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Resumo

O tratamento de hamiltonianos de spin é feito, de maneira usual, por meio da implementação de bósons com
simetria SU(2) para mediar as flutuações. Para casos de spins maiores que 1/2, mas que ainda não constem no
limite de S grande, tal método falha em analisar os possíveis ordenamentos do estado fundamental que estejam
além da ordem dipolar. O trabalho repassa os fundamentos do tratamento usual com SU(2) e propõe uma al-
ternativa para sua generalização para um caso de maior simetria, a dizer, SU(N). Para ilustrar sua efetividade,
essa generalização foi aplicada ao modelo bilinear biquadrático, hamiltoniano que apresenta simetria SU(3) num
ponto específico, foco deste trabalho, do qual foi analisado o espectro de mágnons gerados e o calor específico
dele resultante, recuperando os resultados já conhecidos desse sistema para as situações em que se reduz ao caso
usual. A generalização considera, naturalmente, mais espécies de mágnons no sistema, mas é passível de ser
utilizada no tratamento mesmo de hamiltonianos que sejam simétricos apenas por SU(2).
Palavras chave: Magnetismo, Ondas de spin, SU(2), SU(3), SU(N).
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1 Introdução

O tratamento mais comumente utilizado para lidar com sistemas quânticos que possuem ordenamento mag-
nético em seu estado fundamental e baixas flutuações é a chamada teoria de onda de spin (SWT), denominada
uma teoria semi-clássica por sua validade, especialmente para os casos de spin S muito grandes. Flutuações do
campo clássico, usado nesse limite de S para representar os spins, são completamente descritas pelo grupo de
rotações locais SO(3), que é isomorfo a SU(2)/Z2, como amplamente estudado em (IACHELLO, 2006), (SHA-
PIRO, 2017) e (FERREIRA, 2000), e são, portanto, as únicas flutuações que constam no tratamento por SWT,
ordenamentos dipolares.

A teoria de ondas de spin usual apresenta dificuldades na descrição de outros possíveis ordenamentos do
estado fundamental , como sabemos ser possível para casos de ordem multipolar mais elevada, relevantes em
casos como (WIERSCHEM et al., 2012), (LUO; DATTA; YAO, 2016) e (LÄUCHLI; SCHMID; TREBST,
2006). Tais estados não possuem um análogo clássico à temperatura zero, o que evidencia a necessidade de uma
outra descrição para o seu tratamento, de modo que seja possível expandir ou generalizar a teoria de ondas de spin
usual e manter os resultados já apresentados. Mesmo para os casos em que o ordenamento dipolar é dominante,
flutuações de um spin S em torno do campo médio são descritas, localmente, pelo grupo de transformações
unitárias SU(2S + 1) ao invés do grupo SU(2), como explorado em (MUNIZ; KATO; BATISTA, 2014) e, em
certa medida, por (CRISPIM, 2024).

Um dos modos de estudar estas flutuações, independentemente do grupo de simetria do sistema, é a descrição
de seu hamiltoniano em termos de quasipartículas capazes de mediar tais efeitos, diagonalizando-o tal como em
(COLPA, 1978). No estudo de sistemas de spin e, portanto, magnetos, estas quasipartículas recebem o nome
de mágnons e são o cerne do estudo dos comportamentos do sistema. Ao analisar suas populações, ou mesmo
interações para casos mais complexos, estudam-se as propriedades do hamiltoniano e do material que ele venha
a descrever.

Nesse trabalho pretende-se fazer uma retomada do modelo com ordenamento magnético no estado funda-
mental mais simples, o hamiltoniano de troca de Heisenberg, amplamente estudado em referências de mecânica
estatística, tal como (SALINAS, 2008) e (AUERBACH, 2012), e seguir para a sua expansão mais simples, o
modelo bilinear-biquadrático, e comparar os resultados obtidos da teoria usual, SWT, com a sua expansão a ser
aqui apresentada, e demonstrar suas equivalências e diferenças.
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2 Métodos e resultados

De modo a recordar os resultados tradicionais da física estatística, como encontrados em (SALINAS, 2008),
e preparar a base necessária para a continuidade do estudo, trataremos aqui os casos resolvidos com a imple-
mentação do SU(2) por meio de mágnons, quasipartículas criadas sob o estado ordenado dipolar. Nas seções
posteriores, o caso SU(N) será trabalhado, seguindo de perto as formulações prescritas em (MUNIZ; KATO;
BATISTA, 2014).

Por fim, ilustraremos a aplicação do método num sistema conhecido, o modelo bilinear biquadrático, que
apresenta explícita simetria SU(3) para pontos específicos.

2.1 O caso SU(2)

2.1.1 Ferromagneto de Heisenberg

Um dos modelos mais simples capazes de descrever magnetos naturais é o hamiltoniano de Heisenberg, que,
ao considerar interações intrinsecamente relacionadas à simetrização das funções de onda que descrevem os
elétrons do material, discussão feita em (SALINAS, 2008), descreve o sistema por um modelo efetivo ao acoplar
os dipolos por uma constante de troca J e ao representá-los por Si. Considerando o caso sem campo magnético
externo, temos:

H = −J
∑
⟨i,j⟩

Si · Sj, (2.1)

onde a notação ⟨i, j⟩ indica uma soma entre primeiros vizinhos de uma rede qualquer,mas no decurso do texto
trataremos apenas de redes quadradas ou suas generalizações hipercúbicas.

Sejam as definições dos operadores S+
i e S−

i , bem como a do produto Si · Sj:

S+ = Sx + iSy, S− = Sx − iSy, [Sx, Sy] = iSz

Sx = 1
2

(
S+ + S−) , Sy = −i

2

(
S+ − S−) , [S+, S−] = 2Sz,

(2.2)

Si · Sj =
(
Sx
i S

x
j + Sy

i S
y
j + Sz

i S
z
j

)
= Sz

i S
z
j +

1
2

(
S+
i S

−
j + S−

i S
+
j

)
. (2.3)

A transformação de Holstein-Primakoff, originalmente aplicada em (HOLSTEIN; PRIMAKOFF, 1940), se
dá para os operadores de spin S+

i e S−
i , como feito em (SALINAS, 2008) e (AUERBACH, 2012), ao representá-

los em termos de bósons e selecionar uma certa organização para com a qual estes bósons são flutuações.

S+
i = (2S)

1
2

[
1− b†ibi

2S

] 1
2

bi, S−
i = (2S)

1
2 b†i

[
1− b†ibi

2S

] 1
2

, (2.4)

onde bi’s satisfazem as relações de comutação dos bósons
([
bi, b

†
j

]
= δi,j ;

[
b
(†)
i , b

(†)
j

]
= 0
)

, tais que os operado-
res b e b† criam e aniquilam bósons, respectivamente. Agora podemos calcular os produtos de S+

i e S−
i e extrair

um resultado para Sz
i em termos desses operadores:
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S+
i S

−
i = (2S)

[(
1− b†ibi

2S

)
+ b†ibi

(
1− b†ibi

2S

)]
, S−

i S
+
i = (2S)

[
b†ibi −

1

2
(b†ib

†
ibibi)

]
,

Sz
i = 1

2

[
S+
i , S

−
i

]
= S − b†ibi.

(2.5)

A expansão de primeira ordem dos operadores S+
i e S−

i , ignorando termos que possuam mais de dois opera-
dores bosônicos, fica:

S+
i = (2S)

1
2 bi, S−

i = (2S)
1
2 b†i . (2.6)

Em posse de todas as definições necessárias para tornar o hamiltoniano original segundo quantizado, obser-
vamos que a soma em ⟨i, j⟩ indica uma soma sobre os primeiros vizinhos da rede de spins. Podemos substituir
os índices i e j por r e r + δ, respectivamente, onde r representa uma posição na rede e δ é um deslocamento
definido nessa rede de modo a alcançar um primeiro vizinho. Estamos considerando um modelo de rede cúbica
com condições de contorno periódicas, de modo que, a fim de evitar um fator de dupla contagem, os δ’s serão
tomados como estritamente positivos. Do hamiltoniano inicial, lê-se que:

H = −J
∑
⟨i,j⟩

Si · Sj = −J
∑
⟨i,j⟩

Sz
i S

z
j +

1
2

(
S+
i S

−
j + S−

i S
+
j

)
= −J

∑
r,δ

Sz
rS

z
r+δ +

1
2

(
S+
r S

−
r+δ + S−

r S
+
r+δ

)
.

(2.7)

O hamiltoniano em segunda quantização, descartando termos de ordem maior que quadrática nos operadores
bosônicos (mais que dois operadores bi), se torna:

H = −J
∑
r,δ

S2 − S
(
b†rbr + b†r+δbr+δ

)
+ S

(
b†r+δbr + b†rbr+δ

)
, (2.8)

onde foi usado o fato de que brb
†
r+δ comuta com b†r+δbr, por se tratarem de sítios diferentes.

Expandimos em ondas planas os operadores b e b† ao aplicar uma transformada de Fourier:

br =
1√
N

∑
k

e−ik·r bk, bk =
1√
N

∑
r

eik·r br. (2.9)

Após a transformação, os quatro termos: b†rbr ; b†r+δbr+δ; b†r+δbr; b
†
rbr+δ, resultam em:

b†rbr =
1

N

∑
k,k′

b†kbk′ ei(k−k′)·r, b†r+δbr =
1

N

∑
k,k′

b†kbk′ ei(k−k′)·reik·δ,

b†r+δbr+δ =
1

N

∑
k,k′

b†kbk′ ei(k−k′)·r, b†rbr+δ =
1

N

∑
k,k′

b†kbk′ ei(k−k′)·re−ik′·δ.
(2.10)

Como k− k′ = 0, pois
∑

r e
i(k−k′)·r = N δk,k′ , o hamiltoniano então se torna:

H = −JZ
2
NS2 − J

{
−ZS

∑
k

b†kbk + S
∑
k,δ

b†kbk(e
−ik·δ + eik·δ)

}
. (2.11)

Podemos agrupar a soma das exponenciais em um termo gk =
∑d

δ=1 2 cos(kδ) , onde "d"é a dimensionalidade
do sistema e δ já foi decomposto nas direções da rede. Foi também introduzido aqui o número de coordenação
Z , que indica o número de primeiros vizinhos de um sítio qualquer e, para redes hipercúbicas, Z = 2d, de modo
que o fator meio surge para evitar problemas de dupla contagem. O hamiltoniano final é:
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H = −JZ
2
NS2 +

∑
k

b†kbk (JZS − JSgk) . (2.12)

Aqui, o primeiro termo está relacionado a energia fundamental do sistema clássico, o segundo termo repre-
senta a contribuição dos mágnons, indicando as possíveis flutuações de energia em forma da ondas de spin, devido
ao mecanismo de troca.

2.1.2 Antiferromagneto de Heisenberg

Nesse caso, espera-se um estado fundamental no qual os spins se encontram, ao menos no caso clássico,
anti-alinhados, o que implica uma constante de troca total J > 0. Para construir esse sistema do modo mais
simples, assume-se que a rede pode ser interpretada como bipartite, ou seja, pode ser dividida em duas redes
“idênticas”, mas virtualmente separadas, de modo que esta segunda rede sofra uma rotação no eixo x, tal que:
S̃i = Sx

i x̂− Sy
i ŷ − Sz

i ẑ. Dessa forma, podemos escrever o hamiltoniano antiferromagnético como:

H = |J |
∑
⟨i,j⟩

Si · S̃j , (2.13)

onde:

Si · S̃j = −Sz
i S

z
j +

1
2

(
S+
i S

+
j + S−

i S
−
j

)
. (2.14)

Usando as mesmas transformações de Holstein-Primakoff, como definidas em (2.5), e mantendo termos até
ordem quadrática nos operadores bosônicos, temos:

H = |J |
∑
r,δ

−S2 + S
(
b†rbr + b†r+δbr+δ

)
+ S

(
b†rb

†
r+δ + brbr+δ

)
. (2.15)

Aplicando a transformada de Fourier e colecionando os termos novos (b†b† e bb), obtemos:

b†rb
†
r+δ =

1

N

∑
k,k′

b†kb
†
k′ e

i(k+k′)·reik
′·δ, brbr+δ =

1

N

∑
k,k′

bkbk′ e−i(k+k′)·re−ik′·δ. (2.16)

Há algumas observações a serem feitas acerca desses termos antes de os inserirmos de volta. A condição
sobre os k’s agora é que k + k′ = 0, de modo que nossa identidade agora se torna

∑
r e

i(k+k′) = Nδk,−k′ .
Observa-se também que os termos, agora b†kb

†
−k e bkb−k, ambos comutam entre seus fatores, logo são simétricos

em k, permitindo escrever:

1

2

∑
k,δ

(
b†kb

†
−ke

ik·δ + b†−kb
†
ke

−ik·δ
)
=

1

2

∑
k,δ

(
b†kb

†
−k(e

ik·δ + e−ik·δ)
)
. (2.17)

O mesmo vale para o hermitiano conjugado. Recuperamos assim a definição de gk e podemos reescrever o
hamiltoniano em k como:

H = −JZ
2
NS2 +

∑
k

(
JZS

(
b†kbk

)
+ JS

gk
2

(
b†kb

†
−k + bkb−k

))
. (2.18)

Para tratar essa expressão introduzimos a transformação de Bogoliubov, definindo um novo conjunto de ope-
radores bosônicos (a e a†), bem como a sua inversa:
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ak = vkb
†
k − ukb−k, a†−k = v∗−kb−k − u∗−kb

†
k,

bk = v∗kak + uka
†
−k, b†−k = v−ka

†
−k + u∗−kak. (2.19)

Para manter a relação de comutação
[
ak, a

†
k

]
= 1, conclui-se que |vk|2 − |uk|2 = 1, correspondendo à

identidade hiperbólica, de modo que podemos parametrizar v e u por:

vk = eiθv cosh (Θk) , uk = eiθu sinh (Θk) . (2.20)

Os produtos entre v e u que surgem no hamiltoniano recaem em um de três casos:

|vk|2 = v∗kv
∗
k = vkvk =

1

2
cosh (2Θk) +

1

2
,

vkuk = v∗ku
∗
k = v∗kuk = v∗kuk =

1

2
sinh (2Θk) ,

|uk|2 = v∗ku
∗
k = ukuk =

1

2
cosh (2Θk)−

1

2
.

(2.21)

A princípio, todos os resultados deveriam ser multiplicados por uma fase , salvo os módulos quadrados,
correspondentes ao respectivo produto de v e u. Contudo, por se tratar de um parâmetro introduzido para a
maior generalidade das definições de v e u, podemos escolher θv e θu de modo que seja mais conveniente para o
problema; logo, os tomaremos todos iguais a zero. Nesse mesmo sentido, consideramos aqui que Θk é invariante
por inversão do momento k.

Podemos tratar o hamiltoniano na expressão (2.18) de modo geral ao realizar algumas substituições simples.
Chamando o termo constante fora do somatório de A, o termo a multiplicar o operador b†b de Bk e o termo a
multiplicar os termos extras de Ck

2
, obtemos:

H = A+
∑
k

(
Bkb

†
kbk +

Ck

2
(b†kb

†
−k + bkb−k)

)
. (2.22)

Aplicando as transformações definidas em (2.19) e usando as identidades (2.21) temos:

H = A−
∑
k

Bk

2
+

1

2

∑
k

[
(Bk cosh(2Θk) + Ck sinh(2Θk))

(
a†kak + aka

†
k

)
+ (Bk sinh(2Θk) + Ck cosh(2Θk))

(
a†ka

†
−k + aka−k

) ]
,

(2.23)

onde usamos a propriedade de contagem enunciada em (2.17) para associar alguns termos, além do resultado da
comutação de [a, a†] para conseguir o fator Bk isolado do resto.

Como o objetivo é conseguir um hamiltoniano diagonal, queremos eliminar os termos aa e a†a†, o que faremos
ao usar o último parâmetro livre que conseguimos com as transformações de Bogoliubov, o Θk. Ao impor que os
termos extras são nulos, obtém-se a seguinte igualdade:

Bk sinh(2Θk) + Ck cosh(2Θk) = 0 → tanh(2Θk) = −Ck

Bk

. (2.24)

Quadrando esse resultado e utilizando a identidade hiperbólica cosh2(x) − sinh2(x) = 1 consegue-se um
resultado para o cosh(2Θk) em função das quantidades Bk e Ck, tal que:
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cosh2(2Θk)− 1

cosh2(2Θk)
=
C2

k

B2
k

→ cosh(2Θk) = ±
[
1−

(
Ck

Bk

)2 ]− 1
2
. (2.25)

Substituindo esse resultado de volta no hamiltoniano e lembando que, pela expressão da tanh(2Θk) o seno
também foi definido, temos o seguinte para os termos que multiplicam os fatores diagonais:

Bk

[
1−

(
Ck

Bk

)2]−1/2

− C2
k

Bk

[
1−

(
Ck

Bk

)2]−1/2

=
√
B2

k − C2
k. (2.26)

O hamiltoniano final assume a forma:

H = A−
∑
k

Bk

2
+

1

2

∑
k

√
B2

k − C2
k

(
a†kak + aka

†
k

)
. (2.27)

A dependência em k dos espectros para expansões em torno de k pequeno é tratada no procedimento para
calcular o calor específico, feito em seções mais adiante, tanto para o caso ferro como o antiferro. Em primeira
ordem de expansão, as dispersões dos casos SU(2) são, como em (SALINAS, 2008), para o caso ferro e anti-
ferromagnético, ∝ k2 e ∝ k, respectivamente. Na seção de aplicação do método de ondas de spin generalizadas
(GSWT) será mostrado que esse resultado é recuperado.

2.2 O caso SU(N)

O conjunto de matrizes unitárias N × N de determinante igual a um, tendo por produto a multiplicação de
matrizes, é dito o grupo SU(N). A ideia desta seção é enunciar as vantagens de trabalhar com um grupo de simetria
maior, em especial SU(3) no presente trabalho, no tratamento de ondas de spin, como estabelecido em (MUNIZ;
KATO; BATISTA, 2014).

Consideramos um Hamiltoniano definido numa rede, tal que esta possa ser dividida num conjunto de sítios
com um um número finito de de graus de liberdade. Assumimos então que a dimensão do espaço de Hilbert
local é N (N = 2S + 1 ; S correspondendo ao spin total do sítio) e introduzimos os geradores SU(N) agindo
nesse espaço. Com esse propósito, inserimos N bósons de Schwinger que satisfazem, quando na representação
fundamental, localmente a restrição:

N−1∑
m=0

b†r,mbr,m = 1. (2.28)

Essa é uma maneira simples de representar os geradores de SU(N), formas bilineares do tipo

Om,m′
= b†r,mbr,m′ , (2.29)

que satisfazem as relações de comutação de SU(N):

[Om,m′
, On,n′

] = [b†r,mbr,m′ , b†r,nbr,n′ ]

= b†r,m(δm′,n + b†r,nbr,m′)br,n′ − b†r,n(δn′,m + b†r,mbr,n′)br,m′

= δm′,nO
m,n′ − δn′,mO

n,m′
.

(2.30)

Toda flutuação local nos spins pode ser expressa por uma expansão até ordem quadrática nos bósons do
hamiltoniano, desde que a quantidade no vínculo (2.28) seja mantida, o que significa estar na representação
fundamental de SU(N), onde os N2 − 1 geradores da álgebra do grupo, mais a identidade, formam uma base
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completa de matrizes N × N agindo no espaço do hamiltoniano. Portanto, operadores locais Xr podem ser
descritos em termos de combinações lineares de Om,m′ , de modo que:

Xr =
∑
m,m′

χm,m′

r Om,m′

r = b†
rχrbr, (2.31)

onde b†
r ≡ (b†r,0, b

†
r,1, ..., b

†
r,N−1).

A teoria de ondas de spin se baseia, como enunciada na seção anterior, na transformação de Holstein-Pimakoff
(HP), que injeta bósons para representar os geradores de SU(2) no sistema, transforma seus operadores e seleciona
um alinhamento de modo a minimizar a energia do estado completo. Expandir a transformação de SU(2) para
SU(N) é feito ao injetar N bósons de Schwinger (SBs), obedecendo à restrição em Eq.(2.28), e selecionando
uma espécie de bóson que cria o estado local com a menor energia de campo médio, ou seja, o valor médio do
Hamiltoniano é o produto direto dos estados de cada sítio:

|ψMF ⟩ =
∏
r

b̃†r,0 |∅⟩ . (2.32)

Ao selecionar o bóson com m = 0, que é condensado, podemos fazer a quantização local do SU(N) alinhado
a esta direção, tal como era feito na transformação de Holstein-Primakoff (HP) para SU(2), onde o til sobre os
operadores representa a possibilidade de que a definição desses bósons de Schwinger possa ser uma combinação
linear dos N que foram introduzidos, de modo que o vínculo torna-se:

b̃†r,0 = b̃r,0 =

√√√√1−
N−1∑
m=1

b̃†r,mb̃r,m. (2.33)

A representação de HP para os geradores de SU(N) é dada por Om,m′
= b̃†r,mb̃r,m′ , onde b̃†r,0 e b̃r,0 devem

ser substituídos pela equação acima. Para o caso em que
∑

m=1⟨b̃†r,mb̃r,m⟩ ≪ 1, que caracteriza a condensação,

podemos fazer a aproximação b̃†r,0 = b̃r,0 ≈
(
1− 1

2

∑
m=1 b̃

†
r,mb̃r,m

)
. Aplicando isso à transformação do nosso

operador local, mantendo termos até ordem quadrática nos bósons, obtemos:

Xr = b̃†r,0χ̃
0,0
r b̃r,0 +

N−1∑
m=1

b̃†r,mχ̃
m,0
r b̃r,0 +

N−1∑
m′=1

b̃†r,0χ̃
0,m′

r b̃r,m′ +
N−1∑

m,m′=1

b̃†r,mχ̃
m,m′

r b̃r,m′

= χ̃0,0
r − χ̃0,0

r

N−1∑
m=1

b̃†r,mb̃r,m +
N−1∑
m=1

(
b̃†r,mχ̃

m,0
r + χ̃0,m

r b̃r,m

)
+

N−1∑
m,m′=1

b̃†r,mχ̃
m,m′

r b̃r,m′ ,

(2.34)

onde χ̃r = UχrU
† e osN−1 bósons de Schwinger (SBs) se tornaram os bósons de SU(N) de Holstien-Primakoff

(HP), que seguem satisfazendo as relações de comutação já estabelecidas.
O produto genérico de dois operadores XrXr′ somados em primeiros vizinhos (⟨r, r′⟩) é um resultado útil

para se ter em mãos no tratamento de qualquer sistema que abrigue esse tipo de interação quando tratado com as
ferramentas aqui apresentadas. Observando o resultado acima, temos quatro termos. Podemos fazer uma conta-
gem rápida e concluir que nenhum termo desse produto pode satisfazer a condição de ser de ordem quadrática nos
bósons a menos que os índices dos elementos de matriz possuam, pelo menos, dois zeros. Podemos então separar
XrXr′ em quatro resultados. O produto do primeiro termo por si mesmo, o do primeiro termo com o segundo e
o último, tanto o de r como o de r′, o do terceiro termo consigo mesmo e do terceiro com o primeiro, ou seja:
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A =
∑
⟨r,r′⟩

χ̃0,0
r χ̃0,0

r′ =
Z
2
Nsχ̃

0,0
r χ̃0,0

r′ ,

B = Z
∑
r

(
χ̃0,0
r′

N−1∑
m,m′=1

χ̃m,m′

r b̃†r,mb̃r,m′ − χ̃0,0
r′ χ̃

0,0
r

N−1∑
m=1

b̃†r,mb̃r,m

)
,

C =
∑
⟨r,r′⟩

(
N−1∑

m,m′=1

χ̃m,0
r χ̃m′,0

r′ b̃†r,mb̃
†
r′,m′ + χ̃m,0

r χ̃0,m′

r′ b̃†r,mb̃r,m′ + h.c

)
,

D = Z
∑
r

(
N−1∑
m=1

(
χ̃0,0
r′ χ̃

m,0
r b̃†r,m + χ̃0,0

r′ χ̃
0,m
r b̃r,m

))
.

(2.35)

Aqui Z indica o número de coordenação da rede. Em B e D foi usado que os índices dos somatórios podem
ser trocados à vontade e que todos os operadores bosônicos estavam em função de r ou r′ separadamente. Note
que, a princípio, não há nenhum motivo algebricamente óbvio que leve a concluir que D é nulo. O produto dos
operadores XrXr′ fica definido como a soma dos termos de A a D. Temos em mãos uma teoria de ondas de spin
generalizada (GSWT).

As técnicas até aqui descritas são completamente gerais, cabe agora impletá-las num hamiltoniano específico.
A vantagem principal desse método está em tratar problemas de spins maiores que 1/2, pois sua descrição deverá
envolver, no estado fundamental, uma simetria do tipo SU(2S + 1). Trabalharemos em detalhes o primeiro
caso não trivial, o SU(3), que captura a essência das diferenças, para ilustrar seu funcionamento e comparar os
resultados.

2.3 O modelo bilinear-biquadrático

Aqui tratamos do caso de Hamiltoniano mais simples que apresenta diferenças, que não são meras constantes,
do caso tratado originalmente em (SALINAS, 2008) e(AUERBACH, 2012) usando HP. O caso do ferro e do
antiferro é calculado, tanto o espectro das flutuações como seu efeito sobre o calor específico, e comparamos isso
com o resultado obtido pelo método SU(2).

2.3.1 Modelos de spin com acoplamentos bilineares biquadráticos

Vamos analisar o caso mais simples onde se pode encontrar ordens superiores à dipolar no estado fundamental,
o modelo bilinear-biquadrático de spin numa rede quadrada e suas generalizações em dimensões maiores. Para
tratar esse exemplo em sua total generalidade, de acordo com as ferramentas que foram apresentadas até aqui,
tomaremos o modelo com um spin S genérico numa rede hipercúbica de d > 1 em sua representação fundamental,
a dizer, estamos criando N SBs que satisfazem (2.28), tal que N = 2S + 1. O hamiltoniano com os operadores
de spin assume a forma:

H = JL
∑
⟨r,r′⟩

Sr · Sr′ + JQ
∑
⟨r,r′⟩

(Sr · Sr′)
2 . (2.36)

Aqui, assim como anteriormente, ⟨r, r′⟩ indica que a soma ocorre sobre os primeiros vizinhos. Introduzimos
o ângulo α para parametrizar nossas constantes, de modo que:

JL = J cos (α) , JQ =
J

S2
sin (α) . (2.37)
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O fator S−2 é introduzido em JQ para tornar os termos comparáveis no limite de S grande. Estamos tomando
ℏ = 1 no decurso das contas. Para tratar tanto o caso ferromagnético como o antiferro, introduz-se o vetor a
(a = (1, 1, 1) no ferro e = (1,−1,−1) no antiferro). O hamiltoniano então pode ser escrito como:

H = JL
∑

⟨r,r′⟩,ν

aνS
ν
rS

ν
r′ + JQ

∑
⟨r,r′⟩,ν,µ

aνaµS
ν
rS

µ
r S

ν
r′S

µ
r′ , (2.38)

onde os índices ν e µ correm {x, y, z}.
O hamiltoniano em termos dos N SBs, tomando como base os geradores dos autoestados de Sz

r que já criam
o estado de menor energia de campo médio, de tal forma que a transformação unitária definida no método, por
generalidade, se reduz à identidade, é, usando a Eq. (2.34):

H = JL
∑

⟨r,r′⟩,ν

aνb
†
rS

νbrb
†
r′S

νbr′ + JQ
∑

⟨r,r′⟩,ν,µ

aνaµb
†
rS

νµbrb
†
r′S

νµbr′ (2.39)

Onde as matrizes são dadas por:

Sx
m,m′ = δm,m′−1

√
(m+ 1)(2S −m)

2
+ δm−1,m′

√
(m+ 1)(2S −m)

2

Sy
m,m′ = δm,m′−1

−i
√

(m+ 1)(2S −m)

2
+ δm−1,m′

i
√
(m+ 1)(2S −m)

2

Sz
m,m′ = δm,m′(S −m) Sνµ

m,m′ =
∑
m′′

Sν
m,m′′S

µ
m′′,m′

(2.40)

Aplicamos a transformação definida em Eq. (2.33) e usando o resultado (2.35), ignorando termos com mais
que dois operadores bosônicos, obtemos:

H = dNt0,00,0 +HGSW , (2.41)

tal que,

HGSW =
∑

⟨r,r′⟩,m,m′

[
tm,0
0,m′b

†
r,mbr′,m + tm,0

m′,0b
†
r,mb

†
r′,m + h.c

]
+ 2d

∑
r,m,m′

[
tm,m′

0,0 − t0,00,0δm,m′

]
b†r,mbr,m′ , (2.42)

onde:

tm0,m1
m2,m3

= JL

(∑
ν

aνS
ν
m0,m1

Sν
m2,m3

)
+ JQ

(∑
ν,µ

aνaµS
νµ
m0,m1

Sνµ
m2,m3

)
. (2.43)

O resultado na Eq. (2.41) é a forma mais compacta da expansão do hamiltoniano (2.39). Recordando o
resultado obtido na Eq.(2.35), quando fizemos o produto dos operadores XrXr′ , os termos que não violavam
nossa condição de mais que dois bósons eram aqueles que possuíam o produto de elementos de matriz com ao
menos dois índices iguais a zero, os quais todos se encontram em (2.41), exceto por aqueles que continham apenas
um bóson, ou três índices zero em seus elementos de matrizes. Esses termos se cancelam um a um ao avaliar
os termos das matrizes, como não poderia ser diferente, afinal, estamos expandindo em torno do estado |ψ⟩ que
minimiza a energia do nosso sistema, como definido na Eq.(2.32).

Colocando os bósons no espaço de momento (tal como feito no caso SU(2)), em completa similaridade com
o (SALINAS, 2008) e (AUERBACH, 2012), obtemos, para HGSW :
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HGSW =
∑

k,m,m′

[
tm,0
0,m′γ

+
k b

†
k,mbk,m + tm,0

m′,0γ
+
k b

†
k,mb

†
k,m + h.c

]
+ 2d

∑
k,m,m′

[
tm,m′

0,0 − t0,00,0δm,m′

]
b†k,mbk,m′

γ+k =
d∑

q=1

eikq

(2.44)

Devido à estrutura específica deste hamiltoniano, não há um elemento de matriz com m ou m′ maior que
dois, salvo pelo último termo, que é multiplicado por 2d. Isso é esperado tanto pela estrutura SU(3), sob a qual o
hamiltoniano recai em condições específicas, como pela análise mediante a introdução dos operadores S+ e S−

do SU(2).

2.3.1.1 O caso ferromagnético

Ao substituir nosso parâmetro definidor do caso ferro, a = (1, 1, 1) em HGSW , eliminamos, pela simetria dos
termos tm0,m1

m2,m3
, os operadores bosônicos do tipo bb e b†b†, além de garantir que não existem termos no sistema tais

que m ̸= m′.
O resultado é um hamiltoniano digonal com relações de dispersão específicas para cada m da forma:

HFM
GSW =

2S∑
m=1

ξfk,mb
†
k,mbk,m, (2.45)

onde, para m ≤ 2 (consequência da forma do hamiltoniano), ξfk,m é:

ξfk,1 = −JS
[
cos(α) + 2

(
1− 1

S

)
sin(α)

]
(2d− γk) , γk =

d∑
q=1

2 cos(kq)

ξfk,2 = −4dJS

[
cos(α) +

(
2− 4S +

1

S2

)
sin(α)

]
− 2J

(
1− 1

2S

)
sin(α) (2d− γk) ,

(2.46)

Para os outros termos (3 ≤ m ≤ 2S), a dispersão é nada mais que um termo contínuo em k:

ξfk,m = −2mdJS

[
cos(α) +

(
2− (m+ 1)

S
+

(m− 1)

2S2

)
sin(α)

]
(2.47)

O hamiltoniano é estável desde que se imponha que ξfk,m > 0 para qualquer k. Disso extraímos as seguintes
condições:

S cos(α) + 2(S − 1) sin(α) < 0

S cos(α) +

(
2S − 3 +

1

2S

)
sin(α) +

(
1− 1

2S

)
|sin(α)| < 0

S cos(α) +

(
2S −m− 1 +

m− 1

2S

)
sin(α) < 0

(2.48)

As relações de dispersão para o caso S = 1 estão representadas na Figura 1, onde se destacam três regimes
para o sistema. O primeiro caso, para α = π, recupera o hamiltoniano de Heisenberg e devolve uma curva, em
vermelho, equivalente ao resultado que seria gerado no tratamento desse sistema pelo método SWT. A segunda
imagem apresenta as dispersões num dos casos-limite da definição de estabilidade, de modo que encontramos
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Figura 1 – Relações de dispersão FM para S = 1 ao longo do vetor k = (1, 1, 1). Em vermelho:m = 1; Em azul: m = 2
(a): α = π, caso sem o termo biquadrático; (b): α = π/2, limite instável; (c): α = 5π/4, caso degenerado com
simetria SU(3)

uma dispersão contínua com energia zero. A terceira é a dispersão do caso especial no qual JL = JQ, um ponto
de simetria SU(3) no qual tanto os bósons m = 1 e m = 2 convergem.

2.3.1.2 O caso antiferromagnético

Ao aplicar a condição definidora do antiferro, a = (1,−1,−1), à Eq.(2.41), obtemos:

HAFM
GSW =

∑
k,m

Umb
†
k,mbk,m + Vk,m

(
b†k,mb

†
−k,m + bk,mb−k,m

)
,

Um = 2mdJS

[
cos(α)−

(
2− (m+ 1)

S
+

(m+ 1)

2S2

)
sin(α)

]
,

Vk,1 = JS

[
cos(α)−

(
2− 2

S
+

1

S2

)]
γk
2
, Vk,2 = 2J

(
1− 1

2S

)
sin(α)

γk
2
,

(2.49)

onde novamente os termos lineares dos bósons foram eliminados por simetria, motivo o mesmo que força, através
da forma de tm0,m1

m2,m3
, que não haja nenhum elemento tal que m ̸= m′. Observa-se que os fatores Dk,m só existem

para um e dois, tal como as dispersões no caso ferromagnético só possuem dependência em k nas mesmas
“espécies” de bósons. γk segue a mesma definição que na Eq. (2.46).

A partir daqui, o hamiltoniano pode ser tratado em completa analogia ao que foi feito no caso antiferro-
magnético SU(2), como ilustrado em (AUERBACH, 2012). Aplicamos uma transformação de Bogoliubov e
diagonalizamos o sistema, de modo que Um ≡ Bk e Vk,m = Ck na resolução da seção SU(2) e b̃k,m são os novos
bósons definidos na transformação.

Nosso hamiltoniano se torna:

HAFM
GSW =

∑
k

(
ξafk,1b̃

†
k,1b̃k,1 + ξafk,2b̃

†
k,2b̃k,2

)
+

2S∑
m=3

Umb̃
†
k,mb̃k,m,

ξafk,1 = J

[
S cos(α)−

(
2S − 2 +

1

S

)
sin(α)

]√
4d2 − γ2k,

ξafk,2 =

√
(U2)

2 − 4J2

(
1− 1

2S

)2

sin2(α) (γk)
2.

(2.50)



Capítulo 2. Métodos e resultados 14

-π -π /2 0 π /2 π
0

2

4

6

8

10

12
E(k)

α = 0π

-π -π /2 0 π /2 π

E(k)

α = -
1

2
π

-π -π /2 0 π /2 π

E(k)

α =
1

4
π

Figura 2 – Relações de dispersão AFM para S = 1 ao longo do vetor k = (1, 1, 1). Em vermelho, m = 1; em azul, m = 2.
(a) α = 0, caso sem o termo biquadrático. (b) α = −π/2, limite instável inferior. (c) α = π/4, limite instável
superior.

Tal como no caso ferromagnético, a estabilidade dos estados jaz na imposição de que suas energias não se
tornem negativas para qualquer k, o que indicaria que a escolha do estado fundamental clássico sob o qual os
bósons são definidos se torna instável, potencialmente levando a uma transição de fase. Disso, obtêm-se as
seguintes relações:

S cos(α)−
(
2S − 2 +

1

S

)
sin(α) > 0

S cos(α)−
(
2S − 3 +

3

2S

)
sin(α)−

(
1− 1

2S

)
|sin(α)| > 0

S cos(α)−
(
2S −m− 1 +

(m+ 1)

2S

)
sin(α) > 0

(2.51)

As relações de dispersão para o caso S = 1 são retratadas nos gráficos da Figura 2. O caso um (α = 0)
exibe o típico resultado antiferromagnético, equivalente ao resultado SWT, salvo pela faixa constante. O segundo
(α = −π/2) é um caso limite com simetria SU(3). O último caso (α = π/4) exibe um comportamento do sistema
no limiar das condições de estabilidade, com um ramo com energia zero.

2.3.2 Propriedades termodinâmicas

Em posse das relações de dispersão do hamiltoniano bilinear biquadrático, tanto no caso do ferro como no do
antiferro, somos capazes de calcular sua função de partição e, daí, extrair algumas das propriedades do sistema.
É importante lembrar que todo o tratamento aqui feito é para um sistema a baixas temperaturas, isto é, T → 0.
Ao fazer isso, estamos isolando nossa leitura apenas às perturbações de mais baixa energia em torno do estado
minimizado no qual as expansões foram feitas.

Expandindo γk, das relações de dispersão, até primeira ordem em k, obtemos:

γk ≈ 2

(
d∑

q=1

1−
k2q
2

)
=

(
2d−

d∑
q=1

k2q

)
→ γ2k ≈ 4d2 − 4d

d∑
q=1

k2q +O(k4q). (2.52)

Ao colocar essa definição nas dispersões de m = 1 e m = 2 para o caso ferro obtém-se:
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ξfk,1 = −JS
(
cos(α) + 2

(
1− 1

S

)
sin(α)

)( d∑
q=1

k2q

)
,

ξfk,2 = −4dJS

[
cos(α) +

(
2− 4

S
+

1

S2

)
sin(α)

]
− 2J

(
1− 1

S

)
sin(α)

(
d∑

q=1

k2q

)
,

(2.53)

enquanto para o caso antiferro:

ξafk,1 = J

[
S cos(α)−

(
2S − S +

1

S

)
sin(α)

]√√√√4d
d∑

q=1

k2q −O(k4q) ,

ξafk,2 =

√√√√(U2)
2 − 4J2

(
1− 1

2S2

)2

sin2(α)

(
4d2 − 4d

d∑
q=1

k2q +O(k4q)

)
.

(2.54)

Os casos para m ≥ 3 seguem sem alteração para as dispersões desse hamiltoniano. A função de partição é,
por se tratarem de bósons, tal como definida em (SALINAS, 2008):

Z =
∏
k

N−1∏
m=1

(1− exp (−βξk,m))−1 (2.55)

A função de partição, Z , é uma descrição estatística do sistema que considera todas as possibilidades de
ocupação dos níveis de energia permitidos de modo que o seu total seja bem definido, podendo, portanto, ser
relacionada com a energia interna por partícula, u, que, por definição da termodinâmica, induz uma grandeza
característica do sistema, o calor específico a volume constante, CV . Suas definições são:

u = − 1

N

∂

∂β
(ln (Z )) , CV =

(
∂u

∂T

)
V

. (2.56)

u =
N−1∑
m=1

1

N

∫
Ld

(2π)d
ξk,mdk

d

(exp(βξk,m)− 1)
,

CV =

(
∂u

∂T

)
V

=
N−1∑
m=1

1

N

kBβ
2Ld

(2π)d

∫
(ξk,m)

2 eβξk,mdkd

(exp(βξk,m)− 1)2
.

(2.57)

Onde β = 1
kBT

, kB sendo a constante de Boltzmann e T a temperatura. Como estamos tratando o caso de
temperaturas pequenas, a contribuição principal se deve ao ramo, em ambos os casos, de m = 1. O caso ferro em
três dimensões é, portanto:

ξfk,1 = −JS
(
cos(α) + 2

(
1− 1

S

)
sin(α)

)( d∑
q=1

k2q

)
= A

(
d∑

q=1

k2q

)
,

CV ≈ 1

N

∫
L34π

(2π)3
(Ak2)

2
eβAk2kBβ

2k2dk

(exp(βAk2)− 1)2
=

L3kB

2N (2π)2
1

(βA)3/2

∫ ∞

0

x5/2exdx

(ex − 1)2
,

(2.58)

onde foi usada a substituição x = βAk2 depois de colocar a integral em coordenadas esféricas.
O caso antiferro procede de modo similar, ignorando os termos de O(k4q), e considerando que maior contri-

buição é dada pela dispersão dos bósons com m = 1:
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Figura 3 – Comparação do espectro ferromagnético do modelo bilinear biquadrático (em azul) com o do hamiltoniano
SU(N) (em laranja). O constante de troca J = −1 foi aplicado ao hamiltoniano SU(N). Gráficos tomados ao
longo do vetor k = (1, 1, 1). (a) Não normalizado; (b) Com o hamiltoniano SU(N) multiplicado por 1/

√
2.

ξafk,1 = J

[
S cos(α)−

(
2S − S +

1

S

)
sin(α)

]√√√√4d
d∑

q=1

k2q −O(k4q) ≈ A

√√√√ d∑
q=1

k2q

 ,

CV ≈ 1

N

∫
L34π

(2π)3
(Ak)2 eβAkkBβ

2k2dk

(exp(βAk)− 1)2
=

L3kB

N (2π)2
1

(βA)3

∫ ∞

0

x4exdx

(ex − 1)2
,

(2.59)

onde foi usada a substituição x = βAk após implementar as coordenadas esféricas.
Com isso, mostramos que, para o caso de baixas temperaturas, T → 0, o tratamento de ondas de spin em

SU(N) recupera os resultados usuais do calor específico para o ferro, CV ∝ T 3/2, e o antiferro, CV ∝ T 3 ao
eliminar o efeito dos bósons com gap. Os ramos extras presentes na teoria podem levar, no entanto, a alguns
efeitos. Para o caso em que o hamiltoniano apresenta simetria SU(N), os ramos podem ser degenerados, no
calor específico, que é aditivo nos ramos, isso levaria a uma constante multiplicativa no resultado final, mas não
alteraria a lei de potência.

2.4 O caso degenerado e os geradores SU(N)

É possível escrever um hamiltoniano com simetria SU(N) da forma:

H =
∑

⟨r,r′⟩,m,m′

Om,m′

r Om′,m
r′ =

∑
⟨r,r′⟩,m,m′

(
b†r,mbr,m′

) (
b†r′,m′br′,m

)
, (2.60)

cujos termos podem ser analisados em três casos distintos. m = m′ = 0; m = 0 com m′ ̸= 0 e m ̸= 0 com
m′ = 0. Para os propósitos dessa expansão, seja:

∆ =
2S∑

m=1

b†r,mbr,m, (2.61)

onde, para os propósitos dessa conta, se o termo é em função de r, r′, m ou m′ é indiferente. Obtemos então:
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m = m′ = 0 →
∑
⟨r,r′⟩

(√
1−∆

√
1−∆

)
r

(√
1−∆

√
1−∆

)
r′

m′ = 0,m ̸= 0 →
∑

⟨r,r′⟩m′ ̸=0

b†r,m

(√
1−∆

)
r

(√
1−∆

)
r′
br′,m

m = 0,m′ ̸= 0 →
∑

⟨r,r′⟩m′ ̸=0

(√
1−∆

)
r
br,m′b

†
r′,m′

(√
1−∆

)
r′

(2.62)

Expandindo as raízes até primeira ordem e mantendo apenas termos com até dois operadores bosônicos,
obtemos o seguinte:

H =
∑
⟨r,r′⟩

(
1−

N−1∑
m=1

b†r,mbr,m −
N−1∑
m′=1

b†r′,m′br′,m′ +
N−1∑
m=1

b†r,mbr′,m +
N−1∑
m′=1

b†r′,m′br,m′

)
,

=
∑
⟨r,r′⟩

(
1 +

N−1∑
m=1

(
b†r,mbr′,m + b†r′,mbr,m

)
− 2

N−1∑
m′=1

b†r,mbr,m

)
.

(2.63)

Colocando esse hamiltoniano no espaço dos momentos como definido pela Eq.(2.9), temos:

H =
Z
2
N +

∑
k,m

b†k,mbk,m

(
−Z +

d∑
q=1

2 cos(kq)

)
(2.64)

Comparando a dispersão desse hamiltoniano com o caso degenerado do modelo bilinear-biquadrático, no
ponto de simetria SU(3), concluímos que são idênticos, salvo por um fator de normalização, como mostrado na
figura 3.

Embora a comparação aqui feita seja somente em relação ao SU(3), vale notar que a dispersão gerada pelo
hamiltoniano aqui descrito é idêntica independentemente do N em questão e, portanto, do S do sistema, pois
todas as espécies de bósons assumirão o mesmo comportamento.
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3 Conclusões e considerações finais

Na análise do hamiltoniano bilinear-biquadrático encontramos resultados equivalentes, seja pelo tratamento
com a teoria usual, SWT, ou pela aplicação da ferramenta generalizada, GSWT, para o limite de temperatura
zero, no qual os bósons sem gap possuem a maior contribuição, obtendo-se as leis de potências esperadas para
o calor específico, tanto para o caso ferromagnético como para o antiferromagnético. As divergências, contudo,
são evidentes ao se observar os espectros dos mágnons de cada um. As dispersões do caso de m = 1 (estado mais
populado a baixas energias) se reduzem à mesma coisa nos casos em que retornamos ao âmbito usual da SWT,
ou seja, ao eliminar o termo biquadrático ou ao tender para o limite de spin S grande. Para os demais casos, a
GSWT apresenta uma sensibilidade ao valor do spin S, o que não está presente na contraparte SWT, além de
possuir outras “espécies” de mágnons em sua dispersão que não constam na teoria usual.

Torna-se claro que, para o estudo de casos com spins maiores que 1/2, pode-se tratar esses sistemas magnéticos
em termos de mágnons que obedecem à simetria SU(N), onde N = 2S + 1. Essa abordagem acomoda não
somente os hamiltonianos que possuem essa simetria específica, como também abarca os casos que são, em geral,
simétricos apenas com relação ao SU(2), tal qual o modelo bilinear-biquadrático de spin 1. O tratamento do
problema com SU(N) possui a vantagem de naturalmente interpolar para os pontos de simetria mais alta, que
existem em pontos específicos desse hamiltoniano, de modo eficiente.

A abordagem aqui descrita permite tratar casos de ordenamentos além dos dipolares (quadrupolares, oc-
topolares e assim por diante), perspectiva a qual se pode ter para trabalhos futuros, explorando sistemas tais
como (LÄUCHLI; SCHMID; TREBST, 2006), (WIERSCHEM et al., 2012) e (LUO; DATTA; YAO, 2016).
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