
UNIVERSIDADE DE SÃO PAULO
ESCOLA DE ENGENHARIA DE SÃO CARLOS

Leonardo Nunes Parente

Controlador de estimulador neuromuscular utilizando
Raspberry Pi

São Carlos

2017

Leonardo Nunes Parente

Controlador de estimulador neuromuscular utilizando
Raspberry Pi

Monografia apresentada à Escola de Enge-
nharia de São Carlos da Universidade de São
Paulo, como parte dos requisitos para obten-
ção do título de Engenheiro Eletricista.

Área de concentração: Engenharia de Reabili-
tação e Sistemas Embarcados

Orientador: Prof. Dr. Alberto Cliquet Junior

São Carlos
2017

AUTORIZO A REPRODUÇÃO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Nunes Parente, Leonardo

NP228c
Controlador de estimulador neuromuscular utilizando

Raspberry Pi / Leonardo Nunes Parente; orientador
Alberto Cliquet Junior; coorientador Renato Varoto. São
Carlos, 2017.

Monografia (Graduação em Engenharia Elétrica com
ênfase em Eletrônica) -- Escola de Engenharia de São
Carlos da Universidade de São Paulo, 2017.

1. estimulação neuromuscular. 2. controlador
neuromuscular. 3. linux embarcado. 4. raspberry pi . I.
Título.

AGRADECIMENTOS

Agradeço primeiramente aos meus pais que me forneceram todo o suporte necessário
para minha educação e crescimento pessoal e profissional.

Aos meus amigos e colegas de turma que me ajudaram durante toda essa jornada
acadêmica.

Ao Prof. Dr. Henrik Gollee, orientador do meu individual project durante meu
intercâmbio na Universidade de Glasgow, Escôcia.

À Frank Gouveia e Guilherme Rocha pelo suporte e auxílio.

À Adriano Barissa por auxíliar no projeto ao desenvolver a caixa 3D.

Ao Prof. Dr. Alberto Cliquet Junior, meu orientador, pela orientação e suporte
durante o projeto.

Ao Dr. Renato Varoto por todo suporte, atenção e conselhos durante todo o
desenvolvimento do trabalho.

RESUMO

No Brasil, há o aumento de casos de lesões medulares que geram incapacidade devida a
perda parcial ou total da motricidade e sensibilidade. Esses indivíduos necessitam de auxílio
constante para realizarem simples tarefas cotidianas. Deste modo, eles precisam cada vez
mais de equipamentos para facilitar a realização dessas tarefas. Um desses equipamentos
é o estimulador neuromuscular que utiliza uma técnica de ativação neural, objetivando
a obtenção de contrações musculares, mediante a utilização de baixos níveis de corrente.
O Laboratório de Biocibernética e Engenharia de Reabilitação (LABCIBER) da Escola
de Engenharia de São Carlos - USP desenvolve projetos utilizando estimulação elétrica
neuromuscular (EENM) para auxiliar a vida desses indivíduos. Dentro desse contexto, esse
projeto propõe desenvolver um controlador para o estimulador neuromuscular desenvolvido
pelo LABCIBER utilizando uma Raspberry Pi e uma tela touchscreen. O propósito foi
obter um sistema mais compacto, autônomo e com uma interface amigável e simples. O
controlador foi montado e testado no estimulador com diferentes ensaios e saída medida
em um osciloscópio. Os objetivos iniciais foram cumpridos, validados e melhorias foram
implementadas durante o projeto. O sistema final se mostrou pronto para ser utilizado em
laboratório para estimulação em pacientes que sofreram lesões medulares.

Palavras-chave: Estimulação neuromuscular. Controlador neuromuscular. Engenharia
de reabilitação. Sistema embarcado. Raspberry Pi.

ABSTRACT

In Brazil, there is an increase of cases of spinal cord injuries that generates incapacity due
to partial or total loss of motor and sensitivity. These individuals need constant help to
perform simple daily tasks. Thereby, they increasingly need equipments to facilitate these
tasks. One of these devices is the neuromuscular stimulator that uses a neural activation
technique, aiming to obtain muscular contractions, through the use of low current levels.
The Laboratory of Biocibernetics and Rehabilitation Engineering (LABCIBER) of the
School of Engineering of São Carlos - USP develops projects using neuromuscular electrical
stimulation (NMES) to develops projects to assist the life of these individuals. Within this
context of neuromuscular stimulation, this project proposes to create a controller for the
stimulator developed by LABCIBER using a Raspberry Pi and a touchscreen display. The
purpose was to achieve a more compact, standalone system with a friendly and simple
interface. The controller was assembled and tested on the stimulator with different assays
and measured output on an oscilloscope. The initial objectives were met, validated and
improvements were implemented during the project. The final system was ready to be
used in the laboratory for stimulation on patients who had suffered spinal cord injuries.

Keywords: Neuromusucular stimulation. Neuromuscular controller. Rehabilitation engi-
neering. Embedded system. Raspberry Pi.

LISTA DE ILUSTRAÇÕES

Figura 1 – Raspberry Pi 3 modelo B . 22
Figura 2 – Raspberry Pi 3 - GPIO . 22
Figura 3 – Tela touchscreen oficial para Raspberry Pi 23
Figura 4 – Controlador touchscreen e estimulador neuromuscular RehaStim 25
Figura 5 – Tela do software de controle no labVIEW 26
Figura 6 – Interface do QSTIMBERRY Controller 29
Figura 7 – Slider e spin boxes . 31
Figura 8 – Exemplo de estimulação . 32
Figura 9 – Fluxogramas - botões de estimulação 32
Figura 10 – Pinos de controle dos canais de estimulação 33
Figura 11 – Menu bar - aba salvar . 33
Figura 12 – Fluxograma - aba salvar . 33
Figura 13 – Menu bar - aba carregar . 34
Figura 14 – Fluxogramas - aba carregar . 34
Figura 15 – Menu bar - aba brilho . 34
Figura 16 – Menu bar - aba idioma . 35
Figura 17 – Fluxograma - aba idioma . 35
Figura 18 – Status bar - exemplo de estimulação 35
Figura 19 – TXS0108E - Conversor de nível lógico 36
Figura 20 – Conector GPIOs - TXS0108E . 37
Figura 21 – Esquemático conector GPIOs - TXS0108E 37
Figura 22 – Conector TXS0108E - saída para estimulador 38
Figura 23 – Esquemático conector TXS0108E - saída para estimulador 38
Figura 24 – Power bank Pineng PN-999 . 38
Figura 25 – Cabos para alimentação . 39
Figura 26 – Carregador portátil com cabos conectados 39
Figura 27 – Esquemático circuito debouncing . 40
Figura 28 – Botão para ligar/desligar o backlight da tela 40
Figura 29 – Controlador e suas conexões . 40
Figura 30 – Caixa montada após impressão . 41
Figura 31 – Caixa após aplicação da massa poliéster 42
Figura 32 – Vista frontal do controlador de estimulador neuromuscular 42
Figura 33 – Vista traseira do controlador de estimulador neuromuscula 42
Figura 34 – Parâmetros para realizar teste do sinal de controle 44
Figura 35 – Frequência do sinal de saída do controlador 44
Figura 36 – Sequência de pulsos de controle do controlador 45

Figura 37 – Saída do estimulador - frequência dos pulsos 45
Figura 38 – Saída do estimulador - frequência entre pulsos 45
Figura 39 – Saída do estimulador - frequência de estimulação 46

LISTA DE TABELAS

Tabela 1 – Especificações Raspberry Pi 3 modelo B 23
Tabela 2 – Componentes utilizados . 27

LISTA DE ABREVIATURAS E SIGLAS

API Application Programming Interface

CI Circuito Integrado

CPU Central Processing Unit

CMOS Complementary metal-oxide-semiconductor

CSI Camera Serial Interface

DSI Display Serial Interface

EENM Estimulação Elétrica Neuromuscular

GPIO General Purpose Input/Output

GPU Graphics Processing Unit

GUI Graphical User Interface

HDMI High-Definition Multimedia Interface

LABCIBER Laboratório de Biocibernética e Engenharia de Reabilitação

RAM Random Access Memory

SSH Secure Shell

SO Sistema Operacional

SoC System-on-a-chip

TTL Transistor-Transistor Logic

USB Universal Serial Bus

V Volt(s)

SUMÁRIO

1 INTRODUÇÃO . 19
1.1 Motivação . 20
1.2 Organização do trabalho . 20

2 EMBASAMENTO TEÓRICO . 21
2.1 Linux embarcado . 21
2.2 Raspberry Pi . 21
2.2.1 GPIO . 22
2.2.2 Raspberry Pi touchscreen . 23
2.3 Qt . 24
2.3.1 Signals and slots . 24
2.3.2 Qt para linux embarcado . 24
2.4 Trabalhos anteriores . 25

3 MATERIAIS E MÉTODOS . 27
3.1 Componentes . 27
3.2 Instalação do Sistema Operacional para Raspberry Pi 28
3.3 Configuração da Compilação Cruzada 28
3.4 QSTIMBERRY Controller: funcionalidades e algoritmos 29
3.4.1 Main Widget . 30
3.4.2 Barra de menu . 33
3.4.3 Barra de status . 35
3.5 Hardware: componentes e conexões 36
3.5.1 Impressão 3D . 40

4 RESULTADOS E DISCUSSÃO . 43
4.1 Teste da interface gráfica . 43
4.2 Teste dos sinais de controle . 43
4.3 Teste no estimulador . 45
4.4 Teste de autonomia de bateria . 46

5 CONCLUSÃO . 49
5.1 Implementações futuras . 49

REFERÊNCIAS . 51

APÊNDICES 53

APÊNDICE A – CONFIGURAÇÃO SSH RASPBERRY PI 55

APÊNDICE B – COMPILAÇÃO CRUZADA EFGLS 59

19

1 INTRODUÇÃO

Frequentemente, no Brasil, várias pessoas são vítimas da crescente violência urbana.
Acidentes de trânsito e agressões por arma de fogo são exemplos dessa violência que
consequentemente contribui para o aumento de casos de lesões medulares que geram
incapacidade devida a perda parcial ou total da motricidade e sensibilidade.

A lesão medular é uma injúria às estruturas contidas no canal medular (medula,
cone medular e cauda equina), podendo levar a alterações motoras, sensitivas, autonômicas
e psico afetivas. Estas alterações se manifestam principalmente como paralisia ou paresia
dos membros, alteração de tônus muscular, alteração dos reflexos superficiais e profundos,
alteração ou perda das diferentes sensibilidades (tátil, dolorosa, de pressão, vibratória e
proprioceptiva), perda de controle esfincteriano, disfunção sexual e alterações autonômicas
como vasoplegia, alteração de sudorese, controle de temperatura corporal entre outras
(MINISTÉRIO DA SAÚDE, 2013).

Com o avanço tecnológico dos últimos anos, a engenharia de reabilitação apresenta
um papel fundamental no tratamento desses tipos de lesões, pois busca proporcionar
uma melhoria na saúde e bem estar, tornando os pacientes menos dependentes e mais
engajado socialmente. Umas das técnicas da engenharia de reabilitação é a estimulação
elétrica neuromuscular (EENM) que utiliza impulsos elétricos para estimular, acelerar e
evitar a perda das atividades motoras, proporcionando assim resultados promissores no
restabelecimento de força (VAROTO, 2010).

Os sistemas de EENM podem ser dividos em duas categorias, superficial e implan-
tada. Podem ser controladas por corrente ou tensão. Devida a uma menor variação na
resistência e uma necessidade por uma consistente contração muscular e repetibilidade,
aplicações com corrente são mais comuns em sistemas de EENM com eletrodos implan-
tados. Já os sistemas controlados por tensão são mais comum em estimulação elétrica
transcutâneo (superficial) (SHEFFLER; CHAE, 2007).

Os métodos invasivos não são muito interessantes do ponto de vista operacional,
devido a uma série de inconveniências, tais como, possíveis quebras de eletrodos e infecções
causadas pela abertura na qual é feita a introdução dos mesmos. Já a EENM feita com
eletrodos de superfície, como é o caso do estimulador neuromuscular desenvolvido pelo
LABCIBER, os eletrodos são colocados na superfície da pele e o sinal induz linhas de
campo dentro do membro, de forma que os íons de sódio, localizados externamente à
membrana do nervo motor, sofram um influxo súbito para dentro do nervo, gerando o
potencial de ação (MANHÃES, 2004). Esta perturbação se propaga pelo axônio até a
fenda sináptica e o músculo, então, é contraído. Sendo assim, executando a estimulação em

20

musculos/nervos específicos, de maneira controlada e cíclica e tomando certas precauções
é possível realizar a marcha em pacientes com lesão medular em laboratório. Usando esta
técnica, o paciente muda novamente sua condição e passa a realizar, de forma artificial, os
movimentos que havia perdido com a lesão (CLIQUET, 1993).

1.1 Motivação

A maior motivação desse projeto é o intuito de aplicar a engenharia e conhecimen-
tos desenvolvidos para o bem do próximo. Dentro da engenharia elétrica, a engenharia
biomédica é a que mais tem contato direto com esse lado humano, pois os equipamentos
médicos são desenvolvidos devido a uma necessidade dos pacientes.

Dentro do área de engenharia aplicada à medicina, o ramo de reabilitação exerce
uma missão importante ao utilizar a tecnologia para auxiliar o paciente a recuperar sua
independência.

1.2 Organização do trabalho

Este trabalho visa apresentar a construção de um controlador de um estimulador
neuromuscular utilizando sistema embarcado. O mesmo está organizado em cinco capítulos.
O primeiro capítulo é composto por esta introdução que situa o trabalho e sua motivação.
No segundo capítulo será realizada a fundamentação teórica dos principais equipamentos
e conceitos envolvidos no desenvolvimento do controlador. No terceiro capítulo será
apresentado todos os materiais utilizados no projeto, a programação do dispositivo e as
conexões dos componentes para formar o controlador. No quarto capítulo serão relatados
e discutidos os testes realizados. Por fim, no quinto capítulo são feitas as considerações
finais, bem como sugestões para trabalhos futuros.

21

2 EMBASAMENTO TEÓRICO

Para o entendimento completo do trabalho e de seu desenvolvimento, se faz neces-
sário a introdução e contextualização de alguns temas que serão abordados.

2.1 Linux embarcado

Em termos gerais, Linux é o kernel de um sistema operacional elaborado sob
o modelo de desenvolvimento e distribuição open-source e gratuito, o que contribuiu
imensamente para sua popularização. O que define o sistema é o núcleo Linux, que foi
desenvolvido por Linus Torvalds em 1991.

Kernel é o código responsável pelo núcleo do sistema operacional (SO) e é encarre-
gado de fazer a interface direta com o hardware, gerenciar a comunicação de periféricos e
também a memória do sistema, além de decidir a cada momento qual programa deverá ter
acesso à Unidade Central de Processamento do sistema (MOTA, 2012).

Em sistemas embarcados, tipicamente refere-se ao sistema operacional como um
Linux embarcado (ou eLinux), que nada mais é do que uma versão do programa adaptada
para ser executada em um sistema específico com menor capacidade de processamento, já
considerando pacotes e rotinas necessários para se fazer uso total de todos os periféricos e
conexões presentes em uma placa de sistema embarcado.

2.2 Raspberry Pi

Os single-board computers, ou computadores de placa única em português, se
popularizaram no ano de 2014 com o lançamento de computadores de baixo custo e com
ótimo desempenho para pequenas aplicações. A Raspberry Pi está entre esses lançamentos.

Essa placa foi desenvolvida pela Fundação Raspberry Pi com o intuito de promover
o ensinamento de computação básica para jovens. Esse objetivo foi alcançado e, mais
ainda, esse computador está sendo usado para aplicações comerciais. A Figura 1 mostra a
Raspberry Pi 3 Modelo B que foi utilizada nesse projeto. As especificações técnicas estão
listadas na Tabela 1.

A fundação Raspberry Pi oferece diferentes sistemas operacionais para a placa em
seu site oficial. Entretanto, o Raspian é o SO oficial apoiado e desenvolvido pela fundação.
Raspian é um sistema operacional gratuito baseado no Debian e otimizado para o hardware
da Raspberry Pi.

22

Figura 1: Raspberry Pi 3 modelo B

Fonte: Raspberry Pi Foundation (2017)

2.2.1 GPIO

General Purpose Input/Output (GPIO) são portas programáveis de entrada e
saída de dados que são utilizadas para prover uma interface entre os periféricos e os
microcontroladores. Na Raspberry Pi, eles estão localizados em uma das bordas da placa
em um barramento de 40 pinos, onde 26 são de uso geral, 12 são alimentação ou referência
(ground) e 2 de endereçamento da EEPROM (uso avançado) como é mostrado na Figura 2.

Figura 2: Raspberry Pi 3 - GPIO

Fonte: Raspberry Pi Foundation (2017)

23

Tabela 1: Especificações Raspberry Pi 3 modelo B

Categoria Especificação

GPIO 40 pinos

Armazenamento microSD

SoC Broadcom BCM2837

CPU 4× ARM Cortex-A53, 1.2GHz

GPU Broadcom VideoCore IV

RAM 1GB LPDDR2 (900 MHz)

Internet 10/100 Ethernet, 2.4GHz 802.11n wireless

Bluetooth Bluetooth 4.1 Classic, Bluetooth Low Energy

Portas HDMI, 3.5mm audio-video jack, 4× USB 2.0, Ethernet, CSI, DSI

Fonte: Raspberry Pi Foundation (2017)

2.2.2 Raspberry Pi touchscreen

A tela oficial da Raspberry Pi utiliza a porta DSI. DSI (Display serial interface) é
uma interface serial de alta velocidade baseada em um número de 1 GBits de linhas de
dados. A oscilação da tensão das linhas de dados é de apenas 200mV, o que faz com que
o ruído eletromagnético criado e o consumo de energia sejam baixos (RASPBERRY PI
FOUNDATION, 2017). A Figura 3 apresenta a tela e seus componentes.

Figura 3: Tela touchscreen oficial para Raspberry Pi

Fonte: Raspberry Pi Foundation (2015)

24

A última versão do Raspian já vem com os pacotes da tela touchscreen. Portanto,
é necessário apenas conectar a tela na porta DSI da placa e alimenta-lá utilizando sua
entrada micro USB 5V.

2.3 Qt

Qt é um framework multiplataforma para desenvolvimento de interfaces gráficas
em C++ para computadores, sistemas embarcados e dispositivos móveis. É suportado por
Linux, OS X, Windows, Android, iOS, BlackBerry e outras plataformas. O Qt é mantido
pelo Qt Project, uma iniciativa de software livre envolvendo desenvolvedores individuais e
provenientes de empresas como Nokia, Digia Plc e outras (THE QT COMPANY LTD.,
2017a). Ele possui seu próprio ambiente de desenvolvimento integrado, o Qt Creator.

2.3.1 Signals and slots

Signals and slots, ou sinais e aberturas em português, são utilizados para comuni-
cação entre objetos. Esse mecanismo é a característica central do Qt e provavelmente a
razão que o diferencia dos demais frameworks. Um slot é uma função que é chamada em
resposta a um sinal particular (THE QT COMPANY LTD., 2017a). Por exemplo, em uma
aplicação, se um usuário clica no botão “fechar” (signal), a função “fechar janela” (slot)
é chamada para fechar o programa. Deste modo, iterações do usuário (clicar, arrastar,
soltar) com objetos (botões, barras, menus) são vistas como interrupções pelo sistema.

2.3.2 Qt para linux embarcado

Qt para linux embarcado é um framework C++ para interface gráfica de usuário
e desenvolvimento de aplicações para sistemas embarcados. As aplicações são escritas
diretamente ao framebuffer, eliminando a necessidade de se utilizar o modo janela (X11) e,
assim, economizando memória de processamento. O Qt oferece diversos plugins que podem
ser utilizados em sistemas com linux embarcado: EGLFS, LinuxFB, KMS, DirectFB,
Wayland (THE QT COMPANY LTD., 2017b).

Para a Raspberry Pi, o Qt disponibiliza um guia para utilizar EGLFS junto com o
Raspian. EGLFS é um plugin de plataforma que permite rodar uma aplicação do Qt sobre
o EGL e OpenGL ES 2.0 sem necessitar de um sistema de janela, como X11 ou Wayland.

EGL é uma interface entre as APIs de renderização Khronos (como OpenGL,
OpenGL ES ou OpenVG) e o sistema de janelas da plataforma nativa. A EGL lida com
gerenciamento de contexto de gráficos, ligação de superfícies, sincronização de renderização
e permite a renderização 2D e 3D com alto desempenho, aceleração e modo misto usando
outras APIs Khronos (THE QT COMPANY LTD., 2017b).

25

2.4 Trabalhos anteriores

Esse projeto é baseado em dois trabalhos anteriores: Raspberry Pi based system
to control neuromuscular stimulation (PARENTE, 2016) e Aplicação de um sistema de
comando por voz e um software de controle na engenharia de reabilitação (BARBARINI,
2008).

O primeiro foi desenvolvido pelo autor desse projeto durante seu período de
intercâmbio na Universidade de Glasgow, Escócia. O intuído do projeto era criar um
controlador para um estimulador neuromuscular comercial utilizando uma Raspberry Pi 2
e sua tela touchscreen de 7". A diferença desse projeto para o já realizado é que o trabalho
da Escócia utilizava parâmetros aleatórios para verificar a interferência dos mesmo na
fadiga muscular e a forma de comunicar com o estimulador era via USB. Já o projeto
atual é o contrário, o objetivo é usar o estimulador para tratar pacientes sem causar fadiga
muscular e o estimulador utilizado foi desenvolvido no próprio LABCIBER. A Figura 4
mostra o sistema desenvolvido em Glasgow.

Figura 4: Controlador touchscreen e estimulador neuromuscular RehaStim

Fonte: Parente (2016)

Já o segundo trabalho foi desenvolvido sobre o estimulador criado pelo LABCIBER.
Uma interface gráfica utilizando labVIEW foi criada para que um computador com sistema
operacional Windows possa se comunicar com o estimulador. A Figura 5 apresenta a

26

interface em LabView. A interface e parâmetros do controlador do trabalho atual foram
baseados nessa imagem.

Figura 5: Tela do software de controle no labVIEW

Fonte: Barbarini (2008)

27

3 MATERIAIS E MÉTODOS

Este capítulo discorre sobre o desenvolvimento do projeto em si e os materiais
utilizados no mesmo. É a parte mais importante, pois esse trabalho é o início de um novo
modo de controlar o estimulador neuromuscular e sua interface e funcionalidades podem
ser melhoradas. Portanto, esse capítulo fornece todos os conceitos para entendimento do
controlador de estimulação neuromuscular e é escrito de forma a ser um tutorial para
futuras modificações no projeto.

3.1 Componentes

Uma das principais vantagens de desenvolver um controlador utilizando um com-
putador de placa única é a questão do custo do projeto total. Além de tornar o sistema
mais portátil e com mais autonomia energética.

Todos os componentes utilizados são listados na Tabela 2. A coluna de preço contém
o valor pago nos produtos sem considerar frete. Os preços são com base em vendedores que
emitem nota fiscal e a pesquisa foi realizada em mais de um vendedor. O enfoque do valor
apresentado é para entendimento da média de custo desse projeto, pois esses preços podem
variar, e é por isso que esse trabalho não apresenta links nem os nomes de vendedores.

Tabela 2: Componentes utilizados

Componentes Preço

Raspberry Pi 3 Modelo B R$ 225,00

Display Raspberry Pi Touchscreen 7" R$ 550,00

Carregador portátil Pineng PN-999 R$ 103,00

TXS0108E - conversor de nível lógico R$ 5,00

Botão de 2 pinos com retorno R$ 4,00

Barra de pinos fêmea 180° Dupla 1x20 R$ 3,00

Barra de pinos fêmea 180° Dupla 2x20 R$ 4,00

Cabo flat colorido 10 vias (metro) R$ 4,00

2x Conector USB macho R$ 3,50

2x Conector micro USB macho R$ 3,50

Box Header 10 vias com travamento R$ 2,00

Capacitor de 4,7uF R$ 0,20

Resistor de 39k ohms R$ 0,10

Total R$914,30

28

Além dos componentes listados na Tabela 2, foi necessário um computador com
GNU/Linux instalado e um cabo de rede para acessar a Raspberry Pi via SSH. Neste caso,
foi utilizado a versão 16.04 x64 do sistema operacional Ubuntu.

3.2 Instalação do Sistema Operacional para Raspberry Pi

Antes de iniciar a programação da interface gráfica e do protocolo de comunicação
entre a placa e o módulo de estimulação, é necessário a instalação de um sistema operacional,
pois a Raspberry Pi é um computador em uma única placa. O sistema escolhido foi o
Raspian, que é o SO oficial apoiado pela Raspberry Pi Foundation.

A versão utilizada do Raspian foi a Stretch Lite, pois não será necessária interface
gráfica (X Window System) para o sistema operacional, já que o programa de controle do
estimulador será embarcado e rodará entre o OpenGL e o modo janela (X11). Essa versão
ocupa menos espaço de disco.

Para sua instalação, a Fundação Raspberry Pi fornece um guia de instalação simples
que pode ser executado em um computador com Linux, Windows ou Mac. O Tutorial
seguido por esse projeto foi utilizando um computador com Sistema Operacional Windows
e é explicado a seguir.

a) Acesse o site oficial da Fundação Raspberry Pi: https://www.raspberrypi.org/
(acessado em 08 out. 2017).

b) Vá na aba Downloads, selecione o SO Raspian e baixe a versão Lite.

c) Ao término do passo anterior, deve-se obter um arquivo com extensão .img.
Baixe o programa Win32DiskImager na página do SourceForge, não é necessário
instalação.

d) Conecte um cartão micro SD (recomendado 8GB) ao computador e execute o
programa Win32DiskImager. Seleciona a imagem baixada do Raspian e o local
do disco SD, clique no botão Write e aguarde.

e) Pronto, o cartão SD está com o Sistema Operacional instalado e pronto para
uso. Desconecte o cartão do computador e conecte-o à placa.

f) Alimente a Raspberry Pi e veja se o sistema inicializa. Caso haja erro, repita
todos os item acima.

Após esse processo, a placa está pronta para uso e já pode ser configurada para
receber o programa QSTIMBERRY Controller.

3.3 Configuração da Compilação Cruzada

Foi adotada a compilação cruzada, pois um PC atual possui uma grande capacidade
de processamento, que é superior a placa embarcada e também um maior disco rígido para

29

alocação de dados. Deste modo, toda a programação da interface gráfica e comandos foi
feita em um Notebook rodando Ubuntu, utilizando o programa Qt Creator - versão 5.7 e
apenas o executável gerado foi enviado para a Raspberry Pi 3.

Primeiramente, foi necessário configurar a placa e o computador para que se
comunicassem via SSH diretamente por um cabo de rede, essa configuração completa pode
ser encontrada no Apêndice A.

Então, é exigido que as bibliotecas essenciais do Qt sejam instaladas na Raspberry
Pi para que o executável gerado possa ser executado de modo embarcado (EGLFS).
A própria comunidade do Qt fornece um tutorial para sincronizar as dependências da
Raspberry Pi 2 com o computador e instalar os componentes necessários, esse tutorial foi
traduzido, atualizado para a versão 3 da placa e está detalhado no Apêndice B.

3.4 QSTIMBERRY Controller: funcionalidades e algoritmos

QSTIMBERRY Controller é o programa criado utilizando Qt creator e rodado em
uma Raspberry Pi 3 para controlar um estimulador neuromuscular, o que dá origem ao
seu nome: Qt + STIMulation + raspBERRY.

A interface gráfica da versão 1.0.0 do programa de controle do estimulador neuro-
muscular é apresentada na Figura 6. A interface é dividida em três partes principais: barra
de menu, main widget e barra de status. Cada funcionalidade do software será explicada
por meio de fluxogramas e algoritmos e não por linhas de código para melhor entendimento.
O código em C++ é desenvolvido sobre licença LGPL 3.0, é open source e para acesso
deve ser requisitado ao LABCIBER.

Figura 6: Interface do QSTIMBERRY Controller

30

O QSTIMBERRY Controller foi baseado no programa do LabVIEW que é utilizado
atualmente pelo LABCIBER, adaptado para o modo touchscreen e foram adicionadas
novas funcionalidades como por exemplo o modo “Atribuir à todos” e Cronômetro.

3.4.1 Main Widget

Um widget é um componente de uma interface gráfica do usuário (GUI) que
pode incluir menus, botões, ícones, barras de rolagens, entre outros componentes. A
tradução literal de main widget é ferramenta principal, e essa tradução pode ser utilizada
nesse projeto, pois esse widget possui todos os componentes necessários para realizar
a estimulação neuromuscular. É nesse objeto que o usuário define os parâmetros de
estimulação, inicia, pausa e finaliza o processo. A programação dessa parte do software é a
mais complexa e será explicada com mais detalhes.

A parte de cima do widget apresenta 12 botões para seleção de estimulação. Cada
uma das doze estimulações possui 16 parâmetros que estão listados a seguir:

- Os 8 primeiros parâmetros: canal N ativado/desativado. Em que N vai de 1 a 8.

- 9°: Segundos de estimulação.

- 10°: Milissegundos de estimulação.

- 11°: índice de estimulação ativada.

- 12°: Número de pulsos.

- 13°: Largura dos pulsos.

- 14°: Largura entre pulsos.

- 15°: Frequência de controle.

- 16°: Número da Estimulação.

Exitem dois modos de estimulação e quem determina qual modo está acionado é
o botão “Atribuir à todos”. Caso o botão não esteja selecionado, os parâmetros de 12 a
15 podem ser diferentes para cada uma das 12 estimulações e quando o usuário clica no
botão “Começar” toda os componentes são desativados com exceção dos botões “Pausar”
e “Parar”. Caso contrário, os parâmetros de 12 a 15 são setados iguais para todas as 12
estimulações, assim, o usuário apenas individualiza os canais e a duração de estimulação
de cada uma das 12 estimulações. Porém, quando o botão “Começar” é pressionado, os
componentes que determinam esses parâmetros ficam ativados durante as estimulações,
podendo ser alterados pelo usuário. Isso pode auxilar o profissional que está utilizando o
estimulador à encontrar parâmetros mais ideais dinamicamente.

Foi implementado a desativação dos objetos da tela para evitar qualquer erro do
usuário enquanto a estimulação está ocorrendo e, desse modo, o sistema se dedica realizar

31

a estimulação sem interrupções.

Os parâmetros indicados na Figura 7 podem ser alterados tanto pela slider quanto
pelo spin box, pois esses componentes estão conectados e ao alterar um, o outro é alterado
para o mesmo valor automaticamente.

Figura 7: Slider e spin boxes

Há quatro componentes que são gerais para todas as estimulações: botão “Começar”,
botão “Pausar”, número de ciclos e cronômetro. O número de ciclos determina quantas
vezes o processo de todas as estimulações ativas serão repetidos em único início. Já
o cronômetro conta todo o tempo decorrido até o termino total da estimulação. Esse
componente só é reiniciado quando o usuário inicia uma nova estimulação.

Por exemplo, a “Estimulação 1” está ativa com duração de 5 segundos, a “Esti-
mulação 6” está ativa com duração de 4 segundos e o número de ciclos é igual a 2. Após
9 segundos do início do processo, a “Estimulação 6” termina e a “Estimulação 1” inicia
novamente. Assim, o total do processo de estimulação será de 18 segundos e esse valor
ficará gravado no cronômetro até o usuário clicar no botão “Começar” novamente como é
mostrado na Figura 8.

Ao clicar no botão “Começar”, novas variáveis de estimulação são criadas e recebem
as Estimulações e canais ativos, sem alterar as variáveis já existentes. Isso é feito para
que quando a estimulação realmente se inicie, o programa não precise varrer parâmetros
não ativados, aumentando assim a precisão e eficiência do controlador. Esse processo é
explicado no fluxograma da Figura 9.

Os sinais de controle são enviados pelo pinos de uso gerais (GPIO) da Raspberry Pi.
Para transformar os dados inseridos pelo usuário em acionamentos dos pinos da placa, é
necessário acesso à esses pinos dentro do programa. Para isso é utilizado a biblioteca pigpio.
Sua documentação pode ser encontrada em http://abyz.me.uk/rpi/pigpio/ (acessado em

32

Figura 8: Exemplo de estimulação

Figura 9: Fluxogramas - botões de estimulação

33

28 out. 2017). A Figura 10 indica os pinos correspondentes aos canais do estimulador e a
numeração de acordo com a Raspberry Pi e a biblioteca pigpio.

Figura 10: Pinos de controle dos canais de estimulação

3.4.2 Barra de menu

O segundo grupo de funcionalidades a ser apresentado é a barra de menu que é
composta por quatro ferramentas: Salvar, Carregar, Brilho e Idioma. A Figura 11 mostra
as ações presentes na aba Salvar. O usuário pode salvar os dados atuais de estimulação em
um dos quatro Espaços disponíveis. Já a Figura 12 mostra o fluxograma da ação executada
quando o usuário clica em um dos espaços.

Figura 11: Menu bar - aba salvar
Figura 12: Fluxograma - aba salvar

34

A aba Carregar possui os mesmos quatro Espaços e uma funcionalidade a mais: o
botão para resetar todas as variáveis. A Figura 13 e Figura 14 mostram o funcionamento
dessas funções.

Figura 13: Menu bar - aba carregar
Figura 14: Fluxogramas - aba carre-

gar

O Qt também permite que comandos linux sejam executados dentro do programa
gerado. Desse modo, é possível alterar o arquivo responsável por ajustar o brilho da tela
touch. Para que o programa não ficasse mais complexo, foram definidos 4 níveis de brilho:
25%, 50%, 75% e 100%, como é mostrado na Figura 15. O algoritmo é bem simples: quando
o usuário clica em um dos níveis de brilho, o programa executa uma função do sistema
que altera o valor do brilho da tela.

Figura 15: Menu bar - aba brilho

35

A última funcionalidade a barra de menu é a aba de seleção de idioma. O software
possui dois idiomas: português e inglês. O usuário pode alterar o idioma padrão a qualquer
momento e essa escolha fica salva mesmo ao reiniciar o sistema, pois a opção do usuário
fica salva em um arquivo .dat. A Figura 16 e Figura 17 apresentam a aba idioma.

Figura 16: Menu bar - aba idioma Figura 17: Fluxograma - aba idioma

3.4.3 Barra de status

Por último, a barra de status tem função apenas de auxiliar o usuário com mensagens
e indicativos visuais. Quando uma estimulação é iniciada, uma mensagem é mostrada
indicando qual das 12 estimulações foi iniciada e seus parâmetros: canais ativos, duração
(segundos + milisegundos), frequência, largura de pulso em nível alto, largura de pulso em
nível baixo e quantidade de pulsos. Também possui uma barra de progresso que indica a
duração percorrida da estimulação atual até o momento.

A Figura 18 exemplifica as informações apresentadas acima. Nota-se que a estimu-
lação tem duração de 6 segundos e decorreram 2 segundos no momento da foto, portanto
a barra de progresso é menor que 50%.

Figura 18: Status bar - exemplo de estimulação

36

A Barra de status também apresenta mensagens quando um arquivo de estimulação
é salvo ou carregado. As mensagens são mostradas no idioma selecionado pelo usuário
(português ou inglês).

3.5 Hardware: componentes e conexões

O que foi apresentado até esse momento foi a configuração e programação do
computador de placa única e do software de controle. Porém, para que o controlador se
comunique com o estimulador neuromuscular de 8 canais, é necessário o uso de periféricos.
Um dos motivos desse uso é porque a entrada do estimulador utiliza TTL (nível lógico 5V)
e os GPIOs da Raspberry Pi utilizam CMOS (nível lógico 3,3V). Portanto, é necessário o
uso de um conversor de nível lógico.

O circuito integrado TXS0108E foi utilizado, pois possui 8 canais de conversão, o
que é exatamente o necessário para a aplicação do projeto (8 canais de estimulação). A
Figura 19 mostra o CI já soldado em uma placa para acesso via barra de pinos.

Figura 19: TXS0108E - Conversor de nível lógico

Foi necessário fazer um conector próprio para conectar a entrada do conversor
(3,3V) aos pinos de uso geral da Raspberry Pi. A Figura 20 retrata o conector soldado
à mão, já a Figura 21 demonstra o esquemático das conexões entre a placa e o módulo
conversor.

Na saída do TXS0108E também foi feito outro conector próprio com um box header
com travamento na saída para que um cabo flat proveniente do estimulador seja conectado
e receba sinais de controle com nível de 5V. A Figura 22 retrata o conector de saída do
controlador e a Figura 23 apresenta o esquemático do conector.

37

Figura 20: Conector GPIOs - TXS0108E

Figura 21: Esquemático conector GPIOs - TXS0108E

Para alimentar o sistema, foi escolhido uma bateria portátil para carregar dispo-
sitivos móveis, mais conhecido como power bank. A marca escolhida foi o da Pineng e o
modelo é o PN-999, como é apresentado na Figura 24. Esse dispositivo possui capacidade
de 20000mAh (para 3,7V), duas saídas USB: uma 5V/2,1A e outra 5V/1A. Também
possui um display que mostra o nível de bateria atual, um botão para ligar e desligar o
power bank e uma entrada micro USB 5V/2A para carregar a bateria.

38

Figura 22: Conector TXS0108E - saída para estimulador

Figura 23: Esquemático conector TXS0108E - saída para estimulador

Figura 24: Power bank Pineng PN-999

39

Como a alimentação da tela e da placa são via micro USB, foi necessário montar
dois conectores USB macho para micro USB macho, que são apresentados na Figura 25.
Já a Figura 26 mostra os cabos atrelados ao carregador portátil. Fita isolante líquida foi
aplicada nos conectores micro USB para evitar curto.

Figura 25: Cabos para alimentação

Figura 26: Carregador portátil com cabos conectados

Um botão foi adicionado ao sistema para desligar/ligar o backlight da tela durante
a execução do programa, e assim, dar uma maior autonomia ao sistema. O botão utilizado
é de 2 terminais, duas posições e com retorno. Como qualquer outra chave mecânica,
esse componente apresenta o efeito bouncing, que é a oscilação do sinal de acionamento
quando a tecla é pressionada. Um dos meios de evitar esse efeito é utilizar um circuito
com resistor e capacitor como é mostrado no esquemático da Figura 27. Foi utilizada uma
placa perfurada para soldar os componentes e uma barra de pinos para tornar o circuito
modular. A Figura 28 mostra o botão conectado ao circuito debouncing.

40

Figura 27: Esquemático circuito de-
bouncing Figura 28: Botão para ligar/desligar

o backlight da tela

Por fim, todos os componentes foram conectados para formar o controlador de
estimulação completo e funcional. A Figura 29 apresenta as conexões do controlador em
funcionamento.

Figura 29: Controlador e suas conexões

3.5.1 Impressão 3D

Após definir todos os componentes eletro-eletrônicos do controlador de estimulação
neuromuscular, é necessário projetar a parte mecânica a qual comportará o sistema. A
caixa do QSTIMBERRY foi desenvolvida pelo projetista e designer Adriano Ordoz Barissa

41

com base no hardware da Figura 29 utilizando o software SolidWorks. Em seguida, o
desenho 3D foi enviado para impressão na impressora 3D Lulzbot TAZ 6. O material
utilizado foi a acrilonitrila butadieno estireno, cuja sigla ABS deriva da forma inglesa
acrylonitrile butadiene styrene.

A impressão da caixa foi divida em três partes: a parte principal, em que a tela
touchscreen é acoplada, que demorou 26 horas de impressão, a tampa inferior que demorou
8 horas e 30 minutos, e a tampa traseira, cuja impressão durou 3 horas e 30 minutos. A
Figura 30 apresenta o caixa montada com os componentes já inseridos.

Figura 30: Caixa montada após impressão

Ao termino da impressão, todo o excesso de material foi removido e as partes
impressas foram lixadas. Como a parte principal possui detalhes e é grande, surgiram
diversas rachaduras. Portanto, foi necessário utilizar um ferro de solda e ABS proveniente
do excesso de material para tapar essas rachaduras.

Mesmo após esse processo, a superfície da caixa não era lisa e não se mostrou
pronta para ser pintada. Deste modo, foi necessário aplicar massa poliéster que é utilizada
no setor automotivo para corrigir amassados e ranhuras em peças plásticas. O resultado
após aplicar a massa e lixar a superfície é mostrado na Figura 31.

Para finalizar o processo da caixa, foi aplicada tinta automotiva, que é impermeável,
à superfície da parte mecânica impressa 3D do controlador de estimulador neuromuscular.
O resultado final do sistema pronto para uso é apresentado na Figura 32 e Figura 33.

42

Figura 31: Caixa após aplicação da massa poliéster

Figura 32: Vista frontal do controlador de estimulador neuromuscular

Figura 33: Vista traseira do controlador de estimulador neuromuscula

43

4 RESULTADOS E DISCUSSÃO

O penúltimo capítulo apresenta os testes do sistema e de estimulação e avalia o
desempenho do projeto desenvolvido. Cada resultado obtido é estudado e discutido para
que melhorias possam surgir e falhas sejam corrigidas.

4.1 Teste da interface gráfica

O teste da interface do programa QSTIMBERRY ocorreu durante todo o desenvol-
vimento de sua programação, para que bugs fossem corrigidos e funcionalidades fossem
implementadas e melhoradas. Por fim, foi pedido para que uma pessoa leiga no assunto
testasse a interface para avaliar se é amigável ou não. Testes em softwares por pessoas
que não são aquelas que desenvolveram o programa são importantes, pois o desenvolvedor
pode ter criado um vício durante a programação e não notar todos os bugs do programa.

O resultado da interface foi positivo e aparentemente todos os erros foram corri-
gidos. Porém, para operar o controlador e o estimulador, é necessário conhecimento dos
equipamentos e do protocolo de estimulação. Portanto, é necessário orientação de pessoas
que já entendem do processo para que um novo indivíduo possa operar o sistema completo.

4.2 Teste dos sinais de controle

Antes de testar o controlador no estimulador neuromuscular, foi feito o teste com
osciloscópio de bancada para verificar se os parâmetros inseridos no QSTIMBERRY Con-
troller estão sendo convertidos realmente em sinais de controle para acionar o estimulador.

Vários testes foram realizados com diferentes parâmetros e todos foram satisfatórios.
Um desses testes é exemplificado a seguir:

- A Figura 34 mostra os parâmetros setados para estimulação: canal 8 selecionado,
frequência de 25Hz, 100µs de largura de pulso, 100µs de largura entre pulsos e número de
pulsos igual a 5.

- O osciloscópio foi conectado na saída do box header. A Figura 35 mostra a
frequência de estimulação. Pode-se observar que a medida Delta dada entre cursor 1 e 2
do osciloscópio é igual a 25Hz, validando assim, a frequência de estimulação.

- A escala do osciloscópio foi ajustada para poder medir o sinal de controle emitido
durante um ciclo (25Hz). A Figura 36 apresenta os pulsos de controle para o canal 8.
Nota-se que há 5 pulsos na imagem e que a largura entre pulsos é de 100µs como estipulado
no software de controle.

44

- Também pode ser observado a amplitude de 5V do pulso, demonstrando assim, a
eficiência do CI conversor de nível lógico.

Figura 34: Parâmetros para realizar teste do sinal de controle

Figura 35: Frequência do sinal de saída do controlador

45

Figura 36: Sequência de pulsos de controle do controlador

4.3 Teste no estimulador

Após a verificação do sinal de controle, o controlador foi conectado ao estimulador
para poder validar o sistema completo.A probe do osciloscópio foi ligada a uma resistência
de 1000 ohms colocada na saída do estimulador, essa resistência é utilizada para simular a
impedância da pele humana. A Figura 37 indica a largura dos pulsos, enquanto a Figura 38
apresenta a frequência entre pulsos. Nota-se também a amplitude do sinal de saída que é
maior que 90V.

Figura 37: Saída do estimulador -
frequência dos pulsos

Figura 38: Saída do estimulador -
frequência entre pulsos

A frequência de estimulação também foi medida e é mostrada na Figura 39.

Portanto, foi constatada a eficiência do controlador e também uma possível melhoria:
o estimulador necessitava de um estágio de buffer devido ao controlador usado na versão

46

Figura 39: Saída do estimulador - frequência de estimulação

anterior. Porém, com o novo sistema de controle, esse estágio pode ser removido e, assim,
diminuir o custo e tamanho do estimulador neuromuscular.

4.4 Teste de autonomia de bateria

Um dos fatores importantes de se utilizar uma placa embarcada para realizar o
processo de controle é que o sistema seja portátil e sua autonomia seja suficiente para
realizar estimulações durante um dia inteiro de trabalho, isto é, 8 horas.

O teste ideal a ser realizado é utilizar o equipamento na prática, direto com os
pacientes durante algumas jornadas de trabalho e realizar a média de duração da bateria.
Porém, uma estimativa foi estabelecida de acordo com o seguinte teste:

- Carregar a bateria portátil até a tela da mesma indicar 100%.

- Alimentar o touchscreen com a saída de 5V/1A e a placa com a saída de 5V/2,1A.

- Setar parâmetros de estimulação e estimular em intervalos aleatórios.

- Deixar o backlight da tela sempre ligado.

- Esperar o power bank descarregar por completo.

Os parâmetros de teste foram os seguintes:

- Estimulação de 1 a 6

- Todos os parâmetros iguais: canais de 1 a 4 selecionados, frequência de 25Hz,
100ms de largura de pulso, 100ms de largura entre pulsos, número de pulsos igual a 5,

47

duração de 9960ms.

- Número de ciclos igual a 10.

Logo, o ciclo total de estimulação do teste foi de 10 minutos e o intervalo entre
esses ciclos foram feitos de forma aleatória. O teste se iniciou 12:05 com a bateria a 100% e
se estendeu até 17:50 do dia seguinte, totalizando 29 horas e 45 minutos de funcionamento,
e foi considerado que o power bank tem capacidade de 12580mAh para uma carga de 5V.
O consumo do sistema teve uma média de 425mA.

Isso demonstra que o controlador tem autonomia de pelo 3 dias de trabalho sem
necessitar de recarga. Outro ponto é que um carregador portátil com menos capacidade
pode ser utilizado sem problemas.

É valido introduzir que a curva de descarregamento da bateria não é linear, por
exemplo, os primeiros 15% de carga (de 100% a 85%) duram mais tempo do que os últimos
15% (de 15% a 0%) .Então o teste completo de descarga se faz necessário.

49

5 CONCLUSÃO

O projeto reúne diferentes conhecimentos sobre engenharia eletrônica e computação:
C++ e Linux embarcado, circuito debouncing, solda e conexões e operação de equipamentos
de medições. O objetivo principal do projeto foi alcançado: um controlador embarcado
com interface gráfica amigável. Além disso, melhorias foram implementadas durante o
desenvolvimento, como por exemplo, as abas de idiomas e de brilho da tela, o botão para
desligar/ligar o backlight e o botão de “Pausar”/“Resumir”. O resultado do trabalho foi um
sistema eletrônico funcional e validado, com alta autonomia de bateria e com um design
mecânico que fornece robustez e ergonomia ao sistema e facilita seu transporte.

O texto foi escrito em forma de tutorial para que modificações e melhorias sejam
feitas por outros interessados em aplicar essa nova tecnologia de computadores de placa
única e sistemas embarcados na área de estimulação neuromuscular e talvez em outras
áreas médicas.

Deve-se enfatizar também a contribuição desse trabalho para demonstrar a impor-
tância de melhorias contínuas na área da saúde com o intuito de melhorar a vida e bem
estar do paciente. E para que num futuro próximo, pessoas que sofreram de lesão medular
possam ter uma vida normal e sem limitações como qualquer ser humano deve ter.

5.1 Implementações futuras

Esse texto também sugere futuras melhorias tanto para o controlador quanto para
o estimulador neuromuscular. Essas melhorias são listadas a seguir.

- Implementar medição em tempo real do sinal do canal de saída do estimulador. Isso
permite ao usuário constatar que os parâmetros inseridos estão sendo realmente entregues
ao estimulador e também detectar problemas na parte de potência do equipamento.
Para isso, é necessário outro controlador com entrada analógica que trata esse dados e
comunique-se com a Raspberry Pi via UART ou I2C.

- Com o controlador atual, o estimulador não necessita mais de dois estágios:
buffer e acoplamento óptico. Isso pode reduzir o tamanho do equipamento ou um novo
estimulador com controlador integrado pode ser construído.

- A Raspberry Pi 3 possui módulo WiFi integrado, o que permite que o programa
QSTIMBERRY se comunique com um banco de dados em nuvem e/ou receba comandos
por meio da internet.

51

REFERÊNCIAS

BARBARINI, E. S. Aplicação de um sistema de comando por voz e um software
de controle na engenharia de reabilitação. 2008. 68 f. Trabalho de Conclusão do
Curso (Engenharia Elétrica com ênfase em Eletrônica) — Escola de Engenharia de São
Carlos, Universidade de São Paulo, São Carlos, 2008.

CLIQUET, A. Rehabilitation engineering at the state university of campinas. IEE
Engineering in Medicine and Biology Magazine, Estados Unidos, v. 1(2), p. 8–11,
1993.

MANHÃES, R. B. A Engenharia de Reabilitação e as Características
Psicossociais de Pessoas com Lesão Medular Submetidas a um Programa de
Estimulação Elétrica Neuromuscular. 2004. 248 f. Dissertação (Mestrado) — Escola
de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2004.

MINISTÉRIO DA SAÚDE - Secretaria de Atenção à Saúde. Diretrizes de Atenção
à Pessoa com Lesão Medular. Brasilia, DF: Ministério da Saúde, 2013. 70 p. ISBN:
978-85-334-2025-0.

MOTA, J. E. Descobrindo o Linux. 3. ed. Brasília: Novatec, 2012. 928 p.

PARENTE, L. N. Raspberry Pi based system to control neuromuscular
stimulation. 2016. 41 f. Individual project (Electronics & Electrical Engineering) —
School of Engineering, University of Glasgow, Glasgow, UK, 2016.

RASPBERRY PI FOUNDATION. Official Raspberry Pi DSI Display.
Caldecote, UK, 2015. Disponível em: <https://www.raspberrypi.org/blog/
the-eagerly-awaited-raspberry-pi-display/>. Acesso em: 29 out. 2017.

. Official website. Caldecote, UK, 2017. Disponível em: <https://www.
raspberrypi.org/>. Acesso em: 29 out. 2017.

SHEFFLER, R. L.; CHAE, J. Neuromuscular electrical stimulation in neurorehabilitation.
Muscle & Nerve, Cleverland, v. 35(5), p. 562–590, 2007.

THE QT COMPANY LTD. About Qt. California, USA, 2017. Disponível em:
<https://wiki.qt.io/About_Qt>. Acesso em: 29 out. 2017.

. Qt for embedded linux. California, USA, 2017. Disponível em: <http:
//doc.qt.io/qt-5/embedded-linux.html>. Acesso em: 29 out. 2017.

VAROTO, R. Desenvolvimento e avaliação de um protótipo de sistema híbrido
para membro superior tetraplégico. 2010. 250 f. Tese (Doutorado em Engenharia
Elétrica) — Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos,
2010.

Apêndices

55

APÊNDICE A – CONFIGURAÇÃO SSH RASPBERRY PI

Esse tutorial apresenta como acessar a Raspberry Pi 2 ou 3 via cabo Ethernet
utilizando um Notebook, sem necessitar de nenhum periférico (monitor, teclado e/ou
mouse) para o computador de placa única.

Requisitos

- Cabo Ethernet.

- Raspberry Pi 2 ou 3.

- Cartão micro SD com Raspian Jessie SO.

- Notebook com GNU/Linux (nesse tutorial foi utilizado o Ubuntu 16.04).

Download

- Baixar a imagem do Raspian Jessie LITE OS e queimar em um micro SD Card.

Permitir SSH na Raspberry Pi

- Inserir o micro SD Card no Notebook com Ubuntu. Dois diretórios serão abertos.

- Criar um arquivo nomeado “ssh” dentro da partição boot com o comando:

$ sudo touch ssh

Configurar como auto-login

- Criar o arquivo /etc/systemd/system/getty@tty1.service.d/autologin.conf com o
comando touch:

$ sudo touch /etc/systemd/system/getty@tty1.service.d/autologin.conf

- Abrir o arquivo com o editor nano:

$ sudo nano /etc/systemd/system/getty@tty1.service.d/autologin.conf

- Adicionar o código a seguir:

[Service]
ExecStart=
ExecStart=-/sbin/agetty --autologin pi --noclear %I 38400 linux

56

- Sair do arquivo, salvar e executar o comando:

$ sudo systemctl enable getty@tty1.service

- Inserir o micro SD Card na Raspberry Pi.

Compartilhar acesso à internet (Wifi) do notebook à ethernet

- Instalar network-manager:

$ sudo apt-get install network-manager

- Instalar nmap:

$ sudo apt-get install nmap

- Acessar e habilitar compartilhamento de rede no Ubuntu:

System Settings > Network > Wired > Options.. > Ipv4 Settings >
Method > Shared to other computers

- Salvar e reiniciar o notebook.

Descobrir IP da Raspberry

- Alimentar e conectar a Raspberry Pi ao Notebook através do cabo ethernet.

- Execute o comando para descobrir qual o IP da Raspberry:

$ nmap -n -sP 10.42.0.255/24

- Para o meu caso, resultado do comando acima foi:

Starting Nmap 7.12 (https://nmap.org) at 2017-02-23 21:16 BRT
Nmap scan report for 10.42.0.1
Host is up (0.00016s latency).
Nmap scan report for 10.42.0.25
Host is up (0.0024s latency).
Nmap done: 256 IP addresses (2 hosts up) scanned in 2.73 seconds

- O primeiro IP (10.42.0.1) encontrado é do host (Notebook) e o segundo corresponde
à Raspberry Pi, que no meu caso é 10.42.0.25.

57

Acesso via SSH

- Por fim, é só executar o comando ssh para acessar a Raspberry Pi pelo Notebook:

$ ssh -Y pi@10.42.0.25

- A senha padrão do para o usuário ”pi” é ”raspberry”.

59

APÊNDICE B – COMPILAÇÃO CRUZADA EFGLS

O tutorial de compilação cruzada utilizando Qt Creator e Raspberry Pi 3 é fornecido
pela própria comunidade do Qt no link: http://wiki.qt.io/RaspberryPi2EGLFS (acessado
em 29 nov. 2017). Porém, como o texto está em inglês e modificações tiveram que ser
feitas, o conteúdo foi traduzido e adaptado para esse trabalho.

Forçar ‘apt-get’ a usar Ipv4

- Como o protocolo ethernet entre Raspberry e o Notebook é Ipv4, é necessário
alterar a configuração atual do comando apt-get para setar a placa para receber o qt5:

$ sudo apt-get -o Acquire::ForceIPv4=true update

Preparando o sistema da Raspberry Pi

- Primeiramente, atualize o SO:

$ sudo rpi-update
$ reboot

- Caso vá usar a biblioteca pigpio (utilizada nesse trabalho), instale-a antes:

$ sudo apt-get pigpio

- Abra o arquivo /etc/apt/sources.list e descomente a linha deb-src:

$ sudo nano /etc/apt/sources.list

- Atualize e instale as bibliotecas necessárias:

$ sudo apt-get update
$ sudo apt-get build-dep qt4-x11
$ sudo apt-get build-dep libqt5gui5
$ sudo apt-get install libudev-dev libinput-dev libts-dev
libxcb-xinerama0-dev libxcb-xinerama0

- Prepare o diretório qt5 na Raspberry:

$ sudo mkdir /usr/local/qt5pi
sudo chown pi:pi /usr/local/qt5pi

60

Preparando o sistema do Notebook Ubuntu

- Crie o diretório para sincronizar os dados com a Raspberry Pi:

$ mkdir ~/raspi

- Acesse o diretório e clone o toolchain da Raspberry para dentro dele:

$ cd ~/raspi3
$ git clone https://github.com/raspberrypi/tools

- Sincronize os dados da Raspberry Pi com a pasta /raspi3 em seu computador via
rsync. Substitua IPraspberrypi pelo IP encontrado no Apêndice anterior:

$ mkdir sysroot sysroot/usr sysroot/opt
$ rsync -avz pi@IPraspberypi:/lib sysroot
$ rsync -avz pi@IPraspberypi:/usr/include sysroot/usr
$ rsync -avz pi@IPraspberypi:/usr/lib sysroot/usr
$ rsync -avz pi@IPraspberypi:/opt/vc sysroot/opt

- Ajuste o symlink para ser relativo utilizando o script de python abaixo:

$ wget https://raw.githubusercontent.com/riscv/riscv-poky/master
/scripts/sysroot-relativelinks.py
$ chmod +x sysroot-relativelinks.py
$./sysroot-relativelinks.py sysroot

- Baixe qtbase e configure o Qt:

$ git clone git://code.qt.io/qt/qtbase.git -b 5.8
$ cd qtbase
$./configure -release -opengl es2 -device linux-rpi3-g++ -device-option
CROSS_COMPILE=~/raspi3/tools/arm-bcm2708/gcc-linaro-arm-linux-gnueabihf
-raspbian-x64/bin/arm-linux-gnueabihf- -sysroot ~/raspi3/sysroot -prefix

/usr/local/qt5pi -extprefix ~/raspi3/qt5pi -hostprefix ~/raspi3/qt5 -v
-nomake examples -nomake tests -no-use-gold-linker

$ make
$ make install

61

Isso faz com que as ferramentas do host (notebook) como qmake vão para /raspi/qt5,
enquantomake install vai para /raspi/qt5pi. Para executar o mesmo processo na Raspberry
Pi 2 e/ou outra versão do Qt, acesse a páginal oficial.

- Agora, transfira o Qt para a Raspberry Pi ressincronizando as pastas:

$ rsync -avz qt5pi pi@IPraspberypi:/usr/local

- Construa um exemplo no Notebook e transfira o executável para a placa para
testar:

$ cd qtbase/examples/opengl/qopenglwidget
$ ~/raspi/qt5/bin/qmake
$ make

$ scp qopenglwidget pi@IPraspberypi:/home/pi

Correções de bibliotecas na Raspberry Pi

- Permita que o linker encontre as bibliotecas do Qt:

$ echo /usr/local/qt5pi/lib | sudo tee /etc/ld.so.conf.d/qt5pi.conf
$ sudo ldconfig

- Corrija os bugs das bibliotecas EGL/GLES:

$ sudo mv /usr/lib/arm-linux-gnueabihf/libEGL.so.1.0.0 /usr/lib/
arm-linux-gnueabihf/libEGL.so.1.0.0_backup
$ sudo mv /usr/lib/arm-linux-gnueabihf/libGLESv2.so.2.0.0 /usr/lib/
arm-linux-gnueabihf/libGLESv2.so.2.0.0_backup
$ sudo ln -s /opt/vc/lib/libEGL.so /usr/lib/arm-linux-gnueabihf/
libEGL.so.1.0.0
$ sudo ln -s /opt/vc/lib/libGLESv2.so /usr/lib/arm-linux-gnueabihf0/
libGLESv2.so.2.0.0

$ sudo ln -s /opt/vc/lib/libEGL.so /usr/lib/arm-linux-gnueabihf/
libEGL.so.1.0.0$
$ sudo ln -s /opt/vc/lib/libGLESv2.so /usr/lib/arm-linux-gnueabihf/
libGLESv2.so.2.0.0

