

UNIVERSIDADE DE SÃO PAULO

ESCOLA DE ENGENHARIA DE SÃO CARLOS

GUILHERME AUGUSTO DE MATOS SILVA

DESENVOLVIMENTO DE INTERFACE COM USUÁRIO PARA

BIOFEEDBACK DE UMA MULETA INSTRUMENTADA

São Carlos

2017

GUILHERME AUGUSTO DE MATOS SILVA

DESENVOLVIMENTO DE INTERFACE COM O USUÁRIO PARA

BIOFEEDBACK DE UMA MULETA INSTRUMENTADA

Monografia apresentada ao Curso de

Engenharia Elétrica, da Escola de Engenharia

de São Carlos da Universidade de São Paulo,

como parte dos requisitos para obtenção do

título de Engenheiro Eletricista.

Orientador: Prof. Dr. Alberto Cliquet Júnior

São Carlos

2017

AUTORIZO A REPRODUÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO

CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Matos Silva, Guilherme Augusto de
 M586d Desenvolvimento de interface com usuário para

biofeedback de uma muleta instrumentada / Guilherme

Augusto de Matos Silva; orientador Alberto Cliquet

Júnior. São Carlos, 2017.

Monografia (Graduação em Engenharia Elétrica com

ênfase em Eletrônica) -- Escola de Engenharia de São

Carlos da Universidade de São Paulo, 2017.

1. Android. 2. Bluetooth. 3. Muleta. 4. Biofeedback.

5. Arduino. I. Título.

AGRADECIMENTOS

 Agradeço aos meus pais, Paulo e Zélia, por todo esforço, sacrifício e paciência durante

todo o período de graduação.

 Agradeço ao meu irmão Luis Otávio, pelo apoio e orientação durante o desenvolvimento

deste projeto.

 Agradeço ao meu primo Lucas, pelo apoio e momentos de descontração.

 Agradeço ao professor Dr. Alberto Cliquet e ao Dr. Renato Varoto pelo apoio,

orientação e por tudo que aprendi durante o desenvolvimento deste projeto.

RESUMO

SILVA, G. A. M. Desenvolvimento de interface com o usuário para biofeedback de uma

muleta instrumentada. 2017. Monografia (Trabalho de Conclusão de Engenharia Elétrica com

Ênfase em Eletrônica) – Escola de Engenharia de São Carlos, Universidade de São Paulo, São

Carlos, 2017.

Este projeto visou o desenvolvimento de um aplicativo Android que funcionasse como

interface com o usuário para o envio de dados pelo usuário e recebimento dos dados obtidos

por uma muleta instrumentada e seu circuito de amplificação. Os dados são recebidos por meio

de comunicação Bluetooth estabelecida entre o aplicativo e um módulo conectado ao Arduino,

que recebe os dados do circuito. O aplicativo, além de exibir os dados, alerta o usuário, por

meio de uma notificação com alerta vibratório e sonoro, quando a força exercida sobre a muleta

ultrapassar o limite de 20% de seu peso. Estes dados são armazenados em um arquivo, sempre

que o usuário solicitar, ou quando a conexão for desfeita. Além disto, o usuário pode ler os

dados do arquivo, sempre que solicitar. Os resultados mostraram que a conexão Bluetooth

apresentou estabilidade, sem perdas significativas de dados. As medidas feitas pelo sistema

eletrônico desenvolvido se distanciaram de no máximo de 5% com relação ao dinamômetro

utilizado para a medição de força sobre a muleta, o que permite concluir que o trabalho atingiu

os objetivos propostos.

Palavras-chave: Android. Bluetooth. Muleta. Biofeedback. Arduino

ABSTRACT

MATOS, G. A. M. Development of user interface for biofeedback of an instrumented

crutch. 2017. 198 f. Monograph – Escola de Engenharia de São Carlos, Universidade de São

Paulo, São Carlos, 2017.

 This project aimed the development of an Android application that worked as an user

interface for sending data by the user and receiving data obtained by an instrumented crutch

and it’s amplification circuit. Data are received through Bluetooth connection established

between the application and a module connected to Arduino, what receives circuit data. The

application, besides displaying data, warns the user, through a notification with vibrating and

audible alert, when the force exerted on the crutch exceeds the limit of 20% of user’s weight.

This data are stored in a file, whener the user requests, or when there is a disconnection. In

addtion, the user can read the data from the file whenever resquested. The results showed that

the Bluetooth connection was stable, with no significant loss of data.The measurements made

by the developed electronic system distanced themselves from a maximum of 5% in relation to

the dynamometer used for the measurement of force on the crutch, which allows to conclude

that the work reached the proposed objectives.

Keywords: Android. Bluetooth. Crutch. Biofeedback. Arduino.

LISTA DE FIGURAS

Figura 1 - Muleta do tipo Lofstrand .. 25

Figura 2 - Arduino Uno ... 26

Figura 3 - Módulo Bluetooth HC-05 ... 28

Figura 4 - Circuito utilizado para amplificação do sinal vindo dos SGs ... 32

Figura 5 - Reta obtida a partir dos dados da Tabela 1 ... 35

Figura 6 - Fluxograma do programa desenvolvido para o Arduino .. 37

Figura 7 - Solicitação de ativação do Bluetooth .. 38

Figura 8 – Solicitação da permissão de escrita e leitura de arquivos .. 38

Figura 9 - Tela inicial do aplicativo .. 39

Figura 10 - Telas exibidas ao usuário quando o botão “Conectar” for acionado 40

Figura 11 - Mensagens exibidas ao usuário no momento da conexão e com a conexão estabelecida .. 40

Figura 12 - Tela exibida ao usuário quando for estabelecida a conexão ... 41

Figura 13 - Exemplo de exibição dos valores recebidos pelo aplicativo .. 42

Figura 14 - Notificação exibida ao usuário ... 43

Figura 15 - Acionamento do botão “Gravar” .. 44

Figura 16 - Acionamento do botão "Ler" .. 44

Figura 17 - Acionamento do botão "Desconectar" .. 45

Figura 18 - Fluxograma do aplicativo ... 46

Figura 19 - Fluxo do aplicativo entre o seu início até o estabelecimento ou não de uma conexão 46

Figura 20 - Fluxo do aplicativo após o estabelecimento da conexão e envio dos dados pelo usuário .. 47

Figura 21 - Fluxo do aplicativo quando for solicitada a desconexão, ou algum dos botões de “Gravar”

ou “Ler” for acionado .. 47

Figura 22 - Fluxo quando o aplicativo retorna do segundo para o primeiro plano 48

LISTA DE TABELAS

Tabela 1 - Valores médios calculados para a obtenção da curva .. 32

Tabela 2 - Valores obtidos no teste feito para um usuário com massa de 70 kg 57

Tabela 3 - Primeiro conjunto de valores para a obtenção da curva ... 67

Tabela 4 - Segundo conjunto de valores para a obtenção da curva ... 69

Tabela 5 - Terceiro conjunto de valores para a obtenção da curva ... 71

LISTA DE ABREVIATURAS E SIGLAS

API – Application Programming Interface

IDE – Integrated Development Environment

LED – Light Emmiting Diode

MAC – Media Access Control

RFCOMM – Radio Frequency Communication

SG – Strain-gauge

UART – Universal Asynchronus Receiver/Transmitter

UUID – Universally Unique Identifier

SUMÁRIO

1 INTRODUÇÃO .. 21

1.1 Dispositivos móveis ... 21

1.2 Objetivo ... 22

1.3 Organização da Monografia .. 22

2 FUNDAMENTAÇÃO TEÓRICA ... 25

2.1 Muleta ... 25

2.2 Arduino .. 26

2.3 Módulo Bluetooth ... 27

2.4 Android .. 28

2.5 Conexão Bluetooth .. 30

3 DESCRIÇÃO DO PROJETO E DESENVOLVIMENTO .. 31

3.1 Célula de carga .. 31

3.2 Circuito .. 31

3.3 Arduino .. 35

3.4 Aplicativo ... 37

3.4.1 Diagramas do aplicativo .. 45

3.4.2 Arquivos de configuração .. 48

3.4.3 Classes ... 49

3.4.3.1 MainActivity .. 49

3.4.3.2 LocalService ... 51

3.4.3.3 BluetoothChatService .. 53

3.4.3.4 DeviceList ... 54

3.4.3.5 ReadActivity ... 55

4 RESULTADOS ... 57

4.1 Hardware ... 57

4.2 Software .. 60

5 CONCLUSÃO .. 63

REFERÊNCIAS ... 65

Apêndice A – Conjuntos de valores para a obtenção da curva ... 67

Apêndice B – Código do Arduino ... 73

21

1 INTRODUÇÃO

 Ao sofrer uma fratura, ou quando é necessária a realização de cirurgia nos membros

inferiores, o paciente passa por um processo de reabilitação, que envolve o controle da força

aplicada sobre a perna fraturada. Uma forma de se fazer esse controle é através da utilização de

auxiliadores de locomoção.

 Auxiliadores de locomoção são prescritos para compensar problemas clínicos e são

utilizados por diversas razões, como, por exemplo, para diminuir o excesso de peso nas

extremidades inferiores, para corrigir desequilíbrio, para reduzir a fadiga ou para aliviar a dor

resultante da carga em estruturas danificadas. Também auxiliam na produção de força, usando

a parte superior para compensar a parte inferior do paciente [1]. Um dos principais auxiliadores

de locomoção é a muleta do tipo Lofstrand.

 Para que a força aplicada sobre os membros inferiores pudesse ser medida, foi

desenvolvida uma muleta instrumentada, segundo [2], e um sistema de biofeedback, segundo

[3].

 De acordo com [3], a perna fraturada não deve estar submetida a uma carga superior a

20% do peso do usuário.

 Uma forma de alertar o usuário que o limite de força foi excedido é por meio do sistema

de biofeedback, utilizando-se uma comunicação sem fio e o dispositivo móvel do próprio

usuário.

1.1 Dispositivos móveis

 Como o uso de dispositivos móveis, smartphones e tablets principalmente, já é parte

integrante da vida cotidiana de grande parte da população, o desenvolvimento de soluções

implementáveis para estes dispositivos se torna cada vez mais acessível, devido à crescente

disponibilidade de tecnologias.

 O sistema operacional mais popular entre estes dispositivos é o Android, que é baseado

em software livre e permite de forma fácil, acesso aos recursos dos dispositivos, por meio de

aplicações criadas por um usuário.

 A área da eletrônica embarcada também está em constante evolução, sendo maior o

acesso a soluções de hardware que permitem fazer uso de tecnologias mais recentes de forma

22

mais fácil. Devido ao fato destes dispositivos terem se tornado tão comuns, torna-se interessante

se beneficiar deles para desenvolver aplicações para usos clínicos, capazes de receberem dados

de equipamentos eletrônicos, utilizados na medicina, por meio de conexões sem fio, facilitando

o aviso ao usuário quando o dado recebido representar algum risco a ele, e também o

armazenamento desses dados para análises posteriores.

1.2 Objetivo

 O objetivo deste projeto é modificar o sistema de biofeedback, desenvolvido de acordo

com [3], para a muleta, ou seja, um sistema que seja capaz de receber os dados da muleta e

avisar ao usuário que a força sobre a sua perna foi excedida, além de armazenar em um arquivo

os dados obtidos. Este sistema é baseado em uma aplicação que se comunica com um

microcontrolador por meio da tecnologia Bluetooth, e também funciona como a interface com

o usuário.

 No sistema desenvolvido de acordo com [3], a interface com o usuário era feita por meio

de um teclado numérico e um display de sete segmentos, e o aviso, era feito por um sinal sonoro.

1.3 Organização da Monografia

 Neste primeiro capítulo foi discutido a motivação do desenvolvimento da muleta e do

biofeedback por meio de um aplicativo para Android, e o objetivo do projeto.

 No segundo capítulo é discutido a fundamentação teórica da construção da muleta, do

circuito de amplificação e da utilização da eletrônica embarcada para que seja feita a

comunicação com o celular, além de ser discutido conceitos utilizados para o desenvolvimento

do aplicativo e da conexão Bluetooth.

 O terceiro capítulo explica a utilização dos componentes do circuito e a construção dos

códigos do programa do Arduino e do aplicativo.

 No quarto capítulo são apresentados os resultados obtidos, comparando-se os dados do

circuito com a medição feita no dinamômetro.

23

 No quinto capítulo é feita a conclusão, validando os objetivos do projeto.

24

25

2 FUNDAMENTAÇÃO TEÓRICA

2.1 Muleta

A Figura 1 mostra o auxiliador de locomoção utilizado neste projeto, a muleta do tipo

Lofstrand.

Figura 1 - Muleta do tipo Lofstrand

Fonte – Adaptado de www.dfarmacia.com/farma/ctl_servlet?_f=37&id=13155634. Acesso em 30 Nov. 2017

Como a carga aplicada na muleta está relacionada com a condição em que os membros

inferiores se encontram é válido desenvolver uma muleta que possa medir e enviar os dados da

força aplicada. Como a grandeza a ser medida é a força, diversos tipos de transdutores podem

ser utilizados, como os strain-gauges [2].

A muleta possui, na configuração em ponte de Wheatstone, quatro strain-gauges. Sua

utilização se deve ao fato da possibilidade de serem colocados diretamente sobre o material que

recebe o esforço, além de serem insensíveis à temperatura, quando ligados em ponte completa,

segundo [2].

“A configuração em ponte será tal que somente a força axial na muleta seja adquirida,

excluindo outros tipos de esforços” [2].

26

O sinal de saída da ponte é baixo, da ordem de milivolts, necessitando assim de um

circuito amplificador, o que também auxilia na redução de ruídos. O circuito será discutido no

Capítulo 3.

2.2 Arduino

 De acordo com [4], o Arduino é uma plataforma de prototipagem eletrônica aberta

(open-source), baseada em hardware e software de fácil uso. As placas Arduino são capazes de

receber na sua entrada sinais analógicos e digitais, e transmiti-los para outros dispositivos. O

microcontrolador presente na placa pode ser programado utilizando a linguagem Arduino,

baseada em Wiring e pela sua IDE (Integrated Development Environment), baseada no

ambiente Processing.

 Um dos meios de comunicação disponível é via serial pela UART (Universal

Asynchronus Receiver/Transmitter), que com o auxílio de uma biblioteca presente na

linguagem de programação do Arduino, pode também ser utilizada para estabelecer

comunicação com o módulo Bluetooth.

 A Figura 2 mostra o modelo de placa Arduino Uno, que possui um microcontrolador

ATmega328P, fabricado pela Atmel.

Figura 2 - Arduino Uno

Fonte – Adaptado de https://makezine.com/2011/12/01/just-arrived-in-the-maker-shed-the-new-arduino-uno-revision-3/.

Acesso em 30 Nov. 2017.

27

2.3 Módulo Bluetooth

 O módulo utilizado para a comunicação entre o Arduino e o aplicativo foi o HC-05. De

acordo com [5]

Este módulo oferece uma forma fácil de comunicação com um projeto

Arduino, suportando tanto o modo mestre como escravo. Possui

regulador de tensão, podendo ser alimentado com tensões de 3,3V a 5V,

bem como um LED (Light Emitting Diode) que indica se o módulo está

pareado com outro dispositivo.

Suas especificações são:

• Senha padrão de pareamento: 1234;

• Protocolo Bluetooth: v2.0+EDR;

• Firmware: Linvor 1.8;

• Frequência: 2,4GHz Banda ISM;

• Modulação: GFSK;

• Emissão de energia: <=4dBm, Classe 2;

• Sensibilidade: <=84dBm com 0,1% BER;

• Velocidade Assíncrono: 2,1Mbps(Max)/160Kbps;

• Velocidade Síncrono: 1Mbps/1Mbps;

• Tensão: 3,3V (2,7V-4,2V);

• Temperatura: -40 ~ +105ºC;

• Alcance: 10m.

Para se conectar ao Arduino é necessário que os pinos de alimentação do módulo sejam

conectados aos pinos disponíveis para alimentação do Arduino. O pino de transmissão Tx, seja

conectado diretamente a um dos pinos digitais do Arduino e o pino de recepção Rx, seja

conectado a um circuito divisor de tensão e a saída deste circuito, conectada a um dos pinos

digitais do Arduino. O divisor de tensão é necessário no pino de recepção, pois o pino do módulo

aceita tensões de no máximo 3,3V, enquanto que o pino do Arduino pode enviar sinais com

tensões de 5V.

A Figura 3 mostra o módulo Bluetooth.

28

Figura 3 - Módulo Bluetooth HC-05

Fonte – Adaptado de https://www.filipeflop.com/produto/modulo-bluetooth-rs232-hc-05/. Acesso em 30 Nov. 2017.

2.4 Android

 Android é um sistema operacional de código aberto, baseado em Linux, atualmente

desenvolvido pela empresa Google Inc, que utiliza a linguagem Java, orientada a objetos.

 De acordo com [6], “o Android chegou a marca de dois bilhões de usuários ativos por

mês, sendo o sistema móvel mais utilizado no mundo”, o que justifica sua escolha para este

projeto.

 Uma ferramenta para o desenvolvimento de aplicativos para Android é o Android

Studio, utilizado para o desenvolvimento do aplicativo neste projeto, que segundo [7], “oferece

ferramentas mais rápidas para a criação de aplicativos e possui recursos como edição de código

nível global, depuração, ferramentas de desempenho e sistema flexível de compilação”.

Alguns conceitos importantes para a criação do aplicativo para este projeto, são o de

atividade, serviço e serviço vinculado.

De acordo com [8]

A Atividade, ou Activity, é um componente de aplicativo que fornece

uma tela com a qual os usuários podem interagir para fazer algo.

Normalmente, uma atividade em um aplicativo é especificada como

“principal”, que é a apresentada ao usuário ao iniciar o aplicativo pela

primeira vez. Cada atividade pode, então, iniciar outra atividade para

executar diferentes ações.

29

Alguns métodos precisam ser implementados para a execução da atividade:

onCreate: “o sistema o chama ao criar a atividade. Na implementação, é preciso

inicializar os componentes essenciais da atividade. E, fundamentalmente, é quando se deve

definir o layout da interface do usuário da atividade” [8].

onStart: “chamado logo antes de a atividade se tornar visível ao usuário” [8].

onResume: “chamado logo antes de a atividade iniciar a interação com o usuário” [8].

onStop: “chamado quando a atividade não está mais visível ao usuário. Isso pode

acontecer porque ela está sendo destruída ou porque outra atividade (uma existente ou uma

nova) foi retomada e está cobrindo-a” [8].

onDestroy: “chamado antes de a atividade ser destruída” [8].

De acordo com [9]

Um Serviço, ou Service, é um componente do aplicativo que pode

realizar operações longas e não fornece uma interface do usuário. Outro

componente do aplicativo pode iniciar o serviço e ele continuará em

execução em segundo plano mesmo que o usuário alterne para outro

aplicativo.

Um método que necessita ser criado é onStarCommand, que segundo [9]

 O sistema chama esse método quando outro componente, como uma

atividade, solicita que o serviço seja iniciado. Quando esse método é

executado, o serviço é iniciado e pode ser executado em segundo plano

indefinidamente.

 Segundo [10]

Um serviço vinculado é o servidor em uma interface cliente-servidor.

Um serviço vinculado permite que componentes (como atividade)

sejam vinculados ao serviço, enviem solicitações, recebam respostas e

até estabeleçam comunicação entre processos (IPC). Um serviço

vinculado geralmente existe somente enquanto serve a outro

30

componente do aplicativo e não é executado em segundo plano

indefinidamente.

 Um método necessário para este caso é o onBind. “O sistema chama esse método quando

outro componente quer se vincular ao serviço” [10].

2.5 Conexão Bluetooth

De acordo com [11]

Para que uma conexão seja estabelecida, é necessário implementar o

lado do servidor, que abre um soquete de servidor e ouça conexões, e o

lado do cliente, que inicia a conexão. O servidor e o cliente serão

considerados conectados entre si quando cada um deles tiver um

soquete conectado no mesmo canal RFCOMM (Radio Frequency

Communication). Nesse momento, cada dispositivo pode obter streams

de entrada e saída e a transferência de dados pode começar.

Quando um dispositivo é pareado, as informações básicas sobre esse

dispositivo (como nome, classe e endereço MAC (Media Access

Control) do dispositivo) são salvas e podem ser lidas usando as

Bluetooth API’s (Application Programming Interface). Com o

endereço MAC conhecido de um dispositivo remoto, é possível iniciar

uma conexão com ele a qualquer momento sem executar a descoberta

(desde que o dispositivo esteja dentro do alcance). Estar pareado

significa que os dois dispositivos estão cientes da existência um do

outro, têm um link-chave compartilhado que pode ser usado para

autenticação e podem estabelecer uma conexão criptografada entre si.

Estar conectado significa que os dispositivos compartilham no

momento um canal RFCOMM e podem transmitir dados entre si. A

Android Bluetooth API atual exige que os dispositivos estejam pareados

antes de estabelecer uma conexão RFCOMM. (O pareamento é

executado automaticamente na inicialização de uma conexão

criptografada com as API’s do Bluetooth).

31

3 DESCRIÇÃO DO PROJETO E DESENVOLVIMENTO

3.1 Célula de carga

Para a medição da carga, foi construída, na haste da muleta, uma célula de carga com

quatro strain-gauges (SG), transformando-a em um transdutor de força. Os SGs foram colados

sobre o material da haste e ligados na configuração de ponte de Wheatstone, segundo [2].

3.2 Circuito

 O sinal de saída da ponte de Wheatstone é muito baixo e sujeito a ruídos, sendo assim,

utilizou-se um circuito amplificador com elevada rejeição ao ruído, constituído de um

amplificador de instrumentação e um amplificador operacional. Além disto, a alimentação da

ponte é feita utilizando-se um circuito de referência precisa e são utilizados dois reguladores de

tensão para a estabilização da alimentação dos amplificadores. O circuito possui um filtro passa

baixas, ajustado para a frequência de corte de 5 Hz, nas entradas do amplificador de

instrumentação, para atenuar ruídos sobre o sistema.

 O circuito desenvolvido de acordo com [3] possuía o amplificador de instrumentação, o

amplificador na configuração inversora na sua saída, o filtro na sua entrada, e o circuito de

referência precisa para alimentação da ponte. Neste projeto foram adicionados os reguladores

de tensão.

O diagrama do circuito pode ser observado na Figura 4.

32

Figura 4 - Circuito utilizado para amplificação do sinal vindo dos SGs

Fonte – Autoria própria

Para associar-se corretamente a força sobre a muleta e a saída do circuito, utilizou-se

um dinamômetro para medir a carga aplicada à haste e um amperímetro para a medição da

tensão na saída do circuito. Utilizando-se pesos padrões, para que a força sobre a haste se

mantivesse constante, foram feitos três conjuntos de medidas independentes, presentes no

Apêndice A – Conjuntos de valores para a obtenção da curva. Com o auxílio do programa

MATLAB, foi feita uma média aritmética entre os três valores de tensão e uma média aritmética

dos três valores de força.

Os valores das médias estão na Tabela 1.

Tabela 1 - Valores médios calculados para a obtenção da curva

Força (N) Tensão (V)

9,0000 0,5767

16,3333 0,6220

24,0000 0,6550

28,3333 0,6817

33

Força (N) Tensão (V)

33,0000 0,7087

38,3333 0,7363

43,0000 0,7637

48,0000 0,7897

52,6667 0,8150

57,6667 0,8430

62,3333 0,8703

67,0000 0,8960

72,0000 0,9213

77,0000 0,9483

82,0000 0,9747

86,6667 1,0007

91,6667 1,0283

96,6667 1,0537

101,3333 1,0797

106,0000 1,1057

110,6667 1,1313

115,6667 1,1573

120,6667 1,1867

125,3333 1,2100

130,6667 1,2377

135,0000 1,2633

140,0000 1,2860

152,3333 1,3447

166,6667 1,4247

181,0000 1,5023

195,6667 1,5797

207,0000 1,6580

223,6667 1,7353

238,0000 1,8123

252,0000 1,8893

266,0000 1,9647

34

Força (N) Tensão (V)

278,6667 2,0403

294,0000 2,1157

307,6667 2,1897

321,0000 2,2630

334,6667 2,3353

347,6667 2,4070

361,3333 2,4800

374,6667 2,5500

387,6667 2,6213

398,6667 2,6823

411,0000 2,7513

424,0000 2,8180

A partir destes dados, foi obtida a reta, descrita pela equação 1, que melhor representava

os pontos medidos.

𝐹 = 185,4336𝑉 − 98,5793 (1)

 Sendo V a tensão medida na saída do circuito e F a força medida pelo dinamômetro.

 Da equação 1 é possível obter a inclinação da reta, 185,4336, e via software é obtido o

valor de tensão de correção, correspondente ao ponto onde a força vale zero. Este valor de

correção posiciona o início da reta para o ponto onde a força vale zero.

A Figura 5 mostra a reta obtida.

35

Figura 5 - Reta obtida a partir dos dados da Tabela 1

Fonte – Autoria própria

3.3 Arduino

O sinal de saída do circuito é conectado a uma das entradas analógicas do Arduino e o

módulo Bluetooth é conectado a dois pinos digitais do Arduino, um para receber e outro para

enviar os dados para o aplicativo.

O código do Arduino contém uma biblioteca para o envio e recebimento dos dados via

Bluetooth, muito semelhante a uma conexão serial UART, de forma que as funções utilizadas

são as mesmas. No início do programa são inicializadas as variáveis que serão utilizadas, a

massa enviada pelo aplicativo, a tensão recebida pelo Arduino, os valores de força, correção e

peso, calculados pelo programa, e as variáveis utilizadas para a contagem do tempo.

No código são definidos os pinos do Arduino que serão utilizados pelo módulo Bluetooth

para o envio e recebimento dos dados. Utilizando-se a biblioteca da conexão serial, é definido

o nome da conexão, que será utilizado quando as funções da conexão serial foram utilizadas.

O primeiro passo do programa é zerar todas as posições do vetor onde os valores de tensão

recebidos pelo Arduino serão armazenados.

36

O segundo passo é esperar pelo recebimento dos dados, neste caso, da massa do usuário,

que será enviada pelo aplicativo. Após esta etapa, é necessário que nenhuma força seja aplicada

a muleta para que o programa possa calcular o ponto de zero força e obter o valor da correção

que será aplicado as medidas feitas posteriormente. Para este valor de correção é feita uma

média entre setenta valores obtidos pelo circuito, de maneira que este valor seja o mais exato

possível.

Depois de calculado o valor da correção, o Arduino recebe do circuito os valores de

tensão, por meio de uma de suas portas analógicas. Para que se possa obter um valor mais

preciso, foi utilizado a média de setenta valores de tensão e foi calculado o tempo gasto para

que este conjunto de valores seja obtido.

Utilizando-se o valor da massa enviada pelo usuário, é calculado o seu peso, pela equação

2.

𝑃 = 𝑚𝑔 (2)

Sendo g, a constante da aceleração da gravidade, com valor aproximado de 9,8 m/s2, e

m a massa do usuário. Quando o valor de força calculado pelo Arduino exceder 20% deste peso,

ele envia uma mensagem de alerta para o aplicativo, juntamente com os dados.

Os valores enviados são:

• Iteração, para conferência se não foi perdido nenhum dado durante a

transmissão;

• Massa do usuário, para conferência do correto envio do dado pelo usuário;

• Força, calculada pelo Arduino;

• Tempo gasto para obtenção de setenta valores de força.

Todos os valores são enviados entre chaves, para que a leitura possa ser feita

corretamente pelo aplicativo.

 O programa contém funções de espera, de forma que haja sincronismo entre envio dos

dados pelo módulo e o recebimento pelo aplicativo, ocorrendo perdas menos significativas de

dados.

37

 O envio dos dados é feito por funções de escrita, utilizadas da mesma maneira quando

há conexão serial, println, quando há necessidade de passar para a linha seguinte após o envio,

e print, quando não há necessidade de passar para a linha seguinte.

 Ao final de cada envio de conjunto de dados, o Arduino verifica se algum dado foi

enviado pelo aplicativo, quando o Arduino receber a mensagem “Sair”, o Arduino para de enviar

os dados e espera uma nova conexão, para receber novamente um valor de massa, e então

reiniciar o envio dos dados.

 É necessário que o programa seja carregado, que os pinos do módulo Bluetooth e a saída

do circuito amplificador sejam corretamente conectados aos pinos do Arduino.

 O código completo do Arduino está no Apêndice B – Código do Arduino.

 A Figura 6 mostra o fluxograma do programa desenvolvido para o Arduino.

Figura 6 - Fluxograma do programa desenvolvido para o Arduino

Fonte – Autoria própria

3.4 Aplicativo

 Quando o aplicativo for iniciado, se o Bluetooth não estiver ativado, é solicitado ao

usuário a sua ativação. Caso o usuário não o ative, o aplicativo é encerrado. A Figura 7 mostra

a tela de solicitação da ativação.

38

Figura 7 - Solicitação de ativação do Bluetooth

Fonte – Autoria própria

 É também solicitada a permissão para leitura e escrita de arquivos, para que sempre que

for necessário, o aplicativo poder gerar ou ler um arquivo. A Figura 8 mostra a tela de

solicitação da permissão de escrita e leitura de arquivos.

Figura 8 – Solicitação da permissão de escrita e leitura de arquivos

Fonte – Autoria própria

39

O aplicativo contém em sua tela inicial quatro botões, um para que se possa procurar

pelo módulo Bluetooth, outro para gravar em um arquivo os dados que serão recebidos, outro

para ler estes dados e um quarto botão para que o usuário envie os dados necessários para o

Arduino. A tela inicial do aplicativo é mostrada na Figura 9.

Figura 9 - Tela inicial do aplicativo

Fonte – Autoria própria

 Além dos botões, o aplicativo possui uma caixa de texto para o envio dos dados, e duas

outras caixas de texto, uma menor, onde o valor pelo usuário enviado será mostrado, e quando

a conexão tiver sido estabelecida, mostrará um texto solicitando que o usuário envie sua massa

em quilogramas, e uma segunda caixa de texto maior, que exibirá os dados recebidos pelo

aplicativo, enviados pelo Arduino.

 Acionando-se o botão com o texto “Conectar”, uma tela será exibida contendo os

dispositivos pareados com o celular e um botão de busca, para que novos dispositivos com o

Bluetooth ativado sejam procurados pelo aplicativo. Quando o módulo Bluetooth for

encontrado, esteja ele pareado ou entre os dispositivos encontrados, o nome HC-05 será

mostrado juntamente com o seu endereço MAC. Basta selecioná-lo para que a conexão seja

iniciada. Caso o módulo ainda não esteja pareado, será solicitada a senha de pareamento.

A Figura 10 mostra a tela exibida com os dispositivos pareados, quando o módulo for

encontrado e a solicitação da senha de pareamento.

40

Figura 10 - Telas exibidas ao usuário quando o botão “Conectar” for acionado

Fonte – Autoria própria

 Duas mensagens serão exibidas, a primeira, “Conectando...”, enquanto a conexão

estiver sendo estabelecida, e “Conectado”, quando a conexão estiver pronta. A Figura 11 mostra

como as duas mensagens são exibidas ao usuário.

Figura 11 - Mensagens exibidas ao usuário no momento da conexão e com a conexão estabelecida

Fonte – Autoria própria

41

 Despois de estabelecida a conexão, o texto do botão “Conectar” é alterado para

“Desconectar”, e na caixa de texto dos dados enviados é mostrada uma mensagem solicitando

o envio da massa do usuário. A Figura 12 mostra a tela do aplicativo nesta situação.

Figura 12 - Tela exibida ao usuário quando for estabelecida a conexão

Fonte – Autoria própria

 Após o envio da massa pelo usuário, que deve conter apenas números, com os decimais

separados por ponto, os dados começam a ser enviados pelo Arduino e recebidos pelo

aplicativo. Um exemplo de como os dados são exibidos está na Figura 13.

42

Figura 13 - Exemplo de exibição dos valores recebidos pelo aplicativo

Fonte – Autoria própria

O Arduino coleta setenta valores de tensão, calcula a média destes valores e os

transforma em força, segundo o valor da inclinação da reta descrita pela equação 1. Outro valor

calculado é o do tempo gasto para que sejam recebidos os setenta valores de tensão, utilizado

para que possa ser feito um gráfico que relacione a força obtida, com o tempo gasto. A

quantidade de iterações, a massa do usuário, a força e o tempo são os valores enviados pelo

Arduino.

 A partir da massa (kg), o Arduino calcula o peso (N) do usuário. Quando a força enviada

pelo Arduino exceder 20% do peso calculado, uma mensagem de alerta é enviada pelo Arduino,

e quando for recebida pelo aplicativo, envia uma notificação ao sistema, seguido de um alerta

vibratório e de um toque de notificação padrão do celular, para que o usuário perceba o alerta.

A Figura 14 mostra como a notificação é exibida ao usuário, no canto superior esquerdo, com

um pequeno símbolo do Android e quando a aba de notificações é aberta pelo usuário, o texto

apresentado.

43

Figura 14 - Notificação exibida ao usuário

Fonte – Autoria própria

 Se o usuário selecionar a notificação, o aplicativo é aberto na tela inicial e os valores

obtidos desde o início da conexão atual, são exibidos.

Sempre que for necessário que os dados obtidos sejam gravados, basta acionar o botão

“Gravar”, que os dados exibidos na tela serão gravados em um arquivo dentro da pasta

Downloads, na memória interna do celular, de modo que ele possa ser acessado externamente,

conectando o celular a um computador, ou por meio de outro aplicativo que gerencie arquivos.

Uma mensagem com o diretório e o nome do arquivo gravado é exibida ao usuário. A Figura

15 mostra o acionamento do botão “Gravar”.

44

Figura 15 - Acionamento do botão “Gravar”

Fonte – Autoria própria

 O botão “Ler” abre uma outra tela para exibir os dados contidos no último arquivo

editado dentro da pasta Downloads. Uma mensagem com o diretório e o nome do arquivo lido

é exibida ao usuário. A Figura 16 mostra o acionamento do botão “Ler”.

Figura 16 - Acionamento do botão "Ler"

Fonte – Autoria própria

45

Quando não houver mais necessidade da transmissão, basta pressionar o botão com o

texto “Desconectar”, assim a conexão será encerrada e um arquivo com os dados exibidos na

tela será gerado. A Figura 17 mostra o acionamento do botão “Desconectar”.

Figura 17 - Acionamento do botão "Desconectar"

Fonte – Autoria própria

3.4.1 Diagramas do aplicativo

Nas Figura 19, Figura 20, Figura 21 e Figura 22 foram utilizadas, para as classes e para

o Arduino foi utilizado o bloco quadrado, para os métodos, o bloco retângulo com cantos

arredondados, para as estruturas de decisão, o losango, para os botões, o triângulo e para o

usuário, o círculo.

 O diagrama da Figura 18 mostra o fluxograma simplificado do funcionamento do

aplicativo.

46

Figura 18 - Fluxograma do aplicativo

Fonte – Autoria própria

 Na Figura 19 está o diagrama de fluxo detalhado do aplicativo, entre o instante em que

ele é aberto, até o momento em que é estabelecida ou não a conexão com o módulo Bluetooth.

Figura 19 - Fluxo do aplicativo entre o seu início até o estabelecimento ou não de uma conexão

Fonte – Autoria própria

47

 Na Figura 20 está o diagrama detalhado após o estabelecimento da conexão e envio dos

dados pelo usuário.

Figura 20 - Fluxo do aplicativo após o estabelecimento da conexão e envio dos dados pelo usuário

Fonte – Autoria própria

 O diagrama detalhado da Figura 21 trata de quando for solicitada a desconexão com o

módulo, ou algum dos botões de “Gravar” ou “Ler” for acionado.

Figura 21 - Fluxo do aplicativo quando for solicitada a desconexão, ou algum dos botões de “Gravar” ou “Ler” for acionado

Fonte – Autoria própria

 E a Figura 22 mostra o fluxo detalhado quando o aplicativo retorna do segundo para o

primeiro plano.

48

Figura 22 - Fluxo quando o aplicativo retorna do segundo para o primeiro plano

Fonte – Autoria própria

3.4.2 Arquivos de configuração

 No arquivo Manifest foram adicionadas as atividades DeviceList, ReadActivity e

LocalService. Foi definido a orientação retrato para as atividades que possuem layout e também

foram adicionadas as permissões necessárias de Bluetooth, localização, escrita em arquivo e de

vibração, que são utilizadas pelo aplicativo.

 No arquivo strings, foi definido o nome da classe ReadActivity, além do nome do

aplicativo, definido automaticamente quando um novo projeto é criado.

 Uma classe, chamada Constants foi criada para armazenar valores que não serão

alterados dentro do aplicativo, mas que podem ter valores associados a eles, para facilitar a

comunicação entre as classes.

49

3.4.3 Classes

O código completo do aplicativo encontra-se disponível em [12].

3.4.3.1 MainActivity

Na classe principal, denominada MainActivity, inicializada quando o aplicativo é aberto,

são definidos valores quando há solicitação de ativação do Bluetooth, quando há solicitação de

conexão e uma variável para definir o nome do arquivo quando for solicitada a sua criação. São

definidas também uma variável para saber se há conexão, outra para saber se o serviço foi

registrado e outra para instanciar o serviço.

 No método chamado ao iniciar esta classe, denominado onStart, checa-se a permissão

de modificação de arquivos, pedindo ao usuário que aceite, para que os arquivos possam ser

gerados pelo aplicativo. Ele também inicializa o serviço, permitindo que ele possa ser executado

indefinidamente, e também vincula o serviço, permitindo que os dados possam ser enviados e

recebidos do serviço para esta atividade.

 O método quando a atividade se tornar visível ao usuário, quando ela for iniciada, ou

quando ela voltar do segundo para o primeiro plano, denominado onResume, ele faz uma

verificação se o serviço já foi registrado, se não foi, ele registra o mensageiro do serviço e

vincula novamente a atividade ao serviço.

 Quando a atividade não estiver mais visível, chamando onStop, o método desfaz o

registro do mensageiro.

 E quando a atividade estiver para ser destruída, o método onDestroy é chamado, e se

houver alguma conexão, o serviço é desvinculado da atividade.

 Quando a atividade for criada pela primeira vez, utilizando o método onCreate, ele

correlaciona os objetos presentes no layout com as variáveis que serão utilizadas no código. Ele

também define o adaptador Bluetooth do celular como padrão, e verifica se há este adaptador

no celular, caso não haja, uma mensagem de erro é exibida ao usuário, se houver, é feita a

verificação se o Bluetooth está ativado. Caso o Bluetooth não esteja, é solicitado ao usuário para

ativá-lo, caso não seja, o aplicativo é encerrado.

50

 Neste método também é definida a função do botão de conexão, inicialmente com o

texto “Conectar”. Quando ele for acionado, é feita uma verificação se há alguma conexão, se

não houver, é feita uma requisição ao sistema para abrir a classe DeviceList; e se houver algum

dado na caixa de texto de mensagens recebidas, ele será apagado. Mas caso haja alguma

conexão, seu texto estará definido como “Desconectar”, então, é mostrado a mensagem “Sair”

na caixa de texto de mensagens enviadas, os dados que estiverem na caixa de texto de dados

recebidos serão salvos em um arquivo. Em seguida, o método de desconexão, presente no

serviço será chamado e o texto do botão será alterado para “Conectar”.

 Também é definido a função do botão “Enviar”. Quando ele for pressionado, o que foi

digitado pelo usuário é enviado ao Arduino e também será mostrado na caixa de texto de

mensagens enviadas, além de apagar os dados recebidos que estiveram na tela e o dado digitado

pelo usuário.

 Outro método é definido para o retorno da solicitação de ativação do Bluetooth e

solicitação de conexão. Se a ativação for aceita, uma mensagem é exibida, caso ela não seja

aceita, o aplicativo será encerrado. Se a solicitação de conexão for aceita, ou seja, o retorno da

atividade DeviceList for de sucesso, é chamado o método connectDevice do serviço para que

seja feita a tentativa de conexão, o mensageiro é registrado e se a conexão for estabelecida, o

texto do botão de conexão é alterado para “Desconectar”.

 Quando o serviço for vinculado, é necessário criar um método que obtém a instância do

serviço, além disto, ele verifica se há conexão, para alterar o texto do botão de conexão, se for

necessário. Se houver algum dado armazenado no serviço para ser mostrado na tela do

aplicativo, ele é obtido por meio do método sendData presente no serviço.

 Outro método implementado é o que salva os dados recebidos em um arquivo. Quando

o botão “Gravar” for acionado, ou quando uma desconexão for feita, todo o texto que estiver

na caixa de texto de dados recebidos é salvo em um arquivo com o nome “arquivo”,

adicionando-se a data, com hora, minuto, segundo e milissegundo dentro da pasta Downloads,

para que este possa ser acessado externamente, tanto por outro aplicativo, como conectando-se

o celular a um computador.

 Quando for necessária uma verificação do arquivo gerado, o botão “Ler” pode ser

acionado. Utilizando o método getLatestFilefromDir, que retorna o último arquivo editado

dentro da pasta Downloads, este método armazena o diretório e o nome do arquivo em uma

51

variável, associada a uma string presente em Constants, instanciando assim a atividade

ReadActivity com o diretório e o nome do arquivo.

 Sempre que o serviço enviar algum dado para atividade principal, este será recebido em

um método, que primeiramente verifica se a mensagem “conectado” foi enviada pelo serviço,

para que o texto do botão de conexão seja alterado para “Desconectar”, o conteúdo da caixa de

texto de dados recebidos seja apagado e seja mostrado na caixa de texto de dados enviados,

uma mensagem de solicitação da massa do usuário. Caso o dado recebido não contenha a

mensagem “conectado”, o dado é mostrado na caixa de texto de dados recebidos.

 O método getLatestFilefromDir somente retorna o nome do arquivo editado mais

recentemente dentro da pasta Downloads.

3.4.3.2 LocalService

 Para que o usuário possa se conectar com o módulo, mas possa deixar que o aplicativo

receba dados em segundo plano, foi criado um serviço, chamado LocalService.

 Nesta classe são definidas variáveis para vincular o serviço, para fazer a comunicação

com a classe BluetoothChatService: uma para verificação se há conexão e outras para

armazenar os dados enviados pelo Arduino.

 Por ser usado um serviço vinculado, foi criado um método para retornar a instância do

serviço, para que uma atividade pudesse usar os métodos públicos desta classe, e um método

que fornece uma interface que os clientes usam para se comunicar com o serviço.

 Quando uma atividade solicita o início do serviço, é necessário criar um método para

que ele possa ser executado em segundo plano, denominado onStartCommand. Neste método

é chamado outro método que inicializa a classe BluetoothChatService e define como adaptador

Bluetooth o padrão do celular.

 Um método público foi criado, denominado connectDevice, para que a conexão com o

módulo seja feita. Ele utiliza o MAC retornado pela classe DeviceList e utilizando um método

público da classe BluetoothChatService, tenta se conectar com o módulo.

52

 Outro método é o da desconexão, disconnectDevice, que envia ao Arduino uma

mensagem de “Sair”, para que ele pare de enviar dados para a classe BluetoothChatService,

altere a variável de conexão para não conectado e para o próprio serviço.

 Para que a atividade vinculada ao serviço possa saber quando o módulo está conectado,

foi criado um método que somente retorna a variável de controle da conexão.

 Para que um dado possa ser enviado do aplicativo para o módulo, foi criado um método,

sendMessage, que primeiramente apaga qualquer dado armazenado de outra conexão anterior,

verifica se há um dispositivo conectado, verifica se há mensagem para ser enviada e então

usando o método de escrita do BluetoothChatService, envia o dado.

 Os dados recebidos pelo serviço precisam ser enviados à classe principal, para serem

mostrados ao usuário. Um método foi criado, denominado sendBroadcastMessage, que associa

os dados desejados a uma string estática, e esses dados podem ser acessados por meio do

mensageiro da classe MainActivity, utilizando a string associada.

 No serviço também é definido um mensageiro, Handler, para que o serviço receba as

informações da classe BluetoothChatService. Ele verifica se houve alteração no valor associado

a alguma constante em Constants.

 Caso haja alteração no estado da conexão, ele então verifica no BluetoothChatService

qual o estado atual. Se está conectando ou sem nenhuma conexão, somente uma mensagem é

exibida na tela, mas se a conexão foi estabelecida, a variável definida no serviço para o controle

da conexão é alterada para conectado e uma mensagem de “conectado” é enviado para a classe

principal, utilizando-se o método sendBroadcastMessage.

 Caso haja alteração na constante associada à mensagem lida, ele verifica a mensagem

recebida, armazenando em uma stringbuilder, chamada bluetoothData. Procura no conteúdo da

stringbuilder pela abertura e fechamento das chaves. O conteúdo entre chaves é armazenado

em uma string e enviado à classe principal, mas também é armazenado em outra stringbuilder,

chamada serviceData. Se houver uma mensagem de alerta no dado recebido, o serviço envia

uma notificação ao sistema, acompanhada de um alerta vibratório e do toque de notificação

padrão do aparelho, para que o usuário seja avisado. Os dados armazenados em bluetoothData

são apagados ao final desta verificação, para que um novo dado recebido seja analisado

separadamente. Contudo, este dado permanece armazenado em serviceData, para que sempre

que o usuário voltar o aplicativo do segundo para o primeiro plano, todos os valores

53

armazenados desde o início da conexão atual sejam enviados à classe principal e exibidos na

tela.

3.4.3.3 BluetoothChatService

 A classe BluetoothChatService foi retirada de [13], retirando-se do código alguns

métodos não necessários para este projeto.

 Esta classe, chamada de BluetoothChatService, trata da tentativa e da conexão,

propriamente dita. Nela são definidas variáveis como a UUID (Universally Unique Identifier)

usada na conexão com o módulo e os estados da conexão, quando nada está sendo feito, quando

está sendo feita a procura, quando há tentativa de conexão e quando é estabelecida a conexão.

 Quando a classe LocalService receber da classe DeviceList o MAC do dispositivo, o

serviço instancia a classe BluetoothChatService, utilizando o MAC e associando um

mensageiro, além de chamar o método público de conexão, para que as threads sejam iniciadas

e a conexão seja estabelecida.

 Assim como na classe das listas, aqui também é definido o adaptador Bluetooth do

celular como padrão e como estado inicial de conexão, o estado quando nada está sendo feito.

 Dentro desta classe, é criado um método público para instanciar esta classe e outro para

retornar o estado atual da conexão.

 Nesta classe é criada a thread de conexão. Utilizando-se o MAC do dispositivo obtido

por meio da atividade DeviceList e um UUID, é inicializado um soquete que se conectará ao

dispositivo selecionado. Se o UUID do celular corresponder ao do dispositivo, a conexão é

aceita e o canal RFCOMM é compartilhado. Nesta thread o estado de conexão é alterado para

quando está tentando se conectar, e ao final, o método que inicia a thread de gerenciamento de

conexão é chamado.

 Após estabelecida a conexão, é criada a thread para gerenciar a conexão. Nesta thread,

o estado de conexão é alterado para conectado e por meio do soquete criado anteriormente, é

feito o envio e recebimento de dados, por meio de funções de leitura e escrita, sempre fazendo

a transformação dos dados para bytes, e utilizando um mensageiro, chamado de Handler, para

a transmissão. Por meio do mensageiro, os métodos presentes nesta thread associam um dado

54

à um valor inteiro presente em Constants. Quando outra classe quiser obter o dado, basta acessar

a referência correta em Constants.

 Há também um método público que inicia a thread de conexão, cancelando

anteriormente qualquer outra thread de tentativa de conexão, ou qualquer thread de conexão já

estabelecida. Outro método existente é o que inicia a thread de gerenciamento de conexão que

estivesse em execução, associando também o nome do dispositivo a um inteiro presente em

Constants. Estes métodos também executam o método de atualização do estado da conexão,

alterando-o para conectando ou conectado, respectivamente.

 Outros métodos utilizados são para quando a tentativa de conexão falha, ou quando ela

for perdida. Eles mudam o estado da conexão para quando não há nada sendo feito, reiniciam

a classe, e a diferença entre as duas é a mensagem exibida ao usuário.

Além de um método que atualiza o estado de conexão, utilizando o mensageiro e

associando a um inteiro em Constants o novo estado da conexão.

3.4.3.4 DeviceList

 No código do aplicativo existe uma classe que trata dos dispositivos que podem se

conectar com o celular, chamada de DeviceList. Esta classe foi retirada de [13], alterando-se

somente o idioma das mensagens exibidas ao usuário.

 Esta classe possui dois campos de texto, somente para nomear as listas de dispositivos

pareados e a lista de dispositivos encontrados. Possui um botão para buscar dispositivos e as

duas listas propriamente ditas.

 Esta classe usa o adaptador Bluetooth do celular como padrão e por meio dele, lista os

dispositivos já pareados, obtendo o nome e o MAC de cada um. Caso o módulo não esteja

pareado, é necessário fazer uma busca por ele, acionando-se o botão de procura presente no

layout da lista. Quando for acionado, é feita uma verificação se foi dada permissão pelo usuário

para a utilização do Bluetooth. Quando a permissão for concedida, uma procura por dispositivos

com o Bluetooth acionado é feita, listando-os da mesma maneira, caso o dispositivo encontrado

já esteja na lista de pareados, ele não é listado novamente.

55

 Quando algum dispositivo de qualquer uma das listas for selecionado, as duas procuras

são canceladas e o MAC do dispositivo selecionado é armazenado em uma variável pública,

que pode ser recuperada por qualquer outra classe. O resultado desta operação é definido para

concluído com sucesso e então esta classe é encerrada.

3.4.3.5 ReadActivity

 Esta classe mostra os dados contidos no arquivo, chamada de ReadActivity. Ela possui

somente um campo de texto.

 Sempre que um arquivo for gerado, o seu diretório e seu nome são associados a uma

variável presente em Constants, que é acessada quando esta classe for chamada. Ela lê o arquivo

solicitado e mostra no seu campo de texto todo o conteúdo do arquivo.

56

57

4 RESULTADOS

4.1 Hardware

 Foram realizados testes em bancada a fim de verificar a eficiência do circuito e o

programa projetados. Os dados de força obtidos foram comparados com os exibidos no

dinamômetro. O valor obtido no dinamômetro foi lido após a espera da sua estabilização. Foi

feito um teste assumindo que a massa do usuário seja de 70 kg. A Tabela 2 mostra os valores

obtidos pelo aplicativo e os valores lidos no dinamômetro, além do erro relativo, estudado em

estatística, calculado pela equação 3.

𝑒𝑟𝑟𝑜 =
𝑓𝑜𝑟ç𝑎 − 𝑓𝑜𝑟ç𝑎 𝑑𝑖𝑛𝑎𝑚ô𝑚𝑒𝑡𝑟𝑜

𝑓𝑜𝑟ç𝑎 𝑑𝑖𝑛𝑎𝑚ô𝑚𝑒𝑡𝑟𝑜
100% (3)

Tabela 2 - Valores obtidos no teste feito para um usuário com massa de 70 kg

Iteração Massa

(kg)

Força

(N)

Alerta Tempo

(ms)

Força dinamômetro

(N)

Erro

(%)

0 70,00 0,81 Não 9 0 -

1 70,00 1,66 Não 9 0 -

2 70,00 1,50 Não 9 0 -

3 70,00 0,64 Não 9 0 -

4 70,00 1,43 Não 10 0 -

5 70,00 1,87 Não 9 0 -

6 70,00 43,62 Não 9 45 3,06667

7 70,00 46,24 Não 9 45 2,75555

8 70,00 47,17 Não 9 45 4,82222

9 70,00 46,44 Não 10 45 3,20000

10 70,00 46,32 Não 10 45 2,93333

11 70,00 46,44 Não 9 45 3,20000

12 70,00 45,81 Não 9 45 1,80000

13 70,00 46,58 Não 9 45 3,51111

58

Iteração Massa

(kg)

Força

(N)

Alerta Tempo

(ms)

Força dinamômetro

(N)

Erro

(%)

14 70,00 47,41 Não 9 45 5,35555

15 70,00 46,26 Não 9 45 2,80000

16 70,00 45,91 Não 9 45 2,02222

17 70,00 67,23 Não 10 67 0,34328

18 70,00 67,47 Não 9 67 0,70149

19 70,00 68,89 Não 9 67 2,82090

20 70,00 67,29 Não 9 67 0,43284

21 70,00 67,14 Não 9 67 0,20895

22 70,00 68,29 Não 9 67 1,92537

23 70,00 67,11 Não 9 67 0,16418

24 70,00 68,34 Não 10 67 2,00000

25 70,00 67,94 Não 10 67 1,40298

26 70,00 67,79 Não 9 67 1,17910

27 70,00 67,93 Não 9 67 1,38806

28 70,00 93,80 Não 9 92 1,95652

29 70,00 94,02 Não 9 92 2,19565

30 70,00 92,52 Não 9 92 0,56522

31 70,00 93,58 Não 9 92 1,71739

32 70,00 93,33 Não 10 92 1,44565

33 70,00 92,26 Não 9 92 0,28261

34 70,00 94,02 Não 9 92 2,19565

35 70,00 93,89 Não 9 92 2,05435

36 70,00 95,02 Não 9 92 3,28261

37 70,00 118,96 Não 9 115 3,44348

38 70,00 119,77 Não 9 115 4,14783

39 70,00 120,05 Não 9 115 4,39130

40 70,00 120,34 Não 10 115 4,64348

41 70,00 120,29 Não 9 115 4,60000

42 70,00 120,12 Não 9 115 4,45217

43 70,00 120,22 Não 9 115 4,53913

44 70,00 120,19 Não 8 115 4,51304

59

Iteração Massa

(kg)

Força

(N)

Alerta Tempo

(ms)

Força dinamômetro

(N)

Erro

(%)

45 70,00 119,98 Não 8 115 4,33043

46 70,00 145,91 Sim 11 143 2,03496

47 70,00 144,82 Sim 9 143 1,27273

48 70,00 144,76 Sim 10 143 1,23077

49 70,00 144,74 Sim 9 143 1,21678

50 70,00 145,38 Sim 9 143 1,66434

51 70,00 144,84 Sim 9 143 1,28671

52 70,00 145,79 Sim 9 143 1,95105

53 70,00 165,58 Sim 10 169 2,02367

54 70,00 172,78 Sim 10 169 2,23669

55 70,00 172,20 Sim 9 169 1,89349

56 70,00 171,68 Sim 10 169 1,58580

57 70,00 172,12 Sim 10 169 1,84615

58 70,00 171,11 Sim 9 169 1,24852

59 70,00 170,62 Sim 9 169 0,95858

60 70,00 171,72 Sim 9 169 1,60947

61 70,00 171,66 Sim 10 169 1,57396

62 70,00 196,83 Sim 10 193 1,98446

63 70,00 194,91 Sim 9 193 0,98964

64 70,00 196,56 Sim 10 193 1,84456

65 70,00 197,45 Sim 10 193 2,30570

66 70,00 199,08 Sim 9 193 3,15026

67 70,00 200,01 Sim 10 193 3,15026

68 70,00 198,45 Sim 9 193 3,63212

69 70,00 199,40 Sim 10 193 3,31606

70 70,00 191,76 Sim 10 193 0,64249

71 70,00 265,00 Sim 9 263 0,76046

72 70,00 264,96 Sim 10 263 0,74535

73 70,00 265,70 Sim 10 263 1,02662

74 70,00 263,37 Sim 9 263 0,14068

75 70,00 266,12 Sim 10 263 1,18631

60

Iteração Massa

(kg)

Força

(N)

Alerta Tempo

(ms)

Força dinamômetro

(N)

Erro

(%)

76 70,00 265,08 Sim 9 263 0,79087

77 70,00 266,45 Sim 9 263 1,31179

78 70,00 265,62 Sim 10 263 0,99620

79 70,00 266,11 Sim 9 263 1,18251

80 70,00 266,28 Sim 10 263 1,24715

 Foi possível observar um erro relativo máximo de aproximadamente 5,3%, para valores

de força de 47 N e um erro quase constante de aproximadamente 4,6% para valores de força de

115 N. Estes erros são considerados baixos, além do valor apresentado no aplicativo ser maior

do que o medido pelo dinamômetro, o que neste caso, faria com que o alerta fosse enviado para

uma força menor do que os 20%.

 O tempo para a medição dos setenta valores de tensão se manteve entre 8 e 11 ms, o que

facilita a criação e análise de um gráfico que relacione o tempo com a força. Este tempo pode

ser aumentado, bastando que o número de valores de tensão utilizados para o cálculo da média

também seja aumentado. Para este projeto, visou-se um valor de 10 ms.

4.2 Software

 O software desenvolvido para o Arduino não apresentou problemas, assim como o

aplicativo. A comunicação Bluetooth operou como desejado, sem perdas de dados, mostrando-

se bastante eficiente.

 Analisando o código no Android Studio foi possível observar que o aplicativo recebe

um conjunto de valores a cada 1 segundo, e que a opção pelo envio dos dados entre chaves se

mostrou eficiente para que o sincronismo entre o envio de dados pelo Arduino e o recebimento

pelo aplicativo funcionasse de maneira satisfatória.

 O sistema de alerta também funcionou adequadamente, mostrando-se eficiente como

aviso ao usuário.

61

 A opção pelo envio da notificação se deu pelo fato da possibilidade de integração com

smartbands, ou smartwatches. Existe a possibilidade desta implementação, bastando que o

aplicativo seja selecionado como apto a utilizar a smartband ou smartwatch para notificar o

usuário. Considerando que os valores são recebidos com intervalos curtos de tempo, caso seja

feita esta integração, recomenda-se o uso de smartbands ou smartwatches capazes de receber

avisos com esta taxa de tempo.

62

63

5 CONCLUSÃO

 O trabalho proposto consistiu na mudança do sistema de biofeedback desenvolvido

segundo [3], para a muleta instrumentada, desenvolvida segundo [2], utilizando-se da

capacidade de processamento, da memória e da tela dos smartphones.

 Empregando o protocolo de comunicação Bluetooth, presente na grande maioria dos

aparelhos atuais, foi possível desenvolver uma solução que apresenta robustez, atenda às

necessidades de muitos usuários e não apresente altos custos.

A parte de hardware utilizada, possui um circuito baseado no circuito desenvolvido

segundo [3], enquanto que o microcontrolador empregado, o ATmega328P, foi o responsável

pelo recebimento e processamento dos dados vindos do circuito, por apresentar facilidade de

prototipagem e de programação. O módulo, conectado ao microcontrolador, foi o responsável

pela comunicação com o aplicativo, utilizando-se de um protocolo de comunicação sem fio.

Todo este sistema, contendo, circuito, microcontrolador e módulo, demonstra uma solução

simples e barata, além de possuir caráter móvel, o que facilita a sua implementação.

 Por meio de conceitos existentes na programação para Android, foi possível desenvolver

um aplicativo que além de atender as necessidades do projeto, também levasse em consideração

a maneira como os smartphones são utilizados no dia a dia.

 Para analisar os dados obtidos pelo hardware, foi utilizado um dinamômetro conectado

diretamente a haste onde os strain-gauges estão colocados.

Observa-se um erro relativo máximo de 5,3%. No entanto, as variações entre uma

medida e outra obtidas pelo sistema não são relevantes, o que demonstra que uma melhor

calibração da reta que relaciona força e tensão pode ser feita para que os erros sejam menores

e menos variantes.

 A análise do software foi feita a partir dos logs obtidos no Android Studio, verificando

se o dispositivo selecionado correspondia ao desejado, se a conexão foi estabelecida, se os

valores estavam sendo enviados corretamente e se os valores recebidos estavam coerentes. Os

dados recebidos também podem ser analisados pelo arquivo gerado. Esta análise mostrou que

a conexão é eficiente, não apresentando perdas significativas dos valores enviados pelo Arduino

64

e que são recebidos pelo aplicativo, além de apresentar os valores aos usuários em intervalos

de tempo relativamente pequenos.

 O projeto funcionou da forma esperada e demonstrou ser uma boa opção para a

utilização deste sistema como biofeedback para a muleta.

 Durante o desenvolvimento do projeto foram enfrentados problemas que ajudaram na

formação acadêmica, além da busca de novos conhecimentos, como por exemplo, a

programação para Android, utilizando-se a linguagem Java, que não foi estudada durante a

graduação. Enquanto que algumas disciplinas auxiliaram no desenvolvimento do código

utilizado no Arduino.

65

REFERÊNCIAS

[1] Melis, E. H., Torres-Moreno, R., Barbeau, H., Lemaire, E. D., 1999. Analysis of assited-

gait characteristics in persons with incomplete spinal cord injury. Spinal Cord, 37, pp. 430-439

[2] Leite, F. I. L., Cliquet, A. Desenvolvimento de uma bengala instrumentalizada para fins

de acompanhamento clínico. Em: 8º Congresso Brasileiro de Engenharia Biomédica, São José

dos Campos, 2002

[3] Varoto, R., Sato, A. M. R., Lins, C., Cliquet, A. Can Simple Electronic Instrumentation

Asociated with Basic Training Help Users of Assistive Devices? In: Biodevices, 2014.

Universidade de São Paulo e Universidade de Campinas. Epub ahead of print, 2013.

[4] What is Arduino? Disponível em: <https://www.arduino.cc/en/Guide/Introduction>

Acesso em 30 Out. 2017

[5] Módulo Bluetooth RS232 HC-05. Disponível em:

<https://www.filipeflop.com/produto/modulo-bluetooth-rs232-hc-05/> Acesso em 30 Out.

2017

[6] Android ultrapassa marca de 2 bi de dispositivos ativos por mês. Disponível em:

<https://exame.abril.com.br/tecnologia/android-ultrapassa-marca-de-2-bi-de-dispositivos-

ativos-por-mes/> Acesso em 30 Out. 2017

[7] Android Studio. Disponível em: <https://developer.android.com/studio/index.html>

Acesso em 30 Out. 2017

[8] Atividades. Disponível em:

<https://developer.android.com/guide/components/activities.html?hl=pt-br> Acesso em 30

Out. 2017

[9] Serviços. Disponível em:

<https://developer.android.com/guide/components/services.html?hl=pt-br> Acesso em 30 Out.

2017.

66

[10] Serviços Vinculados. Disponível em:

<https://developer.android.com/guide/components/bound-services.html?hl=pt-br> Acesso em

30 Out. 2017

[11] Bluetooth. Disponível em:

<https://developer.android.com/guide/topics/connectivity/bluetooth.html> Acesso em 30 Out.

2017

[12] App Muleta. Disponível em:

< https://github.com/gamatossilva/app_muleta> Acesso em 01 Dez. 2017

[13] Android BluetoothChat Sample. Disponível em:

<https://github.com/googlesamples/android-BluetoothChat/#readme> Acesso em 30 Out. 2017

67

Apêndice A – Conjuntos de valores para a obtenção da curva

Tabela 3 - Primeiro conjunto de valores para a obtenção da curva

Força (N) Tensão (V)

7 0,566

16 0,611

22 0,643

26 0,672

31 0,693

36 0,721

41 0,749

46 0,776

50 0,800

56 0,830

60 0,855

65 0,884

70 0,905

75 0,934

80 0,961

85 0,988

90 1,015

95 1,040

99 1,068

104 1,094

109 1,119

114 1,147

118 1,171

123 1,193

128 1,219

133 1,246

138 1,269

153 1,337

168 1,417

68

Força (N) Tensão (V)

182 1,494

197 1,572

211 1,649

225 1,728

240 1,806

254 1,883

268 1,958

282 2,035

296 2,112

310 2,184

323 2,257

337 2,329

350 2,400

364 2,474

377 2,545

390 2,616

403 2,688

415 2,758

425 2,809

69

Tabela 4 - Segundo conjunto de valores para a obtenção da curva

Força (N) Tensão (V)

10 0,557

15 0,604

25 0,636

30 0,664

35 0,699

40 0,723

44 0,747

49 0,774

54 0,801

58 0,828

63 0,856

68 0,882

73 0,909

78 0,936

83 0,963

87 0,987

92 1,015

97 1,040

102 1,066

107 1,066

111 1,116

116 1,141

121 1,171

126 1,195

132 1,229

136 1,256

141 1,276

152 1,330

166 1,410

181 1,488

195 1,566

70

Força (N) Tensão (V)

205 1,645

223 1,722

237 1,799

251 1,876

265 1,951

279 2,025

293 2,098

306 2,174

320 2,248

333 2,321

346 2,392

360 2,465

373 2,536

386 2,606

393 2,648

406 2,718

422 2,801

71

Tabela 5 - Terceiro conjunto de valores para a obtenção da curva

Força (N) Tensão (V)

10 0,607

18 0,651

25 0,686

29 0,709

33 0,734

39 0,765

44 0,795

49 0,819

54 0,844

59 0,871

64 0,900

68 0,922

73 0,950

78 0,975

83 1,000

88 1,027

93 1,055

98 1,081

103 1,105

107 1,132

112 1,159

117 1,184

123 1,218

127 1,242

132 1,265

136 1,288

141 1,313

152 1,367

166 1,447

180 1,525

195 1,601

72

Força (N) Tensão (V)

205 1,680

223 1,756

237 1,832

251 1,909

265 1,985

275 2,061

293 2,137

307 2,211

320 2,284

334 2,356

347 2,429

360 2,501

374 2,569

387 2,642

400 2,711

412 2,778

425 2,844

73

Apêndice B – Código do Arduino

#include <SoftwareSerial.h>

define cont 70

// Inicialização de variáveis

int i = 0, j = 0;

float massa = 0.0, forca_media = 0.0, correcao = 0.0, peso = 0.0, auxiliar = 0.0,

tensao_media = 0.0, tensao[cont];

String comando = "";

// Variáveis para contagem do tempo

unsigned long m1, m2, tempo;

// Pinos para o recebimento e envio de dados via Bluetooth

SoftwareSerial bluetooth(10, 11);

// Inicialização da comunicação

void setup() {

 Serial.begin(9600);

 bluetooth.begin(9600);

}

void loop() {

 // Zera os valores do vetor que que receberá as tensões enviadas pelo circuito

 for (j = 0; j < cont; j++){

 tensao[j] = 0.0;

 }

 // Espera para receber algum dado do aplicativo

 if(bluetooth.available()){

 while(bluetooth.available()){

 // Transforma a "string" recebida em "float"

 massa = bluetooth.parseFloat();

 // Faz o cálculo do peso

 peso = massa * 9.8;

 }

 // Verifica se a massa é diferente de zero

 if (massa > 0.00){

 // Calcula o valor da correção, para que a reta sempre comece em (0,0)

 for (i = 0; i < 70; i++) {

 int sensorValue = analogRead(A1);

 correcao = correcao + sensorValue * (5.0 / 1023.0);

74

 }

 // Faz a média de 70 valores para um valor mais preciso da correção

 correcao = correcao / cont;

 delay(1000);

 j = 0;

 // Envia os dados até receber a mensagem "Sair"

 while(true){

 delay(1000);

 // Começa o envio dos dados com um abre chave para que possa ser exibido

corretamente

 bluetooth.println("{");

 // Variável utilizada apenas para conferência se houve dados não enviados

 bluetooth.print("Iteracao: ");

 bluetooth.println(j);

 // Inicia contagem do tempo

 m1 = millis();

 // Recebe 70 valores de tensão para uma medida mais precisa e depois faz a média

 for (i = 0; i < cont; i++) {

 int sensorValue = analogRead(A1);

 tensao[i] = sensorValue * (5.0 / 1023.0);

 tensao_media = tensao_media + tensao[i];

 }

 // Termina a contagem do tempo

 m2 = millis();

 // Calcula o tempo gasto para aquisição das tensões

 tempo = m2 - m1;

 tensao_media = tensao_media/cont;

 // Faz a correção para o ponto (0,0) da reta

 auxiliar = tensao_media - correcao;

 tensao_media = fabs(auxiliar);

 // Converte a tensão em força, através da reta obtida pelos pesos padrões

 forca_media = 185.4336 * tensao_media;

 // Envia o valor da massa, que o usuário enviou, apenas para conferência

 bluetooth.print("Massa: ");

 bluetooth.println(massa);

 // Envia o valor da força calculada

 bluetooth.print("Forca: ");

75

 bluetooth.println(forca_media);

 // Caso o valor da força exceda 20% do peso do usuário, envia uma mensagem de alerta

para o aplicativo

 if(forca_media >= 0.2 * peso){

 bluetooth.println("alerta");

 }

 //Envia o tempo gasto na medição das tensões

 bluetooth.print("Tempo: ");

 bluetooth.println(tempo);

 // Termina o envio, fechando a chave

 bluetooth.println("}");

 // Lê o valor enviado pelo aplicativo, se receber a mensagem "Sair", para de enviar os

dados

 char caracter = bluetooth.read();

 comando += caracter;

 delay(1);

 if(comando.indexOf("Sair") >= 0){

 bluetooth.println("sair");

 comando = "";

 break;

 }

 j++;

 }

 }

 }

}

