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1. Objetivo.

Este trabalho visa o modelamento em regime transitério do subsistema de pré -

resfriamento (“pre-cooler”) pertencente a um sistema pneumético aerondutico.

Apos a modelagem de cada um dos elementos do subsistema, os mesmos serfio

vinculados e implementados no software MATLAB.

Uma vez realizada a implementacéio do modelo far-se-4 um trabatho de analise desse

subsistema no sentido de otimizar seu funcionamento.




2. Composig¢io do sistema pneumatico.

O sistema pneumadtico, ilustrado na figura 2.1 , ¢ composto, de maneira geral, por:
a. Dutos.
b. Juntas flexiveis e rigidas.
c. Valvulas de controle.
d. Vialvulas totalmente abertas ou totalmente fechadas.
¢. Sensores de presséo, temperatura € vazamento.
f.  Atuadores de pressdo para controle de valvulas.
g. Termostatos para controle de atuagdo de vilvulas.
h. Restritores.

1. Trocadores de calor.
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Figura 2.1; Sistema Pneumatico.



2.1 Funcgdes do sistema pneumadtico.

O sistema pneumatico tem como fungdes:

» Extrair ar do motor a fim de alimentar seus subsistemas dentro de dadas

condi¢bes de operagio.

» Controlar a temperatura ¢ pressfo para o sistema de ar condicionado da
tripulacio e dos passageiros e para o sistema de antigelo do para-brisa, das asas

e dos estabilizadores.
» Controlar a pressio na cabine.

> Fornecer ar para o acionamento da APU (unidade de poténcia auxiliar) que
posteriormente dard a partida no motor esquerdo e, em solo, fornecera poténcia

elétrica, hidrdulica e ar (para o sistema pneumadtico).

2.2 Descri¢do sucinta do sistema pneumitico.

Este sistema é alimentado pelo ar extraido do 9° estdgio de compressio, através da
“bleed air check valve” (uma valvula do tipo unidirecional totalmente aberta ou
totalmente fechada) ,e/ou do 14° estdgio de compressdo, através da agfio conjunta
(embora nfo solidaria) da “high stage valve” (uma véalvula que permite aberturas
intermediarias) e de outra “bleed air check valve”, conforme as solicitagdes de antigelo

€ ar condicionado, as quais dependem das condi¢Ses de voo.

O ar extraido escoa rumo a um trocador de calor (“pre-cooler”) que utiliza como fluido
frio ar extraido da regifio do “ventilador” do motor. A quantidade deste ar extraido ¢
proporcional 4 abertura da véalvula de controle (“fan air valve”) determinada pelo
atuador de um termostato bimetalico - que atua também como sensor - (“fan air control
thermostat™), posicionado 2 jusante do trocador de calor no circuito 3 que est4 ligado ao

subsistema de ar condicionado e ao subsistema de antigelo, como mostra na figura 2.2.

Ja o fluido frio, apds a troca de calor, flui para a regifio do pilone.




2.3 O subsistema de pré — resfriamento.

E constituido pelo trocador de calor (“pre cooler™), pela valvula de controle (“fan air
valve”) e pelo termostato. Sua fungéo € resfriar o ar extraido da turbina do motor usando

como fluido frio o ar retirado da regifio do “fan” do motor.

O ar extraido chega no subsistema com temperaturas da ordem de até 450°C e deve ser
resfriado até (260 +/- 2)°C.

2.3.1 Descric¢io do subsistema.

O ar extraido da turbina do motor (*fluido quente™) segue pelo “linha quente™ entrando
no trocador de calor (“pre-cooler”) no ponto 1 e, depois de resfriado sai do mesmo pelo

ponto 2 no sentido da linha 3 (restante do circuito pneumatico).

J4 o ar extraido da regido do “fan” (“fluido frio™) segue para o trocador de calor pela

“linha fria” entrande no mesmo pelo ponto 3 e saindo no pilone pelo ponto 4.
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Figura 2.2: Subsistema de pré-resfriamento (“pre-cooler”).




As vazdes do “fluido quente” e do “fluido frio” sfo funcdes das solicitagbes do sisiema

de ar condicionado e de antigelo e, portanto, sSo variaveis.

€

A vazio do “fluido quente” ¢ determinada por um sensor de temperatura (“bleed

temperature sensor™) - localizado na linha 3 — que abre totalmente a “bleed air check

valve” e controla a abertura da (“high stage valve”) e, assim, a extracdo de ar do 14°

estagio do compressor do motor.

Ja a vazio de fluido frio € determinada pela abertura da valvula de controle (“fan air

valve”™) pelo termostato o qual esta instalado no circuito 3.

Essas vazoes devem ser tais que a temperatura do fluido que passa pelo termostato na
linha 3 deve estar entre 266 °C e 300 °C. Abaixo de 266 °C a véalvula de controle

(“fan air valve”) € fechada e, acima de 300 °C a “high stage valve” ¢ fechada.

Em algumas situagdes de vOo em que os sistemas de ar-condicionado e antigelo estdo
acionados, h4 uma variagio na temperatura de saida do trocador de calor (T2) superior
permitida (+/- 2° C).

Este fato leva tais sistemas a perderem eficiéncia e ter como conseqiiéncia desconforto

térmico da tripulacfio e passageiros e formacio de gelo em areas protegidas.

Com o presente trabalho pretende-se propor medidas para otimizar o controle deste

subsistema de pré-resfriamento a fim de eliminar esta variagfo excessiva.

2.3.2 Trocador de Calor.

E um trocador do tipo compacto,de corrente cruzada e de um nico passe sem que haja
mistura, sendo constituido por vérios tubos aletados de ago inoxidédvel (assim como as
aletas).O fluido quente passa pelo interior dos tubos circulares ao passo que o fluido frio

passa entre as aletas, as quais estfio envoltas por uma regifo retangular,
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Figura 2.3: Trocador de calor.

2.3.3 A “Fan Air Valve”.

E uma vélvula normalmente fechada, do tipo borboleta, atuada pneumaticamente por
um tnico atuador, alimentada por ar da linha quente, o qual passa por um filtro €, na
seqiiéncia, por um orificio inferior e, um regulador de presséio composto por uma esfera
e uma mola (ambos atuam conjuntamente a fim de evitar que a presséio no ponto A nio

exceda o valor de 15 PSlg [ 103,4 kPa ]).

A seguir, o fluido passa pelo orificio superior o qual tem a fungdo de influenciar

diretamente o tempo de resposta da véalvula na cidmara.

A pressfio na cdmara da vilvula é determinada pela posi¢éo da esfera do atuador do

termostato em relagéo a sua sede o qual impdem a presséio no ponto C.

Como os pontos B e C estio muito proximos e a uma mesma cota de altura , a pressio

no ponto B - que € a pressdo na cdmara da valvula - € a mesma do ponto C.




Figura 2.4: “Fan air valve” - esquematica.

Estando a pressfo da cdmara regulada, a mesma agird sobre o émbolo envolto por um
diafragma ¢, a resultante entre as forgas do ar sobre o émbolo (pelo lado interno da
cdmara) € da mola e do ar atmosférico (pelo lado externo da cimara) acionard o

mecanismo que determinara a abertura da valvula.

Vale ainda comentar a func¢fio do pino de travamento (“lock pin™) que ¢ a de permitir a
exaustdo da c8mara no caso de travamento da vaivula, ou seja, tem a fungfio de uma

valvula de seguranga.

2.3.4 Termostato.

E um elemento bimetslico composto por uma haste central interna e outra externa -
cujos materiais sdo, respectivamente,uma liga a base de Niquel e ago inoxiddvel - um

mecanismo e uma esfera atuadora; est4 localizado na linha 3.




A haste externa estd exposta ao “fluido quente”, havendo uma transferéncia de calor por
convecgiio forcada. Como existe uma alta expansfio na haste externa ¢ uma baixa
expansdo na haste interna - a qual estd ligada 4 extremidade da haste externa por um
pino - a diferenca das dilatagbes é que determinard o deslocamento do mecanismo que

posiciona a esfera de atuacfio.

Esta esfera, definird uma restrigfio a qual sera responsavel pela determinagfio da presséo

da cmara da valvula como explicado no item anterior.

P ——
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Lo |
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L o el
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; ]
I_‘J‘\Lw. tubo de alta expansso

womis sl

Figura 2.5: Termostato-esquemdtico.
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3 Modelagem.

S3o apresentadas as hipéteses assim como os respectivos modelos matematicos da
valvula, do termostato, do trocador de calor e dos tubos, a serem aplicados no programa

de calculo a na andlise do subsistema.

3.1 Introducio teodrica.

Do principio de conservagfio da massa tem-se:

dmye . .
TV S mo—=VYm. =0 3.1
dt Z € Z I ( )

J4 da primeira lei da termodinimica para a configuragdo de volume de controle tem-se:

: : V. : V. )
O+ mj. h,-+%+g.zi =%+Zme. he+—£—+g.ze +W (3.2)

Observando a equagdo acima, para efeito desse trabalho, pode-se assumir:
» Variago de energia potencial nula.
> Variagio de energia cinética nula.

Assim, a primeira lei pode ser escrita como:

Q+zr};,-.(h,-)=‘;—f+zéze.(he)+w (3.3)
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i dm dE : : v
Nas equacgdes acima, —=¢ = caracterizam o regime transitorio do volume de

dt

conirole.

Outro aspecto ser abordado e de relevante importincia para esse trabalho ¢ aquele

referente  transferéncia de calor tanto por convecgdo quanto por condug@o.

A transferéncia de calor por convecgdio pode ser representada pelo seguinte modelo

matematico:
Q = H.A(AT) (3.9

Em que o termo H ¢ fungdo do fluido, suas propriedades termodinamicas, sua

velocidade, sua temperatura e da geometria do corpo.

J4 a transferéncia de calor por condug¢fio pode ser representada pela Lei de Fourier, a

qual é apresentada na seguinte forma para escoamento unidimensional.

- ar
=—hA—
Q o (3.5

oT _— . =
Na qual o termo T representa a variago da temperatura ao longo de uma dimenséo.

Outra lei importante € a lei de Colebrook para escoamento hidraulicamente rugoso que

pode ser expressa por:

=174+ 2.10g(£) (3.6)
2.8

-
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3.2 Tubos.

Antes de modela-los em regime transitorio, foi realizado um estudo das ordens de
grandeza do subsistema , o qual incluiu a andlise dos perfis de temperatura € pressdo nos
diferentes trechos da tubula¢io de onde se pode concluir que tais variagbes niio séo
significativas a ponto de tornarem o modelo mais preciso. Dessa forma, as mesmas nfio

serdo consideradas no programa de célculo.
O anexo A mostra tanto 0 modelo em regime permanente quanto os resultados obtidos.

3.3 Valvula.

Ser4 apresentado um modelo em regime transitdrio a ser usado no programa de calculo.

Hipoteses.

> Ar: gas perfeito.

» Regime transitério.

» Escoamento isoentrépico.

» Atrito entre émbolo e parede despreziveis.

» P1<15PSIg.

» Ps=pressfo na entrada do termostato.

3.3.1 Modelo Matematico.

Da figura a seguir:

T — . — e ————— ———
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5
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filtro
M n “Veom
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Figura 3.1 : Modelo de valvula.

A partir da qual algumas hipoteses sdo melhor interpretadas e do desenho a seguir que

mostra o esquema de forgas, pode-se entender o seguinte modelo matematico.

filtro |—|

PS LV NS
AN FAN

Figura 3.2 :Esquema de forgas.

Da primeira lei de Newton:

Romp =Mepp.a (3.7)

Temos o seguinte equilibrio de forcas:
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Remb:F:s_Fm_ch_Famb (3.8)

Que pode ser expresso por:

Romp = Ps.Aemb — [Km. Y+ Fye + Pamb. Aemb + b%] (3.9)

Da definicfio de aceleracdo:

dzy
= 3.10
ks (3.10)
E de:
y= Veam (3‘11)
Aemb

Entdo, (3.7) torna-se:

+ b. dvcam

- It Ko cam = Ps.A%emb — Pamb. A emp - F,, (3.12)

Da equagdo anterior fica claro que o volume da cémara € a varidvel tinica, ao passo que
as demais sdo constantes conhecidas, 4 excegdo de Ps que € determinada em fungio da

temperatura da haste.

3.4 Termostato.

Sera apresentado um modelo baseado no método da capacitancia global a ser aplicado

no programa de célculo.
Hipéteses.

» Regime transitorio.




15

» Condug¢fo unidimensional,

» Material metalico homogéneo.

» Deformagdes térmicas sdo pequenas e ocorrem no regime eldstico-linear.
» Temperatura uniforme nas hastes.

» Conveccéo entre as hastes desprezivel.

» Temperaturas nas hastes interna e externa iguais.

3.4.1 Modelo Matematico.

Baseado no modelo da figura 3.3:

a2
Bank g, ot ‘j 4y host wbarg,
or mk , 3 '
. & w;": B8 . ]m[i‘ e
i ‘
T
L g2 * b l <y

Figura 3.3: Modelo para a modelagem pelo método da capaciténcia global.

Aplicando a primeira lei da termodin&mica na haste.

: dT,
+Econv 4 = pz.VhaSte.Cp.$ (3.13)
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ATpas
H paste-Apaste Thaste = T2 )= P2¥ haste P g © (3.14)

J4 0 mecanismo do termostato foi modelado partindo do esquema fisico a seguir:

L_F_i

hoaste

Figura 3.4: Mecanismo do termostato.

A variacfio do comprimento de cada haste serd calculada por:
Al =l.a.(Tt+At —T} ) (315)

Assim a diferenga de Al entre as hastes ¢:

int ext
A=A~ Alotal (3.16)
o= arctg[%) (3.17)
Ax =cigf (3.18)

distdncia = e + Ax (3.19)
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Conhecida a distancia, pode-se entfo determinar a perda de carga na sede da esfera e,
portanto, P,
Como nfio foi possivel obter as dimensdes do fabricante, optou-se por usar a relagdo

P; X Thaste, Obtida num ensaio em laboratério, para determinar Ps,
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4 Controle.
4.1 Introdugio.

O controle do subsistema do “pre-cooler” monitora a temperatura de saida do trocador
de calor na linha quente ¢ regula a vazfo massica do fluido frio na entrada do trocador

de calor de forma a se obter a temperatura desejada na linha guente.
No sistema em questfio, podemos classificar:;

» A vélvula de controle como atuador ja que € ela quem controla o fluxo de ar

“frio” que reduz a temperatura no trocador de calor.

> O termostato como sensor controlador, ja que ele é sensivel 4 temperatura e

transmite essa informacio.
» Trocador de calor: nfio possui uma denominagdo especifica.

Levantamentos em campo mostram que em alguns casos de sub-temperatura e sobre-
temperatura ocorrem oscilacdes acima dos limites desejados na temperatura de saida, o

que ¢ indicativo de que o ganho do atuador ou controlador nio sfio adequados.

Dessa maneira, se faz importante a valiagio dos ganhos atuais:

100-0 % %

Ganhohasre—mecanisma = 300-266 °C =294 oC

88-0 ° %

Ganhomecanismo—vd!vu]a = 100:0 . "_A) = 0388- = C—

88-0 N %
Ganho i =————— —=27588.
termostato—valvula 300 - 266 °C °C
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4.2 Determinac¢iio das funcoes de transferéncia dos elementos no

dominio de Laplace ( plano s ).

Para tal sera aplicada a Transformada de Laplace que forneceu as relagdes a seguir para
cada elemento, admitindo que inicialmente, o sistema esta em regime permanente ¢ que

ap6s a perturbagéo o mesmo retornara a condi¢do de equilibrio.

4.2.1 Valvula

De:

dzvcam a0 b dvcam

2 2
- it + Krn.vcam = Ps.A emb — Pamb. A" emp — ch (41)

Momp.

Memb *| ¥ cam (S').SZ =V cam (Ols - Vcam (0)} + b.[\?’cam (s).s —V o (0)+ Km]+

+ Vcam(S) = —ch + (Ps = Pamb).Azemb (42)

Admitindo:

il
[l

Y cam'0) (4.3)

0 4.4)

V(.‘C;‘f?’.l (0)
Assim,

Memp Y cam(S)5” + BN cam(5)s + K g s) = (Ps — Pams) A2emb — Fpe ~ (4.5)

2
Y eam (s)[m.,,,,,,,,.s2 +bhs+ Km] = (Ps — Pamb) AKf"’b ~-F (4.6)
m

pc
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2
Vean(s) = ! - {(Ps — Pamb). A;””’ —ch.%] 4.7)
l:memb 2+ 7 s+ IJ i
Km Km
2 2
PS.A exh (—Pamb).A enh F .Amé
Km " Km
vcam(s) = i) + 2 2 2 (48)
J15732.5+1 Jr.s TF2s +1 s F2s+1
Sendo:
~ _ Memp
= 4.9
= 4.9
b
TJop=— 4.10
T (4.10)
4.2.2 Termostato
De:
dr
Hpaste-Apaste{Thasie — T2 )= pV p¢ p stte (4.11)
Admitindo
Thaste (0)=0 (4.12)
Assim,

Hpaste-V haste-P '[Thaste (s)s - T(O)] = HyasteApgq, '[T.'Z (5~ Thaste (S)] (4.13)

[H haste-¥ haste-P + H paste -Ahaste ]'T(S) = Hpaste-Appero 112 (S )_ Thaste (S )] (4.14)
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1

Hposte-¥ naste P } -
H haste- -Ahaste

Tas) (4.15)

Thaste () = {

1
Thas:e(s)—[mfz(s) (4.16)

em que:

35 = {H haste-V haste-P :l 417
H haste-Ahaste

4,2,3 Trocador de calor

Como serd usada a curva do fabricante, o seu comportamento dinimico sera

representado pelo posicionamento de constantes de tempo antes da curva.

Tais constantes foram determinadas a partir de um modelo de trocador de calor, que esta

no anexo B.

4.3 Diagrama de blocos.

O diagrama de blocos completo do subsistema estd no anexo C. A seguir apresenta-se o

diagrama de blocos simplificado.
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= ‘__L

—  vilvula  |[——— mplf

Trocador de calor

*

N

Ps |4——— Termostato (o

Figura 4.1: Diagrama de blocos simplificado.

4.4 O programa de calculo.

O programa de cdlculo, elaborado em MATLAB no médulo do SIMULINK, tem por
objetivo representar a dindmica do subsistema de pré- resfriamento. Tal programa tem

como entradas:
» Condigdes de vdo ( altitude, velocidade, temperatura e presséo externas ).
» Condi¢bes do ar da linha quente ( vazio massica, temperatura e pressdo ).
» Condigdes do ar da linha fria ( temperatura e presséo ).

» Pardmetros da mola ( constante eldstica e pré-carga )

O programa fornece as seguintes saidas:
> Temperatura e pressio na saida do trocador de calor na linha quente.

» Vazio méssica de ar “ frio .
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» Posicionamento do atuador da valvula.
» Volume da cdmara da valvula.
» Dilatagfio das hastes do termostato.

Além das saidas, o programa também calcula todas as propriedades termodindmicas

necessarias. Na sua elaborag@io foram consideradas as seguintes fontes de dados:
a. Curvas levantadas diretamente em laboratério e contidas no anexo D.

» P.xT..

> PBxP,

» Constante de singularidade x p.

b. Curvas obtidas da manipulacio dos dados de ensaio em laboratdrio também contidas

no ancxo D,
> Veam X Ps

¢. Dados fornecidos pelo fabricante.

» Curvas de eficiéncia do trocador de calor em fungfio das vazdes massicas

“quente” e “fria”.
» Curvas de perda de carga em fungéio das vazdes massicas “quente” e “fria”.

d. Dados sobre propriedades termodindmicas via software (EES).




4.4.1 Validac¢io do programa.

Uma vez implementado, os resultados do programa de simulagdio foram comparados
com dados de ensaios em vdo do ERJ-145, apresentados na Tabela 4.1. As Tabelas 4.2 e
4.3 apresentam os valores calculados pelo programa e a comparagéio dos valores

experimentais e de simulagfio. A partir destes resultados fica claro que o programa pode

ser aplicado em andlises via simulagfo.

Tabela 4.1: Dados de Véo.

CASO Text Pamb niplg Pl T3 P3
°C Pa ke/s Pa 2C G

1 6.0 6.97E+04 | 0645 | 4.50E+05 17,7 12,76

2 -10.0 6,97E+04 0,645 4 49E+05 13,3 12,77

3 ~10,0 5,95E+04 0,623 4,28E+05 7.4 11,19

4 -13,3 5,95E+04 0,623 4,48E+05 16,2 11,71

5 -20,0 4,28E+04 0,620 3,79E+05 15,2 8,92

6 -30,0 5,95E+04 0,623 4,15E+05 -8,3 10,85

Tabela 4.2 : Dados calculados pelo MATLAB-SIMULINK.

T Beta mplf
a C o kg(s
2452 1.9 0,047
2362 1,5 0,049
2537 22 0,046
248.9 2.0 0,049
2750 3,6 0,048
2149 0.6 0,442

Tabela 4.3: Comparagio entre os dados de v6o ¢ os calculados pelo MATLAB-

SIMULINK.,
T2vbo | T2 MATLAB |( T2 vdo » T2 MAT)/T2 vdo
e S %
246.9 2452 -0.69
239.1 2362 -1,23
254.8 2537 -0,44
2522 2489 -1,31
270,0 2750 1,85
2291 2149 -6,21
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5 Analise dindmica do sistema.

5.1 Introducéio.

Este item analisa a valvula, o termostato ¢ o trocador de calor destacando aspectos
ligados a sua estabilidade, as constantes de tempo € a resposta a excitagio ao degrau

unitario.

Além disso, este item compreende a analise de sensibilidade de todo o sistema de pré-
resfriamento de forma a identificar quais os possiveis pardmetros a serem alterados para

a sua otimizacdo.

5.2 Desenvolvimento.

As constantes de tempo obtidas a partir do modele matematico da valvula para os

termos de primeira e segunda ordem s#o, respectivamente:

3; =119.107° 52
I, =8,7.107 45

Onde a constante de tempo I, possui uma influéncia maior na caracterizagfio da
dindmica da valvula e, conseqiientemente, na sua estabilidade. A diferenga observada
nas ordens de grandeza se d4 sobretudo pela massa do émbolo, que ¢ muito pequena em

relacfio a constante da mola.

Analisando o lugar das raizes da valvula, Figura 5.1, pode-se notar que as mesmas

encontram-se na parte negativa do eixo real indicando que o equipamento ¢ estavel.

Quando exposta & entrada degrau unitério, a valvula apresenta a resposta apresentada na

Figura 5.2, que evidencia a sua estabilidade, que € alcangada apés 0,0215s.
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Local das Ralzes da Valaula

250 —— T T T

T LI
200) | ; l
150 ¢ % : -
100 i ]
50| 5 E
2 :
b3 '
(1] i
E :
50| : i
-100 |- i j
-150 j
200 !
250 L d n L L e _x:_ L. J
-250 -200 -150 -100 -50 0 50
Real Axis
Figura 5.1: Lugar das raizes da valvula.
Resposta da Valvula @ Entrada Degrau
¥ 1C From: {1}
1.4 /,; =
S
i ’
2 v
E _0A /
5 /
E =
2 o
>
A
i i
0 G o0s 0.0% 0.018 Q.02 ot

t (s)

Figura 5.2 : Resposta da valvula 3 excitagio de degrau unitario.
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Em relagéio ao termostato, cujo comportamento dinfimico € de primeira ordem, percebe-
se que a resposta do termostato dependeri da condi¢fio do escoamento ji que o
coeficiente de convecglio € funcio direta do regime de escoamento e propriedades

termodindmicas tendo o seguinte valor médio obtido apds varias simulagdes.

I3 =0,12s

Verificando-se a posi¢io das raizes no diagrama abaixo, pode-se observar que todas as
rafzes estfio no lado esquerdo do plano real-imaginario. Isso significa que o termostato

apresenta estabilidade.

Lugar das Raizes do Termostato

ra— S, S - ; -
0.8} |
4
041

0.2}

Imag Axis

S
[ ]
e = e - S——— .

-0.4 |
0.6 ;
0.8} !
R L L 4 e 1 i
-8 6 -4 -2 0 2

Real Axis

Figura 5.3 : Lugar das Raizes do Termostato.

Das entradas degrau unitario nota-se que o termostato apresenta uma resposta estavel

num intervalo de tempo de 0,82s,como mostra o grifico abaixo.
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Resposta do Termostato ac Degrau Unitario
From: U(1

0.14

0.12

0.GB8

°C
Ta: Y {1

0.08

.04

g0z
o 0.15 0.3 045 06 0.7% 0k

t (s)
Figura 5.4: Resposta do termostato ao degrau unitario.

No trocador de calor, por sua vez, a resposta dindmica ¢ uma composicdo dos efeitos

dos lados “frio” ¢ “quente”. Tais constantes de tempo sdo:

- mlq.cplq
M iy cpg, +UA
g €Plg

P m;f <pif
f e Cpf + UA

Apresentando valores médios, respectivamente, de 0,55 +0,5se 0,1 0,05 s.

Avaliando a ordem de grandeza das constantes de tempo fica claro que aquelas que

representam fendmenos térmicos sdo da mesma ordem de grandeza, ao passo que
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aquelas que representam a vilvula tem uma ordem de grandeza trés vezes menor em

relagdo a essas.

Isso significa que a valvula ¢ mais sensivel a uma perturbacfic que os demais elementos,
indicando que o volume da mesma terd uma freqiiéneia de oscilagio maior que a
temperatura do termostato e da temperatura de saida do trocador de calor até o regime

permanente.

As simulag3es permitiram observar que, expondo o sistema a uma excitagéio de degrau
unitdrio em condigdes de estabilidade ou de ndio estabilidade, este mantém o mesmo
estado, ou seja, se estivel antes da excitagfio, assim permanece apés tal fendnemo e

vice-versa .

5.3 Analise de sensibilidade

Nesta andlise ¢ avaliado o comportamento do 4dngulo de abertura da valvula e da
temperatura de saida do trocador de calor (T3) quando alterados alguns pardmetros do

sistema.
5.3.1 Constante elastica da mola.

Espera-se que as grandezas tenham maior amplitude de oscilagio em relagfio a um

ponto médio quando esse pardmetro assume valor menor que a referéncia de 6700 N/m.

Os graficos a seguir, foram obtidos diminuindo e aumentando a constante da mola em
dez vezes, em relagfio ao valor de referéncia podendo-se observar que a temperatura de
saida do trocador de calor é pouco sensivel a essa variagfo. J4 a posigiio do atuador

apresenta maior sensibilidade, como comentado no item 5.2.

Reduzindo-se a constante da mola, nota-se que a posigio da véalvula oscila com uma
amplitude maior que 25% e com freqiiéncia similar em relagdio ao caso de referéncia

com Km= 6700N/m ¢ pré-carga de 60N. Entretanto, quando aumenta-se a constante da
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mola, observa-se amplitudes de oscilagiio 5% menores que as do caso de referéncia.
Dessa maneira, afirma-se que quando aumenta-se a constante elstica da mola a
temperatura na saida permanece constante, ao passo que quando diminui-se essa

constante eldstica, aumenta-se a amplitude de oscilago da temperatura.

J4 na posigio do atuador o efeito é de quanto maior a constante elastica da mola, menor

a sua amplitude de oscilaggo.

Figura 5.5: Comportamento da temperatura de saida e posi¢io do atuador da vélvula
usando a constante de mola K= 6700 N/m e pré-carga de mola 60N.
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Figura 5.6: Comportamento da temperatura de saida e posigio do atuador da vélvula
usando a constante de mola K= 670N/m e pré-carga de mola 60N,
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¢ graf T2

Figura 5.7: Comportamento da temperatura de saida e da posigio do atuador da valvula
usando a constante da mola K=6700 N/m e pré-carga de mola de 60N.

5.4 A pré-carga da mola.

A anilise foi realizada usando-se as pré-carga sde 120N, 63N, 66N e a pré-carga atual
de 60 N.

Em linhas gerais, o efeito da pré-carga sobre a temperatura de saida ¢ significativo que o
do aumento da constante da mola, levando 3 redugdo da amplitude de oscilagio tanto da

temperatura de saida do trocador de calor quanto da posigdo da valvula.
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Para pré-cargaos de 63N e 66N nota-se que se obtém estabilidade da temperatura em
4,5s para ambos os casos e da posigio da valvula em, respectivamente, 5,55 e 5,0s. J4
para o caso com pré-carga de 120N, nota-se além da redugdo da amplitude de oscilagdo,
a instabilidade da temperatura e da posi¢do da valvula ocasionada pela grande
intensidade da pré-carga, ou seja, apos uma excitagio inicial, o sistema passa a oscilar
indefinidamente, pois o efeito da for¢a na cAmara passa a ser desprezivel frente ao efeito
da pré-carga. Dessa forma, o aumento da pré-carga em peguenos valores ja melhora e

muito a estabilidade da temperatura de saida e da posi¢do do atuador.

Figura 5.8: Comportamento da temperatura de saida ¢ posi¢do do atuador da vilvula
usando a constante de mola K= 6700N/m e pré-carga de mola 63N.
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¢ qi beta

P[P 2| #|7] =

Figura 5.9: Comportamento da temperatura de saida e posigfio do atuador da valvula
usando a constante de mola K= 6700N/m e pré-carga de mola 66N.
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Figura 5.10: Comportamento da temperatura de saida e posigdo do atuador da valvula
usando a constante de mola K= 6700N/m e pré-carga de mola 120N.
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6 Conclusio.

A partir dos resultados obtidos na validagdo pode-se considerar o modelo matematico
adotado como adequado j4 que as diferencas entre os valores de T ensaiados em vbo e
obtidos na simulagio sdo menores que 5% para a maioria dos casos analisados, uma
margem considerada aceitivel sobretudo em funcfio das aproximagdes de propriedades

termodindmicas, que apresentam erros maiores que este.

Nota-se que o aumento da pré-carga é uma dos parimetros que podem ser alterados a
fim de otimizar o sistema, no entanto a opgfio por um valor excessivo pode levar a
instabilidade, como mostrado na andlise de sensibilidade, que também deixa claro que

pré-cargas adicionais de 5% ja trazem sensiveis atenuagdes na oscilaggo.

A constante da mola, tem pequena influéncia sobre o sistema devido ao fato da razfo

M, /Ky ser tio pequena que, somente alterando a ordem de grandeza da constante

elastica € que h4 uma resposta diferenciada da temperatura e da posi¢do da valvula, mas

que ndio leva a temperatura T, e a posi¢do do atuador a estabilidade.

Uma analise ndo realizada neste trabalho devido a falia de informagGes do fabricante,
mas que seria muito interessante, é quanto ao aumento de pressdo P, para uma mesma
temperatura T,. Esse aumento da faixa de pressdo de comando traria, para uma mesma
faixa de a¢do do atuador (0 & 88°), um ganho menor € maior precisio no posicionamento

deste.

Um estudo preliminar indica que uma alteracfio na geometria do corpo de obstrugio do
termostato da forma esférica (atual) para a forma conica, traria um aumento de P, o que
também pode ser alcangado através de restritores de fluxo na linha de comando que se

caracterizam por ter um custo menor em relagéio A primeira aliernativa.

Assim uma otimizagfio minuciosa do subsistema passa, necessariamente, por um
modelo mais detalhado do termostato para que se possa analisar a sensibilidade 2

variagio da pressdo de atuagio da vélvula (P).
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E importante salientar ainda que a diferenca nos tempos de resposta dos elementos
submetidos a fendnemos térmicos e nio-térmicos é o aspecto critico para a estabilidade
do subsistema. Deve ser considerada a possibilidade da implementagdio de um controle
discreto nesse conjunto, uma vez que isto sanaria o problema das discrepancias de
resposta no tempo de uma maneira mecanica mais simples, embora haja a insergio de
componentes eletrbnicos que incorporario custos adicionais de manutencio e

substitui¢io no fim da vida ttil.
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Anexo A




Andlise das ordens de grandeza do sistema.

Neste item analisa-se os perfis de temperatura e pressdo dos diversos trechos de

tubulagfio a fim de verificar quais sdo aqueles que influenciam na preciséio do modelo.

Também € analisado o perfil de temperaturas na haste do termostato de forma a
comprovar a adequagdo do modelo apresentado, ou entfio, optar pelo modelo do método

explicito de discretizag@io da equagio do calor.

Todas essas andlises tém como objetivo procurar simplificar o0 modelo sem que se perca

a precisdo e, principalmente, visualizar melhor o sistema.

Perfil de temperaturas na haste do termostato.

Para tal foi considerou-se:
a. Regime permanente,
b. Transferéncia de calor por condugio.
Foi considerado um caso no qual o fluido da linha quente estava a 449 °C.

Admitindo-se que a temperatura nas faces superior e inferior da haste, Ty e T,

respectivamente, fossem:

To =Tyq (verdadeiro)

T=Tir (falso pois a temperatura do fluxo do ar de servo-atuagio advém da linha do

bleed e ndio do fan e, portanto, T; deve ser bem préximo a Ty ).

No caso considerado para essa analise temos:

To=Tiq =722K

Ts=Tiy=340K



A2

Implicando numa transferéncia de calor por conduggo de 0,20W; um valor baixo. No

caso verdadeiro:

To=Tiq=722K

T30=Tir=721,78 K (diferenca de temperatura obtida da analise do perfil de temperatura)

Assim, essa transferéncia serd de 1,13E-4 W e, portanto, o perfil de temperatura na
haste do termostato pode ser considerado homogéneo e, assim, o modelo adotado &
adequado.

Perfil de temperatura e pressio nas tubulacdes.

Estes perfis foram levantados em regime permanente utilizando-se para o levantamento
do perfil de temperatura, o modelo matemitico dos dutos, implementado em uma
planilha EXCEL, e para levantamento da perda de carga o programa especifico
denominado PERDOIDO utilizado na compania.

Usando-se dados obtidos em ensaios em v6o, pode-se identificar condi¢bes que
representassem os casos extremos de sobre-temperatura ( “over temperature” ) e sub-

temperatura ( “low temperature” ).

Esses perfis foram levantados em cada trecho da tubulagio, comparando-se para cada
caso, em termos percentuais, a variagdo de pressio ¢ temperatura. Apds isso,
comparou-se para cada trecho a variagBio percentual ocorrida nos casos de sobre-

temperatura e sub temperatura.

Para a andlise dos trechos adotou-se como diferenga significativa aquelas cujas

variagdes percentuais de temperatura e pressdo fossem superiores ‘a2 %.

As tabelas comparativas, assim como os graficos que mostram os perfis de temperatura

€ pressdo sdo encontrados no final desse anexo .



A3

Seguindo o critério pré-estabelecido, pode-se concluir que, independente do caso, as
variagdes de pressdo ndo serfio relevantes para o modelo a ser implementado, assim

como as variagdes de temperatura.

A seguir ¢ apresentado o modelo em regime permanente aplicado na anélise do perfil de

temperatura nos diferentes trechos do subsistema.
Hipéteses:

» Regime permanente.

» Fluxo de calor constante.

» Fator de atrito segundo a lei de Colebrook.

Equacionamento.

Baseando-se no modelo das resisténcias a transferéncia de calor :

Temos:
=21 A1)
onde:
AT =Ty int, s —Text (A2)
R=Reint + Rpar + Riso + Reext (A.3)
Roiny =5 (A4)

27 Nnt H int AL



A4

o )

R =
par 2rkiypo-AL

In(r iso )
Riso =  Lfed]
2.7[ 'ki SO .AL

g
2”"‘1‘80 .hext .AL

Reext =
Da primeira lei da termodindmica tem-se:

%)

m.cp

AL

T int,s =Tm,inte +

Onde:

Q= H.AAT

(A.5)

(A.6)

(A7)

(A.8)

(A.9)
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dT 0 d
P2 -V-szf—gt-z— = mig cpy Ty —mig cpy Ty —UA(T, —T3)

P2 ¥epy Ta(s)s = m g <11 (s)- ?;h’q v T (s)-UA(T>{s)-T5(s))

1 o
1(6)= e o vAT,()
p29eprs
Nepy.s
3, = -Pz P2
mig cpy +UA

dTy - -
Ps .v.cps.?-t-"— = mif cp3.Ty —mis cpsTs +UAT, —T3)

P55 ps Ts (s)s = mif <p3 T (s)- mir cps Ts(s)+ UATy(s) - T3 (s))

1 .
()= {my ars - art)
PS -V*CPS 5 +1
myr <ps +UA
e P5-Yeps.s
Sy =- 5-V-CPs
mjf cps +Ud

(A.10)

Sendo Nu obtido da relagio de Petukhov, a segnir, em que as propriedades sfo obtidas &

temperatura média do escoamento.

(% ).Re.Pr

Nu= — (A.11)
1,07+ 12,7.(% ) p 067 _ 1)

Ja o fator de atrito é obtido da relagio de Colebrook para regime turbulento e

hidraulicamente rugoso de escoamento.
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-

=1,74+2. log(—gj
2e

(A.12)
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Anexo B




B.1

K — |
== 1 :
a | H
e
Do balango de energia na linha quente:
dT2 ) )
P2 Vepy.—= =mig cp.Ty ~mig cpy.Tp - UAT, - T3) (B.1)

p2V.cpy Ty(s)s = mig cpy Ti{s)—mig cpy Tp(s)~ UA(Ty(s)-T5(s))  (B2)

1 .

e)- {mzq .cplza(s)wara(s)} ®3)

pPrNepy.s +1

miq cpy +UA
Logo, a constante de tempo da linha quente é:
Nepy s
By = ._62_,_,,_32_._ (B4)
mig cpy +UA

Balango de energia na linha fria.

Ps5.Veps —;ﬂi =mif cp3.I3 —mjf cpsTs5 + UA(Tz o T3) (B.5)



B.2

ps N.cps Ts(s)s = miy cp3 T ()~ mip cps Ts(s)+ UA(Ty (s)-T5(s)  (B.6)

1

1y(5)= {r;uf aps T5(s)~UAT; (s)] ®7)
P5.V.cps.s +1

r;zzf <ps +UA

Assim, a constante de tempo da linha fria é:

Nepss
Sy = RSVEES | (B.8)

r;nf «<ps +UA
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Anexo C




Er][]i

"039]duizoo s0007q op BwRIBeI(] @ [ (] OXUY




qj\ﬁ

oL2p

gl B

LR

&

0]
ile

T

by

e

Al [t
1 i} " o L

*10[B2 3P JOPB20X) Op S000[q 9P BWRIFEI(] -7 OXoUY

Ljuip bup ey

Ha-zrepmel
d-30e

bydw

F




Y o

ajqe |
HIREP sicey) xsy

1
=

Sd Jeifk

‘01EISOULIa) Op §000[q 3p ewRIeI(] (g(] OXoUY

335EY XEW |py|p b sjsEY KEWIDYP

Wit Xewyp)p




“E[NABA BP S000[q 3p BUIRISEI(] /(] OXUY

A0 |



42

Anexo D
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