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RESUMO 

Este trabalho trata-se de uma revisão de tópicos da graduação, como 

dinâmica e vibrações, bem como o estudo de assuntos que não são 

abordados nela, como não linearidades de sistemas dinâmicos. 

Foram realizadas a modelagem e simulação de um pêndulo, com e sem 

amortecimento, de um sistema massa mola amortecedor, com e sem a 

presença de mola cúbica, e de um sistema massa mola amortecedor com 

pêndulo acoplado, com e sem a presença de mola cúbica. Todas as 

simulações foram programadas e realizadas usando o MatLab®. 

Investigou-se como os dois últimos sistemas respondem com a variação da 

frequência de vibração e observou-se comportamentos esperados nos 

sistemas sem a mola cúbica, e comportamentos diversos nos sistemas com 

mola cúbica. 

Palavras-chave: Dinâmica, Vibrações, Dinâmica não linear.  

  



ABSTRACT 

This paper is a review on graduation topics, such as dynamic and vibration, 

as well as deals with issues that are not addressed in it, as nonlinearities of 

dynamic systems. 

It was carried out the modeling and simulation of a pendulum, with and 

without damping, of a mass spring damper system, with and without the 

presence of cubic spring, and of a mass spring damper system with a 

coupled pendulum, with and without the presence of cubic spring. All of them 

were done with the Matlab®. 

It was investigated how the last two systems responded to the variation of 

vibration frequency. Expected behaviors were observed in those systems 

without cubic spring, and diverse behaviors were found in those systems 

with the cubic spring. 

Keywords: Dynamics, Vibration, Nonlinear dynamics. 
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1 Introdução 

Esta seção tem como objetivo apresentar as motivações que envolvem o 

tema em questão e demonstrar os objetivos deste trabalho. 

1.1 Motivação 

Este trabalho de conclusão de curso visa apresentar de forma geral os 

ensinamentos que foram passados para o escritor durante sua graduação 

bem como tópicos relacionados que foram aprendidos ao longo desta.  

Basicamente este trabalho se resume à um estudo em engenharia mecânica, 

com ênfase nos tópicos de: dinâmica, vibrações e não-linearidades. 

Dinâmica  

Mecânica é o estudo de corpos que estão sujeito às forças, seja em 

movimento ou parados. Ela pode ser divida em estática e dinâmica. Estática 

é relacionada a corpos que estão em repouso ou em velocidade constante. 

Dinâmica discorre sobre corpos que estão sujeito à um movimento 

acelerado. [1] 

Esta vertente da engenharia mecânica é abordada desde o começo da 

graduação até seu final. O estudo dela está diretamente relacionado com a 

área de mecatrônica. Por exemplo, estudos na área de dinâmica de corpos 

rígidos foram realizados com o intuito de obter um modelo simplificado de 

uma máquina de cinemática paralela (figura 1.1) , e no final foi verificado 

que esta estratégia trazia resultados com erros pequenos e grande eficácia 

computacional. [2] 
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Figura 1.1 Máquina de cinemática paralela [2] 

Vibração 

Qualquer movimento que se repete num intervalo de tempo é chamado de 

vibração ou oscilação. O oscilar de um pêndulo ou o movimento de uma mola 

que foi esticada são exemplos de vibrações. Esta ciência lida com o estudo 

de movimentos oscilatórios e as forças associadas a eles. [3] 

Essa vertente da engenharia mecânica é muito importante no nosso 

cotidiano, pois vibrações estão em todos os lugares, como o vibrar do 

tímpano que nos faz ouvir, ou os movimentos oscilatórios de pernas e braços 

que nos fazem andar [3]. Além disso, ela se faz presente no contexto da 

mecatrônica. A referência [4] aborda um estudo da vibração de um sistema 

oscilatório acoplado à um motor excêntrico com folga (figura 1.2), o que 

gera um sistema descontínuo mas linear. O estudo revelou que para certos 

parâmetros, o movimento é caótico. No entanto, um novo método de 

controle de caos foi usado e o movimento caótico foi amenizado.  
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Figura 1.2 - Sistema Massa Mola Amortecedor com Motor Excêntrico acoplado [4] 

Como podemos notar, vários estudos foram feitos em ambas as áreas de 

dinâmica e vibrações. Ainda mais, existem outros estudos que envolvem 

ambas. 

A referência [5] trata de um estudo dinâmico de um sistema que gera 

energia através do movimento das ondas. Nesta tese, o autor modela como 

o contra peso do sistema reage aos movimentos da ondas. O sistema pode 

ser modelado como um pêndulo conectado à um corpo que sofre forças 

externas que geram movimento. 

Um estudo sobre um sistema mecânico Vibro-Impacto é feito em [6]. Nele, 

um sistema de dois graus de liberdade compostos por duas massas 

diferentes conectadas por uma mola de dois estágios é analisado. A partir 

dos dados obtidos, notou-se que para determinadas frequências de vibração 

o movimento se apresentava caótico.  

Não Linearidade 

Em contraste aos sistemas lineares, a resposta de um sistema não-linear 

dada uma soma ponderada de sinais de entrada não será uma soma 

ponderada das respostas à estes sinais. [7] 
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Muitos sistemas dinâmicos possuem certo grau de não-linearidade, porém, 

durante nossa graduação, linearizações são feitas com o intuito de simplificar 

as equações que modelam o movimento destes sistemas. Mas em certas 

circunstâncias, temos que levar em conta essa não-linearidade para 

computarmos pontos que, antes, linearizações geravam erros. 

Alguns estudos de fato levam em conta a questão de não-linearidades. Por 

exemplo, em [5], as equações que modelam o sistema são não-lineares 

(principalmente devido a aparição de senos e cossenos). Dentro deste 

contexto, o autor usa da ferramenta matemática MatLab, em especial a 

função ode45(). Esta função se baseia numa fórmula explícita de Runge-

Kutta(4,5) [8]. Isto não será detalhado pois este não é o objetivo deste 

trabalho, no entanto esta função será usada para simular alguns casos no 

decorrer deste. 

1.2 Objetivos 

Este trabalho de conclusão de curso visa gerar um documento que compute 

e revise tópicos importantes abordados na graduação do autor, e também 

tenta introduzir tópicos extracurricalares relacionados aos anteriores com o 

intuito de se aprofundar mais em cada tópico. Tendo isto em vista, podemos 

listar os objetivos abaixo: 

1. Revisão em dinâmica; 

2. Revisão em vibrações; 

3. Introdução no âmbito da não-linearidade; 

4. Modelagem e simulação de um sistema massa, mola e amortecedor 

com pêndulo acoplado, com e sem mola cúbica. 

 

  



13 
 

2 Revisão Bibliográfica 

Esta seção busca revisar conhecimentos em dinâmica e vibrações, que serão 

utéis no desenvolvimento deste trabalho. Outros conhecimentos pertinentes 

ao trabalho serão desenvoldidos no capítulo Desenvolvimento. 

2.1 Dinâmica  

Dentro desta seção, será feita uma revisão de como obter a lei de 

movimento de um corpo através da segunda lei de Newton. 

A segunda lei de Newton define que quando uma força desbalanceada age 

num corpo, este corpo vai acelarar na direção desta força com magnitude 

proporcional a essa. A segunda lei de Newton para movimento pode ser 

escrita: 

𝐹 = 𝑚 ∙ 𝑎      (2.1) 

Onde 𝐹 é a força aplicada (medida em Newton 𝑁), 𝑚 a massa (medida em 

𝑘𝑔) do corpo e 𝑎 a aceleração (medida em 𝑚/𝑠2) resultante desta força. [1] 

Ainda mais, podemos extender este conceito para o caso onde há mais de 

uma força aplicada no corpo. Neste caso, temos que a soma vetorial das 

forças gerará um movimento no sentido da força resultante com aceleração 

proporcional a esta [1]. Assim temos: 

∑ 𝐹⃗ = 𝑚 ∙ 𝑎⃗      (2.2) 

Onde os componentes da equação 2.2 possuem mesma dimensão que 2.1. 

A equação 2.2 será usada durante todo o desenvolvimento deste trabalho. 
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2.2 Vibrações  

Dentro desta seção será visto o modelo do movimento de um sistema 

mecânico oscilatório, como obter sua equação e como obter alguns dados 

como frequência natural e o período de oscilação. 

Um sistema vibratório, ou oscilatório, em geral, inclui elementos que 

armazenam energia potencial (mola) e energia cinética (massa) e elementos 

no qual energia é gradualmente perdida (amortecedor).  

Um sistema vibratório pode sofrer dois tipos de vibrações: a vibração livre e 

a vibração forçada. A vibração livre é vista quando o sistema sofre um 

distúrbio inicial e é deixado para vibrar, ou seja, nenhuma força externa age 

no sistema; um pêndulo deslocado de sua posição inicial é um exemplo. A 

vibração forçada acontece quando o sistema sofre a ação de um força 

(geralmente um força do tipo oscilatória); por exemplo um corpo sobre a 

influência de um motor de massa excêntrica. Se a frequência dessa força for 

igual a frequência natural do sistema, o evento de ressonância ocorre, e 

então o sistema pode ser sujeito a grandes oscilações, o que não é desejável 

na maioria dos casos. [3] 

Por isso se faz importante o estudo de vibrações e a obtenção deste tipo de 

dados. Por exemplo, seja um pêndulo fixo com dado na figura 2.1: 
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Figura 2.1 - Pêndulo de oscilação livre. 

A modelagem deste sistema será feita no capítulo 3, e é dada por: 

𝜃̈ +
𝑔

𝐿
∙ 𝜃 = 0      (2.3) 

Onde 𝑔 é a gravidade dada por 9.81 𝑚/𝑠2 e 𝐿 é o tamanho da barra. Neste 

caso foi desconsiderado atrito de junta e o atrito do ar, bem como |𝜃| < 20°. 

Assim, temos que a frequência natural do sistema é dada por: 

𝜔𝑛 = √𝑔/𝐿      (2.4) 

Onde 𝜔𝑛 é dada em 𝑟𝑎𝑑/𝑠 [3]. Ainda, temos que o período de oscilação para 

o pêndulo livre é dado por: 

𝑇 = 2𝜋√
𝐿

𝑔
      (2.5) 
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3 Desenvolvimento 

 Esta seção se resume nos seguintes tópicos : 

- Modelagem de pêndulo simples; 

- Modelagem de pêndulo com amortecimento (atrito do ar e de junta); 

- Modelagem de um sistema massa, mola e amortecedor; 

- Modelagem de um sistema massa, mola e amortecedor com mola 

cúbica; 

- Modelagem de um sistema massa, mola e amortecedor com pêndulo 

acoplado; 

- Modelagem de um sistema massa, mola e amortecedor com mola 

cúbica e pêndulo acoplado. 
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3.1 Pêndulo Simples 

Um pêndulo simples é um objeto suspenso e fixado num ponto fixo e que se 

pode mover livremente, como mostra a figura 2.1.  

Para podermos modelar este sistema dinâmico, serão assumidas algumas 

hipóteses: 

 O objeto está ligado ao ponto de fixação através de uma barra que 

possui massa negligenciável e que não se extende; 

 O objeto se move sem atrito de junta ou resistência do ar; 

 O movimento ocorre no plano 2-D, ou seja, o objeto não possui 

trajetória elíptica. 

Quando o objeto é tirado de sua posição de equilíbrio, ele é então sujeito à 

força que a gravidade gera, e se houver componente tangencial, o objeto 

tende a oscilar em torno da sua posição de equilíbrio. 

3.1.1 Modelagem do pêndulo 

Neste tópico serão mostradas as equações que modelam a dinâmica do 

pêndulo. O pêndulo desenvolve um movimento circular de arco 𝐿. As forças q 

atuantes no pêndulo são: 

 Peso: 𝑚𝑔; 

 Tensão no fio: 𝐹𝑓; 

O movimento do pêndulo pode ser decomposto na sua direção normal e 

tangencial. Isto é feito porque o pêndulo está sob o efeito de acelerações 

normal (movimento circular) e tangencial (sua velocidade muda no tempo). 

Assim, podemos equacionar as acelerações da seguinte maneira: 

𝑎𝑛 = 𝜔2 ∙ 𝐿       (3.1) 

𝑎𝑡 = 𝛼 ∙ 𝐿          (3.2) 
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Abaixo segue o diagrama de corpo livre: 

 

Figura 3.1 - Diagrama de Forças num Pêndulo 

Usando a segunda lei de Newton, temos: 

𝑚 ∙ 𝑎𝑛 = 𝐹𝑓 − 𝑚 ∙ 𝑔 ∙ cos(𝜃)      (3.3) 

𝑚 ∙ 𝑎𝑡 = −𝑚 ∙ 𝑔 ∙ 𝑠𝑒𝑛(𝜃)             (3.4) 

Analisando as equações 3.3 e 3.4 podemos tirar algumas conclusões. Quando 

o objeto atinge a posição em que foi deslocada, ou seja 𝜃 =  𝜃𝑖𝑛𝑖𝑐𝑖𝑎𝑙, a sua 

velocidade é igual a zero; consequentemente a aceleração normal se iguala a 

zero e a força de tração 𝐹𝑡 atinge seu mínimo valor. Temos ainda que a 

aceleração tangencial atinge seu máximo valor, pois 𝜃 = 𝜃𝑖𝑛𝑖𝑐𝑖𝑎𝑙 = 𝜃𝑚á𝑥𝑖𝑚𝑜, e 

assim 𝑠𝑒𝑛(𝜃) = 𝑠𝑒𝑛𝑚á𝑥𝑖𝑚𝑜(𝜃). 
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No entanto, quando o pêndulo atinge a posição de equílibro, a acelaração 

tangencial é igual a zero, pois 𝜃 = 0. Mas cos(𝜃) = 1 e portanto 𝐹𝑡 e a 

velocidade do pêndulo atinge o máximo. Isto é registrado na figura 3.2. 

 

Figura 3.2 - Diagrama de acelerações e forças em diferentes posições. 

As equações 3.3 e 3.4 servem para obter o valor da tensão no fio e para 

descrever o movimento do pêndulo, respectivamente.  

Reescrevendo a equação 3.4, temos: 

𝑎𝑡 + 𝑔 ∙ 𝑠𝑒𝑛(𝜃) = 0             (3.5) 

Podemos reescrever a aceleração angular 𝛼 como segue: 

𝛼 =
𝑑𝜈

𝑑𝑡
=

𝑑2𝜃

𝑑𝑡
                       (3.6) 

E aplicando as equações 3.6 e 3.2 em 3.5, obtemos: 

𝑑2𝜃

𝑑𝑡
∙ 𝐿 + 𝑔 ∙ 𝑠𝑒𝑛(𝜃) = 0      (3.7) 
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E finalmente podemos reescrever a equação 3.7 para obter a equação 

diferencial de movimento do pêndulo simples: 

𝑑2𝜃

𝑑𝑡
+

𝑔

𝐿
∙ 𝑠𝑒𝑛(𝜃) = 0       (3.8) 

3.1.2 Período de um pêndulo simples 

Se considerarmos apenas ângulos pequenos, podemos utilizar a seguinte 

linearização: 

𝑠𝑒𝑛(𝜃) = 𝜃                           (3.9) 

Aplicando a equação 3.9 em 3.8: 

𝑑2𝜃

𝑑𝑡
+

𝑔

𝐿
∙ 𝜃 = 0                        (3.10) 

E então, podemos obter a frequência natural do pêndulo, como visto na 

seção anterior: 

𝜔 = √
𝑔

𝐿
                                          (3.11)  

Assim podemos obter o período natural do pêndulo: 

𝑇 = 2𝜋√
𝐿

𝑔
                                       (3.12) 

Vale lembrar que estas equações funcionam muito bem apenas para ângulos 

pequenos, e erros podem ocorrer caso usada para variações angulares muito 

grandes. 
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3.2 Pêndulo Simples com amortecimento 

No capítulo anterior vimos a modelagem de um pêndulo simples. Agora será 

introduzido amortecimento neste sistema pois em sistemas reais o pêndulo 

sofre resistência do ar e atrito de juntas. 

3.2.1 Amortecimento por resistência do ar 

Qualquer objeto que esteja realizando movimento dentro de um fluído sofre 

uma força contrária a este movimento. Esta força é chamada força de 

arrasto, ou resistência de fluído. Esta força depende da velocidade do objeto 

dentro do fluído. [9]  

A equação genérica para esta força é dada por: 

𝐹𝑎 =
1

2
∙ 𝐶𝑎 ∙ 𝜌𝑓 ∙ 𝐴 ∙ 𝜈2              (3.13) 

Onde 𝜌𝑓 é a densidade do fluído, 𝐴 é a área do objeto, 𝜈 é a velocidade do 

objeto e 𝐶𝑎 é o coeficiente de arrasto. Este último parâmetro depende do 

número de Reynolds.  

O número de Reynold e a equação do coeficiente de arrasto são mostradas 

abaixo: 

𝑅𝑒 =
𝜌𝑓 ∙ 𝑙 ∙ 𝜈

𝜂
                            (3.14) 

𝐶𝑎 ≈
24

𝑅𝑒
+

6

1 + √𝑅𝑒
+ 0.4      (3.15) 

Onde 𝜂 é a viscosidade dinâmica do fluído e 𝑙 é o comprimento do objeto. O 

número de Reynolds é importante pois define o comportamento do fluído e 

especialmente a transição entre o escoamento laminar e o escoamento 

turbulento. 
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Neste estudo temos um número de Reynolds bem pequeno e por isso 

podemos definir como estado laminar. Se analisarmos a equação 3.15, nota-

se que para números de Reynolds pequenos (𝑅𝑒 < 1) o primeiro termo da 

equação prevalece sobre os outros, e podemos aproximar 𝐶𝑎 ≈
𝑅𝑒

24
. Assim, 

substituindo na equação 3.13, obtemos: 

𝐹𝑎 =
1

2
∙

24

𝑅𝑒
∙ 𝜌𝑓 ∙ 𝐴 ∙ 𝜈2                                            (3.16) 

E finalmente, utilizando a equação 3.14 na 3.16, temos que: 

𝐹𝑎 =
1

2
∙

24

𝜌𝑓 ∙ 𝑙 ∙ 𝜈
𝜂

∙ 𝜌𝑓 ∙ 𝐴 ∙ 𝜈2 = 12 ∙ 𝜂 ∙
𝐴

𝑙
∙ 𝜈      (3.17) 

A equação 3.17 é a equação de Stokes para objetos eféricos [9]. Esta 

equação é aplicável para objetos que se movem lentamente dentro de um 

fluído sem turbulência, por isso está sendo utilizada neste contexto. 

Podemos ainda chamar 12 ∙ 𝜂 ∙ 𝐴/𝑙 de 𝑐 (coeficiente de arrasto para 

escoamento laminar). Nota-se que este parâmetro depende das 

características do fluído e do objeto. Assim, obtemos: 

𝐹𝑎 = 𝑐 ∙ 𝜈                                                                    (3.18) 

Como explicado anteriormente, esta força age contrária ao movimento do 

objeto. Assim, podemos fazer um novo diagrama de corpo livre para o 

pêndulo. 
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Figura 3.3 - Diagrama de forças de um pêndulo com arrasto 

Usando a segunda lei de Newton, temos: 

𝑚 ∙ 𝑎𝑛 = 𝐹𝑓 − 𝑚 ∙ 𝑔 ∙ cos(𝜃)                           (3.19) 

𝑚 ∙ 𝑎𝑡 =  −𝑚 ∙ 𝑔 ∙ 𝑠𝑒𝑛(𝜃) − 𝑐 ∙ 𝜈                    (3.20) 

Como dito anteriormente, usa-se a equação tangencial para obter o modelo 

de movimento do pêndulo. 

Agora basta substituir os termos lineares por seus respectivos valores 

angulares. Assim, podemos reescrever equação 3.20: 

𝑚 ∙ 𝛼 ∙ 𝐿 = −𝑚 ∙ 𝑔 ∙ 𝑠𝑒𝑛(𝜃) − 𝑐 ∙ 𝜔 ∙ 𝐿            (3.21) 

𝑚 ∙
𝑑2𝜃

𝑑𝑡2
∙ 𝐿 = −𝑚 ∙ 𝑔 ∙ 𝑠𝑒𝑛(𝜃) − 𝑐 ∙

𝑑𝜃

𝑑𝑡
∙ 𝐿      (3.22)  

Se isolarmos a aceleração e colocarmos todos os parâmetros para o mesmo 

lado, temos: 

𝑑2𝜃

𝑑𝑡2
+

𝑔 ∙ 𝑠𝑒𝑛(𝜃)

𝐿
+

𝑐

𝑚
∙

𝑑𝜃

𝑑𝑡
= 0                         (3.23) 
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3.2.2 Amortecimento por atrito de junta 

No estudo da mecânica temos que atrito é um tipo de amortecimento e na 

maioria dos casos ele pode ser modelado proporcionalmente à velocidade 

linear do objeto. No entanto, neste caso, o sistema que modela a conexão 

entre o objeto e a junta é um sistema rotacional. 

Desta forma, ao invés de falarmos em força contrária ao movimento, 

dizemos que existe um torque contrário ao movimento. Este torque age na 

junta e consequentemente afeta o movimento do pêndulo. A fórmula para 

este torque pode ser encontrada abaixo [3]: 

𝜏𝑗 = 𝑗 ∙ 𝜔                          (3.24) 

Pode-se observar que quando há amortecimento viscoso num sistema 

rotacional, temos que o torque é proporcional a velocidade angular ao invés 

da linear. Neste caso o coeficiente de amortecimento do sistema é chamado 

de 𝑗. 

No entanto estamos interessados em achar a força que este torque causa no 

sistema. Assim, a fórmula geral de torque pode ser usada: 

𝜏𝑗 = 𝐹𝑗 × 𝐿                        (3.25) 

Como nosso sistema foi simplificado para o 2-D, e como 𝐹𝑗 e 𝐿 são sempre 

perpendiculares entre si, a equação 3.25 pode ser simplificada: 

𝜏𝑗 = 𝐹𝑗 ∙ 𝐿                             (3.26) 

E para obtermos a equação da força de amortecimento, usamos a equação 

3.24 na 3.26: 

𝑗 ∙ 𝜔 = 𝐹𝑗 ∙ 𝐿                       (3.27) 

𝐹𝑗 =
𝑗 ∙ 𝜔

𝐿
                            (3.28) 
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A equação 3.28 será utilizada para obter a equação diferencial de movimento 

do pêndulo. 

O diagrama de forças é semelhante ao que encontramos no capítulo anterior 

(veja seção 3.2.1). A única diferença é a expressão da força de 

amortecimento. 

 

Figura 3.4 Diagrama de forças de pêndulo que sofre atrito de junta 

Usando a segunda lei de Newton, temos: 

𝑚 ∙ 𝑎𝑛 = 𝐹𝑓 − 𝑚 ∙ 𝑔 ∙ cos(𝜃)             (3.29) 

𝑚 ∙ 𝑎𝑡 = −𝑚 ∙ 𝑔 ∙ 𝑠𝑒𝑛(𝜃) −
𝑗

𝐿
∙ 𝜔      (3.30) 

Para obter a equação diferencial de movimento a equação da parte 

tangencial é usada. 

Como feito anteriormente, vamos trocar as partes lineares por suas 

respectivas representações angulares: 

𝑚 ∙ 𝛼 ∙ 𝐿 = −𝑚 ∙ 𝑔 ∙ 𝑠𝑒𝑛(𝜃) −
𝑗

𝐿
∙ 𝜔         (3.31) 
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𝑚 ∙
𝑑2𝜃

𝑑𝑡2
∙ 𝐿 = −𝑚 ∙ 𝑔 ∙ 𝑠𝑒𝑛(𝜃) −

𝑗

𝐿
∙

𝑑𝜃

𝑑𝑡
      (3.32) 

Agora basta isolarmos a aceleração e obtemos a equação final de 

movimento: 

𝑑2𝜃

𝑑𝑡2
+

𝑔

𝐿
∙ 𝑠𝑒𝑛(𝜃) +

𝑗

𝑚𝐿2
∙

𝑑𝜃

𝑑𝑡
= 0                (3.33) 
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3.3 Sistema massa, mola e amortecedor 

Neste capítulo será feita a modelagem de um sistema massa, mola e 

amortecedor. Este é sistema muito comum no âmbito da mecânica e pode 

ser encontrado na figura 3.5. 

 

Figura 3.5 Esquema de um sistema massa-mola-amortecedor 

Se fizermos um diagrama de corpor livre na massa, temos as forças 

atuantes: 

 O peso: 𝑀𝑔; 

 A força normal: 𝐹𝑛; 

 A força mola: 𝐹𝑠; 

 A força de amortecimento: 𝐹𝑏; 

 A força externa: 𝐹𝑒. 

Usando a lei de Hook, a expressão para a força mola é obtida: 

𝐹𝑠 = 𝐾 ∙ 𝑥      (3.34) 

O coeficiente K é a constante de mola. Esta só é útil quando a mola trabalha 

dentro de seu limite elástico, e por isso a força gerada pela mola é elástica.  
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Também notamos que esta é uma equação linear, ou seja, se a massa está 

em sua posição de equílibrio 𝑥 = 0, não haverá força. Mas se houver algum 

deslocamento, surgirá uma força agindo no sentido de trazer o objeto de 

volta a sua posição de equílibro. 

A força externa que aplicaremos neste sistema é dado pela equação abaixo: 

𝐹𝑒 = 𝐹0 cos(𝜔𝑡)     (3.35) 

Onde 𝐹0 é uma força constante dado em 𝑘𝑔 ∙
𝑚

𝑠2  (𝑁) e 𝜔 é a frequência com 

que essa força varia dado em 𝑠−1 (𝐻𝑧). Este tipo de força oscilatória é usada 

nos estudos de vibrações para podermos analisar a resposta de um sistema 

quando variamos a frequência de oscilação. [3] 

Finalmente, para equacionar o movimento do sistema temos que conhecer o 

a fórmula da força de amortecimento. Este tipo de força já foi explicado 

anteriormente, e a única diferença é que temos agora um sistema linear, e 

não mais rotacional. Assim, a equação da força de amortecimento é dada por 

[3]: 

𝐹𝑏 = 𝑏 ∙ 𝜈      (3.36) 

Neste caso temos 𝑏 como coeficiente de amortecimento. Esta força varia 

linearmente com a velocidade do objeto e também age no sentido contrário 

ao movimento. 

O diagrama de força na massa 𝑀 pode ser encontrado abaixo: 
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Figura 3.6 - Diagrama de forças atuantes na massa M 

Usando a segunda lei de Newton, temos: 

𝑀 ∙ 𝑎𝑥 = −𝐾 ∙ 𝑥 − 𝑏 ∙ 𝜈 + 𝐹0 cos(𝜔𝑡)      (3.37) 

𝐹𝑛 = 𝑀 ∙ 𝑔                                                        (3.38) 

As equação 3.37 e 3.38 são usadas para descrever o movimento da massa e 

a força normal que nela age, respectivamente. 

Para acharmos a equação diferencial que modela o movimento da massa 

basta reescrevermos aceleração e velocidade na suas formas diferenciais: 

𝑀 ∙
𝑑2𝑥

𝑑𝑡2
= −𝐾 ∙ 𝑥 − 𝑏 ∙

𝑑𝑥

𝑑𝑡
+ 𝐹0 cos(𝜔𝑡)      (3.39) 

E então, basta isolarmos a aceleração e obtemos a equação diferencial que 

descreve o movimento da massa: 

𝑑2𝑥

𝑑𝑡2
+

𝑏

𝑀
∙

𝑑𝑥

𝑑𝑡
+

𝐾

𝑀
∙ 𝑥 = 𝐹0 cos(𝜔𝑡)                (3.40) 
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Previamente, na seção do pêndulo, foi encontrado a equação de período do 

pêndulo para saber quando este sistema poderia entrar em ressonância. E 

nesta seção será calculada a equação de período do sistema massa-mola 

pelo mesmo motivo. 

Isto está sendo feito porque nos próximos modelos, os dois modelos serão 

fixados e será necessário saber a frequência de cada um deles para saber 

quando entrarão em ressonância. 

A equação diferencial dos sistemas massa e mola é a equação 3.40 sem o 

termo de amortecimento e sem a força externa: 

𝑑2𝑥

𝑑𝑡2
+

𝐾

𝑀
∙ 𝑥 = 0                    (3.41) 

E então podemos obter a frequência natural, como a equação 2.4: 

𝜔 = √
𝐾

𝑀
                                (3.42) 

E então o período do sistema massa-mola é obtido: 

𝑇 = 2𝜋√
𝑀

𝐾
                            (3.43) 
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3.4 Sistema massa mola amortecedor pêndulo 

Este capítulo aborda um sistema muito semelhante àquele discutido no 

capítulo 3.3. De fato, podemos usar a própria figura 3.7 para exemplificar 

este modelo. No entanto, neste capítulo utilizaremos uma mola cúbica no 

lugar da antiga mola linear. 

 

Figura 3.7 - Modelo da seção 3.3 com mola cúbica 

Elementos não lineares, como uma mola cúbica, aparecem em inúmeras 

aplicações como as molas presentes nas suspensões dos carros e aparelhos 

microeletromecânicos uniaxiais na presença de atuação eletrostácia [10]. 

Para uma mola não linear, a força desta 𝐹𝑠(𝑥) é uma função não linear do 

deslocamento da variável 𝑥. Esta função pode ser vista como uma 

combinação dos componentes lineares e não lineares da mola em questão. 

Para uma mola cúbica, podemos escrever a função da força que ela exerce 

dado um deslocamento 𝑥 como: 

𝐹𝑠(𝑥) = 𝐾𝑥 + 𝛼𝐾𝑥3          (3.44) 

Onde 𝐾𝑥 representa a resposta linear do sistema, e 𝛼𝐾𝑥3 representa a 

resposta não linear. Neste contexto, 𝛼 representa o coeficiente de rigidez do 

termo não linear em termos da constante linear da mola 𝐾. A quantidade 𝛼 
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pode ser positiva ou negativa. A mola cujo 𝛼 é positivo é chamada do tipo 

hardening, e cujo 𝛼 é negativo é chamada do tipo softening [10]. 

Agora, para obter a equação que descreve o movimento na direção x, basta 

substituir a equação 3.44 na equação 3.40: 

𝑑2𝑥

𝑑𝑡2
+

𝑏

𝑀
∙

𝑑𝑥

𝑑𝑡
+

𝐾

𝑀
∙ 𝑥 +

𝛼𝐾

𝑀
∙ 𝑥3 = 𝐹0 cos(𝜔𝑡)     (3.45)  
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3.5 Sistema massa mola amortecedor pêndulo 

Neste item iremos abordar os sistemas massa, mola e amortecedor com 

pêndulo acoplado. Este estudo pode ser divido em dois subsistemas: o 

pêndulo e o sistema massa, mola e amortecedor; e tem como finalidade 

discutir como um influencia o outro, e vice versa. 

A Figura 3.8 descreve o sistema como um todo: 

 

Figura 3.8 - Esquema do sistema massa-mola-amortecedor-pêndulo 

Como vemos na figura 3.8 acima, o pêndulo oscila livremente no plano 

enquanto a massa descreve um movimento horizontal. Devido às leis da 

mecânica [1], forças internas aparecerão quando dividirmos o sistema em 

dois subsistemas. Estas são devido a interação de dois corpos diferentes. 

Primeiramente analisamos o subsistema pêndulo para obtermos expressões 

destas forças. Neste caso, o ponto de junta que sofre estas forças como pode 

ser visto abaixo: 
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Figura 3.9 - Diagrama de corpo livre do subsistema pêndulo 

Aplicando as leis da mecânica, obtemos: 

𝐻 = −𝑚 ∙ 𝑎𝑝𝑥 −
𝑗

𝐿
∙ 𝜃̇ ∙ cos(𝜃)                    (3.46) 

𝑉 = −𝑚 ∙ 𝑎𝑝𝑦 + 𝑚 ∙ 𝑔 +
𝑗

𝐿
∙ 𝜃̇ ∙ 𝑠𝑒𝑛(𝜃)      (3.47) 

Das equações acima temos que 𝑎𝑝𝑥 e 𝑎𝑝𝑦 são as acelarações absolutas da 

massa 𝑚 na direção 𝑥 e 𝑦, respectivamente. 

Ainda, temos que as relações do movimento de translação e angular 

(restrições geométricas) podem ser escritas: 

𝑥𝑝𝑥 = 𝑥 + 𝐿 ∙ 𝑠𝑒𝑛(𝜃)      (3.48) 

𝑥𝑝𝑦 = 𝐿 − 𝐿 ∙ cos(𝜃)      (3.49) 

Onde 𝑥𝑝𝑥 e 𝑥𝑝𝑦 são os deslocamentos absolutos da massa 𝑚 na direção x e y, 

respectivamente. Assim, se derivarmos duas vezes estas equações, 
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obteremos as equações das acelerações absolutas em termos de 𝑥 e 𝜃, como 

segue: 

𝜈𝑝𝑥 =
𝑑𝑥𝑝𝑥

𝑑𝑡
= 𝑥̇ + 𝐿 ∙ 𝜃̇ ∙ cos(𝜃)                                      (3.50) 

𝑎𝑝𝑥 =
𝑑𝜈𝑝𝑥

𝑑𝑡
= 𝑥̈ + 𝐿 ∙ 𝜃̈ ∙ sen(𝜃) − 𝐿 ∙ 𝜃̇2 ∙ cos(𝜃)      (3.51) 

𝜈𝑝𝑦 =
𝑑𝑥𝑝𝑦

𝑑𝑡
= 0 + 𝐿 ∙ 𝜃̇ ∙ 𝑠𝑒𝑛(𝜃)                                      (3.52) 

𝑎𝑝𝑦 =
𝑑𝜈𝑝𝑦

𝑑𝑡
= 𝐿 ∙ 𝜃̈ ∙ 𝑠𝑒𝑛(𝜃) + 𝐿 ∙ 𝜃̇2 ∙ cos(𝜃)             (3.53) 

Substituindo as equações 3.51 e 3.53 em 3.46 e 3.47, respectivamente, 

temos: 

𝐻 = −𝑚 ∙ 𝑥̈ + 𝑚 ∙ 𝐿 ∙ 𝜃̇2 ∙ 𝑠𝑒𝑛(𝜃) − 𝑚 ∙ 𝐿 ∙ 𝜃̈ ∙ cos(𝜃) −
𝑗

𝐿
∙ 𝜃̇ ∙ cos(𝜃)       (3.54) 

𝑉 = −𝑚 ∙ 𝐿 ∙ 𝜃̇2 ∙ cos(𝜃) − 𝑚 ∙ 𝐿 ∙ 𝜃̈ ∙ 𝑠𝑒𝑛(𝜃) + 𝑚 ∙ 𝑔 +
𝑗

𝐿
∙ 𝜃̇ ∙ 𝑠𝑒𝑛(𝜃)      (3.55) 

Agora que as forças internas foram obtidas, podemos analisar o outro 

subsistema: 

 

Figura 3.10 - Diagrama de corpo livre do subsistema massa, mola e amortecedor 
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O sistema apresentado pela figura 3.10 já foi estudado na seção 3.4, com 

exceção das novas forças internas devido à ligação do corpo com o pêndulo. 

Aplicando a lei Newton na direção x (não existe movimento na direção y), 

temos: 

𝑀 ∙ 𝑥̈ + 𝑏 ∙ 𝑥̇ + 𝐾 ∙ 𝑥 − 𝐻 = 𝐹0 cos(𝜔𝑡)      (3.56) 

Combinando as equações 3.56 com 3.54, temos: 

(𝑀 + 𝑚) ∙ 𝑥̈ + 𝑏 ∙ 𝑥̇ + 𝐾 ∙ 𝑥 − 𝑚 ∙ 𝐿 ∙ 𝜃̇2 ∙ 𝑠𝑒𝑛(𝜃) + 𝑚 ∙ 𝐿 ∙ 𝜃̈ ∙ cos(𝜃) +
𝑗

𝐿
∙ 𝜃̇ ∙ cos(𝜃)

= 𝐹0 cos(𝜔𝑡)      (3.57) 

Como mencionado anteriormente, o sistema é composto de dois movimentos 

diferentes; e por isso, necessita-se duas equações que os caracterizam. Para 

obtermos a segunda equação, que descreve o movimento do pêndulo (ou 𝜃),  

tomaremos como referência o pivô móvel, caracterizando assim um sistema 

de referência relativa (sistema não inercial) [1]. Assim, obtemos os seguinte 

diagrama de forças: 

 

Figura 3.11 - Subsistema pêndulo com referência não inercial 

Se comparmos com a figura 3.3, vemos que a única diferença é que agora 

existe uma força adicional devido a aceleração do pivô. 



37 
 

Usamos, anteriormente, a equação relacionada à direção tangencial para 

obter a equação de movimento do pêndulo. E assim faremos para este caso 

também. Aplicando a lei de Newton na direção tangencial, temos: 

𝑚 ∙ 𝑎𝑡 = −𝑚 ∙ 𝑔 ∙ 𝑠𝑒𝑛(𝜃) −
𝑗

𝐿
∙ 𝜃̇ − 𝑚 ∙ 𝑥̈ ∙ cos(𝜃)      (3.58) 

Se passarmos o termo linear 𝑎𝑡 para sua forma angular e isolarmos a 

aceleração angular, obtemos então a equação de movimento do subsistema 

pêndulo: 

𝜃̈ +
𝑔

𝐿
∙ 𝑠𝑒𝑛(𝜃) +

𝑗

𝑚 ∙ 𝐿2
∙ 𝜃̇ +

𝑥

𝐿

̈
∙ cos(𝜃) = 0             (3.59) 

3.6 Sistema massa, mola e amortecedor com mola cúbica e pêndulo 

acoplado 

Esta seção aborda um sistema muito semelhante àquele discutido na seção 

3.5, com a inclusão de uma mola cúbica, como descrito na seção 3.4. Assim, 

obtemos a figura abaixo que caracteriza o modelo a ser estudado: 
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Figura 3.12 - Sistema massa-mola-amortercedor pêndulo não linear 

Assim, se aplicarmos o termo não linear na equação 3.57, obtemos a 

equação diferencial abaixo que modela o movimento na coordenada 𝑥 do 

sistema: 

(𝑀 + 𝑚) ∙ 𝑥̈ + 𝑏 ∙ 𝑥̇ + 𝐾 ∙ 𝑥 + 𝛼 ∙ 𝐾 ∙ 𝑥3 − 𝑚 ∙ 𝐿 ∙ 𝜃̇2 ∙ 𝑠𝑒𝑛(𝜃) + 𝑚 ∙ 𝐿 ∙ 𝜃̈ ∙ cos(𝜃) +
𝑗

𝐿
∙ 𝜃̇

∙ cos(𝜃) = 𝐹0 cos(𝜔𝑡)      (3.60) 

Como mudamos apenas a mola acoplada ao corpo de massa 𝑀, a equação do 

movimento 𝜃 continua a mesma (equação 3.58), pois não possui correlação 

com a mola cúbica. 
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4 Resultados 

Neste capítulo são apresentados os resultados das simulações descritas no 

Capítulo 3 variando-se parâmetros de entrada e computando o 

comportamento apresentado. 

Todos os programas em MatLab® estão no capítulo Apêndices deste 

trabalho. 

4.1 Pêndulo Simples 

Como vimos no capítulo anterior, possuímos duas equações que definem o 

movimento de um pêndulo simples (equação 3.8 e equação 3.10). Foram 

realizadas as simulações das duas equações dado um deslocamento 𝜃0 

inicial. Assim obtivemos os gráficos, com base nos parâmetros da tabela 1: 

Tabela 1 – Parâmetros da simulação do pêndulo simples 

g Gravidade 9.81 𝑚/𝑠2 

L Comprimento do pêndulo 15 𝑐𝑚 
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Figura 4.1 – Gráficos das equações não linear (3.8) e linear (3.10) do pêndulo 
simples sobrepostos, dado um 𝜃0 = 15° 
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Figura 4.2 – Gráficos das equações não linear (3.8) e linear (3.10) do pêndulo 

simples sobrepostos, dado um 𝜃0 = 60° 

Como pode ser visto nas últimas duas figuras, vemos que dado um ângulo 

pequeno (𝜃0 = 15°), os gráficos sobrepostos são muito semelhantes e diferem 

muito pouco na frequência. Já quando utilizamos um 𝜃0 = 60′ vemos que os 

gráficos se diferem nitidamente na questão do período de oscilação. 
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4.2 Pêndulo simples com amortecimento 

Aqui realizamos as simulações do pêndulo com amortecimento dado um 

𝜃0 = 15′ e verificamos como o sistema se comporta e quanto tempo ele leva 

para voltar ao repouso. Abaixo segue a tabela 2 [5], com os parâmetros das 

simulações a seguir: 

Tabela 2 – Parâmetros da simulação do pêndulo simples com amortecimento 

g Gravidade 9.81 𝑚/𝑠2 

L Comprimento do pêndulo 15 𝑐𝑚 

m Massa do pêndulo 1𝑘𝑔 

c Coeficiente de arrasto para 

escoamento laminar 

7 ∙ 10−5 𝑘𝑔/𝑠 

 j  Coeficiente de amortecimento 

rotacional 

5 ∙ 10−3 𝑘𝑔 ∙ 𝑚2/𝑠 
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4.2.1 Amortecimento do ar 

Nesta seção, realizamos uma simulação utilizando a equação 3.23: 

 

Figura 4.3 – Gráfico pêndulo simples com amortecimento do ar (equação 3.23) 

dado um 𝜃0 = 15′ 

Vale resaltar que a figura 4.3 tem seu eixo horizontal dado em horas. Ou 

seja, analisando, vemos que este sistema leva mais de cinco horas para 

chegar ao repouso. Isto deve-se ao fato de que o fator de amortecimento 

deste sistema, dado por 𝑐 (coeficiente de arrasto para escoamento laminar), 

chega no máximo valor nominal de 7 ∙ 10−5. [5] 
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4.2.2 Amortecimento de junta 

Nesta seção foi realizado a simulação da equação 3.33 dado um 𝜃0 = 15′. 

Segue o resultado: 

 

Figura 4.4 – Gráfico do pêndulo simples sujeito ao amortecimento de junta 

(equação 3.33) dado um 𝜃0 = 15′ 

Nota-se que diferentemente da figura 4.3, este sistema leva muito menos 

tempo para chegar ao repouso. De fato, o fator de amortecimento neste 

sistema, dado por 𝑗/𝐿2, tem valor nominal máximo de 2,2 ∙ 10−1 [5], que é 

muito maior que aquele encontrado no sistema da seção 4.2.1.  
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4.3 Sistema Massa, Mola e Amortecedor 

Nesta seção mudaremos como faremos as simulações. Neste caso 

avaliaremos mais como a frequência de uma força externa oscilatória 

influencia na amplitude máxima de regime do sistema descrito pela equação 

3.40.  

Primaremente foi realizado uma simulação onde utilizamos 𝜔 = 1 𝐻𝑧 e os 

dados da tabela 3 a seguir. Segue o resultado: 

Tabela 3 – Parâmetros da simulação do sistema massa mola amortecedor 

M Massa do corpo 4 𝑘𝑔 

b Coeficiente de amortecimento 

linear 

0.5 𝑘𝑔/𝑠 

K Constante de mola 400 𝑁/𝑚 

F0 Força  20 𝑁 
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Figura 4.5 – Gráfico do sistema massa, mola e amortecedor linear (equação 3.40) 

dado 𝜔 = 1𝐻𝑧 

Verificamos o tempo que leva para entrar em regime. Como vemos na figura 

4.5, leva-se cerca de 100 segundos para o sistema atingir o regime. 

Portanto, para o restante das simulações, usaremos o tempo de 200 

segundos para a análise. 

Para avaliar a influência da variação da frequência 𝜔 no sistema, foi realizado 

o seguinte experimento: foi realizada uma simulação do sistema com 𝜔 =

1𝐻𝑧, dadas as condições iniciais (posição e velocidade) nulas e foram 

computados os máximos da posição e da velocidade de regime; a seguir, foi 

aumentada a frequência em uma unidade (i.e. 𝜔 = 2𝐻𝑧) e realizada outra 

simulação, utilizando os dados (posição e velocidade máxima de regime) 

computados da frequência anterior como condições iniciais; em seguida, foi 

feito outra simulação com 𝜔 = 3𝐻𝑧, utilizando como condições iniciais os 
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dados computados para 𝜔 = 2𝐻𝑧 (posição e velocidade máximas de regime); 

e, assim sucessivamente, foram feitas todas as simulações até 𝜔 = 50𝐻𝑧 

utilizando o padrão descrito.  

Em seguida, outro experimento foi realizado. No entanto, ao invés de 

começarmos com 𝜔 = 1𝐻𝑧 e irmos aumentando a frequência, foi feito o 

caminho inverso, ou seja, começamos com 𝜔 = 50𝐻𝑧 e fomos diminuindo-a 

em uma unidade, utilizando sempre como condições iniciais as posições e 

velocidades máxima de regime da simulação interior (para 𝜔 = 50𝐻𝑧, utilizou-

se condições nulas). 

Plotando-se ambos os dados num mesmo gráfico de pontos, obtivemos: 

 

Figura 4.6 – Gráficos da amplitude pela frequência sobrespostos dos experimentos 

realizados 
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Figura 4.7 – Gráficos da velocidade pela frequência sobrespostos dos experimentos 

realizados 

Como vemos nas figuras 4.6 e 4.7 os dados obtidos nos dois experimentos 

são iguais, ou seja, obtemos os mesmos gráficos independente das 

condições iniciais. Ademais, temos um pico na amplitude e na velocidade na 

frequência de 𝜔 = 10𝐻𝑧. De fato, como explicado na seção 3.3 e dado pela 

equação 3.42, temos: 

𝜔𝑛 =  √
𝐾

𝑀
= √400/4 = √100 = 10 𝐻𝑧   
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4.4 Sistema massa mola amortecedor com mola cúbica 

Nesta seção foram realizadas os mesmos experimentos descritos na seção 

4.4 para o sistema descrito pela equação 3.45, dados os parâmetros 

encontrados na tabela 4. De novo, tudo foi feito para analisarmos como a 

frequência de oscilação 𝜔 de uma força influencia na resposta do sistema. 

Tabela 4 – Parâmetros da simulação do sistema massa mola amortecedor 

com mola cúbica 

M Massa do corpo 4 𝑘𝑔 

b Coeficiente de amortecimento 

linear 

0.5 𝑘𝑔/𝑠 

K Constante de mola 400 𝑁/𝑚 

F0 Força  20 𝑁 

α Coeficiente de rigidez 400 𝑚−2 

 

Assim, obtivemos: 
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Figura 4.8 – Gráficos da amplitude pela frequência sobrespostos dos experimentos 

realizados para o sistema não linear. 
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Figura 4.9 – Gráficos da velocidade pela frequência sobrespostos dos experimentos 

realizados para o sistema não linear. 

Como podemos notar em ambos os gráficos, temos comportamos distintos 

quando variamos a frequência de forma crescente e decrescente, 

diferentemente do sistema linear cujos resultados eram idênticos. Notamos 

assim que o comportamento de um sistema não linear depende das 

condições iniciais impostas. 

De fato, se olharmos por exemplo os graficos no ponto 𝜔 = 45𝐻𝑧, temos uma 

diferença gritante entre as amplitudes máximas e velocidades máximas 

obtidas nos dois experimentos. 
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4.5 Sistema Massa, mola e amortecedor com pêndulo acoplado 

Os experimentos realizados nas seções 4.3 e 4.4 foram novamente 

realizados nesta seção para o sistema modelado pelas equações 3.57 e 3.59. 

No entanto, como temos dois movimentos para analisar, o deslocamento 

lateral da massa 𝑀 e o deslocamento angular do pêndulo dado por 𝜃, foi feita 

uma primeira simulação onde foram plotados a resposta de cada 

deslocamento em função do tempo, dado uma força oscilatória de frequência 

𝜔 = 1𝐻𝑧. Assim, utilizando os parâmetros da tabela 5, obtivemos: 

Tabela 5 – Parâmetros da simulação do sistema massa mola amortecedor 

pêndulo 

g Gravidade 9.81 𝑚/𝑠2 

L Comprimento do pêndulo 15 𝑐𝑚 

m Massa do pêndulo 1𝑘𝑔 

 j  Coeficiente de amortecimento 
rotacional 

5 ∙ 10−3 𝑘𝑔 ∙ 𝑚2/𝑠 

M Massa do corpo 4 𝑘𝑔 

b Coeficiente de amortecimento 

linear 

0.5 𝑘𝑔/𝑠 

K Constante de mola 400 𝑁/𝑚 

F0 Força  20 𝑁 
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Figura 4.10 – Deslocamento lateral da massa M dado uma força oscilatória de 

frequência 𝜔 = 1𝐻𝑧. 



54 
 

 

Figura 4.11 – Deslocamento angular do pêndulo dado uma força oscilatória 

de frequência 𝜔 = 1𝐻𝑧. 

Como vemos nas figuras acima, o corpotamento de ambos no regime 

transiente é diferente daquele apresentado nas seções anteriores. De fato, 

se olharmos para a figura 4.10, vemos um comportamento bem similar 

aquele apresentado na figura 4.5, como a visível diferença no período 

transiente onde há uma vibração a mais devido ao pêndulo acoplado. 

Podemos inferir também que o tempo de cem (100) segundos foi suficiente 

para atingir o regime permanente, e para a análise da frequência, foram 

feitas as simulações usando o tempo de duzentos (200) segundos. Assim, 

obtivemos: 
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Figura 4.12 – Gráficos da amplitude pela frequência sobrespostos dos experimentos 

realizados para o sistema desta seção 

A figura 4.12 traz um gráfico muito parecido com àquele exposto pela figura 

4.6. No entanto, vemos que as amplitudes máximas obtidas neste foram 

inferiores àquelas obtidas naquele. 
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4.6 Sistema massa, mola e amortecedor com mola cúbica e pêndulo 

acoplado 

Como realizado na seção 4.5, realizamos os experimentos já descritos 

anteriormente para as equações 3.59 e 3.60. Assim, dado os parâmetros da 

tabela 6, obtivemos: 

Tabela 6 – Parâmetros da simulação do sistema massa mola amortecedor 

pêndulo com mola cúbica 

g Gravidade 𝟗. 𝟖𝟏 𝒎/𝒔𝟐 

L Comprimento do pêndulo 15 𝑐𝑚 

m Massa do pêndulo 1𝑘𝑔 

 j  Coeficiente de amortecimento 

rotacional 

5 ∙ 10−3 𝑘𝑔 ∙ 𝑚2/𝑠 

M Massa do corpo 4 𝑘𝑔 

b Coeficiente de amortecimento 

linear 

0.5 𝑘𝑔/𝑠 

K Constante de mola 400 𝑁/𝑚 

F0 Força  20 𝑁 

α Coeficiente de rigidez 400 𝑚−2 
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Figura 4.13 – Deslocamento lateral dado uma força oscilatória de frequência 𝜔 =

1𝐻𝑧. 
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Figura 4.14 – Deslocamento angular dado uma força oscilatória de frequência 

𝜔 = 1𝐻𝑧. 

Comparando as figuras 4.13 e 4.14 com as respectivas figuras resultantes do 

mesmo experimento da seção anterior, i.e. figuras 4.10 e 4.11, notamos que 

ambos gráficos de deslocamente lateral possuem grande semelhança, exceto 

o valor nominal das posições. Em contradição, os gráficos de deslocamento 

angulares se diferem muito: enquanto o primeiro tem um amortecimento 

mais lento e entra em praticamente repouso no regime permanente, o 

segundo possui um amortecimento mais rápido, no entanto o deslocamento 

angular oscila em torno de 14 unidades durante o regime permanente como 

mostra a figura a seguir: 



59 
 

 

Figura 4.15 – Zoom da figura 4.14 para análise do regime permanente. 

A seguir, foram obtidos os gráficos da amplitude máxima do deslocamento 

lateral pela frequência da força oscilatória. 
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Figura 4.16 – Gráficos da amplitude pela frequência sobrespostos dos experimentos 

realizados para o sistema desta seção 

Nota-se que a figura 4.16 se difere da figura 4.12, como era esperado, 

devido ao elemento não linear dentro do subsistema da equação 3.61. No 

entanto, o gráfico desta figura não se assemelha àquele obtido na figura 4.9, 

que também era um sistema com mola cúbica. 
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5 Considerações Finais 

Esta seção do trabalho visa construir argumentos e buscar explicações para 

os fenômenos observados na seção de resultados.  

5.1 Conclusões dos resultados 

Os resultados das simulações estão na seção anterior e trazem muitas 

informações relevantes. 

Primeiramente foi feita uma análise do sistema do pêndulo, com e sem 

amortecimento. Vemos que a inércia (ou a massa) do sistema só é 

parâmetro de simulação quando há amortecimento. É notável também que 

linearizações simplificam a modelagem do sistema e trazem respostas 

próximas àquelas encontradas no sistema real para um intervalo pequeno de 

ângulos. E por fim, notamos que o amortecimento do ar é desprezível se 

comparado ao amortecimento de junta, e por isso só este último foi 

considerados nas simulações que foram feitas. 

Em seguida, começamos a simular sistemas massa mola amortecedor, linear 

e não linear (inclusão da mola cúbica). Nestes estudos procorou-se 

identificar como a frequência de oscilação afeta os sistemas. Como vimos, o 

sistema linear se comporta como o esperado, ou seja, há um pico de 

amplitude na sua frequência natural e variações nas condições iniciais não 

afetam o regime permanente (simulações com frequências crescendo e 

decrescendo). O mesmo não foi visto no sistema não linear. É notável como 

neste tipo de sistema as condições iniciais afetam a obtenção dos resultados. 

E finalmente, foi acoplado um pêndulo num sistema massa mola 

amortecedor e foram feitas as simulações sem e com a mola cúbica. O 

sistema sem a mola cúbica comportou-se semelhante ao sistema linear sem 

o pêndulo acoplado. Há um pico na frequência de 9𝐻𝑧, indicando como a 

inclusão do pêndulo afetou a frequência natural do sistema como um todo. Já 
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o sistema com mola cúbica obteve resultados interessantes e diferentes 

daqueles apresentados pelo mesmo sistema sem o pêndulo acoplado: o 

gráfico de amplitude máxima pela frequência apresentou um gráfico que 

indica que as condições iniciais não afetam o sistema tanto quanto no 

sistema sem pêndulo, no entanto apresenta um caráter bem diferente 

daquele apresentado pelos sistemas sem mola cúbica. 
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Apêndices  

Apêndice A – Programação da simulação do pêndulo simples 

clear all 

clc 

  

g=9.81; 

L = 15*10^-2; 

syms t x 

  

f = @(t,x) [x(2);-(g/L)*sin(x(1))]; 

f_linear = @(t,x) [x(2);-(g/L)*x(1)]; 

  

teta0 = pi/12; %e pi/3 

  

[T,Y] = ode45(f, [0 25], [teta0 0]); 

[T2,Y2] = ode45(f_linear, [0 25], [teta0 0]); 

plot(T,180*Y(:,1)/pi,'r'); 

hold on 

plot(T2,180*Y2(:,1)/pi); 
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Apêndice B – Programação da simulação do pêndulo amortecido 

clear all 

clc 

  

g=9.81; 

L = 15*10^-2; 

c = 7*10^-5; 

m = 1; 

j = 0.005; 

syms t x 

  

f_ar = @(t,x) [x(2);-(g/L)*sin(x(1))-(c/m)*x(2)]; 

f_junta = @(t,x) [x(2);-(g/L)*sin(x(1))-(j/(m*L*L))*x(2)]; 

  

teta0 = pi/12; 

  

[T,Y] = ode45(f_ar, [0 25*60*60], [teta0 0]); 

[T2,Y2] = ode45(f_junta, [0 100], [teta0 0]); 

plot(T/3600,180*Y(:,1)/pi); 

plot(T2,180*Y2(:,1)/pi); 
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Apêndice C – Programação da simulação do sistema massa mola 

amortecedor 

clear all 

clc 

  

b = 0.5; 

M = 4; 

K = 400; 

F = 20; 

syms t x w 

  

x0 = [0]; v0 = [0]; 

  

f = @(t,x,w) [x(2);F*cos(w*t)-(b/M)*x(2) - (K/M)*x(1)]; 

w = 1; 

[T,Y] = ode45(f, [0 1000], [x0 v0], [], w); 

plot(T,Y(:,1)); 

  

for i = 1:50 

[T,Y] = ode45(f, [0 1000], [x0(i) v0(i)], [], w); 

a = size(Y); 

b = a(1); 

d = b/10; 

c = round(b - d); 

x0 = [x0,max(Y(c:b,1))]; 

v0 = [v0,max(Y(c:b,2))]; 

w = w+1; 

end 

  

W = 1:50; 

X_c = x0(2:51); 

V_c = v0(2:51); 

x0 = [0];v0 = [0];  

  

w=50; 
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for i = 1:50 

[T,Y] = ode45(f, [0 1000], [x0(i) v0(i)], [], w); 

a = size(Y); 

b = a(1); 

d = b/10; 

c = round(b - d); 

x0 = [x0,max(Y(c:b,1))]; 

v0 = [v0,max(Y(c:b,2))]; 

w = w-1; 

end 

  

X_d = x0(2:51); 

V_d = v0(2:51); 

  

plot(W,X_c,'o') 

hold on 

plot(W,X_d,'x') 

  

plot(W,V_c,'o') 

hold on 

plot(W,V_d,'x') 
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Apêndice D – Programação da simulação do sistema massa mola 

amortecedor com mola cúbica 

clear all 

clc 

  

b = 0.5; 

M = 4; 

K = 400; 

F = 20; 

a = 400 ; 

syms t x w 

  

x0 = [0]; v0 = [0]; 

  

f = @(t,x,w) [x(2);F*cos(w*t)-(b/M)*x(2) - (K/M)*x(1)-((a*K/M)*x(1)^3)]; 

w = 1; 

[T,Y] = ode45(f, [0 1000], [x0 v0], [], w); 

plot(T,Y(:,1)); 

  

for i = 1:50 

[T,Y] = ode45(f, [0 1000], [x0(i) v0(i)], [], w); 

a = size(Y); 

b = a(1); 

d = b/10; 

c = round(b - d); 

x0 = [x0,max(Y(c:b,1))]; 

v0 = [v0,max(Y(c:b,2))]; 

w = w+1; 

end 

  

W = 1:50; 

X_c = x0(2:51); 

V_c = v0(2:51); 

x0 = [0];v0 = [0];  
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w=50; 

for i = 1:50 

[T,Y] = ode45(f, [0 1000], [x0(i) v0(i)], [], w); 

a = size(Y); 

b = a(1); 

d = b/10; 

c = round(b - d); 

x0 = [x0,max(Y(c:b,1))]; 

v0 = [v0,max(Y(c:b,2))]; 

w = w-1; 

end 

  

X_d = x0(2:51); 

V_d = v0(2:51); 

  

plot(W,X_c,'o') 

hold on 

plot(W,X_d,'x') 

  

plot(W,V_c,'o') 

hold on 

plot(W,V_d,'x') 
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Apêndice E – Programação da simulação do sistema massa mola 

amortecedor e pêndulo acoplado 

Neste caso, tive que usar dois programas da extensão tipo .m: 

Programa 1 – modelo.m: 

function dx = xponto(t,x,w) 
b = 0.5; 
M = 4; 
m = 1; 
j = 0.005; 
L = 0.15; 
g = 9.81; 
K = 400; 
F = 20; 
a = 0; 
  
dx = zeros(4,1); 
dx(1) = x(3); 
dx(2) = x(4); 
dx(3) = (-(b*x(3))-(K*x(1))-
(a*K*x(1)^3)+(m*L*sin(x(2))*x(4)^2)+(m*L*cos(x(2))*sin(x(2)))+(cos(x(2))*j*x(4)/L)+
(F*cos(w*t))-(j*cos(x(2))*x(4)/L))/(M+m-m*cos(x(2))^2); 
dx(4) = ((g*tan(x(2))*(M+m))+(j*x(4)*(M+m)/(m*L*cos(x(2))))-(b*x(3))-(K*x(1))-
(a*K*x(1)^3)+(m*L*sin(x(2))*x(4)^2)-
(j*x(4)*cos(x(2))/L)+(F*cos(w*t)))/(m*L*cos(x(2))-(L*(M+m)/cos(x(2)))); 
end 

 

Programa 2 – rotina.m: 

 
clear all 
clc 
w=1; 

x0 = [0]; 
v0 = [0]; 
t0 = [0]; 
w0 = [0]; 
  
[T,Y] =ode45(@eq3_61_v5,[0 100],[x0(i) t0(i) v0(i) w0(i)],[],w); 
plot(T,Y(:,1)); 
plot(T,180*Y(:,2)/pi); 
  
for i = 1:50 
[T,Y] =ode45(@eq3_61_v5,[0 100],[x0(i) t0(i) v0(i) w0(i)],[],w); 
a = size(Y); 
b = a(1); 

d = b/10; 
c = round(b - d); 
x0 = [x0,max(Y(c:b,1))]; 
t0 = [t0,max(Y(c:b,2))]; 
v0 = [v0,max(Y(c:b,3))]; 
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w0 = [w0,max(Y(c:b,4))]; 
w = w+1; 

end 
  
X1 = x0(2:51); 
V1 = v0(2:51); 
T1 = t0(2:51); 
W1 = w0(2:51); 
  

w=50; 
x0 = [0]; 
v0 = [0]; 
t0 = [0]; 
w0 = [0]; 
  

for i = 1:50 
[T,Y] =ode45(@eq3_61_v5,[0 100],[x0(i) t0(i) v0(i) w0(i)],[],w); 
a = size(Y); 
b = a(1); 
d = b/10; 
c = round(b - d); 
x0 = [x0,max(Y(c:b,1))]; 
t0 = [t0,max(Y(c:b,2))]; 
v0 = [v0,max(Y(c:b,3))]; 
w0 = [w0,max(Y(c:b,4))]; 
w = w-1; 
end 
  
X2 = fliplr(x0(2:51)); 
V2 = fliplr(v0(2:51)); 
T2 = fliplr(t0(2:51)); 
W2 = fliplr(w0(2:51)); 
  
plot([1:50],X1,'o') 
hold on 

plot([1:50],X2,'x') 
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Apêndice F – Programação da simulação do sistema massa mola 

amortecedor com mola cúbica e pêndulo acoplado 

Nesta simulação, foi utilizado o mesmo programa rotina.m, apenas mudamos 

o programa 1 em relação ao apêndice anterior, como segue: 

Programa 1 – modelo_cubico.m: 

function dx = xponto(t,x,w) 
b = 0.5; 
M = 4; 
m = 1; 
j = 0.005; 
L = 0.15; 
g = 9.81; 
K = 400; 
F = 20; 
a = 400; 
  
dx = zeros(4,1); 
dx(1) = x(3); 
dx(2) = x(4); 
dx(3) = (-(b*x(3))-(K*x(1))-
(a*K*x(1)^3)+(m*L*sin(x(2))*x(4)^2)+(m*L*cos(x(2))*sin(x(2)))+(cos(x(2))*j*x(4)/L)+
(F*cos(w*t))-(j*cos(x(2))*x(4)/L))/(M+m-m*cos(x(2))^2); 
dx(4) = ((g*tan(x(2))*(M+m))+(j*x(4)*(M+m)/(m*L*cos(x(2))))-(b*x(3))-(K*x(1))-
(a*K*x(1)^3)+(m*L*sin(x(2))*x(4)^2)-
(j*x(4)*cos(x(2))/L)+(F*cos(w*t)))/(m*L*cos(x(2))-(L*(M+m)/cos(x(2)))); 
end 

 

 
 
 

 

 


