CAIO DEL FAVA THEODORO DA SILVA

Método para utilizagdao de dublés em testes de unidade no sistema

Salesforce

Sao Paulo
2024

CAIO DEL FAVA THEODORO DA SILVA

Método para utilizagdao de dublés em testes de unidade no sistema

Salesforce

Versao Original

Monografia apresentada ao PECE -
Programa de Educacado Continuada em
Engenharia da Escola Politécnica da
Universidade de Sao Paulo como parte
dos requisitos para a conclusao do curso
de MBA em Engenharia de Software.

Area de Concentracdo: Engenharia de
Software

Orientador: Prof. Alipio Frota Ferro

Sao Paulo
2024

Autorizo a reprodugéo e divulgacgao total ou parcial deste trabalho, por qualquer meio
convencional ou eletrénico, para fins de estudo e pesquisa, desde que citada a
fonte.

Catalogagao-na-publicagao

Silva, Caio Del Fava Theodoro da

Método para utilizagdo de dublés em testes de unidade no sistema
Salesforce / C. D. F. T. Silva -- 580 Paulo, 2024.

32 p.

Monografia (MBA em Engenharia de Software) - Escola Politécnica da
Universidade de Sao Paulo. PECE — Programa de Educacio Continuada em
Engenharia.

1.Testes Automatizados de Software 2.Testes de Unidade 3.0ublés de
Teste 4 Refatoracio |.Universidade de Sao Paulo. Escola Politécnica. PECE -
Programa de Educacdo Continuada em Engenharia Il.t.

Nome: SILVA, Caio Del Fava Theodoro da

Titulo: Método para utilizacdo de dublés em testes de unidade no sistema Salesforce

Aprovado em:

Prof(a). Dr(a).

Instituicao:

Monografia apresentada ao PECE - Programa de
Educacdao Continuada em Engenharia da Escola
Politécnica da Universidade de Sdo Paulo como parte dos
requisitos para a conclusdo do curso de MBA em
Engenharia de Software.

Banca Examinadora

Julgamento:

Prof(a). Dr(a).

Instituicao:

Julgamento:

Prof(a). Dr(a).

Instituicao:

Julgamento:

DEDICATORIA

Dedico este trabalho a minha
namorada e aos meus familiares, que
sempre me incentivaram a continuar
0s meus estudos, e a todos que me

ajudaram a realiza-lo.

AGRADECIMENTOS

Ao meu orientador Prof. Alipio Frota Ferro, que com sua experiéncia e dedicagao me

orientou para a realizacao deste trabalho.

A Universidade de Sao Paulo — USP, em especial & Escola Politécnica da
Universidade de Sao Paulo — EPUSP pela oportunidade concedida em realizar o

curso de especializagao.

Ao Programa de Educagédo Continuada em Engenharia — PECE que me ofereceu

toda infraestrutura necessaria para concluir este trabalho.

Aos meus familiares, namorada e amigos que me incentivaram a realizar este

trabalho e compreenderam minha auséncia.

RESUMO

A criacao de testes automatizados € uma pratica fundamental no desenvolvimento
de software moderno, onde destacam-se os chamados testes de unidade para
verificar componentes de software de maneira isolada de suas dependéncias
através do uso de dublés de teste. Neste cenario, o presente trabalho propdée um
método de refatoracdo para possibilitar a utilizacdo de dublés de teste em uma
aplicagao de calculo de pregos implementada na plataforma Salesforce, utilizada por
uma empresa brasileira atuante no setor de varejo que nao faz o uso de dublés em
seus testes automatizados. O desenvolvimento do trabalho revela que a
impossibilidade do uso de dublés indica um problema de design da aplicagao.
Utilizando de padrdes de projeto e principios de design, a aplicagao do processo de
refatoragdo proposto possibilita a criacdo de testes de unidade isolados para
aplicacao de calculo por meio do uso de dublés, melhorando sua manutenibilidade e
testabilidade. Conclui-se que o método de refatoragdo proposto € agnédstico a
tecnologia, podendo ser reutilizado em outros cenarios que se queira testar

isoladamente componentes de software contendo légica de dominio.

Palavras-chave: testes de unidade, dublés de testes, refatoracdo, testes

automatizados de software.

ABSTRACT

The creation of automated tests is a fundamental practice in modern software
development, with unit tests standing out for verifying software components in
isolation from their dependencies through the use of test doubles. In this context, the
present work proposes a refactoring method to enable the use of test doubles in a
price calculation application implemented on Salesforce platform, used by a Brazilian
retail company that does not currently employ test doubles in its automated tests.
The inability to use test doubles indicates a design flaw in the application. By
leveraging design patterns and principles, the proposed refactoring process enables
the creation of isolated unit tests for the price calculation application through the use
of test doubles, improving its maintainability and testability. The proposed refactoring
method is technology-agnostic and can be reused in other scenarios where the

isolated testing of software components containing domain logic is desired.

Keywords: unit tests, test doubles, refactoring, automated software testing

LISTA DE ILUSTRAGOES

Figura 1 - BPMN do método para utilizagdo de dublés............ccccceeeeiiiiniiiiiiiiiiiieees 21
Figura 2 - Desenvolvedor executando teste no programa de calculo de prego......... 22
Figura 3 - Componentes do programa de calculo de prego..........ccoovvvevvveeveevvnnnnnnnnn. 23
Figura 4 - Implementagao atual do programa de calculo de prego..........cccccevveennnn.. 23
Figura 5 - Criacdo da interface de acesso a dados............cooccuviieeiiiiniiieiie e, 26
Figura 6 - Criacdo do dublé@ de teste..........ccuviiiiiiiiiii e 28

Figura 7 - Programa de calculo de preco utilizando dublés

LISTA DE ABREVIATURAS E SIGLAS

BPMN - Business Process Modeling Notation
CRM - Customer Relationship Management
DIP - Dependency Inversion Principle

SOQL - Salesforce Object Query Language
SRP - Single Responsibility Principle

SUT - System Under Test

UML - Unified Modeling Language

SUMARIO

1. INTRODUGAO. ...ttt ettt e ete e eaeens 12
PR 1Y (o] 117Z= T~ o R 13
(22O o] 11 1Y/ TSP 14
1.3 JUSHIfICAtIVA. ... 14
R =) o To [o] (oo = TP P PP PPRPPPPP 15
1.5 Estrutura do Trabalno...........ccoooiiiiiiii e 15

2. FUNDAMENTAGCAO TEORICA. ...ttt 16
2.1. Testes de UNidade..........ccooooiiiiiiiiii e 16
2.2. Isolamento em testes de unidade.............oooovviiiiiiiiiiiiii 17
2.3. DUDIES de teSte....coieeeecee 18
2.4. Injecao de Dependencia...........coeveiiiuiiuiiiiiiee e 19
2.5. Padrdo HUmMDbIe ODBJECt.........cooiiiiiii e 19
2.6. Padr@0 REPOSIHOIY......uuiiiiiiiiiiiiiiiieee ettt 20

3. DESENVOLVIMENTOttt e e e e e e aaaaa e e e e e e e e aannas 20
3.1. Método para utilizagdo de dUbI€s.............ccoeiiiiiiiiiiii e 21
3.2. O programa de CaICUIO de PreGo........cceveiiiiieiiiiiieiee e e e 22
3.2.1. O problema com o teste de unidade atual...................ccoceeeiiiiiiiin e, 24
3.2.2. O problema com a classe de calculo atual..............cccccooeeeiiiiiiieciciiii, 25
3.3. Aplicacéo de dublés no programa de calculo de prego.........ccccceeeveeeeeeeeeeeeene. 25
3.3.1. Criacao da interface de acesso a dados...........ccccceeeeiiiiiiiiieieeeeiiiieee e, 25
3.3.2. Criagdo do dublé de teste.......ccooei i 27
3.3.3. Consideragdes sobre a utilizagdo de dublés...........ccccooeiiiiiiiiiiiiiiiiiiiiiies 28

4. CONSIDERAGOES FINAIS.......cooiiieeeeeeeeeeee et 30
4.1, CONCIUSDES. ...ttt et e e e e e e e e e e eat e e aeaeees 30
4.2. TrabalnOs FULUIOS........oouei e 30

REFERENCIAS. ...ttt en st en e 32

12

1. INTRODUGAO

Uma pratica fundamental no desenvolvimento de soffware moderno € a criagao de
testes automatizados: é a aplicagdo de software para o controle da execucao de
testes, comparacdo de resultados obtidos e esperados, e a configuragdo de
pré-condigcbes para a execucado de cenarios de teste. Sua realizagdo garante o
comportamento esperado do software e identifica precocemente erros durante o

processo de desenvolvimento.

Dentre os tipos de testes automatizados destacam-se os chamados testes de
unidade, que verificam a légica interna de um componente de software de maneira
isolada de seus componentes dependentes. Por exemplo, em um teste de unidade,
o componente de software testado pode depender de um banco de dados que nao

esta disponivel no contexto de teste. (WANG et al., 2022)

Uma pratica comum para lidar com as dependéncias de um componente de software
em testes de unidade € a utilizacdo de dublés de teste, componentes que
implementam parcialmente ou simulam o comportamento das dependéncias reais do
componente de software sendo testado. (AMMANN; OFFUTT, 2016)

No entanto, para que um componente de software possa ser testado de maneira
isolada, o mesmo deve ter um design (estruturacdo de seu codigo) com um
acoplamento fraco de suas dependéncias e que permita a substituicdo dessas

dependéncias por dublés de teste em tempo de execugao dos testes.

Nesse contexto, o presente trabalho propde um método para utilizacdo de dublés no
teste de unidade de um componente de software ja desenvolvido, mas que nao
utilizam dublés. Este componente se trata de um calculo de prego de produtos
utilizado por uma empresa brasileira atuante no setor de varejo, que nao utiliza
dublés em seus testes automatizados, e foi desenvolvido na tecnologia Salesforce

utilizando a linguagem de programagao Apex.

13

1.1 Motivagao

A principal motivacdo para a escolha desse tema foi a propria experiéncia do autor
em projetos na tecnologia Salesforce, em que a codificagdo de testes de unidade é
obrigatéria (SALESFORCE, 2024).

Salesforce € uma plataforma de computagao em nuvem voltada para a gestao do
relacionamento com o cliente (Customer Relationship Management - CRM), que
oferece um ecossistema de aplicativos integrados, permitindo personalizagao,
automagao de processos e o0 desenvolvimento de aplicativos e integragdo com
diversas aplicagdes empresariais. Possui um banco de dados integrado e uma

linguagem de programacéo propria, chamada Apex, que é baseada em Java.

Testes de unidade sdo organizados em trés etapas: arrange, act e assert
(KHORIKQV, 2020). A primeira etapa consiste em preparar os dados necessarios
para o cenario de teste que sera executado. Em testes de unidade em Salesforce
geralmente os dados necessarios sédo persistidos em seu banco de dados integrado
para que possam ser recuperados pelo componente de software sendo testado. Ou

seja, frequentemente o banco de dados é uma dependéncia do teste.

Idealmente testes de unidade ndo devem acionar o banco de dados, pois é
considerado uma dependéncia externa a aplicacdo, e utiliza-lo fere o principio de
isolamento em testes de unidade. Acionar o banco de dados caracteriza o teste

como um teste de integracao, e nao de unidade.

A motivagao secundaria foi o trabalho de Wang (2023), que propde a substituicdo de
dublés de teste implementados manualmente baseados em heranga por dublés
criados dinamicamente por frameworks de teste na linguagem Java. Os frameworks
de teste sdo bibliotecas de codigo que fornecem métodos para a configuragao e
execugcao de testes automatizados. Esta abordagem promove uma melhoria no

design do codigo de teste, e seu desacoplamento do codigo produtivo.

14

1.2 Objetivo

O objetivo deste trabalho é propor um método para a utilizagao de dublés de teste
nos testes de unidade do programa de calculo de prego de produtos, ja desenvolvido

na plataforma Salesforce.

A aplicagdo do método se dara pela refatoragdo do programa de calculo de preco
atual, aplicando-se padrdes de projeto para separar sua camada de persisténcia em

uma dependéncia substituivel por dublés durante a execug¢ao dos testes.

Atualmente o programa de calculo de pregco implementa a légica de dominio e I6gica
de persisténcia numa unica classe, impossibilitando o uso de dublés de teste. Para
utilizar dublés € necessario separar a implementacdo da persisténcia em uma
dependéncia substituivel, para que ela possa ser trocada pelo dublé durante a

execucao do teste, atraveés do padrao inje¢cao de dependéncia.

Apoés a criagado das dependéncias substituiveis sera possivel criar dublés baseados

nessas dependéncias e utiliza-los em novos testes de unidade.

1.3 Justificativa

O uso de dublés de teste de bancos de dados na tecnologia Salesforce nao é algo
comum, ja que sua linguagem de programacao Apex favorece o acesso direto ao
banco de dados nativo através da linguagem de acesso a dados SOQL (Salesforce
Object Query Language) (MATHEW; SPRAETZ, 2009).

Utilizando o banco de dados, a fase de preparagado do teste (arrange) se torna
complexa, pois € necessario persistir todos os dados obrigatérios pelas regras
atreladas ao banco de dados e que nao sdo necessarios para o teste em si. Por
exemplo, o banco de dados pode obrigar a criagdo de um objeto fornecedor antes da

criacao de um objeto produto, e o teste em questao nao testar o fornecedor.

O teste de unidade com dublés é vantajoso quando os dados necessarios para

inicializar o cenario de teste forem complexos de construir, permitindo a inicializacao

15

apenas dos dados necessarios para a execucao do teste, promovendo uma melhoria
no design do cddigo de teste. Outra vantagem do teste com dublés é sua execugao
mais rapida com dados em memodria se comparado ao teste com dados persistidos
no banco de dados (KHORIKOV, 2020), sendo mais indicado para testar multiplos

cenarios.

Até o momento nao foram encontrados outros trabalhos que abordem a utilizagao de

dublés de teste em testes de unidade na tecnologia Salesforce.

1.4 Metodologia

A metodologia adotada nesta monografia sera exploratoria e consiste na aplicagao
de técnicas de refatoragdo para o uso de dublés de teste no programa de calculo de

preco.

Inicialmente sera feita a refatoragdo da classe de calculo de preco. Essa etapa
consiste na decomposicao dos métodos de acesso a dados dum componente de
software em uma classe dependente, para que a mesma possa ser substituida

através de injecao de dependéncia por um dublé de teste.

Depois o processo utilizado sera sintetizado a fim de que possa ser reutilizado para

outros cenarios em que se queira aplicar dublés de teste.

1.5 Estrutura do Trabalho

O Capitulo 1 INTRODUCAO apresenta as motivagdes, o objetivo, as justificativas,

metodologia e a estrutura do trabalho.

O Capitulo 2 FUNDAMENTACAO TEORICA apresenta os conceitos considerados
relevantes para o trabalho e que permitem o uso de dublés de teste aplicados aos

testes de unidade em Salesforce.

16

O Capitulo 3 DESENVOLVIMENTO traz a elaboracao teérica do uso de dublés no
teste de unidade da aplicagdo de calculo de pre¢o desenvolvida em Salesforce e a

sintetizacdo do processo de refatoracao utilizado.

O Capitulo 4 CONSIDERACOES FINAIS descreve os resultados obtidos pelo

experimento e sugestdes de trabalhos futuros.

Nas REFERENCIAS estéo relacionados os artigos e trabalhos anteriores utilizados

como base para essa monografia.
2. FUNDAMENTAGAO TEORICA

Este capitulo aborda as teorias relevantes para este trabalho sobre testes de

unidade e dublés de testes.
2.1. Testes de unidade

Teste automatizado € um script que automatiza a execucao de teste de software,
comparagao de resultados obtidos e esperados, e a configuragado de pré-condigdes

para a execucao do teste.

Teste de unidade é um tipo de teste automatizado que valida o funcionamento de
uma unidade individual de codigo, como um meétodo, fungdo ou classe, de forma
isolada de suas dependéncias externas. Ele se concentra em verificar se a légica
interna da unidade esta correta, garantindo que as entradas fornecidas resultem nos

comportamentos ou resultados esperados (PRESSMAN, 2010).
Teste integrado € um tipo de teste automatizado que testa o funcionamento conjunto
de diferentes componentes ou modulos de um sistema com suas dependéncias, que

podem ser bancos de dados ou APIs externas.

Khorikov (2020) define que testes de unidade possuem os seguintes atributos:

17

e Verificam um pequeno pedacgo de cddigo (ou uma unidade);
e Fazem isso de forma rapida;

e Fazem isso de uma maneira isolada.

O objetivo dos testes de unidade € detectar erros de forma rapida e precoce no ciclo
de desenvolvimento, permitindo corrigir problemas antes que eles se propaguem
para outras partes do sistema. Para isso, os testes de unidade frequentemente usam
técnicas como dublés de teste (também conhecidos como mocks ou stubs) para
simular dependéncias externas, como bancos de dados, servigos ou APls, isolando

completamente o system under test (SUT).

Além de validar a logica, os testes de unidade promovem boas praticas de design,
incentivando a criacdo de cdédigo modular e desacoplado. Eles também servem
como uma documentacdo viva, demonstrando como cada componente do sistema
deve funcionar e interagir. Essa abordagem aumenta a confianga no cédigo, facilita a

refatoragao e reduz os riscos de regressao em futuras alteracoes.

2.2. Isolamento em testes de unidade

Segundo Bernardo (2011) um teste de unidade é caracterizado pelo isolamento da
unidade testada em relagdo ao restante do sistema e do ambiente. Esse isolamento
€ alcancado ao substituir as dependéncias da unidade testada, que podem ser
lentas, incompletas ou dificultar a testabilidade, por dependéncias controladas.
Assim, o codigo sob teste opera em condi¢cbes ideais, assumindo que suas
dependéncias funcionam corretamente. Essa abordagem também reduz a
necessidade de depuragado, pois qualquer falha no teste evidencia diretamente o

trecho de cddigo onde esta o problema.

Bernardo ressalta que o grau de dificuldade em isolar um trecho de cdédigo é
determinado pela testabilidade do sistema: quanto mais entrelagado for o system
under test (SUT), mais dificil sera a substituicdo das dependéncias por objetos

controlados.

18

2.3. Dublés de teste

Dublés de teste sdo objetos criados para simular o comportamento de dependéncias
em testes de software. Eles isolam o system under test (SUT), simulando o
comportamento de suas dependéncias reais, permitindo assim a validacdo de seu
comportamento de maneira controlada e sem interferéncia das dependéncias reais,
como bancos de dados, servigos externos, ou outros componentes do sistema. O
termo foi introduzido por Meszaros (2007) em alusdo aos dublés de filmes.

Popularmente entre desenvolvedores utiliza-se o termo mocks.

Meszaros identifica cinco tipos de dublés de teste: Dummy, Stub, Spy, Mock e Fake.
Porém Khorikov (2020) simplifica essa tipificacdo classificando-os somente em

mocks e stubs, conforme abaixo:

e Mocks: ajudam a simular e verificar interacbes de saida do SUT. As
interagcdes de saida sdo comandos para alterar o estado das dependéncias
do SUT.

e Stubs: ajudam a simular interagdes de entrada para o SUT. Interacbes de
entrada sdo chamadas que o SUT faz as suas dependéncias para obter

dados de entrada.

Dublés de teste desempenham um papel fundamental na criagdo de testes de
unidade eficientes e confiaveis, pois ajudam a evitar dependéncias instaveis,
complexas ou inacessiveis durante a execugdo dos testes. Além disso, eles
possibilitam a simulacdo de cenarios especificos, incluindo situacdes de erro e

respostas excepcionais.

Dublés de teste podem ser criados através de heranca, herdando-se do objeto
dependente original e sobrescrevendo seu comportamento, ou da implementagéo da

interface de abstracao utilizada pelo modulo testado.

19

24. Injecao de Dependéncia

Bernardo (2011) define que injecao de dependéncia € um padrao que disponibiliza
um mecanismo para a substituigdo das dependéncias de um objeto. Objetos
fortemente acoplados as suas dependéncias sao mais dificeis de serem testados
pois ndo permitem a substituicdo de seus objetos colaboradores por dublés,
inviabilizando a criacdo de testes isolados. Este padrao é um pré-requisito para a

utilizacao de dublés em testes de unidade.

Esse padrao € uma aplicagdo do Dependency Inversion Principle (DIP), parte dos
principios de design SOLID descritos por Martin (2018). Ao depender de abstragdes
(interfaces ou classes abstratas) em vez de implementagdes concretas, o codigo se

torna menos acoplado e mais adaptavel a mudancas.

A injecdo de dependéncia é comumente implementada de trés formas: injegao por
construtor, onde as dependéncias sdo passadas como parametros no momento da
criacdo do objeto; injecdo por métodos setter, que permite a configuragdo de
dependéncias apds a criagdo do objeto; e injegcdo por atributo, onde as
dependéncias sao configuradas diretamente em atributos da classe, geralmente por
frameworks. Essa flexibilidade na implementagdo torna o padrdo amplamente

aplicavel a diversos contextos e arquiteturas de software.

2.5. Padrao Humble Object

Bernardo (2011) descreve o padrdao Humble Object como um padrédo de design
aplicavel a objetos com mais de uma responsabilidade que sejam dificeis de testar
devido ao acoplamento a dependéncias complexas. Ele visa separar do objeto
testado a logica de negodcio das partes dificeis de testar, como interagdes com
sistemas externos, bancos de dados ou APIs. Sua aplicagao torna a inicializagao
dos métodos de teste mais simples, pois os mesmos nado tém de lidar com a

complexidade da dependéncia abstraida.

Sua aplicagcdo se da por dividir as responsabilidades de um objeto. A logica de

negoécio e regras fundamentais s&o extraidas e movidas para um objeto separado,

20

que é altamente testavel e coeso. A parte restante, conhecida como o "Humble
Object", atua como uma interface e delega o trabalho ao objeto que contém a logica.
Essa camada lida com operacdes dificeis de testar, como interagcbes com hardware,
servigos externos, ou codigo gerado automaticamente, mas sem conter l6gica de

negocio.

Esse padrdao é uma aplicacdo do Single Responsibility Principle (SRP), também
definido por Martin (2018), que diz que um objeto deve ter somente uma

responsabilidade, ou somente uma razdo para mudar.

2.6. Padrao Repository

O padrédo Repository € um padrédo de design que abstrai o acesso a dados,
fornecendo uma interface que encapsula as operacbes de persisténcia e
recuperagcao de objetos de dominio (FOWLER, 2013). Ele atua como uma ponte
entre a logica de negdcios e a camada de infraestrutura, desacoplando o codigo ao
isolar os detalhes de implementacédo da persisténcia, como consultas ao banco de
dados ou interagdes com APIs de armazenamento. Essa abordagem facilita a
substituicido e a modificacdo da logica de persisténcia sem impactar a légica de

dominio.

Ao implementar o padréao Repository pode-se combinar o uso de interfaces para
definir os contratos do repositério com inje¢cdo de dependéncia que permitam a

substituicdo por dublés de teste durante os testes de unidade.

3. DESENVOLVIMENTO

O capitulo a seguir apresenta o método para utilizagdo de dublés de teste, e sua
aplicagao no contexto do programa de calculo de prego, o qual nédo faz uso de

dublés de teste.

21

3.1. Método para utilizagao de dublés

O método para utilizagao de dublés utilizado € genérico e agndstico a tecnologia e
pode ser reaproveitado para outro cenarios em que seja desejavel implementar
testes de unidade isolados. O método foi sintetizado em um diagrama na notagao

Business Process Modeling Notation (BPMN) representado na Figura 1.

Figura 1 - BPMN do método para utilizagdo de dublés

v

@

=

=

=

3 roveeees s S B "D
Q 1 ! H 1
] B L 1 ' ! - '
< ' Dependéncias ' i ' Dublés '
N : H Lo

= H H i |
5 i v v_| v
g Identificar SUT Ref sUT Criar dublés b d

< entificar) - efatorar para riar dublés baseados

g candidato a E;“ﬁé;gzge”;;%{:?s utilizar dependéncias nas dependéncias Reﬁtﬁ:rrt;j;?éiara
" refatoracao p P através de injecao criadas

< J

g : i 5 [
8 : : i P o
T H H H

@ I I I H '

=| teeeeee H

= D --------------------------------------

e

3 SUT Teste
=

Fonte: o Autor

O processo foi dividido em 5 etapas:

e Identificar SUT candidato a refatoragdo: identifica-se a classe desejada para o
teste isolado de suas dependéncias, e que nao seja possivel devido ao forte
acoplamento ou falta de coesdo da implementacéo. Possiveis candidatos séo
classes com légica de dominio, em que se queira testar diferentes cenarios;

e Extrair dependéncias aplicando padrdes: nesta etapa extrai-se da classe
principal os detalhes de implementagdo nao pertinentes a légica principal
como, por exemplo, persisténcia - que sdo alocadas em novas classes
dependentes aplicando-se os padrdes pertinentes, adicionando uma interface
para definir os métodos de acesso;

e Refatorar SUT para utilizar dependéncias através de injecdo: nesta etapa
remove-se do SUT a implementacdo das dependéncias, que passa a
referenciar as novas interfaces geradas na etapa anterior. Adiciona-se um
mecanismo para definir a instancia da dependéncia em tempo de execugao

(injecao de dependéncia), podendo ser via construtor ou métodos setter.

22

e Criar dublés baseados nas dependéncias criadas: nesta etapa
implementam-se as classes dublés baseadas nas interfaces das novas
dependéncias criadas e utilizadas pelo SUT. Além do dublé implementar os
métodos da interface, no caso de Stubs, adiciona-se mecanismos para definir
os valores retornados pelos métodos.

e Refatorar teste para utilizar dublés: nesta etapa criam-se novos testes de
unidade, utilizando os dublés criados. Esses testes irdo configurar os dublés
para o cenario desejado, e substituir as dependéncias reais do SUT durante a

execucao do teste.

3.2. O programa de calculo de prego

O programa de calculo de pre¢co é uma aplicagdo desenvolvida na tecnologia
Salesforce utilizando sua linguagem de programacéo proprietaria Apex. Como o
préprio nome sugere, ela efetua o calculo de preco de produtos, e € uma aplicagao
real utilizada por uma empresa atuante no mercado de varejo, aqui representada de
forma simplificada. Esse programa possui um teste de unidade, escrito também na
linguagem Apex, que testa a fungéo principal de calculo de precgo. Este teste pode

ser executado pelo proprio desenvolvedor.

A Figura 2 representa o programa de calculo de pre¢co no contexto da execugao do
teste de unidade pelo seu principal stakeholder, o desenvolvedor, através do modelo
de arquitetura C4, uma notagao de diagramas para representagao de arquiteturas de
software (C4 MODEL, 2024).

Figura 2 - Desenvolvedor executando teste no programa de calculo de prego

PriceCalculation
[Software System]

Desenvolvedor
[PEISDn] executa testes em ------

Stakeholder envolvido Sistema para célculo de preco de produtos

Fonte: o Autor

23

Os componentes do programa de calculo de prego sé&o ilustrados utilizando a
notacdo C4 na Figura 3, onde pode-se identificar trés componentes principais: o
componente de calculo de preco, o teste de unidade do calculo, e o banco de dados
da aplicacdo. A figura mostra que o componente de calculo e o teste de unidade

comunicam-se diretamente com a camada de persisténcia.

Figura 3 - Componentes do programa de calculo de preco

PriceCalculation PriceCalculationTest
[Component: Salesforce Apex] [geeeon. fEShge - [Component: Salesforce Apex]
Efetua o calculo de preco de produtos Testes do célculo de prego de produtos

recupera dados

i
persiste dados
de teste

Banco de Dados

[Container: Salesforce Database] — [---------------mmommmmmmom ool

Persisténcia dos dados utilizados pelo calculo
de preco

Fonte: o Autor

A Figura 4 representa a implementagao atual do programa de calculo de prego e seu
teste, ilustrando seus métodos e retornos, através da notacdo Unified Modeling
Language (UML) (OBJECT MANAGEMENT GROUP, 2024). Nota-se que ele é

composto somente por uma classe principal e seu teste.

Figura 4 - Implementacéo atual do programa de calculo de preco

<<SUT=>
PriceCalculation

<<Teste=>
PriceCalculationTest

+ calcPrice(productld : Id) : Decimal
- getProduct(productld : Id) : Product2

+ calcPriceTest() : void
- getMarkup(productld : Id) : Markup

Fonte: o Autor

24

A classe principal, PriceCalculation, aqui também identificada como o system under
test (SUT), encapsula toda a l6gica de dominio e persisténcia. Ela possui um método
publico que efetua o calculo de preco recebendo como argumento um identificador
de produto, e dois métodos privados que recuperam os objetos utilizados no calculo.
Esses objetos sdo o préprio objeto de produto, denominado Product2, e um objeto
denominado Markup, que consiste em um fator multiplicador para o custo do

produto.

A classe de teste, denominada PriceCalculationTest possui um teste que exercita o
SUT. Este teste em sua fase de preparacdo (arrange) persiste os dados para o
cenario de teste no banco de dados (conforme visto na Figura 3), sendo essa a
unica forma possivel de se inicializar os dados de testes, ja que o SUT nao possui

uma interface que abstraia a implementacdo da camada de persisténcia.

3.21. O problema com o teste de unidade atual

O teste atualmente implementado persiste dados no banco para a execucao dos
cenarios de teste. Segundo Khorikov (2020), bancos de dados s&o uma tipica
dependéncia externa a aplicagao, o que dificulta a testabilidade pela dificuldade em
isolar e controlar seu estado. Seu uso introduz laténcia e complexidade
desnecessaria ao teste de unidade, cujo propdsito € testar as regras de dominio de
um determinado moddulo da aplicagdo, e ndo a integragdo com a camada de

infraestrutura. Portanto, os testes atuais ndo sao de unidade, e sim de integragao.

Ambos os tipos de teste, unidade e integragédo, sdo necessarios e complementares.
No entanto, testes de unidade sdo mais indicados para verificar diferentes cenarios
relacionados a logica de dominio, como, por exemplo, o calculo de pregos. Esses
testes permitem explorar variagbes e validar regras especificas sem dependéncias

externas.

A atual impossibilidade em testar o calculo de preco de forma isolada da camada de
persisténcia revela um problema de design no modulo. Esse acoplamento entre a
l6gica de dominio e a infraestrutura prejudica a testabilidade e compromete a

flexibilidade necessaria para testar cenarios variados.

25

3.2.2. O problema com a classe de calculo atual

O design atual da classe de calculo possui um excesso de responsabilidades, pois
contém a implementacgao das logicas de dominio e infraestrutura. Isso viola o Single
Responsibility Principle (SRP) descrito por Martin (2018) onde uma classe deve
atender a somente uma responsabilidade. Além disso, n&o é possivel utilizar dublés
de teste devido a auséncia de uma interface para abstrair o acesso aos dados e de

um mecanismo para substituir essa dependéncia.

Para viabilizar o uso de dublés é necessario refatorar a classe de calculo, delegando
a responsabilidade de acesso aos dados a uma interface dependente. Essa
separagao promove o desacoplamento entre a légica de dominio e a infraestrutura,

alinhando o design as boas praticas de desenvolvimento orientado a testes.

3.3. Aplicagao de dublés no programa de calculo de prego

As secOes a seguir descrevem as etapas executadas para a aplicagao de dublés de

teste no programa de calculo de preco, através do processo de refatoragao.

3.3.1. Criacao da interface de acesso a dados

Para separar a implementacado da persisténcia da classe principal, os métodos de
acesso a dados getProduct e getMarkup foram removidos e inseridos numa nova
classe denominada PriceCalculationRepository. Essa classe implementa a interface
IPriceCalculationRepository, que define o contrato de persisténcia, determinando os
métodos possiveis para a implementagao concreta. Por fim, a classe de calculo de
preco, PriceCalculation, passa a referenciar a interface, abstendo-se dos detalhes de

implementacgéo. A representagado dessa refatoragcado pode ser observada na Figura 5.

26

Figura 5 - Criagao da interface de acesso a dados

<<SUT=>>
PriceCalculation

- repository: IPriceCalculationRepository

+ calcPrice(productld : Id) : Decimal

v
<<|nterface=>>
IPriceCalculationRepository

+ getProduct(productld : Id) : Product2
+ getMarkup(productld : 1d) : Markup

A

PriceCalculationRepository

+ getProduct(productld : Id) : Product2
+ getMarkup(productld : Id) : Markup

Fonte: o Autor

Ao separar os detalhes da implementacdo de persisténcia aplica-se o padrao
Repository. Isso faz com que a classe PriceCalculation atenda ao Single
Responsibilty Principle (SRP), focando sua funcionalidade no calculo de prego. Por
sua vez, ao referenciar uma interface ao invés de uma implementacdo concreta
aplica-se o Dependency Inversion Principle (DIP), promovendo um baixo

acoplamento da dependéncia do repositorio.

A interface IPriceCalculationRepository também representa a aplicagdo do padrao
Humble Object, fazendo a intermediacdo dos detalhes do repositorio dificeis de

testar, no caso, a persisténcia.

Por fim, o padrdo Injegcdo de Dependéncia é aplicado utilizando um atributo que faz

referéncia a interface do repositério, podendo ser definido por um método construtor

27

ou setter. Esse mecanismo torna possivel a substituicdo do repositoério por dublés

durante a execucao dos testes de unidade.

3.3.2. Criacao do dublé de teste

A partir do momento em que existem dependéncias substituiveis no system under

test (SUT), é possivel implementar dublés de teste baseados em suas interfaces.

Foi criada uma classe dublé denominada PriceCalculationRepositoryMock, que

implementa a interface de acesso a dados /PriceCalculationRepository. Essa classe
possui dois atributos que representam as instancias dos objetos Product2 e Markup,
retornados pelos métodos de acesso a dados definidos na interface. Estes atributos

podem ser definidos diretamente pelo teste durante a fase de preparacao (arrange).

Apesar do uso do sufixo Mock, o dublé implementado na verdade ¢é do tipo Stub,

pois permite a definicdo dos dados de entrada retornados para o SUT.

A partir de agora a classe de teste PriceCalculationTest pode, em algum de seus
testes, instanciar o dublé, definir em memodria os dados que deseja retornar e
substituir a instancia real do repositorio por meio do mecanismo de Injecédo de

Dependéncia. A representacdo da implementacéo pode ser observada na Figura 6.

28

Figura 6 - Criagcao do dublé de teste

<<Teste>>

<<SUT>> PriceCalculationTest

PriceCalculation

- repository : IPriceCalculationRepository oy + calcPriceTestl() : void
+ calcPrice(productld : Id) : Decimal + calcPriceTest2() : void
: A"
AV <<Dublé=>
=<Interface>> PriceCalculationRepositoryMock
IPriceCalculationRepaository
- product : Product2
SRR - markup : Markup
+ getProduct(productid : Id) : Product2
+ getMarkup(productid : Id) : Markup + getProduct(productld : Id) : Product2
& + getMarkup(productid : Id) : Markup

PriceCalculationRepaository

+ getProduct{productld : Id) : Product2
+ getMarkup(productid : Id) : Markup

Fonte: o Autor

3.3.3. Consideracgoes sobre a utilizagao de dublés

A implementagdo da classe dublé em conjunto com o mecanismo de injecao de
dependéncia possibilita a implementacédo de testes de unidade isolados da camada
de persisténcia, utilizando dados em memoria, até entdo impossiveis de serem
implementados pelo forte acoplamento da classe de caélculo a camada de
persisténcia. Estes testes tém um tempo de execucédo mais rapido em relagdo aos
testes de integracdo, sendo ideais para testar diferentes cenarios do calculo de

preco, inclusive cenarios de erro.

A refatoragdo para utilizacdo de dublés também melhorou a coesao da classe de
calculo de preco, que se concentra na funcionalidade de calculo, € ndo nos detalhes

de persisténcia.

29

A utilizacdo de dublés ndo impede que se mantenham os testes de integracao ja
implementados, igualmente importantes para validar o funcionamento conjunto do

programa de calculo com a camada de persisténcia.

A Figura 7, utilizando a notacdo C4, representa o estado final do programa de
calculo de preco, que apesar da utilizacdo do dublé mantém a comunicacdo com a

camada de persisténcia.

Figura 7 - Programa de célculo de preco utilizando dublés

PriceCalculation PriceCalculationTest
[Component: Apex Class] [______ tEstE - mm [Component: Apex Test]
Efetuar o calculo de prego de produtos Teste do calculo de prego de produtos
utiliza testa utilizando
v v
IPriceCalculationRepository PriceCalculationRepositoryMock
[Component: Apex Interface] [Component: Apex Mock]
=== implementa - ---
Interface gue define os métodos de acesso aos Dublé que simula o comportamento do repositario
dados utilizados pelo calculo de prego de dados do calculo
A
implerl”nenla

PriceCalculationRepository
[Component: Apex Class]

Implementagdo concreta do repositono de
dados do calculo de prego

recupera dados

Banco de Dados

[Container: Salesforce Database]

Persisténcia dos dados utilizados pelo calculo
de preco

Fonte: o Autor

30

4. CONSIDERAGOES FINAIS

41. Conclusoes

Este trabalho evidenciou que a impossibilidade de utilizar dublés em testes
automatizados indica um problema de design na implementacdo do componente
testado, o que geralmente indica um forte acoplamento a detalhes néo pertinentes a

l6gica de dominio, e a falta de interfaces que abstraiam as camadas do sistema.

Seguir os principios de design SOLID, como o principio da responsabilidade Unica
(SRP) e da inversao de dependéncia (DIP) ajuda a criar soffware menos acoplado e

mais testavel, e possibilita o uso de dublés para realizar testes de unidade isolados.

O programa de calculo de prego, anteriormente impossibilitado de ser testado
isoladamente devido ao acoplamento a implementacdo da logica de persisténcia,
atingiu um design mais coeso, modularizado e de baixo acoplamento através do uso
de padrdes de projeto e principios de design empregados no método de refatoragéo

proposto, melhorando sua manutenibilidade e testabilidade.

O método de refatoragdo proposto € agnostico a tecnologia, e pode ser utilizado em
outros cenarios em que se queira testar outros componentes de software
isoladamente através de testes de unidade. Ademais, o método proposto nao
elimina os testes de integragdo originalmente implementados, mas adiciona a
possibilidade de testar isoladamente implementando dublés e novos testes de

unidade.
4.2. Trabalhos Futuros

Este trabalho utilizou uma abordagem de implementagdo de dublés de teste
baseado em interface, e ndo explorou o uso de frameworks de teste para a criagao
dindmica dos dublés de teste, como é sugerido no trabalho de Wang (2023), e que é

uma pratica de mercado. Como sugestao de trabalho futuro, poderia ser conduzido

31

um estudo comparativo entre a utilizacdo de frameworks de teste e a implementagao

manual para a construgao de dublés.

32

REFERENCIAS

AMMANN, P.; OFFUTT, J. Introduction to Software Testing. 2. ed. [s.l.] Cambridge
University Press, 2016.

BERNARDO, P. C. Padroes de testes automatizados. 2011. Instituto de
Matematica e Estatistica, Universidade de Sao Paulo, Sao Paulo, 2011.

C4 MODEL. The C4 model for visualising software architecture. Disponivel em:
<https://c4model.com/>. Acesso em: 7 dez. 2024.

FOWLER, M. Patterns of enterprise application architecture. [s.l.]
Addison-Wesley, 2013. 533 p.

KHORIKOQV, V. Unit Testing Principles, Practices, and Patterns. New York:
Manning Publications Co. LLC, 2020. 1 p.

MARTIN, R. C. Clean Architecture: a craftsman’s guide to software structure
and design. [s.l.] Prentice Hall, 2018. 400 p.

MATHEW, R.; SPRAETZ, R. Test Automation on a SaaS Platform. Em: 2009
International Conference on Software Testing Verification and Validation, 2009, [...].
2009. p. 317-325.

MESZAROS, G. xUnit Test Patterns: refactoring test code. Upper Saddle River,
NJ: Addison-Wesley, 2007. 883 p.

OBJECT MANAGEMENT GROUP. Unified Modeling Language Specification
Version 2.5.1. Disponivel em: <https://www.omg.org/spec/lUML/2.5.1/>. Acesso em:
8 dez. 2024.

PRESSMAN, R. S. Software engineering: a practitioner’s approach. Dubuque, IA:
McGraw-Hill, 2010. 895 p.

SALESFORCE. Understanding Test Data. Disponivel em:
<https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/apex_t
esting_data.htm>. Acesso em: 11 nov. 2024.

WANG, X.; XIAO, L.; YU, T.; WOEPSE, A.; WONG, S. JMocker: Refactoring
Test-Production Inheritance by Mockito. Em: 2022 IEEE/ACM 44th International
Conference on Software Engineering: Companion Proceedings (ICSE-Companion),
2022, [...]. 2022. p. 125-129.

WANG, X.; XIAO, L.; YU, T.; WOEPSE, A.; WONG, S. From Inheritance to Mockito:
An Automatic Refactoring Approach. IEEE Transactions on Software Engineering,
v. 49, n. 4, p. 2791-2814, abr. 2023.

	1.​INTRODUÇÃO
	1.1​ Motivação
	1.2​ Objetivo
	1.3​ Justificativa
	1.4​ Metodologia
	1.5​ Estrutura do Trabalho

	2.​FUNDAMENTAÇÃO TEÓRICA
	
	2.1.​Testes de unidade
	2.2.​Isolamento em testes de unidade
	2.3.​Dublês de teste
	2.4.​Injeção de Dependência
	2.5.​Padrão Humble Object
	2.6.​Padrão Repository

	3.​DESENVOLVIMENTO
	3.1.​Método para utilização de dublês
	Figura 1 - BPMN do método para utilização de dublês
	Fonte: o Autor
	

	3.2.​O programa de cálculo de preço
	Figura 2 - Desenvolvedor executando teste no programa de cálculo de preço
	Fonte: o Autor

	Figura 3 - Componentes do programa de cálculo de preço
	Fonte: o Autor

	Figura 4 - Implementação atual do programa de cálculo de preço
	Fonte: o Autor

	3.2.1.​O problema com o teste de unidade atual
	3.2.2.​O problema com a classe de cálculo atual
	3.3.​Aplicação de dublês no programa de cálculo de preço
	3.3.1.​Criação da interface de acesso à dados
	Figura 5 - Criação da interface de acesso à dados
	Fonte: o Autor

	3.3.2.​Criação do dublê de teste
	Figura 6 - Criação do dublê de teste
	Fonte: o Autor

	3.3.3.​Considerações sobre a utilização de dublês
	Figura 7 - Programa de cálculo de preço utilizando dublês
	Fonte: o Autor

	4.​CONSIDERAÇÕES FINAIS
	4.1.​Conclusões
	4.2.​Trabalhos Futuros

	REFERÊNCIAS

