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RESUMO

CARVALHO, Pedro L. F. Previsao de incertezas em séries temporais de geracao
de energia fotovoltaica. 2025. 101 p. Trabalho de Conclusao de Curso - Escola de
Engenharia de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, 2025.

O avanco da energia fotovoltaica na matriz energética brasileira impoe desafios a operacao
do Sistema Interligado Nacional (SIN) devido a sua natureza intermitente. Este trabalho
aborda a previsao de incertezas na geracao solar, propondo uma comparacao sistematica
entre modelos de aprendizado de maquina locais e globais. A metodologia investiga a
hipétese de que a modelagem das interdependéncias espaciais entre usinas, representadas
como um grafo, melhora a previsibilidade e a quantificagao das incertezas. Foram utilizados
dados de gerac¢ao de 47 usinas, fornecidos pelo Operador Nacional do Sistema (ONS),
e dados climaticos da NASA Power API. Como linha de base, foi implementado um
modelo local robusto, o XGBoost, treinado individualmente para usinas-arquétipo(grupos
de usinas com caracteristicas estruturais e de conectividade similares). Em contrapartida,
foram desenvolvidos modelos espaco-temporais baseados em Graph Neural Networks
(GNNSs), especificamente as arquiteturas Graph Attention Network-Long Short Term
Memory(GAT-LSTM) e Graph Convolutional Network - 1 Dimension(GCN-1D), que
processam simultaneamente todo o conjunto de usinas. Todos os modelos foram treinados
com a funcdo de perda pinball para gerar previsoes quantilicas (0.1, 0.5 e 0.9), permitindo
a construcao de intervalos de predicao e a andlise das incertezas associadas. Os resultados
demonstram que, embora os modelos locais apresentem boa aderéncia a eventos especificos,
as abordagens baseadas em grafos sdo capazes de capturar parcialmente as dinamicas
de geracao locais, oferecendo uma visao geral para a gestao do portfélio de geracao e

contribuindo para futuros estudos da seguranga energética do sistema.

Previsao de energia fotovoltaica. Séries temporais. Incerteza. Redes Neurais

em Grafos. XGBoost. Modelagem espacgo-temporal.






Abstract

CARVALHO, Pedro L. F. Undergraduate Thesis. 2025. 101 f.

The expansion of photovoltaic energy in the Brazilian energy matrix poses challenges to
the operation of the National Interconnected System (SIN) due to its intermittent nature.
This work addresses uncertainty forecasting in solar power generation by proposing a
systematic comparison between local and global machine learning models. The
methodology investigates the hypothesis that modeling spatial interdependencies between
power plants, represented as a graph, improves predictability and uncertainty
quantification. Generation data from 47 power plants, provided by the National System
Operator (ONS), and climate data from the NASA Power API were utilized. As a baseline,
a robust local model, XGBoost, was implemented and trained individually for archetype
plants(groups of power plants with similar structural and connectivity characteristics). In
contrast, spatio-temporal models based on Graph Neural Networks (GNNs) were
developed, specifically the GAT-LSTM and GCN-1D architectures, which simultaneously
process the entire set of plants. All models were trained with the pinball loss function to
generate quantile forecasts (0.1, 0.5, and 0.9), enabling the construction of prediction
intervals and the analysis of associated uncertainties. The results demonstrate that while
local models show good adherence to specific events, graph-based approaches are capable
of partially capturing complex spatial dynamics. This offers a comprehensive view for
generation portfolio management and contributes to the energy security of the system.

Photovoltaic energy forecasting. Time series. Uncertainty. Graph Neural
Networks. XGBoost. Spatio-temporal modeling.

Undergraduate Thesis - Escola de Engenharia de Sao Carlos, Universidade de Sao Paulo,
Sao Carlos, 2025.
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1 INTRODUCAO

1.1 Contextualizacao

O crescimento da energia solar na matriz energética brasileira impoe novos desafios
ao planejamento e a operacao do Sistema Interligado Nacional (SIN). Consequentemente,
sao necessarias adequagoes na infraestrutura de transmissao e na capacidade de controle
operacional do sistema, devido as caracteristicas préprias da geracao solar, variabilidade da
geracao e carater nao despachavel, conforme destacado no Plano da Operacao Energética
2023-2027 do Operador Nacional do Sistema (ONS) (ONS, 2023).

Além disso, a intermiténcia da geragao fotovoltaica exige maior capacidade de
antecipacgao e controle. O mesmo documento ressalta que aspectos como o controle de
tensao e a manutencao da seguranca operacional do sistema sao diretamente afetados pela
natureza variavel da geracao, um desafio intensificado pela crescente integracao de fontes
nao despachaveis ao SIN.

Diante desse cendrio, é necessario desenvolver modelos preditivos das incertezas da
geracao fotovoltaica visando: a seguranga energética, confiabilidade dos modelos e incertezas
quantificaveis. Tendo em vista as dindmicas de geragdo em comum das usinas, vide padrao
de geracao fisico local, a incerteza depende da interacao de varidveis desconhecidas entre as
usinas vizinhas; ou seja, ela é correlacionada com a incerteza de suas vizinhas, um aspecto
que modelos de multiplos nds, como os baseados em grafos, sdo mais aptos a capturar.

Este estudo se propoe, portanto, a analisar a dindmica da geragao fotovoltaica e a
desenvolver ferramentas de previsao de incerteza que considerem nao apenas o comporta-
mento individual das usinas, mas também suas interdependéncias espaciais.

As hipoteses consideradas neste trabalho sao de que a conexao das usinas em grafos
pode trazer representacoes estruturais do carater operacional e de regimes climéticos
similares, o que levaria a uma melhor previsao da geracao solar a nivel regional — as
regressoes feitas nos grafos acontecem em todos as suas usinas, o que permite predizer
todo um conjunto de usinas com um tnico modelo.

Assim, sob a perspectiva de grafos, as usinas fotovoltaicas sdo representadas como
nos, aos quais se associam dados horarios de geracao e informacoes climaticas. Esses
nos podem ser conectados com base em critérios de proximidade geografica entre as
usinas, permitindo investigar como a estrutura espaco-temporal da rede influencia na
previsibilidade da geracao.

A modelagem espago-temporal do problema também encontra respaldo nas preocu-
pacoes globais com as mudangas climaticas - o Intergovernmental Panel on Climate Change
(IPCC) destaca que a variabilidade climética crescente afetarda diretamente os sistemas de

energia de baixo carbono, inclusive a previsibilidade da geragao renovavel. Além disso, a
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transicao para um paradigma de sistema de eletricidade digitalizavel e controlavel deve
facilitar drasticas mudancas na seguranca da oferta, levando as formas tradicionais de
redundéncias dos ativos para um novo paradigma de controle inteligente. (IPCC, 2022).
A previsao da geragao solar é fortemente associada a fatores climaticos — como
a irradidncia solar — e, por isso, o uso de variaveis exdgenas climaticas é comum na
literatura. Nesse contexto, o presente estudo aprofunda essa linha de pesquisa ao empregar
modelos avangados que nao apenas utilizam variaveis climaticas exdgenas, mas as integram
em uma perspectiva espago-temporal, notadamente através de redes neurais em grafos.
Para contextualizar as contribuicoes deste trabalho e suas abordagens, a proxima

secao apresenta um panorama dos estudos relevantes na literatura.

1.2 Justificativa

Apesar dos avancos na previsao de séries temporais, a analise da literatura revela
que a abordagem predominante, tanto académica quanto na pratica industrial, foca em
modelos independentes para cada usina. Modelos de alta performance, como o XGBoost,
uma implementacao otimizada para o algoritmo de arvore de decisao com aumento de
gradiente (CHEN; GUESTRIN, 2016), frequentemente mantém a premissa de tratar cada
ativo como um sistema isolado. Embora eficaz para a acuracia local, esta abordagem
ignora as dindmicas compartilhadas de geracao e impoe desafios operacionais significativos,
como a complexa gestao de um portfélio crescente de modelos e a incapacidade de prover
estimativas para novos ativos sem dados histéricos.

Neste contexto, arquiteturas como Graph Neural Network(GNN) e Graph Convolu-
tional Network(GCN) surgem como uma alternativa promissora, oferecendo um referencial
unificado e escalavel com potencial de generalizacao indutiva, i.e., aplicavel em usinas que
nao foram utilizadas no treinamento de modelos de aprendizado. Contudo, apesar de seu
potencial tedrico, ainda carecem de comparacoes diretas com referéncias de base locais
robustas sob condi¢oes equivalentes.

Essa caréncia é particularmente acentuada no contexto do SIN, um cenario complexo,
de escala continental e diversidade climatica, cuja exploracao com tais técnicas ainda ¢é
incipiente.

E precisamente para preencher essa dupla lacuna — operacional e académica —
que este trabalho se justifica. Ele propde uma comparagao sistematica entre as duas
frentes de modelagem. Ao confrontar o desempenho de um modelo local robusto com o de
arquiteturas globais baseadas em grafos, busca-se oferecer um entendimento mais claro
sobre as bases tedricas do problema e as compensacoes praticas de cada abordagem no
contexto brasileiro.

Para guiar esta investigacao, o trabalho parte da hipétese fundamental de que a
modelagem explicita das interdependéncias espaciais entre as usinas fotovoltaicas, por

meio de uma representacao em grafo, oferece ganhos tanto na acurédcia preditiva quanto na
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qualidade da quantificacdo de incerteza, quando comparada a modelos puramente locais.

Essa melhoria proposta se desdobra em duas dimensoes principais. No que tange a
previsibilidade, postula-se que a informacao contextual dos vizinhos, propagada através do
grafo, permite aos modelos capturar padroes climaticos e operacionais regionais, resultando
em uma maior capacidade de explicar a varidncia da geracao (maior R?), especialmente
em horizontes de previsao de curtissimo prazo.

Adicionalmente, no que se refere a incerteza, a hipotese é de que a modelagem
conjunta do sistema de usinas permite uma melhor caracterizacao da incerteza espacial-
mente correlacionada, levando a construcao de intervalos de predi¢cao mais informativos e

adequados para a gestao de portfolio.

1.3 Objetivos

Para testar as hipoteses apresentadas e atender a justificativa do estudo, o trabalho

foi estruturado em torno dos seguintes objetivos especificos:

a) Coletar e realizar uma andlise exploratéria dos dados de geragao fotovoltaica da
ONS e de dados climaticos provenientes da NASA Power API,;

b) Definir o cendrio de anélise, compreender o comportamento temporal e espacial

das usinas e identificar relagoes estruturais entre elas;

c¢) Caracterizar o grafo das usinas e entender como a correlacdo espacial e a

variabilidade local se relacionam com a geragao de energia solar;

d) Aplicar os fundamentos da modelagem cléssica de séries temporais, utilizando
modelos SARIMA e a andlise de residuos (incluindo decomposigoes em compo-
nentes brancos e nao brancos), para investigar a dindmica temporal das usinas

e explorar relagoes de dependéncia e informacao mutua entre os nés do grafo;

e) Estudar e implementar arquiteturas de aprendizado de méquina capazes de
modelar as dependéncias espago-temporais da geracao solar, incluindo modelos
baseados em gradiente - Extreme Gradient Boosting (XGBoost) e redes em
grafos (GAT-LSTM e GCNI1D). Avaliar o potencial dessas arquiteturas para

representar interacoes entre multiplas usinas de geracao solar;

f) Implementar e comparar o desempenho dos modelos em diferentes horizontes de
previsao (Hora+1, Hora+3, Hora+6, Hora+12 e Hora+24), utilizando métricas

de erro e calibracao;

g) Avaliar tanto a acurdcia das previsdes dos quantis, quanto a estabilidade dos

modelos sob diferentes escalas temporais;

h) Estimar e comparar as incertezas associadas as previsoes por meio de regressoes
quantilicas (fungao de perda pinball para os quantis 0.1, 0.5 e 0.9) e da andlise

dos residuos dos modelos;
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i) Discutir a origem dessas incertezas, relacionando-as a variabilidade observada
no conjunto de testes e as limitagoes de cada abordagem, com o intuito de

compreender melhor o papel da incerteza nas previsoes de de varios noés.

1.4 Organizacao do trabalho

O presente trabalho estd estruturado em seis capitulos, organizados de forma a
conduzir o leitor desde a contextualizacao do problema até a analise dos resultados obtidos.

No capitulo 1, sdo apresentados o contexto geral da pesquisa, a motivagao, os
objetivos e a justificativa do estudo, bem como a estrutura do trabalho.

O capitulo 2 aborda os trabalhos relacionados, discutindo os principais avangos na
previsao da geracao fotovoltaica, com énfase em abordagens espago-temporais, técnicas
de aprendizado de maquina e métodos recentes de quantificacao de incertezas, incluindo
regressoes quantilicas e redes neurais em grafos.

O capitulo 3 descreve os conjuntos de dados utilizados e as etapas de pré-processamento,
incluindo a caracterizagao das usinas fotovoltaicas, o tratamento de séries temporais e a
construcao das estruturas em grafo que representam as relagoes espaciais entre as usinas.

O capitulo 4 apresenta a metodologia desenvolvida, detalhando os modelos em-
pregados — estatisticos, de aprendizado de maquina e de aprendizado profundo —, a
formulacao das fungoes de perda quantilica, os critérios de avaliacdo e a estratégia de
experimentacao adotada.

No capitulo 5, sao expostos e discutidos os resultados obtidos, com foco na andlise
comparativa entre os modelos, no comportamento dos residuos, na calibragao das previsoes
e na interpretacao das incertezas associadas.

Por fim, o Capitulo 6 sintetiza as conclusées do trabalho, destacando as principais
contribuigoes e limitagoes encontradas, além de propor direcoes para estudos futuros
voltados ao aprimoramento da modelagem de incertezas em sistemas de geragao solar de

varias usinas.
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2 TRABALHOS RELACIONADOS

A previsao da geracao de energia solar é um problema consolidado na literatura da
engenharia elétrica e em areas correlatas que lidam com séries temporais. Com a crescente
integracao de fontes intermitentes, a criagdo e manutengao de modelos preditivos robustos
tornou-se uma necessidade fundamental para a seguranca e a estabilidade da operacao do
sistema energético.

A escolha dos algoritmos de estudo dependem de qual otimizagao e escala de estudo
é feita, de modo que os critérios de escolha dos algoritmos devem ser definidos com base
no escopo de andlise e viabilidade pratica em relagao aos dados disponiveis.

Assim, a literatura existente pode ser categorizada por multiplas dimensoes, como
o nimero de pontos de previsao, o horizonte temporal e as variaveis exdgenas utilizadas.
A analise pode focar em um tnico local ou em multiplas usinas, embora a acurdcia dos
modelos tenda a diminuir a medida que a janela de predicao se estende.

Com o intuito de garantir a robustez e modelagem fisica dos modelos, fatores como
irradiancia e temperatura sao utilizados, geralmente obtidos de dados ptublicos, satélites
ou previsoes numéricas do tempo (NWP), sendo cruciais para o desempenho dos modelos
(SOBRI; KOOHI-KAMALI; RAHIM, 2018).

Para além das variaveis escolhidas, as quais permitem a modelagem fisica do
problema, tem-se de compreender a evolucao dos métodos de andlise. As abordagens
metodologicas refletem uma clara evolugdo em termos de robustez, acurdcia e interpretabi-
lidade. Modelos estatisticos classicos como a metodologia ARIMA (Média Mével Integrada
Autoregressiva) proposta por Box e Jenkins (BOX; JENKINS, 1970), sao frequentemente
o ponto de partida, mas demonstram limitagoes ao lidar com a nao-linearidade inerente
aos sistemas de geracao de energia.

Essa limitacao impulsionou a pesquisa em direcao ao estudo das dependéncias
temporais, utilizando modelos de redes neurais recorrentes. Arquiteturas como Long Short-
Term Memory(LSTM) (HOCHREITER; SCHMIDHUBER, 1997) e Gated Recurrent
Unit(GRU), uma variagdo mais simples computacionalmente proposta por Cho et al.(CHO
et al., 2014), demonstraram grande potencial para capturar dependéncias de longo prazo.
Embora arquiteturas como as LSTMs tenham demonstrado grande potencial para capturar
dependéncias temporais, elas apresentam seus proprios desafios, como a necessidade de
grandes volumes de dados e a alta sensibilidade ao ajuste arquitetural, que pode levar ao
sobreajuste (SOBRI; KOOHI-KAMALI; RAHIM, 2018)

Posteriormente, o aprendizado de maquina, especialmente com algoritmos de gradi-
ent boosting como o XGBoost (CHEN; GUESTRIN, 2016), superou parte dessas barreiras,
capturando com maior precisao as relagoes complexas entre as variaveis.

Contudo, mesmo em sua alta performance, esses modelos de aprendizado de ma-
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quina frequentemente mantém a premissa de tratar cada usina como um sistema isolado,
ignorando a possibilidade de modelar usinas em conjunto, as quais podem compartilhar
dindmicas de geracao, fenomenos meteoroldgicos e perfis operacionais, em fungao das suas
proximidades geograficas e da natureza de funcionamento.

Nesse contexto, GNNs e GCNs surgem como o estado da arte para problemas
espago-temporais (WU et al., 2021). Seu uso em séries temporais ja foi consolidado em
revisoes recentes, as quais se tornaram padrao para modelar a influéncia mutua entre
entidades conectadas em uma rede (YE et al., 2020) (SAHILI; AWAD, 2023). No campo de
aprendizado de maquina e energia, a literatura aponta as GNNs como uma das abordagens
mais promissoras para lidar com a interdependéncia entre multiplos pontos de geracao
(YANG et al., 2025) (AHMED; MOZO; KARAMCHANDANTI, 2023) .

Apesar de seu potencial, mesmo estas arquiteturas avancadas enfrentam desafios,
como a disponibilidade limitada de dados de séries temporais para pré-treinamento em
larga escala, o que pode dificultar a generalizagdo (HU et al., 2020).

A anélise da literatura revela, portanto, que apesar dos avancos, a maioria dos
trabalhos ainda trata a previsao de cada usina de forma independente. Sao raras as
comparagoes diretas entre modelos locais de alta performance e abordagens espaco-
temporais sob condi¢oes equivalentes .

Essa caréncia é acentuada no contexto SIN, um cenario complexo, de escala conti-
nental e diversidade climdtica, cuja exploragao com tais técnicas ainda é incipiente (SILVA
et al., 2020).

Visando enderecar essa questao, este trabalho propde uma comparacao sistemética
entre as duas frentes. De um lado, estabelece-se uma referéncia base com regressoes de
XGBoost aplicadas a trés usinas-arquétipo, definidos através de métricas de redes comple-
xas, representativas de diferentes regimes climaticos e dinamicas entre usinas. De outro,
empregam-se as arquiteturas GAT-LSTM e GCN-1D que consideram simultaneamente
todo o conjunto de usinas como um sistema interdependente.

A partir dos resultados das previsdes para os cenarios de hora futura, para entender
a sensibilidade desses estimadores estudam-se as incertezas dos regressores no conjunto de
testes, de modo a testar a confiabilidade dos resultados obtidos.

O objetivo é, portanto, oferecer um comparativo sobre métodos de previsao da
geracao solar em solo brasileiro, buscando compreender as bases tedricas do problema e
entender as incertezas associadas.

Em sintese, a literatura aponta para as GNNs como a fronteira da pesquisa para pro-
blemas espago-temporais, mas destaca a caréncia de estudos comparativos, especialmente
no setor elétrico brasileiro.

Mais recentemente, a interseccao entre GNNs e quantificagdo de incertezas surgiu
como uma fronteira ativa de pesquisa. O referencial tedrico dessa segunda, que busca ir além

das previsoes pontuais para fornecer estimativas com confiabilidade, esta bem estabelecido
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em obras como a de (IZBICKI, 2025). A aplicagao desses principios as GNNs investiga
como decompor a incerteza preditiva em suas fontes fundamentais: a incerteza aleatoria,
inerente ao ruido nos dados (como variagoes na irradiancia), e a incerteza epistémica, que
reflete as limitagoes e o conhecimento do préprio modelo (MUNIKOTT et al., 2023).

As abordagens para capturar essas incertezas em GNNs sdo diversas, incluindo
métodos Bayesianos, deep ensembles (LAKSHMINARAYANAN; PRITZEL; BLUNDELL,
2017) e redes deterministicas projetadas para serem cientes das diferengas aos dados de
treino (LIU et al., 2020). Contudo, um desafio central, destacado em benchmarks recentes,
¢ a dificuldade pratica de desentrelacar as estimativas de incerteza aleatéria e epistémica,
que frequentemente se mostram altamente correlacionadas na pratica (MUCSANYI;
KIRCHHOF; OH, 2024).

Dado que a aplicagao rigorosa dessas técnicas avancadas dessa intersegcao para o
setor elétrico ainda é um campo em aberto e de alta complexidade, este trabalho adota
uma abordagem fundamental e pragmatica. Utiliza-se a regressao quantilica — um dos
métodos basilares da quantifica¢do de incertezas, conforme discutido em (IZBICKI, 2025,
Capitulo 5) — como um primeiro passo essencial para a sua quantificacdo completa. Essa
escolha estabelece uma referéncia inicial sobre a qual futuras pesquisas de decomposicao
de incerteza podem ser construidas.

Com essa perspectiva teodrica estabelecida, o proximo capitulo se dedicara a anélise
exploratéria dos dados especificos deste trabalho, detalhando o processo de tratamento e a

construcao da estrutura em grafo que servird de base para os modelos propostos.



3 ANALISE EXPLORATORIA DE DADOS

Este capitulo apresenta a Andlise Exploratéria de Dados (AED) utilizada para
definir o escopo do trabalho e fundamentar a metodologia subsequente. O processo inicia-se
com a descricao e o pré-processamento das fontes de dados (ONS e NASA), assim, obtém-se
a defini¢cdo do conjunto de 47 usinas e da janela temporal que compoem o cenario de
analise.

A seguir, a estrutura espacial da rede é investigada através da modelagem em grafos,
com o calculo de métricas de redes complexas para a identificacao de arquétipos de usinas.

Por fim, a anélise de séries temporais com modelos SARIMA é empregada para
diagnosticar a dinamica individual das usinas e testar a hipdtese de suficiéncia de modelos

temporais, através da analise de seus residuos.

3.1 Visao Geral
3.1.1 Dados do Operador Nacional do Sistema(ONS)

Para a construcao e validagao dos modelos preditivos, foram utilizados dois conjuntos
de dados principais: a geracao de energia fotovoltaica por usina, proveniente do ONS, e
dados climaticos obtidos da API da NASA Power. A integragdo e o pré-processamento
desses dados foram etapas fundamentais para a analise espago-temporal e a modelagem
subsequente.

O conjunto de dados da geragdo solar de usinas brasileiras disponibilizado com
atualizagao mensal pelo ONS, fornece o historico hordrio de geracao elétrica por usina.
Neste trabalho, foi utilizada a série temporal referente ao ano de 2024, com as seguintes

colunas principais:

e din_instante: timestamp (passo horario);
e id_estado: unidade federativa da usina;
e nom_usina: nome da usina;

» val_geracao: valor da geracao (MW).

Durante a etapa de ETC (Extracao, Transformacao e Carga), foram selecionadas
apenas usinas do tipo fotovoltaica. O dataset original do ONS inclui registros tanto de
usinas centralizadas quanto de microgeracao distribuida.

No entanto, a microgeracao foi excluida da andlise, uma vez que seus registros nao
permitem a identificagdo precisa da localizagao geografica (apenas o estado de origem

é informado), o que inviabilizaria o cruzamento com os dados climaticos da NASA e a
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construgao da rede de grafos baseada na localizagdo espacial e para a anélise das relacgoes
funcionais entre usinas.

Este processo resultou em um conjunto inicial de 64 usinas fotovoltaicas centraliza-
das. A inclusao de dados de microgeracao distribuida com georreferenciamento preciso
representaria um avanco significativo, permitindo uma analise mais granular da penetracao
de renovaveis e dos desafios associados; contudo, a indisponibilidade atual desses dados
em nivel nacional com a resolugao necessaria para este estudo representou uma limitacao.

A distribuicao geogréfica dessas 64 usinas pelo territério nacional é apresentada
na Figura 1. Observa-se uma concentracao significativa na regiao Nordeste e em partes
das regioes Sudeste e Centro-Oeste, areas frequentemente referidas como o cinturao solar,
devido a alta incidéncia de irradiacao solar.

Essa distribuicao heterogénea espacial, mas de irradiancia forte na regiao das
usinas no territorio nacional ressalta a complexidade de modelar a geracao em um pais de
dimensoes continentais e a variabilidade das condi¢des ambientais regionais, reforcando a
necessidade de abordagens que considerem a variabilidade espacial.

A localizagdo exata das usinas selecionadas (latitude e longitude) foi obtida manual-
mente por meio de pesquisas online e cruzamento com bases de dados publicas, utilizando

coordenadas representativas proximas as instalagoes reais.

3.1.2 Dados Climaticos — NASA Power API

Os dados climéaticos foram obtidos via requisicoes HTTP & API da NASA Power !,
que disponibiliza séries temporais horarias para aplicagoes em energia renovavel. A grade
espacial tem resolucao de 0,5° x 0,5° e cobre todo o territério brasileiro.

Para cada usina, foram extraidas as variaveis climaticas correspondentes as suas
coordenadas geogréaficas mais proximas. A selecao das variaveis considerou sua relevancia
para a geracao fotovoltaica, com foco na caracterizacao da irradidancia solar e das condigoes
atmosféricas que afetam diretamente a producao de energia.

As principais variaveis selecionadas foram:

o ALLSKY_ SFC_SW_DWN: irradiancia solar global na superficie (W/m?2), a principal

variavel fisica indicadora da geragao fotovoltaica.

o T2M: temperatura do ar a 2 metros (°C), a eficiéncia dos médulos fotovoltaicos é

inversamente afetada pela temperatura.

« RH2M: umidade relativa a 2 metros (%), incluida pela sua capacidade de influenciar a
formacao e dispersao de nuvens, além da atenuacao da irradiancia por particulas

suspensas na atmosfera.

L https://power.larc.nasa.gov/data-access-viewer/


https://power.larc.nasa.gov/data-access-viewer/
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Distribuicao Geografica das 64 Usinas Fotovoltaicas Analisadas no Brasil
(Destacando as 5 maiores por Média de Geracao)
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Figura 1 — Distribuicdo Geogréfica das 64 Usinas Fotovoltaicas Analisadas no Brasil, com
destaque para a concentracao no "cinturao solar".

e WS10M: velocidade do vento a 10 metros (m/s), considerada como um indicador da

dindmica atmosférica local e seu impacto na dissipacao de calor dos médulos.

e ALLSKY_KT: indice de claridade (adimensional), representa a razao entre a irradiancia
real e a irradidncia potencial na atmosfera clara, servindo como uma medida da

claridade atmosférica e da presenca de nuvens.

A concatenagao dos timestamps de ambas as fontes de dados (ONS e NASA) foi um
passo fundamental do pré-processamento, garantindo a correspondéncia temporal precisa
entre os dados de geracgdo e as condigoes climéticas.

Apos a coleta e a sincronizagao, todos os dados brutos foram limpos e integrados.
O tratamento de valores ausentes foi realizado em duas etapas. Primeiro, para garantir

que todas as usinas tivessem a mesma quantidade de passos de tempo, os passos horarios
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faltantes na geragdo de energia foram preenchidos com o valor NaN, conforme detalhado
na Se¢ao 3.2. Segundo, para um pequeno subconjunto de usinas com falhas pontuais,
uma estratégia de imputacao foi considerada para permitir sua inclusao na analise final.
Este processo resultou em um formato unificado e balanceado, pronto para as etapas de
engenharia de features e modelagem.

Conforme detalhado na secao 3.1.1, os dados de geracao horaria do ONS e os dados
climaticos horarios da API NASA Power foram coletados e preparados.

Na etapa de consolidagao, as informacoes de geracao de cada usina fotovoltaica
foram associadas com as variaveis climaticas correspondentes a sua localizacao geografica
(utilizando o ponto de grade da NASA mais préximo) e ao respectivo instante de tempo.

Além disso, verificou-se a auséncia de dados na geragao solar, as usinas identificadas
e a quantidade das entradas ausentes estao disponiveis na préxima subsecao. Para garantir
um conjunto de dados balanceado, os passos horarios faltantes para cada usina foram
preenchidos com o valor NaN na coluna de geracao. Este procedimento assegura que todas
as séries temporais tenham o mesmo comprimento e os mesmos passos de tempo, alinhadas
as observagoes climaticas por localizacao geografica.

Assim, garante-se que cada usina possui a mesma quantidade de passos horarios,
sendo esta também igual a quantidade de observacoes climaticas por ponto de grade.

O dataframe resultante, contém 562.176 observacoes (registros horarios) e 17 colunas
(varidveis). Abrange 64 usinas tnicas, cada uma com sua série temporal para o ano de

2024 completo. As principais variaveis presentes no conjunto de dados sdo:

o Identificacao e Tempo:

din_instante: Timestamp da medigao (passo horério).
— id_subsistema: Identificador do subsistema elétrico.
— id_estado: Sigla da unidade federativa da usina.

— nom_tipocombustivel: Tipo de combustivel (sempre "Fotovoltaica'neste es-
tudo).

— nom_usina: Nome da usina de geragao.
o Geragao e Localizagcao da Usina:

— val_geracao: Valor da geracao elétrica (MW).
— latitude: Latitude da usina.

— longitude: Longitude da usina.
e Dados de Referéncia da NASA e Variaveis Climéaticas:

— closest_latitude: Latitude do ponto de grade da NASA mais préximo.

— closest_longitude: Longitude do ponto de grade da NASA mais préximo.
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— distance_km: Distdncia (km) entre a usina e o ponto de grade da NASA.
— location: String combinada das coordenadas do ponto de grade da NASA.
— ALLSKY_SFC_SW_DWN: Irradidncia solar global na superficie (W/m?2).

— T2M: Temperatura do ar a 2 metros (°C).

RH2M: Umidade relativa a 2 metros (%).
— WS10M: Velocidade do vento a 10 metros (m/s).

— ALLSKY_KT: Indice de claridade (adimensional).

Este conjunto de dados consolidado sera utilizado nas subsecoes seguintes para uma analise
exploratoria detalhada, visando entender os padroes de geragao, a influéncia dos fatores

climéticos e outras caracteristicas relevantes.

3.2 Cenario de Analise

A etapa de selecao de variaveis e tratamento de dados ausentes teve inicio com
uma avaliacao do conjunto de dados. Esta andlise identificou um total de 58.104 valores
omissos. Uma investigacao subsequente revelou que a integralidade destes dados faltantes
concentra-se exclusivamente na variavel val_geracao.

Considerando que a auséncia de dados de geracao nao se distribui uniformemente,
torna-se relevante analisar a contribui¢ao de cada usina para este total. A Tabela 1 detalha
as usinas fotovoltaicas com registros de geragao ausentes e a respectiva quantidade de
ocorréncias.

Como detalhado na Tabela 1, constatou-se que 22 das 64 usinas fotovoltaicas do
conjunto de dados apresentam registros ausentes na variavel de geracao (val_geracao).
O perfil dessa auséncia varia consideravelmente, desde o Conjunto Banabuiu, com apenas
72 valores faltantes, até o Conjunto Fotovoltaico Simplice, com 7.824 registros ausentes.

Para compreender os periodos especificos de interrupcao no registro desta variavel
durante o ano de 2024, procedeu-se a uma investigacao individualizada para cada usina
afetada. Esta andlise revelou que os valores faltantes ocorrem predominantemente em
blocos continuos, estendendo-se por multiplos dias ou meses, comprometendo o registro da
geracao solar, conforme apresentado na Tabela 2.

A Tabela 2 detalha os periodos exatos de auséncia de dados para cada uma dessas
usinas. Esta informacao é fundamental, pois levanta questoes metodoldgicas importantes:
quais usinas devem ser mantidas na analise e qual janela temporal serd considerada.

A anélise dos periodos de auséncia de dados de geragao (Tabela 2) revela heteroge-
neidade significativa. Algumas apresentam longos periodos continuos de falha. No entanto,
a definicdo da janela de eventos também considera a disponibilidade de variaveis exdgenas.

Dados meteorolégicos da NASA estao consistentemente disponiveis e validados

apenas até 31 de julho de 2024 para o conjunto de usinas. Apés este periodo, observam-se
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Tabela 1 — Distribuicao de dados ausentes da variavel val_geracao por usina fotovoltaica.

Nome da Usina Total de Dados Ausentes
Fotov. Simplice 7.824
Jaiba 138 kV 7.488
Fotovoltaico Gilbués II 500 kV 6.288
Trés Marias 3 138kV 5.448
Vista Alegre - Janatba 5.424
Fotovoltaico Barreiras II 500 kV 4.032
Varzea da Palma 3.240
Sao Gongalo 2.808
Bom Nome 2.712
Marangatu 2.160
Ribeiro Gongalves 2.160
Boa Sorte 1.680
Conjunto fotovoltaico Santa Luzia II 500kV 1.392
Jaiba V 1.272
Monte Verde Solar 744
Fotov. Acu IIT 230KV 720
Fotovoltaico Abaiara 230 kV 720
Arinos 2 500 kV 720
Boa Hora 624
Pitombeira 360
Sol do Piaui 216
Banabuiu 72

valores degenerados (e.g., -999) em varidveis chave como ALLSKY_SFC_SW_DWN e ALLSKY_KT.
Este fendmeno é ilustrado para as usinas Janatuba (Figura 2) e Belmonte (Figura 3). Apds
este periodo, observam-se valores degenerados nas variaveis climaticas (preenchidos com
a flag de erro -999 pela API), o que inviabiliza o uso dessas séries para treinamento
supervisionado a partir de agosto.

A andlise dos padroes de falha sugere que a auséncia de dados ocorre devido a
problemas técnicos de comunicagdao ou manutencao dos sensores. Conforme as defini¢oes
estabelecidas por (LITTLE; RUBIN;, 2019), esse comportamento caracteriza-se predominan-
temente como Missing Completely at Random (MCAR) ou, no minimo, independente dos
valores de geracao nao observados, uma vez que nao foram identificados vieses sistematicos
correlacionados a magnitude da geracao.

Conforme a documentacao da API, o valor -999 indica auséncia de medi¢ao ou
dados faltantes. Ao verificar os grids com dados climaticos, nota-se que a indisponibilidade
ap6s 31 de julho é homogénea.

Considerando a intersecao entre a disponibilidade dos dados de geracao das usinas
com menor volume de falhas e o limite de confiabilidade dos dados meteorolégicos da
NASA, optou-se por definir a janela de eventos para este estudo como o periodo de 01

de Janeiro de 2024 a 30 de Junho de 2024. Esta janela busca maximizar a quantidade de
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Andlise de Deterioracdo dos Dados Climaticos Diarios - Conj. Janatba
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Figura 2 — Deterioracao dos dados horérios de irradidncia (ALLSKY_SFC_SW_DWN) e indice
de claridade (ALLSKY_KT) para a usina Janauba.

Anédlise de Deterioracao dos Dados Climaticos Diarios - Conj. Belmonte
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Figura 3 — Comportamento similar de deterioragdo dos dados meteorolégicos (ALLSKY_ -
SFC_SW_DWN e ALLSKY_KT) observado para a usina Belmonte.
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Tabela 2 — Periodos com dados ausentes da variavel val_geracao por usina fotovoltaica.

Nome da Usina

Periodos Ausentes (YYYY-MM-DD)

Fotov. Simplice

Jaiba 138 kV

Fotovoltaico Gilbués II 500 kV
Trés Marias 3 138kV

Vista Alegre - Janatba
Fotovoltaico Barreiras II 500 kV
Varzea da Palma

Sao Gongalo

Bom Nome

Marangatu

Ribeiro Gongalves

Boa Sorte

Conjunto fotovoltaico Santa Luzia II 500kV

Jaiba V

Monte Verde Solar

Fotov. Acu IIT 230KV
Fotovoltaico Abaiara 230 kV
Arinos 2 500 kV

Boa Hora

Pitombeira

Sol do Piaui

Banabuiu

2024-01-01 a 2024-11-21
2024-01-01 a 2024-11-07
2024-01-01 a 2024-09-18
2024-01-01 a 2024-08-14
2024-01-01 a 2024-08-13
2024-01-01 a 2024-06-16
2024-01-01 a 2024-05-14
2024-09-06 a 2024-12-31
2024-01-01 a 2024-04-16;
2024-05-07 a 2024-05-12
2024-01-01 a 2024-02-07;
2024-02-09 a 2024-03-31
2024-01-01 a 2024-02-07;
2024-02-09 a 2024-03-31
2024-01-01 a 2024-03-07;
2024-04-30 a 2024-05-02
2024-01-01 a 2024-02-07;
2024-02-09 a 2024-02-28
2024-01-01 a 2024-02-07;
2024-02-09 a 2024-02-23
2024-01-01 a 2024-01-31
2024-01-01 a 2024-01-30
2024-01-01 a 2024-01-30
2024-01-01 a 2024-01-30
2024-07-04 a 2024-07-29
2024-01-01 a 2024-01-15
2024-01-01 a 2024-01-09
2024-01-01 a 2024-01-03

dados validos e simultdneos, garantindo uma base integra para a modelagem. A sele¢ao
final das usinas serd detalhada na proxima subsecao.

Definida a janela de eventos (01 de Janeiro a 30 de Junho de 2024), o préximo
passo € a selecao das usinas fotovoltaicas para o conjunto de dados final, visando uma
amostra robusta com dados de geracao completos e consistentes.

O processo ocorreu em duas etapas. Primeiramente, identificaram-se 44 usinas com
cobertura temporal completa e sem dados faltantes em val_geracao na janela de anélise.

Em uma segunda etapa, reavaliaram-se as usinas descartadas, permitindo a reinclu-
sao daquelas com até 10% de dados de geragao ausentes dentro da janela de seis meses.
Adotou-se como critério de inclusao a presenca de, no méximo, 10% de dados ausentes
na janela de andlise. Usinas que ultrapassaram esse limiar de falhas foram descartadas
definitivamente para evitar a introducao de ruido excessivo via métodos de imputacao. Este

critério equilibra representatividade e qualidade, permitindo o tratamento de pequenas
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auséncias por imputagao sem vieses significativos.
Esta abordagem resultou na inclusdo de 3 usinas adicionais, consolidando o escopo
final em 47 usinas fotovoltaicas, visando refletir a realidade operacional com interrupgoes

pontuais, mitigando o impacto de grandes volumes de dados ausentes(Tabela 3).

Tabela 3 — Lista final das 47 usinas fotovoltaicas selecionadas para analise.

Nome da Usina Nome da Usina

Assu 'V Lar do Sol

Alex Lavras

Araxa Luzia

BJL Nova Olinda
Banabuiu Paracatu

Belmonte Pedranopolis

Boa Hora Pereira Barreto
Bom Jesus Pirapora 2
Calcario Rio Alto

Castilho Serra do Mato
Ciranda Serra do Mel C
Dracena Sertao Solar Barreiras
FV SJP Sol do Cerrado
Floresta Sol do Futuro
Francisco Sa Sol do Sertao
Futura Sao Basilio (Solar)
Guaimbé Sao Gongalo

Helio Valgas Sao Pedro
Horizonte Tacaratu (Solar)
[tuverava Conjunto Jaiba 4 Dist
Janauba Flor de Mandacaru
Juazeiro Solar Pitombeira
Juazeiro Solar 2 Sol do Piaui

Lapa

3.3 Analise da estrutura em grafo

A Figura 4 ilustra a topologia espacial da rede. Considerando as 47 usinas seleci-
onadas, uma andalise estatistica descritiva individual para modelagem de regressao seria
extensiva e dificultaria a andlise da influéncia espaco-temporal.

Por isso, A conectividade foi estabelecida utilizando o algoritmo dos k-vizinhos
mais proximos, uma técnica em aprendizado de maquina para identificar vizinhancas em
espagos métricos (BISHOP, 2006). O valor de k foi definido como k=4 (aproximadamente
10% do total de usinas), uma escolha que busca equilibrar a captura de relagoes relevantes

e a esparsidade da rede. A metodologia completa para a construcao do grafo é detalhada na
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Secao 4.3.2. Visualmente, a rede resultante é globalmente conectada — uma propriedade
importante para a propagacao de informacao nos modelos GNN.

Para analisar a influéncia estrutural das usinas fotovoltaicas, este trabalho emprega
conceitos de Redes Complexas (COMIN et al., 2020), uma area de pesquisa do estudo
de grafos e suas estatisticas. Para este estudo, selecionaram-se quatro métricas visando a

melhor compreensao do aspecto espaco-temporal do problema:

« Centralidade de Grau: Numero de conexoes diretas de um né v, deg(v). Normali-

zada:
_ deg(v)
V-1

onde |V| é o nimero total de nés. Indica o quao conectado é um né em relagao a

Cp(v)

(3.1)

sua rede, sendo igual a 0 se for isolado e igual a 1 se for conectado a todos os outros
noés da rede, ou seja, mede a sua atividade local de um né. Assim, a Centralidade
de Grau é interpretada como uma medida da influéncia climatica local de uma
usina. Um grau elevado sugere que a usina estd geograficamente cercada por muitas
outras, aumentando a probabilidade de compartilharem regimes de irradiancia e
nebulosidade e, portanto, tornando-a um ponto focal para a andlise de correlacoes

espaciais.

o Centralidade de Intermediacao: Frequéncia com que um né v estd nos caminhos

mais curtos entre outros pares (s, t):

Cory= 3 ) (32)

s#VALEV Ost

onde oy é o total de caminhos mais curtos entre s e t, e o4(v) 0s que passam por
v. No contexto de um grafo nao-ponderado como o utilizado neste trabalho, um
"caminho'é uma sequéncia de nds conectados, e o "caminho mais curto'é aquele com
o menor nimero de arestas (ou "saltos") entre um né de partida s e um né de chegada
t.

Mede a frequéncia com que um né6 atua como intermediario nos caminhos mais curtos
entre outros pares de nos. Nos com alta centralidade de intermediacao sao, portanto,
cruciais para a coesao e o fluxo de informagao ou recursos entre diferentes partes da

rede, atuando como pontes.

o Coeficiente de Aglomeracgao Local: Conectividade dos vizinhos de um né v com

k, vizinhos:
2F,

kv(kv - 1)

onde F, é o numero de arestas entre os k, vizinhos de v. Assim, vizinhos nao

Cr(v) = (3.3)

conectados entre si tem o coeficiente de aglomeracgao local nulo, e igual a 1 se todos

os vizinhos de v estdao conectados entre si.
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Conectividade Geografica das Usinas Solares - k-NN (k=4)
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Figura 4 — Visualizagdo geografica da rede de 47 usinas fotovoltaicas e suas interconexoes
baseadas no critério de k-vizinhos mais préximos (k ~ 4). Embora a escala de
visualizacao continental possa sugerir a aparéncia de noés isolados em regioes
de alta densidade (onde multiplos usinas compartilham coordenadas muito
préximas), a definigdo algoritmica do grafo via k-vizinhos assegura a conectivi-
dade global, mesmo naqueles nds cujas arestas sao visualmente imperceptiveis
devido a proximidade geografica.
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Trata-se de uma métrica da densidade da vizinhanca de um no, i.e., Um alto
coeficiente pode indicar a presenca de uma comunidade de nods, cujos membros, por

estarem densamente conectados, podem apresentar dinamicas similares entre si.

PageRank: Influéncia de um né v; considerando a importancia de seus vizinhos
N(Ui)l
1—d PR(v;)®

PRE) = g +d 3

(3.4)
vyent) 4€8(vs)

com d sendo o fator de amortecimento (usualmente 0.85).

E uma medida de influéncia que pode ser analogamente entendida como um voto
de popularidade, onde a importancia de um noé é recursivamente definida pela
importancia dos nés que se conectam a ele, ou seja, estar conectado a nés ja
influentes confere maior PageRank ao n6 de interesse. Dessa forma, uma usina com
alto PageRank é considerada estruturalmente influente na rede, podendo ser um né

central na disseminacao de dindmicas ou na robustez do sistema.

Distribuicoes das Métricas de Centralidade da Rede de Usinas
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Figura 5 — Distribui¢oes das métricas de centralidade para a rede de 47 usinas solares: (a)

Centralidade de Grau, (b) Centralidade de Intermediacao, (c¢) Coeficiente de
Aglomeragao Local e (d) PageRank.
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Para compreender o perfil dessas métricas no conjunto de dados tem-se os histogra-
mas das suas distribuigoes Figura 5 acima.

Percebe-se que a Centralidade de Grau se concentra predominantemente entre 0,12
e 0,22. A distribuicao exibe uma assimetria positiva e um carater bimodal, com modas em
aproximadamente 0,13 e 0,19; sendo o primeiro modo mais proeminente e o segundo mais
suave.

A assimetria positiva, juntamente com a bimodalidade, sugere que, embora a maioria
das usinas possua um nimero similar e mais baixo de conexdes diretas (primeiro modo),
existe um grupo menor de usinas (segundo modo) que se destaca por possuir um ntimero
consideravelmente maior de conexoes, caracterizando-as como potenciais hubs locais com
grande interacao direta.

Essa evidéncia da existéncia de diferentes papéis topoldgicos na rede é fundamental,
pois sugere que a influéncia de uma usina no sistema nao é homogénea. Para investigar o
impacto dessas diferentes posi¢oes estruturais no desempenho dos modelos de previsao,
definimos formalmente, na Se¢ao 3.5, um conjunto de "usinas-arquétipo’’(como Hub, N6
Isolado, etc.) para uma anélise mais aprofundada.

Ja a Centralidade de Intermediacdo também demonstra uma forte assimetria
positiva, com a maioria dos nés apresentando valores baixos, concentrados em um modo
em torno de 0.05. Isso indica que a maior parte das usinas nao atua predominantemente
como intermediaria nos fluxos da rede.

Contudo, a presenca de dois ndés com valores excepcionalmente altos (proximos a
0,5) aponta para a existéncia de algumas poucas usinas que sdo cruciais como pontes,
concentrando a funcao de intermediagao e sendo vitais para a conectividade global e o
fluxo eficiente entre diferentes partes do grafo.

O Coeficiente de Aglomeragao Local apresenta uma distribuigdo com curtose média
e um aspecto bimodal suave, com valores predominantemente concentrados em torno de
0,7.

Este valor, relativamente elevado, sugere que a rede possui uma tendéncia significa-
tiva a formacao de comunidades locais, onde as usinas vizinhas a um né também tendem
a ser vizinhas entre si, indicando vizinhancas densas na estrutura.

A bimodalidade suave observada pode indicar a coexisténcia de regioes com dife-
rentes niveis de coesao local na rede.

Por fim, o PageRank também apresenta uma distribui¢cao bimodal, com um modo
principal de maior amplitude em torno de 0,020 e um segundo modo menor, porém distinto,
em aproximadamente 0,028. Esta bimodalidade indica uma diferenciagao na influéncia
estrutural das usinas.

A maioria delas possui um nivel de influéncia similar (primeiro modo), enquanto
um grupo restrito de cerca de seis usinas (segundo modo) se destaca com um PageRank

significativamente maior, posicionando-as como candidatas a nés centrais ou hubs de
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influéncia na rede, importantes para a disseminagao de dindmicas.

A alta curtose associada ao primeiro modo reforga a concentracao da maioria das
usinas em torno desse nivel de importancia basal.

Considerando que realizar uma analise minuciosa de cada uma das usinas é um
trabalho intensivo e extensivo, busca-se definir modelos-padrao de analise das usinas,
auxiliando na selecao de exemplos para andlise temporal e na compreensao da relagao

entre posicao estrutural e geracao.

3.4 Andlise de séries temporais e estimacao dos residuos

Uma série temporal é qualquer conjunto de observacoes indexadas temporalmente.
Essas observagoes podem ocorrer de forma periédica ou irregular, podendo apresentar
dependéncia entre valores passados, presentes e futuros.

Neste trabalho analisam-se multiplas séries temporais multivariadas, onde cada
série temporal tem varias variaveis exdgenas que afetam a geracao de energia solar, como
a temperatura, velocidade do vento e umidade relativa.

As componentes mais comuns na modelagem de séries temporais sdo: tendéncia,
sazonalidade, ruido e estacionariedade.

Existe uma tendéncia quando ha uma alteracdo a longo prazo, seja de forma
crescente ou decrescente da varidvel observada. E pode ser modelada como uma funcao

f[t], onde t é o tempo:
ye = ft] + e, (3.5)

onde y; ¢é a variavel observada no tempo t e ¢ é o erro aleatorio ou ruido.

A sazonalidade é observada quando a série temporal é afetada por fatores que
ocorrem em intervalos de tempo caracteristicos. Para uma série 3, com sazonalidade s,
isso pode ser modelado como:

Y = Mt + S[t] + €, (36)

onde s(t) representa o efeito sazonal da série no tempo ¢ e p; é a tendéncia ou média de
longo prazo. A frequéncia f da sazonalidade é a quantidade de ciclos ou padroes que se
repetem ao longo do tempo.

O ruido é a parte imprevisivel da série, associada a flutuagoes aleatérias que nao
seguem padroes definidos. Pode-se modelar o ruido como um processo estocastico, que é

descrito por uma sequéncia de erros aleatorios ¢, tal que:
e ~ N(0,0%), (3.7)

onde € é o erro no tempo t e o2 ¢ a variancia do ruido.
A estacionariedade da série é uma propriedade que nao depende do instante de
tempo no qual foi observada. Para que uma série temporal seja estacionaria no sentido

amplo(ou fracamente estacionaria), a média, a varidncia e a covariancia da série devem ser
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constantes ao longo do tempo. Logo, a série segue que y;:

E[?Jt] = K, Var(yt) = 027 COV(ytaytJrh) = Y, (3-8)

onde E[y;] é a esperanca (média) de y;, Var(y;) é a variancia, e Cov(y;, ;1) é a covariancia
entre y; € y;1pn, para qualquer h.

O SARIMA (Seasonal AutoRegressive Integrated Moving Average) é utilizado
para a previsao de séries temporais univariadas, levando em consideragao as técnicas que

compdem o seu nome:
 S: Sazonalidade(S);

o AR: Autoregressao(AR);

I: Integracao(I);
o MA: Média Mével(MA);

A sazonalidade nesse modelo é o nimero de observagoes que compoem um ciclo
sazonal, podendo ser qualquer intervalo regular. Ja a autoregressao modela o relacionamento
entre o seu valor presente e os valores passados a partir da autocorrelagao do sinal. Um
processo AR(p) pode ser expresso como: ¥y = ¢+ ¢1y—1 + - - - + PpYi—p + €, onde @; sao os
coeficientes autorregressivos e €, é o termo de erro.

A diferenciagao busca capturar a quantidade de diferenciagoes necessarias para
tornar os dados estacionarios, fazendo isso através da aplicagao de diferencas sucessivas
nos dados até que a série se torne estacionaria, eliminando tendéncias e sazonalidades.
Além disso, a média movel utiliza de residuos de previsoes anteriores para a previsao de
valores futuros.

Um processo MA(¢) é modelado como: y; = pt + €; + 016,-1 + - - - + 04€,_4, onde 6;
sao os coeficientes da média movel e €; sdo os erros passados.

SARIMA(p,d, q)(P, D,Q)s onde:

« p: ordem da parte autorregressiva (AR);
e d: numero de diferenciacoes para tornar a série estacionaria;

e ¢: ordem da média mével (MA);

P, D, Q: ordens sazonais dos componentes AR, I e MA, respectivamente;

Para a escolha do melhor modelo ARIMA, utilizam-se os critérios da metodologia
Box-Jenkins (BOX; JENKINS, 1970), que propde uma abordagem iterativa baseada na
identificagao, estimagao e verificacao do modelo.

Inicialmente, aplicam-se testes de estacionariedade para definir o nimero de di-

ferenciagoes necessarias. Esse nimero é representado por d (nao-sazonal) e D (sazonal),
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conforme a estrutura da série. A verificacao pode ser feita visualmente (presenca de tendén-
cia ou sazonalidade) ou por testes estatisticos, como o teste de Dickey-Fuller aumentado

(ADF). O ADF ¢ baseado no seguinte modelo:

p
Ayt = o+ Bt + YYt—1 + Z 5iAyt—i + & (39)

i=1

Para rejeitar a hipdtese nula (7 = 0), que indica que a série é nao-estaciondria, precisa-se
de valores pequenos do p-valor (normalmente < 0,05).

Fungoes de autocorrelagdo (ACF) também auxiliam na identificagdo da ordem de
diferenciacao. A ACF é definida por:

_ Z?:k+1<yt — ) (Y- — )

i (v — 9)? (3:10)

Pk

Os correlogramas da ACF indicam os pardmetros p e ¢ do modelo: um corte abrupto na
PACF sugere um modelo AR(p), enquanto um corte abrupto na ACF sugere um modelo
MA(q).

Como a identificagao visual nem sempre é conclusiva, testa-se uma grade de
combinagoes possiveis. A selecdo se baseia em critérios de informacao como o Akaike
Information Criteria(AIC) e o Bayesian Information Criteira(BIC), que penalizam a

complexidade do modelo:

AIC = —21n(L) + 2k (3.11)

BIC = —2In(L) + k1In(n) (3.12)

em que Léa verossimilhanca, £ o nimero de parametros, e n o nimero de observagoes.

O AIC mede a qualidade preditiva esperada de um modelo, penalizando modelos
mais complexos a fim de reduzir o overfitting, porém esse ajuste de modelos é mais leve do
que o BIC, o que pode fazer com que o AIC aponte para modelos mais complexos. Ja o
BIC mede comparativamente os modelos com base na sua verossimilhanca, penalizada pela
complexidade, o que tende a escolhas mais conservadoras de modelos, podendo reduzir o
overfitting. Apesar de rigoroso, o BIC assume que um dos modelos é o verdadeiro modelo
e nao mede a performance do modelo fora da amostra de treino.

Apods a escolha do modelo, avalia-se seu desempenho pelos residuos. Espera-se
que estes se comportem como ruido branco, ou seja, sem autocorrelagao ou estrutura
sistematica. Essa verificacao é feita por meio do teste de Ljung-Box e pela inspecao visual
dos correlogramas dos residuos.

Apesar de sua robustez a baixa quantidade de variaveis exégenas, o SARIMA
apresenta limitacoes: modela apenas uma sazonalidade por vez, tem baixa adaptabilidade

a eventos abruptos e costuma perder precisao em previsoes de longo prazo.
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3.5 Anadlise funcional

Esta secao aprofunda a analise dos perfis temporais de geracao das usinas repre-
sentativas dos arquétipos — Lapa, Floresta e Castilho — e como suas séries interagem com
vizinhas e varidveis climéticas, buscando ligar topologia da rede e padroes funcionais.

Levando em consideracao as propriedades das métricas de grafo e sua interpretacao,
definem-se trés arquétipos de usinas para analisar a hipotese da influéncia estrutural do

grafo:

« Hub (Lapa): Caracteriza-se por estar entre o 10% de usinas com maior centralidade

de grau e entre o 10% com maior PageRank.

« N6 Isolado (Floresta): Caracteriza-se por estar entre os 10% de usinas com menor

grau de centralidade e entre os 10% de menor PageRank.

« Membro de Comunidade (Castilho): Caracteriza-se por estar entre os 10% de
usinas com maior coeficiente de aglomeracio local, mas nao estar entre os 10% de

maior centralidade de grau.

A Figura 6 ilustra a atuagao desses trés nés na rede com base nos PageRanks, que
variam entre 0.018 e 0.030. Observa-se que o N6 Isolado (Floresta) possui um PageRank
consistentemente baixo, mesmo estando conectado a rede.

O Membro de Comunidade (Castilho) apresenta um PageRank intermedidrio e
se integra a outros noés, refletindo sua participagdo em um sub-grafo interno com maior
densidade. Por fim, o Hub (Lapa) exibe um PageRank elevado, inserido em sub-grafos
com alta densidade e com conexdes a outras usinas de alto PageRank, evidenciando sua
posigao central e influente na rede.

Para aprofundar a anélise, selecionam-se Lapa, Floresta e Castilho como represen-
tantes de cada arquétipo. A Figura 7 apresenta as distribui¢des da geragao horaria (MW)
para estas usinas.

Dada a sazonalidade diurna da geragao de energia solar, essas distribuigoes sao
naturalmente bimodais, com um modo forte em torno de zero (correspondente a produgao
nula no perfodo noturno) e outro modo representando a geragao durante o dia. Cada
uma dessas usinas apresenta um perfil de geragao distinto durante a janela de analise,
possivelmente influenciado por padroes operacionais especificos ou por variaveis exdgenas
em escala local. A usina Lapa exibe uma distribuicdo com bimodalidade pronunciada, onde
o modo de geracao diurna se concentra proximo a 50 MW, com frequéncia comparavel a
da geracao nula. Isso sugere que, durante o periodo de produgao, a usina tende a operar
em um patamar de geragao consistente.

J& a usina Floresta apresenta uma distribuicdo com uma cauda direita mais longa

e um segundo modo mais disperso (achatado) em comparagdo com Lapa. Isso indica um
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Influéncia Estrutural (PageRank) e Arquétipos de Usinas na Rede Solar
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Figura 6 — Visualizagdo da rede de usinas solares destacando arquétipos baseados em sua
influéncia estrutural (PageRank) e conectividade.

perfil de geracdo com maior variabilidade durante as horas diurnas, onde a energia é
produzida em uma faixa mais ampla (entre 20 MW e 75 MW) com frequéncias similares,
mas sem um pico de geragao tao concentrado quanto Lapa.

Por fim, a usina Castilho tem um perfil de distribuicdo com uma cauda direita
acentuadamente longa, sugerindo picos de geragdo horaria de maior intensidade. Contudo,
a frequéncia de ocorréncia desses picos de alta intensidade é menor.

O perfil de geragao indica que, embora nao gere energia de forma intensa continua-
mente, quando o faz, atinge patamares de geracao elevados (frequéncia similar entre 50
MW e 200 MW), mas de forma mais intermitente do que os outros arquétipos.

A Tabela 4 apresenta o sumario estatistico dessas trés usinas, detalhando suas
caracteristicas de geracao horaria (MW) ao longo do periodo de andlise. E possivel verificar
que todas as usinas possuem registros para todos os passos horarios e exibem uma geracao
efetiva mais concentrada a partir do percentil 75.

Os conjuntos Lapa e Floresta apresentam perfis de geracao com estatisticas descri-
tivas mais proximas entre si, enquanto o Castilho se destaca por sua geracao mais intensa,
com uma média e desvio padrao significativamente maiores.

Além disso, observa-se que a usina Castilho nao apresenta valores nulos em sua



46

0.025

0.020

0.015

Densidade

0.010

0.005

0.000

Distribuicao da Geracao (val_geracao = 0)

Lapa Floresta Castilho

H -= MEdia: 274 H - = Media: 331 H —= Média: 35.1

: Medigna: 28 9 : Mediana: 312 : Mediana: 1.1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

] i ]

] i ]

1 o | 1

1 ol 1

1 = | 1
20 40 G0 0 20 40 60 a0 0 50 100 150 200
Geracao (M) Geracao (MW) Geracao (MW)

Figura 7 — Distribuicao da geragdo para as usinas arquétipos - Hub (Lapa), N6 Isolado

(Floresta) e Membro de Comunidade (Castilho). As estatisticas descritivas
apresentadas referem-se a distribuicao global da amostra observada na janela de
analise. Ressalta-se que a série temporal bruta de geragao solar é inerentemente
nao-estacionaria devido a forte componente sazonal didria.

Tabela 4 — Estatisticas descritivas comparativas para a geragao horaria (MW) das usinas

arquétipo ( Lapa, Floresta, Castilho) no periodo de andlise.

Métrica Lapa Floresta Castilho
timestep 4368,00  4368,00 4368,00

Média 12,58 17,96 55,14
Std 19,36 25,15 71,95
Minimo 0,00 0,00 0,05
1% 0,00 0,00 0,14
5% 0,00 0,00 0,14
10% 0,00 0,00 0,15
25% 0,00 0,00 0,15
50% 0,00 0,44 1,10
75% 23,95 35,28 126,89
90% 48,67 62,77 172,50
95% 52,17 70,34 190,24
99% 56,26 76,63 202,57
Max 65,00 80,04 204,16
Assimetria 1,18 1,09 0,84
Curtose —0,30 —0,34 —0,98

Zeros (%) 54,12 45,76 0,00
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distribuicado de geracao (0% de zeros), o que é uma particularidade notavel. Mesmo
com um valor minimo de 0.05 MW, seu perfil indica que a geracao, quando ocorre, é
predominantemente de alta intensidade para os 25% superiores de sua producao.

Os comportamentos observados nessas trés usinas, quando relacionados aos arqué-
tipos definidos, sugerem que os papéis funcionais na rede nao tém uma relagao direta e
exclusiva com a intensidade de energia gerada em condi¢oes normais.

A Figura 6 ilustra a atuagdo desses trés nds na rede com base nos PageRanks, que
variam entre 0.018 e 0.030. Observa-se que o N6 Isolado (Floresta) possui um PageRank
consistentemente baixo, mesmo estando conectado a rede. O Membro de Comunidade (
Castilho) apresenta um PageRank intermediério e se integra a outros nés, refletindo sua
participagdo em um sub-grafo interno com maior densidade. Por fim, o Hub ( Lapa) exibe
um PageRank elevado, inserido em sub-grafos com alta densidade e com conexoes a outras
usinas de alto PageRank, evidenciando sua posigao central e influente na rede.

Para aprofundar a analise, selecionam-se os arquétipos Lapa, Floresta e Castilho,
cujas distribuigoes de geragao horaria (MW) sao apresentadas na Figura 7. A usina Lapa
(Hub) exibe uma distribuigdo com bimodalidade pronunciada, sugerindo um patamar de
geragao consistente em torno de 50 MW durante o periodo de produgao. Em contraste, a
usina Floresta (N6 Isolado) apresenta um perfil mais disperso e com uma cauda direita
mais longa, indicando maior variabilidade durante as horas diurnas (entre 20 MW e
75 MW). Por fim, o perfil da usina Castilho (Comunidade) é marcado por uma cauda
acentuadamente longa, sugerindo picos de geracao de alta intensidade, embora menos
frequentes.

Os comportamentos observados nessas trés usinas, quando relacionados aos arquéti-
pos definidos, sugerem que os papéis funcionais na rede nao possuem uma relagdo direta e
exclusiva com a intensidade média de energia gerada. A identificagdo e a caracterizagao
inicial desses arquétipos fornecem uma base para investigar se diferentes papéis estruturais
se traduzem em comportamentos temporais distintos.

Visando compreender as dindmicas das usinas, foram realizadas estimacoes de
modelos SARIMA para séries diferenciadas, considerando a forte sazonalidade didria
presente em todas as séries. Para isso, utilizou-se a biblioteca ‘pmdarima‘ para identificar
parametros adequados a cada uma das 47 usinas, empregando o médulo ‘auto_arima‘
para otimizacao automatica. Além disso, os modelos estimados servem como base para
obter os seus residuos e realizar mais testes estatisticos.

Apés as estimacoes, o teste ADF foi aplicado as séries resultantes para confirmar
sua estacionariedade. Os resultados dessas andlises sdao sumarizados na Tabela 5, que

relaciona a estrutura do grafo com a estacionariedade das séries.
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Tabela 5 — Resumo estatistico por tipo de relacdo — Estrutura e ADF

Relacao N¢ Usinas Hops (Média) Hops (Min) Hops (Max) ADF
Arquétipo (Comunidade) 1 0,00 0 0 0,0
Arquétipo (Hub) 1 0,00 0 0 0,0
Arquétipo (Isolado) 1 0,00 0 0 0,0
Nao Relacionado 9 7,6 2 14 0,0
Viz. Adj. 19 1,00 1 1 0,0
Viz. Func. (Hub) 4 6,00 1 8 0,0
Viz. Func. (Isolado) 4 4,25 2 7 0,0

A Tabela 5 também apresenta o nimero de hops (saltos entre nés) para diferentes
tipos de relagoes, como vizinhos de adjacéncia e nés funcionalmente préoximos aos arquétipos.
Um hop representa o caminho minimo necessario para uma informacao atravessar o grafo,
sendo um parametro relevante no design de arquiteturas de aprendizado de maquina ao
denotar o campo de percepgao de cada né.

Observa-se que vizinhos de adjacéncia estdao a 1 hop de distancia, enquanto os
vizinhos dos arquétipos exibem diferentes niimeros de hops médios conforme sua funcao
na rede, ilustrando a variabilidade da distancia estrutural entre os diferentes grupos de
usinas.

A Tabela 6 apresenta o resumo estatistico dos residuos dos modelos SARIMA
para cada tipo de relacao, utilizando o teste de Ljung-Box, que avalia a presenca de
autocorrelagao nos residuos. Essa andlise é feita para determinar se os modelos SARIMA
capturaram toda a estrutura temporal ou se ainda ha informagoes nao explicadas, as quais

podem ser atribuidas a influéncias nao-temporais ou interagoes complexas entre as usinas.

Tabela 6 — Resumo estatistico por tipo de relagdo — Ljung-Box e Residuos

Relacao LB (Média) LB (Min) LB (Max) % Res. N/B
Arquétipo (Comunidade) 0,6477 0,6477 0,6477 0,00
Arquétipo (Hub) 0,0053 0,0053 0,0053 100,00
Arquétipo (Isolado) 0,8681 0,8681 0,8681 0,00
Nao Relacionado 0,5108 0,0053 0,8681 11,11
Viz. Adj. 0,5014 0,0005 0,9985 15,79
Viz. Func. (Hub) 0,5109 0,1427 0,9169 0,00

Viz. Func. (Isolado) 0,4313 0,1262 0,8388 0,00

As séries temporais foram diferenciadas para remover a sazonalidade diaria (24
passos horarios), que se mostra muito forte em todas elas. Assim, a maioria das séries
estimadas apresentou ordens tipicas como (1,0,1)(1,1,0), com p-valor(que representa a
probabilidade de observar os dados caso a hipétese nula seja verdadeira) do teste de
Ljung-Box > 0.05, o que confirma que os residuos se assemelham a ruido branco.

No entanto, é importante salientar que as usinas Lapa (Hub), Pereira Barreto

e Jaiba 4 Dist apresentaram p-valor de Ljung-Box < 0.05, indicando que os modelos
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SARIMA nao foram capazes de remover completamente a autocorrelagao residual nessas
séries.

Essas evidéncias indicam que existem relagoes complexas em algumas usinas que
nao sao plenamente capturadas por modelos de séries temporais classicos univariados.
Embora as estimagoes dos modelos SARIMA tenham sido realizadas de maneira compu-
tacionalmente exaustiva, testando diversas combinacoes de parametros, nao foi possivel
obter residuos puramente semelhantes a ruido branco para todas as séries, reforcando a
limitagao da abordagem classica para o problema estudado.

Para complementar a andlise de interdependéncia, a Tabela 7 sumariza a Informacao
Mutua (MI) entre os diferentes tipos de relagdo. A Informagao Mitua é uma medida da
dependéncia estatistica entre duas variaveis, quantificando a quantidade de informacao
compartilhada entre elas.

Diferente da correlacao linear, a MI é capaz de capturar relagoes nao-lineares,
indicando o quanto o conhecimento sobre uma variavel reduz a incerteza sobre a outra. A

MI entre duas varidveis aleatorias discretas X e Y é definida como:
plr,y
1Y) = 3 3 pley)log 209 (3.13)

onde p(x,y) é a probabilidade de conjunta de X e Y, e p(x) e p(y) sdo as probabilidades
marginais. Para varidveis continuas, as somas sao substituidas por integrais. Um valor de
MI igual a zero indica independéncia total entre as varidveis, enquanto valores maiores
indicam uma maior dependéncia, independentemente da natureza linear ou nao linear
dessa relacao.

Neste trabalho, para viabilizar o calculo computacional e capturar robustamente as
nao-linearidades, as séries temporais de residuos foram discretizadas utilizando o método
de quantis (quantile binning) com k = 10 intervalos. Dessa forma, os valores de MI obtidos
expressam a reducao de incerteza na unidade de nats (logaritmo natural). Assim, na
Tabela 7, a auto-dependéncia (MI da usina consigo mesma) foi fixada como referéncia
unitéria (1,0000) para fins de comparacgao relativa, enquanto os demais valores refletem a
magnitude absoluta calculada pelo estimador.

A partir da Tabela 7, verifica-se que os vizinhos de adjacéncia e os nés nao
relacionados diretamente ainda possuem uma presenca de residuos nao-brancos em até 15%
das séries. Isso serve como evidéncia adicional de que relagbes mais complexas persistem
nos dados, nao sendo passiveis de serem plenamente capturadas por métodos classicos.

A Tabela 8 sumariza a Informagao Mutua (MI) entre os diferentes tipos de re-
lacao, fornecendo uma medida de dependéncia entre as séries de geragao das usinas,

independentemente da causalidade.
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Tabela 7 — Resumo estatistico por tipo de relagao — Informacao Mutua

Tipo de Relagao MI (Média) MI (Min) MI (Max) % MI Alto (>0.5)
Arquétipo (Comunidade) 1,0000 1,0000 1,0000 100,00
Arquétipo (Hub) 1,0000 1,0000 1,0000 100,00
Arquétipo (Isolado) 1,0000 1,0000 1,0000 100,00
Nao Relacionado (Distancia) 0,5212 0,4226 0,6919 44,44
Viz. Adj. 0,5823 0,3268 0,8182 78,95
Viz. Func. (Hub) 0,5733 0,3760 0,8182 75,00
Viz. Func. (Isolado) 0,6298 0,4961 0,7265 75,00

As andlises dos resultados das Tabelas 5, 6 e 7 revelam sobre a dindmica da rede:

o A Tabela 6 mostra que, para o Arquétipo Lapa (Hub), os residuos do SARIMA
persistem como autocorrelacionados (100% de residuos nao-ruido branco e baixo p-
valor LB de 0.0053). Isso indica que, mesmo apds a modelagem temporal univariada,
ha uma estrutura residual significativa, possivelmente devido a sua posi¢ao de hub e
a influéncias nao capturadas pelo modelo SARIMA isolado, mas sim por interagoes

complexas na rede.

o A Tabela 7, de Informacao Mutua, evidencia uma forte dependéncia entre usinas
com apenas 1 hop de distancia (Viz. Adj.), com uma média de MI elevada (0.5823) e
uma alta porcentagem de MI alto (>0.5), corroborando a relevancia da proximidade

geografica.

 Usinas mais distantes, seja funcionalmente (Viz. Func. - Hub e Isolado) ou geografi-
camente (Nao Relacionado), ainda podem apresentar uma MI significativa, sugerindo
que interdependéncias existem mesmo para nés nao diretamente adjacentes no grafo
k-NN.

Essas analises fornecem a base empirica para a abordagem de modelagem espago-
temporal, pois demonstram que a dindmica de geragao de uma usina nao é apenas uma
funcao do seu préprio historico, mas é influenciada por sua posicao estrutural na rede e

pelas interagoes com seus vizinhos.
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3.6 Engenharia de variaveis

A performance dos modelos preditivos é impactada pela qualidade e pertinéncia
das variaveis de entrada. A engenharia de features consiste na criagdo de novas variaveis a
partir dos dados brutos e informagoes estruturais, visando enriquecer o conjunto de dados
e otimizar a capacidade de aprendizado dos modelos.

Neste trabalho, a estratégia de engenharia de features foi segmentada em duas
abordagens distintas, alinhadas as classes de modelos: uma abordagem extensiva para a
referéncia XGBoost e outra, mais parcimoniosa, para as arquiteturas baseadas em grafos.

Para o modelo XGBoost, foi desenvolvido um conjunto exaustivo de 84 variaveis.
Sua robusta arquitetura, que incorpora técnicas de gradient boosting e mecanismos de
regularizacao L1 e L2, permite processar um conjunto de informagdes e inferir a relevancia
de cada feature, mitigando o risco de sobreajuste.

Este conjunto abrangeu as seguintes categorias: climaticas, sazonais, variaveis
defasadas (lags), janelas méveis, interagoes entre varidveis e métricas de grafo, conforme
detalhado na Tabela 8.

Em contrapartida, para as arquiteturas GAT-LSTM e GCN-1D, optou-se por um
conjunto de features mais conciso. A justificativa para essa decisao é dupla: primeiramente,
o elevado custo computacional associado ao treinamento de GNNs com um nimero
excessivo de variaveis; e, fundamentalmente, a propria natureza desses modelos.

As GNNs sao projetadas para aprender representagoes das interdependéncias
espaciais a partir da topologia do grafo e do mecanismo de propagacao de mensagens. Dessa
forma, a inclusdo explicita de métricas de rede como features de entrada é potencialmente
redundante.

O conjunto de variaveis para os modelos em grafo, detalhado na Tabela 9, focou

em fornecer os dados climaticos, sazonais e de lags de geragao essenciais.

Tabela 9 — Features utilizadas nos modelos GCN1D e GAT-LSTM, organizadas por cate-

goria.
Categoria Features
Climaticas ALLSKY_ KT, ALLSKY_ SFC SW_DWN, RH2M, WS10M, T2M
Sazonais dayofweek cos, dayofweek sin, dayofyear cos, dayofyear sin,

hour_ cos, hour_ sin, month_ cos, month_ sin

Lags (histdri- val geracao_ lag 1, val geracao_lag 2, val geracao lag 3, val -
cos) geracao_lag 6, val geracao lag 9, val geracao lag 12, val -
geracao_lag 24, val geracao lag 48
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Tabela 8 — Features utilizadas no modelo XGBoost, organizadas por categoria.

Categoria Features

Localizacao nom__usina, din__instante, latitude, longitude, location, closest_ -
latitude, closest_longitude, distance km

Climaticas ALLSKY SFC SW_ DWN, T2M, RH2M, WS10M, ALLSKY KT

Sazonais hour_ sin, hour_ cos, dayofweek sin, dayofweek cos, month _sin,
month_ cos, dayofyear sin, dayofyear cos

Lags val geracao_lag 1, val geracao_ lag 2, val geracao lag 3, val -

Janelas médveis

Interacoes

Meétricas de
grafo

geracao_lag 6, val geracao lag 9, val geracao lag 12, val ge-
racao_lag 24, val geracao lag 48 ALLSKY_ SFC SW_DWN_ -
lag 1, ALLSKY_ SFC_ SW_DWN lag 2, ALLSKY SFC SW_ -
DWN _ lag 6, ALLSKY SFC SW_DWN lag 12, T2M lag 1,
T2M lag 2, T2M lag 6, T2M lag 12, RH2M lag 1, RH2M -
lag 2, RH2M_lag 6, RH2M_ lag 12, WS10M_lag 1, WS10M_ -
lag 2, WS10M_lag 6, WS10M_lag 12, ALLSKY KT lag 1,
ALLSKY_ KT lag 2, ALLSKY KT lag 6, ALLSKY KT lag -
12

val _geracao_rolling meanl12H_ cleft, val geracao_rolling -
std12H_ cleft, val geracao_rolling minl12H_cleft, val gera-
cao_rolling max12H _cleft, val geracao rolling mean24H cleft,
val_geracao_rolling std24H_cleft, val geracao rolling min24H -
cleft, val geracao rolling max24H cleft, val geracao rolling -
meand8H_ cleft, wval geracao_rolling std48H_cleft, wval gera-
cao_rolling mind8H_ cleft, val geracao_rolling max48H_ cleft,
val geracao_rolling meanl168H_ cleft, val geracao_rolling -
std168H__cleft, val geracao_rolling minl168H cleft, val geracao -
rolling  max168H cleft, ALLSKY SFC SW_DWN_rolling -
mean6H_ cleft, ALLSKY_SFC_SW__DWN_ rolling sum6H__ cleft,
ALLSKY_SFC_SW_DWN_ rolling meanl12H_cleft, ALLSKY_ -
SFC_SW_DWN_ rolling sum12H_ cleft

T2M_ x RH2M, ALLSKY SFC SW DWN x hour cos,
WS10M__x_ val geracao lag 1, val geracao_rolling meanl2H -
cleft_x ALLSKY_ KT, val geracao_lag 1 x val geracao_ lag -
24, T2M_lag 1 x T2M lag 6

pagerank, degree centrality, local clustering coefficient, between-
ness_ centrality, is__hub, is_isolated node, is community member
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4 METODOLOGIA

A Analise Exploratéria de Dados consolidou o conjunto de dados para a modelagem
e forneceu duas linhas de evidéncia que justificam a abordagem espaco-temporal do
trabalho. Primeiramente, a andlise da estrutura em grafo permitiu a identificacao de
arquétipos de usinas com base em seu papel topologico (Hub, Comunidade, N6 Isolado),
fornecendo uma base para a avaliacao granular dos resultados no Capitulo 5.

Em segundo lugar, a andlise da dindmica das séries revelou a insuficiéncia de modelos
puramente univariados. Embora a maioria das séries tenha sido adequadamente modelada
por ordens SARIMA, o teste de Ljung-Box indicou a persisténcia de autocorrelacao nos
residuos de usinas estruturalmente importantes, como o Hub(Lapa), evidenciando uma
complexidade temporal nao capturada por completo. Esta observacao é corroborada pela
analise de Informacao Mitua, que revelou dependéncias nao-lineares significativas entre
usinas adjacentes.

O conjunto desses achados — a complexidade interna de certas séries e a inter-
dependéncia externa entre elas — constitui a justificativa empirica para a metodologia
detalhada neste capitulo.

Para lidar com essa complexidade, estabelece-se como linha de base o XGBoost,
um modelo amplamente validado na literatura para dados tabulares. Sua robustez deriva
da combinagao de técnicas de gradient boosting com mecanismos de regularizacao L1 e L2,
o que o torna um benchmark de alta performance.

Em contrapartida, serao exploradas duas arquiteturas de grafos, o GAT-LSTM
e o GCN-1D, projetadas para aprender diretamente a partir da estrutura do grafo e da
evolugao temporal dos dados.

Para além da previsdo pontual, a metodologia visa quantificar a incerteza das
estimativas. Para isso, todos os modelos serao treinados com a func¢ao de perda Pinball
Loss para realizar regressao quantilica, permitindo a geracao de intervalos de predicao.

A seguir, serdo detalhados os fundamentos de cada modelo, a construcgao do grafo,

a funcao de perda, as métricas de avaliacao e a configuragdo experimental.

4.1 XGBoost

XGBoost é um algoritmo que utiliza arvores de decisao otimizadas para a previsao
da variavel alvo em problemas de aprendizado supervisionado, amplamente testado na
comunidade de inteligéncia artificial nos ultimos anos, principalmente em dados tabulares
ou estruturados.

Para explicar o funcionamento do algoritmo, vamos inicialmente dividir o seu
funcionamento em trés partes: arvores de decisao, aprendizado de conjuntos e gradient

boosting.
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As arvores de decisao utilizam regras decisérias para dividir as variaveis em folhas
com base no critério de decisao estabelecido.

Com base nas varidaveis disponiveis, estima-se o nimero minimo de regras para
verificar a probabilidade de fazer uma decisao correta - i.e. prever a decisdo adequadamente
com as melhores regras possiveis.

O boosting busca melhorar a previsao dos modelos a partir de agregacoes de modelos
mais simples ou fracos a fim de obter modelos mais generalizados e robustos. J& para o
gradient boosting essa ideia é preservada, porém utilizando uma funcao objetivo que tem
o seu erro minimizado através do aprendizado do gradiente da fun¢ao objetivo.

Nele, o modelo é construido de forma aditiva, onde cada nova arvore fraca é treinada
para predizer os residuos do modelo combinado das arvores anteriores, seguindo a direcao
do gradiente descendente da funcao de perda.

A ideia do aprendizado de conjunto(ensemble) é de utilizar varios modelos de
aprendizado de maquina para o mesmo conjunto de dados e agregar os seus resultados
para obter um melhor modelo. O XGBoost utiliza de arvores de decisao com gradiente
aumentado para realizar essa agregacao dos modelos, essa técnica treina um conjunto de
arvores e a cada iteragao utiliza o erro residual da previsao do modelo anterior para o
proximo modelo do conjunto.

Assim, a predicao final é uma soma ponderada das previsoes das arvores do conjunto.
Isso proporciona uma minimizacao tanto do viés da previsao quanto do underfitting.

O XGBoost implementa essa técnica com otimizagoes adicionais: regularizagao,
paralelizagao e controle de complexidade das arvores. Dessa forma, o modelo combina
todas as arvores em uma soma ponderada que reduz tanto o viés quanto o underfitting.
Finalmente, o algoritmo realiza a predicao da variavel alvo por meio de um conjunto de

arvores de decisao. A predigao final para a i-ésima amostra é dada por:

K
gi=>_ fulwi), fueF (4.1)
=1

onde cada f; representa uma arvore de decisao, e F é o espago de fungoes das arvores

possiveis. O treinamento do modelo busca minimizar a seguinte fungao objetivo:

1) = Xl 3%) + 3 000 (42)

1

onde [ é a fungao de perda (por exemplo, erro quadrético), e 2 é o termo de regularizacao
definido por:
1 T T
Q(f):7T+2Ajzlw?+ajzl|wj| (4.3)
com 7" sendo o ntimero de folhas da arvore, e w; os pesos atribuidos a j-ésima folha, v
a penalidade da complexidade (ou custo de adicionar uma folha & arvore), A o termo de
regularizacao L2 e o o termo de regularizacao L1. Essa estrutura promove regularizacao e

controle da complexidade do modelo, contribuindo para evitar overfitting.
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Os principais hiperparametros que influenciam o desempenho do XGBoost incluem:

« Taxa de aprendizado (7): define o impacto de cada nova arvore na predigao final.
A cada iteracao obtém-se diretamente os novos pesos das novas features, de modo
que esse parametro diminui os pesos das features de forma conservadora, isto é, cada
arvore corrige o erro anterior de forma mais gradual. Assim, 7 funciona como um
fator de amortecimento, controlando a agressividade das corre¢oes e diminuindo o

risco de overfitting.

« max__depth: controla a profundidade maxima das arvores. Arvores mais profundas

capturam mais complexidade, mas podem superajustar.

o min__child_ weight: nimero minimo de amostras necessarias em uma folha para

que ela seja dividida. Ajuda a controlar o overfitting.

« gamma (7): ganho minimo de perda necessario para realizar uma divisdo em uma

arvore, quanto maior o 7, mais conservador serd o modelo.

« lambda (\): pardmetro para a regulariza¢ao norma L2 nos pesos das features, au-
mentar esse parametro acarreta em um aumento da penalizacao da norma quadratica

desses pesos.

« alpha («): parAmetro para a regulariza¢ao norma L1 nos pesos das features, aumentar

esse parametro acarreta em um aumento da penalizacao absoluta desses pesos.

« subsample e colsample_ bytree: fracoes de amostras e varidaveis usadas para
construir cada arvore, assim o primeiro evita que o modelo dependa de dados de

treino especificos, o segundo evita que o modelo dependa demais de certas varidveis.

Além de ser eficiente e amplamente adotado, o XGBoost é robusto em uma grande gama
de problemas de aprendizado supervisionado, assim como proporciona uma interpretacao
do modelo (e.g., importancia das features), o que acrescenta o seu valor em aplicagoes

préticas.

42 LSTM

O método LSTM, introduzido por (HOCHREITER; SCHMIDHUBER, 1997), é uma
arquitetura das redes neurais recorrentes (RNNs) projetada para capturar dependéncias
de longo prazo em sequéncias temporais.

Um dos principais desafios das RNNs tradicionais é o problema do desaparecimento
do gradiente, que ocorre durante o treinamento por retropropagacao em sequéncias longas,
dificultando o aprendizado de relagoes temporais distantes. O LSTM foi criado para
mitigar esse problema, permitindo que informagoes importantes sejam mantidas por longos

periodos.
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A estrutura do LSTM baseia-se na recorréncia, conforme descrito por (HOCHREI-
TER; SCHMIDHUBER, 1997), que ocorre por meio de células conectadas sequencialmente,
em que cada célula recebe a entrada atual x; e a saida anterior h;_;, gerando uma nova
saida h; enquanto atualiza seu estado interno. Essa arquitetura permite a rede adaptar
suas estimativas com base tanto no contexto presente quanto no passado recente.

Assim, a saida oculta h; representa a informacao codificada naquele instante,
enquanto que o estado C} da célula contém as informagoes de longo prazo, sendo o estado
interno mantido separado da saida oculta.

Na Figura 8, A representa a célula recorrente, x; é o vetor de entrada no tempo ¢ e
h; é a saida estimada. O diagrama mostra como uma unica célula se repete ao longo do

tempo, formando uma cadeia que processa as sequéncias temporais.
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Figura 8 — Uma rede neural recorrente é composta por células idénticas e sequenciais. Fonte:
(OLAH, 2015); estrutura baseada em (HOCHREITER; SCHMIDHUBER,
1997).

Diferentemente das RNNs tradicionais, que tem apenas uma célula simples, o LSTM
incorpora multiplas portas que regulam efetivamente o fluxo de informacao.

A célula LSTM possui quatro componentes principais: porta de esquecimento, porta
de entrada, estado da célula e porta de saida. O objetivo dessas portas é controlar quais
informagoes devem ser esquecidas, armazenadas ou expostas, com base nas entradas e no
histoérico.

A Figura 9 ilustra a arquitetura interna da célula LSTM. A linha horizontal superior
representa o fluxo continuo de meméria — chamado de estado da célula (Cy) — que carrega

informacoes relevantes ao longo da sequéncia.
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Figura 9 — A célula do LSTM é composta por multiplas portas que regulam o fluxo de
informagao. Fonte: (OLAH, 2015); estrutura baseada em (HOCHREITER;
SCHMIDHUBER, 1997).

A primeira parte da célula é a porta do esquecimento, mostrada na figura 10 abaixo.
Essa porta decide quais informagoes do estado anterior devem ser descartadas. Ela recebe
como entrada o vetor x; e a salda da célula anterior h;_1, e aplica uma func¢ao sigmoide -

destacada pelo bloco em amarelo:

fi= U(Wf[htflymt] + bf) (4.4)

Figura 10 — Porta de esquecimento: controla o que deve ser removido do estado de célula
anterior. Fonte: (OLAH, 2015); estrutura baseada em (HOCHREITER; SCH-
MIDHUBER, 1997).

O vetor f;, com valores entre 0 e 1, atua como um filtro que controla o quanto do
estado anterior sera preservado.

Em seguida, tem-se a atuacao da porta de entrada e a atualizacao do estado, aqui
o modelo avalia quais novas informagoes devem ser adicionadas ao estado da célula. Esse

processo ocorre em duas etapas, destacadas na figura abaixo:
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By
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Figura 11 — As portas de entrada e os candidatos de memoria colaboram na atualizacao
do estado interno da célula. Fonte: (OLAH, 2015); estrutura baseada em
(HOCHREITER; SCHMIDHUBER, 1997).

A primeira etapa trata da porta de entrada, destacada na figura como a sigmoide
na esquerda, que determina quais valores serao atualizados a partir da entrada atual z;: e

da saida da célula anterior, h; 1,

iv = o(Wilhey, 2] +b;) (4.5)

Ja a segunda etapa, a tangente hiperbdlica destacada a direita na figura, tem-se a

geracao de candidatos a serem armazenados:

Cy = tanh(Welhe_1, ] + be) (4.6)

Com esses vetores, o estado da célula é atualizado de modo que parte do estado
anterior é preservada via f; © C;_1 e parte é renovada com as novas informagoes relevantes

1 ® C’t da seguinte forma:

Ci=f0C,+i0C (4.7)

Figura 12 — Porta de saida: define quais informagoes da célula serao utilizadas como
saida h;. Fonte: (OLAH, 2015); estrutura baseada em (HOCHREITER; SCH-
MIDHUBER, 1997).



59

Assim, o estado atual da célula C; a ser transmitido através da linha horizontal
superior é calculado com base na memoria C;_; e da nova selecao de candidatos a terem
informacoes relevantes.

Por fim, a porta de saida determina quais partes do estado da célula serdo usadas

como saida para o préximo tempo, como mostrado na figura abaixo:

)rl‘r ‘
Canhd
(] e
hf 1 m Irhl

by

Figura 13 — Porta de saida: define quais informagoes da célula serdao utilizadas como
saida h;. Fonte: (OLAH, 2015); estrutura baseada em (HOCHREITER; SCH-
MIDHUBER, 1997).

Primeiro, na sigmoide destacada em amarelo na figura, calcula-se:

or = o(Wy[hi_1, 2] + bo) (4.8)

E a saida final da célula h; é obtida través do produto de Hadamard do resultado
da sigmoide anterior com a tangente hiperbodlica seletora das informagcoes da célula atual
Ct:

ht =0 ® tanh(C’t) (49)

Essa saida h; - memoria a curto prazo - é utilizada tanto como output da célula
atual C; - memoria a longo prazo - quanto como entrada para a célula seguinte, mantendo
o encadeamento temporal.

Em suma, o funcionamento do LSTM ¢é feito através das seguintes funcoes supraci-

tadas:
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fir = o(Wylhi—1, x| + by) Porta de esquecimento (2.8)
iy = o(Wilhi—1, ) + b;) Porta de entrada (2.9)
Cy = tanh(Welhe_1, ] + be) Candidatos a memoria (2.10)
Ci=f00C_ 1+ 0 C, Atualizacao do estado da célula (2.11)
or = o(Wy[hi—1,x4] + by) Porta de saida (2.12)
h: = oy ® tanh(C}) Saida da célula (2.13)

Com essa estrutura, o LSTM consegue armazenar informagoes por longos periodos,
aprendendo a ignorar ou reforcar dados conforme necessario para a tarefa objetivo.

Em relagao ao seu treinamento, o LSTM nao difere significativamente de outras
técnicas de aprendizado de maquina; este aspecto serda detalhado na se¢ao dedicada a
funcao de perda e ao processo de treinamento.

A habilidade do algoritmo em preservar e manipular informacdes relevantes ao
longo de extensas janelas temporais é fundamental para problemas de previsao no setor
energético, nos quais as variaveis apresentam fortes correlagbes temporais e padroes sazonais
complexos.

Essa caracteristica permite ao modelo capturar relagoes de dependéncia de longo
prazo que métodos tradicionais tendem a ignorar, aumentando a precisao e a robustez das
previsoes, conforme demonstrado por (KONG et al., 2019) em cenérios reais de previsao

energética.

4.3 Modelos de Aprendizado Profundo em Grafos

Os métodos estudados constituem uma classe de modelos de aprendizado profundo
projetados para processar dados organizados sob a forma de grafos. Diferentemente das
redes neurais tradicionais, que operam majoritariamente sobre dados tabulares ou imagens,
as GNNs exploram explicitamente a estrutura relacional intrinseca aos grafos, em que os
nos representam entidades e as arestas, suas conexoes ou relagoes.

O principal objetivo das GNNs é aprender representagoes (ou embeddings) dos nés,
das arestas ou do grafo como um todo, preservando tanto a informacao estrutural quanto
os atributos associados aos componentes da rede.

Considerando o carater espaco-temporal do problema tratado neste trabalho, as
arquiteturas baseadas em GNNs tém se destacado como alternativas de ponta para a
modelagem desse tipo de fendmeno, possibilitando capturar a dindmica entre as usinas a
partir de matrizes de adjacéncia, sejam elas estaticas ou dindmicas (YU; YIN; ZHU, 2018;
SONG et al., 2020; WU et al., 2021).

Assim, torna-se vidvel investigar como as correlagoes entre as usinas evoluem ao

longo do tempo, inclusive levando-se em conta variaveis exogenas.
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Para simplificar a construcao das representacoes do grafo, uma estratégia possivel
¢ a definicao dos vértices com base nas distancias geograficas entre pares de usinas, o que
reduz a complexidade espaco-temporal do modelo, mantendo, entretanto, sua capacidade
representativa, conforme demonstrado na literatura especializada (LI et al., 2018; ZHENG
et al., 2020).

A dindmica temporal do problema é incorporada diretamente pelas operacoes
fundamentais dessas arquiteturas, como agregacao de informagcoes e passagem de mensagens
entre os nds, o que possibilita modelar interdependéncias complexas tanto no espago quanto
no tempo.

Essas propriedades diferenciam as GNNs dos métodos classicos discutidos ante-
riormente, os quais sao capazes de capturar padroes temporais, mas nao consideram
explicitamente as relagoes espaciais e tampouco permitem inferéncias sobre outras locali-
dades além daquelas diretamente modeladas (WU et al., 2021; SONG et al., 2020).

Assim, a generalizacao proporcionada pela modelagem em grafos permite ndo apenas
avaliar a contribuicao individual de cada usina, mas sobretudo compreender como o sistema
de geracao solar, considerado em sua totalidade, impacta a operacao e a confiabilidade da
rede de distribuigao elétrica (CHEN et al., 2021; WU et al., 2021).

Neste contexto, os modelos de redes neurais em grafos analisados nesta se¢ao incluem:
Graph Attention Networks (GAT-LSTM) e Graph Convolutional Networks (GCN-1D),
(KIPF; WELLING, 2017; VELICKOVIC et al., 2018; YU; YIN; ZHU, 2018; SONG et al.,
2020).

4.3.1 Fundamentos

Um grafo é definido como uma estrutura G = (V, A), em que V representa o
conjunto de vértices (ou nés) e A o conjunto de arestas que conectam pares de vértices. As
propriedades dessa estrutura de dados relevantes para esse trabalho sao: direcionalidade,
pesos das arestas de conexao e a conexao entre os nos.

Em um grafo nao direcionado, as conexoes entre os pares de nds sao bidirecionais,
i.e. a relacao entre eles é simétrica, com influéncia ou associacao mutuas logo Aij = Aji.

Em contraste, em um grafo direcionado essa relagdo nao é reciproca, as conexoes
entre os nés possuem uma orientacao especifica, de modo que o n6 A tem influéncia do né
B, mas a reciproca nao é necessariamente verdade, assim caracteriza-se a assimetria das

associagoes entre nos: Aij # Aji.
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Grafo nao direcionado (Matriz de Grafo direcionado (Matriz de
adjacéncia simétrica Aij = Aji) Adjacéncia assimétrica Aij = Aji)

Figura 14 — Exemplos de grafos nao direcionado e direcionado. Figura de autoria propria.

Essa propriedade é representada através da matriz de adjacéncia, que expressa as
conexoes entre os nés de um grafo. Nessa matriz, as linhas e colunas correspondem aos
nos, e define-se que cada elemento Aij = 1, se existe uma conexao entre o né i e o no j, e
Aij = 0 caso contrario.

Como exemplo ilustrativo, considere os dois grafos apresentados na Figura 14: um

nao direcionado e outro direcionado, com suas respectivas matrizes de adjacéncia.

o Grafo nao direcionado: Matriz de adjacéncia:
01110
10000
Nos: {1, 2, 3, 4, 5} Ao
Conexdes: 1 —2,1—3,1—4,4—5 -1 vooo
10001
000 1 0]
o Grafo direcionado: Matriz de adjacéncia:
00110
Nos: {1, 2, 3, 4, 5} 1000 0
Conexoes: 1 - 4;1 — 3; 2 — 1;
A=10 0000
4 — 5
00 0O0T1
0 00O0O0

Observe que, como esperado, a matrizes de adjacéncia do grafo nao direcionado é simétrica,
refletindo a reciprocidade das conexoes entre os nés (Aij = Aji). Por outro lado, a matriz
de adjacéncia do grafo direcionado é assimétrica, e nesse examplo também é esparsa, visto
que nem todas as conexoes possiveis entre os nés estao presentes.

Para simplificacao do problema de previsao de multiplas séries temporais e con-
siderando a relagdo mutua entre os regimes espago-temporais das usinas, a matriz de

adjacéncia escolhida para o trabalho serd nao-direcional.
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A segunda propriedade refere-se aos pesos das arestas presentes em um grafo.
Enquanto a primeira propriedade tratou da existéncia e direcao das conexoes entre os
noés, agora busca-se entender a forca dessa associagao, ou seja, o peso atribuido as arestas.
Na modelagem proposta neste trabalho, a for¢a da associa¢ao entre os nds é baseada nas
distancias geograficas.

As arestas de um grafo podem ser classificadas em dois tipos: nao-ponderadas ou
ponderadas, o primeiro caso as arestas nao possuem pesos, assim leva-se em consideracao
apenas se had uma conexao ou nao. Ja no segundo tipo, além de se considerar se existe ou

nao uma relagdo entre nés, também define-se o quao forte ela é.

Grafo nao ponderado (Todas as arestas Grafo ponderado (Todas as arestas
iguais, sem indicacgao de peso) diferentes, representfmdo a forca da
associagao)

Figura 15 — Comparacao entre grafos nao ponderado e ponderado, evidenciando a auséncia
ou presenca de pesos nas arestas. Figura de autoria propria.

A terceira propriedade é da conectividade dos nds, que podem estar conectados ou
desconectados. Um n6 ¢ considerado conectado quando ao menos um outro né compartilha
uma aresta com ele, assim caso um né esteja desconectado, ele nao compartilha nenhuma
aresta com outro né do grafo, ou seja, esta isolado da rede.

No grafo conectado, todos os nés possuem ao menos uma aresta que os liga a outros
noés, permitindo a circulagao de informagoes por toda a estrutura. No grafo nao conectado,
ha nés isolados que nao se conectam a nenhum outro, o que impede o fluxo de informagoes

entre todas as partes do grafo.

Grafo conectado (Cada no compartilha Grafo nao-conectado (Alguns nés estao
a0 menos um aresta com outro na) isolados, nao compartilhando arestas com
outros nos)

Figura 16 — Grafo conectado e nao conectado. Figura de autoria prépria.
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Isso é importante no contexto de aprendizado em grafos, pois o isolamento de nos
pode significar a auséncia de compartilhamento de informacgoes na rede, impactando a
propagacao de sinais e na efetividade desses modelos.

Considerando o aspecto espaco-temporal do trabalho, optou-se por construir um
grafo G = (V, E) nao direcionado, nao ponderado e conectado. Essas escolhas visam

simplificar a analise e aumentar a interpretabilidade dos resultados.

4.3.2 Construgao do grafo

A matriz de adjacéncia A foi construida a partir da distancia geografica entre as
usinas, calculada pela férmula de Haversine (4.10), gerando uma matriz quadrada de
dimensao igual ao niimero de usinas, contendo as distancias relativas entre todos os pares.

Essa matriz representa a forga da associacao entre as usinas com base na proximidade
espacial, partindo da premissa de que usinas mais préximas tendem a compartilhar
condicoes ambientais e operacionais similares.

A féormula de Haversine calcula a distancia entre dois pontos considerando a
geometria da Terra, a partir das latitudes e longitudes (SINNOTT, 1984):

d = 2r - arcsin (anﬁ <A2¢> + cos(¢1) cos(hs) sin? (A;)) (4.10)

onde:

e d é a distancia entre os dois pontos;

o r ¢é o raio médio da Terra (=~ 6371 km);

A¢p = ¢g — ¢ € a diferenga de latitude (em radianos);
o« AN =)y — ) é adiferenca de longitude (em radianos);

e (1,09 sao as latitudes dos pontos.

O resultado ¢ uma matriz de distancias Dy, quadrada, com dimensao igual ao
numero de usinas N, contendo as distancias geodésicas entre todos os pares.

O uso das distancias geograficas para estruturar o grafo é uma abordagem comum
em estudos que utilizam GNNs para previsao de energia fotovoltaica, como exemplificado
por (WOSCHITZ, 2023), que também emprega a distdncia de Haversine para modelar
interacoes espaciais.

A partir da matriz Dy, define-se a estrutura do grafo aplicando o critério de
k-vizinhos mais préximos (k-NN), técnica fundamental para identificar vizinhangas em
espagos métricos (BISHOP, 2006, Capitulo 2).
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Cada né i é conectado aos seus k vizinhos mais proximos, com k = ceil(0.1- (N —1)).
A ordenacao dos vizinhos é feita diretamente pelas distancias Haversine, sem normalizacao
nesta etapa.

Diferente de abordagens que utilizam pesos continuos nas arestas, normalizando
distancias para definir caracteristicas ponderadas (WOSCHITZ, 2023), aqui optou-se por
manter a matriz de adjacéncia A binaria. Essa decisao se baseia na premissa de que a
topologia do k-NN ja incorpora a informacao de proximidade na estrutura da rede. Assim,
A indica apenas a presenga ou auséncia da conexao, valorizando a influéncia da topologia.

Para garantir a simetria de A, necessaria para grafos nao direcionados, a conexao
(,7) é estabelecida (A(7,j) = 1) se a usina j estd entre os k vizinhos mais préximos da
usina ¢, ou se i estd entre os k vizinhos de j. Caso contréario, A(i,j) = 0. Essa construgao
resulta em uma matriz simétrica e estatica.

O processo de selegao k-NN e a simetrizacao sao ilustrados na Figura 17.

(a)

Figura 17 — Ilustracao do processo de construgao do grafo via k-NN com k = 2: (a)
disposigao inicial dos nds representando usinas; (b) selecao unilateral dos
k-vizinhos mais proximos (setas tracejadas); (c¢) grafo final nao direcionado,
onde uma aresta (i, j) existe se i estd entre os k vizinhos de j ou vice-versa.
Figura de autoria prépria.



66

Primeiro, adicionam-se auto-conexdes para cada né, gerando A = A + I, onde I
¢ a matriz identidade. Isso permite que a informacao do préoprio noé seja considerada na
agregacao.

Depois, calcula-se a matriz diagonal de graus D, onde cada elemento D;; = > flij

é o grau do no i, incluindo sua auto-conexao. A normalizacao simétrica é entao aplicada:

A=DV2AD/? (4.11)

Essa normalizacao assegura que a agregacao das informacgoes dos vizinhos e do
proprio no seja equilibrada, evitando que noés com muitos vizinhos dominem o processo de
propagacao na GNN e contribuindo para a estabilidade do aprendizado.

Embora a topologia do grafo definido por A seja estatica, os sinais nos nos apresen-
tam variagoes temporais, capturadas pela passagem de mensagens da GNN. Isso permite
aprender representacoes dindmicas e identificar padroes espago-temporais.

O critério de conexao — conectar cada n6 aos seus k vizinhos mais préximos, com
k cerca de 10% do nimero total de outras usinas — foi definido empiricamente, buscando
um equilibrio entre capturar interdependéncias espaciais e manter a rede parcimoniosa.
Anélises futuras podem investigar a sensibilidade dessa escolha e otimizar o grau médio
da rede.

Apods a definicao da topologia do grafo por meio da matriz A (matriz de adjacéncia
com auto-conexoes), que estabelece as conexdes espaciais entre as usinas, incorporam-se
as informagoes dinamicas que variam no tempo. As GNNs operam com a representacao
inicial de cada né através de um feature vector (vetor de caracteristicas ou atributos), que
encapsula suas informacoes em um dado instante.

O objetivo do aprendizado em grafos é transformar esses feature vectors em em-
beddings (representacoes de alta dimensionalidade) que capturam tanto os atributos do
né quanto seu contexto estrutural na rede. Esses embeddings representam a informagao
aprendida do no, enriquecida por suas intera¢des com a vizinhanca.

O processo pelo qual as GNNs geram esses embeddings ¢ denominado passagem de
mensagens, um paradigma central que envolve duas operagoes fundamentais: agregagao
e combinagao. Em GNNs genéricas, a atualizacdo da representacao de um né v para a
camada k é comumente expressa pela combinacdo de suas caracteristicas anteriores h{F—)
com a informacao agregada de seus vizinhos. Essa agregacao é realizada por meio de uma
operacao que utiliza explicitamente a matriz de adjacéncia normalizada, A.

Para uma camada GNN tipica, a atualizacao dos embeddings dos ndés pode ser

formalizada da seguinte forma:
H® = g(AH® Dy ®) (4.12)

onde H® ¢ a matriz de embeddings dos nés na camada k (com H® sendo a matriz inicial

de feature vectors X), A ¢ a matriz de adjacéncia normalizada do grafo, W®*) é a matriz
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Figura 18 — O diagrama detalha as operacoes de agregacao e atualizacao para um né de
interesse (n6 5). ). Figura de autoria prépria.

de pesos treindveis da camada k, e 0 é uma func¢ao de ativa¢do nao linear (e.g., ReLU).

Nesta formulacao, a operacao de agregacao é capturada pela multiplicacao AH (k=1)
onde cada linha da matriz resultante representa a soma ponderada dos embeddings dos
vizinhos (incluindo a auto-conexao) para cada no.

A operacdo de combinacio é realizada pela multiplicacdo pela matriz de pesos W*)
e aplicacao da fungado de ativagdo o, que transforma e refina essa informacao agregada em
novos embeddings. Este mecanismo iterativo permite que cada né incorpore informacgoes
de sua vizinhanca na construcao de embeddings contextuais. Esse processo ¢ ilustrado na
Figura 18.

[terando essas operagoes ao longo de k camadas, as GNNs capturam interagoes
tanto locais quanto globais, permitindo que a informacgao flua por multiplos hops no grafo,
culminando na criacdo de embeddings contextualmente ricos para cada né. Na figura, as
representacoes da camada anterior (h*~1) dos vizinhos (nés 1 e 4) sdo agregadas, e essa
mensagem agregada é combinada com a representacao do préprio né 5 (hék_l)) para gerar
sua nova representacao na camada atual (hgk))

No contexto de aprendizado de maquina em grafos, a distingao entre aprendizado
transdutivo e indutivo é fundamental (WU et al., 2021; HAMILTON; YING; LESKOVEC,
2017). O aprendizado transdutivo foca na inferéncia sobre dados que ja foram observados e
sao parte da estrutura do grafo de treinamento, enquanto o aprendizado indutivo capacita
o modelo a generalizar para dados ou ndés completamente novos, nao presentes durante o
treinamento (HAMILTON; YING; LESKOVEC, 2017). Para o problema deste trabalho
essa distingao impacta a capacidade do modelo de lidar com a evolugao da rede ou a adigao
de novas usinas (VELICKOVIC et al., 2018).

Neste trabalho, o foco principal é na previsao de séries temporais ao nivel do no,

visando obter predigdes para todas as usinas (ndés) do grafo em um horizonte futuro.
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Para tanto, as séries temporais de geracdo e das variaveis exégenas de cada usina sao
transformadas em sequéncias fixas, utilizando janelas temporais de dados histéricos como

entrada para o modelo preditivo.

44 GAT-LSTM

A extracao de padroes locais dentro dessas séries temporais é feita através de
convolugoes temporais, que atuam sobre as sequéncias para identificar caracteristicas
relevantes em diferentes dindmicas. Assim, a incorporacao de mecanismos de memodria,
como o LSTM, ¢é utilizada para capturar dependéncias de curto e longo prazo nas séries
temporais, garantindo que essas influénciam sejam capturadas na previsao.

Dessa forma, a escolha da arquitetura GAT-LSTM justifica-se pela sua capacidade
de integrar o processamento espacial das relagoes de grafo com a modelagem temporal de
dependéncias de curto e longo prazo.

Dentro das GNNs, a Graph Attention Network (GAT), representa uma arquitetura
que se destaca por incorporar o mecanismo de atencdo no processo de agregacao de
mensagens entre os nos.

Para um par de nés conectados (i,j), a GAT calcula um coeficiente de atencao e;;
que calcula a relevancia do né vizinho j para a representacao do né i. Este coeficiente é
derivado da concatenacao das representacoes transformadas de ambos os nés, seguida por
uma transformacao linear e a aplicacdo de uma funcao de ativagao nao linear, como a

LeakyReLU. O coeficiente e;; pode ser expresso como:
eij = LeakyReLU(a” [Why, ||, Wh;]) (4.13)

onde h; e hj sao os embeddings dos nés 7 e j, W ¢ uma matriz de pesos compartilhada
aplicada a todas as arestas, a é um vetor de pesos de atencao aprendivel, e denota a
operacao de concatenagao.

Para tornar esses coeficientes comparaveis e garantir que a soma das importancias
dos vizinhos seja unitéria, os valores e;; sao normalizados por meio de uma funcao Softmax
sobre todos os vizinhos do né i. Isso gera os pesos de atengao o;:

a;; = softmaxj(e;;) = exp(ei) (4.14)

> keni exp(eir)

onde Ni representa o conjunto de vizinhos do né i. Esses pesos «;; indicam diretamente
o quanto o né j contribui para a atualizagao da representagao do né i. Este mecanismo
permite que a GAT atribua uma importancia diferenciada a cada vizinho, mesmo que
todos estejam conectados, focando nos nds mais relevantes para a tarefa em questao.
Apébs o calculo dos pesos de atencao normalizados, a nova representacao do né
i para a préoxima camada é obtida através de uma soma ponderada das caracteristicas

de seus vizinhos e, opcionalmente, de sua prépria caracteristica, utilizando os pesos de
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vizinhos (h;" , para j € {2,3,4,5}). Figura de autoria prépria.

atengao a;:
Wi=o (Y jeNiUiaijWh;) (4.15)

Essa operagao permite que cada né aprenda a focar nos vizinhos mais relevantes, tornando
o processo de agregacao mais flexivel e adaptativo a estrutura local da rede.

O mecanismo de atencdo pode ser empregado com a utilizacao de multiplas cabecas
de atencao, onde varias instancias independentes do processo de atencao sao executadas
em paralelo. Cada cabega opera com um conjunto diferente de pardmetros (matrizes de
pesos W e vetores a), calculando sua prépria atengao e agregagao de forma independente.

Isso permite que o modelo capture diferentes tipos de relagoes ou importancias entre
os vizinhos. Os resultados dessas multiplas cabecgas de atengao sdo entao concatenados
(para formar uma representagdo mais rica e de maior dimensao) ou somados (para manter
a dimensao), formando a representagdo final do né para a préxima camada.

O principio de funcionamento da GAT, incluindo o calculo e a agregacao dos
coeficientes de aten¢ao sob o mecanismo de multi-atencao, O GAT calcula um peso de
atencdo (aq ;) para cada vizinho, que é entdo utilizado para ponderar a contribuigao
dos vizinhos na agregacao. O resultado dessa agregacao ponderada é combinado com a
representacao do préprio né para gerar a nova representacao do né 1 na camada k (hgk)),
visualizado na Figura 19. O funcionamento da GAT-LSTM ocorre da seguinte forma: a
cada instante de tempo ¢ da sequéncia de entrada, a camada GAT processa os atributos de

todos os nés para aquele momento, utilizando a matriz de adjacéncia do grafo. O resultado

(t,GAT)

i} , que encapsulam

dessa camada é um novo conjunto de embeddings para cada no, h

as informacgoes espaciais ponderadas para o tempo t.

(2,GAT) h(T:GAT)]

Essa sequéncia de embeddings espacialmente informados, [R{bGAT)| b s

Y
¢é entao alimentada sequencialmente a uma camada LSTM. Essa, por sua vez, é responsavel
por capturar as dependéncias temporais de longo prazo entre esses embeddings espacial-

mente enriquecidos, produzindo um estado final que representa a dindmica espago-temporal
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integrada do né ao longo da janela de tempo. A sequéncia desses embeddings é entao
alimentada a uma camada LSTM, que modela as dependéncias temporais de longo prazo,
obtendo a previsao da geragao (V).

Os hiperparametros-chave incluem o niimero de camadas GAT e LSTM, a dimensi-
onalidade dos embeddings, o nimero de cabegas de atencao (para o GAT), e a taxa de
aprendizado, que sao ajustados para otimizar o desempenho do modelo. Uma ilustracao

detalhada desse fluxo de informacoes e da arquitetura do GAT-LSTM pode ser vista na

Figura 20.
Yii LT Yin Saidas dos nés
Camadas LSTM, que incorporam a
LSTM ISTM —» LSTM agregagao espamaJ vmda da c,amada
GAT e em recorréncia has células
LSTM
Camadas GAT que incorporam a agregagao
espacial vinda dos embeddings dos nés
GAT GAT ... GAT
Entradas das features dos nos
Xig % Xien

Figura 20 — A cada instante de tempo, as caracteristicas iniciais (X;) de todas as usinas sao
processadas por uma camada GAT para capturar as dependéncias espaciais,
gerando embeddings enriquecidos. Figura de autoria prépria.

4.5 GCNI1D

A arquitetura Graph Convolutional Network 1-Dimension(GCN-1D) utiliza convo-
lucoes baseadas em polinémios de Chebyshev com modificagoes - feitas para adequar o
operador a séries temporais, assim, ao invés de aplicar uma transformacao linear entre o
vetor de entrada e os pesos da transformacao, aplica-se uma convolugao de uma dimensao
no vetor de entrada.

No modelo original proposto por (KIPF; WELLING, 2017) as convolugoes em grafo,
que aproximam o operador de filtragem espectral em torno do Laplaciano do grafo. Nessa

formulacao, a convolugao em grafos(GraphConv) é definido por:

y=goxgx = Pu(L)CNNip(X) (4.16)

k=0
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Onde 0, € RY*©, C canais de entrada e O canais de saida sdo os filtros treindveis

da camada de convolugdo. E Py (L) sdo os polinémios de Chebyshev definidos como:
Py=1,P,=L;P,=2LP, 1 — Py_».

Os pesos 0, carregam as informagoes dos coeficientes de Chebyshev para o operador
de filtro inicial da arquitetura, assim a convolucao em grafo é aplicada para o vetor de
entrada X € RN*C*D ¢ retorna y € RV*9*W sendo D e W passos anteriores e futuros.
Py(L) € RN*N si0 os polinémios de Chebyshev de ordem k avaliados no laplaciano escalado
L=2L/ Aoz — In.

Entretanto, na implementacao pratica deste trabalho, o operador baseado em
Chebyshev foi substituido por uma camada GCNConv da biblioteca PyTorch Geometric.
Essa camada corresponde a uma simplificagao da formulagao espectral, equivalente ao

caso K=1, em que a filtragem ¢ feita diretamente pela matriz de adjacéncia normalizada:

A=DYV2ADY? (4.11)

H® = g(AH* D ®) (4.12)

Dessa forma, a GCNConv realiza uma agregacao de primeira ordem, propagando infor-
macoes apenas entre vizinhos diretos. Isso reduz o custo computacional e simplifica o
treinamento, mas também altera a natureza do filtro: o operador deixa de ser um polindémio
de alta ordem do laplaciano e passa a atuar como um filtro passa-baixas suave no dominio
espectral.

Essa convolugao ¢ aplicada com polinémios de ordem até K-1 do laplaciano escalado
e é espacialmente localizado, dependendo somente de nés com até K-hops de distancia do
no de interesse.

Tendo em vista que o problema de previsao de incertezas do trabalho trata de
séries temporais, as convolugoes utilizadas sao causais, de modo a nao violar a causalidade
temporal necessaria para prever passos futuros, i.e., a previsao p(xyy1|x1, ..., ;) feita pelo
modelo num passo de tempo 7 nao pode depender de nenhuma variavel de passos futuros
Zi41, ..., T¢. Para os dados unidimensionais, como os da geracao solar, a convolugao causal
pode ser implementada transladando os dados de entrada - basta adicionar um pad na
esquerda da sequéncia de entrada e isso assegura que a camada de convolugdo nao recorre

de vazamento de dados para realizar as suas predicoes.
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Figura 21 — Arquitetura do modelo GCN-1D. As entradas sao processadas por uma camada
GCNConv para agregacao espacial, seguida por uma convolucao 1D causal
que extrai padroes temporais para gerar a previsao final

4.6 Limitacdes na modelagem das GNNs

A modelagem com GNNs envolve decisoes de projeto que resultam em limitagoes
e custo-beneficio fundamentais. A primeira reside na dependéncia da topologia do grafo,
que atua como um viés indutivo. Conexdes mal especificadas podem introduzir ruido (no
caso de arestas irrelevantes) ou impedir a propagacao de informacao (no caso de arestas
ausentes), prejudicando o aprendizado.

Neste contexto, a escolha por uma topologia estatica representa um equilibrio
deliberado entre fidelidade do modelo e viabilidade computacional.

Para a rede analisada, composta por 47 usinas geograficamente distantes dentro
do cinturao solar brasileiro, a hipdtese de interdependéncias fixas é uma aproximacgao
razoavel, pois as correlagoes sdo em sua maioria atrelada a fendmenos meteorolégicos de
macroescala. Essas correlagoes sao em sua maioria decorrente da irradiancia similar na
regiao do cinturao solar brasileiro e das sazonalidades horaria e diaria.

A implementacao de uma matriz de adjacéncia dindmica, embora teoricamente
superior para capturar variagoes funcionais, implicaria um aumento proibitivo no custo
computacional em todas as etapas do projeto, desde a engenharia de features até o
treinamento do modelo.

Outra limitacao inerente a muitas arquiteturas, como a GCN, é a tendéncia a
suavizac¢ao, conforme analisado, operadores de agregacao simples atuam como filtros
passa-baixas, fazendo com que as representagoes dos nds se tornem mais similares a cada

camada de propagacao.
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Embora o problema seja mais acentuado em redes profundas, essa caracteristica
pode atenuar sinais locais de alta frequéncia, como rampas de geracao de energia solar,
mesmo em arquiteturas rasas, representando um equilibrio entre a captura de padroes

regionais e a fidelidade a eventos locais.

4.7 Previsao conforme e incertezas

Os capitulos anteriores detalharem a construcao de modelo para estimativas pontuais
7 ou quantilicas ¢,. Porém, o objetivo da quantificagao de incerteza é a construcgao de
regioes de predicao - intervalos R(x) que devem conter o valor real y com uma probabilidade
pré-definida.

Esta se¢ao formaliza a passagem de estimativas de modelo para regides de predigao
com garantias estatisticas, baseando-se no framework teérico da Previsao Conforme
(IZBICKI, 2025).

Uma maneira de fazer isso é utilizar os quantis estimados pelo modelo treinado a

partir da fungao de pinball(Segao 4.8), formando uma regiao de plug-in:

Rplug—in(l") = [@a/z(ﬂf), QIfa/2($)] (4.17)

Conforme discutido por (IZBICKI, 2025, Se¢ao 5.2), embora essa regiao de plug-in capture
a incerteza aleatoria, ela nao leva em conta a incerteza epistémica na estimacao dos quantis
d. Sendo esses quantis apenas estimativas a partir dos dados disponiveis, a regiao conforme
resultante frequentemente falha em atingir a cobertura nominal desejada. Por exemplo,
um intervalo de 90% pode conter a observaciao real em apenas 85% das vezes, tornando as
garantias de incertezas nao confiaveis.

Para superar a limitagao dos métodos plug-in, a Previsao Conforme oferece um
framework agnostico ao modelo, projetado para produzir regides de predi¢cao com cobertura
marginal garantida (IZBICKI, 2025; VOVK; GAMMERMAN; SHAFER, 2005). A garantia
¢ marginal por se aplicar em média sobre a distribuicao de dados, e é obtida através de um
processo de calibragdo. A metodologia split conformal, a mais comum, segue os seguintes

Passos:

» Particdo dos Dados: O conjunto de dados é dividido em um conjunto de treino e
um de calibragao, disjuntos. O modelo preditivo (XGBoost ou GNN) ¢ treinado

exclusivamente no conjunto de treino.

o Célculo dos Escores de Nao-Conformidade: O modelo treinado é entao usado para
prever os resultados no conjunto de calibragao. Para cada ponto i neste conjunto,
calcula-se um escore de nao-conformidade, que mede o quao atipica ou errada foi
a predicao. Para problemas de regressao, o escore mais simples é o erro absoluto

residual:
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Esses escores formam uma distribuicao empirica do erro que o modelo comete em

dados que nao viu durante o treino.

o Calibragao do Limiar: Para um nivel de erro a desejado, por exemplo, a = 0.1
para 90% de cobertura), calcula-se o limiar ¢ = (1 — «) quantil dos escores de
nao-conformidade. Este limiar representa, heuristicamente, o pior erro que o modelo

cometeu em 90% dos casos no conjunto de calibracao.

o Construcao da Regiao Conforme: Para uma nova predi¢do e, 0 intervalo de

predicao final é construido simetricamente:

R(gteste) = [:&teste —q, gteste + Q] (419)

A teoria da Previsao Conforme garante que, sob a premissa de que os dados sao
trocaveis, o PICP resultante serd no minimo de 1 — a. Essa garantia é forte por ser
independente da complexidade do modelo ou da distribui¢ao dos dados.

A garantia tedrica da Previsao Conforme depende da premissa de trocabilidade,
que é violada por séries temporais devido a autocorrelagdo e nao-estacionariedade. A
distribuicao dos erros de um modelo de previsao solar, por exemplo, nao é constante ao
longo do dia.

A aplicagdo do método previsao conforme padrao a dados de séries temporais, como
feito neste trabalho, resulta em intervalos homoscedasticos, de largura constante 2q, que
nao se adaptam a volatilidade local.

Consequentemente, os intervalos podem ser excessivamente largos em periodos
estaveis, como no inicio da manha, e demasiadamente estreitos durante periodos de alta
variabilidade (rampas de geragao), comprometendo a cobertura condicional.

Embora métodos mais avancados existam para lidar com dados nao trocaveis, eles
fogem ao escopo desta andlise. Portanto, a Previsao Conforme sera utilizada aqui como
uma ferramenta para gerar uma referéncia inicial de incerteza com cobertura marginal,
com a ressalva de que a obtencao de garantias condicionais em séries temporais constitui

uma importante direcdo para trabalhos futuros.

4.8 Funcao de Perda

Para que os modelos de aprendizado de maquina possam gerar previsoes de incerteza,
em vez de apenas estimativas pontuais, é necessario um critério de otimizacao adequado.
Esta secao apresenta a funcao de perda quantilica, o mecanismo que permite treinar os

modelos para estimar diretamente os quantis da distribuicao condicional da geracao.
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O processo de treinamento de um modelo consiste em minimizar uma funcao de
perda, que quantifica o erro das previsoes.

A funcao de perda adotada para os modelos foi a perda quantilica, também
conhecida como perda de pinball. Ela permite que o modelo estime um quantil especifico
da distribuicdo de probabilidade da variavel alvo, em vez de apenas a média. Sua féormula

¢é dada por:

. T(y —9) sey > 7 (subestimagao)
L:(y,9) = (4.20)
(1-7)(g—vy) sey<y (superestimacao)

Onde:
e 1y ¢é o valor real.
e ¢ é o valor previsto pelo modelo para um determinado quantil.
o 7 ¢ 0 quantil alvo, um valor no intervalo (0, 1).

A caracteristica principal desta fungao é a sua assimetria, que permite direcionar
o modelo para estimar diferentes pontos da distribuicao condicional da variavel alvo. Os
modelos foram treinados para prever trés quantis distintos: 0.1, 0.5 e 0.9, cada um com

um objetivo especifico:

e 7=0.1

Para este quantil, a fun¢do de perda penaliza mais a superestimagao (quando § > y)
com um peso de 1 — 7 = 0.9, enquanto a subestimagao (y > ¢) recebe um peso
menor, de 7 = (0.1. Para minimizar essa perda assimétrica, o modelo aprende a gerar
previsoes conservadoras, com o objetivo de que o valor real seja superior a previsao

em 90% das vezes, estabelecendo uma fronteira inferior para as estimativas.

e 7=0.5
Quando o quantil alvo é a mediana, os pesos para subestimagdo e superestimacao
sao iguais: 7 =0.0e 1 — 7 =0.5.

e 7=09

De forma oposta ao quantil 0.1, aqui a funcao de perda penaliza mais a subestimacgao
(y > 9) com um peso de 7 = 0.9. A superestimacao (§ > y) recebe um peso de

apenas 1 — 7 =0.1.

Logo, o modelo aprende a gerar previsoes otimistas, estabelecendo uma fronteira

superior onde se espera que o valor real seja inferior a previsao em 90% das vezes.

Assim, o uso da perda quantilica para os quantis 0.1 e 0.9 viabiliza a construcao de

um intervalo de predicdo de 80%. A qualidade e a calibracio desses intervalos, bem como
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a acuracia da estimativa mediana (quantil 0.5), serdo avaliadas por meio das métricas

descritas a seguir.

4.9 Métricas de Avaliacao

Uma vez que o objetivo do trabalho abrange tanto a acuracia da previsao pontual
quanto a qualidade dos intervalos de incerteza, é necessario um conjunto de métricas que
avalie ambas as dimensoes.

Esta secao define os critérios que serao utilizados para comparar o desempenho dos
modelos, focando na calibracao e precisao dos intervalos, bem como no erro das estimativas

pontuais.

« PICP (Prediction Interval Coverage Probability): Mede a proporcao de
observagoes reais que se encontram dentro dos limites do intervalo de predicao. Para
um intervalo de confianca de (1 — a)100%, um PICP idealmente se aproximaria de

1 — «a, avaliando a calibragao e a confiabilidade da estimativa de incerteza.

17 Segzl/gylggz(]

1 n
PICP = —> ¢, onde¢ = (4.21)
i

0, caso contrario

Nesta equagao, §F e §7 representam, respectivamente, os limites inferior e superior

do intervalo de predigao para a i-ésima observacao.

« PINAW (Prediction Interval Normalized Average Width): Avalia a largura
média dos intervalos de predi¢do, normalizada pela amplitude da variavel alvo. Esta
métrica quantifica a precisdo da incerteza; intervalos mais estreitos (PINAW menor)

sao desejaveis, desde que mantenham um nivel de PICP adequado.
1 n
PINAW = — >"(3/ — ) (4.22)
nitiH
Onde R é a amplitude dos dados observados (R = max(y;) — min(y;)), garantindo
que a métrica seja adimensional e comparavel entre diferentes problemas.

« RMSE (Root Mean Squared Error): E a raiz quadrada do MSE. Sua vantagem
é que a métrica fica na mesma unidade da variavel alvo, tornando o erro mais

interpretavel.

RMSE — v/MSE — \l S (4.23)

=1

« MAE (Mean Absolute Error): Mede a média dos erros absolutos. E menos

sensivel a outliers que o RMSE, pois nao eleva os erros ao quadrado.

1 & .
MAE = n Z |yi — 0l (4.24)
i=1
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« R? (Coeficiente de Determinacgao): Indica a proporcao da varidncia dos dados

que ¢é explicada pelo modelo. Um valor préximo de 1 significa um bom ajuste.

RZ—1_ i (yi — gi)z
im1(vi — 9)?

(4.25)
Com estas métricas definidas, possui-se o ferramental necessario para realizar uma
avaliacao quantitativa e comparativa dos modelos propostos, o que sera detalhado no

capitulo de Resultados e Discussao.

4.10 Configuracdao Experimental

O conjunto de dados foi dividido seguindo o padrao 60% para treino, 20% para
validacao e 20% para teste. Os modelos foram treinados para realizar previsoes multi-passo,
sendo avaliados nos horizontes de H+1, H+3, H+6, H+12 e H+24.

Para o XGBoost, a previsao foi implementada para treinar um modelo por horizonte
e quantil. O tuning de hiperparametros foi feito com a biblioteca Optuna, executando
100 trials com a técnica de pruning para descartar conjuntos de hiperparametros pouco
promissores.

Para os modelos de aprendizado profundo (GAT-LSTM e GCN-1D), a funcao de
perda pinball foi ponderada entre os horizontes de previsdo. Adotaram-se os pesos [1.0,
1.25, 1.5, 2.0, 2.5] para os horizontes H+1, H+3, H+6, H+12 e H+24, respectivamente,
atribuindo maior importancia aos erros em previsoes de longo prazo, que sdo inerentemente
mais dificeis.

Para o GAT-LSTM, os hiperparametros da rede, detalhados na Tabela 10, foram
definidos com base em testes preliminares. O treinamento utilizou o otimizador Adam
com taxa de aprendizado de le-3 e parada antecipada com paciéncia de 15 épocas para
monitorar a perda na validagdo e prevenir overfitting.

Para o GCN-1D, a arquitetura foi configurada com uma camada GCNConv de
64 canais, seguida por uma convolucao 1D causal com 128 canais de saida e um kernel
de tamanho 3. Os seus hiperparametros se encontram na tabela 11. Assim como no
GAT-LSTM, utilizou-se o otimizador Adam com taxa de aprendizado de 1le-3 e parada
antecipada com paciéncia de 15 épocas.

O ambiente computacional foi selecionado para otimizar o tempo de execucao:
e O treinamento do XGBoost foi realizado em CPU.

o O treinamento do GAT-LSTM e GCN-1D, mais intensivos computacionalmente,

foram acelerados em GPU utilizando a plataforma Google Colab.
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Tabela 10 — Hiperparametros utilizados no modelo GAT-LSTM

Hiperparametro Valor
Canais ocultos GAT 64
Cabecas de atencao 8
Dropout GAT 0.3

Tamanho da camada LSTM 128
Numero de camadas LSTM 1

Dropout LSTM 0.0
Learning rate 0.001
Nimero de épocas 300
Paciéncia 15

Tabela 11 — Hiperparametros utilizados no modelo GCN-1D.

Hiperparametro Valor
Canais ocultos GCN 64
Canais de saida Conv1D 128
Tamanho do kernel Conv1D 3
Taxa de aprendizado 0.001
Numero de épocas 100
Paciéncia 15

Partindo das lacunas identificadas na Anélise Exploratéria de Dados, principalmente
a persisténcia de autocorrelacao espacial nos residuos de modelos temporais classicos,
este capitulo construiu o arcabouco metodolégico para investigar a hipotese central do
trabalho.

Foi estabelecida uma comparagao sistematica entre a abordagem de modelo local,
representada pelo XGBoost, e a de modelos globais, materializada pelas arquiteturas GNN
GAT-LSTM e GCN-1D. Detalhou-se o processo de construcao do grafo, cuja topologia
estatica baseada em proximidade geografica foi justificada como um equilibrio deliberado
entre a captura de correlagoes de macroescala e a viabilidade computacional.

Para atender ao objetivo de quantificar incertezas, a metodologia integrou a funcao
de perda quantilica como meio de treinamento para a estimacao de intervalos. Adicional-
mente, foi introduzida a Previsao Conforme como um framework para a calibracao desses
intervalos, com uma analise critica de sua aplicabilidade em séries temporais nao trocaveis.

O desempenho dessas abordagens sera avaliado por um conjunto duplo de métricas,
capazes de mensurar tanto a acurdcia da previsao pontual (RMSE, MAE) quanto a
qualidade dos intervalos de incerteza (PICP, PINAW).
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Essa metodologia, portanto, estabelece as bases para a avaliacdo empirica das

hipéteses do trabalho, cujos resultados sao apresentados e discutidos a seguir.



5 RESULTADOS E DISCUSSAO

Neste capitulo, sdao apresentados e discutidos os resultados dos modelos de aprendi-
zado de maquina propostos, com o objetivo de validar empiricamente a hipdtese central
do trabalho: a de que a modelagem explicita das interdependéncias espaciais, via GNNs e
GCNs, pode oferecer ganhos de previsibilidade e uma melhor quantificagdo de incertezas
em comparac¢ao a modelos puramente locais.

Conforme estabelecido na Analise Exploratoria de Dados (Capitulo 3), a insuficiéncia
dos modelos classicos (SARIMA) e a presenca de autocorrelagao residual (Tabela 6) ja
indicavam a necessidade de arquiteturas mais complexas, capazes de lidar com a natureza
espacial do problema.

As segbes a seguir, portanto, avaliam a performance dos modelos locais (XGBoost)

versus a abordagem de portfélio dos modelos globais (GNNs).

5.1 Desempenho geral e comparativo dos modelos

Uma analise agregada dos resultados, consolidada nas Tabelas 16 a 21 (Apéndice),
oferece uma visao panoramica do desempenho geral dos modelos GNN no conjunto de teste
completo. Observa-se que o GCN-1D apresenta, de forma geral, RMSE consistentemente
menor e R? superior ao GAT-LSTM em praticamente todos os horizontes e quantis. Este
resultado sugere que, para a topologia de rede estudada, a arquitetura convolucional mais
simples foi mais eficaz em generalizar os padroes espaco-temporais.

A analise dos resultados graficos sera feita para cada usina-arquétipo escolhida,
refletindo sobre como cada modelo se comportou no horizonte em questao.

No horizonte H+1 (Figura 22), todos os modelos demonstraram alta capacidade
de aderéncia a dindmica de geragdo. Para o Conjunto Lapa (Hub), é notével a precisao
da mediana do XGBoost. No entanto, no periodo de 29-30/05: enquanto os modelos
previram uma geracao amena, consistente com o comportamento esperado para as condigoes
climéaticas, os valores realizados foram nulos.

Este padrao sugere a ocorréncia de curtailment, , uma reducao deliberada da geracao
de energia por ordem do operador do sistema, que os modelos em grafos, influenciados
pela producao dos vizinhos, ndo conseguiram antecipar. O XGBoost, focado no histérico
local, também foi induzido ao erro, mas a discrepancia levanta uma questao fundamental
sobre a sensibilidade dos modelos a fatores exdgenos nao-fisicos.

Para o Conjunto Castilho (Comunidade), o XGBoost novamente se destaca pela
precisao pontual, com um RMSE de 14.65 MW e R2? de 0.68 (Tabela 12). Os modelos
em grafos, embora visualmente razoaveis, apresentaram intervalos de incerteza mais
largos. Contudo, o GCN-1D obteve um R? excepcional de 0.92, indicando que, para este

arquétipo, a informagao espacial dos vizinhos foi valiosa para explicar a varidncia da
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geracao, superando o modelo local neste quesito.

No Conjunto Floresta (N6 Isolado), todos os modelos apresentaram aderéncia
satisfatéria. O GCN-1D (RMSE de 7.77 MW; R? de 0.78) e o XGBoost (RMSE de 7.80
MW:; R? de 0.29) foram precisos. A superioridade do R? do GCN-1D sugere que, mesmo
para um no isolado, a informacao contextual dos poucos vizinhos melhora a capacidade de

generalizagdo do modelo em curtissimo prazo.

GAT-LSTM GCN-1D XGBOOST

Conj. Lapa
s B

Conj. Castilho

Mw)

Conj. Floresta
mw)

—— valorReal  ---- Previsdo Mediana (g=0.5) Intervalo de Predicdo (80%)

Figura 22 — Comparativo de desempenho dos modelos GAT-LSTM, GCN-1D e XGBoost
para o horizonte de previsao H+1.

A medida que o horizonte de previsao se estende para H+3 (Figura 23) e H46
(Figura 24), observa-se uma degradacao clara na performance dos modelos GNN. Para
o Conjunto Lapa, a capacidade de modelar o curtailment se perde, e a performance se
deteriora drasticamente. A Tabela 12 quantifica este colapso: no H+3, o R? do GAT-LSTM
torna-se negativo (-0.33), indicando que a previsao do modelo é pior do que uma simples
média dos dados. O XGBoost, em contraste, mantém sua consisténcia, com um RMSE
estavel (7.70 MW) e um R? positivo, ainda que modesto (0.20).

Para o Conjunto Castilho, o XGBoost se firma como o modelo mais robusto,
mantendo um RMSE em torno de 19 MW e R? de 0.46 em H+6. Os modelos em grafos,
embora ainda capturem a morfologia geral do sinal, perdem precisao nos picos e vales,
resultando em erros significativamente maiores (RMSE de 37.38 MW para GCN-1D em
H+6).
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Figura 23 — Comparativo de desempenho dos modelos GAT-LSTM, GCN-1D e XGBoost
para o horizonte de previsao H+3.

Nos horizontes mais longos (Figuras 25 e 26), a superioridade do modelo local
(XGBoost) torna-se incontestével em termos de robustez. Para o Conjunto Lapa (Hub), os
modelos GNN falham completamente em generalizar, com valores de R? consistentemente
negativos e massivos (e.g., -2.33 para GAT-LSTM em H+12), tornando-os inutilizéveis
para previsoes operacionais. O XGBoost, por outro lado, mantém um desempenho estavel,
com RMSE em torno de 7-8 MW para todos os horizontes, um feito notavel que evidencia
sua capacidade de aprender padroes temporais robustos a partir de dados locais.

Para os arquétipos Castilho e Floresta, observa-se o mesmo padrao: o XGBoost
mantém um erro (RMSE) relativamente constante, enquanto o erro dos modelos GNN
escala significativamente com o horizonte. E digno de nota que, para o Conjunto Castilho,
o GCN-1D ainda consegue explicar uma porgao da varidncia em H+24 (R? de 0.66), um
desempenho superior ao do XGBoost (R? de 0.62), apesar de um erro absoluto maior. Isso
sugere que, mesmo em longo prazo, a informagao espacial ajuda a capturar a tendéncia,

mas falha em acertar a magnitude.
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Figura 24 — Comparativo de desempenho dos modelos GAT-LSTM, GCN-1D e XGBoost

para o horizonte de previsao H+6.
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Figura 25 — Comparativo de desempenho dos modelos GAT-LSTM, GCN-1D e XGBoost

para o horizonte de previsao H+12.
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Figura 26 — Comparativo de desempenho dos modelos GAT-LSTM, GCN-1D e XGBoost
para o horizonte de previsao H+24.

A analise comparativa entre os arquétipos revela a influéncia da topologia da rede
no desempenho dos modelos, validando a hipotese central deste trabalho.

O Hub (Lapa) se mostrou o mais desafiador para os modelos GNN. A sua alta
centralidade o torna suscetivel nao apenas a padroes climaticos regionais, mas também
a dinamicas operacionais complexas do sistema, como o curtailment. Os modelos GNN,
ao agregarem informagoes dos vizinhos, foram influenciados por um sinal fisico (geragao
esperada pelo clima) que conflitava com a realidade operacional (geragao zerada por ordem
externa). Este achado sugere que, para nds-chave do sistema, modelos puramente espaco-
temporais podem ser frageis se nao incorporarem varidveis operacionais. A consisténcia do
XGBoost neste cenario reforga o valor de modelos locais que aprendem os padrdes tinicos
de um ativo especifico.

O arquétipo de né Isolado (Floresta), contrariamente ao Hub, tem a dindmica de
geracao do né isolado mais autocontida. A menor influéncia de vizinhos torna o problema
mais proximo de uma previsao de série temporal univariada classica. Isso explica por que
todos os modelos tiveram um bom desempenho inicial. No entanto, a superioridade do
XGBoost em manter um RMSE baixo em todos os horizontes, mesmo com um R? inferior,
indica que ele aprendeu um modelo de erro médio mais consistente, enquanto os GNNs,
mesmo com menos vizinhos, ainda sofrem com a degradacao da informagao espacial ao

longo do tempo.
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Ja o arquétipo de né comunidade (Castilho), foi o cendrio onde a arquitetura GNN,
especialmente o GCN-1D, demonstrou seu maior potencial. A forte conexao com um cluster
de vizinhos geograficamente préoximos forneceu informagéao rica e altamente correlacionada,
permitindo ao GCN-1D atingir um R? de 0.92 em H+1, superando amplamente o XGBoost.
Este resultado corrobora a hipdtese de que, em regides de alta densidade de usinas com
regimes climaticos homogéneos, a modelagem explicita das interdependéncias espaciais

oferece uma vantagem competitiva significativa para previsoes de curtissimo prazo.

5.2 Andlise da calibracao e desempenho em rampas

A analise da qualidade dos intervalos de incerteza revela uma limitacao critica e
sistémica de ambos os modelos GNN: uma sistematica subcobertura. Este comportamento
nao se restringe aos arquétipos, mas se manifesta de forma generalizada em quase todas
as 47 usinas, conforme detalhado nas Tabelas 15 e 16.

O objetivo era um PICP de 80% (correspondente aos quantis 0.1 e 0.9). No entanto,
para o GAT-LSTM (Tabela 25), observa-se uma ampla dispersao na calibragao, com valores
de PICP que variam desde 48.82% até 86.64%, mas com a grande maioria das usinas
apresentando cobertura bem abaixo do nivel nominal. O GCN-1D (Tabela 26) apresentou
uma calibracao ainda mais pobre, com a maior parte das usinas concentrada em uma faixa
de cobertura entre 50% e 65%.

Este padrao geral é bem exemplificado pela andlise focada nos arquétipos (Tabelas
13 e 14). Neles, o GAT-LSTM alcangou, no maximo, 79.20% (Lapa), caindo para apenas
52.25% (Castilho), enquanto o GCN-1D variou entre 50.24% e 61.58%. Estes ntimeros
indicam que os modelos sao excessivamente confiantes em suas previsoes, gerando intervalos
de predicao estreitos demais para capturar a verdadeira variabilidade dos dados. Entre os
dois, 0 GAT-LSTM consistentemente produziu intervalos mais largos (maior PINAW), o
que explica sua cobertura ligeiramente melhor em diversas usinas, porém ao custo de uma
menor precisao.

O desempenho sob estresse, avaliado em cenarios de rampa (Tabela 15), expoe
ainda mais essa fragilidade. Para o GAT-LSTM, o PICP em eventos de rampa despencou
de 69.12% para 39.68%. O GCN-1D teve uma queda similar, de 66.38% para 53.98%. Este
resultado demonstra que os intervalos de predicao, calibrados na totalidade dos dados,
sao inadequados para conter a volatilidade das rampas de geracao. As rampas, por sua
natureza de alta magnitude e frequéncia, representam os eventos que mais desafiam a

capacidade preditiva e de quantificacdo de incerteza dos modelos.
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Tabela 12 — Comparativo de Métricas de Acurdcia (RMSE e R2) para a Previsdo Mediana
(Quantil 0.5) por Arquétipo e Horizonte de Previsao.

Arquétipo: Hub ( Lapa)

Métrica H+1 H+3 H+6 H+12 H-+24
GCN-1D

RMSE (MW) 7.04 12.80 16.51 27.60 20.64
R? 0.84 047 028 -0.83 -0.32

GAT-LSTM

RMSE (MW) 8.70 20.29 20.29 37.24  29.53
R? 0.75 -0.33 -0.33 -2.33 -1.71

XGBoost

RMSE (MW) 719 7.70 7.72 7.93 7.33

R? 0.30 0.20 0.20 0.15 0.28

Arquétipo: Comunidade ( Castilho)

Meétrica H+1 H+3 H46 H+12 H4-24
GCN-1D

RMSE (MW) 16.06 28.79 37.38 46.22  36.83
R? 092 0.73 0.56 0.53 0.66

GAT-LSTM

RMSE (MW) 19.17 37.77 47.98 58.97  36.68
R? 0.88 0.53 0.27 0.23 0.66

XGBoost

RMSE (MW) 14.65 18.61 19.20 16.99  16.09
R?2 0.68 049 0.46 0.58 0.62

Arquétipo: N6 Isolado ( Floresta)

Meétrica H+1 H+3 H+6 H+12 H424
GCN-1D

RMSE (MW) 777 1438 1823 2048  17.76
R? 0.78 033 0.01 0.01 0.19

GAT-LSTM

RMSE (MW) 9.87 20.60 26.80 24.61 16.96
R? 0.65 -0.38 -1.14 -0.43 0.26

XGBoost

RMSE (MW) 780 8.05 8.03 8.66 8.59

R? 0.29 024 025 0.13 0.14
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Tabela 13 — Validacao dos arquétipos no modelo GAT-LSTM.

Arquétipo Usina PICP (%) PINAW

Hub Lapa 79.20 0.19
Isolado Floresta 76.00 0.14
Comunidade Castilho 52.25 0.09

Tabela 14 — Validacao dos arquétipos no modelo GCN-1D.

Arquétipo Usina  PICP (%) PINAW

Hub Lapa 50.24 0.08
Isolado Floresta 62.17 0.11
Comunidade Castilho 61.58 0.13

Tabela 15 — Desempenho sob cenérios de estresse (rampas > 91.90 MW) - GAT-LSTM

Cenério PICP (%) PINAW N¢ de Pontos
Nao Rampa (Normal) 69.12 0.03 37776
Rampa (Estresse) 39.68 0.09 1986

Desempenho sob cenérios de estresse (rampas > 91.90 MW) - GCN-1D

Cenario PICP (%) PINAW N¢ de Pontos
Nao Rampa (Normal) 66.38 0.03 37776
Rampa (Estresse) 53.98 0.11 1986

5.3 Limitacdes Observadas

A anaélise dos resultados revela limitagoes intrinsecas as abordagens de modelagem
adotadas, cujas causas podem ser rastreadas até seus fundamentos teéricos. Uma limitagao
primaéria, e talvez a mais critica do ponto de vista da quantificacdo de incertezas, reside
na ma calibracao dos intervalos de predicao gerados pelos modelos GNN. Conforme
evidenciado pelos valores de PICP consistentemente abaixo do nivel nominal de 80%
(Tabelas 13 e 14), os modelos se mostraram excessivamente otimistas. Este fenomeno estd
diretamente ligado a natureza da regressao quantilica via funcao de perda pinball, como
discutido na Secao 4.7.

Tal abordagem ¢ eficaz em estimar a incerteza aleatoria, inerente a variabilidade

dos dados, mas falha em incorporar a incerteza epistémica, associada ao proprio modelo. A
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auséncia de um framework de calibracao mais robusto, como a Previsdo Conforme, resulta
em intervalos que nao alcancam a cobertura estatistica desejada.

Adicionalmente, os modelos GNN demonstraram uma vulnerabilidade a eventos
operacionais nao-fisicos, como o curtailment observado no arquétipo Hub. A arquitetura
GNN opera sob o pressuposto de que nés espacialmente proximos devem exibir correlagoes
em seu comportamento, principio fundamental para a agregacao de informacao via passagem
de mensagens (Segao 4.3).

Este mecanismo permite capturar fenomenos climaticos regionais, mas se torna uma
falha quando um evento local, como uma ordem de despacho do ONS, desacopla a geracao
de uma usina das condigdes de seus vizinhos. O modelo continua a prever geracao baseado
no consenso da vizinhanga, expondo uma relagao custo-beneficio da modelagem espacial:
sua forca na captura de padroes regionais é também sua fraqueza diante de dinamicas que
nao respeitam a topologia geografica.

A degradacao acentuada do desempenho em horizontes de previsao estendidos, como
H+12 e H+24, representa outra limitacao significativa das arquiteturas GNN, conforme
ilustrado na Tabela 12 com valores de R? que se tornam negativos. Este comportamento
pode ser atribuido ao actiimulo de erros em previsoes multi-passo, um problema exacerbado
no contexto dos grafos.

Neles, erros nao se acumulam apenas no tempo, mas também no espaco, pois uma
previsao incorreta para um no6 no instante ¢ é propagada como uma caracteristica errénea
para seus vizinhos no instante ¢+1, contaminando a rede. Em contrapartida, a notavel
estabilidade do XGBoost, treinado sob uma estratégia de previsao direta (um modelo por
horizonte, conforme Secao 4.10), demonstra a robustez desta abordagem para mitigar o
acumulo de erros.

Finalmente, a analise de desempenho em rampas (Tabela 15) evidenciou a dificuldade
dos modelos GNN em capturar eventos de alta frequéncia. Esta limitacao é inerente a
mecanica da convolucao em grafos que, conforme discutido na Segao 4.6, atua como um
filtro passa-baixas. O processo de agregacao, ao atualizar a representagao de um né a
partir de uma média ponderada de seus vizinhos, inerentemente suaviza as caracteristicas
do sinal. Picos e rampas de geragdo, que sao eventos locais e de alta frequéncia, sao
atenuados neste processo, resultando em previsdes mais conservadoras. Este é o equilibrio
da modelagem em grafos: a capacidade de capturar padroes regionais se da ao custo da

fidelidade a eventos locais e transientes.
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6 CONSIDERACOES FINAIS

Este trabalho realizou uma comparacao sistematica entre modelos de previsao
locais (XGBoost) e globais baseados em grafos (GNNs) aplicados a geragao fotovoltaica
no SIN, com o objetivo de investigar como a modelagem das interdependéncias espaciais
entre usinas pode contribuir para a previsibilidade e quantificagdo das incertezas em séries
temporais multi-site.

Os resultados revelaram uma relagdo de compromisso entre acuracia deterministica
e calibracao probabilistica. O modelo local XGBoost apresentou desempenho mais estavel
e previsoes mais bem calibradas em horizontes variados, especialmente em usinas com
caracteristicas operacionais tnicas — como eventos de curtailment ou regimes climéaticos
atipicos. J& as arquiteturas baseadas em grafos (GAT-LSTM e GCN-1D), embora tenham
capturado relagoes espaciais e melhorado a explicacdo da variancia em horizontes de
curtissimo prazo, apresentaram degradacao mais rapida da performance ao longo do tempo
e subestimacao sistematica dos intervalos de incerteza, refletindo desafios ainda abertos
na literatura de modelagem espago-temporal probabilistica.

A principal contribuicao deste estudo esta em integrar conceitos de aprendizado de
maquina, redes complexas e quantificagao de incertezas (UQ) em um framework coerente e
aplicavel ao contexto brasileiro. A utilizacao de uma metodologia de arquétipos — baseada
em meétricas de centralidade e influéncia estrutural — permitiu interpretar os resultados
nao apenas em termos de erro médio, mas também em func¢ao da posicao topologica das
usinas e de sua correlagdo climatica, evidenciando que a incerteza da previsao é em parte
estrutural e espacialmente correlacionada, e nao apenas fruto de ruido estocastico.

Do ponto de vista cientifico, o trabalho contribui ao trazer para o dominio da
previsao solar nacional uma andlise comparativa rigorosa entre abordagens locais e globais
sob a Otica da incerteza preditiva. Ao empregar previsoes quantilicas e métricas de
calibracao como PICP e PINAW, a pesquisa avanca no entendimento de como diferentes
arquiteturas representam a dispersao preditiva, conectando-se diretamente aos desafios
atuais de Uncertainty Quantification em energias renovaveis: distinguir incertezas aleatérias,
epistémicas e estruturais em sistemas de alta variabilidade.

Importa ressaltar que as arquiteturas em grafos foram aqui implementadas de forma
fundamental — com topologia estatica e agregagdo de primeira ordem — como um esforgo
deliberado para isolar o papel da informagao espacial. Essa decisao metodologica foi crucial
para compreender os limites e beneficios reais da conectividade antes da introducgao de
mecanismos mais sofisticados.

Para trabalhos futuros, propoe-se a extensao para filtros espectrais de ordem
superior (Chebyshev, k > 1) e mecanismos de atencao dindmica, capazes de ajustar

as relagdes espaciais e temporais em tempo real. Além disso, a integracao com Redes
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Neurais Informadas pela Fisica (PINNs) e dados operacionais do sistema elétrico — como
perfis de despacho, controle de tensao e condigoes meteoroldgicas de alta resolugao —
representa uma via promissora para incorporar de forma explicita a natureza fisica das
variaveis exdgenas e nao apenas o padrao historico de geracao local. De igual importancia,
a transicao das previsdes quantilicas para abordagens totalmente probabilistica, como
inferéncia Bayesiana ou Deep Ensembles, podera permitir a decomposicao explicita das
incertezas aleatéria e epistémica, fortalecendo o papel da previsao solar como ferramenta
de apoio a operacao e ao planejamento do SIN.

Em sintese, ao combinar fundamentos de séries temporais, aprendizado profundo e
teoria de grafos, este trabalho oferece uma visdo integrada sobre a origem e a estrutura
das incertezas na geracao fotovoltaica, contribuindo para a construcao de modelos mais
interpretaveis, calibrados e tuteis para a gestao segura e eficiente do sistema elétrico

brasileiro.
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APENDICES



APENDICE A - RESULTADOS DETALHADOS E METRICAS POR USINA

Tabela 16 — Resultados do modelo GCN1D no conjunto de teste.

Horizonte Pinball Loss MAE MSE RMSE R?

H+1 2.8044 13.0675 1037.2212 32.1963 0.8738
H+3 5.2657 25.4463 3346.7427 57.8467 0.5877
H+6 7.2134 33.1230 4401.4473 66.3331 0.4739
H+12 9.4119 44.4776  5709.8481 75.5680 0.4813
H-+24 5.7261 23.3264 3620.4336 60.1658 0.6378

Tabela 17 — Resultados do modelo GCN1D para o quantil 0.5 no conjunto de teste.

Horizonte Pinball Loss MAE MSE RMSE R?

H+1 4.9532 9.9063  553.8802 23.5404 0.9326
H+3 9.2064 18.4128 1575.0679 39.6857 0.8060
H+6 12.3528 24.7056 2439.8599 49.3890 0.7084
H+12 15.9471 31.8943 3179.4846 56.3988 0.7112
H+24 9.0317 18.0634 2200.9451 46.9344 0.7798

Tabela 18 — Resultados do modelo GCN1D para o quantil 0.9 no conjunto de teste.

Horizonte Pinball Loss MAE MSE RMSE R?

H+1 2.7181 18.8594 1405.3160 37.4955 0.8290
H+3 4.7595 29.6587 3597.8274 59.9836 0.5568
H+6 6.3240 36.5882  4763.7910 68.9963 0.4306
H+12 8.2468 43.7967 5758.4966 75.9046 0.4769

H+24 5.6353 24.1675 3486.3477 59.0377 0.6512
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Tabela 19 — Métricas de desempenho do GAT _LSTM para o quantil 0.1.

Horizonte Pinball Loss MAE MSE RMSE R?

H+1 3.2991 15.7422 1331.4901  36.49  0.8380
H+3 7.5196 29.9540 4501.1875  67.09  0.4455
H+6 12.1564 43.8447 7609.0098  87.25  0.0905
H+12 17.9105 57.0348 8681.8252  93.19  0.2113
H+-24 5.0644 28.8002 4056.9126  63.71  0.5941

Tabela 20 — Métricas de desempenho do GAT_LSTM para o quantil 0.5 (Mediana).

Horizonte Pinball Loss MAE MSE RMSE R?

H+1 6.0241 12.0482 867.2909  29.46  0.8945
H+3 12.8022 25.6044 2936.9878  54.17  0.6382
H+6 18.3426 36.6852 4295.4448  65.57  0.4866
H+12 23.9936 47.9872  5479.6895  74.00  0.5022
H-+24 8.2591 16.5182 2316.4758  48.13  0.7682

Tabela 21 — Métricas de desempenho do GAT _LSTM para o quantil 0.9.

Horizonte Pinball Loss MAE MSE RMSE R?

H+1 3.7688 18.6266 1460.3765  38.21  0.8223
H+3 7.7157 34.5262 4707.4668  68.60  0.4200
H+6 11.7499 45.8079 6929.7617  83.25  0.1717
H+12 14.3510 53.1434 7622.6514  87.34  0.3075
H+-24 5.9373 23.4732 2882.8921  53.72  0.7116

Tabela 22 — Métricas de desempenho do XGBoost para o quantil 0.1 por Arquétipo.

Usina H+1

H+3

H+6 H+12

H+4-24

Pinball Loss

Conj. Castilho 2.2581 2.6422 3.3385 2.6616
1.4598 1.2363 1.1066
0.7800 0.9871

Conj. Floresta
Conj. Lapa

1.0300

1.1142
1.0660

2.4720
1.0727
1.1249
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Tabela 23 — Métricas de desempenho do XGBoost para o quantil 0.5 (Mediana) por
Arquétipo.

Métrica H+1 H+3 H+6 H+12 H-+24
Arquétipo: Comunidade (Conj. Castilho)

RMSE (MW) 14.65 18.61 19.20 16.99  16.09
R? 0.68 049 0.46 0.58 0.62

Arquétipo: N6 Isolado (Conj. Floresta)

RMSE (MW) 7.80 805 8.03 8.66 8.59

R? 0.29 0.24 0.25 0.13 0.14

Arquétipo: Hub (Conj. Lapa)

RMSE (MW) 7.19 770 7.72  7.93 7.33

R? 0.30 0.20 0.20 0.15 0.28

Tabela 24 — Métricas de desempenho do XGBoost para o quantil 0.9 por Arquétipo.

Usina H+1 H+3 H+6 H-+12 H-+-24
Pinball Loss

Conj. Castilho 2.0942 2.6863 3.0945 2.9556 2.4149
Conj. Floresta 1.1158 1.2781 1.2012 1.0978 1.0966
Conj. Lapa 1.0136 1.0602 1.0843 1.1003 1.0874
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Tabela 25 — Métricas de incerteza por usina no modelo GAT LSTM, ordenadas por PICP.

Usina PICP (%) PINAW Usina PICP (%) PINAW
Sol do Sertao 48.82 0.06 Banabuiu 66.90 0.07
Serra do Mel C 49.76 0.06 Luzia 70.09 0.14
Sol do Cerrado 50.12 0.12 Francisco Sa 70.33 0.19
Belmonte 51.18 0.09 Calcério 71.04 0.06
Castilho 52.25 0.09 Pedranopolis 73.52 0.17
Janauba 52.72 0.11 Lavras 74.23 0.10
Ciranda 53.90 0.11 Jaiba 4 Dist 75.41 0.17
Futura 54.85 0.10 Dracena 75.77 0.20
Rio Alto 56.26 0.12 Floresta 76.00 0.14
Paracatu 56.62 0.17 Juazeiro Solar 77.07 0.15
Helio Valgas 56.74 0.16 Sol do Piaui 77.54 0.24
Lar do Sol 56.97 0.16 Horizonte T77.78 0.15
Pirapora 2 56.97 0.18 Pitombeira 78.96 0.17
Guaimbé 57.09 0.11 Lapa 79.20 0.19
Sao Gongalo 59.57 0.12 S. Solar Barreiras 80.38 0.14
[tuverava 61.58 0.11 Serra do Mato 80.50 0.14
Pereira Barreto 62.41 0.10 Sol do Futuro 80.85 0.16
S. Basilio (Solar) 64.42 0.16 Bom Jesus 81.09 0.20
FV SJP 64.66 0.13 Tacaratu (Solar) 81.56 1.08
Nova Olinda 64.78 0.18 Assu V 81.91 0.26
Juazeiro Solar 2 65.60 0.14 Sao Pedro 82.03 0.26
Boa Hora 66.08 0.11 BJL 85.11 0.28
Araxa 66.08 0.15 Flor de Mandacaru 86.64 3.58
Alex 66.08 0.07

Tabela 26 — Métricas de incerteza por usina no modelo
GCN-1D, ordenadas por PICP.

Usina PICP (%) PINAW
Sol do Piaui 48.46 0.13
Lapa 50.24 0.08
Boa Hora 51.18 0.07
Araxa 51.18 0.12

Pedranopolis 52.01 0.13
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Tabela 26 — — continuacao
Usina PICP (%) PINAW
Dracena 53.31 0.15
Bom Jesus 04.14 0.09
Francisco S& 54.61 0.12
Guaimbé 56.50 0.11
Calcario 56.74 0.05
Sao Pedro 56.86 0.10
BJL 57.45 0.12
Horizonte 57.80 0.08
Jaiba 4 Dist 57.80 0.10
Sertao Solar Barreiras 08.27 0.11
Flor de Mandacaru 58.63 3.13
Castilho 61.58 0.13
Paracatu 61.94 0.12
Pereira Barreto 62.17 0.12
Floresta 62.17 0.11
Assa V 63.12 0.15
Banabuiu 63.83 0.06
Juazeiro Solar 63.95 0.11
FV SJP 65.01 0.08
[tuverava 65.13 0.09
Alex 66.43 0.08
Nova Olinda 66.78 0.09
Juazeiro Solar 2 66.78 0.12
Pirapora 2 68.79 0.13
S. Basilio (Solar) 69.62 0.12
Ciranda 70.33 0.10
Tacaratu (Solar) 71.04 0.85
Luzia 71.28 0.11
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Tabela 26 — — continuacao
Usina PICP (%) PINAW
Pitombeira 71.39 0.11
Rio Alto 72.46 0.11
Serra do Mato 73.17 0.14
Serra do Mel C 73.52 0.11
Lar do Sol 76.00 0.12
Belmonte 77.07 0.12
Sol do Sertao 77.30 0.11
Helio Valgas 77.42 0.12
Sol do Cerrado 77.66 0.13
Sol do Futuro 79.31 0.16
Janauba 83.57 0.13
Futura 84.28 0.13
Sao Gongalo 84.75 0.12
Lavras 87.71 0.14
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