

CAIO DEL FAVA THEODORO DA SILVA

Método para utilização de dublês em testes de unidade no sistema
Salesforce

São Paulo

2024

CAIO DEL FAVA THEODORO DA SILVA

Método para utilização de dublês em testes de unidade no sistema
Salesforce

Versão Original

Monografia apresentada ao PECE –
Programa de Educação Continuada em
Engenharia da Escola Politécnica da
Universidade de São Paulo como parte
dos requisitos para a conclusão do curso
de MBA em Engenharia de Software.

Área de Concentração: Engenharia de
Software

Orientador: Prof. Alípio Frota Ferro

São Paulo
2024

Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio
convencional ou eletrônico, para fins de estudo e pesquisa, desde que citada a
fonte.

Nome: SILVA, Caio Del Fava Theodoro da

Título: Método para utilização de dublês em testes de unidade no sistema Salesforce

Monografia apresentada ao PECE – Programa de
Educação Continuada em Engenharia da Escola
Politécnica da Universidade de São Paulo como parte dos
requisitos para a conclusão do curso de MBA em
Engenharia de Software.

Aprovado em: / /

Banca Examinadora

Prof(a). Dr(a). ___

Instituição: __

Julgamento: ___

Prof(a). Dr(a). ___

Instituição: __

Julgamento: ___

Prof(a). Dr(a). ___

Instituição: __

Julgamento: ___

DEDICATÓRIA

Dedico este trabalho à minha

namorada e aos meus familiares, que

sempre me incentivaram a continuar

os meus estudos, e a todos que me

ajudaram a realizá-lo.

AGRADECIMENTOS

Ao meu orientador Prof. Alípio Frota Ferro, que com sua experiência e dedicação me

orientou para a realização deste trabalho.

À Universidade de São Paulo – USP, em especial à Escola Politécnica da

Universidade de São Paulo – EPUSP pela oportunidade concedida em realizar o

curso de especialização.

Ao Programa de Educação Continuada em Engenharia – PECE que me ofereceu

toda infraestrutura necessária para concluir este trabalho.

Aos meus familiares, namorada e amigos que me incentivaram a realizar este

trabalho e compreenderam minha ausência.

RESUMO

A criação de testes automatizados é uma prática fundamental no desenvolvimento

de software moderno, onde destacam-se os chamados testes de unidade para

verificar componentes de software de maneira isolada de suas dependências

através do uso de dublês de teste. Neste cenário, o presente trabalho propõe um

método de refatoração para possibilitar a utilização de dublês de teste em uma

aplicação de cálculo de preços implementada na plataforma Salesforce, utilizada por

uma empresa brasileira atuante no setor de varejo que não faz o uso de dublês em

seus testes automatizados. O desenvolvimento do trabalho revela que a

impossibilidade do uso de dublês indica um problema de design da aplicação.

Utilizando de padrões de projeto e princípios de design, a aplicação do processo de

refatoração proposto possibilita a criação de testes de unidade isolados para

aplicação de cálculo por meio do uso de dublês, melhorando sua manutenibilidade e

testabilidade. Conclui-se que o método de refatoração proposto é agnóstico à

tecnologia, podendo ser reutilizado em outros cenários que se queira testar

isoladamente componentes de software contendo lógica de domínio.

Palavras-chave: testes de unidade, dublês de testes, refatoração, testes

automatizados de software.

ABSTRACT

The creation of automated tests is a fundamental practice in modern software

development, with unit tests standing out for verifying software components in

isolation from their dependencies through the use of test doubles. In this context, the

present work proposes a refactoring method to enable the use of test doubles in a

price calculation application implemented on Salesforce platform, used by a Brazilian

retail company that does not currently employ test doubles in its automated tests.

The inability to use test doubles indicates a design flaw in the application. By

leveraging design patterns and principles, the proposed refactoring process enables

the creation of isolated unit tests for the price calculation application through the use

of test doubles, improving its maintainability and testability. The proposed refactoring

method is technology-agnostic and can be reused in other scenarios where the

isolated testing of software components containing domain logic is desired.

Keywords: unit tests, test doubles, refactoring, automated software testing

LISTA DE ILUSTRAÇÕES

Figura 1 - BPMN do método para utilização de dublês..21
Figura 2 - Desenvolvedor executando teste no programa de cálculo de preço......... 22
Figura 3 - Componentes do programa de cálculo de preço....................................... 23
Figura 4 - Implementação atual do programa de cálculo de preço............................ 23
Figura 5 - Criação da interface de acesso à dados..26
Figura 6 - Criação do dublê de teste.. 28
Figura 7 - Programa de cálculo de preço utilizando dublês....................................... 29

LISTA DE ABREVIATURAS E SIGLAS

BPMN - Business Process Modeling Notation

CRM - Customer Relationship Management

DIP - Dependency Inversion Principle

SOQL - Salesforce Object Query Language​

SRP - Single Responsibility Principle

SUT - System Under Test

UML - Unified Modeling Language

SUMÁRIO

1. INTRODUÇÃO... 12
1.1 Motivação..13
1.2 Objetivo...14
1.3 Justificativa..14
1.4 Metodologia...15
1.5 Estrutura do Trabalho... 15

2. FUNDAMENTAÇÃO TEÓRICA.. 16
2.1. Testes de unidade..16
2.2. Isolamento em testes de unidade.. 17
2.3. Dublês de teste.. 18
2.4. Injeção de Dependência.. 19
2.5. Padrão Humble Object...19
2.6. Padrão Repository... 20

3. DESENVOLVIMENTO..20
3.1. Método para utilização de dublês.. 21
3.2. O programa de cálculo de preço..22
3.2.1. O problema com o teste de unidade atual.. 24
3.2.2. O problema com a classe de cálculo atual... 25
3.3. Aplicação de dublês no programa de cálculo de preço................................. 25
3.3.1. Criação da interface de acesso à dados...25
3.3.2. Criação do dublê de teste... 27
3.3.3. Considerações sobre a utilização de dublês.. 28

4. CONSIDERAÇÕES FINAIS... 30
4.1. Conclusões.. 30
4.2. Trabalhos Futuros.. 30

REFERÊNCIAS..32

12

1.​ INTRODUÇÃO

Uma prática fundamental no desenvolvimento de software moderno é a criação de

testes automatizados: é a aplicação de software para o controle da execução de

testes, comparação de resultados obtidos e esperados, e a configuração de

pré-condições para a execução de cenários de teste. Sua realização garante o

comportamento esperado do software e identifica precocemente erros durante o

processo de desenvolvimento.

Dentre os tipos de testes automatizados destacam-se os chamados testes de

unidade, que verificam a lógica interna de um componente de software de maneira

isolada de seus componentes dependentes. Por exemplo, em um teste de unidade,

o componente de software testado pode depender de um banco de dados que não

está disponível no contexto de teste. (WANG et al., 2022)

Uma prática comum para lidar com as dependências de um componente de software

em testes de unidade é a utilização de dublês de teste, componentes que

implementam parcialmente ou simulam o comportamento das dependências reais do

componente de software sendo testado. (AMMANN; OFFUTT, 2016)

No entanto, para que um componente de software possa ser testado de maneira

isolada, o mesmo deve ter um design (estruturação de seu código) com um

acoplamento fraco de suas dependências e que permita a substituição dessas

dependências por dublês de teste em tempo de execução dos testes.

Nesse contexto, o presente trabalho propõe um método para utilização de dublês no

teste de unidade de um componente de software já desenvolvido, mas que não

utilizam dublês. Este componente se trata de um cálculo de preço de produtos

utilizado por uma empresa brasileira atuante no setor de varejo, que não utiliza

dublês em seus testes automatizados, e foi desenvolvido na tecnologia Salesforce

utilizando a linguagem de programação Apex.

13

1.1​ Motivação

A principal motivação para a escolha desse tema foi a própria experiência do autor

em projetos na tecnologia Salesforce, em que a codificação de testes de unidade é

obrigatória (SALESFORCE, 2024).

Salesforce é uma plataforma de computação em nuvem voltada para a gestão do

relacionamento com o cliente (Customer Relationship Management - CRM), que

oferece um ecossistema de aplicativos integrados, permitindo personalização,

automação de processos e o desenvolvimento de aplicativos e integração com

diversas aplicações empresariais. Possui um banco de dados integrado e uma

linguagem de programação própria, chamada Apex, que é baseada em Java.

Testes de unidade são organizados em três etapas: arrange, act e assert

(KHORIKOV, 2020). A primeira etapa consiste em preparar os dados necessários

para o cenário de teste que será executado. Em testes de unidade em Salesforce

geralmente os dados necessários são persistidos em seu banco de dados integrado

para que possam ser recuperados pelo componente de software sendo testado. Ou

seja, frequentemente o banco de dados é uma dependência do teste.

Idealmente testes de unidade não devem acionar o banco de dados, pois é

considerado uma dependência externa à aplicação, e utilizá-lo fere o princípio de

isolamento em testes de unidade. Acionar o banco de dados caracteriza o teste

como um teste de integração, e não de unidade.

A motivação secundária foi o trabalho de Wang (2023), que propõe a substituição de

dublês de teste implementados manualmente baseados em herança por dublês

criados dinamicamente por frameworks de teste na linguagem Java. Os frameworks

de teste são bibliotecas de código que fornecem métodos para a configuração e

execução de testes automatizados. Esta abordagem promove uma melhoria no

design do código de teste, e seu desacoplamento do código produtivo.

14

1.2​ Objetivo

O objetivo deste trabalho é propor um método para a utilização de dublês de teste

nos testes de unidade do programa de cálculo de preço de produtos, já desenvolvido

na plataforma Salesforce.

A aplicação do método se dará pela refatoração do programa de cálculo de preço

atual, aplicando-se padrões de projeto para separar sua camada de persistência em

uma dependência substituível por dublês durante a execução dos testes.

Atualmente o programa de cálculo de preço implementa a lógica de domínio e lógica

de persistência numa única classe, impossibilitando o uso de dublês de teste. Para

utilizar dublês é necessário separar a implementação da persistência em uma

dependência substituível, para que ela possa ser trocada pelo dublê durante a

execução do teste, através do padrão injeção de dependência.

Após a criação das dependências substituíveis será possível criar dublês baseados

nessas dependências e utilizá-los em novos testes de unidade.

1.3​ Justificativa

O uso de dublês de teste de bancos de dados na tecnologia Salesforce não é algo

comum, já que sua linguagem de programação Apex favorece o acesso direto ao

banco de dados nativo através da linguagem de acesso a dados SOQL (Salesforce

Object Query Language) (MATHEW; SPRAETZ, 2009).

Utilizando o banco de dados, a fase de preparação do teste (arrange) se torna

complexa, pois é necessário persistir todos os dados obrigatórios pelas regras

atreladas ao banco de dados e que não são necessários para o teste em si. Por

exemplo, o banco de dados pode obrigar a criação de um objeto fornecedor antes da

criação de um objeto produto, e o teste em questão não testar o fornecedor.

O teste de unidade com dublês é vantajoso quando os dados necessários para

inicializar o cenário de teste forem complexos de construir, permitindo a inicialização

15

apenas dos dados necessários para a execução do teste, promovendo uma melhoria

no design do código de teste. Outra vantagem do teste com dublês é sua execução

mais rápida com dados em memória se comparado ao teste com dados persistidos

no banco de dados (KHORIKOV, 2020), sendo mais indicado para testar múltiplos

cenários.

Até o momento não foram encontrados outros trabalhos que abordem a utilização de

dublês de teste em testes de unidade na tecnologia Salesforce.

1.4​ Metodologia

A metodologia adotada nesta monografia será exploratória e consiste na aplicação

de técnicas de refatoração para o uso de dublês de teste no programa de cálculo de

preço.

Inicialmente será feita a refatoração da classe de cálculo de preço. Essa etapa

consiste na decomposição dos métodos de acesso a dados dum componente de

software em uma classe dependente, para que a mesma possa ser substituída

através de injeção de dependência por um dublê de teste.

Depois o processo utilizado será sintetizado a fim de que possa ser reutilizado para

outros cenários em que se queira aplicar dublês de teste.

1.5​ Estrutura do Trabalho

O Capítulo 1 INTRODUÇÃO apresenta as motivações, o objetivo, as justificativas,

metodologia e a estrutura do trabalho.

O Capítulo 2 FUNDAMENTAÇÃO TEÓRICA apresenta os conceitos considerados

relevantes para o trabalho e que permitem o uso de dublês de teste aplicados aos

testes de unidade em Salesforce.

16

O Capítulo 3 DESENVOLVIMENTO traz a elaboração teórica do uso de dublês no

teste de unidade da aplicação de cálculo de preço desenvolvida em Salesforce e a

sintetização do processo de refatoração utilizado.

O Capítulo 4 CONSIDERAÇÕES FINAIS descreve os resultados obtidos pelo

experimento e sugestões de trabalhos futuros.

Nas REFERÊNCIAS estão relacionados os artigos e trabalhos anteriores utilizados

como base para essa monografia.

2.​ FUNDAMENTAÇÃO TEÓRICA

Este capítulo aborda as teorias relevantes para este trabalho sobre testes de

unidade e dublês de testes.

2.1.​ Testes de unidade

Teste automatizado é um script que automatiza a execução de teste de software,

comparação de resultados obtidos e esperados, e a configuração de pré-condições

para a execução do teste.

Teste de unidade é um tipo de teste automatizado que valida o funcionamento de

uma unidade individual de código, como um método, função ou classe, de forma

isolada de suas dependências externas. Ele se concentra em verificar se a lógica

interna da unidade está correta, garantindo que as entradas fornecidas resultem nos

comportamentos ou resultados esperados (PRESSMAN, 2010).

Teste integrado é um tipo de teste automatizado que testa o funcionamento conjunto

de diferentes componentes ou módulos de um sistema com suas dependências, que

podem ser bancos de dados ou APIs externas.

Khorikov (2020) define que testes de unidade possuem os seguintes atributos:

17

●​ Verificam um pequeno pedaço de código (ou uma unidade);

●​ Fazem isso de forma rápida;

●​ Fazem isso de uma maneira isolada.

O objetivo dos testes de unidade é detectar erros de forma rápida e precoce no ciclo

de desenvolvimento, permitindo corrigir problemas antes que eles se propaguem

para outras partes do sistema. Para isso, os testes de unidade frequentemente usam

técnicas como dublês de teste (também conhecidos como mocks ou stubs) para

simular dependências externas, como bancos de dados, serviços ou APIs, isolando

completamente o system under test (SUT).

Além de validar a lógica, os testes de unidade promovem boas práticas de design,

incentivando a criação de código modular e desacoplado. Eles também servem

como uma documentação viva, demonstrando como cada componente do sistema

deve funcionar e interagir. Essa abordagem aumenta a confiança no código, facilita a

refatoração e reduz os riscos de regressão em futuras alterações.

2.2.​ Isolamento em testes de unidade

Segundo Bernardo (2011) um teste de unidade é caracterizado pelo isolamento da

unidade testada em relação ao restante do sistema e do ambiente. Esse isolamento

é alcançado ao substituir as dependências da unidade testada, que podem ser

lentas, incompletas ou dificultar a testabilidade, por dependências controladas.

Assim, o código sob teste opera em condições ideais, assumindo que suas

dependências funcionam corretamente. Essa abordagem também reduz a

necessidade de depuração, pois qualquer falha no teste evidencia diretamente o

trecho de código onde está o problema.

Bernardo ressalta que o grau de dificuldade em isolar um trecho de código é

determinado pela testabilidade do sistema: quanto mais entrelaçado for o system

under test (SUT), mais difícil será a substituição das dependências por objetos

controlados.

18

2.3.​ Dublês de teste

Dublês de teste são objetos criados para simular o comportamento de dependências

em testes de software. Eles isolam o system under test (SUT), simulando o

comportamento de suas dependências reais, permitindo assim a validação de seu

comportamento de maneira controlada e sem interferência das dependências reais,

como bancos de dados, serviços externos, ou outros componentes do sistema. O

termo foi introduzido por Meszaros (2007) em alusão aos dublês de filmes.

Popularmente entre desenvolvedores utiliza-se o termo mocks.

Meszaros identifica cinco tipos de dublês de teste: Dummy, Stub, Spy, Mock e Fake.

Porém Khorikov (2020) simplifica essa tipificação classificando-os somente em

mocks e stubs, conforme abaixo:

●​ Mocks: ajudam a simular e verificar interações de saída do SUT. As

interações de saída são comandos para alterar o estado das dependências

do SUT.

●​ Stubs: ajudam a simular interações de entrada para o SUT. Interações de

entrada são chamadas que o SUT faz às suas dependências para obter

dados de entrada.

Dublês de teste desempenham um papel fundamental na criação de testes de

unidade eficientes e confiáveis, pois ajudam a evitar dependências instáveis,

complexas ou inacessíveis durante a execução dos testes. Além disso, eles

possibilitam a simulação de cenários específicos, incluindo situações de erro e

respostas excepcionais.

Dublês de teste podem ser criados através de herança, herdando-se do objeto

dependente original e sobrescrevendo seu comportamento, ou da implementação da

interface de abstração utilizada pelo módulo testado.

19

2.4.​ Injeção de Dependência

Bernardo (2011) define que injeção de dependência é um padrão que disponibiliza

um mecanismo para a substituição das dependências de um objeto. Objetos

fortemente acoplados às suas dependências são mais difíceis de serem testados

pois não permitem a substituição de seus objetos colaboradores por dublês,

inviabilizando a criação de testes isolados. Este padrão é um pré-requisito para a

utilização de dublês em testes de unidade.

Esse padrão é uma aplicação do Dependency Inversion Principle (DIP), parte dos

princípios de design SOLID descritos por Martin (2018). Ao depender de abstrações

(interfaces ou classes abstratas) em vez de implementações concretas, o código se

torna menos acoplado e mais adaptável a mudanças.

A injeção de dependência é comumente implementada de três formas: injeção por

construtor, onde as dependências são passadas como parâmetros no momento da

criação do objeto; injeção por métodos setter, que permite a configuração de

dependências após a criação do objeto; e injeção por atributo, onde as

dependências são configuradas diretamente em atributos da classe, geralmente por

frameworks. Essa flexibilidade na implementação torna o padrão amplamente

aplicável a diversos contextos e arquiteturas de software.

2.5.​ Padrão Humble Object

Bernardo (2011) descreve o padrão Humble Object como um padrão de design

aplicável a objetos com mais de uma responsabilidade que sejam difíceis de testar

devido ao acoplamento a dependências complexas. Ele visa separar do objeto

testado a lógica de negócio das partes difíceis de testar, como interações com

sistemas externos, bancos de dados ou APIs. Sua aplicação torna a inicialização

dos métodos de teste mais simples, pois os mesmos não têm de lidar com a

complexidade da dependência abstraída.

Sua aplicação se dá por dividir as responsabilidades de um objeto. A lógica de

negócio e regras fundamentais são extraídas e movidas para um objeto separado,

20

que é altamente testável e coeso. A parte restante, conhecida como o "Humble

Object", atua como uma interface e delega o trabalho ao objeto que contém a lógica.

Essa camada lida com operações difíceis de testar, como interações com hardware,

serviços externos, ou código gerado automaticamente, mas sem conter lógica de

negócio.

Esse padrão é uma aplicação do Single Responsibility Principle (SRP), também

definido por Martin (2018), que diz que um objeto deve ter somente uma

responsabilidade, ou somente uma razão para mudar.

2.6.​ Padrão Repository

O padrão Repository é um padrão de design que abstrai o acesso a dados,

fornecendo uma interface que encapsula as operações de persistência e

recuperação de objetos de domínio (FOWLER, 2013). Ele atua como uma ponte

entre a lógica de negócios e a camada de infraestrutura, desacoplando o código ao

isolar os detalhes de implementação da persistência, como consultas ao banco de

dados ou interações com APIs de armazenamento. Essa abordagem facilita a

substituição e a modificação da lógica de persistência sem impactar a lógica de

domínio.

Ao implementar o padrão Repository pode-se combinar o uso de interfaces para

definir os contratos do repositório com injeção de dependência que permitam a

substituição por dublês de teste durante os testes de unidade.

3.​ DESENVOLVIMENTO

O capítulo a seguir apresenta o método para utilização de dublês de teste, e sua

aplicação no contexto do programa de cálculo de preço, o qual não faz uso de

dublês de teste.

21

3.1.​ Método para utilização de dublês

O método para utilização de dublês utilizado é genérico e agnóstico à tecnologia e

pode ser reaproveitado para outro cenários em que seja desejável implementar

testes de unidade isolados. O método foi sintetizado em um diagrama na notação

Business Process Modeling Notation (BPMN) representado na Figura 1.

Figura 1 - BPMN do método para utilização de dublês

Fonte: o Autor

O processo foi dividido em 5 etapas:

●​ Identificar SUT candidato à refatoração: identifica-se a classe desejada para o

teste isolado de suas dependências, e que não seja possível devido ao forte

acoplamento ou falta de coesão da implementação. Possíveis candidatos são

classes com lógica de domínio, em que se queira testar diferentes cenários;

●​ Extrair dependências aplicando padrões: nesta etapa extrai-se da classe

principal os detalhes de implementação não pertinentes à lógica principal

como, por exemplo, persistência - que são alocadas em novas classes

dependentes aplicando-se os padrões pertinentes, adicionando uma interface

para definir os métodos de acesso;

●​ Refatorar SUT para utilizar dependências através de injeção: nesta etapa

remove-se do SUT a implementação das dependências, que passa a

referenciar as novas interfaces geradas na etapa anterior. Adiciona-se um

mecanismo para definir a instância da dependência em tempo de execução

(injeção de dependência), podendo ser via construtor ou métodos setter.

22

●​ Criar dublês baseados nas dependências criadas: nesta etapa

implementam-se as classes dublês baseadas nas interfaces das novas

dependências criadas e utilizadas pelo SUT. Além do dublê implementar os

métodos da interface, no caso de Stubs, adiciona-se mecanismos para definir

os valores retornados pelos métodos.

●​ Refatorar teste para utilizar dublês: nesta etapa criam-se novos testes de

unidade, utilizando os dublês criados. Esses testes irão configurar os dublês

para o cenário desejado, e substituir as dependências reais do SUT durante a

execução do teste.

3.2.​ O programa de cálculo de preço

O programa de cálculo de preço é uma aplicação desenvolvida na tecnologia

Salesforce utilizando sua linguagem de programação proprietária Apex. Como o

próprio nome sugere, ela efetua o cálculo de preço de produtos, e é uma aplicação

real utilizada por uma empresa atuante no mercado de varejo, aqui representada de

forma simplificada. Esse programa possui um teste de unidade, escrito também na

linguagem Apex, que testa a função principal de cálculo de preço. Este teste pode

ser executado pelo próprio desenvolvedor.

A Figura 2 representa o programa de cálculo de preço no contexto da execução do

teste de unidade pelo seu principal stakeholder, o desenvolvedor, através do modelo

de arquitetura C4, uma notação de diagramas para representação de arquiteturas de

software (C4 MODEL, 2024).

Figura 2 - Desenvolvedor executando teste no programa de cálculo de preço

Fonte: o Autor

23

Os componentes do programa de cálculo de preço são ilustrados utilizando a

notação C4 na Figura 3, onde pode-se identificar três componentes principais: o

componente de cálculo de preço, o teste de unidade do cálculo, e o banco de dados

da aplicação. A figura mostra que o componente de cálculo e o teste de unidade

comunicam-se diretamente com a camada de persistência.

Figura 3 - Componentes do programa de cálculo de preço

Fonte: o Autor

A Figura 4 representa a implementação atual do programa de cálculo de preço e seu

teste, ilustrando seus métodos e retornos, através da notação Unified Modeling

Language (UML) (OBJECT MANAGEMENT GROUP, 2024). Nota-se que ele é

composto somente por uma classe principal e seu teste.

Figura 4 - Implementação atual do programa de cálculo de preço

Fonte: o Autor

24

A classe principal, PriceCalculation, aqui também identificada como o system under

test (SUT), encapsula toda a lógica de domínio e persistência. Ela possui um método

público que efetua o cálculo de preço recebendo como argumento um identificador

de produto, e dois métodos privados que recuperam os objetos utilizados no cálculo.

Esses objetos são o próprio objeto de produto, denominado Product2, e um objeto

denominado Markup, que consiste em um fator multiplicador para o custo do

produto.

A classe de teste, denominada PriceCalculationTest possui um teste que exercita o

SUT. Este teste em sua fase de preparação (arrange) persiste os dados para o

cenário de teste no banco de dados (conforme visto na Figura 3), sendo essa a

única forma possível de se inicializar os dados de testes, já que o SUT não possui

uma interface que abstraia a implementação da camada de persistência.

3.2.1.​ O problema com o teste de unidade atual

O teste atualmente implementado persiste dados no banco para a execução dos

cenários de teste. Segundo Khorikov (2020), bancos de dados são uma típica

dependência externa à aplicação, o que dificulta a testabilidade pela dificuldade em

isolar e controlar seu estado. Seu uso introduz latência e complexidade

desnecessária ao teste de unidade, cujo propósito é testar as regras de domínio de

um determinado módulo da aplicação, e não a integração com a camada de

infraestrutura. Portanto, os testes atuais não são de unidade, e sim de integração.

Ambos os tipos de teste, unidade e integração, são necessários e complementares.

No entanto, testes de unidade são mais indicados para verificar diferentes cenários

relacionados à lógica de domínio, como, por exemplo, o cálculo de preços. Esses

testes permitem explorar variações e validar regras específicas sem dependências

externas.

A atual impossibilidade em testar o cálculo de preço de forma isolada da camada de

persistência revela um problema de design no módulo. Esse acoplamento entre a

lógica de domínio e a infraestrutura prejudica a testabilidade e compromete a

flexibilidade necessária para testar cenários variados.

25

3.2.2.​ O problema com a classe de cálculo atual

O design atual da classe de cálculo possui um excesso de responsabilidades, pois

contém a implementação das lógicas de domínio e infraestrutura. Isso viola o Single

Responsibility Principle (SRP) descrito por Martin (2018) onde uma classe deve

atender a somente uma responsabilidade. Além disso, não é possível utilizar dublês

de teste devido a ausência de uma interface para abstrair o acesso aos dados e de

um mecanismo para substituir essa dependência.

Para viabilizar o uso de dublês é necessário refatorar a classe de cálculo, delegando

a responsabilidade de acesso aos dados a uma interface dependente. Essa

separação promove o desacoplamento entre a lógica de domínio e a infraestrutura,

alinhando o design às boas práticas de desenvolvimento orientado a testes.

3.3.​ Aplicação de dublês no programa de cálculo de preço

As seções a seguir descrevem as etapas executadas para a aplicação de dublês de

teste no programa de cálculo de preço, através do processo de refatoração.

3.3.1.​ Criação da interface de acesso à dados

Para separar a implementação da persistência da classe principal, os métodos de

acesso a dados getProduct e getMarkup foram removidos e inseridos numa nova

classe denominada PriceCalculationRepository. Essa classe implementa a interface

IPriceCalculationRepository, que define o contrato de persistência, determinando os

métodos possíveis para a implementação concreta. Por fim, a classe de cálculo de

preço, PriceCalculation, passa a referenciar a interface, abstendo-se dos detalhes de

implementação. A representação dessa refatoração pode ser observada na Figura 5.

26

Figura 5 - Criação da interface de acesso à dados

Fonte: o Autor

Ao separar os detalhes da implementação de persistência aplica-se o padrão

Repository. Isso faz com que a classe PriceCalculation atenda ao Single

Responsibilty Principle (SRP), focando sua funcionalidade no cálculo de preço. Por

sua vez, ao referenciar uma interface ao invés de uma implementação concreta

aplica-se o Dependency Inversion Principle (DIP), promovendo um baixo

acoplamento da dependência do repositório.

A interface IPriceCalculationRepository também representa a aplicação do padrão

Humble Object, fazendo a intermediação dos detalhes do repositório difíceis de

testar, no caso, a persistência.

Por fim, o padrão Injeção de Dependência é aplicado utilizando um atributo que faz

referência à interface do repositório, podendo ser definido por um método construtor

27

ou setter. Esse mecanismo torna possível a substituição do repositório por dublês

durante a execução dos testes de unidade.

3.3.2.​ Criação do dublê de teste

A partir do momento em que existem dependências substituíveis no system under

test (SUT), é possível implementar dublês de teste baseados em suas interfaces.

Foi criada uma classe dublê denominada PriceCalculationRepositoryMock, que

implementa a interface de acesso à dados IPriceCalculationRepository. Essa classe

possui dois atributos que representam as instâncias dos objetos Product2 e Markup,

retornados pelos métodos de acesso à dados definidos na interface. Estes atributos

podem ser definidos diretamente pelo teste durante a fase de preparação (arrange).

Apesar do uso do sufixo Mock, o dublê implementado na verdade é do tipo Stub,

pois permite a definição dos dados de entrada retornados para o SUT.

A partir de agora a classe de teste PriceCalculationTest pode, em algum de seus

testes, instanciar o dublê, definir em memória os dados que deseja retornar e

substituir a instância real do repositório por meio do mecanismo de Injeção de

Dependência. A representação da implementação pode ser observada na Figura 6.

28

Figura 6 - Criação do dublê de teste

Fonte: o Autor

3.3.3.​ Considerações sobre a utilização de dublês

A implementação da classe dublê em conjunto com o mecanismo de injeção de

dependência possibilita a implementação de testes de unidade isolados da camada

de persistência, utilizando dados em memória, até então impossíveis de serem

implementados pelo forte acoplamento da classe de cálculo à camada de

persistência. Estes testes têm um tempo de execução mais rápido em relação aos

testes de integração, sendo ideais para testar diferentes cenários do cálculo de

preço, inclusive cenários de erro.

A refatoração para utilização de dublês também melhorou a coesão da classe de

cálculo de preço, que se concentra na funcionalidade de cálculo, e não nos detalhes

de persistência.

29

A utilização de dublês não impede que se mantenham os testes de integração já

implementados, igualmente importantes para validar o funcionamento conjunto do

programa de cálculo com a camada de persistência.

A Figura 7, utilizando a notação C4, representa o estado final do programa de

cálculo de preço, que apesar da utilização do dublê mantém a comunicação com a

camada de persistência.

Figura 7 - Programa de cálculo de preço utilizando dublês

Fonte: o Autor

30

4.​ CONSIDERAÇÕES FINAIS

4.1.​ Conclusões

Este trabalho evidenciou que a impossibilidade de utilizar dublês em testes

automatizados indica um problema de design na implementação do componente

testado, o que geralmente indica um forte acoplamento a detalhes não pertinentes à

lógica de domínio, e a falta de interfaces que abstraiam as camadas do sistema.

Seguir os princípios de design SOLID, como o princípio da responsabilidade única

(SRP) e da inversão de dependência (DIP) ajuda a criar software menos acoplado e

mais testável, e possibilita o uso de dublês para realizar testes de unidade isolados.

O programa de cálculo de preço, anteriormente impossibilitado de ser testado

isoladamente devido ao acoplamento à implementação da lógica de persistência,

atingiu um design mais coeso, modularizado e de baixo acoplamento através do uso

de padrões de projeto e princípios de design empregados no método de refatoração

proposto, melhorando sua manutenibilidade e testabilidade.

O método de refatoração proposto é agnóstico à tecnologia, e pode ser utilizado em

outros cenários em que se queira testar outros componentes de software

isoladamente através de testes de unidade. Ademais, o método proposto não

elimina os testes de integração originalmente implementados, mas adiciona a

possibilidade de testar isoladamente implementando dublês e novos testes de

unidade.

4.2.​ Trabalhos Futuros

Este trabalho utilizou uma abordagem de implementação de dublês de teste

baseado em interface, e não explorou o uso de frameworks de teste para a criação

dinâmica dos dublês de teste, como é sugerido no trabalho de Wang (2023), e que é

uma prática de mercado. Como sugestão de trabalho futuro, poderia ser conduzido

31

um estudo comparativo entre a utilização de frameworks de teste e a implementação

manual para a construção de dublês.

32

REFERÊNCIAS

AMMANN, P.; OFFUTT, J. Introduction to Software Testing. 2. ed. [s.l.] Cambridge
University Press, 2016.

BERNARDO, P. C. Padrões de testes automatizados. 2011. Instituto de
Matemática e Estatística, Universidade de São Paulo, São Paulo, 2011.

C4 MODEL. The C4 model for visualising software architecture. Disponível em:
<https://c4model.com/>. Acesso em: 7 dez. 2024.

FOWLER, M. Patterns of enterprise application architecture. [s.l.]
Addison-Wesley, 2013. 533 p.

KHORIKOV, V. Unit Testing Principles, Practices, and Patterns. New York:
Manning Publications Co. LLC, 2020. 1 p.

MARTIN, R. C. Clean Architecture: a craftsman’s guide to software structure
and design. [s.l.] Prentice Hall, 2018. 400 p.

MATHEW, R.; SPRAETZ, R. Test Automation on a SaaS Platform. Em: 2009
International Conference on Software Testing Verification and Validation, 2009, [...].
2009. p. 317–325.

MESZAROS, G. xUnit Test Patterns: refactoring test code. Upper Saddle River,
NJ: Addison-Wesley, 2007. 883 p.

OBJECT MANAGEMENT GROUP. Unified Modeling Language Specification
Version 2.5.1. Disponível em: <https://www.omg.org/spec/UML/2.5.1/>. Acesso em:
8 dez. 2024.

PRESSMAN, R. S. Software engineering: a practitioner’s approach. Dubuque, IA:
McGraw-Hill, 2010. 895 p.

SALESFORCE. Understanding Test Data. Disponível em:
<https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/apex_t
esting_data.htm>. Acesso em: 11 nov. 2024.

WANG, X.; XIAO, L.; YU, T.; WOEPSE, A.; WONG, S. JMocker: Refactoring
Test-Production Inheritance by Mockito. Em: 2022 IEEE/ACM 44th International
Conference on Software Engineering: Companion Proceedings (ICSE-Companion),
2022, [...]. 2022. p. 125–129.

WANG, X.; XIAO, L.; YU, T.; WOEPSE, A.; WONG, S. From Inheritance to Mockito:
An Automatic Refactoring Approach. IEEE Transactions on Software Engineering,
v. 49, n. 4, p. 2791–2814, abr. 2023.

	1.​INTRODUÇÃO
	1.1​ Motivação
	1.2​ Objetivo
	1.3​ Justificativa
	1.4​ Metodologia
	1.5​ Estrutura do Trabalho

	2.​FUNDAMENTAÇÃO TEÓRICA
	
	2.1.​Testes de unidade
	2.2.​Isolamento em testes de unidade
	2.3.​Dublês de teste
	2.4.​Injeção de Dependência
	2.5.​Padrão Humble Object
	2.6.​Padrão Repository

	3.​DESENVOLVIMENTO
	3.1.​Método para utilização de dublês
	Figura 1 - BPMN do método para utilização de dublês
	Fonte: o Autor
	

	3.2.​O programa de cálculo de preço
	Figura 2 - Desenvolvedor executando teste no programa de cálculo de preço
	Fonte: o Autor

	Figura 3 - Componentes do programa de cálculo de preço
	Fonte: o Autor

	Figura 4 - Implementação atual do programa de cálculo de preço
	Fonte: o Autor

	3.2.1.​O problema com o teste de unidade atual
	3.2.2.​O problema com a classe de cálculo atual
	3.3.​Aplicação de dublês no programa de cálculo de preço
	3.3.1.​Criação da interface de acesso à dados
	Figura 5 - Criação da interface de acesso à dados
	Fonte: o Autor

	3.3.2.​Criação do dublê de teste
	Figura 6 - Criação do dublê de teste
	Fonte: o Autor

	3.3.3.​Considerações sobre a utilização de dublês
	Figura 7 - Programa de cálculo de preço utilizando dublês
	Fonte: o Autor

	4.​CONSIDERAÇÕES FINAIS
	4.1.​Conclusões
	4.2.​Trabalhos Futuros

	REFERÊNCIAS

