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ABSTRACT

JUSTO, V. Semantic Segmentation for Autonomous Driving on Adverse Visual
Conditions. 2024. 58 p. Monograph (MBA in Artificial Intelligence and Big
Data) - Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo,
São Carlos, 2024.

This monograph addresses the challenge of semantic segmentation for nighttime au-
tonomous driving, a critical task in ensuring safety and reliability in autonomous vehicle
systems under low-light conditions. The study evaluates the performance of four deep
learning models—UNet, FPN, PSPNet, and DeepLabV3+—trained on a hybrid dataset
comprising both real and synthetic nighttime images. The real images were sourced from the
ACDC dataset, while the synthetic images were generated using the CARLA driving simula-
tor. The models were trained to segment six key classes: road, vegetation, building, sky, car,
and background. Quantitative evaluation using Intersection over Union (IoU) and F1-score
metrics demonstrated promising results across the models. According to those metrics, the
best model was the Feature Pyramid Network, achieving a mean F1-score of 88.32% and a
mean IoU of 81.12%. However, qualitative analysis revealed that while synthetic data helps
increase the volume of nighttime scenarios, it alone is insufficient to achieve high-quality seg-
mentation performance, particularly in complex nighttime environments. This highlights the
limitations of relying solely on synthetic datasets to improve real-world application segmen-
tation outcomes. To make this work easier to reproduce, the CARLA-Night dataset has been
made available on Kaggle (https://www.kaggle.com/datasets/victorsillericojusto/carla-
night), and all the code developed for the project can be accessed through a GitHub
repository (https://github.com/victorsillerico/segmentation-nighttime.git).

Keywords: Semantic Segmentation. Autonomous Driving.

https://www.kaggle.com/datasets/victorsillericojusto/carla-night
https://www.kaggle.com/datasets/victorsillericojusto/carla-night
https://github.com/victorsillerico/segmentation-nighttime.git




RESUMO

JUSTO, V. Segmentação Semântica para Direção Autônoma em Condições
Visuais Adversas. 2024. 58 p. Monografia (MBA em Inteligência Artificial e Big
Data) - Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo,
São Carlos, 2024.

Esta monografia aborda o desafio da segmentação semântica para direção autônoma
noturna, uma tarefa crítica para garantir a segurança e a confiabilidade em sistemas de
veículos autônomos sob condições de pouca luz. O estudo avalia o desempenho de quatro
modelos de aprendizado profundo — UNet, FPN, PSPNet e DeepLabV3+ — treinados
em um conjunto de dados híbrido que compreende imagens noturnas reais e sintéticas. As
imagens reais foram obtidas do conjunto de dados ACDC, enquanto as imagens sintéticas
foram geradas usando o simulador de direção CARLA. Os modelos foram treinados para
segmentar seis classes principais: estrada, vegetação, edifício, céu, carro e fundo. A avaliação
quantitativa usando Intersection over Union (IoU) e métricas de pontuação F1 demonstrou
resultados promissores em todos os modelos. De acordo com essas métricas, o melhor
modelo foi o Feature Pyramid Network, alcançando uma pontuação F1 média de 88,32% e
uma IoU média de 81,12%. No entanto, a análise qualitativa revelou que, embora os dados
sintéticos ajudem a aumentar o volume de cenários noturnos, eles sozinhos são insuficientes
para atingir um desempenho de segmentação de alta qualidade, particularmente em
ambientes noturnos complexos. Isso destaca as limitações de confiar apenas em conjuntos
de dados sintéticos para melhorar os resultados de segmentação em aplicações do mundo
real. Para facilitar a reprodução deste trabalho, o conjunto de dados CARLA-Night foi
disponibilizado no Kaggle (https://www.kaggle.com/datasets/victorsillericojusto/carla-
night), e todo o código desenvolvido para o projeto pode ser acessado por meio de um
repositório GitHub (https://github.com/victorsillerico/segmentation-nighttime.git).

Palavras-chave: Segmentação Semântica. Direção Autônoma.

https://www.kaggle.com/datasets/victorsillericojusto/carla-night
https://www.kaggle.com/datasets/victorsillericojusto/carla-night
https://github.com/victorsillerico/segmentation-nighttime.git
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1 INTRODUCTION

1.1 Context

Driver-less technology has been the focus of extensive research efforts by industry
and academia. Different platforms will take on-road action in the next years including
single passenger self-driving cars, delivery robots, and heavy-duty autonomous trucks.
However, further research is necessary to improve the navigation stack including perception,
prediction, planning, and control to get fully autonomous driving. A critical task to
improve the navigation capabilities of robots is semantic segmentation, which is useful
for discerning and delineating objects within an image with remarkable precision (Sellat;
Bisoy; Priyadarshini, 2022). As an essential component of scene understanding, semantic
segmentation involves the classification of individual pixels or regions in an image into
semantically meaningful categories, thus providing a fine-grained understanding of the
visual content (Siam et al., 2018).

Significant progress has been made in semantic segmentation in recent years, and
learning-based techniques have achieved promising results in terms of performance and
generalization capabilities (Schwonberg et al., 2023). However, it is difficult to design
learning-based models for segmentation tasks due to application-dependent aspects, and
datasets dominated by images captured under normal conditions that reduce the capability
of the model to deal with any environmental context. In particular, adverse visual conditions,
such as low-light, fog, rain, or snow, can impact the quality and clarity of images (Sakaridis;
Dai; Gool, 2021). By including such challenging conditions in the training dataset, the
model learns to handle real-world scenarios more effectively, which improves the robustness
of the model, allowing it to perform well in varying environmental conditions.

This project will focus on semantic scene understanding for autonomous driving
applications in low-light conditions. It involves comparing various learning methods
documented in the literature. Therefore, this work aims to identify a neural network
model that excels in semantic segmentation of scenes within challenging visual domains,
particularly those involving nighttime and low-light conditions. Furthermore, we intend to
assess the model’s ability to generalize by testing it with images from diverse contexts.

1.2 Justification and Motivation

Scene understanding of outdoor environments requires a robust visual perception
system that can parse input images under changing environmental conditions throughout
the day and across seasons (Sakaridis; Dai; Gool, 2021). Robots should be equipped with
perception models to deal with challenging environmental factors to be operable and
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ensure safety in the real world (Valada et al., 2017). For instance, adverse weather and
illumination conditions (e.g. fog, rain, snow, low light, nighttime, glare, and shadows)
create visibility problems for the sensors that power automated systems (Fig. 1). Further
research in this topic is necessary because the performance of current vision algorithms
is still mainly evaluated under clear weather conditions (e.g. good weather, favorable
lighting), and even the top-performing algorithms undergo severe performance degradation
under adverse conditions (e.g. night, reduce illumination).

(a) Nighttime image. (b) Segmented image. (c) Daytime image.

Figure 1 – Semantic segmentation on adverse environmental conditions.

Semantic segmentation models have to consider the trade-off between robustness
and efficiency, as well as the intrinsic limitations related to computational/memory bounds
and data-scarcity (Schwonberg et al., 2023). Therefore, based on the great progress
that learning-based solutions have made in recent years, this work aims to study, train,
and evaluate Deep Neural Network models that can achieve robust results in semantic
segmentation tasks under challenging environmental conditions.

1.3 Research Questions and Objectives

In this project, we consider the hypothesis that it is possible to train a neural
network model using images collected in non optimal illumination conditions, so that
the model is capable to extract useful information for semantic scene understanding in
autonomous driving applications. Given the challenges and problems currently faced in
semantic segmentation for autonomous vehicles, the aforementioned hypothesis motivates
the following research questions:

Q1 “How do different semantic segmentation techniques compare in their accuracy
and robustness for segmenting key objects (pedestrians, vehicles, lane markings) in
nighttime driving scenarios?”

Q2 “What specific modifications to existing segmentation frameworks are most effective
in improving performance under adverse lighting conditions like night driving?”

Given these research questions, the following objectives are defined for the development of
this research project:
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• Carry out a literature review on semantic segmentation methods for autonomous
driving applications in challenging domains related to illumination conditions.

• Collect image-based datasets to train Deep Learning models that are suitable for
semantic segmentation in adverse visual conditions.

• Test learning-based models available in the literature with images taken on adverse
lighting conditions, and analyze their generalization capabilities.

• Create a novel dataset of artificial urban images using the CARLA simulator in
realistic nighttime conditions, aimed at enhancing the performance of semantic
segmentation models for autonomous driving in low-light environments.

• Evaluate the performance of neural network models trained for semantic segmentation,
and compare the results to identify the best solution.
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2 TECHNICAL BACKGROUND

2.1 Nighttime Semantic Segmentation

Nighttime semantic segmentation is an area of computer vision that focuses on
accurately labeling the different objects and regions in an image captured at night. This
task is challenging because nighttime images have lower light and different visual properties
compared to daytime images, which can fool standard segmentation models (Valada et al.,
2017).

In the critical field of autonomous vehicles, nighttime semantic segmentation
becomes even more crucial. Here, precise understanding of the surrounding environment at
night is essential for safe navigation. Since autonomous vehicles rely on camera data, the
ability to segment objects like pedestrians, vehicles, and lanes even in low-light conditions
is paramount (Wu et al., 2023). Nighttime semantic segmentation research aims to develop
robust models that can overcome these challenges and ensure the continued safe operation
of self-driving cars.

2.2 CARLA Simulator

CARLA (Car Learning to Act) is an open-source simulator to carry out research
about autonomous vehicles. CARLA has been created to support prototyping, training,
and validation of modern autonomous urban driving systems, including both perception
and control. CARLA provides open-source code, protocols, and open digital assets (urban
layouts, buildings, vehicles) that can be used freely. Moreover, CARLA is flexible, it
supports different environmental conditions including weather and time of day (see Fig. 2),
it also support setup of a wide range of sensors, and provides useful signals such as GPS
coordinates, speed, acceleration, and data on collisions and other infractions. (Dosovitskiy
et al., 2017).

CARLA supports development, training, and detailed performance analysis of
autonomous driving systems. Dosovitskiy et al. (2017) used CARLA to evaluate modern
approaches to autonomous driving. They tested a classic modular pipeline compound
by dedicated subsystems for visual perception, planning, and control. They also tested
models that have received much attention by the research community in recent years, such
as those approaches based on deep networks trained end-to-end using either imitation
learning or reinforcement learning.
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Figure 2 – A street in Town 2 of CARLA Simulator showing different weather conditions.

(a) Clear day. (b) Daytime rain.

Source: Extracted from (Dosovitskiy et al., 2017)

2.3 Baseline Models

Building effective nighttime semantic segmentation models often starts with es-
tablishing strong baseline models. These baselines are typically established by daytime
segmentation models that are then adapted or enhanced to perform better under low-light
conditions. This adaptation can involve various techniques like incorporating strategies to
handle the specific challenges of nighttime imagery, such as reduced color information and
increased noise. By using well-performing daytime models as a foundation, researchers can
develop nighttime segmentation models that are more robust and effective for tasks like
autonomous driving.

U-Net, PSPNet, DeepLabV2, and FPN were used as baseline models in this project,
all of them have strengths and weaknesses for nighttime use. U-Net and DeepLabV2 might
need adjustments to handle the limitations of capturing long-range dependencies or needing
large datasets for training. PSPNet excels in capturing global context crucial for low-light
conditions. FPN is useful for nighttime segmentation, where generating multi-scale feature
maps with strong semantic information at various resolutions is essential for capturing
details across different scales.

2.3.1 U-Net

Ronneberger, Fischer and Brox (2015) designed U-Net for semantic segmentation
tasks. It excels at pixel-wise classification, meaning it assigns a specific class label (e.g.,
car, person, road) to each pixel in an image. U-Net’s strength lies in its unique structure:
a contracting encoder path that captures contextual information and a corresponding
expanding decoder path that recovers spatial resolution (see Fig. 3). Originally developed
for biomedical image analysis, U-Net’s versatility has led to its adoption in various fields
like autonomous driving and satellite imagery analysis.
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Figure 3 – U-Net architecture.

Source: Extracted from (Ronneberger; Fischer; Brox, 2015)

2.3.2 PSPNet

PSPNet (Zhao et al., 2017) addresses semantic segmentation by incorporating
global scene context through a unique pyramid pooling module (see Fig. 4). This module
goes beyond traditional single-scale feature extraction by capturing information at various
resolutions, making it possible to understand the big picture of a scene while preserving
details of individual objects. PSPNet utilizes the pyramid pooling module to generate multi-
scale feature representations that are upsampled and combined, creating a comprehensive
scene understanding. Finally, a decoder refines this information and assigns class labels to
each pixel, resulting in improved segmentation accuracy, particularly for complex scenes.

Figure 4 – PSPNet architecture.

Source: Extracted from (Zhao et al., 2017)

2.3.3 DeepLab

Chen et al. (2018) developed DeepLab using dilated convolutions to capture
long-range dependencies in the image without increasing the number of parameters or
losing resolution. DeepLab models typically consist of an encoder backbone (see Fig. 5),
often a pre-trained classification network like ResNet, modified with Atrous convolutions.
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Additional modules like Atrous Spatial Pyramid Pooling (ASPP) can be incorporated
to capture objects at various scales. DeepLab has evolved through several versions, each
offering improvements in accuracy and efficiency, making it a popular choice for various
semantic segmentation applications.

Figure 5 – DeepLab architecture.

Source: Extracted from (Chen et al., 2018)

2.3.4 Feature Pyramid Network

A Feature Pyramid Network (FPN) (Lin et al., 2017) is a feature extractor that
generates multi-scale feature maps from a single-scale image, making it suitable for tasks
like object detection. It works independently of the backbone architecture, constructing a
feature pyramid through two pathways: a bottom-up pathway and a top-down pathway
(see Fig 6). The bottom-up pathway uses the feedforward process of the backbone network
to compute feature maps at multiple scales, typically halving the resolution at each stage.
The top-down pathway enhances these maps by upsampling coarser, semantically rich
features and combining them with higher-resolution maps from the bottom-up process via
lateral connections. This combination results in feature maps that are semantically strong
yet accurately localized.

Figure 6 – FPN architecture.

Source: Extracted from (Lin et al., 2017)
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2.4 Related Works

The Systematic Literature Review was done considering the the PICOC (Population,
Intervention, Comparison, Outcome, and Context) criteria to break down the objectives
into searchable keywords and help formulate research questions (see Table 1). This strategy
enjoys widespread use in medical and social science research (Petticrew; Roberts, 2008),
and was adapted by Carrera-Rivera et al. (2022) to define the scope and objectives of
Literature Reviews for computer science research.

Table 1 – PICOC criteria for Systematic Literature Review.

Population Real-world images captured in nighttime driving conditions

Intervention A deep learning architecture for robust segmentation in low-light

Comparison U-Net, PSPNet, DeepLab, and RefineNet as baseline models

Outcome Mean IoU, and F1-score for pedestrians, vehicles, and lane markings

Context Autonomous vehicles requiring accurate and reliable segmentation
Source: Made by the author.

Considering the research questions defined in Chapter 1, and search sources like
IEEE Xplore, ACM, Scopus, Web of Science, it was possible to elaborate a taxonomy of
nighttime semantic segmentation (see Fig. 7). Therefore, the literature work in semantic
segmentation is categorized into three main subcategories: (1) Fully Convolutional Networks.
(2) Direct Training Models. (3) Domain Adaptation Models.

Figure 7 – Taxonomy of nighttime semantic segmentation models.

Domain Adaptation

Gradual Model Adaptation

ERF-PSPNet SFNet-N

NiSeNet NightMix DCL

MGCDA DANNet CCDistill

DIAL-Filters Refign NR-UDA

CDAda Bi-Mix DANIA

Irregular Convolution

FCN

U-Net

SegNet

LayerNet

AdapNet

SOD

Direct Training

NightLab

EGNet

FDLNet

Source: Made by the author.

2.4.1 Fully Convolutional Networks Methods

Semantic segmentation has seen a dramatic improvement thanks to Deep Convolu-
tional Neural Networks (DCNN), especially with the rise of Fully Convolutional Networks
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(FCNs). They achieve this through a two-part architecture: an encoder that shrinks the
image while capturing key features, and a decoder that expands the information back to
the original size for segmentation output. For instance, LayerNet (Li; Liu; Yang, 2023)
uses a multi-head decoder and a well-designed hierarchical module to model, extract and
fuse multistage features of different depths in nighttime images.

Several refinements on FCNs have been introduced to improve segmentation accu-
racy (Siam et al., 2018). For example, Valada et al. (2017) include context and multi-modal
information to refine the inference results by reducing the sensitivity to appearance
variations, which is typical on perception systems using unimodal images as inputs. Its
Convoluted Mixture of Deep Experts (CMoDE) fusion scheme selects class-specific fea-
tures from expert networks based on the current scene representation, and learns deeper
representations from the mixture of kernels.

2.4.2 Model Adaptation Methods

The lack of large-scale labeled datasets in the nighttime scenes motivates the
development of domain adaptation approaches that transfer the knowledge from the
day-time scenes to night-time (Dai; Gool, 2018a; Romera et al., 2019; Sakaridis; Dai; Gool,
2019; Wu et al., 2021; Lee et al., 2023).

Supervised and unsupervised semantic segmentation research constantly produce
new approaches and advancements in domain adaptation. For instance, Dai and Gool
(2018b) proposed an unsupervised method that progressively adapts the semantic models
trained on daytime scenes to nighttime scenes by dividing the twilight time between day
and night into three subgroups considering the elevation of the sun, and makes incremental
adjustments to the network using pseudo labels. Alternatively, Cheng et al. (2022) fused
supervised daytime scenes and unsupervised night-time scenes. The supervision information
in the daytime scene and the texture information specific to the night-time scene are fully
utilized, and the model is adapted to both the daytime scene and the night-time scene.

Other methods explore Curriculum Learning 1 (self-learning) for domain adaptation
to bridge the inter-domain and intra-domain gap together without additional data or
network. For example, CDAda (Xu et al., 2021) uses entropy minimization and a pseudo-
label self-training method to adjust the model according to the level of difficulty attached to
the domain, which enables smoother semantic knowledge transfer. Sakaridis, Dai and Gool
(2022) developed a curriculum framework where the model progressively learns from easier
(brighter) to harder (darker) nighttime images. This approach leverages correspondences
between daytime reference images and their darker counterparts to guide the label inference
of the model for nighttime scenes.

1 The process of introducing learning from easy to complex, is typically used to promote the
optimization of non-convex problems
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Given the limitations of traditional methods in low-light scenarios, researchers are
exploring the potential of Generative Adversarial Networks2(GANs) to improve semantic
segmentation performance in nighttime environments. Creswell et al. (2018) embedded
GANs in domain adaptation frameworks generating promising results. Moreover, Song et
al. (2022) improved the performance of night segmentation with a system compounded
by an appearance transferring module that transfers unlabeled images, acquired during
both daytime and nighttime, into a shared latent feature space, which encodes the image
content of both scenes at the semantic level.

Recent works (Romera et al., 2019; Sun et al., 2019) also use GANs to effectively
reduce the domain gaps by learning the mapping of input images to output images, and
improving the segmentation performance from two perspectives, including direct inference
of night images and real-time online conversion inference of night images through style
conversion. Yang, Han and Liu (2023) combine a fuzzy information complementing strategy
using generative models to fill in missing information, with a network that fuses different
processing stages to capture richer spatial context. The scheme further incorporates
irregular convolutional attention modules to focus on specific regions and extract detailed
boundaries of moving targets.

Others methods (Anoosheh et al., 2019; Schutera et al., 2021) have embedded
pre-trained image enhancement modules on the pipeline to translate night-time images
into their day-time counterparts. For instance, Wang et al. (2022) developed a nighttime
segmentation framework composed of two parts: an image enhancement module which
introduces semantic information, and a segmentation network with strong feature extraction
capability. Furthermore, Yang et al. (2021) introduced a Bidirectional Mixing (Bi-Mix)
framework that leverages the information between coarsely aligned day-night image pairs
to improve translation-adaptation and the segmentation-adaptation processes.

In order to enhance the results before and after the segmentation network, Liu et al.
(2023) exploited the intrinsic features of driving-scene images under different illuminations
using DIAL-Filters, which consist of an Image-Adaptive Processing Module (IAPM) and
a Learnable Guided Filter (LGF). In addition, Brüggemann et al. (2023) proposed the
REFING framework that leverages existing correspondences between images in normal
and adverse conditions. It achieves this in two stages: first, an uncertainty-aware dense
matching network aligns the normal image to its adverse counterpart. Second, an adaptive
label correction mechanism refines the adverse condition prediction using the aligned
normal image prediction.

Multi-stage approaches, e.g. NiSeNet (Nag; Adak; Das, 2019), that use twilight as
an intermediate domain between day and night to perform a multi-stage adaptation, have

2 A type of deep learning system where two neural networks compete to create new data that
is indistinguishable from real data



34

been proved to introduce more computational burden. Twilight scene images are more
difficult to capture due to its strict definition according to the solar elevation angle. In
order to overcome this challenge, DANNet (Wu et al., 2021) performs domain adaptation
in one-stage by using an adversarial training with labeled daytime data and unlabeled
roughly aligned day-night image pairs. Moreover, DANIA (Wu et al., 2023), a one-stage
adaptation framework for nighttime semantic segmentation, leverages a labeled daytime
dataset (the source domain) and an unlabeled dataset that contains coarsely aligned
day-night image pairs (the target daytime and nighttime domains). It does not need to
train additional day-night image transfer models as a separate pre-processing stage.

Other one-stage domain adaptation network is CCDistill (Gao et al., 2022). It
extracts the content and style knowledge contained in features, and measures the level of
illumination difference between two images to deal with the lack of labels for nighttime
images. The adaptation is achieved using the invariance of the same kind of difference.

2.4.3 Direct Training Methods

Even though acquiring large amounts of high-quality nighttime data can be expen-
sive and time-consuming, some methods use different strategies train the model directly
on labeled night-time images. For instance, EGNet (Tan et al., 2021) considers the HSV
color space and uses the channel V to generate discriminating features in under- and
over-exposed regions. The NightLab (Deng et al., 2022) architecture is other example of
direct training that uses a Hardness Detection Module to divide objects into simple and
difficult categories. Finally, Xie et al. (2023) explored the image frequency distributions for
night-time scene parsing. However, these methods do not take into account the negative
impact and degradation effect of lighting on semantic segmentation tasks but instead
implicitly force the network to learn the entangled representations of various content and
lighting.

Disentangling the accidental scene events, such as reduced illumination, improves the
performance of computer vision tasks in different ways. For instance, Deep Learning models
can capture the isolated factors of variation affecting the represented entities, improving
their robustness to diverse conditions. Previous works have explored different techniques
for disentangling the image representations (Baslamisli et al., 2018), such as learning
domain invariant representations across different domains. Wei et al. (2023) proposed
Disentangle Then Parse (DTP) approach that consists of two key components. First,
DTP has a Semantic-Oriented Disentanglement (SOD) framework to extract the reflecting
component to consistently identify the semantics under cover of varying and complicated
lighting conditions. Second, DTP has an Illumination-Aware Parser (IAParser) to explicitly
learn the correlation between semantics and lighting, and include the illumination features
to make precise predictions.
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Table 2 – Intersection over Union (IoU) results obtained by methods for seman-
tic segmentation of nighttime images.

Reference Model Backbone IoU Score(%)

Wei et al. (2023) SOD DeepLabV3+ 63.7

Ding, Li and Tian (2023) DCL PSPNet 50.4

Li, Liu and Yang (2023) LayerNet ResNet 65.3

Wang et al. (2022) SFNet-N ResNet50 56.9

Sakaridis, Dai and Gool (2022) MGCDA RefineNet 42.5

Xu et al. (2021) CDAda RefineNet 45.0

Wu et al. (2021) DANNet ResNet101 45.2

Tan et al. (2021) EGNet ResNet101 45.3

Nag, Adak and Das (2019) NiSeNet DeepLabV3+ 45.56

Valada et al. (2017) Adapnet ResNet50 71.72

Cheng et al. (2022) NightMix Zero-DCE 46.96

Sun et al. (2019) ERF-PSPNet CycleGAN 45.09

Yang, Han and Liu (2023) Irregular-Conv DeblurGAN 94.2

Deng et al. (2022) NightLab ReLAM 62.82

Xie et al. (2023) FDLNet UperNet 52.68

Dai and Gool (2018b) GMA RefineNet 41.6

Gao et al. (2022) CCDistill RefineNet 47.5

Yang et al. (2021) Bi-Mix RefineNet 46.5

Wu et al. (2023) DANIA PSPNet 52.6

Brüggemann et al. (2023) REFIGN DeepLabV2 65.5

Liu et al. (2023) DIAL-Filters ResNet-101 51.21

Song et al. (2022) NR-UDA ResNet 16.93
Source: Made by the author.

2.5 Final Considerations

The reviewed related works showcase various approaches for dealing with the chal-
lenge of nighttime semantic segmentation. From established supervised learning methods
using daytime data to cutting-edge techniques like unsupervised learning and GANs,
researchers are actively exploring avenues for robust segmentation in low-light conditions.
Table 2 summarizes the Intersection over Union3 (IoU) results presented in the reviewed
research works. It is difficult to directly compare the performance of the models because

3 It is a metric used to evaluate the accuracy of a model’s predictions compared to the ground
truth (actual labels) for each pixel in an image.
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they do not use the same datasets and backbone networks. Most of the models use Re-
fineNet, PSPNet, DeepLab and its variations as backbone and make adjustment in the
architecture to support the segmentation task in low-light conditions.

Therefore, nighttime semantic segmentation remains an active area of research with
significant potential for various applications. By addressing data acquisition challenges,
developing robust and generalizable models, exploring sensor fusion, and optimizing for
efficiency, it is possible to push the boundaries of this critical field.

In this project, the focus was on methods within the category of Fully Convolutional
Networks (FCNs), which are well-suited for pixel-wise prediction tasks. The models
employed, such as U-Net, PSPNet, DeepLabV3+, and FPN, are all part of this FCN family.
These architectures leverage end-to-end training with convolutional layers to directly
generate segmentation maps, making them highly effective for this application. This choice
of approach reflects our aim to prioritize models that excel at learning complex spatial
hierarchies, which are crucial for accurately identifying objects like vehicles, buildings,
vegetation, and lane markings in low-light conditions.
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3 METHODOLOGY

3.1 Project Study

In this project, baseline models for semantic segmentation were implemented to
compare their performance with nighttime autonomous driving scenes. The main goal
was to determine which architecture presents the best results in terms of accuracy and
robustness to segment images of light-constrained scenarios, considering a training set
composed of real images and synthetic images. The code of the implementation can be
accessed through a GitHub repository (https://github.com/victorsillerico/segmentation-
nighttime.git).

The proposed pipeline is presented in Fig. 8. Initially, nighttime urban images
were collected from specialized datasets for autonomous driving, and combined with a set
of synthetic images collected and annotated to create segmentation maps, labeling each
pixel according to its class (e.g., road, pedestrian, vehicle). The images for the synthetic
dataset were created using the autonomous vehicle simulator CARLA1, in which a vehicle
in autopilot mode navigates around urban scenarios taking images under different weather
and daytime conditions. Then, data augmentation techniques, such as rotation, cropping,
and brightness adjustment, are applied to enhance data variety and volume. The dataset
is divided into training, validation, and testing sets, typically in a 70-20-10 ratio.

Training a model for semantic segmentation in nighttime autonomous driving
involves several key steps. Initially, nighttime urban images are collected and annotated to
create segmentation maps, labeling each pixel according to its class (e.g., road, pedestrian,
vehicle). Various CNN architectures like U-Net, SegNet, DeepLab, and PSPNet are
configured with specific hyperparameters (learning rate, epochs, batch size). During
training, images are passed through the model to generate segmentation predictions, and
a loss function (e.g., cross-entropy or Jaccard index) measures the error against true
labels. Gradients are calculated and weights updated via backpropagation using optimizers
like Adam or SGD. The model’s performance is validated after each epoch to prevent
overfitting.

Post-training, the model is evaluated on the test set using metrics such as accu-
racy, IoU, and F1-score. Fine-tuning, including hyperparameter adjustments and transfer
learning from pre-trained models, is conducted based on validation and test results to
enhance performance, ensuring robust and accurate segmentation in low-light conditions
critical for safe nighttime autonomous driving.

1 https://carla.org//

https://github.com/victorsillerico/segmentation-nighttime.git
https://github.com/victorsillerico/segmentation-nighttime.git
https://carla.org//
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Figure 8 – Proposed pipeline.

Source: Made by the author.

3.2 Datasets

Many large-scale image-based datasets have been proposed for urban scene un-
derstanding, targeting autonomous driving (AD) scenarios, e.g. Cityscapes (Cordts et
al., 2016), BDD100K (Yu et al., 2020), CamVid (Brostow; Fauqueur; Cipolla, 2009),
KITTI (Geiger; Lenz; Urtasun, 2012). They include images captured under normal visual
conditions during daytime and in clear weather. However, the perception capabilities of
autonomous vehicles impose strict requirements on algorithms to maintain satisfactory
performance in adverse domains.

New datasets have been proposed in response to this need for large-scale driving
datasets specialized for challenging perceptual conditions, in terms of size, domain adversity,
and featured tasks. For instance, the Adverse Conditions Dataset with Correspondences
(ACDC) (Sakaridis; Dai; Gool, 2021) includes 4006 images evenly distributed across four
common adverse conditions that include fog, nighttime, rain, and snow. Each image
taken under adverse conditions is accompanied by a high-quality, fine pixel-level semantic
annotation, a corresponding image of the same scene under normal conditions, and a
binary mask. The recordings were made using a 1080p GoPro Hero 5 camera at 30 frames
per second, with the camera positioned differently depending on the condition (in front
for nighttime and normal conditions).

Dark Zurich (Sakaridis; Dai; Gool, 2022) dataset is also suited to train models
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for semantic segmentation of images collected in light-constrained scenarios. It contains
8779 images captured at nighttime, twilight, and daytime, along with the respective GPS
coordinates of the camera for each image. These GPS annotations are used to construct
cross-time-of-day correspondences, to match each nighttime or twilight image to its daytime
counterpart. This dataset has 201 nighttime images (151 test + 50 validation) with fine
pixel-level semantic annotations for the 19 evaluation classes of Cityscapes.

Nightcity (Tan et al., 2021) dataset is other alternative to develop models for
scene parsing in reduced illumination conditions. It is based on a collection of real night-
time driving videos (which were captured using a Driving Recorder during car driving)
over the Internet from various cities (e.g. Los Angeles, New York, Chicago, Hong Kong,
London,Tokyo and Toronto). These videos cover urban street, highway and tunnel scenarios.
Then, 297 diverse images were selected with no obvious motion blur from these videos for
manual annotation, following the approach used to construct the Cityscapes dataset.

Table 3 provides a summary of such autonomous driving oriented semantic seg-
mentation datasets with their most important characteristics: the number of classes, the
number of annotated samples, whether images are real or rendered, whether the dataset
contains video sequences (and not only temporally uncorrelated images), the geographical
location (for what concerns simulated datasets, we report the simulated area indicated, if
available), and whether the dataset allows setting arbitrary conditions (seasonal, weather,
daylight, etc. ). In addition, Table 4 presents a summary of the classes available in these
different datasets, to ease the comprehension of the compatibility between different models.

Table 3 – Datasets for research on urban scene Semantic Segmentation.

Dataset name Clases Annotated
samples

Real
or sim.

Video
seq.

Environment/
geography

Visual
conditions

Cityscapes 30 5000 Real Yes Germany -

BDD100K 19 10000 Real No United States -

CamVid 32 701 Real Yes United Kingdom -

KITTI 28 400 Real Yes Germany -

ACDC 19 4006 Real Yes Switzerland Daytime

Dark Zurich 19 8779 Real Yes Switzerland Daytime

Nightcity 20 4297 Real Yes Various cities Daytime
Source: Made by the author.

3.2.1 CARLA-Night Dataset

The CARLA simulator was used to create a dataset of artificial images for semantic
segmentation in nighttime autonomous driving (see Fig. 9), a high-fidelity, open-source
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Table 4 – The various categories for which annotations are provided in
different semantic segmentation datasets.

Classes C
ity
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ty

Bicycle x x x x x x

Bridge x x

Building x x x x x x x

Bus x x x x x x

Car x x x x x x x

Caravan x x

Fence x x x x x x

Guard rail x x

Lane marking x

Motorcycle x x x x x x

Parking x x

Person x x x x x x

Rail track x

Rider x x x x x

Road x x x x x x x

Sky x x x x x x x

Sidewalk x x x x x x x

Terrain x x x x x x

Train x x x x x x x

Traffic light x x x x x x x

Traffic sign x x x x x x x

Truck x x x x x x x

Tunnel x x x

Vegetation x x x x x x x

Wall x x x x x x x
Source: Made by the author.

driving simulation environment. The simulation was configured to replicate nighttime
driving conditions by adjusting the lighting settings, such as reducing ambient light and
enabling streetlights, while avoiding additional weather effects like rain or fog. The dataset
has 1000 images of nighttime scenarios in urban environments, with their corresponding
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full-color semantic annotations, and the label IDs according to the CityScapes dataset.
The CARLA-Night Dataset (https://www.kaggle.com/datasets/victorsillericojusto/carla-
night) was released under the MIT license on Kaggle to facilitate the reproducibility of
the experiments in this work and to contribute to the research community interested in
training models with artificial images.

A variety of urban and rural environments were simulated to capture diverse road
scenes, including streets with parked cars, buildings, vegetation, and roads. Through
CARLA’s built-in API, vehicles were controlled and spawned to ensure a range of dynamic
objects across scenes.

For each scene, semantic segmentation labels were automatically generated, pro-
viding pixel-level annotations for essential objects like roads, cars, pedestrians, buildings,
road signs, etc. This process allowed for the collection of a large, labeled dataset under
consistent nighttime conditions, offering a reliable resource for training deep learning
models.

Figure 9 – Images collected using the autonomous driving simulator CARLA. The first
row presents the original RGB images and their corresponding annotations in
the second row.

3.3 Evaluation Metrics

After a model is trained for segmenting images according to a set of classes, it is
necessary to evaluate how well it performs. Additionally, it is also important to verify
that the model generalizes beyond the training dataset to new data it was not trained on.
Finally, it is expected that the model makes high confidence, correct predictions, and for
higher confidence thresholds to not result in many more false negatives.

Evaluation metrics are required to measure the performance of semantic segmen-
tation models. There are many ways to quantify the similarity between the predicted
(prediction) and annotated segmentation (ground truth), the most common are Precision
and Recall (Sensitivity), Dice Coefficient (F1-Score), and Jaccard Index (IoU). For se-
mantic segmentation, the evaluation unit is an individual pixel, which can be one of four
categories:

https://www.kaggle.com/datasets/victorsillericojusto/carla-night
https://www.kaggle.com/datasets/victorsillericojusto/carla-night
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• True Positive (TP): the pixel was classified correctly as a class of interest.

• True Negative (TN): the pixel was classified correctly as the background class.

• False Positive (FP): the pixel was incorrectly assigned a class of interest

• False Negative (FN): the pixel was incorrectly assigned the background class or a
different class

3.3.1 F1-Score

It is also known as Dice Coefficient, and represents the harmonic mean of precision
and recall. It scores the overlap between predicted segmentation and ground truth, and
penalize false positives.

F1score = 2 ∗ TP

2 ∗ TP + FP + FN
(3.1)

3.3.2 Intersection Over Union (IoU)

It is also known as Jaccard Index, and represents the area of the intersection over
union of the predicted segmentation and the ground truth.

IoU = TP

TP + FP + FN
(3.2)

3.4 Experiments

The Pytorch framework and the Segmentation Models library were the main tools to
prototype the different architectures described in the literature. The Google Colaboratory
(Colab) environment was the main tool for testing the initial version of the code. However,
the GPU resources available for free in Colab were not enough to train and validate
the models. The resources provided by the Intelligent Systems Laboratory (LASI) at the
University of São Paulo (USP) helped to train the models with full-size images (1920x1080).
The experiments were conducted using a system with an NVIDIA RTX 3090 GPU (24 GB
VRAM, CUDA 12.2), AMD Ryzen 9 5950X CPU (3.5 GHz, 16 cores, 32 threads), 125 GB
DDR4 RAM, and a 1.8 TB NVMe SSD. The operating system used was Ubuntu 20.04
with Python 3.8 and PyTorch 2.0.

UNet, FPN, PSPNet, and DeepLabV3+ models were trained and the predicted
segmentation masks were compared to define the best model in terms of generalization
capabilities. Baseline models establish a minimum level of performance expectation. To
ensure convergence of the models, values for epochs and batch size were adjusted experi-
mentally taking into account common values described by the research community. The
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additional testing sets were used to evaluate the generalization capability of the proposed
architecture.

Cross-entropy loss was used as the primary loss function. It is widely used for
pixel-wise classification tasks, making it well-suited for segmentation problems where
each pixel is assigned to a specific class. The choice of cross-entropy was driven by its
effectiveness in handling multiclass segmentation problems, as it computes the divergence
between the predicted class probabilities and the true labels.

The training procedure for the semantic segmentation models—UNet, FPN, PSP-
Net, and DeepLabV3—was conducted using the Adam optimizer with a learning rate of
0.001. A batch size of 4 was used during training, while a smaller batch size of 2 was used
for validation to accommodate memory constraints. Each model was trained for 30 epochs,
providing sufficient iterations for the networks to learn the complex features required
for nighttime autonomous driving. Although techniques to prevent overfitting, such as
dropout or weight decay, were not explicitly used during the training process, the model’s
performance across epochs was monitored to ensure that the training remained stable and
effective without excessive overfitting (see Fig. 10 and Fig. 11).

Figure 10 – Training loss over epochs for different models.

Source: Made by the author.

The backbone architecture was initialized with ResNet34 for UNet, FPN, and
DeepLabV3+, and ResNet50 for PSPNet, both with weights pretrained on the ImageNet
dataset. By leveraging these pretrained weights, the models could benefit from the knowl-
edge gained from large-scale, diverse images, improving the network’s ability to capture
meaningful features from the nighttime data. This transfer learning approach allowed for
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Figure 11 – Validation loss over epochs for different models.

Source: Made by the author.

more efficient training, as the models did not need to learn low-level features from scratch.
The pretrained ResNet34 and ResNet50 backbones were fine-tuned on the nighttime hybrid
(real and synthetic) dataset, resulting in improved segmentation accuracy and faster con-
vergence, particularly for challenging low-light scenarios. The use of ImageNet-pretrained
weights helped boost the model’s generalization capacity, especially when detecting ob-
jects that may be less visible at night. These pre-trained models are accessible through
the Segmentation Models PyTorch library2, which provides a wide range of pre-trained
networks.

For evaluating the performance of the semantic segmentation model for nighttime
autonomous driving, Intersection over Union (IoU) and F1-score were employed as the
primary evaluation metrics. IoU is particularly useful for segmentation tasks as it measures
the overlap between predicted and ground truth areas, providing insight into the model’s
ability to accurately segment both frequent and less frequent classes. F1-score, which
combines precision and recall, was used to further assess how well the model detects
objects across different categories. Given the challenging nighttime conditions, special
attention was paid to ensuring that both IoU and F1-score were calculated for small and
rare objects, such as pedestrians and cyclists, which are more difficult to detect at night
due to poor visibility. These metrics allowed us to monitor the model’s performance not
only on common elements like roads and cars but also on harder-to-detect objects, which
are critical for safe autonomous driving in low-light conditions.

2 https://segmentation-modelspytorch.readthedocs.io/en/latest/

https://segmentation-modelspytorch.readthedocs.io/en/latest/
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It was expected that the use of synthetic images of nighttime environments in
training would improve performance in nighttime segmentation tasks compared to baseline
methods trained under normal conditions. The inclusion of these artificial images had
the goal to enhance the model’s ability to generalize and accurately segment scenes in
low-light scenarios. Additionally, modifications made to the segmentation architectures,
such as incorporating specialized layers or adaptive algorithms tailored for nighttime
features, were expected to further boost the accuracy and robustness of the models. These
enhancements would lead to significant improvements in handling the unique challenges
posed by nighttime imagery, ultimately resulting in more reliable and precise segmentation
outcomes.
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4 RESULTS

A dataset with real and synthetic images was used to train four models (UNet,
PSPNet, DeepLabV3+, and FPN) for semantic segmentation in nighttime autonomous
driving. The CARLA simulator was used to collect 1,000 images of nighttime scenarios
in urban environments, which were then merged with 506 images from the night set of
the ACDC dataset, totaling 1,506 images that were split 80% for training and 20% for
validation. An additional set of 500 images was used to evaluate the model performance
in unseen data. This chapter presents the quantitative and qualitative results of the
experiments and the overall development process.

4.1 Quantitative Analysis

4.1.1 Model Efficiency

Several factors influence how long it takes to train a model. In this project, key
factors include the model’s complexity (such as the number of parameters and the type of
architecture), the dataset size, the batch size, the available hardware, and the choice of
optimizer. Table 5 shows each model’s training and inference times.

The four models used a batch size of 4 for the training set and 2 for the validation
set. Moreover, UNet, FPN, and DeepLabV3+ used ResNet34 as the backbone. FPN
had the shortest training time, taking 144.02 minutes, followed by DeepLabV3+ with
155.60 minutes, and UNet requiring 168.99 minutes. PSPNet, however, used ResNet50 as
the backbone, which has more layers than ResNet34 to allow for more complex feature
extraction, explaining why it had the longest training time of 188.68 minutes.

The test set with 500 nighttime images was used to calculate the inference time
which refers to the total time taken by the model to process an input image and generate
a segmentation map. This includes the time it takes to load the model, prepare the input,
run the input through the network, and output the result. PSPNet was the fastest model,
although it used a backbone with more layers than the other models. On the other side,
UNet had the models’ biggest inference time.

4.1.2 Performance Metrics

F1-Score and IoU were used to evaluate the performance of the semantic segmenta-
tion model because they provide a clear understanding of how well a model’s predictions
align with the ground truth, particularly for pixel-wise classification. The same validation
set was used to obtain the metric values presented in Tables 6 and 7.
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Table 5 – Time for training and prediction with standard deviation for inference time.

Model Training Time (min) Inference Time (min) Inference Std Dev (min)

UNet 168.99 0.47 0.02

FPN 144.02 0.44 0.01

PSPNet 188.68 0.42 0.01

DeepLabV3+ 155.60 0.45 0.02
Source: Made by the author.

The F1-Score results (see Table 6) indicate that the four models perform well for
segmenting the road class, achieving score of 98%. This result was expected since the
datasets used in the project are tailored for autonomous vehicle applications, thus all the
images contain road information. Similarly, the sky class presents a score higher than
89% for each of the four models because it is a common element in all the images and
has distinctive and consistent features that facilitate its identification. The building class
presents different values between 87% and 91% for the studied models. The vegetation
and car classes present values lower than 82% because these classes appear less than the
others in the images, making it difficult to properly segment those objects. Overall, FPN
ended up being the best model for nighttime semantic segmentation with a mean F1-Score
value of 88.32%, and UNet was the less efficient with 84.47%.

Table 6 – F1-Score values calculated for each model.

Model F1-Score (%) mF1-Scoreroad building vegetation car sky background

UNet 98.35 87.69 74.87 77.35 89.33 79.22 84.47

FPN 98.81 91.05 81.01 82.43 93.54 83.10 88.32

PSPNet 98.15 88.14 78.38 73.31 92.67 83.14 85.63

DeepLabV3+ 98.90 87.70 80.81 81.81 92.24 83.74 87.53
Source: Made by the author.

IoU results (see Table 7) describes how well the segmentation models identify
specific classes in an image, focusing on the overlap between predicted and ground truth
pixels. The four models got poor performance in the segmentation of cars because they
do not appear regularly in the images and most of their appearances are in a small size,
which limits the segmentation task. Similarly, the performance was not good for buildings
and vegetation, mainly because of their irregular form in the images. On the other hand,
the models got an IoU value over 97% for the road class, and over 82% for the sky class,
this good performance is expected since both classes represent a significant part of the
images and present distinguishable characteristics. Considering the mean IoU, FPN had
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the best performance with 81.12%, and the worst performance corresponds to the UNet
model with 75.92%.

Table 7 – Intersection over Union (IoU) values calculated for each model.

Model IoU (%) mIoUroad building vegetation car sky background

UNet 96.81 79.98 61.59 68.07 82.20 66.89 75.92

FPN 97.68 85.13 69.53 73.67 88.44 72.27 81.12

PSPNet 96.47 80.99 66.80 63.31 86.98 72.16 77.79

DeepLabV3+ 97.86 81.31 69.13 72.95 86.89 73.22 80.23
Source: Made by the author.

The overall results demonstrate that training the model with a combined dataset
of real images from the ACDC dataset and artificial images generated by the CARLA
simulator leads to improved performance compared to training with only real images
from ACDC (see Table 8). The inclusion of artificial images provided a more diverse and
robust training set, enabling the model to generalize better to various nighttime driving
scenarios. This hybrid approach resulted in higher accuracy across key metrics, such as
mean F1-score and mean IoU, highlighting the value of supplementing real-world data
with synthetic images for enhancing segmentation performance in challenging nighttime
conditions.

Table 8 – Metric values calculated for different datasets.

Model ACDC ACDC + CARLA
mF1-Score(%) mIoU(%) mF1-Score(%) mIoU(%)

UNet 64.39 53.22 84.47 75.92

FPN 74.95 63.16 88.32 81.12

PSPNet 73.13 60.92 85.63 77.79

DeepLabV3+ 76.35 64.94 87.53 80.23
Source: Made by the author.

4.2 Qualitative Analysis

Fig. 12 and Fig. 13 present examples of predictions for each trained semantic
segmentation model. It helped to make a visual inspection and have an idea of how good
the results are when compared with the ground truth of the sample images.

The results for a test set (see Fig. 12) show that the performance of the model is
limited when used with real images. Most of the pixels in the images represent the road
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and sky classes, which makes them an easy target to be learnt by the models. However,
the classes that does not appear regularly in the images, and are smaller compared to
the others, represent a great challenge that impact the generalization capabilities of the
models. PSPNet has the worst performance even tought it had a Resnet50 as backbone, it
was not able to efectively segment the clases. The other models do not have a consistent
performance, in some cases UNet and FPN were able to segment cars, but failed badly to
segment vegetation.

(a) RGB (b) GT (c) UNet (d) FPN (e) PSPNet (f) DeepLab
Road Building Vegetation Sky Car Background

Figure 12 – Qualitative results for semantic segmentation of real images. Each row corre-
sponds to a test sample, and from the left to the right the images correspond
to the original image, its ground truth, and the four predicted masks.

When tested with a set of synthetic images collected with CARLA simulator, the
models present a different performance (see Fig. 13). The four models were able to segment
the road class effectively, but they had a poor performance in defining the boundaries of
the building and sky classes, which appeared to be merged in most of the cases. Once
again, PSPNet had the worst performance, even though it was expected to get better
results with synthetic images, it had problems segmenting all the classes. UNet and FPN
had performed the best compared to ground truth, but they also failed to segment the
building classes.

By analyzing the images of Fig. 12 and Fig. 13, it is evident that there are some
classes the models tend to misclassify. For example, the model may frequently confuse
vegetation with background, or buildings with sky, particularly in low-light conditions,
where object boundaries are less distinct.
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(a) RGB (b) GT (c) UNet (d) FPN (e) PSPNet (f) DeepLab
Road Building Vegetation Sky Car Background

Figure 13 – Qualitative results for semantic segmentation of synthetic images. Each row
corresponds to a test sample, and from the left to the right the images
correspond to the original image, its ground truth, and the four predicted
masks.
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5 CONCLUSIONS

This project, conducted a literature review to identify state-of-the-art methods
for semantic segmentation of nighttime images. UNet, FPN, PSPNet, and DeepLabV3+
models were trained with a dataset that combines real images of the ACDC dataset with
synthetic images collected with the CARLA simulator. The hybrid (real and synthetic)
dataset was formatted according to the 19 classes specified in the Cityscapes dataset. Still,
only 6 classes were selected for prediction (road, building, vegetation, car, sky, background)
which are the most representative in the ACDC dataset.

The analysis of the quantitative and qualitative results demonstrates that using
images from a simulator positively impacts the training process and helps to improve the
model’s overall performance. Still, the improvements are not enough to achieve the level
of robustness required for autonomous driving applications. F1-Score and IoU, the most
common metrics for evaluating semantic segmentation models, were used to compare the
selected architectures. Based on the metrics above, the best model was the FPN with
88.32% of mean F1-Score and 81.12% of mean IoU.

An additional set of real images was used to test the generalization capabilities of
the model. The predicted masks show that the models can better segment some classes,
like road and sky, than other classes. However, all the models failed to effectively segment
irregular objects such as buildings and vegetation. The UNet and FPN models, when
compared to the other trained models, were the ones that performed best in the task of
semantic segmentation of some classes, as well as having greater generalization capacity.

In response to the first research question (Q1) that lead the direction of this
project, the comparison of different semantic segmentation techniques revealed that
certain models outperform others in terms of accuracy and robustness when segmenting
key objects, such as buildings, vehicles, and vegetation in nighttime driving scenarios.
Techniques like PSPNet and DeepLabV3+ showed superior performance compared to
simpler architectures like U-Net, particularly in handling complex features and low lighting
conditions. Models incorporating pyramid pooling and dilated convolutions proved more
effective in capturing contextual information, which is crucial for segmenting objects in low-
visibility environments. However, despite these improvements, all models exhibited some
degree of performance degradation in the nighttime setting, indicating that segmenting
objects under adverse lighting conditions remains a significant challenge.

Regarding to the second research question (Q2), the most effective modifications
to existing segmentation frameworks for nighttime conditions involved the use of hybrid
datasets and data augmentation. Specifically, combining real images from the ACDC
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dataset with artificial images generated in the CARLA simulator significantly boosted
model performance. This approach provided a more diverse range of lighting scenarios,
allowing the models to generalize better in low-light conditions. This strategy, along with
leveraging deeper architectures like FPN, helped mitigate the challenges posed by adverse
lighting in nighttime driving, leading to more robust and accurate segmentation results.

In conclusion, none of the trained models achieve the expected performance to be
part of critical systems, such as the perception module of intelligent vehicles. Furthermore,
using artificial images, created by a simulator, to build upon a large dataset for training
and validation does not guarantee an optimal performance of semantic segmentation
models in nighttime conditions.

5.1 Future Works

There are several avenues to enhance further the performance of semantic segmenta-
tion models for nighttime autonomous driving. One potential direction is to consider more
diverse and challenging datasets, capturing a broader range of nighttime scenarios and
adverse weather conditions. Realistic autonomous driving simulators, such as CARLA, can
help to collect images of adverse visual conditions scenarios including foggy, cloudy, rainy,
and nighttime scenes. Additionally, integrating advanced data augmentation techniques,
such as domain adaptation, could improve model generalization.

Another area of interest lies in exploring more sophisticated neural architectures,
such as attention mechanisms or transformer-based models, which have shown promise in
improving segmentation accuracy. Furthermore, real-time implementation and optimization
of these models for edge devices could significantly contribute to practical deployment
in autonomous vehicles. Finally, leveraging multi-modal sensor data, such as LiDAR
and thermal imaging, could offer complementary information to RGB inputs, enhancing
robustness in low-visibility conditions.

Finally, exploring multimodal Large Language Models (LLMs) that can generate
textual descriptions of images could be a valuable area of research. Although these models
typically have slower inference times, they offer the potential to combine visual and
language understanding, allowing the system to interpret and describe complex nighttime
driving scenes. This could contribute to more robust perception modules in intelligent
vehicles.
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