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RESUMO

Este trabalho trata-se de uma revisdao de tdépicos da graduagdao, como
dindmica e vibracbes, bem como o estudo de assuntos que ndao sdo

abordados nela, como ndo linearidades de sistemas dinamicos.

Foram realizadas a modelagem e simulacdao de um péndulo, com e sem
amortecimento, de um sistema massa mola amortecedor, com e sem a
presenca de mola cubica, e de um sistema massa mola amortecedor com
péndulo acoplado, com e sem a presenca de mola cubica. Todas as

simulagdes foram programadas e realizadas usando o MatLab®.

Investigou-se como os dois ultimos sistemas respondem com a variacdo da
frequéncia de vibracdo e observou-se comportamentos esperados nos
sistemas sem a mola cubica, e comportamentos diversos nos sistemas com

mola cubica.

Palavras-chave: Dinamica, Vibragdes, Dinamica ndo linear.



ABSTRACT

This paper is a review on graduation topics, such as dynamic and vibration,
as well as deals with issues that are not addressed in it, as nonlinearities of

dynamic systems.

It was carried out the modeling and simulation of a pendulum, with and
without damping, of a mass spring damper system, with and without the
presence of cubic spring, and of a mass spring damper system with a
coupled pendulum, with and without the presence of cubic spring. All of them
were done with the Matlab®.

It was investigated how the last two systems responded to the variation of
vibration frequency. Expected behaviors were observed in those systems
without cubic spring, and diverse behaviors were found in those systems

with the cubic spring.

Keywords: Dynamics, Vibration, Nonlinear dynamics.
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1 Introducao

Esta secao tem como objetivo apresentar as motivacdes que envolvem o

tema em questao e demonstrar os objetivos deste trabalho.
1.1 Motivacao

Este trabalho de conclusao de curso visa apresentar de forma geral os
ensinamentos que foram passados para o escritor durante sua graduacgao

bem como tépicos relacionados que foram aprendidos ao longo desta.

Basicamente este trabalho se resume a um estudo em engenharia mecénica,

com énfase nos tépicos de: dinamica, vibragdes e nao-linearidades.
Dinédmica

Mecanica € o estudo de corpos que estdo sujeito as forgas, seja em
movimento ou parados. Ela pode ser divida em estatica e dindmica. Estatica
€ relacionada a corpos que estdo em repouso ou em velocidade constante.
Dindmica discorre sobre corpos que estdo sujeito a um movimento

acelerado. [1]

Esta vertente da engenharia mecanica é abordada desde o comeco da
graduacdo até seu final. O estudo dela esta diretamente relacionado com a
area de mecatronica. Por exemplo, estudos na area de dinamica de corpos
rigidos foram realizados com o intuito de obter um modelo simplificado de
uma maquina de cinematica paralela (figura 1.1) , e no final foi verificado
que esta estratégia trazia resultados com erros pequenos e grande eficacia

computacional. [2]
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Figura 1.1 Maquina de cinematica paralela [2]

Vibracao

Qualguer movimento que se repete num intervalo de tempo é chamado de
vibracdo ou oscilacdo. O oscilar de um péndulo ou o0 movimento de uma mola
que foi esticada sao exemplos de vibracOes. Esta ciéncia lida com o estudo

de movimentos oscilatérios e as forcas associadas a eles. [3]

Essa vertente da engenharia mecanica é muito importante no nosso
cotidiano, pois vibracdbes estao em todos os lugares, como o vibrar do
timpano que nos faz ouvir, ou os movimentos oscilatérios de pernas e bracos
que nos fazem andar [3]. Além disso, ela se faz presente no contexto da
mecatronica. A referéncia [4] aborda um estudo da vibracao de um sistema
oscilatorio acoplado a um motor excéntrico com folga (figura 1.2), o que
gera um sistema descontinuo mas linear. O estudo revelou que para certos
parametros, o movimento é cadtico. No entanto, um novo método de

controle de caos foi usado e o0 movimento cadtico foi amenizado.
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Figura 1.2 - Sistema Massa Mola Amortecedor com Motor Excéntrico acoplado [4]

Como podemos notar, varios estudos foram feitos em ambas as areas de
dinamica e vibragbes. Ainda mais, existem outros estudos que envolvem

ambas.

A referéncia [5] trata de um estudo dindmico de um sistema que gera
energia através do movimento das ondas. Nesta tese, o autor modela como
0 contra peso do sistema reage aos movimentos da ondas. O sistema pode
ser modelado como um péndulo conectado a um corpo que sofre forcas

externas que geram movimento.

Um estudo sobre um sistema mecanico Vibro-Impacto é feito em [6]. Nele,
um sistema de dois graus de liberdade compostos por duas massas
diferentes conectadas por uma mola de dois estagios € analisado. A partir
dos dados obtidos, notou-se que para determinadas frequéncias de vibracdo

0 movimento se apresentava caotico.
Né&o Linearidade

Em contraste aos sistemas lineares, a resposta de um sistema ndo-linear
dada uma soma ponderada de sinais de entrada ndao serd uma soma

ponderada das respostas a estes sinais. [7]
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Muitos sistemas dinamicos possuem certo grau de nao-linearidade, porém,
durante nossa graduacao, linearizacdes sao feitas com o intuito de simplificar
as equagdes que modelam o movimento destes sistemas. Mas em certas
circunstancias, temos que levar em conta essa ndo-linearidade para

computarmos pontos que, antes, linearizagdes geravam erros.

Alguns estudos de fato levam em conta a questao de nao-linearidades. Por
exemplo, em [5], as equacdes que modelam o sistema sao nao-lineares
(principalmente devido a aparicao de senos e cossenos). Dentro deste
contexto, o autor usa da ferramenta matematica MatLab, em especial a
funcdo ode45(). Esta funcdo se baseia numa formula explicita de Runge-
Kutta(4,5) [8]. Isto ndo serd detalhado pois este ndao é o objetivo deste
trabalho, no entanto esta funcdo sera usada para simular alguns casos no

decorrer deste.
1.2 Objetivos

Este trabalho de conclusao de curso visa gerar um documento que compute
e revise topicos importantes abordados na graduacdo do autor, e também
tenta introduzir topicos extracurricalares relacionados aos anteriores com o
intuito de se aprofundar mais em cada tdpico. Tendo isto em vista, podemos

listar os objetivos abaixo:

Revisao em dinamica;
Revisao em vibracgoes;

Introducao no ambito da ndo-linearidade;

i

Modelagem e simulacao de um sistema massa, mola e amortecedor

com péndulo acoplado, com e sem mola cubica.
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2 Revisao Bibliografica

Esta secdo busca revisar conhecimentos em dinamica e vibragbes, que serdao
utéis no desenvolvimento deste trabalho. Outros conhecimentos pertinentes

ao trabalho serdao desenvoldidos no capitulo Desenvolvimento.
2.1 Dinamica

Dentro desta secdo, sera feita uma revisdo de como obter a lei de

movimento de um corpo através da segunda lei de Newton.

A segunda lei de Newton define que quando uma forca desbalanceada age
num corpo, este corpo vai acelarar na direcao desta forca com magnitude
proporcional a essa. A segunda lei de Newton para movimento pode ser

escrita:
F=m-a (21)

Onde F é a forca aplicada (medida em Newton N), m a massa (medida em

kg) do corpo e a a aceleragdo (medida em m/s?) resultante desta forga. [1]

Ainda mais, podemos extender este conceito para o caso onde ha mais de
uma forca aplicada no corpo. Neste caso, temos que a soma vetorial das
forcas gerara um movimento no sentido da forca resultante com aceleragao

proporcional a esta [1]. Assim temos:
Zﬁ —m-d (22)

Onde os componentes da equagao 2.2 possuem mesma dimensao que 2.1.

A equacdo 2.2 sera usada durante todo o desenvolvimento deste trabalho.
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2.2 Vibracoes

Dentro desta secdo sera visto o modelo do movimento de um sistema
mecanico oscilatério, como obter sua equacdo e como obter alguns dados

como frequéncia natural e o periodo de oscilacao.

Um sistema vibratério, ou oscilatério, em geral, inclui elementos que
armazenam energia potencial (mola) e energia cinética (massa) e elementos

no qual energia é gradualmente perdida (amortecedor).

Um sistema vibratoério pode sofrer dois tipos de vibragdes: a vibragao livre e
a vibracao forcada. A vibracdo livre é vista quando o sistema sofre um
disturbio inicial e é deixado para vibrar, ou seja, nenhuma forca externa age
no sistema; um péndulo deslocado de sua posicao inicial € um exemplo. A
vibracao forcada acontece quando o sistema sofre a acao de um forcga
(geralmente um forgca do tipo oscilatéria); por exemplo um corpo sobre a
influéncia de um motor de massa excéntrica. Se a frequéncia dessa forca for
igual a frequéncia natural do sistema, o evento de ressondncia ocorre, e
entdo o sistema pode ser sujeito a grandes oscilagdes, o que nao € desejavel

na maioria dos casos. [3]

Por isso se faz importante o estudo de vibragbes e a obtencao deste tipo de

dados. Por exemplo, seja um péndulo fixo com dado na figura 2.1:
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Figura 2.1 - Péndulo de oscilagao livre.

A modelagem deste sistema sera feita no capitulo 3, e é dada por:

s 9
G+7:0=0 (23)

Onde g é a gravidade dada por 9.81m/s? e L é o tamanho da barra. Neste
caso foi desconsiderado atrito de junta e o atrito do ar, bem como |6] < 20°.

Assim, temos que a frequéncia natural do sistema é dada por:

W, =g/l 24

Onde w, é dada em rad/s [3]. Ainda, temos que o periodo de oscilagdo para

T=o2m |- (2.5)
= o @

o péndulo livre é dado por:
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3 Desenvolvimento
Esta secdao se resume nos seguintes tépicos :

- Modelagem de péndulo simples;

- Modelagem de péndulo com amortecimento (atrito do ar e de junta);

- Modelagem de um sistema massa, mola e amortecedor;

- Modelagem de um sistema massa, mola e amortecedor com mola
cubica;

- Modelagem de um sistema massa, mola e amortecedor com péndulo
acoplado;

- Modelagem de um sistema massa, mola e amortecedor com mola

cubica e péndulo acoplado.
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3.1 Péndulo Simples

Um péndulo simples é um objeto suspenso e fixado num ponto fixo e que se

pode mover livremente, como mostra a figura 2.1.

Para podermos modelar este sistema dinamico, serdo assumidas algumas

hipoteses:

e O objeto esta ligado ao ponto de fixacao através de uma barra que
possui massa negligenciavel e que nao se extende;

e O objeto se move sem atrito de junta ou resisténcia do ar;

e O movimento ocorre no plano 2-D, ou seja, o objeto nao possui

trajetoria eliptica.

Quando o objeto é tirado de sua posicao de equilibrio, ele é entdo sujeito a
forca que a gravidade gera, e se houver componente tangencial, o objeto

tende a oscilar em torno da sua posicao de equilibrio.
3.1.1 Modelagem do péndulo

Neste tdépico serdo mostradas as equagdes que modelam a dinamica do
péndulo. O péndulo desenvolve um movimento circular de arco L. As forgas q

atuantes no péndulo sdo:

e Peso: mg;

e Tensdo no fio: Fy;

O movimento do péndulo pode ser decomposto na sua direcdo normal e
tangencial. Isto é feito porque o péndulo estd sob o efeito de aceleracdes
normal (movimento circular) e tangencial (sua velocidade muda no tempo).

Assim, podemos equacionar as aceleragdes da seguinte maneira:

a, =w?-L (3.1)
a;=a-L (3.2)
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Abaixo segue o diagrama de corpo livre:
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Figura 3.1 - Diagrama de Forcas num Péndulo

Usando a segunda lei de Newton, temos:

m-a, =F —m-g-cos(8) (3.3)
m-a, =—-m-g-sen(6) (3.4)

Analisando as equacgodes 3.3 e 3.4 podemos tirar algumas conclusdes. Quando
o objeto atinge a posicao em que foi deslocada, ou seja 6 = 0,ci1, @ SUA
velocidade é igual a zero; consequentemente a aceleragao normal se iguala a
zero e a forca de tracdao F, atinge seu minimo valor. Temos ainda que a
aceleracao tangencial atinge seu maximo valor, pois 8 = 0,iciat = Omaximor €

assim sen(0) = seNpaximo(6).
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No entanto, quando o péndulo atinge a posicao de equilibro, a acelaracao
tangencial é igual a zero, pois 8 =0. Mas cos(d) =1 e portanto F, e a

velocidade do péndulo atinge o maximo. Isto é registrado na figura 3.2.

Figura 3.2 - Diagrama de aceleracdes e forgas em diferentes posicoes.

As equacdes 3.3 e 3.4 servem para obter o valor da tensdo no fio e para

descrever o movimento do péndulo, respectivamente.
Reescrevendo a equagao 3.4, temos:

a;+g-sen(8) =0 (3.5)
Podemos reescrever a aceleragao angular a como segue:

_dv_d20 (3.6)
Y= T dt '

E aplicando as equacgdes 3.6 e 3.2 em 3.5, obtemos:

d?6
W.L +g-sen(0) =0 (3.7)
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E finalmente podemos reescrever a equacgao 3.7 para obter a equacao

diferencial de movimento do péndulo simples:

d?0 g
W+Z-sen(0)—0 (3.8)

3.1.2 Periodo de um péndulo simples

Se considerarmos apenas angulos pequenos, podemos utilizar a seguinte

linearizagao:
sen(@) =6 (3.9)
Aplicando a equacgao 3.9 em 3.8:

d?0 g
W-I_Z.H_O (3.10)

E entdo, podemos obter a frequéncia natural do péndulo, como visto na
secao anterior:

w= [+ (3.11)

Assim podemos obter o periodo natural do péndulo:

T = 27'[\/E (3.12)
g

Vale lembrar que estas equagdes funcionam muito bem apenas para angulos
pequenos, e erros podem ocorrer caso usada para variagdes angulares muito

grandes.
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3.2 Péndulo Simples com amortecimento

No capitulo anterior vimos a modelagem de um péndulo simples. Agora sera
introduzido amortecimento neste sistema pois em sistemas reais o péndulo

sofre resisténcia do ar e atrito de juntas.
3.2.1 Amortecimento por resisténcia do ar

Qualquer objeto que esteja realizando movimento dentro de um fluido sofre
uma forca contraria a este movimento. Esta forca é chamada forca de
arrasto, ou resisténcia de fluido. Esta forca depende da velocidade do objeto
dentro do fluido. [9]

A equacdo genérica para esta forga é dada por:

1
=+ Cq-pr-A-v? (3.13)

Fa=2

Onde p, € a densidade do fluido, A € a area do objeto, v € a velocidade do

objeto e €, é o coeficiente de arrasto. Este Ultimo pardmetro depende do

numero de Reynolds.

O numero de Reynold e a equacao do coeficiente de arrasto sdao mostradas

abaixo:

pr-l-v
U]
24 6

Cox—+——=+
“ Re 1++Re

Re =

(3.14)

04 (3.15)

Onde n é a viscosidade dinamica do fluido e | € o comprimento do objeto. O
numero de Reynolds € importante pois define o comportamento do fluido e
especialmente a transicao entre o escoamento laminar e o escoamento

turbulento.
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Neste estudo temos um numero de Reynolds bem pequeno e por isso
podemos definir como estado laminar. Se analisarmos a equacgao 3.15, nota-

se que para numeros de Reynolds pequenos (Re < 1) o primeiro termo da
~ . Re .
equacao prevalece sobre os outros, e podemos aproximar C, ~ Assim,

substituindo na equacao 3.13, obtemos:

1 24

F =—.__
@ 2 Re

prrA-v? (3.16)

E finalmente, utilizando a equacao 3.14 na 3.16, temos que:

24 A-v:=12 4 3.17
Wpf Ve = N7y (3.17)

Y]

N =

F, =

A equacdo 3.17 é a equacao de Stokes para objetos eféricos [9]. Esta
equacao é aplicavel para objetos que se movem lentamente dentro de um

fluido sem turbuléncia, por isso esta sendo utilizada neste contexto.

Podemos ainda chamar 12-n-A4/l de ¢ (coeficiente de arrasto para
escoamento laminar). Nota-se que este parametro depende das

caracteristicas do fluido e do objeto. Assim, obtemos:
F,=cv (3.18)

Como explicado anteriormente, esta forca age contraria ao movimento do
objeto. Assim, podemos fazer um novo diagrama de corpo livre para o

péndulo.
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Figura 3.3 - Diagrama de forgcas de um péndulo com arrasto

Usando a segunda lei de Newton, temos:

m-a, =F;—m-g-cos(f) (3.19)

m-a,= —m-g-sen(f) —c-v (3.20)

Como dito anteriormente, usa-se a equacgao tangencial para obter o modelo

de movimento do péndulo.

Agora basta substituir os termos lineares por seus respectivos valores

angulares. Assim, podemos reescrever equacao 3.20:

m-a-L=—-m-g-sen(@) —c-w-L (3.21)
d?6 dae
m-F-L——m-g-sen(H)—c-E-L (3.22)

Se isolarmos a aceleracao e colocarmos todos os parametros para o mesmo
lado, temos:
d?0 -sen(@) ¢ d6
+g +—-

a2 I aE 0 (3.23)
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3.2.2 Amortecimento por atrito de junta

No estudo da mecanica temos que atrito € um tipo de amortecimento e na
maioria dos casos ele pode ser modelado proporcionalmente a velocidade
linear do objeto. No entanto, neste caso, o sistema que modela a conexao

entre o objeto e a junta é um sistema rotacional.

Desta forma, ao invés de falarmos em forca contraria ao movimento,
dizemos que existe um torque contrario ao movimento. Este torque age na
junta e consequentemente afeta o movimento do péndulo. A férmula para

este torque pode ser encontrada abaixo [3]:
=) w (3.24)

Pode-se observar que quando ha amortecimento viscoso num sistema
rotacional, temos que o torque é proporcional a velocidade angular ao invés
da linear. Neste caso o coeficiente de amortecimento do sistema é chamado

de j.
No entanto estamos interessados em achar a forca que este torque causa no
sistema. Assim, a férmula geral de torque pode ser usada:

T, =F xL (3.25)

Como nosso sistema foi simplificado para o 2-D, e como F; e L sdo sempre

perpendiculares entre si, a equacao 3.25 pode ser simplificada:
T =F-L (3.26)

E para obtermos a equacao da forga de amortecimento, usamos a equagao
3.24 na 3.26:

jrw=F-L (3.27)

i w

—~
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A equacado 3.28 sera utilizada para obter a equacao diferencial de movimento
do péndulo.

O diagrama de forgas é semelhante ao que encontramos no capitulo anterior
(veja secao 3.2.1). A Uunica diferenca é a expressao da forca de

amortecimento.

Figura 3.4 Diagrama de forcas de péndulo que sofre atrito de junta

Usando a segunda lei de Newton, temos:
m-a, =F,—m- g-cos(8) (3.29)

m-a, = —m-g-sen(@)—lz-w (3.30)

Para obter a equacao diferencial de movimento a equacao da parte

tangencial é usada.

Como feito anteriormente, vamos trocar as partes lineares por suas

respectivas representagdes angulares:

m-a-Lz—m-g-sen(Q)—JZ-w (3.31)
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d?e j de
m-F-L——m-g-sen(H)—z-d—t (3.32)

Agora basta isolarmos a aceleracao e obtemos a equacao final de

movimento:

d?o g j de
—+z'S€Tl(9)+W'E—

T 0 (3.33)
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3.3 Sistema massa, mola e amortecedor

Neste capitulo serd feita a modelagem de um sistema massa, mola e
amortecedor. Este é sistema muito comum no ambito da mecanica e pode

ser encontrado na figura 3.5.

—A\N\—
M

ONNO,

(W

Figura 3.5 Esquema de um sistema massa-mola-amortecedor

Se fizermos um diagrama de corpor livre na massa, temos as forgas

atuantes:

e O peso: Mg;

e A forga normal: F,;

e A forga mola: F;

e A forga de amortecimento: F;

e A forga externa: F,.
Usando a lei de Hook, a expressdo para a forga mola é obtida:
FE=K-x (334)

O coeficiente K é a constante de mola. Esta so é util guando a mola trabalha

dentro de seu limite eldstico, e por isso a forca gerada pela mola é elastica.
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Também notamos que esta € uma equacao linear, ou seja, se a massa esta
em sua posicao de equilibrio x = 0, ndo havera forca. Mas se houver algum
deslocamento, surgira uma forca agindo no sentido de trazer o objeto de

volta a sua posicao de equilibro.
A forca externa que aplicaremos neste sistema é dado pela equacdo abaixo:
F, = Fycos(wt) (3.35)

Onde F, é uma forca constante dado em kg-;n—2 (N) e w é a frequéncia com

que essa forca varia dado em s~! (Hz). Este tipo de forca oscilatéria é usada
nos estudos de vibracdes para podermos analisar a resposta de um sistema

quando variamos a frequéncia de oscilacdo. [3]

Finalmente, para equacionar o movimento do sistema temos que conhecer o
a formula da forca de amortecimento. Este tipo de forca ja foi explicado
anteriormente, e a Unica diferenca é que temos agora um sistema linear, e

nao mais rotacional. Assim, a equacgao da forca de amortecimento é dada por

[3]:
F,=b-v (3.36)

Neste caso temos b como coeficiente de amortecimento. Esta forga varia
linearmente com a velocidade do objeto e também age no sentido contrario

ao movimento.

O diagrama de forgca na massa M pode ser encontrado abaixo:
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y
F X
— F, Fe
D
f
h
mg

Figura 3.6 - Diagrama de forcas atuantes na massa M

Usando a segunda lei de Newton, temos:
M-a,=—-K-x—b-v+Fycos(wt) (3.37)
E,=M-g (3.38)

As equacao 3.37 e 3.38 sao usadas para descrever o movimento da massa e

a forca normal que nela age, respectivamente.

Para acharmos a equacao diferencial que modela o movimento da massa
basta reescrevermos aceleragao e velocidade na suas formas diferenciais:
d?x dx

M-——=-K-x—b-

TE 7t + Fycos(wt)  (3.39)

E entdo, basta isolarmos a aceleragdao e obtemos a equacao diferencial que
descreve o movimento da massa:
d’x b dx K

W-I_M.E-I_M.x = F, cos(wt) (3.40)
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Previamente, na secdo do péndulo, foi encontrado a equacdo de periodo do
péndulo para saber quando este sistema poderia entrar em ressonancia. E
nesta secdao serd calculada a equacao de periodo do sistema massa-mola

pelo mesmo motivo.

Isto estd sendo feito porque nos proximos modelos, os dois modelos serdao
fixados e serd necessario saber a frequéncia de cada um deles para saber

quando entrardo em ressonancia.

A equacao diferencial dos sistemas massa e mola é a equagao 3.40 sem o

termo de amortecimento e sem a forga externa:

d2x+K =0 (3.41)
ez M X7 '

E entdo podemos obter a frequéncia natural, como a equacao 2.4:

(3.42)

Sis

E entdo o periodo do sistema massa-mola é obtido:

~

Il

S

3
SIS

(3.43)
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3.4 Sistema massa mola amortecedor péndulo

Este capitulo aborda um sistema muito semelhante aquele discutido no
capitulo 3.3. De fato, podemos usar a propria figura 3.7 para exemplificar
este modelo. No entanto, neste capitulo utilizaremos uma mola cubica no

lugar da antiga mola linear.

A—
I

M

Figura 3.7 - Modelo da secdo 3.3 com mola cubica

Elementos ndo lineares, como uma mola cubica, aparecem em inumeras
aplicagcbes como as molas presentes nas suspensoes dos carros e aparelhos
microeletromecanicos uniaxiais na presenca de atuacdo eletrostacia [10].
Para uma mola nao linear, a forca desta F,(x) € uma fungao nao linear do
deslocamento da variavel x. Esta funcdao pode ser vista como uma

combinagao dos componentes lineares e nao lineares da mola em questao.

Para uma mola cubica, podemos escrever a funcao da forga que ela exerce

dado um deslocamento x como:
F,(x) = Kx + aKx3 (3.44)

Onde Kx representa a resposta linear do sistema, e aKx® representa a
resposta nao linear. Neste contexto, a representa o coeficiente de rigidez do

termo nado linear em termos da constante linear da mola K. A quantidade «
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pode ser positiva ou negativa. A mola cujo a é positivo € chamada do tipo

hardening, e cujo a é negativo é chamada do tipo softening [10].

Agora, para obter a equacao que descreve o movimento na direcao x, basta
substituir a equacao 3.44 na equacao 3.40:

d’x b dx K aK
—+——+—x+—-x%=F,cos(wt) (3.45)

dt2+M dt M M
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3.5 Sistema massa mola amortecedor péndulo

Neste item iremos abordar os sistemas massa, mola e amortecedor com
péndulo acoplado. Este estudo pode ser divido em dois subsistemas: o
péndulo e o sistema massa, mola e amortecedor; e tem como finalidade

discutir como um influencia o outro, e vice versa.

A Figura 3.8 descreve o sistema como um todo:

W
S

M
ORNIO

\,

Figura 3.8 - Esquema do sistema massa-mola-amortecedor-péndulo

S NN N

Como vemos na figura 3.8 acima, o péndulo oscila livremente no plano
enquanto a massa descreve um movimento horizontal. Devido as leis da
mecanica [1], forcas internas aparecerdao quando dividirmos o sistema em

dois subsistemas. Estas sao devido a interagao de dois corpos diferentes.

Primeiramente analisamos o subsistema péndulo para obtermos expressdes
destas forgas. Neste caso, o ponto de junta que sofre estas forgas como pode

ser visto abaixo:
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Figura 3.9 - Diagrama de corpo livre do subsistema péndulo
Aplicando as leis da mecanica, obtemos:
H=—-m-ay, —JZ- 0 - cos(6) (3.46)
V= —m-apy+m-g+]z-9-sen(9) (3.47)
Das equagdes acima temos que a,, € a,, S30 as acelaragbes absolutas da
massa m na direcao x e y, respectivamente.

Ainda, temos que as relagbes do movimento de translagdao e angular

(restricdes geométricas) podem ser escritas:

Xpy =X+ L-sen(8) (3.48)
Xpy =L —L-cos(8) (3.49)

Onde x,, € x,, sao os deslocamentos absolutos da massa m na diregdo x e y,

respectivamente. Assim, se derivarmos duas vezes estas equacgoes,
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obteremos as equacoes das aceleracdes absolutas em termos de x e 8, como

segue:

dx .

Vpx == =X+ L6 cos() (3.50)
dv. .. .

Apx = d—ix =X+L-0-sen(0) —L-0%?-cos(6) (3.51)
dx .

Vpy = —diy =0+L-6-sen(f) (3.52)
dv. .. .

Apy = diy =L-0 sen(8) +L-6?%-cos(8) (3.53)

Substituindo as equacgdes 3.51 e 3.53 em 3.46 e 3.47, respectivamente,

temos:
H=—m-jc'+m-L-92-sen(@)—m-L-é-cos(@)—%-Q-COS(H) (3.54)
V=—m-L-éZ-cos(@)—m-L-é-sen(@)+m-g+%-9-sen(9) (3.55)

Agora que as forgcas internas foram obtidas, podemos analisar o outro

subsistema:
Y
F. X
S F, F,
F, »H e
 \/
mg

Figura 3.10 - Diagrama de corpo livre do subsistema massa, mola e amortecedor
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O sistema apresentado pela figura 3.10 ja foi estudado na secdao 3.4, com

excecao das novas forgas internas devido a ligagao do corpo com o péndulo.

Aplicando a lei Newton na direcao x (nao existe movimento na direcao y),

temos:
M-X+b-x+K-+-x—H=Fycos(wt) (3.56)

Combinando as equacgodes 3.56 com 3.54, temos:

(M+m)-5c'+b-5c+K-x—m-L-92-sen(9)+m-L-é-cos(9)+]Z-9-cos(9)

= Fycos(wt) (3.57)

Como mencionado anteriormente, o sistema é composto de dois movimentos
diferentes; e por isso, necessita-se duas equagoes que os caracterizam. Para
obtermos a segunda equacao, que descreve o movimento do péndulo (ou 8),
tomaremos como referéncia o pivd movel, caracterizando assim um sistema
de referéncia relativa (sistema ndo inercial) [1]. Assim, obtemos os seguinte

diagrama de forgas:

Figura 3.11 - Subsistema péndulo com referéncia nao inercial

Se comparmos com a figura 3.3, vemos que a Unica diferenca é que agora

existe uma forga adicional devido a aceleragao do pivo.
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Usamos, anteriormente, a equacao relacionada a direcdo tangencial para
obter a equacao de movimento do péndulo. E assim faremos para este caso

também. Aplicando a lei de Newton na direcdo tangencial, temos:
m-a, =-—m-g-sen(6) —Jz-é —m-X%-cos(f) (3.58)

Se passarmos o termo linear a, para sua forma angular e isolarmos a
aceleracao angular, obtemos entao a equagao de movimento do subsistema
péndulo:

J

. g . X _
6 + T sen(8) + — 6 + I cos(8) =0 (3.59)

3.6 Sistema massa, mola e amortecedor com mola cubica e péndulo

acoplado

Esta secdo aborda um sistema muito semelhante aquele discutido na secao
3.5, com a inclusdao de uma mola cubica, como descrito na secao 3.4. Assim,

obtemos a figura abaixo que caracteriza o modelo a ser estudado:
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Figura 3.12 - Sistema massa-mola-amortercedor péndulo nao linear

Assim, se aplicarmos o termo nao linear na equacao 3.57, obtemos a
equacao diferencial abaixo que modela o movimento na coordenada x do

sistema:

(M+m)-5c'+b-5c+K-x+a-K-x3—m-L-éZ-sen(H)+m-L-§-cos(9)+Jz-9
-cos(8) = Fycos(wt)  (3.60)
Como mudamos apenas a mola acoplada ao corpo de massa M, a equagao do

movimento 6 continua a mesma (equacgao 3.58), pois nao possui correlagao

com a mola cubica.
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4 Resultados

Neste capitulo sao apresentados os resultados das simulacdes descritas no
Capitulo 3 variando-se parametros de entrada e computando o
comportamento apresentado.

Todos os programas em MatLab® estao no capitulo Apéndices deste
trabalho.

4.1 Péndulo Simples

Como vimos no capitulo anterior, possuimos duas equacdes que definem o
movimento de um péndulo simples (equacao 3.8 e equacao 3.10). Foram
realizadas as simulacdes das duas equagdoes dado um deslocamento 6,

inicial. Assim obtivemos os graficos, com base nos parametros da tabela 1:

Tabela 1 - Parametros da simulagdo do péndulo simples

g Gravidade 9.81 m/s?

L Comprimento do péndulo 15cm
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o] u'w
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Figura 4.1 - Graficos das equacdes ndo linear (3.8) e linear (3.10) do péndulo
simples sobrepostos, dado um 6, = 15°

Tempo(s)

40
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Figura 4.2 - Graficos das equacgdes nao linear (3.8) e linear (3.10) do péndulo
simples sobrepostos, dado um 6, = 60°

Como pode ser visto nas ultimas duas figuras, vemos que dado um angulo
pequeno (8, = 15°), os graficos sobrepostos sdao muito semelhantes e diferem
muito pouco na frequéncia. J& quando utilizamos um 6, = 60’ vemos que 0s

graficos se diferem nitidamente na questdao do periodo de oscilagao.



42

4.2 Péndulo simples com amortecimento

Aqui realizamos as simulacdes do péndulo com amortecimento dado um
0, = 15’ e verificamos como o sistema se comporta e quanto tempo ele leva
para voltar ao repouso. Abaixo segue a tabela 2 [5], com os parametros das

simulagdes a seguir:

Tabela 2 - Parametros da simulacdo do péndulo simples com amortecimento

g Gravidade 9.81 m/s?
L Comprimento do péndulo 15 cm
m Massa do péndulo 1kg
c Coeficiente de arrasto para 7-105 kg/s
escoamento laminar
j Coeficiente de amortecimento 5:1073 kg - m?/s
rotacional
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4.2.1 Amortecimento do ar

Nesta secao, realizamos uma simulacao utilizando a equacao 3.23:

15 T T T T T
—=3:23

10 5

Posigéo ()
[}
1

-10 4

_15 1 1 1 1 1
1] 5 10 15 20 25 30

Tempo (h)

Figura 4.3 - Grafico péndulo simples com amortecimento do ar (equagao 3.23)

dado um 6, = 15’

Vale resaltar que a figura 4.3 tem seu eixo horizontal dado em horas. Ou
seja, analisando, vemos que este sistema leva mais de cinco horas para
chegar ao repouso. Isto deve-se ao fato de que o fator de amortecimento
deste sistema, dado por ¢ (coeficiente de arrasto para escoamento laminar),

chega no maximo valor nominal de 7-107°. [5]



44

4.2.2 Amortecimento de junta

Nesta secao foi realizado a simulagao da equacao 3.33 dado um 6, = 15".

Segue o resultado:

15 T T T T T T T T T
—=3:33

......

Posicéo ()
=

_1 5 1 1 1 1 | 1 1 1 1
1] 10 20 30 40 50 60 70 80 90 100

Tempo (s)

Figura 4.4 - Grafico do péndulo simples sujeito ao amortecimento de junta

(equacgao 3.33) dado um 6, = 15’

Nota-se que diferentemente da figura 4.3, este sistema leva muito menos
tempo para chegar ao repouso. De fato, o fator de amortecimento neste
sistema, dado por j/L?, tem valor nominal maximo de 2,2-10"! [5], que é

muito maior que aquele encontrado no sistema da secao 4.2.1.
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4.3 Sistema Massa, Mola e Amortecedor

Nesta secao mudaremos como faremos as simulagoes. Neste caso
avaliaremos mais como a frequéncia de uma forca externa oscilatéria
influencia na amplitude maxima de regime do sistema descrito pela equacdo
3.40.

Primaremente foi realizado uma simulacao onde utilizamos w=1Hz e 0s

dados da tabela 3 a seguir. Segue o resultado:

Tabela 3 - Parametros da simulacdo do sistema massa mola amortecedor

M Massa do corpo 4kg

b Coeficiente de amortecimento 05kg/s
linear

K Constante de mola 400 N/m

Fo Forca 20N
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Posigéo (m)

0.4

0 100 200 300 400 500 6BO0 700 800 900 1000
Tempo (s)

Figura 4.5 - Grafico do sistema massa, mola e amortecedor linear (equacao 3.40)

dado w = 1Hz

Verificamos o tempo que leva para entrar em regime. Como vemos na figura
4.5, leva-se cerca de 100 segundos para o sistema atingir o regime.
Portanto, para o restante das simulagbes, usaremos o tempo de 200

segundos para a analise.

Para avaliar a influéncia da variacdo da frequéncia w no sistema, foi realizado
0 seguinte experimento: foi realizada uma simulagao do sistema com w =
1Hz, dadas as condigbes iniciais (posicao e velocidade) nulas e foram
computados os maximos da posicdo e da velocidade de regime; a seguir, foi
aumentada a frequéncia em uma unidade (i.e. w = 2Hz) e realizada outra
simulacdo, utilizando os dados (posicao e velocidade maxima de regime)
computados da frequéncia anterior como condicdes iniciais; em seguida, foi

feito outra simulagdao com w = 3Hz, utilizando como condigbes iniciais os
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dados computados para w = 2Hz (posicao e velocidade maximas de regime);
e, assim sucessivamente, foram feitas todas as simulacdes até w = 50Hz

utilizando o padrao descrito.

Em seguida, outro experimento foi realizado. No entanto, ao invés de
comegarmos com w = 1Hz e irmos aumentando a frequéncia, foi feito o
caminho inverso, ou seja, comegamos com w = 50Hz e fomos diminuindo-a
em uma unidade, utilizando sempre como condicdes iniciais as posicoes e
velocidades maxima de regime da simulacao interior (para w = 50Hz, utilizou-

se condigdes nulas).

Plotando-se ambos os dados num mesmo grafico de pontos, obtivemos:

18 T 3 T T T T T T T

O wdecrescente
14+ *  wcrescente L
12+ .

10 .

Amplitude Maxima (m)
0
1

G F i
4t ]
2F i
2 @
0 @’8’3@@@@ | %mvvuuuuuuuvuuuuuuuvu-_.-..-..-_.uuuu
0 8 10 15 20 25 30 35 40 45 50

Frequéncia (1/s)

Figura 4.6 — Graficos da amplitude pela frequéncia sobrespostos dos experimentos

realizados
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Figura 4.7 - Graficos da velocidade pela frequéncia sobrespostos dos experimentos

realizados

Como vemos nas figuras 4.6 e 4.7 os dados obtidos nos dois experimentos
sao iguais, ou seja, obtemos os mesmos graficos independente das
condigOes iniciais. Ademais, temos um pico na amplitude e na velocidade na
frequéncia de w = 10Hz. De fato, como explicado na secdao 3.3 e dado pela

equacao 3.42, temos:

K
w, = \/; = /400/4 = v/100 = 10 Hz
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4.4 Sistema massa mola amortecedor com mola cubica

Nesta secao foram realizadas os mesmos experimentos descritos na segao
4.4 para o sistema descrito pela equacao 3.45, dados os parametros
encontrados na tabela 4. De novo, tudo foi feito para analisarmos como a

frequéncia de oscilagdo w de uma forga influencia na resposta do sistema.

Tabela 4 - Parametros da simulacdo do sistema massa mola amortecedor

com mola cubica

M Massa do corpo 4kg

b Coeficiente de amortecimento 0.5kg/s
linear

K Constante de mola 400 N/m

Fo Forca 20N

a Coeficiente de rigidez 400 m=2

Assim, obtivemos:
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Figura 4.8 - Graficos da amplitude pela frequéncia sobrespostos dos experimentos

realizados para o sistema nao linear.
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Figura 4.9 - Graficos da velocidade pela frequéncia sobrespostos dos experimentos

realizados para o sistema nao linear.

Como podemos notar em ambos os graficos, temos comportamos distintos
quando variamos a frequéncia de forma crescente e decrescente,
diferentemente do sistema linear cujos resultados eram idénticos. Notamos
assim que o comportamento de um sistema nao linear depende das

condigOes iniciais impostas.

De fato, se olharmos por exemplo os graficos no ponto w = 45Hz, temos uma
diferenca gritante entre as amplitudes maximas e velocidades maximas

obtidas nos dois experimentos.
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4.5 Sistema Massa, mola e amortecedor com péndulo acoplado

Os experimentos realizados nas secoes 4.3 e 4.4 foram novamente
realizados nesta secao para o sistema modelado pelas equacdes 3.57 e 3.59.
No entanto, como temos dois movimentos para analisar, o deslocamento
lateral da massa M e o deslocamento angular do péndulo dado por 8, foi feita
uma primeira simulagao onde foram plotados a resposta de cada
deslocamento em fungao do tempo, dado uma forca oscilatéria de frequéncia

w = 1Hz. Assim, utilizando os parametros da tabela 5, obtivemos:

Tabela 5 - Parametros da simulacdo do sistema massa mola amortecedor

péndulo
g Gravidade 9.81 m/s?
L Comprimento do péndulo 15 cm
m Massa do péndulo 1kg
j Coeficiente de amortecimento 5-1073 kg-m?/s
rotacional
M Massa do corpo 4 kg
b Coeficiente de amortecimento 0.5kg/s
linear
K Constante de mola 400 N/m
Fo Forca 20N
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Figura 4.10 - Deslocamento lateral da massa M dado uma forga oscilatéria de

frequéncia w = 1Hz.
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Figura 4.11 - Deslocamento angular do péndulo dado uma forga oscilatoria

de frequéncia w = 1Hz.

Como vemos nas figuras acima, o corpotamento de ambos no regime
transiente é diferente daquele apresentado nas secdes anteriores. De fato,
se olharmos para a figura 4.10, vemos um comportamento bem similar
aquele apresentado na figura 4.5, como a visivel diferenca no periodo

transiente onde ha uma vibracdao a mais devido ao péndulo acoplado.

Podemos inferir também que o tempo de cem (100) segundos foi suficiente
para atingir o regime permanente, e para a analise da frequéncia, foram
feitas as simulagbes usando o tempo de duzentos (200) segundos. Assim,

obtivemos:
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Figura 4.12 - Graficos da amplitude pela frequéncia sobrespostos dos experimentos

realizados para o sistema desta segdo

A figura 4.12 traz um grafico muito parecido com aquele exposto pela figura
4.6. No entanto, vemos que as amplitudes maximas obtidas neste foram

inferiores aquelas obtidas naquele.
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4.6 Sistema massa, mola e amortecedor com mola cubica e péndulo

acoplado

Como realizado na segdo 4.5, realizamos os experimentos ja descritos
anteriormente para as equacodes 3.59 e 3.60. Assim, dado os parametros da

tabela 6, obtivemos:

Tabela 6 - Parametros da simulacdo do sistema massa mola amortecedor

péndulo com mola cubica

g Gravidade 9.81 m/s?

L Comprimento do péndulo 15 cm

m Massa do péndulo 1kg

j Coeficiente de amortecimento 5-1073 kg-m?/s
rotacional

M Massa do corpo 4kg

b Coeficiente de amortecimento 05kg/s

linear

K Constante de mola 400 N/m

Fo Forca 20N

a Coeficiente de rigidez 400 m™2
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Figura 4.13 - Deslocamento lateral dado uma forga oscilatéria de frequéncia w =
1Hz.
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Figura 4.14 - Deslocamento angular dado uma forca oscilatéria de frequéncia
w = 1Hz.

Comparando as figuras 4.13 e 4.14 com as respectivas figuras resultantes do
mesmo experimento da secao anterior, i.e. figuras 4.10 e 4.11, notamos que
ambos graficos de deslocamente lateral possuem grande semelhanga, exceto
o valor nominal das posi¢cdes. Em contradicdo, os graficos de deslocamento
angulares se diferem muito: enquanto o primeiro tem um amortecimento
mais lento e entra em praticamente repouso no regime permanente, o
segundo possui um amortecimento mais rapido, no entanto o deslocamento
angular oscila em torno de 14 unidades durante o regime permanente como

mostra a figura a seqguir:
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Figura 4.15 - Zoom da figura 4.14 para analise do regime permanente.

A seguir, foram obtidos os graficos da amplitude maxima do deslocamento

lateral pela frequéncia da forga oscilatoria.
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Figura 4.16 — Graficos da amplitude pela frequéncia sobrespostos dos experimentos

realizados para o sistema desta segao

Nota-se que a figura 4.16 se difere da figura 4.12, como era esperado,
devido ao elemento nao linear dentro do subsistema da equacao 3.61. No
entanto, o grafico desta figura ndo se assemelha aquele obtido na figura 4.9,

que também era um sistema com mola cubica.
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5 Consideracoes Finais

Esta secao do trabalho visa construir argumentos e buscar explicacdes para

os fendmenos observados na secdo de resultados.
5.1 Conclusoes dos resultados

Os resultados das simulacdes estao na secao anterior e trazem muitas

informacoes relevantes.

Primeiramente foi feita uma andlise do sistema do péndulo, com e sem
amortecimento. Vemos que a inércia (ou a massa) do sistema s6 é
parametro de simulacdo quando h& amortecimento. E notavel também que
linearizagdes simplificam a modelagem do sistema e trazem respostas
proximas aquelas encontradas no sistema real para um intervalo pequeno de
angulos. E por fim, notamos que o amortecimento do ar €& desprezivel se
comparado ao amortecimento de junta, e por isso sé este ultimo foi

considerados nas simulagdes que foram feitas.

Em seguida, comecamos a simular sistemas massa mola amortecedor, linear
e nao linear (inclusdo da mola cubica). Nestes estudos procorou-se
identificar como a frequéncia de oscilacdo afeta os sistemas. Como vimos, o
sistema linear se comporta como o esperado, ou seja, ha um pico de
amplitude na sua frequéncia natural e variacdes nas condigdes iniciais ndo
afetam o regime permanente (simulacdes com frequéncias crescendo e
decrescendo). O mesmo nao foi visto no sistema nao linear. E notavel como

neste tipo de sistema as condigdes iniciais afetam a obtencao dos resultados.

E finalmente, foi acoplado um péndulo num sistema massa mola
amortecedor e foram feitas as simulacdes sem e com a mola cubica. O
sistema sem a mola clubica comportou-se semelhante ao sistema linear sem
o péndulo acoplado. H& um pico na frequéncia de 9Hz, indicando como a

inclusdo do péndulo afetou a frequéncia natural do sistema como um todo. Ja
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o sistema com mola cubica obteve resultados interessantes e diferentes
daqueles apresentados pelo mesmo sistema sem o péndulo acoplado: o
grafico de amplitude maxima pela frequéncia apresentou um grafico que
indica que as condicdes iniciais nao afetam o sistema tanto quanto no
sistema sem péndulo, no entanto apresenta um carater bem diferente

daquele apresentado pelos sistemas sem mola cubica.
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Apéndices

Apéndice A - Programacao da simulacao do péndulo simples
clear all

clc

g=9.81;
L = 15%107-2;

syms t x

f = @(t,x) [x(2);-(g9/L)*sin(x(1))];
f_linear = @(t,x) [x(2);-(g9/L)*x(1)];

tetaO = pi/12; %e pi/3

[T,Y] = ode45(f, [0 25], [tetald 0]);

[T2,Y2] = oded5(f_linear, [0 25], [teta0 0]);
plot(T,180*Y(:,1)/pi,'r");

hold on

plot(T2,180*Y2(:,1)/pi);



Apéndice B - Programacao da simulacao do péndulo amortecido
clear all

clc

g=9.81;

L = 15*10/"-2;
c = 7*¥107-5;
m=1;

j = 0.005;

syms t x

f_ar = @(t,x) [x(2);-(g/L)*sin(x(1))-(c/m)*x(2)];
f_junta = @(t,x) [x(2);-(g9/L)*sin(x(1))-(3/(m*L*L))*x(2)];

teta0 = pi/12;

[T,Y] = ode45(f_ar, [0 25*60%60], [teta0 0]);
[T2,Y2] = ode45(f_junta, [0 100], [teta0 0]);
plot(T/3600,180*Y(:,1)/pi);
plot(T2,180*Y2(:,1)/pi);
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Apéndice C - Programacao da simulacao do sistema massa mola

amortecedor

clear all

clc

b =0.5;
M =4,
K = 400;
F = 20;

syms t xw
x0 = [0]; vO = [0];

f = @(t,x,w) [x(2);F*cos(w*t)-(b/M)*x(2) - (K/M)*x(1)];
w=1,;

[T,Y] = oded45(f, [0 1000], [x0 vO], [], w);
plot(T,Y(:,1));

fori = 1:50

[T,Y] = oded45(f, [0 1000], [x0(i) vO(i)]1, [1, w);
a = size(Y);

b =a(1);

d = b/10;

¢ = round(b - d);

x0 = [x0,max(Y(c:b,1))];

v0 = [vO,max(Y(c:b,2))];

W = w+1;
end
W = 1:50;

X_c = x0(2:51);
V_c = v0(2:51);
x0 = [0];v0 = [0];

w=50;
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fori=1:50

[T,Y] = ode45(f, [0 1000], [x0(i) vO(i)], [1, w);
a = size(Y);

b = a(1);

d = b/10;

¢ = round(b - d);

x0 = [x0,max(Y(c:b,1))];

v0 = [v0,max(Y(c:b,2))];

w = w-1;

end

X_d = x0(2:51);
V_d = v0(2:51);

plot(W,X_c,'o")
hold on
plot(W,X_d,'x")

plot(W,V_c,'o")
hold on
plot(W,V_d,'x")
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Apéndice D - Programacao da simulacao do sistema massa mola

amortecedor com mola cubica

clear all
clc

b =0.5;
M =4,

K = 400;
F = 20;

a = 400 ;
syms t xw

x0 = [0]; vO = [0];

f = @(t,x,w) [x(2);F*cos(w*t)-(b/M)*x(2) - (K/M)*x(1)-((a*K/M)*x(1)"3)];
w=1;

[T,Y] = ode45(f, [0 1000], [x0 vO], []1, w);

plot(T,Y(:,1));

fori = 1:50

[T,Y] = oded45(f, [0 1000], [x0(i) vO(i)]1, [1, w);
a = size(Y);

b =a(1);

d = b/10;

¢ = round(b - d);

x0 = [x0,max(Y(c:b,1))];

v0 = [vO,max(Y(c:b,2))];

W= w+1;
end
W = 1:50;

X_c = x0(2:51);
V_c = v0(2:51);
x0 = [0];v0 = [0];
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w=50;

fori=1:50

[T,Y] = ode45(f, [0 1000], [x0(i) vO(i)], [1, w);
a = size(Y);

b = a(1);

d = b/10;

¢ = round(b - d);

x0 = [x0,max(Y(c:b,1))];

v0 = [v0,max(Y(c:b,2))];

w = w-1;

end

X_d = x0(2:51);
V_d = v0(2:51);

plot(W,X_c,'0")
hold on
plot(W,X_d,'x")

plot(W,V_c,'0")
hold on
plot(W,V_d,'x")
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Apéndice E - Programacao da simulacao do sistema massa mola
amortecedor e péndulo acoplado
Neste caso, tive que usar dois programas da extensao tipo .m:

Programa 1 - modelo.m:

function dx = xponto(t,x,w)

b =0.5;
M =4,
m=1;

j = 0.005;
L = 0.15;
g = 9.81;
K = 400;
F = 20;
a=0;

dx = zeros(4,1);

dx(1) = x(3);

dx(2) = x(4);

dx(3) = (-(b*x(3))-(K*x(1))-
(@*K*x(1)N3)+(m*L*sin(x(2))*x(4)N2)+(m*L*cos(x(2))*sin(x(2)))+(cos(x(2))*j*x(4)/L)+
(F*cos(w*t))-(j*cos(x(2))*x(4)/L))/(M+m-m*cos(x(2))"2);

dx(4) = ((g*tan(x(2))*(M+m))+(*x(4)*(M+m)/(m*L*cos(x(2))))-(b*x(3))-(K*x(1))-
(@*K*x(1)N3)+(m*L*sin(x(2))*x(4)"2)-
(7*x(4)*cos(x(2))/L)+(F*cos(w*t)))/(m*L*cos(x(2))-(L*(M+m)/cos(x(2))));

end

Programa 2 - rotina.m:

clear all
clc

w=1;

x0 = [0];
v0 = [0];
t0 = [0];
w0 = [0];

[T,Y] =oded45(@eq3_61_v5,[0 100],[x0(i) tO(i) vO(i) wOo(i)]1,[1,w);
plot(T,Y(:,1));
plot(T,180*Y(:,2)/pi);

fori = 1:50

[T,Y] =oded45(@eq3_61_v5,[0 100],[x0(i) tO(i) vO(i) wO(i)1,[1,w);
a = size(Y);

b =a(1);

d = b/10;

¢ = round(b - d);

x0 = [x0,max(Y(c:b,1))];

t0 = [tO,max(Y(c:b,2))];

v0 = [vO,max(Y(c:b,3))];



w0 = [w0,max(Y(c:b,4))];
W = w+1;
end

X1 = x0(2:51);
V1 =v0(2:51);
T1 = t0(2:51);

W1 = w0(2:51);

[T,Y] =ode45(@eq3_61_v5,[0 1007,[x0(i) tO(i) vO(i) wO(i)1,[1,w);

w=50;

x0 = [0];
v0 = [0];
t0 = [0];
w0 = [0];
fori=1:50
a = size(Y);
b =a(1);

d = b/10;

¢ = round(b - d);

x0 = [x0,max(Y(c:b,1))1;
t0 = [t0,max(Y(c:b,2))];
v0 = [vO,max(Y(c:b,3))];
w0 = [w0,max(Y(c:b,4))];
w = w-1;

end

X2 = fliplr(x0(2:51));
V2 = fliplr(v0(2:51));
T2 = fliplr(t0(2:51));

W2 = fliplr(w0(2:51));

plot([1:50],X1,'0")
hold on
plot([1:50],X2,'x")
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Apéndice F - Programacao da simulacao do sistema massa mola
amortecedor com mola cibica e péndulo acoplado

Nesta simulagao, foi utilizado o mesmo programa rotina.m, apenas mudamos
o0 programa 1 em relagdao ao apéndice anterior, como segue:

Programa 1 - modelo_cubico.m:

function dx = xponto(t,x,w)

b =0.5;
M =4,
m=1;

j = 0.005;
L = 0.15;
g = 9.81;
K = 400;
F = 20;

a = 400;

dx = zeros(4,1);

dx(1) = x(3);

dx(2) = x(4);

dx(3) = (-(b*x(3))-(K*x(1))-
(@*K*x(1)N3)+(m*L*sin(x(2))*x(4)N2)+(m*L*cos(x(2))*sin(x(2)))+(cos(x(2))*j*x(4)/L)+
(F*cos(w*t))-(j*cos(x(2))*x(4)/L))/(M+m-m*cos(x(2))"2);

dx(4) = ((g*tan(x(2))*(M+m))+(G*x(4)*(M+m)/(m*L*cos(x(2))))-(b*x(3))-(K*x(1))-
(@*K*x(1)N3)+(m*L*sin(x(2))*x(4)"2)-
(3*x(4)*cos(x(2))/L)+(F*cos(w*t)))/(m*L*cos(x(2))-(L*(M+m)/cos(x(2))));

end



