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Resumo

O tratamento de hamiltonianos de spin € feito, de maneira usual, por meio da implementacado de bosons com
simetria SU(2) para mediar as flutuagdes. Para casos de spins maiores que 1/2, mas que ainda ndao constem no
limite de S grande, tal método falha em analisar os possiveis ordenamentos do estado fundamental que estejam
além da ordem dipolar. O trabalho repassa os fundamentos do tratamento usual com SU(2) e propde uma al-
ternativa para sua generalizacdo para um caso de maior simetria, a dizer, SU(N). Para ilustrar sua efetividade,
essa generalizacdo foi aplicada ao modelo bilinear biquadrético, hamiltoniano que apresenta simetria SU(3) num
ponto especifico, foco deste trabalho, do qual foi analisado o espectro de mdgnons gerados e o calor especifico
dele resultante, recuperando os resultados ja conhecidos desse sistema para as situacdes em que se reduz ao caso
usual. A generalizacdo considera, naturalmente, mais espécies de magnons no sistema, mas € passivel de ser
utilizada no tratamento mesmo de hamiltonianos que sejam simétricos apenas por SU(2).

Palavras chave: Magnetismo, Ondas de spin, SU(2), SU(3), SU(N).



1 Introducao

O tratamento mais comumente utilizado para lidar com sistemas quéanticos que possuem ordenamento mag-
nético em seu estado fundamental e baixas flutuagdes € a chamada teoria de onda de spin (SWT), denominada
uma teoria semi-cldssica por sua validade, especialmente para os casos de spin S muito grandes. Flutuacdes do
campo cléssico, usado nesse limite de S para representar os spins, sdo completamente descritas pelo grupo de
rotacdes locais SO(3), que € isomorfo a SU(2)/Zs, como amplamente estudado em (IACHELLO,2006), (SHA-
PIRO, 2017) e (FERREIRA, 2000), e sdo, portanto, as unicas flutuacdes que constam no tratamento por SWT,
ordenamentos dipolares.

A teoria de ondas de spin usual apresenta dificuldades na descricdo de outros possiveis ordenamentos do
estado fundamental , como sabemos ser possivel para casos de ordem multipolar mais elevada, relevantes em
casos como (WIERSCHEM et al., 2012), (LUO; DATTA; YAO, 2016) e (LAUCHLI; SCHMID; TREBST,
2000). Tais estados ndo possuem um andlogo cléssico a temperatura zero, o que evidencia a necessidade de uma
outra descri¢do para o seu tratamento, de modo que seja possivel expandir ou generalizar a teoria de ondas de spin
usual e manter os resultados ja apresentados. Mesmo para os casos em que o ordenamento dipolar € dominante,
flutuagdes de um spin .S em torno do campo médio sdo descritas, localmente, pelo grupo de transformacdes
unitdrias SU(2S + 1) ao invés do grupo SU(2), como explorado em (MUNIZ; KATO; BATISTA, 2014) e, em
certa medida, por (CRISPIM| 2024)).

Um dos modos de estudar estas flutuacdes, independentemente do grupo de simetria do sistema, € a descricdao
de seu hamiltoniano em termos de quasiparticulas capazes de mediar tais efeitos, diagonalizando-o tal como em
(COLPA, |1978). No estudo de sistemas de spin e, portanto, magnetos, estas quasiparticulas recebem o nome
de magnons e sdo o cerne do estudo dos comportamentos do sistema. Ao analisar suas populagdes, ou mesmo
interacdes para casos mais complexos, estudam-se as propriedades do hamiltoniano e do material que ele venha
a descrever.

Nesse trabalho pretende-se fazer uma retomada do modelo com ordenamento magnético no estado funda-
mental mais simples, o hamiltoniano de troca de Heisenberg, amplamente estudado em referéncias de mecénica
estatistica, tal como (SALINAS, 2008) e (AUERBACH, [2012), e seguir para a sua expansao mais simples, o
modelo bilinear-biquadrético, e comparar os resultados obtidos da teoria usual, SWT, com a sua expansdo a ser

aqui apresentada, e demonstrar suas equivaléncias e diferencas.



2 Métodos e resultados

De modo a recordar os resultados tradicionais da fisica estatistica, como encontrados em (SALINAS, [2008)),
e preparar a base necessdria para a continuidade do estudo, trataremos aqui os casos resolvidos com a imple-
mentacdo do SU(2) por meio de magnons, quasiparticulas criadas sob o estado ordenado dipolar. Nas secdes
posteriores, o caso SU(N) serd trabalhado, seguindo de perto as formulagdes prescritas em (MUNIZ; KATO;
BATISTA, 2014).

Por fim, ilustraremos a aplicacdo do método num sistema conhecido, o modelo bilinear biquadrético, que

apresenta explicita simetria SU(3) para pontos especificos.

2.1 O caso SU2)

2.1.1 Ferromagneto de Heisenberg

Um dos modelos mais simples capazes de descrever magnetos naturais € o hamiltoniano de Heisenberg, que,
ao considerar interagdes intrinsecamente relacionadas a simetrizacdo das funcdes de onda que descrevem os
elétrons do material, discussao feita em (SALINAS, |2008), descreve o sistema por um modelo efetivo ao acoplar
os dipolos por uma constante de troca .J e ao representd-los por S;. Considerando o caso sem campo magnético

externo, temos:

H=-J)>» S;-Sj, 2.1
(i,5)
onde a notagdo (7, j) indica uma soma entre primeiros vizinhos de uma rede qualquer,mas no decurso do texto
trataremos apenas de redes quadradas ou suas generalizagdes hipercubicas.

Sejam as defini¢des dos operadores S;" e S;”, bem como a do produto S; - S;:

St =87 4+4i8Y, ST =8%—1i5Y, [S*,58Y] =157
. 2.2)
SoL(st s, S=(st -8, [50.5] =257
.8, = (SEST + 515!+ 5157) = 5157 + 4 (5157 +5757). 3

A transformacgdo de Holstein-Primakoff, originalmente aplicada em (HOLSTEIN; PRIMAKOFF, 1940), se
da para os operadores de spin S;r e S; , como feito em (SALINAS,2008) e (AUERBACH, 2012), ao representa-

los em termos de bdsons e selecionar uma certa organiza¢ao para com a qual estes bosons sao flutuagdes.

[1— ] bi, S; = (25)2b] [1— ] : 24)

N

+ 1t
S =(29) 28 29

onde b;’s satisfazem as relacdes de comutagio dos bésons < [bm bﬂ =0;j [blﬁ), by)

res b e bf criam e aniquilam bésons, respectivamente. Agora podemos calcular os produtos de S;" e S;” e extrair

} = O), tais que os operado-

um resultado para S; em termos desses operadores:
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+q- bb f szbi + = 1 Lot

S:=11[S5,57] =5 blb,.

3 7 )

(2.5)

A expansdo de primeira ordem dos operadores S;" e S, , ignorando termos que possuam mais de dois opera-

dores bosOnicos, fica:

S =(29)7b;, S; =(25)20]. (2.6)

Em posse de todas as definicdes necessarias para tornar o hamiltoniano original segundo quantizado, obser-
vamos que a soma em (7, j) indica uma soma sobre os primeiros vizinhos da rede de spins. Podemos substituir
os indices ¢ e j por r e r + J, respectivamente, onde r representa uma posicao na rede e § € um deslocamento
definido nessa rede de modo a alcangar um primeiro vizinho. Estamos considerando um modelo de rede cubica
com condig¢des de contorno periddicas, de modo que, a fim de evitar um fator de dupla contagem, os ’s serdo

tomados como estritamente positivos. Do hamiltoniano inicial, 1&-se que:

:—JZS S, ——JZSZSZ (SiFs; +5;75))
2.7)
:—JZSZSr+5+ S+S s+ SoSE )

O hamiltoniano em segunda quantlzagao, descartando termos de ordem maior que quadratica nos operadores

bosodnicos (mais que dois operadores b;), se torna:

H = —JZ S? -8 (bibr +0, abHa) + S (bIMbr + bibm) : (2.8)

onde foi usado o fato de que b, bl 1+ COmuta com Al r+50r» POT se tratarem de sitios diferentes.

Expandimos em ondas planas os operadores b e b ao aplicar uma transformada de Fourier:

1 . 1 )
by=—=> e &b bhe=—=) KT, 2.9

Ap6s a transformagdo, os quatro termos: bib, ; b! L sbriss bl 4 5br; Diby s, resultam em:

1 I 1 e
= D b T B e = 3 b KT,

Kk’ Kk
1 N ! 1 N / 1/ (2.10)
oaters = 5 STt 00 45,5 = LS iy Km0
Kk’ Kk
Como k — k' = 0, pois Zr eilk—kK)r — N Ok x’» 0 hamiltoniano entdo se torna:
Z
H:—J5N52 { ZSZbTkarSZbTb —ikd “‘5)} 2.11)

Podemos agrupar a soma das exponenciais em um termo gy = Z 51 2 cos(ks) , onde "d"é a dimensionalidade
do sistema e d ja foi decomposto nas direcdes da rede. Foi também introduzido aqui o nimero de coordenagdo
Z, que indica o nimero de primeiros vizinhos de um sitio qualquer e, para redes hipercubicas, Z = 2d, de modo

que o fator meio surge para evitar problemas de dupla contagem. O hamiltoniano final é:
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Z
H = —J§NSQ +) bl (JZS = JSa). (2.12)
k

Aqui, o primeiro termo estd relacionado a energia fundamental do sistema cldssico, o segundo termo repre-
senta a contribuicdo dos magnons, indicando as possiveis flutuacdes de energia em forma da ondas de spin, devido

ao mecanismo de troca.

2.1.2 Antiferromagneto de Heisenberg

Nesse caso, espera-se um estado fundamental no qual os spins se encontram, a0 menos no caso cléssico,
anti-alinhados, o que implica uma constante de troca total ./ > 0. Para construir esse sistema do modo mais
simples, assume-se que a rede pode ser interpretada como bipartite, ou seja, pode ser dividida em duas redes
“idénticas”, mas virtualmente separadas, de modo que esta segunda rede sofra uma rotagdo no eixo x, tal que:

S; = Sfz — S7y — S?z. Dessa forma, podemos escrever o hamiltoniano antiferromagnético como:

H=J> S:i-S; | (2.13)
(i.4)
onde:
Si-S; =-S5+ 1 (S S5 +5757). (2.14)

Usando as mesmas transformagdes de Holstein-Primakoff, como definidas em (2.5), e mantendo termos até

ordem quadrética nos operadores bosdnicos, temos:
H=1[J]3 -5 +5 (bibr + bIMbH(;) + 8 (bib1+5 + brbH,;) . (2.15)
r,0
Aplicando a transformada de Fourier e colecionando os termos novos (b'b' e bb), obtemos:

1 (kK)o ik 1 —i(k+k)r —ik'-
bibl 5 = 5 D Dbl MM b = 2N by e T, (2.16)
k. k/ k k’

H4 algumas observagOes a serem feitas acerca desses termos antes de os inserirmos de volta. A condi¢do

z . . N !
sobre os k’s agora é que k + k' = 0, de modo que nossa identidade agora se torna ) elktK) — N Ok, —K'-
Observa-se também que os termos, agora bLbik e b.b_,, ambos comutam entre seus fatores, logo sdo simétricos

em k, permitindo escrever:

N U P S S CUNCLERS D) 2.17)
k.6

)

O mesmo vale para o hermitiano conjugado. Recuperamos assim a defini¢do de g, € podemos reescrever o

hamiltoniano em k como:

H = —J%NSZ +>° (728 (M) + J5% (ol i+ b)) (2.18)
k

Para tratar essa expressao introduzimos a transformacao de Bogoliubov, definindo um novo conjunto de ope-

radores bosonicos (a e a'), bem como a sua inversa:
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ax = UkblT( — by, aT—k = vib - uikblta

Para manter a relagdo de comutacdo [ak,a;r(] — 1, conclui-se que |vy|* — |ux|* = 1, correspondendo 2
identidade hiperbdlica, de modo que podemos parametrizar v € u por:

e = €% cosh (Ok), ux= e sinh (Ok) (2.20)

Os produtos entre v € u que surgem no hamiltoniano recaem em um de trés casos:

1 1
luk|? = vt = vy = 5 cosh (20y) + 3

1
VU = ’Ultult = ’Ult’u,k = vf:uk = 5 sinh (2@k) y (221)
1 1
| = viug = weuy = 5 cosh (26x) — 2.

A principio, todos os resultados deveriam ser multiplicados por uma fase , salvo os mddulos quadrados,
correspondentes ao respectivo produto de v e u. Contudo, por se tratar de um parametro introduzido para a
maior generalidade das defini¢des de v e u, podemos escolher 6, e 6, de modo que seja mais conveniente para o
problema; logo, os tomaremos todos iguais a zero. Nesse mesmo sentido, consideramos aqui que Oy € invariante
por inversao do momento k.

Podemos tratar o hamiltoniano na expressao (2.18) de modo geral ao realizar algumas substituicdes simples.
Chamando o termo constante fora do somatdrio de A, o termo a multiplicar o operador b'hb de By e o termo a
multiplicar os termos extras de % obtemos:

C
H=A+) (Bkblibk + {(bj(bik + bkb_k)) . (2.22)
k

Aplicando as transformagdes definidas em (2.19) e usando as identidades (2.21)) temos:

Be 1

H=A=Y 45> [(Bk cosh(20y) + Ci sinh(20))) <a11ak + akaL)
k k

(2.23)

+ (Bk sinh(20y) + Cx cosh(20y)) (aLaT_k + aka7k> } :

onde usamos a propriedade de contagem enunciada em para associar alguns termos, além do resultado da
comutacdo de [a, a'] para conseguir o fator By isolado do resto.

Como o objetivo é conseguir um hamiltoniano diagonal, queremos eliminar os termos aa e a'a’, o que faremos
ao usar o dltimo parametro livre que conseguimos com as transformacdes de Bogoliubov, o Oy. Ao impor que os

termos extras sao nulos, obtém-se a seguinte igualdade:

Bk sinh(2@k) + Ck COSh(2@k) =0 — tanh(?@k) = ——. (224)

Quadrando esse resultado e utilizando a identidade hiperbélica cosh?(z) — sinh®(z) = 1 consegue-se um

resultado para o cosh(20y ) em fungdo das quantidades By e C, tal que:
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5 cosh(20y) = + [1 - (g—i)z]_é. (2.25)

cosh®(20y) — 1 (&
cosh?(20y) B}

Substituindo esse resultado de volta no hamiltoniano e lembando que, pela expressdo da tanh(26y) o seno

também foi definido, temos o seguinte para os termos que multiplicam os fatores diagonais:

afi-@)] - F @] e G

O hamiltoniano final assume a forma:

H=A- S D 0SB G (o + agal) e27)
k k

A dependéncia em k dos espectros para expansdes em torno de k pequeno € tratada no procedimento para
calcular o calor especifico, feito em se¢des mais adiante, tanto para o caso ferro como o antiferro. Em primeira
ordem de expansdo, as dispersdes dos casos SU(2) sdo, como em (SALINAS| 2008), para o caso ferro e anti-
ferromagnético, oc k? e o k, respectivamente. Na secdo de aplicacdo do método de ondas de spin generalizadas

(GSWT) serd mostrado que esse resultado € recuperado.

2.2 O caso SU(N)

O conjunto de matrizes unitdrias N X NN de determinante igual a um, tendo por produto a multiplicacao de
matrizes, € dito o grupo SU(N). A ideia desta se¢io € enunciar as vantagens de trabalhar com um grupo de simetria
maior, em especial SU(3) no presente trabalho, no tratamento de ondas de spin, como estabelecido em (MUNIZ;
KATO; BATISTA| 2014).

Consideramos um Hamiltoniano definido numa rede, tal que esta possa ser dividida num conjunto de sitios
com um um numero finito de de graus de liberdade. Assumimos entdo que a dimensao do espaco de Hilbert
local é N (N = 25 + 1; S correspondendo ao spin total do sitio) e introduzimos os geradores SU(N) agindo
nesse espaco. Com esse proposito, inserimos /N bosons de Schwinger que satisfazem, quando na representagao

fundamental, localmente a restri¢ao:

N-1
> bl bem = 1. (2.28)
m=0

Essa € uma maneira simples de representar os geradores de SU(N), formas bilineares do tipo

/

O™™ = b by, (2.29)

que satisfazem as relacdes de comutagdo de SU(N):

[Om,m'7 On,n'] = [bl,mbhm/’ bl,nbrﬂl/]
= bi,m((sm/m + bI‘,nbr,m’)br,n’ - bi,n(a”l/7m + bl,mbr,n’)br,m’ (230)
— 5m’,n0m7n, _ 5n/,m0n,m/‘
Toda flutuacdo local nos spins pode ser expressa por uma expansio até ordem quadratica nos bésons do
hamiltoniano, desde que a quantidade no vinculo (2.28) seja mantida, o que significa estar na representagdo

fundamental de SU(N), onde os N? — 1 geradores da dlgebra do grupo, mais a identidade, formam uma base
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completa de matrizes N x NN agindo no espaco do hamiltoniano. Portanto, operadores locais X, podem ser

. . ~ . !
descritos em termos de combinagdes lineares de O™™ , de modo que:

Xe =) X Or™ = blxby, (2.31)
B—
onde bT = (brm br 1 7brN 1)

A teoria de ondas de spin se baseia, como enunciada na se¢do anterior, na transformacado de Holstein-Pimakoff
(HP), que injeta bésons para representar os geradores de SU(2) no sistema, transforma seus operadores e seleciona
um alinhamento de modo a minimizar a energia do estado completo. Expandir a transformacgao de SU(2) para
SU(N) ¢ feito ao injetar N bdsons de Schwinger (SBs), obedecendo a restricdo em Eq.(2.28), e selecionando
uma espécie de bdson que cria o estado local com a menor energia de campo médio, ou seja, o valor médio do

Hamiltoniano € o produto direto dos estados de cada sitio:

[Ynr) = H bl 10) . (2.32)

Ao selecionar o béson com m = 0, que € condensado, podemos fazer a quantizacdo local do SU(N) alinhado
a esta direcdo, tal como era feito na transformacdo de Holstein-Primakoff (HP) para SU(2), onde o til sobre os
operadores representa a possibilidade de que a definicao desses bosons de Schwinger possa ser uma combinagao

linear dos NV que foram introduzidos, de modo que o vinculo torna-se:

N-1
BI,O - BI‘,O = 1- Z Bl,mgr,m- (233)
m=1

A representacio de HP para os geradores de SU(N) é dada por O™ = BT Z)r m’, onde BT o€ Br o devem
ser substituidos pela equagdo acima. Para o caso em que Z < bl by m) < 1, que caracteriza a condensacao,

m= 1

podemos fazer a aproximagdo b 0= = by 0~ (1 — = Z > Aplicando isso a transformacdo do nosso

operador local, mantendo termos até ordem quadrética nos bosons, obtemos:

X brOXrOb _'_Zbrer 0br0+zbr0X0mbrm’+ Z brm~:‘nmb

m,m/=1

(2.34)
N-1 N-1
= 700 - Omem > (Bl X0y, ) + Z D 0™ By
m=1 m,m/=1

onde Y, = Ux,U' e os N —1 bésons de Schwinger (SBs) se tornaram os bésons de SU(N) de Holstien-Primakoff
(HP), que seguem satisfazendo as relagdes de comutacao j4 estabelecidas.

O produto genérico de dois operadores X, X,» somados em primeiros vizinhos ({r,r’)) é um resultado util
para se ter em maos no tratamento de qualquer sistema que abrigue esse tipo de interacdo quando tratado com as
ferramentas aqui apresentadas. Observando o resultado acima, temos quatro termos. Podemos fazer uma conta-
gem rdpida e concluir que nenhum termo desse produto pode satisfazer a condi¢do de ser de ordem quadratica nos
bésons a menos que os indices dos elementos de matriz possuam, pelo menos, dois zeros. Podemos entio separar
X, X, em quatro resultados. O produto do primeiro termo por si mesmo, o do primeiro termo com o segundo e

o tltimo, tanto o de r como o de 1/, o do terceiro termo consigo mesmo ¢ do terceiro com o primeiro, ou seja:
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A= R =3 Z N, 3208,

(r,r")

B = Z Z (Xr/ Z Xmm b:[ m~rm XE’OXBO Z br m~r m) ’

m,m’=1

(2.35)

=Y ( Z X0 O0E B+ O bimérm,+h.c>,

(r,r’) \m,m/=1

N—1
D=2 (D (R0 b + K20
r \m=1

Aqui Z indica o nimero de coordenacdo da rede. Em B e D foi usado que os indices dos somatdrios podem
ser trocados a vontade e que todos os operadores bosOnicos estavam em fungdo de r ou r’ separadamente. Note
que, a principio, ndo ha nenhum motivo algebricamente 6bvio que leve a concluir que D € nulo. O produto dos
operadores X, X, fica definido como a soma dos termos de A a D. Temos em mdos uma teoria de ondas de spin
generalizada (GSWT).

As técnicas até aqui descritas sdo completamente gerais, cabe agora impletd-las num hamiltoniano especifico.
A vantagem principal desse método estd em tratar problemas de spins maiores que 1/2, pois sua descri¢io devera
envolver, no estado fundamental, uma simetria do tipo SU(2S + 1). Trabalharemos em detalhes o primeiro
caso nao trivial, o SU(3), que captura a esséncia das diferengas, para ilustrar seu funcionamento e comparar os

resultados.

2.3 O modelo bilinear-biquadratico

Aqui tratamos do caso de Hamiltoniano mais simples que apresenta diferengas, que ndo sdo meras constantes,
do caso tratado originalmente em (SALINAS| 2008) e(AUERBACH, 2012) usando HP. O caso do ferro e do
antiferro € calculado, tanto o espectro das flutuacdes como seu efeito sobre o calor especifico, e comparamos isso

com o resultado obtido pelo método SU(2).

2.3.1 Modelos de spin com acoplamentos bilineares biquadraticos

Vamos analisar o caso mais simples onde se pode encontrar ordens superiores a dipolar no estado fundamental,
o modelo bilinear-biquadrético de spin numa rede quadrada e suas generalizacdes em dimensdes maiores. Para
tratar esse exemplo em sua total generalidade, de acordo com as ferramentas que foram apresentadas até aqui,
tomaremos o modelo com um spin S genérico numa rede hipercibica de d > 1 em sua representacdo fundamental,
a dizer, estamos criando N SBs que satisfazem (2.28), tal que N = 25 + 1. O hamiltoniano com os operadores

de spin assume a forma:

H=J,> Se-Sw+Jo Y (S:-Sv). (2.36)
(r,r’) (r,r’)
Aqui, assim como anteriormente, (r,r’) indica que a soma ocorre sobre os primeiros vizinhos. Introduzimos

o angulo « para parametrizar nossas constantes, de modo que:

Jp=J cos(a), Jg= % sin () . (2.37)
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O fator S—2 ¢ introduzido em J, para tornar os termos comparéveis no limite de S grande. Estamos tomando
h = 1 no decurso das contas. Para tratar tanto o caso ferromagnético como o antiferro, introduz-se o vetor a

(a = (1,1,1) no ferro e = (1, —1, —1) no antiferro). O hamiltoniano entdo pode ser escrito como:

H=1J, Y aSiSi+Jg > a,a,SSEsust, (2.38)
(r,e') v (r,0') v
onde os indices v e p correm {x,y, z}.
O hamiltoniano em termos dos /N SBs, tomando como base os geradores dos autoestados de S que ja criam
o estado de menor energia de campo médio, de tal forma que a transformacgao unitdria definida no método, por

generalidade, se reduz a identidade, é, usando a Eq. (2.34):

H=1J, Y ablSbblS"b.,+J; Y  aa,bl5"bbl5"b,

(2.39)
(r,r"),v (r,x"), v,
Onde as matrizes sdo dadas por:
. vV (m+1)(25 —m) vV (m+1)(25 —m)
Smm/ = 6mm’71 (Sm,1 m’
’ ’ 2 ’ 2
S s —iy/(m+1)(25 —m) 5 m/z\/(m +1)(25 —m) (2.40)
e ’ 2 ’ 2
Szt = O (S — m) S = St St

m//
Aplicamos a transformacao definida em Eq. (2.33)) e usando o resultado (2.33), ignorando termos com mais

que dois operadores bosdnicos, obtemos:

H = dNtyy + Hesw, (2.41)

tal que,

Hosw = > [tg’?;g,bi,mbr,m + OBt b+ h.c} +24 Y [tgfém’ _ tg;g(sm,m,] Vobews  (242)

(r,x’),m,m’ r,m,m’

onde:
tzgﬁi =Jr (Z GVS;O7mISZl27m3> + JQ (Z a”a“S:n/f),m1 SZZJHJ) : (2.43)
v V7l"/

O resultado na Eq. ¢ a forma mais compacta da expansdo do hamiltoniano (2.39). Recordando o
resultado obtido na Eq.(2.35)), quando fizemos o produto dos operadores X, X,., os termos que ndo violavam
nossa condi¢do de mais que dois bésons eram aqueles que possuiam o produto de elementos de matriz com ao
menos dois indices iguais a zero, os quais todos se encontram em (2.4T]), exceto por aqueles que continham apenas
um bdson, ou trés indices zero em seus elementos de matrizes. Esses termos se cancelam um a um ao avaliar
os termos das matrizes, como ndo poderia ser diferente, afinal, estamos expandindo em torno do estado [¢)) que
minimiza a energia do nosso sistema, como definido na Eq.(2.32).

Colocando os bdsons no espaco de momento (tal como feito no caso SU(2)), em completa similaridade com
o (SALINAS! 2008)) e (AUERBACH, 2012)), obtemos, para Hgsw:
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Hosw = 3 [t b + i Wbl + ] 24 3 [0 = 1000000 | Wb

k,m,m’ k,m,m/’

d
,yl—: — 2 ezk’q
g=1

Devido a estrutura especifica deste hamiltoniano, ndo ha um elemento de matriz com m ou m’' maior que

(2.44)

dois, salvo pelo ultimo termo, que ¢ multiplicado por 2d. Isso € esperado tanto pela estrutura SU(3), sob a qual o
hamiltoniano recai em condi¢des especificas, como pela andlise mediante a introdug¢do dos operadores St e S™
do SU(2).

2.3.1.1 O caso ferromagnético

Ao substituir nosso pardmetro definidor do caso ferro, @ = (1,1, 1) em Hgsw, eliminamos, pela simetria dos
termos ¢, 0s operadores bosdnicos do tipo b e b'bl, além de garantir que ndo existem termos no sistema tais

que m # m/'.

O resultado € um hamiltoniano digonal com relagdes de dispersdo especificas para cada m da forma:

25
Hadw =D &bl (2.45)
m=1

onde, para m < 2 (consequéncia da forma do hamiltoniano), 5{;m é:

d
1
5{;1 =—-JS [cos(a) +2 (1 - §> sin(a)] (2d — ), T = Z 2 cos(ky)
q=1
f 1 ) 1 ) (2.46)
{io = —4dJS |cos(a) + | 2 —4S + o sin(a)| —2J (1 — 35 sin(a) (2d — ) ,
Para os outros termos (3 < m < 25), a dispersdo é nada mais que um termo continuo em k:
1 -1
§£’m = —2mdJS {cos(a) + (2 - (m; ) + (W;SQ )) sin(a)] (2.47)

O hamiltoniano € estdvel desde que se imponha que 5{: . > 0 para qualquer k. Disso extraimos as seguintes

condigdes:
Scos(a) +2(S — 1) sin(a) < 0

S cos(a) + (25 ~3+ %) sin(a) + (1 - %) |sin(a)| <0 (2.48)

28

As relagdes de dispersdo para o caso S = 1 estdo representadas na Figura (I} onde se destacam trés regimes

Scos(ar) + (25 —m—1+ m_—l) sin(a) < 0

para o sistema. O primeiro caso, para & = T, recupera o hamiltoniano de Heisenberg e devolve uma curva, em
vermelho, equivalente ao resultado que seria gerado no tratamento desse sistema pelo método SWT. A segunda

imagem apresenta as dispersdes num dos casos-limite da defini¢do de estabilidade, de modo que encontramos
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77/2 7T

r -m2 0 /2 " 0 12 -

Figura 1 — Relagdes de dispersdo FM para S = 1 ao longo do vetor k = (1,1, 1). Em vermelho:m = 1; Em azul: m = 2
(a): o = m, caso sem o termo biquadratico; (b): o = 7/2, limite instével; (¢): a = 57 /4, caso degenerado com
simetria SU(3)

uma dispersdo continua com energia zero. A terceira € a dispersao do caso especial no qual J;, = Jg, um ponto

de simetria SU(3) no qual tanto os bésons m = 1 e m = 2 convergem.

2.3.1.2 O caso antiferromagnético

Ao aplicar a condi¢do definidora do antiferro, @ = (1, —1, —1), a Eq.(2.41)), obtemos:

HAE = 5 Ul + View (Bt + By
k,m

Un =2mdJS [cos(a) - (2 - (m;— D + (7712;-21)) sin(a)} ) (2.49)
Vi1 =JS [cos(a) — (2 — % + %)] %, Vo =2J (1 — %) sin(a)%,

onde novamente os termos lineares dos bésons foram eliminados por simetria, motivo o mesmo que forca, através
da forma de t;07"1, que ndo haja nenhum elemento tal que m # m’. Observa-se que os fatores Dy, s6 existem
para um e dois, tal como as dispersdes no caso ferromagnético s6 possuem dependéncia em k nas mesmas
“espécies” de bosons. 7y segue a mesma definigéo que na Eq. (2.46)).

A partir daqui, o hamiltoniano pode ser tratado em completa analogia ao que foi feito no caso antiferro-
magnético SU(2), como ilustrado em (AUERBACH, 2012). Aplicamos uma transformagdo de Bogoliubov e
diagonalizamos o sistema, de modo que U,,, = By, e Vi, = C}, na resolucdo da se¢do SU(2) e l~7k7m S40 0S NOvVos
bésons definidos na transformacao.

Nosso hamiltoniano se torna:

2S5
HEG = (flz,flb;r{,lbki + gli,j;b;r(,Qka) + 3 Unbf bicam,
k m=3

ﬁfl =.J [S cos(a) — (25 -2+ %) sin(a)} 4d? — 2, (2.50)

b= \/(U2)2 —4J? (1 — %)2&112(04) (1)
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a=0rT a=-—J1 a=-JT
= £ o

12
10t

8.

6.

4.

2.

o . . .

-7 -77/2 0 7T/2 T

T -nl2 0 12 T o-m -m2 0 72 -

Figura 2 — Relagdes de dispersdao AFM para S = 1 ao longo do vetor k = (1,1, 1). Em vermelho, m = 1; em azul, m = 2.
(a) & = 0, caso sem o termo biquadrético. (b) &« = —m /2, limite instdvel inferior. (c) & = 7 /4, limite instdvel
superior.

Tal como no caso ferromagnético, a estabilidade dos estados jaz na imposicao de que suas energias ndo se
tornem negativas para qualquer k, o que indicaria que a escolha do estado fundamental cldssico sob o qual os
bésons sao definidos se torna instavel, potencialmente levando a uma transicdo de fase. Disso, obtém-se as
seguintes relagcdes:

S cos(a) — (25 —24 %) sin(a) > 0

S cos(ar) — (ZS -3+ %) sin(a) — (1 — %) sin(a)| >0 (2.51)

1
S cos(a) — <25 -—m—1+ (7712——;)> sin(a) > 0
As relagdes de dispersdo para o caso S = 1 sdo retratadas nos graficos da Figura[2l O caso um (a = 0)
exibe o tipico resultado antiferromagnético, equivalente ao resultado SWT, salvo pela faixa constante. O segundo
(v = —m/2) é um caso limite com simetria SU(3). O dltimo caso (o = 7/4) exibe um comportamento do sistema

no limiar das condi¢des de estabilidade, com um ramo com energia zero.

2.3.2 Propriedades termodinamicas

Em posse das relagdes de dispersdao do hamiltoniano bilinear biquadrético, tanto no caso do ferro como no do
antiferro, somos capazes de calcular sua fun¢do de parti¢do e, dai, extrair algumas das propriedades do sistema.
E importante lembrar que todo o tratamento aqui feito é para um sistema a baixas temperaturas, isto é, T — 0.
Ao fazer isso, estamos isolando nossa leitura apenas as perturbacdes de mais baixa energia em torno do estado
minimizado no qual as expansdes foram feitas.

Expandindo vy, das relacdes de dispersao, até primeira ordem em k, obtemos:

d d d
k2
Yk 2 (E 1— 7‘1> = <2d— § kﬁ) — Y~ 4d? —4d§ k2 + O(ky). (2.52)
q=1 q=1

q=1

Ao colocar essa definicdo nas dispersdes de m = 1 e m = 2 para o caso ferro obtém-se:
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g =—JS <COS( )+ 2 <1 - %) Siﬂ(a)) (Zd: k§> ;

q=1
(2.53)
4 1 1 )
f .
o = —4dJS [cos( )+ (2 -3 + 52> sm(a)} —2J (1 - §) sin(a) ;kq :
enquanto para o caso antiferro:
1 d
W= [5 cos(ar) — (25 — S+ E) sin(oz)} 4y k2 - O(kY)

q=1

(2.54)

2 d
W= | (Us)? — 42 (1 — 2—;2) sin?(a) <4d2 —4d) k2 + O(kg))

q=1
Os casos para m > 3 seguem sem alteracdo para as dispersdes desse hamiltoniano. A fun¢do de particdo é,
por se tratarem de bdsons, tal como definida em (SALINAS, [2008):

N—-1
2 =111 —exp(—B&m)™ (2.55)

k m=1
A fungdo de particdo, 2, é uma descri¢@o estatistica do sistema que considera todas as possibilidades de
ocupacdo dos niveis de energia permitidos de modo que o seu total seja bem definido, podendo, portanto, ser
relacionada com a energia interna por particula, u, que, por defini¢do da termodindmica, induz uma grandeza

caracteristica do sistema, o calor especifico a volume constante, C'y,. Suas defini¢cdes sao:

ou

\%

— L Eemdh?
Z / 9 (exp(Biem) — 1)’

_(ou _N‘liww (Giem)” 5m i
(aT)V—EN o Gt 17

m=

(2.57)

Onde 3 = BT T,

temperaturas pequenas, a contribuicao principal se deve ao ramo, em ambos os casos, de m = 1. O caso ferro em

kp sendo a constante de Boltzmann e 7" a temperatura. Como estamos tratando o caso de

trés dimensoes €, portanto:

g,=-JS (cos(a) +2 (1 - l) sin(a ) (Z k:2> = (; k§> ,

/L347r (AK?)? P W kpB2k2dk  LPkp 1 /OO 252e*dz
Cvay (exp(BAK2) — 1) 2N (2m)* (BA)? Jo  (ev —1)*

onde foi usada a substitui¢cio z = 3Ak? depois de colocar a integral em coordenadas esféricas.

(2.58)

O caso antiferro procede de modo similar, ignorando os termos de (’)(k’;‘), e considerando que maior contri-

bui¢do € dada pela dispersao dos bésons com m = 1:
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E(k) E(k)
12F 1 L" r o
o b /
10t ] [
8t . | ]
6F : L ]
4t ] [
ol ] I
O-I ] . | I-: .-I 1 kl‘ 1 /// 1 I-
-7 -71/2 0 77/2 7T —-JT —77/2 0 7T/2 T

Figura 3 — Comparagdo do espectro ferromagnético do modelo bilinear biquadratico (em azul) com o do hamiltoniano
SU(N) (em laranja). O constante de troca J = —1 foi aplicado ao hamiltoniano SU(N). Graficos tomados ao
longo do vetor k = (1, 1, 1). (a) Ndo normalizado; (b) Com o hamiltoniano SU(N) multiplicado por 1/ V2.

d d
la(fl =J [S cos(a) — <2S -5+ %) sin(a)] 4de§ —O(kg) = A Zkg ’
g=1 =1

/L347r (Ak) 2 efAk szQdk: L3kg 1 /OO ztetdx
GEN R o (e =17

(exp(BAk) —1)° N (2m)* (BA)°

onde foi usada a substituicdo x = S Ak ap6s implementar as coordenadas esféricas.

(2.59)

Com isso, mostramos que, para o caso de baixas temperaturas, 7" — 0, o tratamento de ondas de spin em
SU(N) recupera os resultados usuais do calor especifico para o ferro, C'y, T3/2, e o antiferro, Cy o T3 ao
eliminar o efeito dos bésons com gap. Os ramos extras presentes na teoria podem levar, no entanto, a alguns
efeitos. Para o caso em que o hamiltoniano apresenta simetria SU(N), os ramos podem ser degenerados, no
calor especifico, que € aditivo nos ramos, isso levaria a uma constante multiplicativa no resultado final, mas nao

alteraria a lei de poténcia.

2.4 O caso degenerado e os geradores SU(N)

E possivel escrever um hamiltoniano com simetria SU(N) da forma:

H=Y omorm= % (blmbrm)@l/,m/brgm)a (2.60)

<r7r,>7m7m/ <r7r/)1m1m
cujos termos podem ser analisados em trés casos distintos. m = m’ = 0; m = 0 com m' # 0 e m # 0 com

m’ = 0. Para os propdsitos dessa expansio, seja:

A= Zbrm - (2.61)

onde, para os propdsitos dessa conta, se o termo é em fungdo de r, r’, m ou m’ € indiferente. Obtemos entao:
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m=m'=0- 3 (VI-AVI-3) (VI-AVI-2])

(r,r’)

r/

m = 0, m 7£ 0— Z bi,m <\/1 - A>r <\/1 - A) ” br’,m (262)
(r,r’)m’#0

m:(),m’#()—> Z (\/1_ ) r,m’ rm(m>r,
(r,r")m’#0

Expandindo as raizes até primeira ordem e mantendo apenas termos com até dois operadores bosoOnicos,

obtemos o seguinte:

H= Z(l_zbrmrm Zbr’m’ r’, ’+Zbrmbr’ +Zbr’m rm)’

m/=1 m/=1
(2.63)
_Z <1+Z<rm rm+bim rm) _szrm rm)'
Colocando esse hamiltoniano no espaco dos momentos como definido pela Eq.(2.9)), temos:
=z d
H="1N+ > b b (—Z +) 2 cos(kq)> (2.64)
k,m qg=1

Comparando a dispersdo desse hamiltoniano com o caso degenerado do modelo bilinear-biquadratico, no
ponto de simetria SU(3), concluimos que sdo idénticos, salvo por um fator de normaliza¢do, como mostrado na
figura[3]

Embora a comparagdo aqui feita seja somente em relagdo ao SU(3), vale notar que a dispersao gerada pelo
hamiltoniano aqui descrito € idéntica independentemente do N em questdo e, portanto, do S do sistema, pois

todas as espécies de bosons assumirdo 0 mesmo comportamento.
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3 Conclusoes e consideracoes finais

Na anélise do hamiltoniano bilinear-biquadratico encontramos resultados equivalentes, seja pelo tratamento
com a teoria usual, SWT, ou pela aplicacdo da ferramenta generalizada, GSWT, para o limite de temperatura
zero, no qual os bésons sem gap possuem a maior contribui¢do, obtendo-se as leis de poténcias esperadas para
o calor especifico, tanto para o caso ferromagnético como para o antiferromagnético. As divergéncias, contudo,
sdo evidentes ao se observar os espectros dos magnons de cada um. As dispersdes do caso de m = 1 (estado mais
populado a baixas energias) se reduzem a mesma coisa nos casos em que retornamos ao ambito usual da SWT,
ou seja, ao eliminar o termo biquadratico ou ao tender para o limite de spin S grande. Para os demais casos, a
GSWT apresenta uma sensibilidade ao valor do spin .S, o que ndo estd presente na contraparte SWT, além de
possuir outras “espécies” de magnons em sua dispersao que ndo constam na teoria usual.

Torna-se claro que, para o estudo de casos com spins maiores que 1/2, pode-se tratar esses sistemas magnéticos
em termos de mdgnons que obedecem a simetria SU(N), onde N = 2S5 + 1. Essa abordagem acomoda ndo
somente os hamiltonianos que possuem essa simetria especifica, como também abarca os casos que sao, em geral,
simétricos apenas com relacdo ao SU(2), tal qual o modelo bilinear-biquadratico de spin 1. O tratamento do
problema com SU(N) possui a vantagem de naturalmente interpolar para os pontos de simetria mais alta, que
existem em pontos especificos desse hamiltoniano, de modo eficiente.

A abordagem aqui descrita permite tratar casos de ordenamentos além dos dipolares (quadrupolares, oc-
topolares e assim por diante), perspectiva a qual se pode ter para trabalhos futuros, explorando sistemas tais
como (LAUCHLI; SCHMID; TREBST, 2006), (WIERSCHEM et al., 2012) e (LUO; DATTA; YAO, 2016).
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