Rosana Silva Matos

Qualidade de software: ferramentas, padroes e
boas praticas para testes baseados em

interfaces graficas

Sao Paulo

2014



Rosana Silva Matos

Qualidade de software: ferramentas, padrdes e boas

praticas para testes baseados em interfaces graficas

Monografia apresentada a Escola Politécuica
da Universidade de Sédo Paulo para obtencédo
do titulo de Especialista em Gestdo e Enge-
nharia da Qualidade

Orientador: Adherbal Caminada Netto

Sa0 Paulo
2014



Ao meu amado companheiro Rafael,

aos amigos e ¢ minha querida mde (in memoriam)



Agradecimentos

Agradeco 4 minha fmﬁﬂia, aos amigos e ao meu namorado Rafael pelo apoio,
companheirismo e ajuda durante todo o curso. Foram essenciais para que eu conseguisse
evoluir e dedicar meu tempo a este trabalho. Também agradego a todos os professores das
disciplinas que cursei nesses dois tiltimos anos de dedicagdo e estudo, e especialmente pela
paciéncia, ajuda, apoio e conselhos do professor Adherbal. Deixo também meus eternos
agradecimentos & professora Regina pelas dicas, técnicas, conselhos, leituras sugeridas e
experiéncias compartilhadas nas disciplinas de comunicagdo que mudaram muitas colsas
em minha vida pessoal e profissional. E ao professor José Aparecido por tudo que aprendi
relacionado & lideranca e inteligéneia. Agradeco também a empresa em que trabalho pelo
apoio e incentivo & realizacdio deste curso, em especial ao Fabio, um dos melhores lideres
que ja conheci. Pois foi junto a ele, dentro da empresa, que tive as oportunidades que
me fizeram aprender a desaprender e reaprender, de errar, melhorar, aceitar e acertar.
Som cssas oportunidades, nfio teria as experiéncias necessarias para tornar este curso tao

proveitoso, 1til e pratico.



“A narrativa revela o sentido sem cometer o erro de defini-lo®
Hannah Arendt



Resumo

No desenvolvimento de software, equipes dgeis precisam testar muito e testar sempre.
Entregar software funcionando aos clientes de forma continua exige da equipe feedback
constante sobre a gualidade do produto. Assim, automatizar os testes de software em
equipes 4geis torna-se imprescindivel devido &s muitas entregas feitas em periodos muito
curtos. Este trabalho mostra uma abordagem sobre questdes relacionadas a testes de
software e sua automatizacdo, com base em um caso real. Com foco nos testes de aceitagio
e em métodos dgeis, sdo apresentadas as ferramentas, linguagens, padrées e boas préaticas
que a cquipe de Quality Assurance usou para a implantar os testes automaticos na empresa,

nominada neste trabalho como Empresa de Servigos de Tecnologia (EST).

Palavras-chave: software. testes. agil.



Abstract

Tn software development, agile teams need to test a lot and always test. Deliver working
software to customers continuously requires team constant feedback on the quality of the
product. Thus, automate software testing in agile teams become indispensable due to
many deliveries made in very short periods. This work shows an approach on issues related
to software testing and its automation, based on a real case. Focusing on acceptance
testing and agile methods are shown the tools, languages, standards and best practices
that the team of Quality Assurance used to implement automated testing in the company,

nominated here as Empresa de Servigos de Tecnologia (EST).

Key-words: software. testing. agile.



Figura 1

Figura 2
Figura 3
Figura 1
Figura 5

Figura 6

Figura 7

Lista de ilustracoes

Exeimplo para nma tela de login - estrutura dos testes usando o padrio

Page Object.

Pirdmide de Automacao

Fase em que os testes automaticos sio criados dentro do Sprint do SLL.

Relacao entre equipe de QA e desenvolvimento

Exemplo de crescimento de complexidade do sistema

Visdo geral das ferramentas de desenvolvimentos usadas nos testes

automaticos no projeto SLL da EST. . . ... ..

Visfio geral da cstrutura dos testes do projeto SLL

4

*

30
31
36
37
38

40
45



Tabela 1
Tabela 2
Tabela 3
Tabhela 4 -

Lista de tabelas

Exemplos de métodos disponiveis na classe WebDriver do Selenium. .

Execimplos de métodos disponiveis na classe WebElement do Selenium. .

Exemplos de asser¢oes disponiveis no JUnit . . ... .
Relacio entre Programadores, Analistas de Testes e alteragoes no sis-

tema SLL. . . . e e

27
28
32

37



API
CSS
GUI
HTML
PO
QA
RUP
XML

XP

Lista de abreviaturas e siglas

Application Programming Interface.
Cheat Style.

Graphical User Interface.
HyperText Markup Language.
Product Owner.

Quality Assurance.

Rational Unified Process.
Extensible‘l\flarkup Language.

Extreme Programming.



1.1
111
1.2

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.7.1
2.7.1.1
2.7.1.2
2.7.13
2.7.1.4
27.15
2.7.2
2.7.2.1
2.7.2.2
2723
2.7.3
2.7.4
2.8
2.8.1
2.8.2

3.1
3.11
3.1.2
3.1.3
3.2
3.3

Sumario

INTRODUCAO . .. ... . . ittt et eien e as 21
Objetivos gerais . . . . . . . . . .. ... 21
Objetivos especificos . . . . . . . i o 21
Escopodotrabalho . . . . . . . . ... o o 21
FUNDAMENTACAO TEORICA . .. .. .. ..t i vt v 23
Metodologias ageis . . . . . . . . . . ... oo 23
SCrum . . . . e e e e e e e 23
Testes AGRIS . . . . . . . . . e 24
Testes de Regressdo . . . . . . . . . .. .. ... .. .. o 25
Testes automatizados . . . . . . . . . . . ..o 25
Plataformas e ferramentas de desenvolvimento . . . . . .. ... .. 25
Ferramentas de automatizacdo de testes . . . . . . . ... ... ... 26
Selenium WebDriver . . . . . . . .. e 26
WebDFIVEr . . o o o e e e e e e e e e e e e e e e e e e e e 27
WebElement . . . . . . 0 e e e e e e e e e e e e e e e e 27
WebDriverWalt . . . . . . . e e e e e e e e e e e e e e e e e 27
Page Object . .« . o o v v 0 e e e e e e e e e e e e e e 28
Page Factory . . . . . v v o i i e e e e e e e e e e e e 28
R ™ . Bl - -« antn pa N o Rl T, . N S R, 30
JURILANOLALIONS . . . .« & i e e e e e e e e e e e e e e e e e e 31
ASSEICHES » .« « v v v s e e e e e e e e e e 32
JUnitParams . . . . . . e e e e e e e e e e e e e e e e e e 32
Model Citizen . . . . . . . . e e e e e e e 33
DbSetup . . . . e e 33
Qutras ferramentas . . . . . . . . . . . . . .. e 33
Seletores CSS e jQuery . . . . . . . . . L e 33
Inspecdo de elementos . . . . . ... 33
SOBRE A EMPRESA DE SERVICOS DE TECNOLOGIA . . . . .. 35
Missdo, Visdoe Valores . . . . . .. .. . . ... ... ... . ... 35
MISSA0 . . . . o o e e e e e e e e e e e e e e e e 35
Visad . .. .. W«-0.0.20 M-- -8 .. 0. -FWmopFry. . 35
VAIONES) 31 ¢ - & Bl s . - P . . A . 2 GE E e e 4T g . GO 35
Processos . . . . . . o i i i i e e e e e e e 36

Quality assurance . . . . . . . . . ... 36



21

1 Introducao

O desenvolvimento de soffware requer o uso de processos, ferramentas e técnicas
adequadas que facilitem sua producdo e manutencgio. Cada vez mais as empresas buscam
aumentar a qualidade do produto, tornando-se necessario melhorar os processos a fim de
reduzir custos. Entregar soffwares com mais funcionalidades a cada versdo, em menor
tempo e com custos reduzidos, forga as empresas a revisarem cada etapa dentro do processo
de desenvolvimento para eliminar gargalos e maximizar o desempenho (1). Além do desafio
em atender todas as necessidades individuais e especificas de cada cliente. Apds uma
andlise em relacio aos testes realizados pela equipe de Quality Assurance (QA) da empresa
denominada neste trabatho como Empresa de Servigos de Tecnologia (EST), foi observado
que a grande dependéncia de testes manuais se tornou um gargalo para a liberagio das

versdes dos sistemas.

A melhoria da gestdo de qualidade abrange uma série de atividades que levario a
melhorar o processo de desenvolvimento de software. Em conseqiiéncia, versdes do sistema
sdo entregues com melhor qualidade e no prazo (2). Com um processo puramente baseado
em testes exploratérios (3), foram dadas & equipe de QA metas para o estudo, defini¢do
e implantagao dos testes automaticos. Com este desafio em maos, os analistas de testes

foram capacitados e hoje estao aptos a automatizar os testes de aceitagio dos sistemas.

1.1 Objetivos gerais

Automatizar scripts de testes ndo é simples pois é preciso seguir padrdes para evitar
retrabalho e diminuir o custo de manutencgéo quando ocorrerem mudancas no sistema.
Por isso, esse trabalho se concentra principalmente em quais padrdes seguir e quais boas

praticas manter ao criar scripts automaticos.

1.1.1 Objetivos especificos

Este trabalho teve como objetivo especifico mostrar ferramentas, padrdes e boas
préticas para o desenvolvimento de testes automdticos em interfaces grificas, ou Graphical

User Interface (GUI).

1.2 Escopo do trabalho

A equipe de Quality Assurance (QA) da empresa, aqui denominada como Empresa

de Servigos de Tecnologia (EST), implantou a automatizagio de testes baseados em



23

2 Fundamentacao Tedrica

2.1 Metodologias ageis

Dezessete lideres de projetos de software que se opunham aos modelos tradicionais
de desenvolvimento, como os modelos cascata, espiral e Rational Unified Process (R UP), se
uniram em 2001 com o objetivo de criar um novo método de desenvolvimento de software.
No entanto observaram que nao seria ficil definir um método perfeito que se adequasse a
todas as necessidades ¢ contextos. Assim chegaram ao consenso de listar principios, 12 no
total, que deram origem ao Manifesto Agil (4). A partir daf, surgiram métodos baseados no
Manifesto Agil, como o Lean, Scrum e Programagao eXtrema (XP) (5) (6). Dizer que um
software é desenvolvido usando métodos dgeis significa afirmar que a equipe estd preparada
para mudangas e que se adapta a novos fatores durante o desenvolvimento do software,
nio ficando presa ao planejamento prévio de todo o projeto. Além da equipe trabalhar
com Feedback constante, também sdo feitas entregas continuas de partes operacionais do

software (7) (2). Os quatro principios bédsicos que os métodos dgeis devem valorizar séo:

Individuos e iteracdes, no lugar de processos e ferramentas;

Software funcionando no lugar de documentagéo muito detalhada;

Colaboragio com os clientes é mais importante que contratos;

Adaptaciio as mudancas no lugar de ficar preso ao plano inicial.

Na EST, todas as equipes e projetos possuem seu modelo de ciclo de vida baseado
em metodologias ageis. O projeto SLL usa a metodologia Scrum, detalhada no préximo

tépico.

2.2  Scrum

Como a metodologia predominante no desenvolvimento de software na EST € o
Scrum, esta secio mostra mais detalhes sobre ele. Scrum é um Framework para desenvolver
e manter produtos, dentro do qual as pessoas podem tratar e resolver problemas complexos
de forma adaptativa, enquanto produzem e entregam produtos com o mais alto valor
possivel. O Scrum se baseia na afirmagao de que o conhecimento vem da experitncia
e de tomadas de decisdes baseadas no que é conhecido. Além disso, o Scrum usa uma
abordagem iterativa ¢ incremental para a melhoria continua na previsdo e controle de

riscos (1). Os projetos que usam Scrum progridem através de vérias iferagGes chamadas de



2.4. Testes de Regressdo 25

com mais frequéncia para detectar os defeitos o quanto antes e dar mais feedbacks para a
equipe sobre a manutengio da qualidade do produto. Uma nova versdo do sistema nao
pode diminuir a qualidade do que foi entregue em uma versdo anterior. Por isso existe a

necessidade de sempre executar testes de regressao nas novas versdes do produto.

2.4 Testes de Regressao

Os testos de regressio séo feitos com o objetivo de garantir que funcionalidades que
j4 existiam no sistema continuam funcionando corretamente. Néo se trata de uma fase de
testes, mas de uma técnica que pode ser usada em qualquer momento do desenvolvimento
do software. Se uma nova versdo do sistema é lancada, entdo o analista de teste precisa
nio sowente executar os 10vos testes como tainbém selecionar uma série de testes, a fim
de verificar se defeitos foram introduzidos no sistema durante a implementacio da nova
funcionalidade (14).

2.5 Testes automatizados

Toda a fase de testes no processo de desenvolvimento de software é custosa e requer
muito tempo da equipe (2). Em geral, gerir e executar atividades de testes envolve uma
grande quantidade de cendrios e dados e, quando feitos manualmente, exigem ainda mais
tempo, além de serem propensos a erros (15). Automatizar os testes, em oposigido aos
manuais, significa torna-los independentes de intervengio humana e isso requer o uso de
ferramentas especificas e de linguagens de programacio (5). Criar, manter, melhorar e
executar testes automatizados exige ndo somente bons conhecimentos em ferramentas e
linguagens, como também definir e implementar uma série de boas praticas para um melhor
desempenho e diminuicio de custos (5). Vérios tipos de testes podem ser automatizados,
como por exemplo: testes unitéarios, testes em interfaces graficas, testes de integragéo,

testes de desempenho e testes de carga.

2.6 Plataformas e ferramentas de desenvolvimento

Para criar ¢ manter os scripts de testes automaticos, foram usadas ferramentas de

desenvolvimento de software, listadas a seguir.

Java
A linguagem de programacio escolhida foi Java (16), pois é a linguagem usada
em todos os nossos projetos. Isso faz dessa linguagem a mais difundida dentro da

empresa e a mais vidvel para uso, ji que assim facilita-se tanto sua aprendizagem



2.7 Ferramentas de cultomatizagio de testes 27

2.7.1.1 WebDriver

Principal interface para os testes. Representa um navegador web e fornece métodos
para controld-lo. A tabela 1 apresenta os principais métodos desta interface.

Tabela 1 — Exemplos de métodos disponiveis na classe WebDriver do Selenium.

void close() Fecha a janela atual, saindo do navegador.

WebElement Procura pelo elemento na pagina de acordo com o argu-

findElement(By by) mento dado (xpath, css-selector etc).

java.util. List <WebElement> | Procura por todos os elementos da pégina de acordo com

findElements(By by) o argumento dado (xpath, css-selector etc).

void Carrega a pagina passada como argumento no navegador.

get(java.lang.String url)

java.lang.String Retorna uma string que contém a URL aberta pelo na-

getCurrentUrl() vegador.

java.lang.String Retorna o cédigo fonte da dltima pégina aberta pelo

getPageSource() navegador.

java.lang.String Retorna o titulo da pagina atual do navegador.

getTitle()

WebDriver.Options Permite gerenciar cookies do navegador, logs, timeouts

manage() etc.

WebDriver.Navigation Abstracao que permite acessar o histérico e navegar para

navigate() uma determinada URL.

void quit() Fecha a instdncia do Selenium WebDriver e todas os
navegadores associados.

27.1.2 WebElement

Representa um elemento em HTML. Essa interface apresenta as principais operagoes
que podem ser feitas para interagir com um elemento de uma pagina web. A tabela 2

apresenta os principais métodos desta interface.

2.7.1.3 WebDriverWait

Testes baseado em GUI sio pesados e lentos (5). Uma base de testes muito grande
pode levar horas para ser executada, entdo é imprescindivel usar estratégias para que essa
base seja executada em um tempo razoavel para a equipe (31). Além disso, um método de
teste deve ser criado para ser o menor possivel. Testes curtos sdo mais focados, sdo bem
mais rapidos durante a execugdo, e si0 mais propensos a serem executados mais cedo e

com mais frequéncia. Além disso sfio mais faceis de manter (32).

A interface WebDriverWait permite controlar o tempo de espera entre as acoes
executadas na tela do sistema, através da classe ExpectedConditions (33). O Thread.sleep
é uma alternativa ao uso da classe WebDriverWait, mas interrompe a execugéo do teste
por um tempo exato e fixo. O que é uma desvantagem ja que se a acdo estiver pronta para



2.7, Ferramentas de automatizacio de testes 29

PageFactory. A classe PageFactory procura os elementos na pagina web e os inicializa
para que a Page Object os utilize. Para indicar & PageFactory quais elementos ela deve

procurar, é usada a anotagao:

@FindBy Marca um campo da Page Object indicando o mecanismo para localizar o

elemento na pagina web.

Ao usar a notacio @FindBy deve-se especificar como encontrar o elemento desejado

preenchendo os campos a seguir (ver exemplos no Apéndice C):

how Especifica o método para localizar o elemento. Uma forma de localizar os elementosm

é usando seletores CSS, por exemplo.

using Especifica o locator do elemento.

Uma base de testes completa envolve o uso de varias ferramentas e diz respeito a
vérios tipos de testes: unitérios, de integrago, de negdcios e por final, os testes de GUL O
Selenium néo resolve tudo e a ferramenta sequer se propde a isso. Entdo recomenda-se usar
o Seleninm apenas como uma das estratégias de automatizagdo dos testes do projeto. A
seguir é apresentada uma lista com algumas abordagens de testes que devem ser seguidas
pela equipe de desenvolvimento. A figura 2 apresenta a Pirdmide de Automatizacao que
mostra qual é a proporcio ideal em relagio & quantidade de teste para cada uma dessas

abordagens (9).

Testes Manuais
Feitos pelo analista de testes.
Deve ter o foco em novas funcionalidades.
Deve se basear em testes exploratérios.
Para uma boa estratégia, a base de testes automaticos para os testes de regresséo
deve ser eficaz ¢ confidvel. Assim o analista de testes se preocupa mais com 0s novos

testes.

Testes em GUI
Quebram mais facilmente.
Lentos ¢ por isso mais custosos.

Devem representar a menor porcentagem da base de testes.

Testes de API
Tratam regras de negocio.
Muito uteis quando ocorrem mudangas no sistema.

Por seremn mais leves, devem ser em maior quantidade do que os testes em GUL



2.7. Ferramentas de automatizagio de testes 31

Testes Manuais

Figura 2 — PirAmide de Automacio - proporcio ideal para cada abordagem de testes.
Fonte: Crispin L. et al (9)

oS testes e uma aplicacdo grafica para executd-los (também pode ser feito em terminal,
usando linha de comando). E uma ferramenta simples e facil de usar, basta conhecer suas

anotacoes e assercOes. Além disso ja estd inclusa na instalagdo do Eclipse.

2.7.2.1 JUnitAnotations

Testes de unidade escritos com o apoio do JUnit fazem uso de algumas anotacbes
de uso geral. Elas devem ser usadas logo acima da assinatura do método (ver Apéndice
A) e indicam qual a fun¢do do método na classe: se é de pré-configuragio para o teste,
pos-configuragdo para o teste ou se é para ser executado como um caso de teste. As

anotacoes sdo:

@Test Principal anotacgdo. Indica que o método anotado é um teste.

@Before Identifica o método para que seja executado antes de cada método de teste.

Efeito simétrico & anotacao @After.



2.8. QOutras ferramentas 33

através de um outro método, ou através de outra classe, ou ainda através de um arquivo

de extenséo csv.

2.7.3 Model Citizen

Model Citizen (26) é um modelo baseado em anotagbes para a geracio de dados
para os testes. Com ele é possivel mapear as classes de entidades do projeto para os
testes. Dessa forma consegue-se gerar os dados dos testes de forma dindmica para que
posteriormente sejam inseridos no banco de dados usando o DbSetup (ver Apéndice B).

2.7.4 DbSetup

DbSetup (27) é uma API Java open-source e gratuita que ajuda a criar cenérios
de banco de dados para executar testes unitdrios. Similar ao DBUnit (28), porém mais
simples, sem a necessidade de usar arquivos em XML. Essa ferramenta permite inserir os
dados necessarios para os testes no banco de dados e apds sua execugdo, impar o banco
de dados, voltando a0 seu estado inicial. O DBSetup foi usado nesse projeto juntamente
com o Model Citizen. Enquanto o Model Citizen gera os dados para os testes, o DBSetup
é usado para inserf-los e remové-los do banco de dados (ver Apéndice B).

2.8 OQutras ferramentas

2.8.1 Seletores CSS e jQuery

Os seletores CSS sao utilizados para identificar elementos e definir os estilos que
serdo aplicados a eles. No caso dos testes automaticos, os seletores CSS sfo utilizados pars,
identificar elementos na pagina web. O jQuery (29) é uma biblioteca para desenvolvimento
rapido de javascript que interage com paginas HTML. Com ela é possivel atribuir eventos,
definir efeitos, criar e alterar elementos da pégina. Além disso, permite criar locators
para indentificar elementos na pagina. A identificagio do elemento, chamado de locator, é
usado pelo Selenium Webdriver para que seja aplicada uma agdo, seja clicar em um botéo,

preencher um campo ou até mesmo validar uma mensagem exibida na tela.

2.8.2 Inspecdo de elementos

Firebug (30) é uma extensdo para o Firefox que permite inspecionar HTML, CSS,
Document Object Model (DOM) e JavaScript. Possui diversos recursos, mas para fins de
automacio com o Selenium, é usado apenas para inspecionar a estrutura e atributos dos
elementos da tela. Existe também o Firebug Lite, uma versio simplificada do Firebug,
que é compativel com os demais navegadores: Google Chrome, Opera, IE6+ e Safari. No



35

3 Sobre a Empresa de Servicos de Tecnologia

A EST é uma empresa de desenvolvimento de software, voltada para a area de
saude, atualmente com duas unidades, uma em Sdo José dos Campos e outra em Sio Paulo.
Desenvolve softwares para hospitais, laboratérios e consultérios médicos que auxiliam
em diversos processos: desde o gerenciamento financeiro até a entrega dos resultados aos

pacientes.

3.1 Missao, Visao e Valores

3.1.1 Missao

A missao da EST é combinar exceléncia técnica, conhecimento de causa, com-
promisso e colaboracao de talentos, para criar soffware que permita ao cliente prestar
servicos personalizados e ao mesmo tempo eficientes, operar de forma simples em ambientes

complexos e transformar seu conhecimento em valor para seu negécio.

3.1.2 Visdo

Tornar-nos referéncia em soluc¢des de tecnologia e suporte ao cliente, fundamentando-

nos em nosso know-how, nossa plataforma, equipe e na capacidade de inovar continuamente.

3.1.3 Valores

e Confiabilidade;
e Transparéncia,

Colaboragio;

Dominio do negécio;

Previsibilidade;

Prontidéo no suporte;

Comprometimento com prazos;
e Disciplina nos processos;

e Ftica.



3.3, Quality assurance 37

Equipe Z

|

A | |

. s |

Equipe X g Equipe Y 0 ‘ i

' Q ' 1 : 1

' d ] I ' I

- = AR . RRIRNENRRR T & e, TE

] Analista de ol } Analista de i Analista de WH

T Testes ) Ao Testes L Testes f~d
|
|

Figura 4 — Visao de relagdo entre equipe de QA e desenvolvimento: apesar de fisicamente
estarem separados, ainda assim os analistas de testes formam uma equipe

entrada de novos clientes e novos pedidos. Os projetos desenvolvidos ndo possuem data de
término, pois sdo aplicacdes usadas em processos complexos de gestao médico, laboratorial
e hospitalar e, a cada dia, novos conjuntos de melhorias e funcionalidades sdo adicionados
aos sistemas. Como os testes sfo manuais, a dificuldade em refazer os testes de regressado
nos sistemas aumenta. Um exemplo pratico dessa demanda pode ser visualizado a partir
dos dados do projeto do SLL. A cada versao do sistema, além dos testes manuais das novas
funcionalidades, todos os testes manuais de regressio precisam ser refeitos. A tabela |
mostra dados reais da quantidade de alteracgdes no sistema em um dado periodo e a relagao
entre programadores e analistas de testes da equipe.

Tabela 4 — Altera¢bes no sistema, total de programadores e total de analistas de
testes para o projeto do Sistema de Liberagio de Laudos.

Perfodo 08/02/2014 a 08/03/2014
Alteragoes no codigo Erros e melhorias Programadores Analistas de Testes

106 71 10 1

Além disso, a figura  mostra dados para um mddulo do projeto SLL, no mesmo
periodo. E perceptivel a tendéncia que a complexidade do sistema tem em aumentar (linha

azul).

Gerenciar, validar e garantir que todas essas alteragoes déem origem a entregas
confidveis e livres de problemas criticos se torna um grande desafio, uma vez que as equipes
de testes da EST o fazem de forma manual. O uso de processos ageis ajuda a codificar
e programar entregas mais curtas, mas ndo é fator determinante quanto a manutengio
da qualidade dos produtos. Processos de desenvolvimento ageis requerem processos de
testes Ageis, que acompanhem a evolugdo dos sistemas e que possam garantir que os testes
ja feitos manualmente em versdes anteriores do sistema sejam feitos automaticamente
em versdes futuras, formando assim uma base de testes de regressdo automaticos para os
produtos da EST. Essa base, no entanto, precisa ser confiavel e facil de manter, para que

nao seja facilmente descartada e evitar retrabalho o maximo possivel.



39

4 Ferramentas, padroes e boas praticas para

a manutencao dos testes

Este capitulo apresenta as ferramentas de desenvolvimento, os padrdes e boas
praticas que sao usados para a criacdo e manutencdo dos testes automéaticos em GUI do
projeto SLL.

4.1 Plataformas e ferramentas de desenvolvimento

A selecdo das ferramentas de desenvolvimento é crucial para o sucesso do projeto
de automatizacio. Tanto para que os analistas de testes sejam treinados e capacitados

para trabalhar no projeto, quanto para que a base de testes automaticos seja sustentavel.

A figura ¢ mostra uma visao geral de todas as ferramentas definidas para o

desenvolvimento dos testes do projeto EST.

4.2 Selenium WebDriver

Para facilitar a manutencio dos testes, foi usado o padrado Page Object com o
auxilio da classe PageFactory do Selenium WebDriver (ver Apéndice C). Para considerar

que os testes estdo dentro do padrao de Page Object, foi definido que:

e Cada tela do sistema deve ter pelo menos uma Page Object especifica, que contém

somente os elementos e servigos especificos da tela;

o Deve existir pelo menos uma Page Object geral que contém todos os elementos e
servigos comuns a todas (ou vérias) telas do sistema, a fim de evitar c6digo duplicado.
Todas as Page Objects especificas devem herdar da Page Object geral;

e Todos os métodos de testes devem usar somente os servicos fornecidos por suas
respectivas Page Objects. Um método de teste nfo pode apresentar o uso de API do
Seleniumn WebDriver. Isso garante que o script de teste estd isolado, facilitando sua

manutencao.

A figura 7, no final deste capitulo, mostra uma visao geral da estrutura dos testes

usando o padrao Page Object.



4.4. Independéncia entre os casos de testes 41

que se trata de uma classe de Page Object que contém os servigos que serao usados
nas classes de testes.
Exemplo de nome para classe de Page Object: LoginPageObject.

Classes de Faclory
Cada classe que utiliza Model Citizen e DbSetup para criagdo dos cenarios de testes
deve ter em seu nome a palavra "Blueprint”, indicando que se trata de uma classe
do tipo Fuctory.
Exemplo de nome para classe do tipo Factory: LoginBlueprint.

Métodos de Testes
Dentro da classe de testes, cada método de teste deve ser nomeado de forma que:
a) Evite o uso de gerundismo;
b) Indique o objetivo do teste;
¢) Indique o tipo da validagdo do teste: se estd validando um caso de sucesso ou de
falha.
Exemplos: criarUsuarioValidoDeveRetornarMensagemDeSucesso,
logarNoSistemaComUsuariolnvalidoDeveMostrarMensagemDeErro.

Assercgoes
Todo método de teste deve acabar com uma ou mais assergdes (ver JUnit no capitulo
2). O principal objetivo de um método de teste é validar ou verificar um evento ou
registro. Pode ser uma mensagem de sucesso ou de erro, se um texto esta correto, ou

entdo se um registro esta no banco de dados do sistema, entre outros.

4.4 Independéncia entre os casos de testes

Cada caso de teste deve ser independente dos resultados dos demais testes. Isso
evita com que o suicesso na execugdo de um caso de teste dependa do sucesso na execugao
de outros (um ou mais) casos de testes. Se isso acontece, entdo sempre que der erro na
execucio de wn caso de teste, ndo significard que de fato esse caso de teste esta com erro.
Poderd acontecer de ter dado erro em outros casos dos quais a execugdo deste dependia.
Para o projeto SLL foi mantida a independéncia entre os testes adicionando no banco de
dados cendrios especificos para o teste. Assim, a edi¢ao de um registro, por exemplo, nao
dependera da execugéo do teste que cria esse mesmo registro no sistema. O Apéndice B
apresenta um exemplo de como o DbSetup e Model Citizen foram usados para manter a

independéncia entre os testes.



4.7, Outras boas priticas 43

erros/validagbes), funcionalidades isoladas, telas mais usadas e as menos usadas tam-
bém. Ao contririo, é sempre recomendado que a equipe escolha uma das estratégias

para automatizar os testes baseados em GUL

Confianga da base de testes

4.7

A base de testes precisa ser confidvel, principalmente se for muito grande. Isso porque
a equipe pode perder tempo com casos de testes que déo falso negativo - quando
ndo existe falha no sistema, mas o script de teste ndo foi feito da forma correta e
apresenta erro de execucio. Ou com falso positivos - quando um teste deveria falhar,
mas apresentou S1cesso na execugio.

Com o objetivo de manter sua base confidvel, sempre se deve perguntar:

Essa base de testes garante o que? D4 seguranca? Devem ser consideradas as

estratégias e objetivos para os quais foi criada.

Outras boas praticas

Para o projeto SLL, as seguintes resolucdes foram tomadas:

Os testes serfio executados a cada versio liberada para o ambiente de testes e a cada
versdo liberada para o ambiente de produgdo. Serd usada a ferramenta Jenkins e sua

execucdo é responsabilidade do analista de testes.

Também foi combinado de que s serdo automatizadas as telas e funcionalidades

mais estéveis. O objetivo serd diminuir os custos com manutencdo dos scripts.

Nio serao automatizados os fluxos alternativos, em que os resultados séo negativos.
Ou seja, serdo automatizados somente os fluxos principais em qgue o resultado do

teste € positivo.

A prioridade é sempre automatizar as telas e funcionalidades que estdo mais proximas

a0s usudrios finais do sistema, mas sempre considerando a estabilidade dos mesmos.



4.8. Estrutura do projeto

E ]

Aplicagio Web
SLi-tests [
imaster i | DataBaseManager | ! |
EEECEEREEEER LRk = = = = = = = = L sl 3 i H
H H | -propedties: H
; - : H ;
1 | TwiPageQbjectiiaster i i i
H H | - dataSource() i
0| - arowser : i | - gaCennectianty '
: H (S —— . AR 3
1| - clicarCriad .
1| - clicarSatvart; : il s L
! | - dicarProcuran : i = SO ot Bl o o, .
; i : i i
1 B : { |JaneiamentoBlueprint| | | [ariver
: - dbSetupTracker, _ EemeTT T .
i g . i janelamento |
AR ' § | -enave [ e e e
opages eSS . R ;
: vt D i -inserDatar; R ; . . '
! | JanelamentoPageObject | | | [JanelamentoTest :P,-';’? - removelatar! EEE Windowingsetting |
| -srowser : 1| -pass: St R N Bl 5
3| -chave o | -pacsSuneet; H [ chase'. :
i I A Il ' i - descricag; 1
H P : : H
i | - preencherChane: String o {1 | -uniPaginag L H - getChavel} :
E :p(eencherDescn-:aulStnnq P setl_ipi, - sefChaveiSinng ci :

Figura 7 — Visdo geral da estrutura dos testes do projeto SLL



47

5 Consideracoes Finais

O projeto de automatizagio de testes em interfaces graficas da EST definiu métodos,

ferramentas, padroes e boas praticas para criacdo ¢ manutencdo da base de testes.

Ao definir métodos, foi necessario adicionar uma nova etapa no processo dos testes
feitos pelos Analistas de Testes, uma vez que todo o tempo deles era gasto em testes
manuais. Dentro dessa etapa foi acrescentada uma atividade em que o Analista de Teste
deve, para as novas funcionalidades do sistema, identificar quais cenarios ou fluxos sao
automatizaveis para que sejam validados por toda a equipe. Também foi estipulado que
cada equipe serd responsdvel por decidir quais estratégias e quais testes so os mais
adequados ao seu sistema. No entanto, sempre considerando os padrdes e boas praticas

para testes em GUL

En relacio as ferrammentas e linguagens, um dos maiores desafios foi escolhé-las
diante de tantas op¢des no mercado, o que foi facilitado logo apds ser percebido que o
mais importante era o know-how da empresa em cada uma delas. Assim, a ideia principal
fol usar, o maximo possivel, as tecnologias ja difundidas dentro da empresa.

Foi preciso montar um plano de treinamento para os novos e antigos integrantes
da equipe. Atualmente, os integrantes mais antigos ja4 ajudam a treinar os novos. Foram
criados materiais para auxiliar na aprendizagem e um grupo sobre o assunto na rede
social interna da empresa. O novo processo, os padroes e boas praticas também foram

documentados.

O processo de recrutamento dos novos Analistas de Testes também sofreu mudancas.
Isso porque sabe-se que muitos Analistas de Testes ndo trabalham com programacgao e
ferramentas téenicas da area, pois preferem se especializar na parte de négocios, vendas e
implantacao dos sistemas. A fim de melhorar o desempenho da equipe na automatizacio,
foi alterado o perfil de contratagio para este tipo de vaga. As provas também foram
modificadas de acordo com o novo perfil e, durante as entrevistas, sdo cousiderados sempre
os candidatos que possuem vontade para aprender novas linguagens e ferramentas de

programagao.

Para o futuro, serfio feitas as seguintes atividades:

e Definir metas para aconmpanhar a produtividade da equipe em relagdo aos testes

automaticos;
e Analisar esses resultados para aplicar mudancas e melhorias;

e Estudar e aplicar estratégias para melhorar o desempenho dos testes, como por



49

6 Conclusao

O acompanhamento dos resultados do projeto apresentado neste trabalho estd em
andamento ¢ os beneficios da sua implantagio na empresa ainda ndo foram totalmente
avaliadas. As vantagens j4 sio percebidas pela equipe de QA, néo somente por ja ter scripts
de testes prontos, como também por todo o aprendizado obtido ao longo da implantacéo

deste projeto.

O tempo que a equipe estd4 ganhando a médio e longo prazo ja é perceptivel neste
momento. A equipe comegou a trabalhar nas metas para a implantagéo dos testes em
Janeiro de 2014 e j4 sio observadas as vantagens antes mesmo do ano acabar. O principal
beneficio até o momento tem sido o fato de o analista de teste poder eliminar tarefas

repetitivas e muito mecénicas e, assim, usar esse tempo para outras atividades de testes.

Os testes de regressio, apesar de toda a sua importincia e valor reconhecidos,
em geral sio um tipo de teste que a equipe ndo consegue executar em todos os casos
e cendrios a cada versao do sistema, se feito de forma manual. Agora é completamente

possivel executar todos esses testes dentro dos prazos.

E claro que esta base de testes crescerd muito. E quando for alcangada esta etapa,
haverd novos desafios técnicos referentes a desempenho. Mas a equipe ja comeca a se
preparar nesse sentido, estudando enquanto essa base cresce, para futuramente comecar a

aplicar o que se tem aprendido com os problemas encontrados.



5l

Referéncias

1 VICENTE, A. A. Definicdo e gerenciamento de métricas de teste no contexto de
métodos dgeis. Dissertacio {Dissertagio de Mestrado) — Universidade de Sao Paulo, Sao
Carlos, 2010. Disponivel em: <http://www.teses.usp.br/teses/disponiveis/55/55134/
tde-23062010-083439/>. Acesso em: 2014-03-08. Citado 2 vezes nas paginas 21 e 23.

2 PRESSMAN, R. S. Software Engineering: a Practioner’s Approach. 7th. ed.
McGraw-Hill: Addison-Wesley, 2011. Citado 4 vezes nas paginas 21, 23, 24 e 25.

3 BACH, J. Ezploratory Testing Explained. Disponivel em: <http://www.satisfice.com/
articles/et-article.pdf>>. Acesso em: 2014-10-05. Citado 2 vezes nas paginas 21 e 24.

4 BEEDLE ARIE VAN BENNEKUM, A.C.W.C. M.F.J.H A . H. R. J. J. K. B
M. R. C. M. K. S. J. 8. D. T. M. Principles behind the Agile Manifesto. Pagina Web.
Disponivel em: <htip://agilemanifesto.org/principles.html>. Acesso em: 2014-10-20.
Citado na pagina 23.

5 BERNARDO, P. C. Padrdes de testes automatizados. Dissertagio (Dissertacio

de Mestrado) — Universidade de Sao Paulo, Sdo Paulo, 2011. Disponivel em:
<http://www.teses.usp.br/ teses/disponiveis/45,/45134/tde-02042012-120707 /> . Acesso
em: 2014-03-08. Citado 4 vezes nas paginas 23, 24, 25 e 27.

6 FADEL, H. S. A. Metodologias dgeis no contexto de desenvolvimento de software:
XP, Scrum e Lean. Dissertacio (Dissertagio de Mestrado) — Universidade Estadual
de Campinas, Limeira, 2010. Disponivel em: <http://www ft.unicamp.br/liag/
Gerenciamento/monografias/Lean%20Agil v8.pdf>. Acesso em: 2014-04-25. Citado na
pagina 23.

7 LIBARDI, V. B. P. Métodos Ageis. Dissertacao (Dissertagio de Mestrado) —
Universidade Estadual de Campinas, Limeira, 2010. Disponivel em: <http://www.ft.
unicainp.br/liag/Gerenciamento/ionografias /monogafia__inetodos__ageis.pdt>. Acesso
em: 2014-04-25, Citado na pagina 23.

8 SCHWARBER, J. S. K. Um guia definitivo para o Scrum: As regras do jogo. [S.L], 2013.
Disponivel em: <https://www.scrum.org/Portals/0/Documents/Scrum%20Guides,/2013/
Scrum-Guide-Portuguese- BR.pdf>. Acesso em: 2014-04-18. Citado na pagina 24.

9 CRISPIN, J. G. L. Agile Testing: A Practical Guide for Testers and Agile Teams.
Upper Saddle River: Addison-Wesley, 2009. Citado 3 vezes nas paginas 24, 29 e 31.

10 SIMAO, A. da S. Contribuicées para o Teste de Software. Dissertagdo (Livre Docéncia
em Engenliaria de Software) — Universidade de Sdo Paulo, Sao Carlos, 2011. Disponivel em:
<http://www.teses. usp.br /teses/disponiveis/livredocencia /55 /tde-17082011-153853 /> .
Acesso em: 2014-03-08. Citado na pagina 24.

11 FOWLER, M. Continuous Integration. Disponivel em: <http://www.nartinfowler.
com/articles/continuousIntegration. html>. Acesso em: 2014-10-05. Citado na pagina 24.



Referéncias a3

28 DBUNIT. About DbUnit. Disponivel em: <http://dbunit.sourceforge.net/>. Acesso
em: 2014-09-27. Citado na pagina 33.

29 FOUNDATION, T. jQuery. What is jQuery? Disponivel em: <http://jquery.com/>.
Acesso em: 2014-09-27. Citado na pagina 33.

30 FIREBUG. What is Firebug? Disponivel em: <lhttp://getfirebug.com/whatisfirebug>.
Acesso em: 2014-10-05. Citado na pégina 33.

31 HARTY, J. Web app acceptance test survival technigues, Part 3: Musings.
Blog Article. Disponivel em: <http://googletesting.blogspot.com.br/2009/05/
web-app-acceptance-test-survival.html>. Acesso em: 2014-10-20. Citado na pagina 27.

32 SEMTURS, C. GTAC 2008: The Value of Small Tests. Palestra gravada em video.
Disponivel em: <https://www.youtube.com/watch?v=MpG2i_6nkUg>. Acesso em:
2014-10-20. Citado na pégina 27.

33 K, M. K. WebDriver Wait Commands. Blog Article. Disponivel em: <http:
/ /assertselenium,com /2013/01/29/webdriver-wait-commands/>. Acesso em: 2014-10-20.
Citado na pagina 27.

34 STEWART, S. My Selenium Tests Aren’t Stable! Blog Article. Disponivel em:
<http://googletesting. blogspot.com.br/2009/06 /my-selenium- tests-arent-stable. html>.
Acesso em: 2014-10-20. Citado na pagina 28.

35 BARISON, D. Boas prdticas ao criar testes com Selenium. Blog Article. Disponivel
em: <http://www.dextra.com.br/boas-praticas-ao-criar-testes-com-selenium/>. Acesso
em: 2014-10-20. Citado na pagina 28.

36 MAZZI, C. E. D. Convengées de Cédigo Java. Blog Article. Disponivel em:
<http://www.devmedia.com.br/convencocs-de-codigo-java,/23871>. Acesso em:
2014-10-20). Citado na pagina 75.



55

Glossario

Backlog Atividades/tarefas acumuladas, ou Requisitos acumulados.

Blueprint Um plano de projeto, modelo ou desenho técnico.

Factory Fébrica. Referente & produgio de dados para os cenarios de testes.
Feedback Comentarios, parecer, resposta.

Framework Plataforma, model.

Interface Um ponto de comunicacdo entre dois sistemas. Dispositivo que permite comu-

nicagdo entre usudrio e computador.
Locator Localizador.
Planning Planejamento. Refere-se a uma etapa do Scrum.
Review Revisio. Usado em uma etapa do Scrum: Sprint Review.

Script Sequéncia de comandos.

Sprint Referente & corrida de velocidade. Refere-se a uma etapa do Scrum.

Timeout Tempo limite.



Apéndices



59

APENDICE A — JUnit - Anotacdes,

Assercoes e Parametros

A classe abaixo tem o dnico propésito de ilustrar didaticamente como anotagdes
podem ser empregadas em favor dos testes nsando o JUnit. A execugdo desta classe ird

apenas facilitar a compreensio das funcoes de cada anotacéo.

Listing A.1 — Exemplo de Anotacoes do JUnit

frport org.junit. After;
import org.junit.AfterClass;
import org.junit. Before;
nupert org.junit . BeforeClass;
import org.junit. Test;

inipurt org.junit.Ignore;
public clus+ Anotacoes {
oy
T
5 ‘
@BeforeClass
pulblic stotic void setUpBeforeClass() th:ows Exception {

System.out. println (' BeforeClass:" + "Esse método executard uma unica vez antes de

todos os testes');

}
I
@Before
public void setUp() thiows Exception {
System.out. println (" Before:" 4+ "Esse método executard sempre antes de cada método
de teste');
}
(e :
@AfterClass
public siatic void tearDownAfterClass{) throws Exception {

System.out.println (" AfterClass:" + "Esse método executard uma ifinica vez apés
todos os testes');



61

A classe abaixo tem o tinico propésito de ilustrar didaticamente o uso de alguns

asserts do JUnit.

Listing A.2 — Exemplo de Assercoes do JUnit

import stalic org.junit. Assert.assertEquals;
imparl siatic org.junit. Assert.assertFalse;
import static org.junit. Assert.assertTrue;

import org.junit. Test;
public c¢luss Assercoes{

@Test
pubiic wvoid testeUsandoAssertEquals () {

o 0
el 1 rada

assertEquals("mensagem que eu espero que aparega na tela', tipoDocumento.mensagem
().getText{));

I <1ne (U CRpPeI e 1+

Yt o] Y TEe L CIn I

@Test
public vaoid testeUsandoAssertTrue{){

@Test
public void testeUsandoAssertFalse () {

1 Cor '

assertFalse (tipoDocumento . mensagem() . isDisplayed () );



63

APENDICE B - Criacio de Cenérios -
DbSetup e Model Citizen

Para criar os cenarios dos testes primeiro é necessdrio criar uma classe para a

conexao com o banco de dados. No projeto SLL usamos o banco PostgreSQL.

Listing B.1 — Manager: essa classe é usada para conectar ao banco de dados

pachipge database;

import java.io.IOException;

import java.io.InputStream;

itmpert java.sql. Connection;

inmpart java.sql. DriverManager;

import java.util. Properties;

impur: javax.sql.DataSource;

nmport org.springframework. jdbec.datasource. SimpleDriverDataSource;
impurt com.ninja_squad . dbsetup.DbSetup;

nnport com. ninja _squad . dbsetup . DbSetupTracker;

pubiic abstract olass DatabaseManager {
private =tutit Properties properties;
private siatic final String DATABASE PROPS = " /META-INF/database. properties”;

protecied static DbSetupTracker dbSetupTracker = uew DbSetupTracker () ;
protected static DbSetup dbSetup;

public ~tatie DataSource getDataSource() :throvs Exception {

Properties properties = getProperties();

String url = properties.getProperty(“url");

String username = properties.getProperty("username");
String password = properties.getProperty (" password”);

retuin uew SimpleDriverDataSource({new org. postgresql. Driver(}), url, username,
password ) :
}
public siatic Properties getProperties{) i(hrows IOException {
properties = 1w Properties();
InputStream is = DatabaseManager. la-- . getResourceAsStream (DATABASE PROPS) ;
properties.load (is);
return properties;
}



65

@Default
rivate FieldCallback<Float> windowCenter = new FieldCallback<Float >(){
@Override
lic: Float get (Object arg0) {
Random rand = uiw Randomn();
return {ftoat ) rand. nextInt (1000} ;
}
}s
@Defaunlt
private FieldCallback <Float> windowWidth = new FieldCallback<Float >(){
@Override
pubiic Float get{Object argd) {
Random rand = n«w Randomf{);
return (floar) rand. nextInt {(1000);
}
s
i stat Vo insertData ( WindowingSetting janelamento) thio Exception{
Insert insert = Imsert.into ("DCMD__WINDOWING SETTING' )
.columns("id", "name', "description", "windowcenter’, "windowwidth")
.values (janelamento.getIld (), janelamento.getName{), janelamento.
getDeseription (), janelamento.getWindowCenter (), janelamento.
getWindowWidth () ) . build () ;
dbSetup = new DbSetup(new DataSourceDestination {DatabaseManager. getDataSource()),
insert);
dbSetupTracker. launchifNecessary (dbSetup);
}
public itic void removeData () throws Exception {

Operation delete = Operations.sequenceQf{
DeleteAll. from { "DCMD_ MODALITY SETTINGS") ,
DeleteAll . from ( "DCMD_WINDOWING SETTING" ) ) ;

dbSetup = new DbSetup(new DataSourceDestination { DatabaseManager. getDataSource()),
delete);
dbSetupTracker.launchIfNecessary (dbSetup);



67

APENDICE C - Selenium WebDriver -
PageObject e PageFactory

Aqui serd apresentada uma classe que usa o padrao PageObject para encapsular
informactes da pagina web, e dentro dela serd mostrado o uso da classe PageFactory que

ajuda a localizar e inicializar os elementos da pagina.

Listing C.1 — Classe que representa uma PageObject no projeto SLL

packace pages.crud;

iiport org.openga.selenium . WebDriver;

import org.openga.selenium . WebElement ;

jmport org.openqga.selenium .support. FindBy;
imporl org.openga.selenium.support.How;

import org.openga.selenium .support. PageFactory;

public class JanelamentoPageObject{

private WebDriver driver;
private final String URL = "http://meuDominio/meuSistema”;

@FindBy (how = How.NAME, using = 'j name")
public WebElement nome;

@FindBy (how = How.NAME, using = "j_descricao')
public WebElement descricao;

@FindBy (how = How .NAME, using = "j_centro")
public WebElement centro;

@FindBy {how = How.NAME, using = "j_largura"')
pubiic WebElement largura;

@FindBy{how = How.NAME, using = "btn_ create”)
public WebElement botaocCriar;

@FindBy (how = How.NAME, using = "btn__update”)
putilic WebElement botaoEditar;

@FindBy{how = How.NAME, using = "btn_saveNew")
pubiic WebElement botaoSalvarNove;

9FindBy (how = How.NAME, using = "btn_saveUpdate")
piblic WebElement botaoSalvarEdicao;

QFindBy (how = How .NAME, using = "btn_remove”)
prublic WebElement botaoRemover;

public JanelamentoPageObject (WebDriver driver} {
thi-.driver = driver;
PageFactory.initElements (driver, (his);

¢



69

public JanelamentoPageObject cadastrarJanelamento(String nome, String descricao,
String centro, String largura) {
clicarCriar () ;
preencherNome{nome) ;
preencherDescricao (descricao);
preencherCentro{centro);
preencherLargura{largura);
clicarSalvarNovo () ;

pullic JanelamentoPageObject editarJanelamento(String nome,
centro, String largura){
clicarEditar ();
preencherNome (nome) ;
preencherDescricao(descrican);
clicarSalvarEdicao () ;

String descricao, String



71

@Parameters ({ "JANELAMENTO_TEST_SEL, TESTE SELENIUM, 132, 100'})
QTest

pu

lic isi editarJanelamentoValidoMostraMensagemDeSucesso{ String nome,
descricao , String centro, String largura){
janelamento.buscarPorNome (subject . getName() ) ;

janelamento. editarJanelamento (nome, descricao, centro, largura);
Assert.assertTrue(janelamento. verificarMensagem ("sucesso "))

@Test

public veid removerJanelamentoRetornaListaVaziaNaBusca () {

janelamento.buscarPorNome(subject . getName () };
janelamento.clicarRemover () ;

WebElement registro = janelamento.buscarPorNome(subject.getName());
Assert.assertNull(registro};

String



Anexos



75

ANEXO A - Convencoes de Céddigo Java

Este anexo apresenta um conjunto de padrdes que os desenvolvedores devermn seguir
ao programar em Java. Esse contetido foi criado por Carlos Eduardo Domingues Mazzi e
seu texto completo pode ser lido no site do DevMedia no artigo Convengdes de Cddigo Java
(36). Nele sdo mostradas vérias regras, desde os imports e comentdrios, até nomenclaturas
e declaracoes feitas em Java.

A lista a seguir mostra os padroes para nomes.

Packages
O prefixo do nome do pacote deve ser Unico, deve sempre ser escrito em letras

mintsculas todo-ASCII e deve ser um dos nomes de dominio de nivel superior,
atualmente com, edu, gov, mil, net, org, cédigos de duas letras identificando os
paises, tal como especificado na norma ISO 3166, 1981. Componentes subseqiientes
do nome do pacote varia de acordo com uma organiza¢ao proprias convengoes de
nomenclatura internos. Tais convengdes podem especificar que certos componentes
do nome do diretério haver divisdo, departamento, projeto, maquina, ou nomes de
login.

Exemplos:

com.sun.eng

com.apple.quicktime.v2

edu.cmu.cs.hovik.cheese

Classes
Os nomes de classe devemn ser substantivos, em mailisculas e mimisculas com a
primeira letra de cada palavra interna em maiiscula. Tente manter seus nomes
de classe simples ¢ descritivo. Sempre evite palavras-ligadas , evite todas siglas e
abreviaturas, seja semantico.
Exemplos:
class Raster;

class ImageSprite;

Interfaces
Nomes de interfaces devem ser usadas com as primeiras letras em maitsculas como
nome de classes.
Excmplos:
interface RasterDelegate; interface Storing;



