𝑏𝑖)                       Equação 3 
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No segundo momento é gerado um novo estado (C’t) a partir da aplicação de uma 

função tangente hiperbólica sobre xt no tempo t e ht-1 sendo o resultado multiplicado pelo 

resultado do portão de entrada. O resultado desta multiplicação é passado ao estado atual 

(Ct), já considerando o processamento realizado na primeira etapa (ft *Ct-1). A seguir a 

equação que gera o novo estado (4) e a equação que calcula a tangente hiperbólica (5): 

 

𝐶′𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝑐′[ℎ𝑡−1,𝑥𝑡] + 𝑐′)                    Equação 4 

 

𝑡𝑎𝑛ℎ(𝑥) =
𝑒2𝑥 − 1

𝑒2𝑥 + 1
                                             

Equação 5 

 

Por fim, a terceira e última etapa dedica-se a calcular a saída do modelo. Nessa etapa, 

primeiramente é passado o estado da célula novamente por meio de uma função tangente 

hiperbólica gerando um valor. Esse valor é multiplicado pelo resultado do portão de saída, o 

qual é obtido aplicando a função sigmoide em xt no tempo t e ht-1, desse modo indicando 

o quanto do estado atual estará presente na saída. A seguir apresenta-se a equação do 

portão de saída (Ot ) (output gate) (6) e a equação de obtenção da saída (7). 

𝑡𝑂𝑡 = 𝜎(𝑤𝑜[ℎ𝑡−1,𝑥𝑡] + 𝑏𝑜)                                                        Equação 6 

 

ℎ𝑡 = 𝑂𝑡 ∗ tanh (𝐶𝑡)                                                 Equação 7 
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3 METODOLOGIA E PROPOSTA DE DESENVOLVIMENTO 

 

O presente capítulo apresenta as etapas de desenvolvimento deste estudo que 

objetiva analisar a aplicação de uma rede neural recorrente, modelo LSTM, para obtenção 

de dados de nível fluviométrico a partir do processamento de variáveis hidrometeorológicas, 

além de apresentar a área de estudo. 

 

3.1 Área de Estudo 

 

Conforme relatado no capítulo 2, o Rio Grande do Sul é um dos estados brasileiros 

mais atingidos por desastres naturais, sobretudo os de natureza hidrometeorológica. 

Recentemente, o Estado foi acometido pelo maior desastre dessa natureza e de sua 

totalidade de municípios, 415 decretaram situação de calamidade pública ou de emergência, 

representando 83,5% desse total. Um município que se destaca em relação aos demais por 

seu histórico em ocorrência de desastres do tipo inundação é São Sebastião do Caí, 

localizado na porção leste do território estadual, especificamente na bacia hidrográfica do 

Rio Caí. Ainda, cabe ressaltar que o município, ao longo do período analisado, foi um dos que 

mais registrou danos humanos devido a inundações. Diante disso e considerando o 

monitoramento dessa bacia hidrográfica com disponibilidade de dados 

hidrometeorológicos, o presente estudo concentrará sua análise nesse município.  

A Figura 10 ilustra a localização do município e sua inserção na bacia hidrográfica do 

rio Caí, bem como a identificação das estações pluviométricas e fluviométrica utilizadas para 

consolidação da base de dados. 
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Figura 10. Localização da área de estudo 

 

Fonte: ANA, IBGE e SEMA-RS – Elaborado pelo autora 

 

3.2 Etapas de desenvolvimento 

 

Destacam-se como principais atividades deste trabalho: 1) a avaliação das estações 

pluviométricas e fluviométrica, consolidando a base de dados; 2) a análise exploratória dos 

dados, buscando principalmente a identificação de outliers; 3) o tratamento e transformação 

desses dados; 4) o desenvolvimento do modelo de predição baseado na arquitetura de rede 

neural recorrente LSTM e sua aplicação ao grupo de treinamento e de teste; 5) avaliação 

final dos resultados a partir do emprego de medidas de acurácia. A Figura 11ilustra as etapas 

de desenvolvimento do estudo, representando um resumo da metodologia utilizada. 
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Figura 11: Etapas de desenvolvimento do estudo 

 

Fonte: Elaborado pela autora 
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No que tange às etapas de desenvolvimento destaca-se a importância da primeira 

dedicada à consolidação da base de dados, consistindo na avaliação das estações 

pluviométricas, das quais obteve-se a série de dados de precipitação, e da estação 

fluviométrica que forneceu dados de nível do rio em estudo. Cabe ressaltar que as estações 

pluviométricas e a fluviométrica, pertencentes à Agência Nacional de Águas (ANA), 

apresentam momentos de falhas operacionais dos equipamentos repercutindo na ausência 

de dados e configurando algumas lacunas nas séries temporais. Diante dessa constatação, 

analisa-se as séries de dados dessas estações para definir um recorte temporal que 

contemple o menor período de falhas, ou seja, que contenha o menor número de dados 

ausentes proporcionalmente ao total da amostra. Tendo isso em vista, optou-se por 

consolidar uma base de dados diários de precipitação e nível que representam o recorte 

temporal de 1970 a 2004. Apesar de não representar uma série recente de dados, a escolha 

foi também fundamentada no objetivo desse estudo, o de avaliar o uso da rede neural LSTM 

para predição de nível fluviométrico, e não o de aplicar técnicas de Inteligência Artificial no 

tratamento dos dados ausentes em si. 

A segunda etapa consiste na análise exploratória do conjunto de dados como forma 

de compreender suas características principais. Essa análise é fundamental para identificar 

o comportamento do conjunto de dados em relação a um ponto central, como se caracteriza 

sua distribuição e principalmente, possibilita a identificação de outliers que em estudos 

hidrológicos são bastante relevantes para indicar os períodos de maiores níveis que podem 

resultar em inundações expressivas. A etapa seguinte consiste no tratamento do conjunto 

de dados, buscando identificar valores faltantes, analisando-se os outliers com intuito de 

compreender se decorrem de falhas dos equipamentos ou se de fato representam o 

fenômeno meteorológico que repercute no hidrológico e, por fim, dedica-se ao tratamento 

do conjunto de dados. A quarta etapa dedica-se à criação do modelo de predição baseado 

na rede neural LSTM com a configuração de seus parâmetros e aplicação no conjunto de 

treinamento. Entende-se a grande relevância dessa etapa para esse trabalho, por ser 

fundamental o ajuste de parâmetros do modelo visando os melhores resultados de 

treinamento, para que posteriormente, o modelo devidamente ajustado possa ser aplicado 

o conjunto de teste. Por fim, a etapa final consiste na análise dos resultados de predição do 

nível fluviométrico obtido, resultado diretamente dependente do correto desenvolvimento 

das etapas anteriores.  
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4 RESULTADOS E DISCUSSÃO 

 

O presente capítulo dedica-se à exploração do conjunto de dados sob o viés das 

medidas de tendência central e de dispersão, além da identificação de outliers e adoção de 

outras estatísticas descritivas¸ referentes à etapa de análise exploratória. Posteriormente, 

será apresenta a etapa de tratamento dos dados, na qual serão abordadas a análise dos 

dados faltantes e suas transformações, bem como a análise dos outliers identificados 

anteriormente. Em seguida será apresentado o processo de trabalho relacionado à etapa de 

desenvolvimento do modelo de predição, sua aplicação ao conjunto de treinamento e de 

teste e finalmente será abordada a análise dos resultados com base em medidas estatísticas 

indicadas tanto para avaliação de modelos de regressão, quando de dados hidrológicos. 

 

4.1 Consolidação da base de dados  

 

Para a composição da base foram considerados dados de precipitação de quatro 

estações pluviométricas e dados de nível do rio Caí da estação fluviométrica, todos obtidos 

diretamente a partir do acesso ao portal Hidroweb da Agência Nacional de Águas e 

Saneamento Básico (ANA). A série temporal dessas estações varia entre os anos de 1950 a 

2024, entretanto a ocorrência de falhas operacionais ao longo do período, as quais são 

identificadas pelo código “-1”, ocasionou diversas lacunas tendo como consequência a 

ausência de dados. A Figura 12 traz o mapa ilustrando a localização da estação fluviométrica 

e das pluviométricas existentes na área de estudo, as quais foram analisadas com base em 

suas séries temporais para então serem definidas aquelas que seriam utilizadas na presente 

pesquisa. A Figura 13 traz o gráfico de Gantt ilustrando a disponibilidade temporal de dados 

de todas essas estações, onde amarelo indica que a estação possui menos de 90% de dados 

disponíveis e azul representa que possui 90% ou mais. Observando a Figura 13 é possível 

identificar a existência de falhas nos dados de precipitação e nível ao longo do período, 

indicando ainda o percentual de dados existentes. 
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Figura 12. Localização das estações pluviométricas e fluviométrica na área de estudo 

 

Fonte. ANA – Elaborado pela autora
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Figura 13. Disponibilidade temporal das estações pluviométricas e fluviométrica com indicação do percentual de dados existente para o ano  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fonte. ANA – Elaborado pela autora 
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A Figura 13 ilustra a disponibilidade temporal dos dados das estações indicando, 

sobretudo, o quanto existem falhas nos dados de precipitação. Segundo Abreu et al (2018), para 

estudos hidrológicos a indicação é considerar estações com um percentual máximo de falhas de 

10% por ano. Sendo assim, para a análise em questão, foram consideradas as estações com 

percentual mínimo de disponibilidade de dados de 90% buscando, dessa forma, diminuir o 

impacto na fase do tratamento de dados ausentes. Sobre o tratamento, salienta-se brevemente 

que as metodologias utilizadas consideram o uso de outras estações próximas para que possam 

ser inferidos dados naquelas que possuem falhas com base nas estações vizinhas. Neste 

contexto, a partir da interpretação do gráfico de Gantt (Figura 13), é possível destacar as estações 

pluviométricas 2950019, 2950033, 2951022 e 2951027 como aquelas que possuem as séries mais 

completas ao longo do tempo e por essa razão foram as estações selecionadas para comporem 

a base de dados deste trabalho. No que tange à estação fluviométrica percebe-se que até o ano 

de 2004 não houve registro de falhas na leitura dos níveis diários do rio Caí, contudo, nos anos 

de 2006 e 2007 ocorreram falhas e considerando a metodologia de tratamento dos dados, a qual 

será melhor explanada na próxima seção, entende-se que para a série de níveis a escolha do 

melhor período seria até o ano de 2004.  

Diante da constatação dos períodos de falha e considerando-se ainda que o objetivo deste 

estudo é avaliar o uso da rede neural LSTM na predição de níveis com base em dados de 

precipitação, entende-se que a calibração do modelo em questão necessita de uma série 

temporal com o mínimo de falhas e tratamento de dados. Visando a redução de viés no resultado 

do modelo, portanto, optou-se por estabelecer um recorte temporal que representasse o 

período mais completo. Sendo assim, foi definido o conjunto de dados diários de precipitação e 

nível referente ao período de 1970 a 2004. Apesar da série temporal finalizar em 2004, o que 

representa uma defasagem de 20 anos em relação ao período atual, ainda assim está de acordo 

com a indicação da Organização Mundial de Meteorologia (OMM) que sugere a adoção de 

períodos de 30 anos para estudos climáticos, uma vez que a série temporal definida totaliza 35 

anos de dados diários. 

 A fim de ilustrar a representatividade do período selecionado, a Figura 14 traz o 

comparativo entre as médias mensais de precipitação para a série definida (1970-2004) com o 

período oficial mais recente de normal climatológica (análise de 30 anos de dados 
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meteorológicos) determinados pelo INMET (1991-2020)9. É importante ressaltar que os dados da 

normal climatológica se referem à estação localizada no município de Caxias do Sul, o qual está 

próximo da área de estudo (São Sebastião do Caí) e representa o clima da região. Sua análise 

possibilita verificar que o comportamento médio mensal para o período do estudo acompanha a 

tendência observada pela normal. 

 

Figura 14.Precipitação média mensal  

 

Fonte: Dados da Pesquisa – Elaborado pela autora 

 

Finalizando a definição do período escolhido apresenta-se a Figura 15 que ilustra a 

completude do conjunto de dados tanto de precipitação quanto de nível, atendendo aos critérios 

indicados para estudos hidrológicos, conforme citados anteriormente. Após a finalização deste 

estudo, quando o modelo LSTM estiver calibrado para a predição de dados de nível a partir de 

variáveis de precipitação e nível, a sugestão é testá-lo, em trabalho futuro, com séries temporais 

mais recentes obtidas a partir de fontes de medição indireta, caso dos dados de precipitação 

 
9 Normais Climatológicas disponível em: https://portal.inmet.gov.br/normais 
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obtidos a partir de satélites ou derivados da combinação de diferentes fontes de medição 

indireta (ensemble), como forma de contornar o problema da ausência de dados apresentado. 

A seção a seguir dedica-se à análise exploratória dos conjuntos de dados, tendo sido 

desenvolvido considerando a série temporal de 1970 a 2004, conforme definido acima.  

 

Figura 15. Disponibilidade temporal de dados das estações pluviométricas e fluviométrica (% ano) para o período 
de 1970 a 2004 – 35 anos de dados diários de precipitação e de nível 

  

Fonte: ANA – Elaborado pela autora 

 

 

4.2 Análise Exploratória  

 

Compreender o comportamento da precipitação na bacia hidrográfica é fundamental 

para o entendimento da relação entre as variáveis em análise. Por essa razão, foram elaborados 

gráficos referentes à precipitação e ao nível fluviométrico de acordo com o recorte temporal 

anteriormente citado. A Figura 16 ilustra a precipitação anual acumulada nas quatro estações, 

enquanto a Figura 17 ilustra o nível fluviométrico máximo anual. Observando-as é possível 

verificar que a bacia hidrográfica do Rio Caí se caracteriza por apresentar chuvas acumuladas 

anualmente com valores acima de 1.000 mm, com exceção para a estação 2951027 (em amarelo 

na Figura 15) no ano 1991, que apresentou acumulados inferiores em razão ausência de dados 

no período. Também se destaca que é comum a observação de níveis máximos anuais do rio 

acima da cota de 10 metros, uma vez que em 32 anos, de um período de 35 anos, o rio Caí atingiu 

cotas máximas acima do valor referido.  
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Figura 16. Precipitação acumulada anual nas estações pluviométricas 

 

Fonte: Dados da Pesquisa – Elaborado pela autora 

 

Figura 17. Nível do Rio Caí máximo anual na estação fluviométrica 

 

Fonte: Dados da Pesquisa – Elaborado pela autora 

 

Quando avalia-se os valores máximos diários de chuva anuais, verifica-se o predomínio 

de registros acima de 80 mm em todas as estações, com destaque para as estações 2951022 e 

2951027 com recorrência de registros máximos diários anuais superiores a 100 mm. No que 

tange ao nível da água no Rio Caí, observa-se valores predominantes acima de 10 metros, 

conforme as Figura 18 e Figura 19 respectivamente. 
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Figura 18. Precipitação máxima diária anual nas estações pluviométricas 

 

Fonte: Dados da Pesquisa – Elaborado pela autora 

 

Figura 19. Nível máximo diário anual do Rio Caí na estação fluviométrica 

 

Fonte: Dados da Pesquisa – Elaborado pela autora 

 

Observando-se a precipitação a partir da ocorrência de volumes anuais acumulados 

distribuídos em classes, verifica-se que em três estações ocorre o predomínio de volumes em 

torno de 1400 a 1600 mm anuais, enquanto na estação 2950033 o predomínio é caracterizado 

por volumes superiores, entre 1600 a 2000 mm. Em relação à cota do rio Caí, constata-se o 

predomínio entre 10 e 12 metros de subida máxima do nível da água. A Figura 20 e a Figura 21 

ilustram, respectivamente, a distribuição de ocorrência de volumes anuais acumulados e a 

distribuição de ocorrência de níveis anuais máximos, ambos divididos em intervalos. 
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Figura 20: Distribuição de ocorrência de volumes anuais acumulados 

 

Fonte: Dados da Pesquisa – Elaborado pela autora 

 

Figura 21: Distribuição de ocorrência de níveis anuais máximos 

 

Fonte: Dados da Pesquisa – Elaborado pela autora 

 

Observando-se o comportamento da precipitação ao longo dos meses, percebe-se que 

junho, julho e outubro apresentam os maiores em volumes de precipitação mensal, seguidos por 

janeiro e fevereiro e, na análise do nível do rio Caí, observa-se comportamento semelhante, 

maiores cotas registradas entre os meses de julho a outubro, além de dezembro e fevereiro, 

conforme a  Figura 22 e a Figura 23. 
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Figura 22: Precipitação média mensal  

 

Fonte: Dados da Pesquisa – Elaborado pela autora 

 

Figura 23: Nível máximo mensal  

 

Fonte: Dados da Pesquisa – Elaborado pela autora 

 

A fim de compreender a distribuição dos dados de cada uma das estações foram obtidas 

medidas estatísticas, aplicadas às precipitações máximas anuais e ao nível máximo anual, 

utilizando o software R (versão 4.4.1) e seu ambiente de desenvolvimento integrado R Studio. 

Nesse sentido, foram geradas medidas descritivas de tendência central, como a média e a 

mediana, medidas de dispersão, como a obliquidade, curtose, coeficiente de variação e desvio 
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padrão, além da análise de distribuição de probabilidade dos conjuntos de dados (indicado pelo 

p-valor), sendo o resultado dessas medidas10 apresentados na Tabela 1. 

Analisando-se os valores da Tabela 1, nota-se que os dados apresentam certo 

desequilíbrio em relação à média, demonstrando tratar-se de distribuições assimétricas, o que 

também é indicado pelos valores das medianas diferentes das médias, já que em uma 

distribuição normal (simétrica) esses valores estão ambos localizados no centro da distribuição 

(FARIAS, SOARES e CÉSAR, 1998). A medida de obliquidade comprova essa afirmação e indica que 

os dados de precipitação máxima apresentam uma assimetria enviesada à direita, também 

indicado pelos valores de média maiores que as medianas, enquanto os dados de nível possuem 

assimetria à esquerda, representado pelo valor negativo da obliquidade e corroborado pelo valor 

da mediana superior ao da média. Buscando seguir na análise quanto às suas distribuições, 

calculou-se a curtose, cujos valores evidenciam que os dados de precipitação apresentam menor 

grau de achatamento (leptocúrtica) em relação à curva normal, estando mais concentrados em 

relação à média (três é o valor de referência para dados que seguem uma distribuição normal11), 

sendo que os conjuntos de dados das estações 2951027 e 2950033 são os que apresentam menor 

grau de achatamento de suas curvas. 

Tabela 1. Resumo da análise exploratória dos dados de precipitação e nível máximos do rio Caí 

Estação Mínimo 1° Quartil Mediana Média 3° Quartil Máximo 
Desvio 
Padrão 

Coeficiente 
de variação 

(%) 
p-valor 

Obliquidade 
(skewness) 

Curtose 

2950019 38,00 72,10 79,60 82,85 93,00 129,40 22,04 26,61 0,0460 0,4646 3,1882 

2951022 60,50 74,55 91,00 93,16 102,25 168,70 24,29 26,08 0,0016 1,3031 4,4917 

2951027 50,20 73,35 92,40 98,22 114,70 217,30 32,54 33,13 0,0015 1,4863 6,1855 

2950033 51,50 69,75 75,30 81,32 90,50 159,30 21,57 26,53 0,0004 1,6645 6,5286 

87170000 825,00 1.099,00 1.171,00 1.163,77 1.248,00 1.374,00 125,96 10,52 0,5821 -0,4235 3,0594 

 
Fonte: Dados da Pesquisa – Elaborado pela autora 

 
10 Para a geração das medidas descritivas de tendência central (média e mediana) e de distribuição (máximos, 
mínimos, 1° quartil e 3° quartil) utilizou-se a função summary disponível em: 
https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/summary. - Para a obtenção da medida de 
obliquidade e curtose foram utilizadas respectivamente a função skewness e kurtosis (pacote moments) disponível 
em: https://cran.r-project.org/web/packages/moments/moments.pdf - Para obtenção do desvio padrão foi obtida 
a variância dos dados, aplicando-se a função var e posteriormente a função sqrt (ambas nativas do R) para extração 
da raiz quadrada da variância. Para obtenção do p-valor foi utilizado o teste de Shapiro-Wilk disponível em 
https://search.r-project.org/CRAN/refmans/psyntur/html/shapiro_test.html 
 
11 Uma distribuição normal tem curtose igual a 3.  Documentação sobre curtose disponível em: 
 https://search.r-project.org/CRAN/refmans/AMR/html/kurtosis.html 

 

https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/summary.-
https://cran.r-project.org/web/packages/moments/moments.pdf
https://search.r-project.org/CRAN/refmans/psyntur/html/shapiro_test.html
https://search.r-project.org/CRAN/refmans/AMR/html/kurtosis.html
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A curtose aplicada aos dados máximos de nível, apresenta um valor muito próximo a três 

e, apesar de assimétrico, esse conjunto de dados, quando comparado com as chuvas máximas, 

apresenta um grau de achatamento mais próximo da curva normal, sugerindo uma tendência à 

normalidade da distribuição. Essas dispersões em relação à média são também indicadas pelo 

coeficiente de variação, a partir do qual é possível observar que os dados de nível têm a menor 

variação em relação à média, em torno de 10,5%, enquanto os dados de precipitação máximas 

apresentam uma variação superior a 20%. 

Apesar das indicações de assimetria das distribuições, aplicou-se o teste de Shapiro-Wilk 

com o objetivo de confirmar se os dados seguiriam uma distribuição normal. Conforme os p-

valores apresentados na Tabela 1, apenas os dados de nível seguem uma distribuição normal, 

uma vez que o p-valor resultante foi superior a 0,05 enquanto os resultados para os dados de 

precipitação foram todos inferiores a esse valor de referência, indicando que não seguem uma 

distribuição normal. Cabe salientar que essa característica para precipitações máximas é 

esperada, pois valores extremos tendem a seguir distribuição de Gumbel, sendo esta citada como 

a mais utilizada para análise de frequência de variáveis hidrológicas (NAGHETTINI e PINTO, 2007). 

A Figura 24 ilustra o gráfico da função de densidade de Gumbel para máximos12 e a Figura 25 traz 

os gráficos de densidade referente aos dados de cada uma das estações, a partir da qual é 

possível avaliar o quanto as precipitações apresentam comportamento semelhante à função 

densidade de Gumbel. Os gráficos apresentados na Figura 25  

 

 

 

 

 

 

 

 

 

 
12 Gráficos elaborados utilizando a função ggdensity do pacote ggpubr. Documentação disponível em: 

https://www.rdocumentation.org/packages/ggpubr/versions/0.6.0/topics/ggdensity 
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Figura 24. Função de densidade de Gumbel para valores máximos 

 

Fonte: NAGHETTINI e PINTO, 2007 

 

Figura 25. Gráfico de densidade referente às precipitações e nível máximos anuais 

 

Fonte: Dados da Pesquisa – Elaborado pela autora 

 

Ainda, complementar a análise estatística a partir de gráficos foram elaborados os 

histogramas apresentados na Figura 26, os quais corroboram com a constatação da assimetria 

dos dados e sua dispersão em relação ao valor central. Para a elaboração dos histogramas foi 

utilizada a função hist. nativa do R.  
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Figura 26. Histogramas de frequência das precipitações e do nível fluviométrico 

 

Fonte: Dados da Pesquisa – Elaborado pela autora 

 

Além da análise das medidas de tendência central e de dispersão, foi realizada a 

identificação de outliers que podem ser analisados a partir dos gráficos do tipo Boxplot13, os quais 

são ilustrados nas Figura 27 e Figura 28. Verifica-se que todos os conjuntos de dados das estações 

apresentam valores extremos, sendo que apenas o conjunto de dados de nível indicou existência 

de outliers abaixo do limite inferior. A análise desses valores será tratada na próxima seção, 

referente à terceira etapa deste trabalho e que representa a terceira etapa, na qual serão 

abordados, além dos outliers, os dados ausentes e seu tratamento.  

 

 

 

 

 

 
13 Foi utilizada a função geom_boxplot da biblioteca ggplot do R. Documentação disponível em: 
https://www.rdocumentation.org/packages/ggplot2/versions/3.5.0/topics/geom_boxplot 
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Figura 27. Boxplot referente aos dados de precipitações  

 

Fonte: Dados da Pesquisa – Elaborado pela autora 

 

Figura 28. Boxplot referente aos dados de nível do rio Caí  

 

Fonte: Dados da Pesquisa – Elaborado pela autora 
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Por fim, a Figura 29 traz a matriz de correlação das variáveis precipitação e nível indicando 

que inexiste correlação negativa, ou seja, à medida que uma variável aumenta seus valores a 

outra também aumentará. Avaliando a referida Figura, quanto mais forte a correlação, mais 

escuro o tom de azul. Os dados de precipitação da estação 2950019 foram os que apresentaram 

correlação mais forte com os dados de nível. Para elaboração dessa matriz foram utilizadas as 

funções cor e corrplot do R. 

Figura 29. Matriz de correlação  

 

Fonte: Dados da Pesquisa – Elaborado pela autora 

 

4.3 Tratamento dos dados  

 

A presente seção irá abordar a etapa de tratamento dos dados, dedicando-se à análise de 

dados ausentes, à análise de outliers e à transformação dos dados. Primeiramente foram 

analisados os conjuntos de dados de cada uma das estações pluviométricas e da estação 

fluviométrica buscando identificar quais possuem falhas nas séries temporais, conforme 

apresentado na Tabela 2. Observando-a, constata-se que apenas as estações pluviométricas 

2951022 e 2951027 apresentam ausência de dados. O número de dados faltantes tem baixa 

representatividade em relação ao total de cada um dos conjuntos, representando menos de 0,5% 

na primeira e 1,1% na segunda. Na estação 2951022 os dados ausentes correspondem a dias com 

falhas no registro de chuva no mês de março de 1997. Já na estação 2951027 apresentou maior 

número de dias com falhas, ocorridas em dezembro (30 dias) de 1988, em abril (30), maio (30), 
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setembro (30) e outubro (14) de 1991, setembro (3) e outubro (4) de 2003 e janeiro (2) e 

fevereiro (1) de 2004. 

 

Tabela 2: Resumo dos dados faltantes nas séries temporais por estação 

Estação Categoria do dado 
Total de dias 
referente ao 

período de análise 

Total de dias 
com ausência 

de dado  
(Código -1) 

Proporção de dias sem 
dados em relação ao 

total de dias 
(%) 

2950019 Precipitação (mm) 12.784 0 0,0 

2950033 Precipitação (mm) 12.784 0 0,0 

2951022 Precipitação (mm) 12.784 25 0,2 

2951027 Precipitação (mm) 12.784 144 1,1 

87170000 Nível do rio (cm) 12.784 0 0,0 

Fonte: Dados da Pesquisa – Elaborado pela autora 

 

Buscando estabelecer uma série temporal mais completa, realizou-se a atribuição dos 

valores ausentes por valores que pudessem representar a precipitação provável no dia. Para 

tanto, aplicou-se uma técnica de interpolação utilizada na hidrologia, a qual é baseada no cálculo 

da média ponderada pelo inverso da distância, em que se considera que a precipitação em uma 

estação pluviométrica pode ser calculada como a média ponderada das precipitações registradas 

em estações próximas (COLLISCHONN e DORNELLES, 2013). Para tanto foi necessário acessar os 

dados de uma nova estação, próxima tanto à estação 2951022 quanto à 2951027. A Figura 30 

ilustra a localização dessa estação (código 2951008) utilizada para auxiliar no tratamento dos 

dados faltantes. A escolha dessa estação foi baseada na completude de dados no período 

necessário para a correção dos dados faltantes. 
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Figura 30. Localização da estação complementar utilizada para aplicação da técnica de atribuição de valores. 

 

Fonte: IEDE-RS, IBGE e ANA – Elaborado pela autora 

 

Para a atribuição dos valores de precipitação aplicou-se a Equação 8, baseada em 

Colischon e Dorneles (2013), onde Pm é a chuva no dia, NP é o número de postos pluviométricos 

com dados disponíveis, Pj  é a chuva observada na estação j e b um expoente igual a 2, o que 

identifica o método como interpolação ponderada pelo inverso da distância ao quadrado. 

 

𝑃𝑚 =  

 ∑
𝑃𝑗

(𝑑𝑖𝑗)𝑏
𝑁𝑃
𝑗=1

 ∑
1

(𝑑𝑖𝑗)𝑏
𝑁𝑃
𝑗=1

 

 

Equação 8 

Como os períodos de falhas não coincidem entre as estações em questão, para a 

proposição de valores para o período de falha da estação 2951022 aplicou-se a Equação 8, 

utilizando-se os dados diários de chuva das estações 2951027 e 2951008, além de considerar as 
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distâncias destas estações em relação à 2951022. O mesmo procedimento foi aplicado para a 

proposição de valores para a estação 2951027, sendo tudo realizado no Microsoft Excel.  A partir 

da aplicação da técnica de interpolação, uma nova base de dados foi obtida, sem valores 

ausentes para dados de chuva. 

Como apresentado na Figura 11, além da etapa de Tratamento dos dados, estava prevista 

a análise dos outliers. Conforme citado na seção anterior, foram identificados outliers em todos 

os conjuntos de dados, porém algumas estações de precipitação não apresentaram valores 

mínimos de outlier, enquanto a fluviométrica não apresentou valor máximo. A Tabela 3 traz a 

especificação dos outiers encontrados e respectivos anos de observação. Para identificação 

desses valores calculou-se os limites inferiores e superiores de cada conjunto de dados utilizando 

o método da amplitude interquartil (IQR) e definidos esses limites, todos os valores acima do 

superior ou abaixo do inferior são considerados outliers. Em uma breve análise, identifica-se que 

todos os valores de precipitação que superaram o limite máximo ocorreram em anos de El Niño, 

variando apenas entre anos em que o fenômeno foi classificado como fraco (1993), moderado 

(1980, 2002 e 2003), ou forte (1982). Já os valores mínimos identificados, ambos ocorreram em 

anos normais sem influência de fenômenos ENOS14climáticos.  

 

Tabela 3. Identificação dos outliers presentes nas estações 

Estação Categoria 
Outlier  
mínimo 

Ano 
(mínimo) 

Outlier  
máximo 

Ano 
(máximo) 

2950019 Precipitação 38,00 1978 
126,8 
128,4 
129,4 

2002 
1980 
2003 

2951022 Precipitação Não apresenta - 149,6   
168,7 

1980 
1982 

2951027 Precipitação Não apresenta - 217,30 1993 

2950033 Precipitação Não apresenta - 
130,9 
159,3 

1982 
2003 

87170000 Nível 825,00 2004 Não apresenta - 

      

Fonte: Dados da Pesquisa – Elaborado pela autora 

 
14 Segundo INPE,  o fenômeno El Niño Oscilação Sul (ENOS) refere-se às situações nas quais o oceano Pacífico 
Equatorial está mais quente (El Niño) ou mais frio (La Niña) do que a média normal histórica. A mudança na 
temperatura do oceano Pacífico Equatorial acarreta efeitos globais na temperatura e precipitação. Anos de El Niño 
apresentam anomalias no aumento da precipitação e temperaturas, enquanto nos anos de La Niña, observa-se a 
diminuição de ambos. Disponível em: http://enos.cptec.inpe.br/  Consulta em 23 de setembro de 2024. 
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Considerando o objetivo do presente estudo, de utilizar variáveis de chuva e nível para 

predição da variável nível do rio, a ideia central que inspirou este trabalho, que é avaliar a 

aplicação do modelo LSTM para predição de nível como ferramenta auxiliar na antecipação dos 

níveis críticos responsáveis por eventos de inundação, destaca-se que os valores mínimos 

extremos não colaboram com esse objetivo, uma vez que eventos de inundação decorrem 

justamente de valores máximos de níveis do rio, sendo aqueles extremos máximos, por vezes, 

responsáveis por desastres de inundação. Por fim, tendo em vista que se tratam de poucos casos 

de outliers com valores mínimos, optou-se por mantê-los nos respectivos conjuntos de dados, 

assim como outliers com valores máximos, mantidos sobretudo por sua importância quando 

avalia-se o potencial de impactarem em níveis mais elevados do rio que possam resultar em 

inundação.  

 

4.4 Desenvolvimento do modelo de predição  

 

Nesta seção será abordada a etapa de desenvolvimento do modelo de predição, na qual 

buscou-se estabelecer os melhores valores para os hiperparâmetros ajustando-se, assim, o 

melhor modelo. Os resultados foram avaliados a partir de medidas indicadas para problemas de 

regressão e também indicadas para análise de variáveis hidrológicas e serão apresentados na 

última etapa do processo, que consiste na avaliação do modelo (a ser abordado na próxima 

sseção). Cabe relembrar que o modelo LSTM consiste em uma rede neural recorrente, sendo 

bastante utilizado no processamento de séries temporais. A abordagem teórica acerca da rede 

neural foi tratada no Capítulo 2.  

Para o desenvolvimento do modelo utilizado nesta pesquisa, optou-se por adotar o 

ambiente virtual google colaboratory15, disponibilizado através do navegador Chrome da 

empresa Google. A escolha por esse ambiente embasou-se na facilidade do acesso à máquina 

virtual com disponibilização do processamento baseado na GPU16 e a linguagem de programação 

 
15 Google Colaboratory disponível em: https://colab.google/ 
 
16 O processamento foi realizado utilizando a opção T4 GPU, disponibilizada em máquina virtual da Google. 
Disponível em: https://cloud.google.com/compute/docs/gpus?hl=pt-br#:~:text=GPUs%20NVIDIA%20T4,-
No%20entanto%2C%20as&text=*-
,A%20mem%C3%B3ria%20da%20GPU%20%C3%A9%20a%20mem%C3%B3ria%20dispon%C3%ADvel%20em%20um
,com%20uso%20intensivo%20de%20gr%C3%A1ficos. 
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utilizada foi Python17. Ressalta-se que antes de partir para o desenvolvimento do modelo, é 

necessário realizar o pré-processamento dos dados, etapa fundamental para estabelecer-se os 

conjuntos de treino e teste, a normalização dos dados e, por fim, a adequação à estrutura 

esperada pela rede LSTM. A seguir serão detalhadas cada uma dessas atividades, destacando-se 

que foram considerados como dado de entrada tanto os dados de chuva quanto de nível para o 

treinamento da rede. 

Primeiramente, organizou-se os conjuntos de dados em um arquivo único do tipo .CSV 

(valores separados por vírgula), composto por cinco colunas, das quais quatro referiam-se aos 

dados de precipitação (expressos em milímetros) e uma aos dados de nível (expressos em 

centímetros). O arquivo, composto por 12.784 linhas, contempla um total de 63.920 valores. Esse 

arquivo foi salvo em uma pasta de trabalho criada diretamente no google drive, possibilitando 

assim, o acesso através do ambiente Colaboratory.  

O referido arquivo foi carregado em uma variável denominada dataset, a qual foi 

submetida à divisão em conjunto18 de treinamento (denominado train) contendo 70% dos dados 

do conjunto original e de teste (denominado test) contendo os 30% restantes. Salienta-se que a 

opção por formar conjuntos de dados de treino e teste de forma sequencial e não utilizando 

alguma técnica randômica que estabelecesse os melhores conjuntos com base em seus valores, 

decorreu da necessidade de manter preservada a sequência dos dados considerando tratar-se 

de uma série temporal. 

Posteriormente, foi realizada a normalização19 de cada um dos conjuntos que consiste em 

transformar os valores para que fiquem em um intervalo pré-definido, definindo-se o intervalo 

entre zero e um já que não existem valores negativos. Esse processo é fundamental considerando 

que os dados de chuva e de nível possuem unidades de medidas diferentes. Normalizando-os, 

passam os valores a estar na mesma escala para o processamento da rede neural preservando 

os outliers. A supressão da etapa de normalização impactaria na determinação dos pesos 

 
 
17 Documentação disponível em: https://www.python.org/downloads/ 
18 Para determinação dos conjuntos, definiu-se que o conjunto de treinamento (train) iniciaria na linha 0 e finalizaria 
na linha que representasse os 70% do conjunto total (dataset) e o conjunto de teste (test) iniciaria a partir da 
primeira linha posterior à linha final do conjunto de treino, estendendo-se até o final do dataset.  
 
19 Para normalização dos conjuntos de treino e de teste foi utilizada a função MinMaxScaler da biblioteca Scikit learn. 
A documentação pode ser acessada em: https://scikit-
learn.org/1.5/modules/generated/sklearn.preprocessing.MinMaxScaler.html 
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efetuado pelo modelo durante o processo de treinamento, uma vez que variáveis que possuam 

valores maiores por sua natureza (caso dos dados de nível) poderiam indicar para o modelo que 

possuem maior relevância e assim, receberiam maior atribuição de peso. A normalização coloca 

todos os valores na mesma ordem de grandeza e a função utilizada nessa etapa pode ser expressa 

pela Equação 9 a seguir.  

 

 

𝑥
(𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑑𝑜)= 

𝑋− 𝑋𝑚𝑖𝑛
𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛

 
                       

 

Equação 9 

Estabelecida a normalização dos conjuntos de treino e de teste, foi necessário adequar a 

matriz de entrada ao formato exigido pela rede neural LSTM. Até o momento esses dados 

estavam organizados em uma matriz de duas dimensões (2D), composta por amostras (sample) 

nas linhas, e por colunas (features) que representam os atributos de chuva e nível. O conjunto 

de treinamento consistia em uma matriz composta por um total de 8.946 linhas e cinco colunas, 

enquanto o conjunto de teste continha 3.828 linhas e cinco colunas. A transformação da 

estrutura 2D em uma matriz com três dimensões (3D) consiste basicamente em definir, além do 

número de amostras e colunas, o número de passos por amostra (time step), sendo que esse 

valor irá definir o número de amostras (samples) que serão consideradas para realizar a previsão 

do nível. Desse modo, a estrutura 3D dos conjuntos de treinamento e de teste variou conforme 

os passos definidos para avaliação da rede neural. Salienta-se que a definição desses passos foi 

embasada no tempo de concentração da bacia hidrográfica em estudo, cujo tempo máximo é de 

7 dias. Portanto, utilizou-se os passos de 2, 5 e 7 dias para avaliação do LSTM na obtenção de 

dados de nível. Para a reestruturação dos conjuntos em uma matriz 3D aplicou-se uma função20 

que recebe como parâmetros o conjunto de dados (tanto de treino, quanto de teste) e o número 

de passos (time step), sendo utilizado o mesmo número de passos para cada conjunto de dados. 

Com os dados de entrada organizados em uma matriz 3D, o passo seguinte foi a 

estruturação do modelo LSTM objetivando a avaliação de seus hiperparâmetros com o objetivo 

de encontrar o melhor modelo a ser posteriormente utilizado para a predição dos dados de nível. 

 
20 Para essa função foi utilizada a biblioteca Numpy, especificamente as funções array, ndarray, append. A estrutura 
da função foi adaptada ao contexto em estudo, a partir  do script utilizado pela Professora Roseli Francelin Romero  
na disciplina de Redes Neurais e Deep Learning - Fundamentos que faz parte da estrutura curricular do MBA em 
Inteligência Artificial e Big Data vinculado ao Instituto de Ciências Matemáticas e de Computação da Universidade 
de São Paulo (USP). As bibliotecas citadas podem ser encontradas em: https://numpy.org/doc/stable/index.html 
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Os hiperparâmetros considerados foram: 1) Units: número de neurônios da camada LSTM; 2) 

Batch size: número de amostras processadas antes que os pesos fossem atualizados; e 3) Epochs: 

número de passagens completas por todo o conjunto de dados de treinamento. Além disso, foi 

considerada na camada densa do modelo a função de ativação sigmoide aplicada para garantir 

não-linearidade, característica dos dados em estudo. Para agilidade na determinação do melhor 

modelo foi desenvolvida uma classe21 composta por funções que implementam o modelo em si 

e testam os hiperparâmetros mencionados variando seus valores de acordo com os intervalos 

apresentados na Tabela 4, sendo o melhor modelo aquele cuja combinação de valores resultou 

em um menor valor para a função de perda para a validação (val_loss22).  

 

Tabela 4: Hiperparâmetros e respectivos valores testados para identificar o melhor modelo a ser utilizado na 

predição dos valores de nível 

Hiperparâmetro Valores testados 
 

Melhores valores (utilizados no 
modelo de predição) 

Units  4 a 78  20 

Batch Size 8, 16, 32 8 

Epochs 50 - 100 50 

Fonte: Dados da Pesquisa – Elaborado pela autora 

 

Como camada de entrada (input_shape) foram utilizadas as matrizes 3D de treinamento 

(denominada X_train) e de teste (X_test) sendo adotado o otimizador Andam23. Como medida 

de avaliação da função de perda foi definido o Erro Quadrático Médio (Mean Squared Error - 

MSE), indicado para avaliar a acurácia de modelos que buscam resolver problemas de 

regressão24, ressaltando que sua avaliação se baseia na diferença entre os valores reais 

(observados) e os preditos (simulados), conforme apresenta a Equação 10. 

 
21 Para o desenvolvimento da classe e suas respectivas funções foram consideradas as funções layer e turner ambas 
do Keras. Documentação disponível em: https://keras.io/guides/keras_tuner/getting_started/   e   
https://keras.io/api/keras_tuner/hypermodels/ 
 
22 Val_loss: é a função de perda da validação tem o objetivo de monitorar como o modelo está generalizando a 
predição para dados que ele não viu durante o treinamento. Ela é calculada do mesmo modo que a Loss. Esta por 
sua vez é a métrica que avalia o quão bem o modelo está se ajustando aos dados de treinamento. Nesse estudo a 
medida adotada é a mean squared error (mse). A documentação pode ser acessada em: 
https://keras.io/api/losses/regression_losses/#meansquarederror-class 

23 Adam (Adaptive Moment Estimation) é um otimizador baseado em gradiente que busca ajustar os parâmetros 
peso e bias durante o processo de treinamento, de modo a minimizar a função de perda (loss). A documentação 
pode ser encontrada em https://keras.io/api/optimizers/adam/ 
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𝑀𝑆𝐸 =  
1

𝑛
∑(𝑦𝑜𝑏𝑠. − 𝑦𝑝𝑟𝑒𝑑𝑖𝑡𝑜)2  

𝑛−1

𝐼=0

                     

 

Equação 10 

Findado o treinamento da rede e definido o melhor modelo, o próximo passo foi sua 

aplicação à predição dos conjuntos de treino e de teste a fim de serem obtidos os valores de nível 

relacionados ao treino (denominado como train_pred) e ao teste (test_pred). Por fim, para a 

análise dos resultados procedeu-se a inversão da normalização trazendo os resultados preditos 

para a escala real dos dados de nível (em centímetros), facilitando a comparação com os dados 

observados para o período em análise. Outra medida utilizada na avaliação dos resultados foi a 

Raiz do Erro Quadrático Médio (Root Mean Square Error - RMSE), que consiste na raiz quadrada 

do MSE, conforme Equação 12. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑜𝑏𝑠. − 𝑦𝑝𝑟𝑒𝑑𝑖𝑡𝑜)2  

𝑛−1

𝐼=0

                      

 

Equação 11 

Ressalta-se, ainda, que além das medidas supracitadas, foi também utilizado o Coeficiente 

de Nash-Sutcliffe (Nash-Sutcliffe Efficiency - NSE), medida comumente adotada na avaliação 

previsões de variáveis hidrológicas. Esse coeficiente também avalia a diferença entre os valores 

observados e os preditos, conforme exemplifica a Equação 12.  

 

𝑁𝑆𝐸 = 1 −  
∑ (𝑦𝑜𝑏𝑠. − 𝑦𝑝𝑟𝑒𝑑𝑖𝑡𝑜)2  𝑛

𝑖=1

∑ (𝑦𝑜𝑏𝑠. − 𝑦𝑚é𝑑𝑖𝑎 𝑜𝑏𝑠.)2  𝑛
𝑖=1

                     

 

Equação 12 

Convém destacar que os valores e as respectivas interpretações para o coeficiente de 

Nash-Sutcliffe são apresentados na Tabela 5 (LUFI e RISPININGTATI, 2020). 

 

 

 

 
24 A aplicação da rede neural LSTM também foi baseada na biblioteca Keras.  Documentação disponível e: 
https://keras.io/api/layers/recurrent_layers/lstm/    
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Tabela 5. Critério de valores para Coeficiente de Nash-Sutcliffe (NSE) 

Valor NSE Interpretação 

NSE > 0,75 Bom 

0,36 < NSE < 0,75 Qualificado 

NSE < 0,36 Não qualificado 

Fonte. LUFI e RISPININGTATI, 2020 – Elaborado pela autora 

 

A próxima seção abordará a etapa final, que consiste na avaliação do modelo com base 

nas medidas MSE, RMSE e NSE. 

 

4.5 Avaliação do modelo  

 

A rede neural foi treinada com base no conjunto de treinamento que corresponde a 70% 

do total de dados, referindo-se ao período 01/01/1970 a 01/07/1994, enquanto os dados de 

teste correspondem ao período de 02/07/1994 a 31/12/2004. Para avaliação do desempenho do 

modelo na obtenção de dados de nível preditos, foram calculadas as seguintes medidas: 1) Erro 

médio quadrático (MSE); 2) Raiz do erro médio quadrático (RMSE) e; 3) Coeficiente de Nash-

Sutcliffe (NSE), descritas e detalhadas na seção anterior. Além dessas medidas, foram analisados 

os erros percentuais ao longo do período, considerando os resultados em cada um dos passos 

(time step) e assim possibilitando a avaliação de qual conjunto apresentou melhor desempenho. 

Por fim, foram analisados os valores de nível predito e observado referente ao passo cujos 

resultados foram melhores. 

A Tabela 6 apresenta os valores referentes a cada uma das medidas de erro relacionadas 

aos distintos passos (time step) avaliados. É possível observar que dos três passos utilizados nas 

simulações, o que apresentou pior resultado foi o time step = 2, com maior erro entre o nível 

predito e o observado, indicado pelo maior valor do MSE. Quando os conjuntos de treino e teste 

são analisados separadamente, constata-se leve piora da medida relacionada aos dados de teste. 

Já os resultados referentes aos passos 5 e 7 não apresentaram tanta diferença entre si em relação 

ao MSE, contudo, ainda assim os resultados referentes ao time step = 7 apresentaram os menores 

valores para essa medida.  

Outra medida utilizada foi o RMSE, que consiste na raiz do MSE, e da mesma forma que a 

avaliação anterior, o pior resultado encontrado referiu-se ao passo 2 e o melhor ao passo 7. A 

Tabela 6 apresenta o valor dessa medida para os dados normalizados, mas, avaliando-se o RMSE 
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para o dado de nível na escala original (em centímetros), constata-se que em relação ao passo 2 

a referida medida calculada para o conjunto de dados de forma geral foi de 167cm, identificando-

se que 28,7% dos dias os níveis simulados apresentaram esse valor de erro ou valor superior. 

Analisando-se o passo 5 identifica-se considerável redução desse erro, cujo valor calculado para 

o conjunto foi 70,1 cm e 14,2% dos dias apresentaram valores de erro iguais ou superiores à 

medida. Por fim, o passo 7 se destaca por apresentar erro menor ainda, RMSE calculado em 67,7 

cm e 12,6% dos dias apresentando valor de erro igual ou superior.  

 Essas características referentes ao passo 2 repercutiram diretamente no baixo 

coeficiente de Nash-Sutcliffe, classificando-o como não suficiente, conforme Tabela 5, uma vez 

que quanto maior for a diferença entre os dados observados e os preditos, pior é o resultado 

desse coeficiente (quanto mais próximo o resultado for de 1, melhor é o NSE, indicando maior 

proximidade entre o dado observado e o simulado). Entretanto, quando se avaliam os resultados 

decorrentes dos passos 5 e 7, percebe-se expressiva melhora do coeficiente, sobretudo o time 

step = 7, cujos valores de Nash foram os mais elevados tanto na análise geral quanto na análise 

por conjunto de treino e de teste.  

 

A Tabela 6. Resumo das medidas de erro conforme os diferentes passos (time steps) adotados  
 

 Geral Treino Teste  

Medida 
de erro 

Predições 
com Time 

Step  
7 dias 

Predições 
com Time 

Step  
5 dias 

Predições 
com Time 

Step  
2 dias 

Predições 
com Time 

Step  
7 dias 

Predições 
com Time 

Step  
5 dias 

Predições 
com Time 

Step  
2 dias 

Predições 
com Time 

Step  
7 dias 

Predições 
com Time 

Step  
5 dias 

Predições 
com Time 

Step  
2 dias 

MSE  0,0035  0,0037  0,017  0,0033   0,0035  0,017  0,0039 0,0042   0,018 

RMSE  0,059  0,061 0,13   0,057  0,059  0,13   0,062  0,065  0,13  

NSE 0,87  0,86  0,26  0,86   0,85  0,26 0,91 0,90  0,25  

 Destacados em azul os melhores resultados das medidas analisadas 

Fonte: Dados da Pesquisa – Elaborado pela autora 

 

Corroborando com a análise, a Figura 31 apresenta o percentual de erros encontrados ao 

longo do período para cada um dos passos adotados e novamente o passo 2 apresentou os piores 

resultados. Analisando-se o módulo da média do erro para esse passo encontrou-se o valor de 

68%, indicando pouca coerência entre os dados observados e preditos. No que tange ao passo 5 

o módulo da média do erro foi de 14%, enquanto que para o passo 7 foi de 10%. Analisando-se 

a Figura 31, observa-se que os resultados obtidos com o passo 2 apresentaram maior 
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concentração de níveis preditos superiores aos níveis observados, o que é caracterizado pelos 

valores percentuais positivos, apresentando elevados percentuais de erros. Já os passos 5 e 7 

apresentaram resultados mais concentrados entre -20% e + 20%. 

 

Figura 31. Percentual de erro referente à diferença do nível observado e nível predito 

 

Fonte: Dados da Pesquisa – Elaborado pela autora 

 

Considerando os apontamentos anteriores, definiu-se que os melhores resultados foram 

obtidos com base nos conjuntos de treinamento e teste embasados no passo de 7 dias. Diante 

disso, as análises a seguir serão restritas a esse passo. Para auxiliar na análise foram considerados 

os níveis de alerta e de inundação, ambos calculados pelo Serviço Geológico do Brasil (SGB) para 

a estação fluviométrica em estudo, considerando a régua de medição (BRASIL, 2022). O nível de 

alerta, calculado em 700 cm, indica a cota (nível) a partir da qual existe uma grande possibilidade 

de inundação, enquanto a cota de inundação calculada foi de 1.050 cm. 

A Figura 32 ilustra os níveis observados e preditos ao longo dos anos, além de indicar as 

cotas de alerta e de inundação. Avaliando-se os níveis observados ao longo da série temporal, 

em relação aos níveis preditos pela rede neural, verifica-se que de modo geral os resultados são 

promissores, o que é corroborado pelo coeficiente de Nash-Sutcliffe, cujo valor calculado foi de 

0,87. Contudo, cabe destacar que valores extremos de nível (aqueles acima do nível de alerta e 

de inundação) apresentam-se de modo subestimado em relação aos observados, algo que deve 

ser avaliado em estudos futuros. 
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Figura 32. Níveis observados e preditos ao longo da série temporal 

 

Fonte: Dados da Pesquisa – Elaborado pela autora 

 

Com vistas ao entendimento do desempenho do modelo em cada um dos conjuntos, a 

Figura 33 representa os gráficos de dispersão dos valores de nível preditos em relação aos 

observados. Percebe-se que o conjunto de teste apresentou melhor desempenho que o de 

treinamento, descartando-se assim a possibilidade de ter ocorrido overfitting ou underfitting.  

 

Figura 33. Dispersão dos dados de nível observado e predito para os conjuntos de treinamento e de teste 

 

Fonte: Dados da Pesquisa – Elaborado pela autora 

 

Tendo em vista o objetivo deste estudo, realizou-se a análise dos anos em que houve a 

ocorrência do fenômeno ENOS relacionado ao El Niño, uma vez os outliers máximos ocorreram 

todos nesses anos. De modo geral verifica-se um bom desempenho do modelo para os anos em 
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questão, contudo, identifica-se que segue subestimando os níveis acima da cota de inundação 

(Figura 34).  

 

Figura 34. Recorte temporal referente aos anos de El Niño. 

 

Fonte: Dados da Pesquisa – Elaborado pela autora 

 

Quando se analisa apenas os dias em que houve registro de nível de alerta (acima de 700 

cm), verifica-se que o modelo teve baixo desempenho, apresentando valores simulados 

inferiores ao nível de alerta, embora tenha acertado o nível de alerta em 87% das vezes em que 

houve nível de alerta para os dados observados. Esse bom acoplamento pode ser verificado no 

recorte temporal a seguir, referente ao ano de 1984 (Figura 35) e 2000 (Figura 36) 
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Figura 35. Nível observado versus predito para o ano completo de 1984 

 

Fonte: Dados da Pesquisa – Elaborado pela autora 

 

Figura 36. Nível observado versus predito para o ano completo de 2000 
 

 

Fonte: Dados da Pesquisa – Elaborado pela autora 

 

O mesmo comportamento é observado quando analisa-se os dias em que foram 

registrados níveis de inundação, nesse caso apresentando um desempenho ainda pior. 

Considerando que, do total de dias da série temporal, apenas 551 apresentaram níveis de alerta 

(o que representa 4,3% do total de dias) e, nos casos de inundação esse valor diminui ainda mais 

uma vez que apenas em 112 dias da série temporal houve registro de níveis de inundação 

(representando 0,9%), atribui-se a redução do desempenho do modelo à escassez de amostras 
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de dias com níveis máximos. Acredita-se que o enriquecimento da série temporal, estendendo-a 

para um período ainda maior, mas sobretudo que englobe uma quantidade maior de registros 

de níveis de inundação, repercutirá em uma melhora nos resultados referentes aos níveis de 

inundação e de alerta preditos. Uma possibilidade é a utilização de dados indiretos, obtidos a 

partir de sensoriamento remoto, para composição de uma série temporal mais rica em termos 

de amostras de níveis de alerta e de inundação. As simulações apresentadas na Figura 37, cotas 

de alerta observadas e respectivas predições, apresentam melhores resultados quando 

comparado às cotas de inundação preditas (Figura 38), corroborando com a suposição de que 

maior quantidade de amostras possibilitarão o refinamento do treinamento da rede neural, 

repercutindo em melhores resultados preditos. 

 

Figura 37. Resultados referentes ao nível de alerta (níveis entre 700 cm até 1.050 cm) 

 

Fonte: Dados da Pesquisa – Elaborado pela autora 
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Figura 38 Resultados referentes ao nível de inundação (nível acima de 1.050 cm) 

 

Fonte: Dados da Pesquisa – Elaborado pela autora 

 

4.6 Conclusões  

 

Com base no exposto, avalia-se o bom desempenho da rede neural LSTM para a predição 

de dados de nível, acertando a predição de ocorrência de níveis associados a alerta em 87 % das 

vezes que isso ocorreu ao longo do período testado. Os resultados obtidos apresentam bom 

acoplamento da série simulada em relação à observada, obtendo-se melhores resultados, 

entretanto, para valores não extremos. Desse modo, tendo em vista o objetivo deste estudo em 

avaliar o modelo para que possa, futuramente ser aplicado à previsão de níveis de inundação 

para o rio Caí, entende-se a necessidade de serem realizados novos testes utilizando uma série 

temporal mais extensa espacial e temporalmente, contendo, assim, uma gama maior de níveis 

de alerta e de inundação. Entretanto, diante da dificuldade em obter mais dados de precipitação 

e nível a partir de fontes primárias, conforme relatado na etapa de consolidação da base de 

dados, uma possibilidade que se coloca é a de utilizar dados de precipitação e nível obtidos a 

partir de medições indiretas, como sensoriamento remoto. Além disso, é possível também 

consolidar uma série temporal utilizando dados de reanálise, que são aqueles gerados a partir da 

combinação de modelos de previsão em um sistema de assimilação de dados, técnica utilizada 

para suprir ausência de dados primários.  

Contudo, apesar de ter subestimado a predição de níveis relacionados a eventos mais 

extremos, de forma geral o modelo apresentou boas medidas de avaliação, sobretudo o 
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coeficiente de Nash-Sutcliffe que apresentou valores satisfatórios indicando, assim, a adequação 

do uso da LSTM para prosseguimento de sua aplicação à predição de nível. Destaca-se, 

sobretudo, a facilidade e agilidade no processo de simulação de níveis quando se utiliza a rede 

neural em estudo, diferentemente do que ocorre com modelos hidrológicos, os quais necessitam 

uma série de condições de contorno que representem os fenômenos físicos que levam à 

inundação. A LSTM apresenta-se de forma mais facilitada na obtenção dos dados de níveis 

preditos, demonstrando grande potencial a futuros trabalhos na área de previsão de níveis de 

forma ágil. 
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