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RESUMO

O principal objeto de estudo deste trabatho & um método numérico para resolugdo
de equagbes diferenciais estocasticas (EDE), implementado a partir do modelo
proposto por Euler-Maruyama. Para atestar sua validade, o que utilizamos como
exemplo foi uma EDE cuja solugso analitica ja € conhecida. Foi também investigado
neste frabalho a ordem de convergéncia forte e fraca deste método. Este método se
mostrara de facil implementacdo, apresentara rapida execucdo e bom nivel de
convergéncia.

Palavras-chave: Equacdes diferenciais estocasticas. Euler-Maruyama. Convergéncia
forte. Convergéncia fraca.



ABSTRACT

The main object of this work is a numerical method for solving stochastic differential
equations (SDE), implemented in the model proposed by Euler-Maruyama. To prove
its validity, what was used as an exampie was an SDE whose analytical solution is
already known. It was also investigated in this work the order of weak and strong
convergence of this method. This method will prove to be easy to implement, present
fast execution and good level of convergence.

Keywords: Stochastic differential equations. Euler-Maruyama. Strong convergence.
Weak convergence.
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Introdugao

Este trabalho tem como objetivo chegar a2 um método numérico simples para resolugio
de equagdes diferenciais estocasticas. F também objetivo deste trabalho verificar sua
validade, e para 1sto s3o aplicados alguns testes de convergéncia sobre as solugdes numéricas
apresentadas. Aqui veremos também a teoria necesséria para podermos abordar este assunto.
A forma como abordaremos os tOpicos apresentados aqui serd com o mimimo de rigor
matematico o possivel, de forma que ndo fique uma leitura pesada.

Na prnmeira parte deste trabalho serio apresentados conceitos basicos sobre
probabilidade, veremos variaveis aleatérias, como calcular suas varidncias, esperangas e
momentos. A partir dai, seguiremos para vetores aleatdrios. Depois vém processos
estocasticos, movimento browniano e esperanga condicional. Neste ponto, os assuntos
comegam a ficar mais abstratos. Veremos aqui o conceito de ¢ — Algebra, e o de martingais.
Este ltimo ¢ essencial para o entendimento da integral de Fto. Veremos ainda que a ideia por
tras de um martingal é a de um jogo justo.

Na segunda parte do trabalho comecaremos falando de integral de estocastica,
apresentaremos as diferencas entre as integrais de Ito e a de Stratonovich, mostrando um
exemplo para ilustrar essa diferenca. Neste ponto comega o principal topico deste trabalho. E
neste ponto que podemos finalmente apresentar o método de Euler-Maruyama. Neste ponto
aplicaremos este método em uma equagio diferencial estocistica que ¢ muito utilizada em
modelos de precificagdo de ativos financeiros. A equagdo utilizada possui uma solugio
analitica. Desta forma sera possivel comparar os resultados do método com os da solugio
analitica. Por fim, falaremos um pouco sobre a convergéncia forte e fraca deste método.



1. Conceitos Basicos de Probabilidade
1.1 Variavel Aleatéria

Antes de definir o que é uma variavel aleatoria, devemos primeiramente definir o que é
um espago amostral.

O resultado de um jogo ou um experimento € aleatério. Por exempleo, quando langamos
uma moeda, o resultado deste lancamento pode ser cara ou coroa. Antes de langarmos a
moeda, sabemos os resultados possiveis, mas néo sabemos qual é a saida que teremos antes
de langar a moeda.

O conjunto de todas as possiveis saidas para um determinado experimento é chamado
de espaco amostral. Este conjunto sera representado durante todo o trabalho pela letra Q.

Portanto, no exemplo do langamento da moeda, temos:

Q={Cara, Coroa}
Agora podemos definir variavel aleatdria.

Uma vanavel aleatoria é uma fungio X | com dominio em € , e contradominio
em [R . Ouseja, se tivermos:

X:0 - R
a—X{(m)
Entioc X & uma variavel aleatdria.

Voltando novamente ao exemplo da moeda, podemos definir a seguinte variavel
aleatoria:

X (Cara)=0
X (Coroa)=1

1.1.1 Probabilidade

O proximo passo neste processo de abstragio matematica é o de criar uma descrigio
probabilistica para a variavel aleatéria X. A probabilidade mede a chance de um determinado
evento ocorrer.

Ainda no exemplo da moeda, se a moeda sendo langada for honesta, entio devemos ter:
Pllo: X (w)=0})=P({w: X (0)=1})=0,5

Esta defini¢do matematica ¢ baseada em evidéncia empirica. Se langarmos uma moeda
honesta uma quantidade grande de vezes, iremos obter o resultado cara cerca de 50% das



vezes e coroa cerca de 50% das vezes também. Em teoria de probabilidade, a “Lei dos
Grandes Numeros™ da uma justificativa tedrica para este resultado.

Em geral, dados 4,B€{) dots eventos quaisquer, temos:
P{AUB)=P(A4)+P{B)—P(4NB)
Se A e B forem disjuntos,

P{AUB)=P(4)+P(B)

Além disso, ainda temos:

A funciio

¢ conhecida como sendo a fungio de distribuigio <, deX

Nio e dificil mostrar que:
P{XE€la,b|)=F,(b)-F,(a) , xR

A fungao de distribuigdo pode ser continua ou pode conter saltos. No caso em que ela
possui saltos, temos:

an

Fux)=2 p, . 0<p,<I1Vk e > pe=1

ko <x k=1

Esta funcio de distribuigdo ¢ dita discreta. A varidvel aleatéria com a distribui¢io acima
€ uma variavel aleatoria discreta.

Uma variavel aleatéria discreta possui apenas uma quantidade finita ou um conjunto
enumeravel de valores em seu espago amostral. A sua fungdo de distribuicio possui saltos do
tamanho p, em x=x, .

Um exemplo de distribui¢io discreta importante é a distribuigdo binomial, Bin(n, D),
com parimetros nEN e peg(0,1)



P(X:k)=(;;)p’*n~p)"-’f . k=0,...n

Outro exemplo de distribuigio discreta importante é a distribuicio de Poisson,
Poi(\) ,com parimetro A>0 -

k
P(X=k]=e_"%7 k=012,

Ao contrario da fungdo de distribuigdo discreta, a funcio de distribuigido continua nio
possui pulos, portanto  P{X=x)=0 para todo x, ou seja, wma variavel aleatoria continua
assume um determinado valor com probabilidade zero.

Muitas distribuigSes continuas de interesse possuem densidade  f,
F.{x)= f F{y)dy , x€ER  onde

fX(X)ZO paratodo x€R e _.fo(y)dy=1

Um exemplo importante de distribuigio continua é a distribui¢do normal ou Gaussiana,
N{u,c") com pardmetros pu€R,c*>0 . Sua densidade ¢ dada por:

ple L _(x—p)
S xl(x) JZPIGexp[ . ],xelR

1.1.2 Esperanca, Varidncia e Momento

Trés caracteristicas interessantes de uma variavel aleatéria sio a esperanca, a varidncia
e ¢ momento. Pata uma variavel aleatoria continua X, sua esperanga E(X) é dada por:

=]

wy=E(X)={ x f,(x)dx

—=m

Sua variineia é definida como sendo:
0 =var(X)= ] (x-uif fi(x)as

Seu n-ésimo momento, nelN -



E(X")= T x"f(x)dx .

—0

Dada uma fungio g a valores reais, a esperanga de g(X), ¢ dada por:
E(X)= [ g(x)/x(x)ax

Para uma variavel aleatoria discreta X, com probabilidade p,=P(X =xk) , Sua
esperanca E(X) € dada por:

Mx=E(X)=Z; Xy Py -
ks

Sua varidncia é definida como sendo-

]

U;:var(X)=J (=, S f (x)de -

-m

Seu n-ésimo momento, »€N
E(X")=Z Xy Pe -
k=1
Dada uma fungio g a valores reais, a esperanca de g(X), € dada por:

E(X)=Y glx)p, .

Podemos nos referir 4 esperanca de uma variavel aleatéria como sendo o seu “centro de
gravidade”, ou seja, valores aleatérios X (@) estio espalbados em tormo de um valor nio
aleatério p . . Este valor é o valor que se espera da variivel aleatoria.

O espalhamento ou dispersio em torno de p, ¢ descrito como sendo a varidncia de
X(w) . Temos:

oy =var(X)=E((X—p,))
=E(X=2py X +pi)
=E(X*)-uy



Um resultado interessante e conhecido é que para uma variavel aleatdria normal, temos:
Plu-1960<X<p+1,960)=F,(u+1,9606)-F,(n—1,965)=0,95

Portanto, com 95% de chance, X assumira valores no intervalo
[u—1,960,u+1,96G)

1.2 Vetores Aleatorios

Ao longo deste trabalho, faremos uso de estruturas de dimenséo finita, ou até mesmo de
dimenséo infinita. Comegaremos com dimensio finita, como um primeiro passo em diregio a
defini¢io de processos estocasticos.

Defini¢do. Dizemos que X=(X, .., X,] éum vetor aleatorio de dimensio n€N
se seus componentes forem variaveis aleatorias reais.

Se mterpretarmos Z=1,...,n como instantes de tempo, X, pode ser o resultado de

um experimento no mstante t. Esta sequéncia é uma série temporal, e ela pode representar,
por exemplo, o prego de fechamento de uma determinada agio em n dias sucessivos.

De maneira analoga a variavel aleatoria, e possivel introduzir os conceitos de fungiio de
distribuigiio, esperanga, momento e matriz de covariincia de um vetor aleatdrio, como uma
tentativa de se descrever a sua distribuigio e a sua estrutura de dependéncias. O tnico
conceito novo até aqui é 0 de matriz de covariincia, afinal, nfo faz sentido falarmos em
covariancia para uma variavel aleatoria.

1.2.1 Probabilidade, Distribuicdo e Fun¢do de Distribuigio

Considere o experimento de se lancar uma moeda honesta duas vezes. Os possiveis
resultados deste experimento seria (H, H), (H, T), (T, H) e (T, T), em que H representa cara e
T representa coroa. Estes quatro pares de possiveis resultados formam o espago amostral

Q.

Se definirmos novamente a fungdo como anteriormente, obtemos duas variaveis
aleatérias, X, e X, ,e X=(X,, X,) um vetor aleatério bidimensional,

Note que:
X(H,H)=(00) , X(T.H)=(1,0) , X(H,T)=(01) ¢ X{(T,T)=(1.1)

Como a moeda é honesta, podemos entio dizer que a probabilidade de cada um desses
eventos ocorrer € de 0,25, ou seja:

P(lo: X(w)=(k,1)})=0,25, k, I1€0]1]



A cole¢io de probabilidades
Fy(x)=P(X <x, .., X <x,)= P(i:m:Xl(m)SxL X (e)sx,), x=(x,..,x,)eR"
¢ a fungdo de distribuigdo de F, deX.

Com esta fungio € possivel obter a probabilidade de um determinado evento X assumir
valores em um determinado retingulo

l@,b]='x:a<x<b i=1,.., n}

Por exemplo, se X é bidimensional,

P(X€la,b))=F (b, b,)+F,(a,a,)~F(a b,)-F,b a,) .

Demonstracédo:
Fy(by,b,) = P(X,<b,, X,<b,)

Fr(bl»bz) =
Plla,<X,<b,a,<X,<b,|Ula <X ,<b, X,<a,|U| X, <a,a,<X,<b,)U|X,<a,, X,<a,]

Fr(bhbz) . P[al <X,<bh,, az<X25b2] + P[“1<X1‘—<—b1, Xzﬁaz] +
P[X,<a,, a,<X,<b,] + P[X,<a,, X,<a,]

Note que:

P[X <a, a,<X,<b)] + P[X,<q, X.<a)] = P[X,<a, X,<b)]
E ainda:

Pla,<X <b, X,<a,] = P[X,<b, X,<a,) — P[X,<a, X,<a)
Portanto:

Fy(b.b,) = PIX€(a,b]] + F b,a,) — F,la,,a,) + Fyla,b,)
P[XE(a,b]] = F(b.b,) + Fyla,a) — Fylb,.a,) — F,{a,,b,)

Isto conclui a demonstragio.



A colegio de probabilidades
P.(B)=P({XeB)=P(ln: X(w)eB!)

para subconjuntos B<IR" “adequados”, constitui a distribui¢io de X . Por subconjuntos
adequados de IR" , entendam-se subconjuntos de Borel. Estes, por sua vez, sio
subconjuntos que podem ser obtidos através de uma quantidade enumeravel de operacdes de
N, U ou ° .Mais adiante veremos uma definigio mais precisa.
Matematicamente falando, a distribuigio e a fungdo de distribuigio sio nogdes
equivalentes, pois com ambas é possivel calcular a probabilidade de ocorrer um evento

XeB . Além do mais, conhecendo a distribuigio de X |, conhecemos também a
distribuigio das componentes X, . Para isto, basta fazer x ;=% J#i , na expressio da

funcio de distribuigio.

Analogamente as variaveis aleatorias, é possivel definir vetores aleatérios discretos e
continuos, mas aqui iremos focar apenas no caso continuo e suas distribuiges.

Se a distribuigdo de um vetor aleatéorio X possui densidade f, , entdo sua fungio
de distribuicdo é dada por

X

Fo(X,, .., Xn)zf o] Il ny)dy,. ay,,(x,, .., x,)ER"

—un

em que a densidade, € uma fun¢io que satisfaz:

* fX({x)20VxeR” ;

o

. f___IfX(yl,...,y,,)ay[...dy,,=1

Se X possui densidade £, , entdo todos os seus componentes X, , seus pares
(X,.X,) ,svastriplas (X, X, X.) ,etc, possuem uma densidade. Elas sio chamadas
densidades marginais.

1.2.2 Esperanca, Variancia e Covariancia

Da mesma forma que fizemos com variaveis aleatorias, podemos também definir
esperanga e variincia para vetores aleatorios, e também podemos definir a matriz de
covaridncia, que s faz sentido em ser falada no caso de vetores aleatorios.

A esperanga de um vetor aleatério é dada por:

Sua matriz de covanancia é definida como sendo:
2= co X, X )i, j=1,..,n) ,onde

cof X, X ) =HF( X, X X, ]=E( X, X )y py .

9



€acovaridnciaentre X, e X, .

Note que coW X,, X)) =0y

1.2.3 Dependéncia e independéncia

Intuitivamente falando, dois eventos sdo ditos independentes quando a probabilidade de
que um deles acontega nio ¢ alterada quando o outro ocorre ou deixa de acontecer, ou seja,
ndo importa o que aconteca com o segundo evento, isso nio afeta a probabilidade de o
primeiro evento ocorrer ou ndo. Um exemplo muito comum desse fato & o do lancamento de
duas moedas honestas. Se na primeira moeda o resultado do langamento for, digamos, cara,
em nada isso afeta o resultado do segundo langamento.

Matematicamente falando, temos:
P X, =k, X,=l)=P( X ,=k) K X,=l), k, 1€0,]

Uma defini¢io mais formal:

Defini¢do: Dois eventos A e B sio ditos independentes se:
P ANB)=P{ 4) A B)
Agora, duas variaveis aleatérias X, e X, sio ditas independentes se:
P( X,€B,, XzeBz):P( X,EBI)P( X2632)

Isto significa que os eventos f X, €B| e \' X,€B, sio independentes.

Alternativamente, ¢ possivel se estender a defini¢io de independéncia a partir da fungio
de distribuico.

Duas varidveis aleatérias X, e X, sdo ditas independentes se ¢ somente se

FX,,X;( xl’xz) :Fx,( xl)FXl( xz]: x,, X, ER

Se {X,.X,) possuir densidade f v,x. € densidades marginais f, e f, |,
entioc X, e X, sdoditas independentes se e somente se

fx,,x:( Xy, xz) =f,\'1( x1)fxz( xz): x,, x, €R

A nogdo de independéncia pode ser estendida ainda para qualquer nimero finito de
eventos e vandveis aleatorias. Note que a independéncia dos componentes de um vetor
aleatdrio implica na independéncia de qualquer par de componentes, no entanto a reciproca
ndo é verdadeira,

Os eventos A4, ... 4, sio ditos independentes se para qualquer que seja a escolha de
indices 1<, <. <, <n einteiros 1<k=<n ,

P(A,N.. "4, )= 4,)n. NP A4,)

As variaveis aleatérias X,,.., X sdo ditas independentes se:

n

10



HXIEBI"“!XJ:GBM):H XIEBI)"’H XnEBn)

Isto significa que os eventos | X, EB]} D ¢ HGBH} sdo independentes.
As variaveis aleatorias X |,..., X, sdo ditas independentes se e somente se sua funcio
de distribuigdo acumulada puder ser escrita da seguinte forma:
Fyu wlx, ___,xn)=FX|[x1).._ Fxn(xn), (x,,... ,x")€|R

Se (X,,..,X,) possuir densidade Sx, .y € densidades marginais
Sxrsfy ,entio X,,.., X sioindependentes se e somente se

le, ,X,:(xl LEEE xm):.f‘X1 (xl ) an(xn): (x!; sy xn)EIRn -
Isto completa a serie de definicdes se dependéncia e independéncia de variaveis
aleatorias.
Exemplos:

1. Seja X=X,,.X,} umvetor gaussiano commédia p=fp,,..,n,) e matriz de
covaridncia T . Entio temos:

1 1 T
Tt B TN

No caso em que as variaveis sio descorrelacionadas, a matriz de covariincia é diagonal,
€ temos:

H]

fx(x):l_[ EI[;ITGGXP[_(Z—UL:)Z}:fr[(xl)me"(xn) >

=1

ou seja, sdo independentes. Portanto, no caso gaussiano, descorrelagio e independéncia sdo
nocdes equivalentes. O proximo exemplo mostra que nio-correlacio ndo implica
independéncia.

2. Seja X' uma varidvel aleatéria normal padrio, Como X € simétrica, isto &, X e
—X possuem a mesma distribuigdo, entic X também é, e logo, ambas possuem
meédia zero. Assim:

col X, X')=E X X*|~H X1 H x’|=H X*]-H X]|H X7 =0

- Mas Iclaramenlte X e X* sdo dependentes, pois ) evento
| X€-1,1), 5 X*¢0,1)] . Portanto, temos:

Hlxd-11) | X¢o1)))=H| x¢-1.1)})>H| xé—1.1)) K x’¢01))=r| xe1,1)))’
1.3 Processos Estocasticos

Suponha que a taxa de cimbio R$T/S3 em qualquer instante entre as 9:00 da manhi e
as 10:00 da manha seja aleatéria. Portanto, podemos imaginar que o caminho percorrido pelo
cambio neste intervalo seja uma realizagio X, (w) dessa variavel aleatéria X , . Para
fazermos uma previsio sobre o valor d¢ X, as 11 da manhi é no minimo razoavel que

11



observemos a trajetoria de X, para 1€[9,10] . Um modelo matematico que descreve tal
fendmeno é chamado de processo estocastico.

Definicdo: Um processo estocistico X € uma colegio de variaveis aleatdrias
(X, teT,0e€Q) , definida em um espaco

Para nossos propositos, 7' é frequentemente um intervalo. Neste caso, X é um processo
continuo no tempo. Um processo que nio € continuo no tempo é um processo discreto, e
neste caso T € um conjunto finito, ou infinito € enumeravel. O indice ¢ da variavel aleatéria

X, normalmente refere-se ao tempo, e seguiremos esta convengio aqui.

Um processo estocastico X é uma func¢do de duas variaveis. Para um instante de tempo 7
fixo, X, ¢€uma variavel aleatéria,

X=X, (0n), n€Q
Para uma dada trajetéria w€Q , trata-se de uma fungiio do tempo,
X=X [(w),teT
Esta fungéo € chamada de realizagio, trajetéria ou caminho amostral do processo X

A figura 1 abaixo ilustra bem este fato. Na primeira figura, cada um dos caminhos
observados representa um w&Q diferente. Ja nas figuras do meio e de baixo, para cada
t=0,1,...,0,9 | X, representa uma variavel aleatoria.

As figuras foram retiradas do livro do Mikosch, mencionado na referéncia no final deste
trabalho. As imagens contidas neste trabalho sio todas deste livro.

Exemplo: Uma série temporal X,,£=0,+1,+2,... & um processo discreto, com 7=Z

As séries temporais representam uma classe muito importante dos processos estocasticos.
Elas sio modelos relevantes na representacio de muitos fenémenos da vida real, como por
exemplo, a temperatura de um paciente em um hospital, o prego de fechamento de uma acio
na bolsa, ou a quantidade de passageiros que voam de aviio em um determinado més do ano.
Os modelos mais famosos de séries temporais os processos Auto-Regressivos com Média
Movel (ARMA, na sigla em Inglés). Estes modelos sdo dados por certas equagdes de
diferencas, em que uma sequéncia (Z,) , conhecida como ruido, é envolvida nestas

equagdes. Por exemplo, um processo de média mével de ordem g>1 ¢ definido como:
X=2Z+6,Z_+.+0,Z__  1eZ
E um processo auto-regressivo de ordem 1 é dado por:
X=X, _+tZ, 1eZ
8,,..,0,,0 representamn pardmetros reais dos modelos. A figura 1.3.2 abaixo
representa dois exemplos de série temporais. Do lado esquerdo, vemos o retorno diario do

indice S&P, e do lado direito, é uma simulagio do processo auto-regressivo
X,=05X,_+2Z,,Z~N(0,1)
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indice S&P. Do lado direito, temos uma simulagio de caminho aleatério de nm processo auto-repressivo  V,=0,541"_,+Z, , onde oz
Z, possnem distributeio N(0,1) e sfio independentes ¢ identicamentes distribuidas.

Observe que os conceitos de variavel aleatdria e de processos estocasticos nio sio tio
diferentes assim. Ambos possuem realizagdo, mas a realizagio de uma variavel aleatdria é um
nimero, enquanto que 2 de um processo estocastico ¢ uma funcgio no tempo. Entio, podemos
Imaginar um processo estocastico como sendo um elemento aleatério que toma funcdes como
valores. Alem disso, podemos interpretar uma variavel aleatoria ou um vetor aleatério como
um caso especial de processo estocistico, com conjunto de indices T finito.

1.3.1 Distribuigao

Em uma analogia com variavel aleatéria e com vetor aleatdrio, queremos introduzir a
nogdo de distribuicdo, ou seja, as caracteristicas nio aleat6rias a um processo estocastico,
como sua distribuicfio, esperanca, etc, e definir sua estrutura de dependéncias.

Uma forma de se fazer 1sto € interpretar um processo estocastico como uma colegio de
vetores aleatorios. Portanto, temos a seguinte definigdo:
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Defini¢do: As distribuigdes de dimensio finita (fidis, na sigla em Inglés) de um Pprocesso
estocastico X sdo todas as distribuigdes dos vetores de dimensio finita

(X, ... X )8, t,€T |
para todas as possiveis escolhas de tempos  7,,...,1,€T eparatodo nx1
Um processo estocastico pode ser classificado por diferentes critérios. Um destes
critérios é o tipo de fidis.
Exemplo: Processo gaussiano

Um processo estocéstico ¢ dito gaussiano se todas as suas fidis forem gaussianas
multivariadas. Um vetor gaussiano pode ser determinado pela sua esperanca e matriz de
covaridncia. Logo, um processo estocstico gaussiana pode ser determinado pela sua colegdo
de esperangas e de matrizes de covariincia.

Um processo gaussiano simples em 7=[0,1] consiste em variiveis aleatorias
independente e identicamente distribuidas (iid) com distribuicio N (0,1} . Neste caso, as
Jidis sio caracterizadas pelas seguintes fungées de distribuigio:

P(Xrlefl, ..,,X,';sx‘,‘):P(X‘ISxI.]... P(X,IJSxtq)=¢;(x1 ) o{x,) .

em que (x,),..,0(x,) representam as fungdes de distribuigio da normal padrio
calculadas em x,..,x

1.3.2 Funcao de esperancga e covariiancia

Para um vetor aleatério X=(X,..,X ) , definimos sua esperanca como sendo
we=(E{X,),..,E(X,})) , e sua matriz de covaridncia £, coyf X,X)i,j=1,..,n)

. Um processo estocastico X =(X,(€T) pode ser considerado como uma colegio de

vetores aleatorios {X (s X 4,) . E para cada um deles, € possivel calcular sua esperanca e

sua mairiz de covariincia. Alternativamente, podemos considerar essas quantidades como
fungbes de 7€T . Portanto, considere a seguinte defini¢iio de esperanca e covariancia:

Defini¢do: A fungio esperanga de um processo estocastico X ={X,,1€T) & dada por:
wylt)=u, =E(X ) 1eT .
Sua fungiio de covaridncia é dada por:
cx(t,s)=cov(X,, X )=E[(X,—u, (6)){X —py(s))], €T
Por 1iltimo, sua variéncia ¢ dada por;
oxlt)=cy(t,t)=var(Xx ). 1€T

Assim como no vetor aleatério, a fungdo p,{f) é deterministica, e ¢ tal que o0s
caminhos aleatérios de X se concentram ao redor dela. A funcio ¢, (,s) representa uma
medida de dependéncia no processo X. A fungio de varidncia o3 (¢£) pode ser mterpretada
como uma medida do espalhamento dos caminhos amostrais de X em torno de ()
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Diferentemente do caso unidimensional, afirmagdes do tipo “95% dos caminhos
amostrais estdo entre p,(/)+20%(¢) ” sio muito dificeis de serem demonstradas até

mesmo para processos gaussianos, € em geral ndo sio corretas.

1.3.3 Estrutura de dependéncia

Ja mtroduzimos aqui o conceito de processo gaussiano especificando suas fidis como
gaussianas multivariadas. Qutra forma de classificar os processos estocasticos seria impor
condigdes especiais 4 sua estrutura de dependéncias.

O processe X =(X,1€T), TcR | ¢ dito estritamente estacionario se suas Jidis sio
invariantes por deslocamentos no indice r

(X, X )HX, s X.w) para todas as possiveis escolhas de indices

L,. .0L,€T,nzl e h tal que 1,+h,.. 1, +h€T . Note que nio se trata de uma

igualdade, mas se trata de distribui¢bes idénticas, ou seja, quando afirmamos que A2 B |
entdo os elementos aleatdrios (variaveis aleatérias, vetores aleatérios ou Processos
estocsticos) 4 e B, possuem a mesma distribuicio, ou seja, P{AeC)=P(BeC) ,
qualquer que seja C, um conjunto “adequado”.

Estacionariedade também pode ser imposta nos incrementos de um processo. O
processo em s1 ndo é necessariamente estacionario.

Definigdo: Seja X =(X,t€T<RR) um processo estocastico, € 7 um intervalo. X ¢ dito
€staclonario por incrementos se:

X~X2ZX ,~X_., Vi s t+h, s+heT

A'¢ dito mdependente por incrementos se para toda escolha de Lh<.<(€eT nzl
X, —-X,, .., X,—X,_

forem varidveis aleatérias independentes.

Fxemplo. Um processo estocastico  (X,,1€[0,)) é dito um processo de Poisson
homogéneo com taxa A>0 se as seguintes condi¢bes forem satisfeitas:

* Comeca emzero: X, =0 :
* Possui incrementos independentes estacionérios;

* Paratodo 1>0,X,~Poi{ht)

Note que, devido a estacionariedade dos incrementos, X,— X, 1>s , possui a mesma
distribuicdo que X, — X, =X, ~Poi(\(r—s))
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1.4 Movimento Browniano

O movimento browniano possui um papel central em muitas areas, como em
probabilidade, em processos estocasticos, fisica, finangas, etc. E também muito importante
neste trabalho. Comecemos pela definigdo.

Definigdio: Um processo estocastico B=(B,, 1€[0,0]) & dito um processo de Wiener se as
seguintes condicdes forem satisfeitas:

= (Comega em zero: B =0 ;
* Possm incrementos independentes estacionarios;
* Paratodo >0,B,~N(0¢) ;

* E continua, ndo possu “saltos”.

1.4.1 Fun¢des de distribuicdo, esperanca e covariancia

As fidis de um movimento browniano sio gaussianas multivariadas, portanto B é dito
um processo gaussiano. Para £>s temos que as variaveis aleatonas B,—B, e B,
possuem distribuigdio N (0,1—s) . Esta afirmagio segue da estacionariedade por
incrementos. De fato, temos que:

B—BZB,_—B,=B,_,~N(0,1~s)
Assim, a varidncia é proporcional ao tamanho do intervalo [s, ¢]

Da definigiio de processo browniano, é imediato que p,(2)=E(B,)=0,1=0 , e como
os incrementos B,—B;, e B,—~B, sio independentes, >s , a sua fungio de

covariincia fica:
cy(t, s)=E[B,B,]|=E[((B~B,)+B,)B,|=E[(B,—B,)|E[B,]+ E[ B;]=0+s=s5

Como um processo estocastico € definido por suas fungoes de esperanga e covaridncia,
entido uma defini¢do equivalente seria a seguinte:

Definicdo: Um movimento browniano € um processo gaussiano com:

uB(l‘)=O e cB(t, s)zmin (t, s)

1.4.2 Propriedades do caminho

Neste topico, fixaremos um caminho aleatério B,(®),420 | e consideraremos as suas
propriedades. Ja sabemos da defini¢io de movimento browniano que B,(w) & continuo.
No entanto, observando alguns desses caminhos podemos ver que eles sio extremamente
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irregulares, apresentam muitas oscilagdes, e a razio disso € o fato de que B possm
mcrementos independentes.

De fato, os incrementos em intervalos adjacentes sio independentes, nio importa o
tamanho destes intervalos.

Antes de continuarmos discutindo o quio irregular sdo os caminhos brownianos,
faremos uma pequena pausa para a apresenta¢io de uma definigio contemplando uma classe
de processos estocasticos, na qual o movimento browniano € um caso especial. Todos os
membros dessa classe possuem caminhos aleatérios irregulares.

Definigdo: Um processe estocastico  (X,,1€[0,)) ¢ dito H-auto-similar para algum
H>0 sesuas fidis satisfizerem a seguinte condigio:

d
(T"B,,...T"B,)=(By,, ... Br,) ,
paratodo T3>0 | qualquer que sejaa escolha dos £,=0, i=1,.. n, n=1
Note que auto-similaridade é uma propriedade da distribuigdo, e nio do caminho, logo

d ~ .y
= ndo deve ser substituido por

De maneira grosseira, auto-similaridade implica que se mudarmos a escala de um
caminho aleatério adequadamente, ndo importa se o intervalo de tempo é grande ou pequeno,
estes caminhos serdo semelhantes, mas nio serdo 0s mesmos.

A figura 1.4.2.1 a seguir ilustra bem este fato. Na medida em que vamos alterando a
escala vemos que um mesmo caminho apresenta formatos semelhantes, mas nio sio 1guais.

Lema: Os caminhos de processos auto-similares nio sdo diferencidveis em nenhum ponto.

Nio demonstraremos este lema aqui. Apenas tomaremos como verdade. Agora,
voltando ao cammhoe browniano, temos o seguinte teorema:

Teorema: O movimento browniano é 0,5-auto-similar, ou seja,
(7'"B,.....T"B,)%(By,, ... Br,) .
paratodo 7>0 , qualquer que seja a escolha dos £>0, i=1,_ . »n, n=1

Demonstragdo:

Como em ambos os lados da igualdade temos vetores gaussianos, entio & suficiente
mostrar que eles possuem a mesma esperancga e a mesma matriz de covariincia. Portanto:

E[TluB] Tlsz[ ] Tllz 0:0=[BTr,]

cov(T""B,, T'" B, )=E[T' "[(B,~B,)+B,]B, T'"]
cov(T'”B,, T'"B, ) TE(B,~B,)E[B,]+E|[B])
cov(T"’B,, T B,)=T1,=¢(T1,, T1,)

Na tiluma passagem, assumi que #,>f, .Por fim, temos o seguinte corolario:
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Coroldrio: Os caminhos de um movimento browniano nio sio diferenciaveis em nenhum

ponto.

Demonsiragdo: Este resultado sai da aplicagiio imediata do lema anterior.
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Figura 1.4.2.1: Auto-similaridade. Alterando a cscala da figura obtemos fignras semclhanics, porém ndo sdo as mesmas,
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A diferenciabilidade de uma fungio f implica que seu grafico é “suave”, ou seja,
localmente ela pode ser aproximada por uma reta. De fato, se o limite

z f(xo +Ax)—f(x0)
ill—l-}) Ax

existir e for finito para algum X, no dominio da f, entdo escrever para algum Ax
pequeno:

f(x0+Ax)=f(x0)+f‘(xo]Ax+h(xo,Ax]Ax >

emque h(x,, Ax)—0 quando Ax—0 | Portanto, em uma vizinhanga pequena de x, , f
€ aproximadamente linear.

5-

Flx}
X

no

0%

s 05 o5 or 08 02 o 05 o 15 20

Figura 1.4.2.2: Do lado esquerdo temos uma fungdo difercncidvel Qualgquer ponto de sen grifico pode ser aproximade por uma fungio
lincar, a Yinica reta tangente aeste pouto, Do lado dircite Fix)=le=11 No ponto  x=1 fnilo ¢ diferencidvel.

Na figura 1.4.2.2 acima, do lado esquerdo temos uma fungiio que é suave, e em cada
ponto de seu grafico é possivel se aproximar um vizinhanga deste ponto por uma reta, que por
sinal, € a tinica refa tangente neste ponto. Ja no lado direito, vemos o grifico da fungio

flx)=lx—1] . No ponto  x=1 , vemos que f niio ¢ diferenciivel, ou seja, ndo hi uma
unica reta tangente neste ponto.

Agora, se tentarmos imaginar uma funcio que ndo € diferenciavel em nenhum ponto,
chegaremos a conclusio de que isto ¢ impossivel. Esta fungdo B, qualquer que seja o 1,
em seu dominio, ¢ impossivel aproximar B, por uma reta na vizinhanga de 1,

Uma outra indicagio de que o movimento browniano & irregular € dada pelo seguinte
fato:

Teorema: Um movimento browniano nio tem variagdo limitada, qualquer que seja o intervalo
de tempo [0, T]. Isto significa que:

s 3[B, (0) B, (0] == .

em que o supremo € tomado sobre todas as possiveis particdes 0=t <. < =T de

[0,T].
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Também nio demonstraremos este fato aqui. O fato de nio ser diferenciavel em nenhum
ponto, além de possuir variagdo ilimitada sdo as principais razdes pela qual a integraciio pelos
métodos tradicionais ndo functonam.

1.5 Esperanca Condicional

Nesta parte do trabalho falaremos sobre um conceito importante para que
posteriormente possamos falar sobre G—algebra .

Comecaremos com a probabilidade condicional. Em cursos de teoria de probabilidade,
aprendemos que a probabilidade de um certo evento A ocorrer dado que um outro evento B
ocorreu é dada por:

P(ANB)

P(AIB): P(B)

ANB

Figura 1.5.1: Dado que B ocorre, entio A ocorre somentese ANE  ocworer.

Observando a figura 1.5.1 acima, vemos que basicamente o que acontece é que dado
que 8 aconteceu, entdo 4 s6 pode ocorrer se ANB  ocorrer. E dividimos por P{B) pois
neste caso, B seria 0 novo espago amostral, entio precisamos normalizar o antigo valor de

P{ANB) por P{R) .

Agora, dado que P(B)>0 , podemos definir a fungio de distribui¢io condicional de

uma variavel aleatéria X dado B:

P(X<x,B)
P(B)

¢ também a esperanga condicional de X dado B:

,x€R

k]

F.(xIB)=
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E{X1,)

E, (x|B)= x€R , em que

P(B) ’
1,wER
I(o)={ "
5(o) 0,w&R
¢ a fungio indicadora do evento B. Apenas para efeito de ilustracio, assumiremos que
Q=R .SeXédiscreto, com valores x,,x,,.. ,entdoa esperanga fica:
Pllo: X(w)=x.nB) &
ElxR)=3 x4 003 5 = B)
e P(B) =

Se X' possui densidade . , entdio a esperan¢a condicional fica:

l x
ElXI|B|= I x X
o =
. . ---
e e
X1 %y |
S o ‘
of az 04 0'5 ag 10 ; ofi 62 [ L] (<] 3 08 10
omep omega

Figura 1.5.2: Do lado ceguerdo temos uma variavel mniforme ¥ ~I7(0,1) , rtpresentada pela linha pontilhada e sua esperanca,
representada pela linha continua. Do lado direito lambém temos nma variavel uniforme Y -7 (0,1} | representada pela limha pantithada
c sua esperangas condicwonais  E[Y]4] | cude A =((i—1 )5, 115! ,  1=1,..,5 . Estas esperangas condicionais podem ser
mterpretadas somo valores de uma varidvel aleatdria discrsta E[X1Y]  com valores constantes distmtos nes conjuntos 4,

Exemplo: Considere a varidvel aleatéria X{w)=m, Q=(0,1] , munido da medida de
probabilidade P((a,b|)=b—a , (¢,b]cQ . Xpossui distribuigio uniforme em (0,1]. Sua
funcdo de distribuicdo € dada por:

P(#)=0,x<0
Fo(x)=P(lo: X (0)<x})=] P({0,x])=x, x€(0,1]
P{(0,1])=1,x>1

Na figura 1.5.2 a esquerda, estd representada a variavel aleatoria X e sua esperanga
E[X]=0,5
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Agora, assuma que At=[%,~;-}, i=1,..,n , ocorren para algum i. Sabemos que
frlx)=1 em/[01] e P(A,):% . Entio:
) 1 12i—1
E\X|4 |= Ax)dx= dx==
[ I‘Ar] P(A!)_!:xfk(x) ni!lx 2 n

n

A esperanga condicional esta ilustrada a direita. O valor de E[X|4,] ¢ atualizado no
novo espago A4; ,dadoque A4, aconteceu

Agora, considere uma variavel aleatoria Y em () que assume valores distintos Y,
em comuntos A, , ou sgja,

A=lo:Y{n)=y]}, i=1,2,.
Entio, 4, forma uma particio disjunta de () , ouseja, ANA =80, i#j ,e

H

U/ A= . Assumiremos por conveniéncia que P{A4,)>0,Yi .
1::]

Para uma variavel aleatéria X€Q |, com E[|X|<x , definimos a esperanca
condicional de X dado ¥ como a variavel aleatoria discreta

E[X|Y)(w)=E[X|4]=E[X|Y =3 ], wed, i=12_.

E[X|7](®w) coincide com o caso classicode E[X|4,] .

Sabendo que A, ocorreu, podemos nos restringir a ®€A, . Neste caso, o

Exemplo: (Continuacio)
No exemplo anterior, E[X|4,] pode ser interpretado como sendo valores de uma variavel
aleatéria discreta E[X|Y] , onde Y é constante em cada um dos conjuntos

A =[I_1 2] i=1...n . Neste sentido, E[X|VY] pode ser considerado uma versio

1
n n
grosseira da variavel aleatoria X original em cada um dos conjuntos A4, | istoé, E[X|Y]
é uma aproximacio de X dado que A4, ocorreu.

Mostraremos agora, algumas propriedades da variavel aleatoria E[X|¥] .
1) Ela € linear: para variaveis aleatérias X,, X, e constantes c¢,,¢, :
E[CIX1+CZX2 [Y]zc]E[XIIY]-I-clE[Arzly] g

Demonsira¢do: Mostraremos apenas para o caso continuo. O caso discreto € semelhante.

Jx,.fx asrespectivas densidades de X, X, . Entio:
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Ele, X, +c, XY= j x)te, [y (x))dx

}

E[ch!+c2X2|Y]=c _ffxl(x dx+c2ﬁ!f,(:(x)dx

IP(Y) y
E[CIXI+CZX2|Y]ZCIE[Xlly]-'_czE[leY]

2) As esperangas de Xe de  E[X|V] sio iguais:
E[X|=E[E[XI7]] .

E[E[XIY]]=Y E[X|4)P(4)=3 E[X1 )=E[XY 1,]1-E[X] .

1=1

Aqu, utihzamos o fato de que Z I,=I-=Ia=1 .
el

3) Se Xe ¥ sdo independentes, entio E[X|V]=E[X] .

Como )4 dissemos anteriormente, independéncia entre X ¢ ¥ significa que

P(X€A,Y=y)=P(X€A)P(Y=y)=P(X<A)P(A)

Considere a vandvel aleatoria [, | e note que:

{m:IAizl}:Alz{m:Y(m)zyr}

Assim, podemos re-escrever a equagio acima da seguinte forma:
P(XeA,1,=1)=P(X€A)P(I,=1) .

A relagdo ¢ analoga com {7 ,4,:0} no lugar de {7 A:=1} . Portanto, as variaveis aleatorias X e

I, sdoindependentes para €A, . Temos:

Elx1,] E[X]E[l,]

P(A]) = P(A,) =E[X] , pois

E[XI](w)=E[X|4,]=

E[IA']=0P(Af)+1P(A,-)=P(A,-) :

Isto prova o item 3.
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Resumo:
Até aqui aprendemos que:
* A esperanga condicional E[X|¥] de X dado uma variavel aleatéria discreta ¥ é
uma variavel aleatoria discreta;
* Ela coincide com o caso classico de esperanca condicional E (XY= y,] nos
comjuntos  A,={w:¥Y{w)=y, ;
* Neste sentido, trata-se de uma aproximacio grosseira de X. De fato, se ¥ for constante,
E[XIF]=E[X] , se ¥ assume n in IN° wvalores distintos, entio E[X|V]
também assume;

«  E[X|¥] nido é funcio de X, mas sim de ¥, A variavel aleatéria apenas define o tipo
de funcio. De fato, podemos escrever:

E[xIr]=g(¥) ,onde g(y)=2E[XIY=y,]Iy,(y) .

1.6 o - dlgebra

Na segio anterior, vimos a definicio de E[X|Y] onde.X é uma variavel aleatoria e ¥
¢ uma variavel aleatoria discreta. Vimos também que ndo importa de fato quais valores ¥
assume, mas sim que Y assuma valores )y, distintos em subconjuntos 4, de Q .
Assim, E[{X|¥Y] pode ser interpretada como uma variavel aleatéria construida a partir de
uma colegio oY) de conjuntos de . Entio, de maneira simbélica, podemos

€8CIever.
EIX|Y)=E[Xlo(Y]}] .

A colegio o(¥) nos fornece informacdes sobre a estrutura da variavel aleatoria
Y(w) como fungiode w€Q .

O nesso objetivo aqui é formalizar o significado de “colegio of¥} de conjuntos de
) . Chamaremos essa colegdo & de, o©—digebra se forem satisfeitas as seguintes

condigdes:
* Acolegio ¥ éndovaza: HeF, QeF ;
+ Se A€ ,entic A'eF ;
+ Se A, 4, €F ,emio UAeF, AAET |

r 1

Exemplo: Algumas o—algebra elementares

={4,Q} ;
=/
l

&
«  F,=0,4,4,Q]

2
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s  F.,={4:4€Q]}

3
F, éamaior o©o—dlgebra , 7, ¢amaiordetodas.

Agora, suponha que C seja uma cole¢io de subconjuntos de Q , mas ndo
necessariamente uma O—dlgebra . Poderiamos adicionar, por exemplo, o suficiente para
formar o comjunto ¥, , mas € possivel demonstrar que para uma dada colecio de
subconjuntos de C de subconjuntos de Q , existe a menor O—digebra o(C) em

Q2 contendo C.

Chamaremos de o{C) a 0©—dlgebra gerada por C.

Exemplo: ( 6—dlgebra gerada a partir de uma variavel aleatéria discreta)

Considere a vanavel aleatéria ¥, assumindo valores y, e definindo os subconjuntos
A={w:Y{w)=y,] que constituem uma particio disjunta de Q . Seja
C={A,,A4,,.}] Como o(C) éuma o—dlgebra | ela deve conter todos os conjuntos

da forma:

A=U A, TcN={12, ..}

17

incluindo I=8(A=8) e I=IN(4=Q} . Os conjuntos da forma (1.6.1) formam uma
o—digebra  o(Y) , pois:

(1.6.1)

k-

o I=fg=Pcc(¥) e I=N=Qeo(Y) ;
s  A=UA€c(Y) e A=U AeolY) ;
1EI°

]

* Dados I,,I,,.. subconjuntosde IN entio I=£}IJCIN e J= ﬁlIJCIN , €
=1 J
portanto, A,=U A €0(¥) e A,=U Aea(¥) .
e &t

1=J

Exemplo: Os conjuntos de Borel

Considere Q=R e cV={(a,b|:—0<a<b<w} . A o—digebra
B, =0(C“]) contém uma grande variedade de subconjuntos de IR . Estes subconjuntos

sdo conhecidos como conjuntos de Borel, e esta colecio como G—dlgebra de Borel E
muito dificil imaginar a variedade de conjuntos que B, possui. Por exemplo, é fato que

B,/ &7 ; ,no entanto, esta verificagdo nio ¢ facil.
E possivel definir também a o—dlgebra  de dimensio n, B,,=0(('““J) e
Cln):{(a !b]:dw<af<bi<w! i=1:“' ] n}

Os conjuntos [a, b] sdo chamados retingulos. Qualquer subconjunto de IR”
“razoavel” é um conjunto de Borel. Por exemplo, bolas, esferas, curvas suaves, superficies,
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etc., sio chamados de conjuntos de Borel. Também sio conjuntos de Borel os conjuntos
fechados € abertos. Para demonstrar que um determinado conjunto C<R" € de Borel basta

[

obter C por uma quantidade enumeravel de operages N , U on , agindo sobre
retangulos. Por exemplo, (a,b],[a, b],(—m,a],(b,oo) sio Borel (r = 1), pois:

e {(a,B)=U (a+l,b_l
neN R n_

o« (a,B)=TT (a-l-"l—,b—l

nslN n n

+  {-w,a)=U (—n,a—l.

n=N n k

&

(b, oo):( U —n,b+lJ
nsN n

Agora, retome o exemplo da o©—dlgebra (Y ) gerada a partir dos conjuntos
A={w:Y(w)=y,] , para variavel aleatéria discreta ¥, com valores y, . Se ¥ for uma
variavel aleatéria continua, a O—dlgebra gerada a partir dos conjuntos  {m:Y (w)=y]}
do ponto de vista matematico, ndo é uma colegdo rica o suficiente. Por exemplo,
{m:a<Y{w)<h] ndo pertence a esta o©—dlgebra . Portanto, assumiremos que pelo
menos conjuntos dessa forma estario em o{Y) quando ¥ for uma variivel aleatéria
continua.
Como estaremos também interessados em vetor aleatorio ¥, segue a defimigio de
o(Y) para o caso multivariado.

Definicdo: Seja  ¥Y={(Y,, .,¥ ) um vetor aleatério n-dimensional. A o—dlgebra
o(Y) éamenor o—dlgebra contendo todos os conjuntos da forma:

{Y€la,bli={w:a,<7 (0)<h,, i=1,.., n},—n<a<b<w

A colecio o(Y) éa o—dlgebra gerada pelo vetor aleatorio ¥ Um elemento em
o(¥) nos diz para qual e o vetor aleatério ¥ assume valores no retingnlo
(@, ] , ou em um conjunto de Borel, mais geral.

A o-—digebra  o(Y)} contém as informagdes essenciais sobre a estrutura do vetor
aleatorio ¥ como fungio de we€() . Ela coniém todos os conjuntos da forma
{w:¥ (w)eC} , para todo conjunto de Borel CeR” .

Imaginar o(¥) & muito dificil, e é mais dificil ainda imaginar no caso em que ¥ é
um processo estocastico. Para o caso em que Y=(V, te€T,0w€Q) , a o—dlgebra
o(Y) éamenor o—dlgebra contendo todos os conjuntos da forma:

{»: o caminho amostral (¥,(w), (€T, w€Q) pertencea C}

para todo conjunto “adequado” C de fungées em T.

Nio foi dada uma defini¢ao mais formal devido as nossas ferramentas ainda serem
limitadas, mas teremos uma ideia melhor sobre %sigma(Y) depois desse exemplo abaixo:
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Exemplo: Seja B=(B_, s<t) um movimento browniano em [0,z] . A colegio:
F,=o(B)=0o(B,, s<t)} ,

€ a menor O—algebra contendo a informagio essencial sobre a estrutura do processo B em
[0,7] . E possivel demonstrar que esta ©—dlgebra & gerada por todos os conjuntos da
forma:

A, .:,,(C]={ ®: (B,I(m], ,B,ﬁ(m)EC o,
para qualquer conjunto de Borel (' de dimensao », e qualquer escotha de 1 €[0, ], n>1

Podemos ver que o(¥) ¢ um objeto nio-trivial. Daqui em diante, iremos utilizar a
seguinte regra para tentar imaginar os conjuntos o(Y)

Para uma varidvel aleatéria, vetor aleatério ou processo estocistico YeQ | a

o—dlgebra o(Y) gerada por ¥ contém a informacio essencial sobre a estrutura de ¥

como fungdo de ©€Q . Ela consiste de todos os subconjuntos {®:¥ (w}EC] para
conjuntos adequados C.

Como ¥ gera G(Y) , também dizemos que ¥ contém informagio representada por
o{Y) ouYcarregaa informagio o(¥) |

Concluimos a seguir com a seguinte regra 1til:

Seja f uma fungio agindo em ¥, e considere o conjunto {w: f{¥{w})eC] | para
conjuntos adequados C. Para fungées “bem comportadas”, of f(¥))co(Y) . Isto significa
que f ndo fornece nenhuma informagic nova sobre a estrutura de ¥, Dizemos que a
informacfo nova gerada por o(f(Y)) esticontidaem ofY) .

Segue um exemplo simples para mostrar este fato:

Exemplo. Seja B  um movimento browniano, e defina a a—dlgebra
F,=0(B,, s<t),t=0 . Considere f(B)=B, para um 1 fixo. Dado que conhecemos a

estrutura de B, , temos que o(f(B))<.#F, . A reciproca é claramente falsa. Se
conhecermos somente B, , ndo é possivel construir todo o processo (B,, s<t) a partir
de B, .

1.6.1 Esperanca condicional geral

Vimos até aqui a definigio de E[X}¥] em que Y é uma variavel aleatoria discreta.
Vimos que ndo € necessario saber os valores de Y explicitamente, mas a sua defini¢io
dependia da partigio que faziamos do espago amostral (4,={w:¥ (w)=y}] . Vimos que
estes conjuntos A, geram uma oO—dlgebra o(Y) . Este é o ponto de partida da
definicio de E[X|¥ ],.% éuma o—dlgebra em Q .Em aplicacSes sempre iremos
escolher % =0{¥) em que ¥ é uma variavel aleatéria, um vetor aleatério ou um processo

estocastico.

Na se¢do anterior vimos que a estrutura essencial de Y esta contida em o{¥) . Neste
sentido, dizemos que ¥ carrega a informacgio de o(¥) .
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Sejam Y .Y,, ¥, elementos aleatorios {variaveis aleatdrias, vetores aleatérios ou
processos estocasticos)em Q e ¥ uma oO—dlgebra em O .

Dizemos que:

* A informagio de ¥ esta contida em F , ou ¥ ndo contém mais informagio que a
contidaem .¥ se of{Y)cF

* Y, contém mais informagiicque ¥, se o{Y )co(Y,) .

Agora, podemos apresentar uma definigio mais rigorosa de E(X|F) sob uma
o—dlgebra #  abstrata:

Definicdo: Uma vaniavel aleatéria Z é chamada esperanga condicional de X dada uma
o—digebra F | eescrevemos Z=E(X|F) ,se:

» Z ndo contém mais informacio que a contida em F

* Z satisfaz a relagio:
E(X1,)=E(ZI ),VA€F . M

Esta segunda condi¢io nos diz que as variaveis aleatorias X e E(X].¥9) sido
“proximas”, mas ndo no sentido de coincidir para qualquer que seja ©€L) , mas no sentido
de médias, em certos conjuntos 4 de .F . Ou seja, esta definicio é uma versdo formal da
ideia que tinhamos obtido anteriormente com a esperanga condicional, de que E(X|.%) ¢
uma versao grosseira da variavel aleatoria X

A segunda condigio ainda nos da certa liberdade de escolha na construcio da variavel
aleatoria Z=FE(X|5) . Isso significa que pode existir uma variavel aleatéria Z'#Z
em conjuntos que possuem probabilidade zero. Por esta razio, FE(X|.¥#) deveria ser
interpretado no sentido de gquase sempre (q.5.). Mas neste trabalho esta sigla sera suprimida.

Exemplo: Esperanca condicional sob condigdes discretas

Queremos mostrar aqui que E{X|Y) sob condi¢des discretas nos leva a um caso
especial de  E(X|.¥) quando F=co(¥) . Retome o exemplo passado em que todo
elementode A€F € da forma;

A=U A=Ulo:Y(o)=y},TcN={1.2, .}

r&f 1]

Definimos Z(w)=E(X|4,),0€A4, . Vimos que neste caso, Z é meramente uma
fungio de Yendo de X. Logo o(Z)co{¥) . Além disso, dadoum AE€F |

E(H4)=E(XZIAJ=§E(J&A,J .

E]
Mas por outro lado, ZI_A € uma variivel aleatéria discreta com esperanca

E(Z,)=) E(X|4)P{4)=2 E(x1,) .

=Y ef
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Assim, Z satisfaz a condigido de esperanga condicional, e nio contém mais informagio
que ¥ Logo, Z=E(X|a{Y))

Portanto, no caso discreto E(X|¥} e E(X|o(Y)) representam a mesma variavel
aleatdria. Isto sugere a seguinte definigio:

Definigiio: Seja Y um elemento aleatérioem Q e o{¥) a o—dlgebra gerada por ¥,
Entio, a esperanca condicional de uma variavel aleatéria X dado ¥ € definida por:

E(x|I¥)=E(Xlo(Y)) .
Exemplo: A probabilidade condicional e a esperancga condicional classicas

A probabilidade condicional ¢ a esperanga condicional classicas sio casos especiais da
nogdo geral da esperanga condicional que acabamos de definir. De fato, seja B tal que
P(B)>0 e P{B)>0 ,edefina & ,=0{{B}) .Portanto, temos que:

Fs=18,0,8,8%)

Do exemplo anterior, sabemos que:
E{X|Z ,)(0)=E(X|B),n€B .

Esta é a nogiio classica de esperanca condicional, pois se especificarmos X =1, para
algum evento 4, obiemos para ®WER :
P{ANB)

E(I‘qlgg)(m):E(IAlB): P(B)

1.6.2 Regras Para o Calculo de Esperanca Condicional

Devido a forma como definimos a esperanga condicional a uma o©—dlgebra | é em
geral muito dificil, se ndo impossivel, efetuar o seu cilculo. No caso em quea o—dlgebra
¢ gerada a partir de uma vanavel aleatéria discreta é exceglo. Portanto, listaremos a seguir
algumas regras para hdarmos com o calculo dessas esperangas condicionais.

Mas antes de apresentarmos essas regras, enunciaremos a seguir um teorema que sera
ttil mais a frente.

Teorema: Seja [0, ,P] um espago de probabilidade, ou seja, F uma
O—dlgebra em € e P uma medida de probabilidade em .# . Considere a
o—digebra F'cF ,edenote por P' a medida de probabilidade P restrita a
% . Seja ainda X uma variavel aleatoria em € . Se FE(|X|)<> entdo existe uma

variavel aleatoria Z tal que:
s o(Z)eF' |

>

* Paratodo AE€F ' |
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_fZ[m)dP(m)r-_fX(m)dP,AE? :

4
Se essas duas condigdes forem satisfeitas para outra variavel aleatéria Z', entdo:
P(Z#Z')=0 .

Basicamente, 0 que podemos tirar de importante deste teorema, é que se E{|X|)<x» |,
entio E(X|7 ) existe e é tnico.

Agora, vamos as regras:

1°) A esperanga condicional é linear:
E(le, X+, X )7 )=, E{(X |F )+¢,E(X |F)
2°)Esperanga de Xede E(X|.#) sioamesma:
E(X)=E(E(X|5F))

3°)SeXea o—dlgebra F sido independentes, E{X|# )=E(X) .Em particular,
se X e ¥'sdo independentes E( XV )=E(X)

Uma breve discussio sobre esta regra:

Xe F independentes significa que se conhecemos .% nido sabemos nenhuma
informagao sobre X e vice-versa. De maneira formal, as variaveis aleatérias X e I, sio

independentes para todo A€% . Logo:
E(XI,)=E(X)E(I)=E(E(X)],) VA7 .

Comparando com (1) acima, vemos que Z = E(X) é a esperanca condicional
E(X|%) _Isto prova a regra 3.

4°y Se a o©—dlgebra o{X) , gerada pela variavel aleatoria X, esta contida em & |
entio E(X|.F)=X .

Em particular, se X for fungiode ¥, o(X)co(Y) ,entic E(X|¥)=X .

Para demonstrar esta regra, utilizamos o seguinte argumento:

olX )C.97' =.# contém toda a informagio sobre a variavel aleatoria X. Neste caso,
podemos tratar X como ndo aleatério. Logo:

E(X|F )0)=E(X(0)F)=X{0)E{1lF)=X(o) .

Podemos estender esta regra para situagdes mais gerais:

5% of{X)c.¥ , Guma variavel aleatéria:
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E(XG|.F )=XE(G|.F) .
Em particular, se X for funciode ¥ =o(X)co(Y)=E(XGIY}=XE(G|Y) .

68 F e F' sdoduas o—dlgebras |, Fc.F' ,entdo:
E(X|\5F)=E(E(X|F )F)
E(X\F)=E(E(XIF)F ")

A segunda afirmacéo € aplicagdo direta da regra 4.

A primeira pode ser demonstrada a partir da propriedade (7), que diz que AE€F e
Z=E{Xx\¥) , E(ZI1,)=E{X1)) .

Mas pela regra 5, como A€F C.F ' |
EE(X|\F )& I ,=E(E(X|% )] |F )=E(E(X1|F'|\&) @)
Agora, se calcularmos a esperanca de (7]), aphcando a regra 2, temos:
E[E(E(X1|5 ")\ )=E(E(X1,|5)=E(X1,)

Assim, Z=E(E(X],|F'}¥) também satisfaz (I). Mas pela unicidade de
E(X|\F)=Z=2Z" .Istoprovaaregra 6.

7°) Se X independe de ¥ , e a informacio catregada pelo elemento aleatorio G esta
contida em F | entio para qualquer fungio h(x,y) ,

E(h(X,G)\.F)=E(E,{h(X ,G))F) ,

onde E,(h(X,G)} significa que fixamos (3 e tomamos a esperanca com respeito a X,

Tlustraremos esta regra com o seguinte exemplo:

Exemplo: Sejam X e ¥ duas variaveis aleatérias independentes. Portanto, pelas regras 7 e 35,
temos:

E{XY|Y)=E(E,(XY)]7)=E(YE(X)lY)=YE(X)
E(X+Y|V)=E(E(X+V)¥)=E(E(X)+Y|Y)=E(X)+Y

Segue agora, dois exemplos para ilustrar a utilizagio das regras:

Exemplo: Movimento browniano

B=(B,,t=0} um movimento browniano.

F .=c(B,,x<s) .Calcularemos E(B|F,) .
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E(B)# )=E{(B)% ,, x<s),s=0 .
Se s>t entdo F 5 epelarega4 E(B|F, =B, .

Se s<1t ,entdo pelaregra 1:
E(B}\¥ )=E((B,~B,)+B)7F )=E(B—B|F )+E(B|7)
Mas B—B, e .F, sioindependentes, e pelaregra trés, temos:
E(B—B|F )=E(B—B,)=0 .

Além disso, o(B )co(B,,x<s)=7F, ,logo E(B|7.)=B, .
PortarltO, E(Brl‘?s)=3mml!,s) -

Exemplo: Movimento browniano quadratico

B=(B,,1=0) um movimento browniano.

X,=B!-£,1>0 Um processo estocastico.

Pelos mesmos argumentos do exemplo anterior, temos que E{X IF =X, s=1 .

Agora, para §5<! ,temos:
B;-1=[(B,~B,)+B,F-1=(B,—B,}+B*+2(B,~B,)B,~1 .

Tomando a esperanga condicional, temos:
E(X |7 )=E[(B~B,)|F WE(B]F]+2E[(B~B,)B)|F ]~

Mas (B,—B.) e (B,—B,) sio independentes de T
o(BJco(B,)colF,) .

Aplicando as regras 3, 4 e 5, temos:

E(X |5 ,)=E[(B,~B)]+B.+2B,E[B,— B,|—t=t—s+B+0—t=B—s=X, .

Portanto, E(th"c}_s)=Xmm“-5] :
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1.6.3 Projegado da Esperanga Condicional

Nesta seio, consideraremos ¥ uma o—digebra |, e denotaremos por (.7}
a colegiio de variaveis aleatérias Zem () , satisfazendo as seguintes condigdes:

*  Ztem 2° momento finito: E{Z%)<oo ;

+ Ainformagio carregada por Z esta contida em #
o(Z)cF Se F=c(Y)=>Z=f(Y) .

A variavel aleatoria E(X|# ) pode ser entendida como uma versio atualizada da
esperanga de X dada a informagdo . . A esperanga condicional tem certa propriedade de
otimalidade na classe L’(.%) , éa chamada propriedade da projecio.

Propriedade da projecdo. Seja X uma variavel aleatéria com E(Z%)<w . A esperanga
condicional E(X|.#} &a variavel aleatoria em L’(.%) que éa mais proxima de X no
sentido quadratico médio. Isto significa que:

E((Xx-E(Xx|.7)])= min E[(X-2)] . (1.6.3.1)

ZeLl'|5)

X X E(X|F)

E(X | F})

Figura 1.6.3.1: Ilustragho da prupriedade da projegio da espermnga condicional  E[ XI5 ] .Se  E[X'l<x ,¢ E[¥f']<w , entio
(X ,¥)=E[XY] define um produto intema, ¢ [|JX—Y||=v{XF) & » distincia entre X e ¥, Assim como no espage Euclideano,

dizemos que X ¢ ¥ sdo ortogonais s¢ (XY =0 . Neste sentido, E[X|5] ¢ a projegio ortogonal de ¥ em  L'(5) .
(X=E[X|s)|Z,=0 paratodo Ze&L}{¥) ,e X=ZIX=Z <minimopara Z=E[X|#]| .

Na figura 1.6.3.1 acima verificamos esta propriedade. Neste sentido, E(X|.%) éa
projecio da variavel aleatéria X em L}(F) .

Se F=0(¥Y) , E(X|¥Y) éafungiodeY quetem o segundo momento finito e que
€ mais proxima de X no sentido quadratico médio.

As vezes nos referimos a E{X|.¥ ) como a melhor predicio de X dado .# . Para
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que a palavra predicdo possua algum sentido, reconsidere os exemplos da secio anterior.
Provamos que para s<t , as melhores predi¢es para os futurosde B, e B'—: dadas

as informagdes sobre o movimento browniano até 0 momento eram B, e B'—s . Esta
propriedade representa toda uma classe de “martingal” com segundo momento finito. A
melhor predigdo para o0 momento futuro ¢ 0 momento presente.

Faremos aqui uma pequena pausa, para falar sobre a desigualdade de Jensen ¢ a
desigualdade de Cauchy-Schwarz que utilizaremos mais a seguir. Nio demonstraremos aqui
estes resultados.

1) Designaldade de Jensen:

Seja fuma fungio convexaem R .Se E{|X|) e E(f(X)|) so finitos, entio:
JEX))=<E(f(X)) .
Em particular,
E(xF) <E(X])"”, 0<g<p .
Esta € a desigualdade de Lyapunov.

A desigualdade de Jensen continua valida para o caso de esperanga condicional.
Portanio, se .# foruma o—digebra em Q

FEXNF)<E(f(X)7) .
Em particular:
E(X1F)<E(X|F) e [E(X|F)<E(X)5) .

2) Desigualdade de Cauchy-Schwarz:
Dadas duas vanavets aleatérias X e ¥, temos:

E(xr|)<[E(xX*)[E@X)"

Agora, veremos a prova da propniedade (7.6.3.1). Calcularemos a esperanca utilizando
somente as regras da secfio anterior. Primeiramente, note que 7 '=E(X|.¥ Jel’(¥) .
pois carrega informacio sobre % somente e possui segundo momento finito, pois pela
desigualdade de Jensen, juntamente com a regra 2-

E[(E(xX|F )I<E[E(X*F))]=E[ X )<=
Agora, seja Z€L*(% ) qualquer. Entio:

E[(x=2)]=E((Xx-2")+(2'-2)])=E[(Xx-Z")|+E[(2'-Z)]+2E[(X-2")(2'~Z)]
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Mas Z,Z'€l}(F)=2Z-Z'€*{.F) .Pelaregras:
E((x-z')z'-z)l¥1=(2'-Z)E[(x-Z")|F]
Pelas regras 1 ¢ 4
E(X-Z'\F)=E(X|F)-E(Z|F)=2'-2'=0 .
Portanto, temos:
E[(Xx-Zf1=E[(X-Z'V1+E[(z'-Z)]=E{(X-Z")]

Portanto, a igualdade s6 é atingida quando Z=Z' . Logo, Z'=E(X|F)
realmente representa o elemento de L’(.#) , em que o minimo de E[(X—Z)] ¢
atingido.

1.7 Martingais

A nocio de martingal € essencial para o entendimento da integral de Ito. A integral
estocastica de Ito € construida constituindo martingais. A ideia por tras de um martingal é a de
um jogo justo, em que o ganho liquido é calculado via esperanga condicional.

Assuma que (% ,,220) seja uma colegio de O—digebras em um mesmo espago
0 equetoda %, ésubcomuntodeuma o-—dligebra F em Q .

Definicdo: Dizemos que a colecio (F,,1>0} de o—dlgebras ¢ uma filtragio se
F ¥, paratodo O0ss<r .

Assim, a filtragio € um fluxo crescente de informacdes. Se (# ,,n=0,1,...} ¢éuma
sequéncia de o©—dlgebras em Q e F c¥,, , para todo n, chamamos entio
(7 ,) defiltragio também.

Para nossas aplicagoes, uma filtracdo esta sempre ligada a um processo estocastico.

Definigdio: O processo estocastico Y =(Y,,120) & dito adaptado a filiragio (5 ,,1=>0)
se olY,)cF,Vi=0 .

Um processo estocastico ¥ =(¥,,1>0) & sempre adaptado a filtragio natural gerada
porY F,=c(¥Y_,s<t) .

Assim, quando dizemos que um processo estocastico ¥ é adaptado a uma filtragdo
{(#,,t=0) , entlo isto significa que ¥ nio carrega mais informagio que &, .

Se Y=(¥Y,n=0,1,.} for um processo estocistico discreto, entio definimos a sua
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adaptabilidade de maneira aniloga. Para uma filtragio (F ,n=0,1,..) ¢ necessario que
oY Je7,

Alguns exemplos de processos adaptados:

Exemplo: Seja  (B,,7>0) um movimento browniano ¢ .F . sua filtragdo natural. Um
processo estocastico da forma X,=f(z,B,),7>0 , e f é uma funciio de duas variaveis é
adaptadoa #,,7=0 . Alguns exemplos de f

- x'=8B ;

< x=B} ;

« XP=Bl-1;
- x=5 ;

© X'=B

Processos que dependem de todo o passado do movimento browniano também podem
ser adaptados:

o XY—maxB, ;

O=s=y

7 ] 2
s X=minB ;

O=s=t

Se um processo estocastico ¥ é adaptado i filtragdo natural browniana (.7 ,,120) |
diremos entio que Y ¢ adaptado ao movimento browniano. Isto significa que ¥, ¢ fungio
de B, s<i _Os exemplos a seguir nio sdo adaptados ao movimento browniano:

* XU=Bin
«  X¥=B._B, T>0 fixo ;
«  x"®=p 4B, T>0 fixo

Nestes 3 ultimos exemplos seria necessario ter informagdes sobre o processo
estocdstico em momentos futuros.

Exemplo: Aumentando a filtracio

Considere o movimento browniano B=(B,,1=0) e a sua correspondente filtragio
natural 7 ,=0(B,, s<t) . O processo estocastico X,=B;} gera a filtragiio natural:

F'=0( B, s<t) |

que é menor que ¥, , pois a partir de B o maximo que podemos fazer é reconstruir
toda a informagio de |B) ,masniode B,
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Entio, 5, também & uma filtragio natural de (B}) . Logo, podemos trabalhar
com diferentes filtragdes para um processo estocistico.

Agora, considere um processo estocastico X =(X,,720) em Q e suponha que
tenhamos a informagdo 7| no instante s presente. Como esta informacio influencia nosso
conhecimento sobre o comportamento de X no futuro? Se & . ©Xsdo dependentes, é de se
esperar que o conhecimento sobre ¥ reduza a incerteza sobre o comportamento de X no
futuro. Se soubermos que certos eventos ocorreram no passado podemos incluir este
conhecimento nos calculos. Assim, o fato de conhecermos & . imphca que podemos
predizer X, melhor do que sem % _ . A ferramenta matematica para descrever este
ganho de informacio ¢ a esperanca condicional: E{X |F }, 0<s<t

Nas se¢es anteriores, vimos que E(X,# ) & a melhor predigio para X , dado
F . . Além disso, dos exemplos na segio 1.6.2 (movimento browniano e movimento
browniano quadratico), as melhores predigdes para X,=B, e X ,=Bl—t satisfazem

E(X )7 .)=X, . Para estes processos, a methor predicio é o seu valor presente.
Claramente, isso pode ser mudado se a filtragio for alterada.

Vejamos agora a definigdo de martingal:

Definicdo: O processo estocastico X =(X,,1>0) é chamado martingal continuo no tempo
com respeito a filtragio  (F,,120) | e escrevemos (X, .F,) , se:
. E (’X I|)<c>o ;
* X éadaptadoad (¥,) ;
*  E(X|F )=X_,0<s<t , ouseja, X, é a melhor predigio de X, dado
F

5 b

Também & possivel descrever um martingal discreto no tempo X={X =01 . )
Neste caso, adaptamos a titima propriedade da definigio anterior:

¢« E(X,.)F,)=X_ k=0 .

Note que neste caso, ¢ suficiente que esta condigiio seja satisfeita para k=1 , pois
pela regra 6, temos:

E(Xn+!|‘gn):E(E(Xn+ll'grrﬁ-l)lyn):E( Xn+2|"‘?n)
:E(E(Xn+3|gn+2)Ign)=E(Xn+3!gn)
E(Xn—fkl"?—n)

Assim, podemos agora definir martingal em tempo discreto:
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Definigdo: O processo estocastico X=(X ,n=0/1,..} é chamado martingal de tempo
discreto com respeito a filiragio (F,,n=0,1,..) ,eescrevemos (X,%,) ,se

+  E(X))<x

« X éadaptadod (&) ;

« E(X_|F.)=X,.Yn=0,1,. ,ouseja, X, é&a melhor predigio de X,
dado

Note que E(Y . |F,)=0 ,onde ¥, , =X, —-X,»n=0]1,. ,éoutra forma de

n+1

escrever a ultima propriedade da definigio anterior.

A sequéncia (¥,) & chamada sequéncia das diferengas de martingal com respeito a
filtragio (.5 ,) . Frequentemente omitiremos a filtragio na apresentacio de um martingal,
pois 1sso sera ¢bvio pelo contexto.

Um martingal possui a propriedade de que sua esperanca é constante. De fato,
E{X \F )=X,, s<t .Pelaregra 2, obtemos:

E(X,)=E(E(X )7 ))=E(X,).Vs,1 .

Isto fornece uma maneira ficil de se mostrar que um processo estocastico ndo € um

martingal. Por exemplo, se B é um movimento browniano, E(B])=t,V: . Portanto,

(B!) ndo ¢ um martingal. A reciproca, no entanto, nio é verdadeira, pois £(B})=0,Vr |
mas {B]) nio éum martingal como veremos mais adiante. Vejamos alguns exemplos:

Fxemplo: Soma parcial de variaveis aleatdrias constitui um martingal

Se;a {Z,) uma sequéncia de varidveis aleatdrias independentes, com esperanca
finita, e Z,=0 . Considere a soma parcial

R,,:i Z,,n=0

=1

e sua filragio natural  correspondente #.=c{R,,.,R) . Note que
F =0(Z2,,...Z2,) .

De fato, (R,,..,R,) e (Z,,..,Z,) contm a mesma informacio, pois
R=Z+.+Z, e Z=R—R,_, .Aplicando as regras I, 3 e 4, obtemos:

E(Rn+1|‘?n):E(Rnl"'grn)+E(Zn+llgn)=Rn+E(Zn+i)

Logo, se E(Z,)=0 para todo n, entdio (R,,n=0,1,..) ¢ um martingal com
respeitoa (F ,,n=0,1,..) .
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Exemplo: Coletando informactes sobre uma varnavel aleatéria

Seja Z uma variavel aleatéria em Q com E(|Z|)<e e (%Ux2131_t, £>0) uma
filtracio em Q . Defina o processo estocastico X a seguir:

X =E(Z|F,),1=0 .

Como 57, ¢ crescente comotempo, X, fornece cada vez mais informagio sobre
Z. Em particular, se o{(Z)Cc.#, paraalgumi entio X,=Z .

Vamos mostrar que X € um martingal. Pela desigualdade de Jensen, e pela regra 2,
temos:

E(x))=E(E(217 ))<E(E(2|5 ))=E(|Z]}<o

Além disso, X, ¢ obtido a partir da informagio ¥, ,entio o{X,)c.F,
Poriltimo, E{X |7 )=E(E(Z|F )& )=E(Z|F )=X, .

Assim, X obedece as propriedades que definem um martingal de tempo continuo.

Exemplo: O movimento browniano € um martingal

Seja B=(BI, 120) um movimento browniano. Dos exemplos vistos na secdo 1.6.2,
(B,) e (B!-f) sio martingais com respeito 2 filtragio natural #,=c(B_, s<1) .
Agora, considere X,=B.—3tB, .

E(X \F )=E(B]|7,)-3E(1B|ZF )

E(B))=E([(B,—B.)+B,[')=E((B~B.)')+ E(B))+3 E((B,~ B,)’B.J+3 E((B,~B.)B]) .
Aqui, omitimos a condigdo das esperancas, para que a expressdo ficasse “mais limpa”, mas na
verdade todas essas esperancas sdo calculadas dado %, .

Mas (B—B,) , (B—B,) e (B—B,) sioindependentesde .%, ,portanto:
E(B}|#,)=0+B+3B,(t—s5)+3B,0=5 +3B,(r—s)
Dai vemos que B, niio é um martingal, mas:
E(X )5 ,)=0+B;+3B,(t~5)+3B,0—3tB,=B +3sB=X, .
Portanto, {X,,(.%,)) &um martingal.
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Exemplo: Transformada de um martingal
Seja Y=(Y,n=0,1,..} uma sequéncia de diferencas de martingais com respeito &
filtracdo (3?'”, n=0, 1,..‘] . Considere o processo estocastico C:(Cn,n:O,l,...) e
assuma que para todo », a mnformacdo carregada por C, estd contidaem &%, | isto é,
ofC,)cF, , . Isto significa que dado .7 ,_, , conhecemos €, completamente no
instante n-1. Asequéncia C, ¢ dita previsivel ou predizivel com respeitod {7 ,) .

n

Agora, defina o processo estocastico:

Por razdes dbvias, o processo X é denotado por Cc¢Y . Ela é chamada transformada
de martingal de ¥ por C.

Esta transformada é martingal se E{(C))<eo e E{¥l)J<w para todo n De fato,
pela desigualdade de Cauchy-Schwarz:

© B e <Y (BB e

1=

. X, éclaramente, adaptadoa ¥, ,pois Y, ndo carrega mais informagio que
e {C,...C,) éprevisivel;

F

n *

* Por tltimo, aplicando a regra 3, lembrando que C, ¢ previsivel:
E(X Xn—!"g_n— ) [(- Y |°\?— ) C E(Y |‘?u— )

Aqui neste tltimo passo, utilizamos o fato de que a Gltima propriedade de um martingal
pode ser escrita como uma sequéncia de diferencas de um martingal.

Portanto, (X,,(#,)) ¢um martingal.

1.7.1 Interpretag¢do como jogo justo

Suponha que estamos em um jogo de tempo continuo, e que a cada instante de tempo ¢,
tenhamos X, como o valor do jogo. Suponha também que {X,) é adaptado 2 filtragio

(#,) .Entio (X,—X,) pode ser pensado como ganho obtido no intervalo [s,7] do

jogo. Portanto, a predicio que pode ser feita em s sobre o ganho que teremos em ¢ dada a
informagio % _ , é dada por:
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E(X:_ Xslgs)zE(Xrlgs)-Xs

Se {X,(#,) ¢éum martingal, o lado direito da equacio se anula, Isto significa que a
melhor predigio para os ganhos futuros é zero. Ganho zero é exatamente o que se espera de
um jogo justo, ou seja, espera-se que nio haja arbitragem.

42



2. A Integral Estocastica e Simulagao Numérica

Neste capitulo o objetivo € apresentar a integral estocastica de Tto. Também iremos
apresentar aqui a parte de simulagio numérica. Como a simulagido é o foco deste trabalho, nio
daremos muita importéincia para a formalizagio dos conceitos por tras de toda a teoria de
integral estocastica, apenas daremos uma ideia do que se trata, ou seja, sera apresentado aqui
0 minimo possivel de teoria.

2.1 A Integral de Riemann

Aqui rremos apenas dar uma nogio da integral de Riemann. Suponha por simplicidade
que fseja uma fungéo a valores reais definida em f0,7]. Poderiamos considerar um intervalo
[a,b] a0 nvés disso. Considere a seguinte parti¢ao do intervalo [0,1]:

T, 0=1 <1 <..<1,_,<t,=1

2

e defina

A=t —t i=1

3 1 =12

4]

greey

Uma partigdo intermediaria, o©, de T, pode ser construida tomando qualquer

valor y, talque ¢,_ <y<t .Dadasasparticohes O, e T, podemos definir a soma
de Riemann

-5',,=S,,(T,,,0.,)=Z";f(y,-)(t,-—f,_l)=i_lf(y,)A,

Basicamente, essa soma representa uma aproximagio da area entre o grafico da fungdo
e 0 erxo x, desde que fseja ndo negativa.

JOIN! Flys)

fly2)

Figura 2.1.1: Uma ilustragio da soma de Riemann, com partigio  (#,) o particio intlermedidia  {») . A soma das drcas dos
retingulos aproxima a drea entre o grafico ¢ o eixo t.
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A figura 2.1.1 acima ilustra este fato. Agora, definindo
A= max A

i=1, .n

2

podemos tomar o limite para A —0 . Claramente, quando A—0 entio n—oo

Se o limite

S=limS,=lim Y f(y,)A,

o B o)

existir e o limite for independente da escolha das particdes T e O, e 71, ,entioSé
chamada a integral ordiniria ou integral de Riemann de fem [0,1].

2.2 Integral estocastica

Em teonia de probabilidades, é comum denotarmos a esperanca de uma variavel
aleatonia X por

v

E(X)= [ tdFyr) |

—o0

onde F, ¢éafuncio de distribuigio de X Isto significa que E(X) definida como uma
mtegral de Riemann-Stielyjes, ou integral de Lebesgue-Stieltjes. De maneira grosseira,

Ll

IIde(I)%z yJ[FX(I;)"FX(Ir—l)] )

—ur

para uma particio (,) de IR ,euma partigio (y,) intermediiria correspondente.
Além disso, dos cursos de calculo elementar, é conhecida a defini¢io da integral de uma
funcdo fem relacéo a outra g. A saber:

1 1

J F(e)dgl)=[ rle)g'(e)ar

a9 0

desde que g'(1) exista.

Ambas as integrais acima sio exemplos de como € possivel encarar o problema de se
integrar uma fungio com respeito a outra. O objetivo aqui neste capitulo ¢ sugerir um método
de se calcular

Jr)as () | (2.2.1)

1]

onde f ¢ uma fungfio ou um processo estocastico, ¢ B,{®w} ¢é um movimento brownianoc.
Mais do que isso, iremos também implementar um algoritmo para avaliar este tipo de
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integral.

Entio, da mesma forma como fizemos na segio anterior com a integral de Riemann,
dada uma particio (f;) de /0,1] e uma parti¢io intermediaria (y) correspondente
podemos entdo desta forma aproximar a integral

3

1

[ r(0)dB,(w)

0

por uma soma da forma

2 v[B (0)-B,_(0)] .

O problema deste tipo de soma é que quando f também for um processo estocastico,
como por exemplo, o préprio  B,(wv) . Na forma como 2 integral de Riemann é definida,
ndo 1mporta a partigic que tomamos, nem a sua correspondente particio intermediaria, no
limite para max At—0 a integral converge sempre para o mesmo valor. Mas esse ndo € o
caso na integral estocastica de Riemann-Stieltjes. Dependendo da partigdo que tomamos, e de
sua correspondente partigdo intermediaria, o valor da integral muda.

Para ilustrar este fato, tomaremos 2 parti¢des intermediarias (y,) diferentes. Serdo
elas:

*  y=t, {Cantoesquerdode [t,1,] ), i=0,1,..,N-1 e

>

L H

T r+l]

(Centrode [z,2,,] ), i=0,1,.., N—1

1 S+l

- yi:

No primeiro caso, obtemos:

N-=1

Z B_v,(w)(B,,ﬂ(w)—B,,(w))=% > [B, (@)—B,(w)—(B, (w)-B,(w)]
:—; Br(m)z—Bﬂ(m)z—g (B, (w)—B,(w))’

0

Pode ser demonstrado que o termo (7) destacado acima tem valor esperado 7 e varidncia
da ardem do tamanho do passo da parti¢io. Portanto,

(I)N;an_fB,(m]dB,[m]=%BT(w)2——;-T . (2.22)

Agora, no segundo caso:
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Para y,=%[l,-+t,+1] significa que precisamos avaliar B, {w) em %[I,H,H] .

Pode ser demonstrado que se calcularmos y,=%[B,}(w)+B,m (w)] e somarmos a isso um

incremento independente com distribuigio  N(0, At/4) obtemos um valor para B,(u)

que mantém todas as condigdes da definigio de movimento browniano visto anteriormente na
secio 1.4. Portanto, temos:

z
i

B, (w)(B, (w)- B,](w));"f{% (m);- B,(w)

10

=

N—1

> AZ/(B, {w)-B,(w))

120

=§1(BT(m)2—-Bﬂ(m)2)—-

[¥:3]

onde AZ~N(0,A1/4) . Pode ser demonstrado que o termo (7J) destacado acima tem valor
esperado 0 e varidncia da ordem do tamanho do passo da particio. Portanto, para esta
partigdo,

()3 0= | Br(m)dB,(m)zliBT(m)Z . (2.2.3)

No primeiro caso, o que temos é o que conhecemos como a integral de Ito, onde a
parti¢io intermedidria é tomada no canto esquerdo de cada subintervalo, e no segundo caso,
temos 2 integral de Stratonovich, com a partigio intermediaria tomada no centro de cada
subintervalo.

O algoritmo scriptl.py apresentado no final deste trabalho, foi mplementado em
Python e foi criado para ilustrar esta diferenga. Na tabela a seguir, representamos os valores
obtidos com o calculo da integral (2.2.7) pelos métodos de Tto e de Stratonovich, com

S(zr)=B,(w) . Neste exemplousamos T~ 1, N -~ 1000 e Ar=1/N .

[ Ito i Ito - err(; Stratonovi?:h - St—rat- e;ro_
0176 | 0035 | 0726 | 0016
0124 | 002 | 0333 0022 |

-0085 | 0011 | 0430 | 0004
0557 | 0009 | 105 | 0008 |
L-o,zo4 0035 | 0251 | 0010
0264 | 002 | 0765 | 0023
L'O’M‘Uﬂ 002 | 0139 | 0008
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0430 | 0006 | 0087 0,023

0443 | 0006 | 0047 | 0016 |

0669 | 0039 | 1126 | 0004
| .

Tabela 1: Dif:;ml;a entre intt_:grais de to ¢ Stratonovich

Na tabela podemos observar o valor obtido pelo scriptl.py para a integral (2.2.])
quando tomamos uma particio com parti¢io intermediaria no canto esquerdo de cada
subintervalo  [7,,2,,,] , e quando tomamos uma particio intermedidria no centro de

[#,.£,,,] . Como sabemos o valor exato da integral (2.2.1) tanto pelo método de Ito quanto
por Stratonovich, criamos assim, as colunas de erro acima.

O método para gerarmos a tabela acima foi o seguinte:;

1. Foigerado N = 1000 valores dw,~N(0,dt),i=1,...1000 :

2. A partir disto, foi gerado um vetor w, em que cada posicido k—0,...,999 deste vetor é
igual a soma de todos o5 dw([i],i=1,...k , ouseja, w=[0] = 0, wfk] = dw[0]+...+
dw/k];

3. Este vetor w representa uma simulagio de caminho browntano. Entio o valor exato da
integral (2.2.1) no caso em que f é o proprio caminho browniano é conhecido tanto
para partigdo de Ito quanto para particio de Stratonovich, e seus valores sio (2.2.2) e
(2.2.3), respectivamente.

4. A partir disto, o que foi feito foi simplesmente fazer a soma:

N—1
.Z(,: By__(m)dBt) )

A partir deste ponto o gue foi feito foi comparar os valores ebtidos na soma com o que
seria o valor exato. E assim obtivemos as colunas de erros acima. Para N = 1000 passos no
intervalo /0, 7] pudemos observar que os erros se encontram na ordem de 10~ |

2.3 O Método de Euler-Maruyama

Uma equacio diferencial estocastica escalar auténoma pode ser escrita na forma
mntegral. Temos:

X(r):xo+jf(x(s))ds+jg(x(s))dB,(m) 231

Aqui, f e g sio fungdes escalares e a condigdo inicial X o ©€uma variavel aleatéria. A
segunda integral do lado direito de (2.3.1) é calculada com respeitd a um movimento
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browniano, e daqut em diante estamos considerando a versio de Tto.
E comum escrever a equacio (2.3.7) na sua forma diferencial. Assim, obtemos:
dx (f)=f (X {t))dt+g (X ())dB,(w), X(0)=X,,0<1<T (232

Isto é apenas outra forma de dizer que X resolve (2.3.1).

Note quese g=0 e X, forconstante, o problema se torna deterministico, e (2.3.2)
se reduz a uma equagdo diferencial ordinaria, a saber:

2 X(0)=7 (X(2)), X (0)=X,,05r<T

Para podermos aplicar um método numérico em (2.3.2) sobre [0,7] primeiramente
discretizamos o intervalo. Seja entio Ar=T/L e T =jAr . Nosso objetivo aqui é

estimar X (tj) , que sera representado por X . O método de Euler-Maruyama é da
forma

2

X=X, +f(X, )Aar+g(X,)(B. (0)-B, (0]}, j=1,..L (233

1t

Para entendermos de onde vem (2.3.3), note que da forma integral em 2.3.1), temos:

X(rJ)=X(rJ_1)+j;f(X(s))ds+j g{X(s))dB. () (2.3.4)

Cada termo do lado direito de (2.3.3) aproxima o seu correspondente em (2.3.4). Vale
notar que no caso determmistico { g=0 e X, constante), (2.3.3) se reduz i forma do

método de Euler.

Para ilustrar o método de Euler-Maruyama, o aplicaremos aqui em uma equagio
diferencial estocastica bem conhecida:

dX (t)=r X (t)di+p X (t)dB {0}, X{0)=X, (2.3.5)

onde A e yu sdoconstantes reais. Entdo temos:
FX)=AX e g(X)=nX

Esta equacio diferencial estocastica surge, por exemplo, em modelos de precificacio de
um ativo financeiro. Nao demonstraremos aqui, mas a solugio exata desta equagciio diferencial
é:

X(t)=X0cxp{(k—%ul)t-i-uB,(m)} (2.3.6)

No algoritmo script2.py apresentado no final deste trabalho foi implementado o método
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de Euler-Maruyama, e neste método utilizamos na equagio (2335} os wvalores
A=2, u=1, e X,=1 . Foi criado o caminho browniano com no intervalo [6,1]
31=2"" | e calculamos a solugdo pela formula apresentada em (2.3. 6). A seguir, aplicamos
o método de Euler-Maruyama com Ar=R&¢f com R — 4 (R>1 nteiro garante que os
pontos estimados pelo Euler-Maruyama serdo também calculados na solugdo exata (2.3.6)).
Note ainda que:

iR

Bt_.—Bt._,:BjRA:—B{j—l)RAt: 2 dB, ,
k={j—1)R+1
entdo, apenas a titulo de curiosidade, para caleular o préximo ponto X {t j) a partir de um
determinado ponto X (T ,_1) estimado pelo método de Euler-Maruyama no algoritmo,
basta somar todas as variaghes de B(w) entre os termos B., e B. . Como o
algoritmo gera os termos @B, | entio a forma mais ficil de se fazer essa conta seria
calcular de fato essa soma, ja que em Python temos uma funciio pronta para fazer esse
calculo.

Agora, abaixo temos um exemplo de uma execugio do algoritmo:

9 T T T
— Formula fechada <
8| e e Valorinterpolado of
- ®
7 i
.rl |
6 o® ®
5 e/ -"(;l.""‘" 4
% o
4 =
3 ToeS,
"" r ] “,‘l- |
2 Re' B __ of0d" o0
1)6°sngo0s e’ d
" e L J
%.0 Q.2 0.4 0.6 0.8 1.0
t

Grifico 2.3.1, O método de Enler-Maruyama.

A linha continua vermeiha representa o grafico da solugdo exata X da equagiio (2.3.6), e
0s pontos azuis representam a aproxtmacio de X calculada nestes pontos. Podemos observar
no grafico acima que a aproximacio pelo método € bastante boa, dada a sua simplicidade na
implementagio.
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2.4 Convergéncia forte e fraca do método de EM

No script2.py mencionado na se¢do anterior a solugiic de EM se aproxima da solugéo
real a medida que Ar decresce, ou seja, 0 método de EM converge para a solugio real.
Lembrando que tanto X, quanto X(t,) sdo variveis aleatérias, para que possamos ter

uma no¢dc mais precisa da convergéncia, precisamos decidir uma forma de se medir a
diferenca entre elas. Uma forma de se encarar este problema seria calculando
E{|X,—X{x,]) . Um método dito possuir uma ordem de convergéncia forte iguala 7y

se existir uma constante C tal que
E(x,—X(,])l=sCcAr (24.1)

para qualquer T=nA: fixoem [0, 7Je A suficientemente pequeno.

Nos nossos testes numéricos, focaremos no erro no final do caminho, ou seja, em [ = T,
pois se a desigualdade (2.4 1) é valida para qualquer ponto do caminho, entio ¢ valido
também para o fim do caminho. Portanto, definimos:

e\ =E(X,~x(T)), LAt=T (2.4.2)

Esta € a definigio de erro no ponto final no sentido de convergéncia forte. Se a

desigualdade (2.4.1) vale para y=j12- em qualquer ponto de f0,7], entdo certamente vale

também para o ponto final. Entdo para Ar suficientemente pequeno, temos:

1
eh <CAr? (2.4.3)

O algoritmo script3.py apresentado no final deste trabalho mostra a convergéncia forte
do métedo de Euler-Maruyama aplicado em (2.3.5). Aqui utilizamos os mesmos valores para
p t e X, queutilizamos em script2.py. O processo seguido foi o seguinte:

L. Primeiro geramos 1000 caminhos aleatdrios diferentes em [0,1], com 6:1=2""° :

2. Para cada um desses caminhos foi aplicado o método de Fuler-Maruyama, visto na
secdo anterior, com 5 tamanhos de passos distintos: Ar=2""", p=1,_..5:

3. Armazenamos o ponto final gerado pelo método no s-ésimo caminho e p-ésimo
tamanho de passo em uma matriz, obtendo assim, uma matriz de tamanho 1000 x 5:

4. Calculamos a média sobre todas as linhas desta matriz, obtendo assim um vetor com 5
entradas. Cada entrada € uma aproximagio do erro pela média para cada tamanho de
passo, ou seja, o p-ésimo elemento desse vetor é uma aproximagio para -, para

At=2""81,
Se a desigualdade (2.4.3) for proximo da igualdade, entio tomando o logaritmo, temos:
logel, ~log C+ylog At (2.4.49)

Portanto, o préximo passo foi plotar o grafico de logel, versus log At . Plotamos
amda em listrado, uma linha reta com coeficiente angular igual a 0,5 apenas para efeito de
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comparacao.

Feito 1sso, obtivemos o coeficiente angular da reta ajustada pelo método dos minimos
quadrados. Neste grafico obtivemos um y=0,5080578 , com residuo igual a 0,00023157.

Nos vérios testes que foi feito com este algoritmo o que se observou foi

Yy vanando em

torno de 0,5. Isto reforca o fato de que este método possui ordem de convergéncia forte

y=0,5
101 y — —r
»— Erro - Euler-Maruyama
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Figura 2.4.1: Convergéncia tarte. Linha vermelha tracejada como referéneia, ¢ azul com asteriseos sao os erros para cada tamanho de passo.

Nessa simulagio de ordem de convergéncia forte estamos negligenciando aqui algumas

fontes de erros, como por exemplo:

1. Erro amostral: Erro devido 4 aproximacio de valor esperado pela média amostral:

2. Vicio de mimero aleatério: Erro devido ao gerador de nimeros aleatornios;

3. Erro de arredondamento: Erro computacional.

Destes 3 erros mencionados, para uma simulagio computacional o principal deles ¢
provavelmente o primeiro. Na referéncia /2] mencionada no fim deste trabalho, na hora de
criar estes exemplos foram feitos experimentos para se encontrar uma guantidade de
caminhos aleatérios gerados o suficiente e tamanho de passos pequenos o suficiente para que
pudéssemos observar a ordem de convergéncia. Aqui, apenas utilizei os mesmos valores

iniciais utilizados neste artigo.
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Apesar da defini¢io (2.-47) de convergéncia forte envolver valor esperado ela possui
implica¢Bes para simulagbes individuais. A desigualdade de Markov diz que se uma variavel
aleatoria X tem valor esperado finito, entio para qualquer @ > 0 temos:

P(IXIza)s--I%Xﬂ _

114

Logo, tomando a=At" , temos:

PX |-Xx ()= A’ =C A,

ou equivalentemente,
P(x|-X (t)<ar™)z=1—C Al

Isso mostra que em um ponto fixo qualquer de [0.T] o ero é pequeno com
probabilidade préxima de 1.

A ordem de convergéncia forte mede com que taxa a “média dos erros” cai 4 medida
que Ar—0 . Uma alternativa menos exigente seria medir a taxa com que o “erro das
médias” cai. Isso nos leva a um outro conceito, o de ordem de convergéncia fraca. Um
determimado método € dito possuir ordem de convergéncia Jraca iguala y se existir uma
constante C tal que para todas as fungdes p pertencentes a alguma classe de fungdes:

[E(p (x,))-E(p(x{x)))<C AP (2.4.5)

em qualquer ponto fixo t=nA(€[0,T] ,e Ar suficientemente pequeno. Tipicamente,
as fungdes p utilizadas em (2.4.3) devem satisfazer condigbes de suavidade e crescimento
polinomial. Aqui iremos utilizar p igual i fungio identidade. Para fungdes f e g adequadas
pode-se mostrar que 0 método de Euler-Maruyama possui ordem de convergéncia fraca
y=1
Portanto, definimos:

¢=IE(X.)—E(X(T))| (2.4.6)

onde LAt=T | denota o erro no ponto final no sentido de convergéncia fraca. Portanto, em
(2.45) com y=1 ¢ imediato que:

el, <CAr (2.4.7)
para At suficientemente pequeno.

O algonitmo scriptd.py apresentado no final deste trabalho mostra a convergéncia fraca
do método de Euler-Maruyama aplicado em (2.3.5) sobre [0,1] para A=2 , p=01 e
Xy=1 . O processo aqui foi um pouco diferente do processo utilizado para convergéncia

forte:

1. Foram simulados 50000 caminhos brownianos discretizados com tamanho de passo
At=2"""" com 1=<p=<5 .Este processo possui um nivel de vetorizagio a mais
que 0 script3.py, isto aumenta o desempenho com o custo de se utilizar mais memoria;

2. Este processo foi feito de maneira simultinea, sem que fossem guardados na memoria
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todos os caminhos, para posteriormente verificar qual seria o valor da integral.

3. Para cada valor de p, tomou-se o valor médio da integral pelo método de Fuler-
Maruyama.

4. A seguir, s6 foi plotado o grifico do erro versus A7 e uma linha tracejada com
coeficiente angular igual a 1 ac lado para referéncia.

Ao fazer isso, novamente com o método dos minimos quadrados abtivemos desta vez

y=0,975620295825 e um residuo igual a 0,00224565. Aparentemente, (2.47) vale

aproximadamente com a igualdade. Executando algumas vezes este algoritmo foi observado
que Yy vanaem torno del.
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Figura 2.4.1: Convergéneia fraca. Linha vermelha traccjada como referéneia, ¢ azul com asteriscos sio os erros para cada tamanho de passo.

2.5 O método de Milstein

O objetivo inicial deste trabalho era chegar ao método de Fuler-Maruyama, e
implementa-lo de maneira simples e, além disso, de alguma forma verificar sua convergéncia
com a solugio exata de uma equagio diferencial estocastica. Mas vale a pena verificar
também o método de Milstein, que nada mais é que um melhoramento do método de Euler-
Maruyama. No método de Euler-Maruyama o termo estocastico dB{m) & aproximado por
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uma soma parecida com a soma de Riemann. Ja nesse método de Milstein como veremos
logo adiante, este termo ¢ tratado de maneira ligeiramente diferente, levando em consideragio
0 lema de Ito. Fazendo isso, veremos ainda que este método possui uma ordem de
convergéncia melhor que o método de Euler-Maruyama.

Vamos ao método. Aqui consideraremos 2 mesma equagdo que a apresentada na secio
2.3. Entio, reapresentando a equacio (2.3.1), temos:

x(:)=x0+j F(x(s))ds+ f g(X(5))dB, () (2.3.1)

Novamente, f e g sdo fungdes escalares e a condigdo inicial X, ¢é uma variavel
aleatoria. A segunda integral do lado direito de (2.3.7) é calculada com respeito a um
movimento browniano, e ainda estamos considerando a versio de Ito.

0 método de Milstein € da seguinte forma:
X=X o+ f(X, ) Ar+g (X, )(B, (0)~B. (o) (251

-1

+38(X,0)g (X, 1) (Bofo)-B,_(0) A1)

Como ja mencionado acima, a diferenga deste método para o de Euler-Maruyama est4
no termo em que esta sendo truncada a equagdo. Na expansio de Taylor feita pelo método de
Euler-Maruyama néo foi considerado o lema de Ito. J& no método de Milstein é considerado
um termo a mais na expansio.

O método de Milstein foi aplicado para 0 mesmo problema em que aplicamos o Euler-
Maruyama na segio 2.3. Segue abaixo o grafico obtido:

8 T T T T
——  Formula fechada

71|® e Valor interpolado e

Grifivo 2.5.1: O método de Milstein,
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Para a implementagio deste método foi aproveitado o script2.py, o que for feito foi
apenas uma pequena alteragio na forma como foi calculado o valor da variavel Xtemp.

Olhando para este grafico acima apenas fica dificil notar uma diferenga entre ambos os
métodos. Apenas parece ser tio bom quanto. Ndo apresentaremos aqui neste trabalho, mas se
executarmos varias vezes esses métodos, € possivel observar graficamente que o método de
Euler-Maruyama as vezes nido parece aproximar tio bem a solugio exata. Uma forma de
constatar isso fol executando ambos os métodos 10 vezes, e em cada vez foi calculado o erro
absoluto em cada ponto da aproximacio, e somamos esse erro, obtendo assim um erro total
em cada vez que executamos o algoritmo. Segue abaixo a tabela obtida:

Erro EM 1 Erro Milstein ]

103950 | 305893 |
I 0,6283 i 69105 |
_ 203060 | 18,0695 |
| 973952 | 143360 |
_ 231852 | 169689 |
_ 272297 | 181173 |
' 108095 | 72809 |
i 608430 | 145300 |
172815 | 76308
96973 10,0684 |

Tabela 2: Cﬁ(ﬁ)m";;arag.io —Métodos EM e Milstein.

O algoritmo calcula com até dez casas decimais este erro, mas apresentamos acima
somente quatro casas decimais para facilitar a leitura da tabela. Em algumas ocasides o
método de Euler-Maruyama até obteve um valor de erro absoluto menor que o de Milstein, no
entanto, na média nio € o que acontece. A média dos erros do método de Euler-Maruyama
nesta tabela acima foi de 29,577067402566, enquanto que a média dos erros do método de
Milstein fo1 14,450240631564, ou seja, menos da metade.

A vanincia dos métodos foi de 890,83049633408 para Euler-Maruyama e de
51,9257153042813 para Milstein. Isso indica que o0 método de Euler-Maruyama ¢ muito mais
mstavel que o de Milstein,

Por ultimo, nesta tabela acima, o menor valor de erro absoluto foi de 9,62831989111
para Euler-Maruyama e de 6,91048513599 para Milstein.

2.6 Convergéncia forte do método de Milstein

Para encerrar este assunto, vamos falar da convergéncia forte do método de Milstein.
Dissemos na segio anterior que este méiodo possuia uma ordem de convergéncia maior que o
método de Fuler-Maruyama. Apenas lembrando o que foi apresentado na equacio (2.4.1)
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acima, um método possui ordem de convergéncia forte igunala ¥  quando:
E(X,~X(t,])<CAr (2.4.1)
Lembrande (2.4.2), temos:
en:=E(X,—X(T)), LAt=T .
Entio, dessas duas equagbes sai que:

ei,SCAIY (26.1)

Aplicando o mesmo método que na secio 2.4 onde linearizamos esta desigualdade
aplicando logaritmo em ambos os lados, foi possivel obter a imagem abaixo:

10t : :
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- - Reta - coef. angular: 1
= 10°F ;
_'I
>
=
LY
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® 10t E
©
[=]
E
L1+ .
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Delta t

Figura 2.6.1: Convergéncia forte, Linha vermetha fracejada como referéncia, ¢ azul com asteriscos gio 08 cmras para cada tamanho de passo.

Aqui foi aproveitado o script3py A tnica alteragio necessiria foi a forma de se
calcular o valor da varidvel Xiemp, aplicando aqui o método de Milstein.

Nesta execugio do algoritmo, foi obtido um y=0,955788223326 , com residuo igual
a 0,00155068. Nas vezes em que este algoritmo foi executado observamos ¥ um pouco
actma de 0,95. Em nenhuma das ocasides foi obtido ¥=1 | no entanto, na referéncia [2)
utilizada para este topico menciona que este método possui ordem de convergéncia igual a 1.
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Conclusio

O objetive inicial deste trabalho era chegar ao método de Euler-Maruyama, e
implementa-lo de maneira simples ¢, além disso, de alguma forma verificar sua convergéncia
com a solugdo exata de uma equaciio diferencial estocastica.

Observamos, com a ajuda do método dos minimos quadrados, que a ordem de
convergéncia forte do método de Fuler-Maruyama é de aproximadamente y = 0,5, e sua
ordem de convergéncia fraca é aproximadamente ¥ = 1. Vimos ainda que ¢ possivel com um
algoritmo simples se obter resultados consistentes com o resultado real.

Apesar desta consisténcia, ¢ possivel concluir também que com uma pequena alteragio
no método de Euler-Maruyama, o método de Milstein consegue obter melhoras significativas
na convergéncia do método. A convergéncia forte passa a ter sua ordem de convergéncia
aproximadamente dobrada.

E interessante notar que os métodos numéricos aqui apresentados nio sio somente
apliciveis 4 EDE mencionada neste trabalho, podem ser aplicados a muitos casos diferentes,
como por exemplo, no problema da dindmica populacional, A equacdo que descreve a
dindmica de uma determinada populagio [4] € a seguinte:

dX (1)=rX (()(K—=X (¢ )}dt+B X (1)dB, (o), X (0)=X,
Aquixy Ke B sdo constantes. Na referéncia [4] ha a solucio analitica desta equacio.

No entanto, note que esta equacio é da forma da equagdo {2.3.2), e portanto, & possivel
também aplicar os métodos de Milstein e de Euler-Maruyama nesta equacio.

Modelos estocasticos se aplicam a muitos fenémenos da natureza, mas também sdo
bastante aplicados em financas, e como muitas vezes nio possuem uma solugéo fechada, estes
métodos numeéricos sdo bem vindos.
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Algoritmos

Segue abaixo os algoritmos criados e utilizados durante este trabalho:

Seriptl.py:

import numpy as np

from numpy import arange

from pylab import *

def stochasticIntegral():

T=1.0

N =1000

dt=T/N

dW = sqrt(dt)*np.random.normal(O, ILN) #Incrementos
W =np cumsum(dWw); # Soma cumulativa
dwW = np.array(dW)

W = np.array(W)

dW_strat = np.array/(0. 5*sqrt(dt)*np.random. normal(0, 1, N))

integral de Stratonovich

W_strat = 0.5%( concatenate( [[0], W[O0: -1]) + W)+ dW_strat
1to = np.dot( concatenate( [[0], W[0:-1]] ), dW )

itoerr = abs( ito - 0.5%(W[-11**2-T))

strat = np.dot( W_strat, dW )

straterr = abs( strat - 0.5¥W{[-1]**2 )

print ito, " \t *, itoerr, " \t ", strat, " \t ", straterr, " \t ", strat - ito

HAHHERE Funcao Principal HHHHRY
def main():

print “ito \t itoerr \t strat \t straterr \t diferenca”
for 1 in range(5):

stochasticIntegral()

R Chamada da funcao #is

main()
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Script2.py:

iImport numpy as np

from numpy import arange

from pylab import *

import matplotlib.pyplot as plt

lbd=2

mu =1

def f(x): return 1bd*x
def g(x): return mu*x
def EulerMaruyama(Xzero, T, N):

dt=T/N
dW = np.array(sqrt(dt)*np.random.normal(0, 1, N))
W = np.cumsum(dW); # Soma cumulativa

# Solucao exata para futura comparacao
Xtrue = Xzero* exp((lbd-{).5*mu**2)*np.array(arangc(dt, T+dt, dt))+mu*Ww)

# Inicio da implementacao do metodo de EM

R=2%%2

Dt =Rx*dt

L=NR

Xem = zeros( L) # Variavel para armazenar dados da simulacao via EM
Xtemp = Xzero

for j in range(L):

Winc = dW[R*[R*(j+1)]sum() # Armazena variacao do movimento

Browniano desde Rj ate R(j+1)

Xtemp = Xtemp + f(Xtemp)*Dt + g(Xtemp)*Winc # Calcula o proximo ponto

via EM

Xem([j] = Xtemp # Armazena valor calculado em Xem

emerr = abs((Xem[-1]}-Xtrue[-1])/Xtrue[-1]) # Erro - diferenca entre

solucoes analitica e interpolada

print "emerr =", emerr
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HHHH Plotando ]

plot(arange(0, T+dt, dt), concatenate([[Xzero], Xtrue]), 'r-', label="X x "}
plot(arange(0, T+Dt, Dt), concatenate([[Xzero], Xem]), ‘o', label="X x t")
show()

#HHH Funcao main  ##HH
def main():
Xzero =1
T=1.
N =2%*g
EulerMaruyama(Xzero, T, N}

#HHHH# Chamada da funcao main HHHHH

main()
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*  Script3.py:

import numpy as np

from numpy import arange
from pylab import *

import matplotlib. pyplot as plt

HHHAHY Condicoes iniciais HHHHHH
Ibd=2

mu =1

Xzero =1

B R R

HHHHERE Para discretizacao HHEHHH
T=1.

N = 2%%9

dt=T/N

M=1000

AR

Xerr = zeros( (M, 5))

for s in range(M):
dW= np.array(sqrt(dt)*np.random.normal((), 1, N))
W = np.cumsum(dW); # Soma cumulativa
Xtrue = Xzero*exp( (Ibd-0.5*mu**2) + mu*Wj-1])
for p in range(5):
R=2%*(p+1)
Dt =R*dt
L=NR
Xtemp = Xzero
for j in range(L):
Winc = dW[R*j:R*(j+1)].sum()
Xtemp = Xtemp + Dt*lbd*Xtemp + mu*Xtemp*Winc

Xerr[s][p] = abs(Xtemp - Xtrue)
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Dtvals = dt * ( 2.**np.mray(a:ange(0,5,l) ))

print np.array{Xerr, mean(axis=0))

A = array([ log(Dtvals), ones(5)])

z = log{Xerr.mean(axis=0))

w = linalg Istsq(A.T,z) # Obtendo os parametros por regressao

print w[0][0)
print w[1]

plt.loglog(Dtvals, exp(z), 'b*-', Dtvals, Dtvals** 5, 'r--', label="Delta t")
plt.xlabel('Delta t')

plt.ylabel("Media amostral [X(T)-X_L)

show()

62



* Scriptd.py:

import numpy as np
from numpy import arange
from pylab import *
import matplotlib.pyplot as pit
bR Condicoes iniciais Y
lbd=2
mu=20.1
Xzero=1
R R
Y Para discretizacao HHEHHH
T=1
M=50600
HHH AR
Xem = zeros{ 5 )
for p 1n range(5):
Dt = 2%*(p+1-10)
L=T/Dt
Xtemp = Xzero*ones(M)
for j in range(int(L)):
Winc = np.array(sqrt(Dt)*np.random.normal(0, 1, M))
Xtemp = Xtemp + Dt*Ibd*Xtemp + mu*Xtemp* Winc
Xem|[p] = Xtemp. mean(axis=0)
Xerr = abs(Xem - exp(lbd))
Dtvals = 2 **np.array(arange(0,5,1) — 10)
A =array([ log(Dtvals), ones(5)])
z = log(Xerr)
w = linalg Istsq(A.T,z) # Obtendo os parametros por regressao
print w[0][0]

print wf1}]

pltloglog(Dtvals, Xerr, 'b*-, Dtvals , Dtvals, 'r--', label="Delta t")
plt.xlabel('Delta t')

plt.ylabel(Media amostral [X(T) - X_LJ)

show()
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