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RESUMO

CARVALHO, Pedro L. F. Previsão de incertezas em séries temporais de geração
de energia fotovoltaica. 2025. 101 p. Trabalho de Conclusão de Curso - Escola de
Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2025.

O avanço da energia fotovoltaica na matriz energética brasileira impõe desafios à operação
do Sistema Interligado Nacional (SIN) devido à sua natureza intermitente. Este trabalho
aborda a previsão de incertezas na geração solar, propondo uma comparação sistemática
entre modelos de aprendizado de máquina locais e globais. A metodologia investiga a
hipótese de que a modelagem das interdependências espaciais entre usinas, representadas
como um grafo, melhora a previsibilidade e a quantificação das incertezas. Foram utilizados
dados de geração de 47 usinas, fornecidos pelo Operador Nacional do Sistema (ONS),
e dados climáticos da NASA Power API. Como linha de base, foi implementado um
modelo local robusto, o XGBoost, treinado individualmente para usinas-arquétipo(grupos
de usinas com características estruturais e de conectividade similares). Em contrapartida,
foram desenvolvidos modelos espaço-temporais baseados em Graph Neural Networks
(GNNs), especificamente as arquiteturas Graph Attention Network-Long Short Term
Memory(GAT-LSTM) e Graph Convolutional Network - 1 Dimension(GCN-1D), que
processam simultaneamente todo o conjunto de usinas. Todos os modelos foram treinados
com a função de perda pinball para gerar previsões quantílicas (0.1, 0.5 e 0.9), permitindo
a construção de intervalos de predição e a análise das incertezas associadas. Os resultados
demonstram que, embora os modelos locais apresentem boa aderência a eventos específicos,
as abordagens baseadas em grafos são capazes de capturar parcialmente as dinâmicas
de geração locais, oferecendo uma visão geral para a gestão do portfólio de geração e
contribuindo para futuros estudos da segurança energética do sistema.

Previsão de energia fotovoltaica. Séries temporais. Incerteza. Redes Neurais
em Grafos. XGBoost. Modelagem espaço-temporal.





Abstract

CARVALHO, Pedro L. F. Undergraduate Thesis. 2025. 101 f.

The expansion of photovoltaic energy in the Brazilian energy matrix poses challenges to
the operation of the National Interconnected System (SIN) due to its intermittent nature.
This work addresses uncertainty forecasting in solar power generation by proposing a
systematic comparison between local and global machine learning models. The
methodology investigates the hypothesis that modeling spatial interdependencies between
power plants, represented as a graph, improves predictability and uncertainty
quantification. Generation data from 47 power plants, provided by the National System
Operator (ONS), and climate data from the NASA Power API were utilized. As a baseline,
a robust local model, XGBoost, was implemented and trained individually for archetype
plants(groups of power plants with similar structural and connectivity characteristics). In
contrast, spatio-temporal models based on Graph Neural Networks (GNNs) were
developed, specifically the GAT-LSTM and GCN-1D architectures, which simultaneously
process the entire set of plants. All models were trained with the pinball loss function to
generate quantile forecasts (0.1, 0.5, and 0.9), enabling the construction of prediction
intervals and the analysis of associated uncertainties. The results demonstrate that while
local models show good adherence to specific events, graph-based approaches are capable
of partially capturing complex spatial dynamics. This offers a comprehensive view for
generation portfolio management and contributes to the energy security of the system.

Photovoltaic energy forecasting. Time series. Uncertainty. Graph Neural
Networks. XGBoost. Spatio-temporal modeling.

Undergraduate Thesis - Escola de Engenharia de São Carlos, Universidade de São Paulo,
São Carlos, 2025.
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1 INTRODUÇÃO

1.1 Contextualização

O crescimento da energia solar na matriz energética brasileira impõe novos desafios
ao planejamento e à operação do Sistema Interligado Nacional (SIN). Consequentemente,
são necessárias adequações na infraestrutura de transmissão e na capacidade de controle
operacional do sistema, devido às características próprias da geração solar, variabilidade da
geração e caráter não despachável, conforme destacado no Plano da Operação Energética
2023–2027 do Operador Nacional do Sistema (ONS) (ONS, 2023).

Além disso, a intermitência da geração fotovoltaica exige maior capacidade de
antecipação e controle. O mesmo documento ressalta que aspectos como o controle de
tensão e a manutenção da segurança operacional do sistema são diretamente afetados pela
natureza variável da geração, um desafio intensificado pela crescente integração de fontes
não despacháveis ao SIN.

Diante desse cenário, é necessário desenvolver modelos preditivos das incertezas da
geração fotovoltaica visando: a segurança energética, confiabilidade dos modelos e incertezas
quantificáveis. Tendo em vista as dinâmicas de geração em comum das usinas, vide padrão
de geração físico local, a incerteza depende da interação de variáveis desconhecidas entre as
usinas vizinhas; ou seja, ela é correlacionada com a incerteza de suas vizinhas, um aspecto
que modelos de múltiplos nós, como os baseados em grafos, são mais aptos a capturar.

Este estudo se propõe, portanto, a analisar a dinâmica da geração fotovoltaica e a
desenvolver ferramentas de previsão de incerteza que considerem não apenas o comporta-
mento individual das usinas, mas também suas interdependências espaciais.

As hipóteses consideradas neste trabalho são de que a conexão das usinas em grafos
pode trazer representações estruturais do caráter operacional e de regimes climáticos
similares, o que levaria a uma melhor previsão da geração solar a nível regional — as
regressões feitas nos grafos acontecem em todos as suas usinas, o que permite predizer
todo um conjunto de usinas com um único modelo.

Assim, sob a perspectiva de grafos, as usinas fotovoltaicas são representadas como
nós, aos quais se associam dados horários de geração e informações climáticas. Esses
nós podem ser conectados com base em critérios de proximidade geográfica entre as
usinas, permitindo investigar como a estrutura espaço-temporal da rede influencia na
previsibilidade da geração.

A modelagem espaço-temporal do problema também encontra respaldo nas preocu-
pações globais com as mudanças climáticas - o Intergovernmental Panel on Climate Change
(IPCC) destaca que a variabilidade climática crescente afetará diretamente os sistemas de
energia de baixo carbono, inclusive a previsibilidade da geração renovável. Além disso, a
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transição para um paradigma de sistema de eletricidade digitalizável e controlável deve
facilitar drásticas mudanças na segurança da oferta, levando as formas tradicionais de
redundâncias dos ativos para um novo paradigma de controle inteligente. (IPCC, 2022).

A previsão da geração solar é fortemente associada a fatores climáticos — como
a irradiância solar — e, por isso, o uso de variáveis exógenas climáticas é comum na
literatura. Nesse contexto, o presente estudo aprofunda essa linha de pesquisa ao empregar
modelos avançados que não apenas utilizam variáveis climáticas exógenas, mas as integram
em uma perspectiva espaço-temporal, notadamente através de redes neurais em grafos.

Para contextualizar as contribuições deste trabalho e suas abordagens, a próxima
seção apresenta um panorama dos estudos relevantes na literatura.

1.2 Justificativa

Apesar dos avanços na previsão de séries temporais, a análise da literatura revela
que a abordagem predominante, tanto acadêmica quanto na prática industrial, foca em
modelos independentes para cada usina. Modelos de alta performance, como o XGBoost,
uma implementação otimizada para o algoritmo de árvore de decisão com aumento de
gradiente (CHEN; GUESTRIN, 2016), frequentemente mantêm a premissa de tratar cada
ativo como um sistema isolado. Embora eficaz para a acurácia local, esta abordagem
ignora as dinâmicas compartilhadas de geração e impõe desafios operacionais significativos,
como a complexa gestão de um portfólio crescente de modelos e a incapacidade de prover
estimativas para novos ativos sem dados históricos.

Neste contexto, arquiteturas como Graph Neural Network(GNN) e Graph Convolu-
tional Network(GCN) surgem como uma alternativa promissora, oferecendo um referencial
unificado e escalável com potencial de generalização indutiva, i.e., aplicável em usinas que
não foram utilizadas no treinamento de modelos de aprendizado. Contudo, apesar de seu
potencial teórico, ainda carecem de comparações diretas com referências de base locais
robustas sob condições equivalentes.

Essa carência é particularmente acentuada no contexto do SIN, um cenário complexo,
de escala continental e diversidade climática, cuja exploração com tais técnicas ainda é
incipiente.

É precisamente para preencher essa dupla lacuna — operacional e acadêmica —
que este trabalho se justifica. Ele propõe uma comparação sistemática entre as duas
frentes de modelagem. Ao confrontar o desempenho de um modelo local robusto com o de
arquiteturas globais baseadas em grafos, busca-se oferecer um entendimento mais claro
sobre as bases teóricas do problema e as compensações práticas de cada abordagem no
contexto brasileiro.

Para guiar esta investigação, o trabalho parte da hipótese fundamental de que a
modelagem explícita das interdependências espaciais entre as usinas fotovoltaicas, por
meio de uma representação em grafo, oferece ganhos tanto na acurácia preditiva quanto na
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qualidade da quantificação de incerteza, quando comparada a modelos puramente locais.
Essa melhoria proposta se desdobra em duas dimensões principais. No que tange à

previsibilidade, postula-se que a informação contextual dos vizinhos, propagada através do
grafo, permite aos modelos capturar padrões climáticos e operacionais regionais, resultando
em uma maior capacidade de explicar a variância da geração (maior R2), especialmente
em horizontes de previsão de curtíssimo prazo.

Adicionalmente, no que se refere à incerteza, a hipótese é de que a modelagem
conjunta do sistema de usinas permite uma melhor caracterização da incerteza espacial-
mente correlacionada, levando à construção de intervalos de predição mais informativos e
adequados para a gestão de portfólio.

1.3 Objetivos

Para testar as hipóteses apresentadas e atender à justificativa do estudo, o trabalho
foi estruturado em torno dos seguintes objetivos específicos:

a) Coletar e realizar uma análise exploratória dos dados de geração fotovoltaica da
ONS e de dados climáticos provenientes da NASA Power API;

b) Definir o cenário de análise, compreender o comportamento temporal e espacial
das usinas e identificar relações estruturais entre elas;

c) Caracterizar o grafo das usinas e entender como a correlação espacial e a
variabilidade local se relacionam com a geração de energia solar;

d) Aplicar os fundamentos da modelagem clássica de séries temporais, utilizando
modelos SARIMA e a análise de resíduos (incluindo decomposições em compo-
nentes brancos e não brancos), para investigar a dinâmica temporal das usinas
e explorar relações de dependência e informação mútua entre os nós do grafo;

e) Estudar e implementar arquiteturas de aprendizado de máquina capazes de
modelar as dependências espaço-temporais da geração solar, incluindo modelos
baseados em gradiente - Extreme Gradient Boosting (XGBoost) e redes em
grafos (GAT-LSTM e GCN1D). Avaliar o potencial dessas arquiteturas para
representar interações entre múltiplas usinas de geração solar;

f) Implementar e comparar o desempenho dos modelos em diferentes horizontes de
previsão (Hora+1, Hora+3, Hora+6, Hora+12 e Hora+24), utilizando métricas
de erro e calibração;

g) Avaliar tanto a acurácia das previsões dos quantis, quanto a estabilidade dos
modelos sob diferentes escalas temporais;

h) Estimar e comparar as incertezas associadas às previsões por meio de regressões
quantílicas (função de perda pinball para os quantis 0.1, 0.5 e 0.9) e da análise
dos resíduos dos modelos;
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i) Discutir a origem dessas incertezas, relacionando-as à variabilidade observada
no conjunto de testes e às limitações de cada abordagem, com o intuito de
compreender melhor o papel da incerteza nas previsões de de vários nós.

1.4 Organização do trabalho

O presente trabalho está estruturado em seis capítulos, organizados de forma a
conduzir o leitor desde a contextualização do problema até a análise dos resultados obtidos.

No capítulo 1, são apresentados o contexto geral da pesquisa, a motivação, os
objetivos e a justificativa do estudo, bem como a estrutura do trabalho.

O capítulo 2 aborda os trabalhos relacionados, discutindo os principais avanços na
previsão da geração fotovoltaica, com ênfase em abordagens espaço-temporais, técnicas
de aprendizado de máquina e métodos recentes de quantificação de incertezas, incluindo
regressões quantílicas e redes neurais em grafos.

O capítulo 3 descreve os conjuntos de dados utilizados e as etapas de pré-processamento,
incluindo a caracterização das usinas fotovoltaicas, o tratamento de séries temporais e a
construção das estruturas em grafo que representam as relações espaciais entre as usinas.

O capítulo 4 apresenta a metodologia desenvolvida, detalhando os modelos em-
pregados — estatísticos, de aprendizado de máquina e de aprendizado profundo —, a
formulação das funções de perda quantílica, os critérios de avaliação e a estratégia de
experimentação adotada.

No capítulo 5, são expostos e discutidos os resultados obtidos, com foco na análise
comparativa entre os modelos, no comportamento dos resíduos, na calibração das previsões
e na interpretação das incertezas associadas.

Por fim, o Capítulo 6 sintetiza as conclusões do trabalho, destacando as principais
contribuições e limitações encontradas, além de propor direções para estudos futuros
voltados ao aprimoramento da modelagem de incertezas em sistemas de geração solar de
várias usinas.
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2 TRABALHOS RELACIONADOS

A previsão da geração de energia solar é um problema consolidado na literatura da
engenharia elétrica e em áreas correlatas que lidam com séries temporais. Com a crescente
integração de fontes intermitentes, a criação e manutenção de modelos preditivos robustos
tornou-se uma necessidade fundamental para a segurança e a estabilidade da operação do
sistema energético.

A escolha dos algoritmos de estudo dependem de qual otimização e escala de estudo
é feita, de modo que os critérios de escolha dos algoritmos devem ser definidos com base
no escopo de análise e viabilidade prática em relação aos dados disponíveis.

Assim, a literatura existente pode ser categorizada por múltiplas dimensões, como
o número de pontos de previsão, o horizonte temporal e as variáveis exógenas utilizadas.
A análise pode focar em um único local ou em múltiplas usinas, embora a acurácia dos
modelos tenda a diminuir à medida que a janela de predição se estende.

Com o intuito de garantir a robustez e modelagem física dos modelos, fatores como
irradiância e temperatura são utilizados, geralmente obtidos de dados públicos, satélites
ou previsões numéricas do tempo (NWP), sendo cruciais para o desempenho dos modelos
(SOBRI; KOOHI-KAMALI; RAHIM, 2018).

Para além das variáveis escolhidas, as quais permitem a modelagem física do
problema, tem-se de compreender a evolução dos métodos de análise. As abordagens
metodológicas refletem uma clara evolução em termos de robustez, acurácia e interpretabi-
lidade. Modelos estatísticos clássicos como a metodologia ARIMA(Média Móvel Integrada
Autoregressiva) proposta por Box e Jenkins (BOX; JENKINS, 1970), são frequentemente
o ponto de partida, mas demonstram limitações ao lidar com a não-linearidade inerente
aos sistemas de geração de energia.

Essa limitação impulsionou a pesquisa em direção ao estudo das dependências
temporais, utilizando modelos de redes neurais recorrentes. Arquiteturas como Long Short-
Term Memory(LSTM) (HOCHREITER; SCHMIDHUBER, 1997) e Gated Recurrent
Unit(GRU), uma variação mais simples computacionalmente proposta por Cho et al.(CHO
et al., 2014), demonstraram grande potencial para capturar dependências de longo prazo.
Embora arquiteturas como as LSTMs tenham demonstrado grande potencial para capturar
dependências temporais, elas apresentam seus próprios desafios, como a necessidade de
grandes volumes de dados e a alta sensibilidade ao ajuste arquitetural, que pode levar ao
sobreajuste (SOBRI; KOOHI-KAMALI; RAHIM, 2018)

Posteriormente, o aprendizado de máquina, especialmente com algoritmos de gradi-
ent boosting como o XGBoost (CHEN; GUESTRIN, 2016), superou parte dessas barreiras,
capturando com maior precisão as relações complexas entre as variáveis.

Contudo, mesmo em sua alta performance, esses modelos de aprendizado de má-
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quina frequentemente mantêm a premissa de tratar cada usina como um sistema isolado,
ignorando a possibilidade de modelar usinas em conjunto, as quais podem compartilhar
dinâmicas de geração, fenômenos meteorológicos e perfis operacionais, em função das suas
proximidades geográficas e da natureza de funcionamento.

Nesse contexto, GNNs e GCNs surgem como o estado da arte para problemas
espaço-temporais (WU et al., 2021). Seu uso em séries temporais já foi consolidado em
revisões recentes, as quais se tornaram padrão para modelar a influência mútua entre
entidades conectadas em uma rede (YE et al., 2020) (SAHILI; AWAD, 2023). No campo de
aprendizado de máquina e energia, a literatura aponta as GNNs como uma das abordagens
mais promissoras para lidar com a interdependência entre múltiplos pontos de geração
(YANG et al., 2025) (AHMED; MOZO; KARAMCHANDANI, 2023) .

Apesar de seu potencial, mesmo estas arquiteturas avançadas enfrentam desafios,
como a disponibilidade limitada de dados de séries temporais para pré-treinamento em
larga escala, o que pode dificultar a generalização (HU et al., 2020).

A análise da literatura revela, portanto, que apesar dos avanços, a maioria dos
trabalhos ainda trata a previsão de cada usina de forma independente. São raras as
comparações diretas entre modelos locais de alta performance e abordagens espaço-
temporais sob condições equivalentes .

Essa carência é acentuada no contexto SIN, um cenário complexo, de escala conti-
nental e diversidade climática, cuja exploração com tais técnicas ainda é incipiente (SILVA
et al., 2020).

Visando endereçar essa questão, este trabalho propõe uma comparação sistemática
entre as duas frentes. De um lado, estabelece-se uma referência base com regressões de
XGBoost aplicadas a três usinas-arquétipo, definidos através de métricas de redes comple-
xas, representativas de diferentes regimes climáticos e dinâmicas entre usinas. De outro,
empregam-se as arquiteturas GAT-LSTM e GCN-1D que consideram simultaneamente
todo o conjunto de usinas como um sistema interdependente.

A partir dos resultados das previsões para os cenários de hora futura, para entender
a sensibilidade desses estimadores estudam-se as incertezas dos regressores no conjunto de
testes, de modo a testar a confiabilidade dos resultados obtidos.

O objetivo é, portanto, oferecer um comparativo sobre métodos de previsão da
geração solar em solo brasileiro, buscando compreender as bases teóricas do problema e
entender as incertezas associadas.

Em síntese, a literatura aponta para as GNNs como a fronteira da pesquisa para pro-
blemas espaço-temporais, mas destaca a carência de estudos comparativos, especialmente
no setor elétrico brasileiro.

Mais recentemente, a intersecção entre GNNs e quantificação de incertezas surgiu
como uma fronteira ativa de pesquisa. O referencial teórico dessa segunda, que busca ir além
das previsões pontuais para fornecer estimativas com confiabilidade, está bem estabelecido
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em obras como a de (IZBICKI, 2025). A aplicação desses princípios às GNNs investiga
como decompor a incerteza preditiva em suas fontes fundamentais: a incerteza aleatória,
inerente ao ruído nos dados (como variações na irradiância), e a incerteza epistêmica, que
reflete as limitações e o conhecimento do próprio modelo (MUNIKOTI et al., 2023).

As abordagens para capturar essas incertezas em GNNs são diversas, incluindo
métodos Bayesianos, deep ensembles (LAKSHMINARAYANAN; PRITZEL; BLUNDELL,
2017) e redes determinísticas projetadas para serem cientes das diferenças aos dados de
treino (LIU et al., 2020). Contudo, um desafio central, destacado em benchmarks recentes,
é a dificuldade prática de desentrelaçar as estimativas de incerteza aleatória e epistêmica,
que frequentemente se mostram altamente correlacionadas na prática (MUCSÁNYI;
KIRCHHOF; OH, 2024).

Dado que a aplicação rigorosa dessas técnicas avançadas dessa interseçcão para o
setor elétrico ainda é um campo em aberto e de alta complexidade, este trabalho adota
uma abordagem fundamental e pragmática. Utiliza-se a regressão quantílica — um dos
métodos basilares da quantificação de incertezas, conforme discutido em (IZBICKI, 2025,
Capítulo 5) — como um primeiro passo essencial para a sua quantificação completa. Essa
escolha estabelece uma referência inicial sobre a qual futuras pesquisas de decomposição
de incerteza podem ser construídas.

Com essa perspectiva teórica estabelecida, o próximo capítulo se dedicará à análise
exploratória dos dados específicos deste trabalho, detalhando o processo de tratamento e a
construção da estrutura em grafo que servirá de base para os modelos propostos.



3 ANÁLISE EXPLORATÓRIA DE DADOS

Este capítulo apresenta a Análise Exploratória de Dados (AED) utilizada para
definir o escopo do trabalho e fundamentar a metodologia subsequente. O processo inicia-se
com a descrição e o pré-processamento das fontes de dados (ONS e NASA), assim, obtém-se
a definição do conjunto de 47 usinas e da janela temporal que compõem o cenário de
análise.

A seguir, a estrutura espacial da rede é investigada através da modelagem em grafos,
com o cálculo de métricas de redes complexas para a identificação de arquétipos de usinas.

Por fim, a análise de séries temporais com modelos SARIMA é empregada para
diagnosticar a dinâmica individual das usinas e testar a hipótese de suficiência de modelos
temporais, através da análise de seus resíduos.

3.1 Visão Geral

3.1.1 Dados do Operador Nacional do Sistema(ONS)

Para a construção e validação dos modelos preditivos, foram utilizados dois conjuntos
de dados principais: a geração de energia fotovoltaica por usina, proveniente do ONS, e
dados climáticos obtidos da API da NASA Power. A integração e o pré-processamento
desses dados foram etapas fundamentais para a análise espaço-temporal e a modelagem
subsequente.

O conjunto de dados da geração solar de usinas brasileiras disponibilizado com
atualização mensal pelo ONS, fornece o histórico horário de geração elétrica por usina.
Neste trabalho, foi utilizada a série temporal referente ao ano de 2024, com as seguintes
colunas principais:

• din_instante: timestamp (passo horário);

• id_estado: unidade federativa da usina;

• nom_usina: nome da usina;

• val_geracao: valor da geração (MW).

Durante a etapa de ETC (Extração, Transformação e Carga), foram selecionadas
apenas usinas do tipo fotovoltaica. O dataset original do ONS inclui registros tanto de
usinas centralizadas quanto de microgeração distribuída.

No entanto, a microgeração foi excluída da análise, uma vez que seus registros não
permitem a identificação precisa da localização geográfica (apenas o estado de origem
é informado), o que inviabilizaria o cruzamento com os dados climáticos da NASA e a
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construção da rede de grafos baseada na localização espacial e para a análise das relações
funcionais entre usinas.

Este processo resultou em um conjunto inicial de 64 usinas fotovoltaicas centraliza-
das. A inclusão de dados de microgeração distribuída com georreferenciamento preciso
representaria um avanço significativo, permitindo uma análise mais granular da penetração
de renováveis e dos desafios associados; contudo, a indisponibilidade atual desses dados
em nível nacional com a resolução necessária para este estudo representou uma limitação.

A distribuição geográfica dessas 64 usinas pelo território nacional é apresentada
na Figura 1. Observa-se uma concentração significativa na região Nordeste e em partes
das regiões Sudeste e Centro-Oeste, áreas frequentemente referidas como o cinturão solar,
devido à alta incidência de irradiação solar.

Essa distribuição heterogênea espacial, mas de irradiância forte na região das
usinas no território nacional ressalta a complexidade de modelar a geração em um país de
dimensões continentais e a variabilidade das condições ambientais regionais, reforçando a
necessidade de abordagens que considerem a variabilidade espacial.

A localização exata das usinas selecionadas (latitude e longitude) foi obtida manual-
mente por meio de pesquisas online e cruzamento com bases de dados públicas, utilizando
coordenadas representativas próximas às instalações reais.

3.1.2 Dados Climáticos — NASA Power API

Os dados climáticos foram obtidos via requisições HTTP à API da NASA Power 1,
que disponibiliza séries temporais horárias para aplicações em energia renovável. A grade
espacial tem resolução de 0,5° × 0,5° e cobre todo o território brasileiro.

Para cada usina, foram extraídas as variáveis climáticas correspondentes às suas
coordenadas geográficas mais próximas. A seleção das variáveis considerou sua relevância
para a geração fotovoltaica, com foco na caracterização da irradiância solar e das condições
atmosféricas que afetam diretamente a produção de energia.

As principais variáveis selecionadas foram:

• ALLSKY_SFC_SW_DWN: irradiância solar global na superfície (W/m2), a principal
variável física indicadora da geração fotovoltaica.

• T2M: temperatura do ar a 2 metros (°C), a eficiência dos módulos fotovoltaicos é
inversamente afetada pela temperatura.

• RH2M: umidade relativa a 2 metros (%), incluída pela sua capacidade de influenciar a
formação e dispersão de nuvens, além da atenuação da irradiância por partículas
suspensas na atmosfera.

1 https://power.larc.nasa.gov/data-access-viewer/

https://power.larc.nasa.gov/data-access-viewer/


30

70 65 60 55 50 45 40 35
Longitude (°)

30

25

20

15

10

5

0

5

La
tit

ud
e 

(°
)

Conj. Fotovoltaico Gilbués II 500 kVConj. Futura

Conj. Helio Valgas

Conj. Janaúba
Conj. Sol do Cerrado

Distribuição Geográfica das 64 Usinas Fotovoltaicas Analisadas no Brasil
(Destacando as 5 maiores por Média de Geração)

Outras Usinas
Usinas com maior média de geração

Figura 1 – Distribuição Geográfica das 64 Usinas Fotovoltaicas Analisadas no Brasil, com
destaque para a concentração no "cinturão solar".

• WS10M: velocidade do vento a 10 metros (m/s), considerada como um indicador da
dinâmica atmosférica local e seu impacto na dissipação de calor dos módulos.

• ALLSKY_KT: índice de claridade (adimensional), representa a razão entre a irradiância
real e a irradiância potencial na atmosfera clara, servindo como uma medida da
claridade atmosférica e da presença de nuvens.

A concatenação dos timestamps de ambas as fontes de dados (ONS e NASA) foi um
passo fundamental do pré-processamento, garantindo a correspondência temporal precisa
entre os dados de geração e as condições climáticas.

Após a coleta e a sincronização, todos os dados brutos foram limpos e integrados.
O tratamento de valores ausentes foi realizado em duas etapas. Primeiro, para garantir
que todas as usinas tivessem a mesma quantidade de passos de tempo, os passos horários
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faltantes na geração de energia foram preenchidos com o valor NaN, conforme detalhado
na Seção 3.2. Segundo, para um pequeno subconjunto de usinas com falhas pontuais,
uma estratégia de imputação foi considerada para permitir sua inclusão na análise final.
Este processo resultou em um formato unificado e balanceado, pronto para as etapas de
engenharia de features e modelagem.

Conforme detalhado na seção 3.1.1, os dados de geração horária do ONS e os dados
climáticos horários da API NASA Power foram coletados e preparados.

Na etapa de consolidação, as informações de geração de cada usina fotovoltaica
foram associadas com as variáveis climáticas correspondentes à sua localização geográfica
(utilizando o ponto de grade da NASA mais próximo) e ao respectivo instante de tempo.

Além disso, verificou-se a ausência de dados na geração solar, as usinas identificadas
e a quantidade das entradas ausentes estão disponíveis na próxima subseção. Para garantir
um conjunto de dados balanceado, os passos horários faltantes para cada usina foram
preenchidos com o valor NaN na coluna de geração. Este procedimento assegura que todas
as séries temporais tenham o mesmo comprimento e os mesmos passos de tempo, alinhadas
às observações climáticas por localização geográfica.

Assim, garante-se que cada usina possui a mesma quantidade de passos horários,
sendo esta também igual à quantidade de observações climáticas por ponto de grade.

O dataframe resultante, contém 562.176 observações (registros horários) e 17 colunas
(variáveis). Abrange 64 usinas únicas, cada uma com sua série temporal para o ano de
2024 completo. As principais variáveis presentes no conjunto de dados são:

• Identificação e Tempo:

– din_instante: Timestamp da medição (passo horário).

– id_subsistema: Identificador do subsistema elétrico.

– id_estado: Sigla da unidade federativa da usina.

– nom_tipocombustivel: Tipo de combustível (sempre "Fotovoltaica"neste es-
tudo).

– nom_usina: Nome da usina de geração.

• Geração e Localização da Usina:

– val_geracao: Valor da geração elétrica (MW).

– latitude: Latitude da usina.

– longitude: Longitude da usina.

• Dados de Referência da NASA e Variáveis Climáticas:

– closest_latitude: Latitude do ponto de grade da NASA mais próximo.

– closest_longitude: Longitude do ponto de grade da NASA mais próximo.
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– distance_km: Distância (km) entre a usina e o ponto de grade da NASA.

– location: String combinada das coordenadas do ponto de grade da NASA.

– ALLSKY_SFC_SW_DWN: Irradiância solar global na superfície (W/m2).

– T2M: Temperatura do ar a 2 metros (°C).

– RH2M: Umidade relativa a 2 metros (%).

– WS10M: Velocidade do vento a 10 metros (m/s).

– ALLSKY_KT: Índice de claridade (adimensional).

Este conjunto de dados consolidado será utilizado nas subseções seguintes para uma análise
exploratória detalhada, visando entender os padrões de geração, a influência dos fatores
climáticos e outras características relevantes.

3.2 Cenário de Análise

A etapa de seleção de variáveis e tratamento de dados ausentes teve início com
uma avaliação do conjunto de dados. Esta análise identificou um total de 58.104 valores
omissos. Uma investigação subsequente revelou que a integralidade destes dados faltantes
concentra-se exclusivamente na variável val_geracao.

Considerando que a ausência de dados de geração não se distribui uniformemente,
torna-se relevante analisar a contribuição de cada usina para este total. A Tabela 1 detalha
as usinas fotovoltaicas com registros de geração ausentes e a respectiva quantidade de
ocorrências.

Como detalhado na Tabela 1, constatou-se que 22 das 64 usinas fotovoltaicas do
conjunto de dados apresentam registros ausentes na variável de geração (val_geracao).
O perfil dessa ausência varia consideravelmente, desde o Conjunto Banabuiu, com apenas
72 valores faltantes, até o Conjunto Fotovoltaico Simplice, com 7.824 registros ausentes.

Para compreender os períodos específicos de interrupção no registro desta variável
durante o ano de 2024, procedeu-se a uma investigação individualizada para cada usina
afetada. Esta análise revelou que os valores faltantes ocorrem predominantemente em
blocos contínuos, estendendo-se por múltiplos dias ou meses, comprometendo o registro da
geração solar, conforme apresentado na Tabela 2.

A Tabela 2 detalha os períodos exatos de ausência de dados para cada uma dessas
usinas. Esta informação é fundamental, pois levanta questões metodológicas importantes:
quais usinas devem ser mantidas na análise e qual janela temporal será considerada.

A análise dos períodos de ausência de dados de geração (Tabela 2) revela heteroge-
neidade significativa. Algumas apresentam longos períodos contínuos de falha. No entanto,
a definição da janela de eventos também considera a disponibilidade de variáveis exógenas.

Dados meteorológicos da NASA estão consistentemente disponíveis e validados
apenas até 31 de julho de 2024 para o conjunto de usinas. Após este período, observam-se
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Tabela 1 – Distribuição de dados ausentes da variável val_geracao por usina fotovoltaica.

Nome da Usina Total de Dados Ausentes
Fotov. Simplice 7.824
Jaíba 138 kV 7.488
Fotovoltaico Gilbués II 500 kV 6.288
Três Marias 3 138kV 5.448
Vista Alegre - Janaúba 5.424
Fotovoltaico Barreiras II 500 kV 4.032
Varzea da Palma 3.240
São Gonçalo 2.808
Bom Nome 2.712
Marangatu 2.160
Ribeiro Gonçalves 2.160
Boa Sorte 1.680
Conjunto fotovoltaico Santa Luzia II 500kV 1.392
Jaiba V 1.272
Monte Verde Solar 744
Fotov. Acu III 230KV 720
Fotovoltaico Abaiara 230 kV 720
Arinos 2 500 kV 720
Boa Hora 624
Pitombeira 360
Sol do Piauí 216
Banabuiu 72

valores degenerados (e.g., -999) em variáveis chave como ALLSKY_SFC_SW_DWN e ALLSKY_KT.
Este fenômeno é ilustrado para as usinas Janaúba (Figura 2) e Belmonte (Figura 3). Após
este período, observam-se valores degenerados nas variáveis climáticas (preenchidos com
a flag de erro -999 pela API), o que inviabiliza o uso dessas séries para treinamento
supervisionado a partir de agosto.

A análise dos padrões de falha sugere que a ausência de dados ocorre devido a
problemas técnicos de comunicação ou manutenção dos sensores. Conforme as definições
estabelecidas por (LITTLE; RUBIN, 2019), esse comportamento caracteriza-se predominan-
temente como Missing Completely at Random (MCAR) ou, no mínimo, independente dos
valores de geração não observados, uma vez que não foram identificados vieses sistemáticos
correlacionados à magnitude da geração.

Conforme a documentação da API, o valor -999 indica ausência de medição ou
dados faltantes. Ao verificar os grids com dados climáticos, nota-se que a indisponibilidade
após 31 de julho é homogênea.

Considerando a interseção entre a disponibilidade dos dados de geração das usinas
com menor volume de falhas e o limite de confiabilidade dos dados meteorológicos da
NASA, optou-se por definir a janela de eventos para este estudo como o período de 01
de Janeiro de 2024 a 30 de Junho de 2024. Esta janela busca maximizar a quantidade de
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Figura 2 – Deterioração dos dados horários de irradiância (ALLSKY_SFC_SW_DWN) e índice
de claridade (ALLSKY_KT) para a usina Janaúba.
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Figura 3 – Comportamento similar de deterioração dos dados meteorológicos (ALLSKY_-
SFC_SW_DWN e ALLSKY_KT) observado para a usina Belmonte.
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Tabela 2 – Períodos com dados ausentes da variável val_geracao por usina fotovoltaica.

Nome da Usina Períodos Ausentes (YYYY-MM-DD)
Fotov. Simplice 2024-01-01 a 2024-11-21
Jaíba 138 kV 2024-01-01 a 2024-11-07
Fotovoltaico Gilbués II 500 kV 2024-01-01 a 2024-09-18
Três Marias 3 138kV 2024-01-01 a 2024-08-14
Vista Alegre - Janaúba 2024-01-01 a 2024-08-13
Fotovoltaico Barreiras II 500 kV 2024-01-01 a 2024-06-16
Varzea da Palma 2024-01-01 a 2024-05-14
São Gonçalo 2024-09-06 a 2024-12-31

Bom Nome 2024-01-01 a 2024-04-16;
2024-05-07 a 2024-05-12

Marangatu 2024-01-01 a 2024-02-07;
2024-02-09 a 2024-03-31

Ribeiro Gonçalves 2024-01-01 a 2024-02-07;
2024-02-09 a 2024-03-31

Boa Sorte 2024-01-01 a 2024-03-07;
2024-04-30 a 2024-05-02

Conjunto fotovoltaico Santa Luzia II 500kV 2024-01-01 a 2024-02-07;
2024-02-09 a 2024-02-28

Jaiba V 2024-01-01 a 2024-02-07;
2024-02-09 a 2024-02-23

Monte Verde Solar 2024-01-01 a 2024-01-31
Fotov. Acu III 230KV 2024-01-01 a 2024-01-30
Fotovoltaico Abaiara 230 kV 2024-01-01 a 2024-01-30
Arinos 2 500 kV 2024-01-01 a 2024-01-30
Boa Hora 2024-07-04 a 2024-07-29
Pitombeira 2024-01-01 a 2024-01-15
Sol do Piauí 2024-01-01 a 2024-01-09
Banabuiu 2024-01-01 a 2024-01-03

dados válidos e simultâneos, garantindo uma base íntegra para a modelagem. A seleção
final das usinas será detalhada na próxima subseção.

Definida a janela de eventos (01 de Janeiro a 30 de Junho de 2024), o próximo
passo é a seleção das usinas fotovoltaicas para o conjunto de dados final, visando uma
amostra robusta com dados de geração completos e consistentes.

O processo ocorreu em duas etapas. Primeiramente, identificaram-se 44 usinas com
cobertura temporal completa e sem dados faltantes em val_geracao na janela de análise.

Em uma segunda etapa, reavaliaram-se as usinas descartadas, permitindo a reinclu-
são daquelas com até 10% de dados de geração ausentes dentro da janela de seis meses.
Adotou-se como critério de inclusão a presença de, no máximo, 10% de dados ausentes
na janela de análise. Usinas que ultrapassaram esse limiar de falhas foram descartadas
definitivamente para evitar a introdução de ruído excessivo via métodos de imputação. Este
critério equilibra representatividade e qualidade, permitindo o tratamento de pequenas
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ausências por imputação sem vieses significativos.
Esta abordagem resultou na inclusão de 3 usinas adicionais, consolidando o escopo

final em 47 usinas fotovoltaicas, visando refletir a realidade operacional com interrupções
pontuais, mitigando o impacto de grandes volumes de dados ausentes(Tabela 3).

Tabela 3 – Lista final das 47 usinas fotovoltaicas selecionadas para análise.

Nome da Usina Nome da Usina
Assú V Lar do Sol
Alex Lavras
Araxá Luzia
BJL Nova Olinda
Banabuiu Paracatu
Belmonte Pedranópolis
Boa Hora Pereira Barreto
Bom Jesus Pirapora 2
Calcário Rio Alto
Castilho Serra do Mato
Ciranda Serra do Mel C
Dracena Sertão Solar Barreiras
FV SJP Sol do Cerrado
Floresta Sol do Futuro
Francisco Sá Sol do Sertão
Futura São Basílio (Solar)
Guaimbê São Gonçalo
Helio Valgas São Pedro
Horizonte Tacaratu (Solar)
Ituverava Conjunto Jaiba 4 Dist
Janaúba Flor de Mandacaru
Juazeiro Solar Pitombeira
Juazeiro Solar 2 Sol do Piauí
Lapa

3.3 Análise da estrutura em grafo

A Figura 4 ilustra a topologia espacial da rede. Considerando as 47 usinas seleci-
onadas, uma análise estatística descritiva individual para modelagem de regressão seria
extensiva e dificultaria a análise da influência espaço-temporal.

Por isso, A conectividade foi estabelecida utilizando o algoritmo dos k-vizinhos
mais próximos, uma técnica em aprendizado de máquina para identificar vizinhanças em
espaços métricos (BISHOP, 2006). O valor de k foi definido como k=4 (aproximadamente
10% do total de usinas), uma escolha que busca equilibrar a captura de relações relevantes
e a esparsidade da rede. A metodologia completa para a construção do grafo é detalhada na
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Seção 4.3.2. Visualmente, a rede resultante é globalmente conectada — uma propriedade
importante para a propagação de informação nos modelos GNN.

Para analisar a influência estrutural das usinas fotovoltaicas, este trabalho emprega
conceitos de Redes Complexas (COMIN et al., 2020), uma área de pesquisa do estudo
de grafos e suas estatísticas. Para este estudo, selecionaram-se quatro métricas visando a
melhor compreensão do aspecto espaço-temporal do problema:

• Centralidade de Grau: Número de conexões diretas de um nó v, deg(v). Normali-
zada:

C ′
D(v) = deg(v)

|V | − 1 (3.1)

onde |V | é o número total de nós. Indica o quão conectado é um nó em relação a
sua rede, sendo igual a 0 se for isolado e igual a 1 se for conectado a todos os outros
nós da rede, ou seja, mede a sua atividade local de um nó. Assim, a Centralidade
de Grau é interpretada como uma medida da influência climática local de uma
usina. Um grau elevado sugere que a usina está geograficamente cercada por muitas
outras, aumentando a probabilidade de compartilharem regimes de irradiância e
nebulosidade e, portanto, tornando-a um ponto focal para a análise de correlações
espaciais.

• Centralidade de Intermediação: Frequência com que um nó v está nos caminhos
mais curtos entre outros pares (s, t):

CB(v) =
∑

s ̸=v ̸=t∈V

σst(v)
σst

(3.2)

onde σst é o total de caminhos mais curtos entre s e t, e σst(v) os que passam por
v. No contexto de um grafo não-ponderado como o utilizado neste trabalho, um
"caminho"é uma sequência de nós conectados, e o "caminho mais curto"é aquele com
o menor número de arestas (ou "saltos") entre um nó de partida s e um nó de chegada
t.

Mede a frequência com que um nó atua como intermediário nos caminhos mais curtos
entre outros pares de nós. Nós com alta centralidade de intermediação são, portanto,
cruciais para a coesão e o fluxo de informação ou recursos entre diferentes partes da
rede, atuando como pontes.

• Coeficiente de Aglomeração Local: Conectividade dos vizinhos de um nó v com
kv vizinhos:

CL(v) = 2Ev

kv(kv − 1) (3.3)

onde Ev é o número de arestas entre os kv vizinhos de v. Assim, vizinhos não
conectados entre si tem o coeficiente de aglomeração local nulo, e igual a 1 se todos
os vizinhos de v estão conectados entre si.
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Figura 4 – Visualização geográfica da rede de 47 usinas fotovoltaicas e suas interconexões
baseadas no critério de k-vizinhos mais próximos (k ≈ 4). Embora a escala de
visualização continental possa sugerir a aparência de nós isolados em regiões
de alta densidade (onde múltiplos usinas compartilham coordenadas muito
próximas), a definição algorítmica do grafo via k-vizinhos assegura a conectivi-
dade global, mesmo naqueles nós cujas arestas são visualmente imperceptíveis
devido à proximidade geográfica.
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Trata-se de uma métrica da densidade da vizinhança de um nó, i.e., Um alto
coeficiente pode indicar a presença de uma comunidade de nós, cujos membros, por
estarem densamente conectados, podem apresentar dinâmicas similares entre si.

• PageRank: Influência de um nó vi considerando a importância de seus vizinhos
N (vi):

PR(vi)(t+1) = 1 − d

|V |
+ d

∑
vj∈N (vi)

PR(vj)(t)

deg(vj)
(3.4)

com d sendo o fator de amortecimento (usualmente 0.85).

É uma medida de influência que pode ser analogamente entendida como um voto
de popularidade, onde a importância de um nó é recursivamente definida pela
importância dos nós que se conectam a ele, ou seja, estar conectado a nós já
influentes confere maior PageRank ao nó de interesse. Dessa forma, uma usina com
alto PageRank é considerada estruturalmente influente na rede, podendo ser um nó
central na disseminação de dinâmicas ou na robustez do sistema.

Figura 5 – Distribuições das métricas de centralidade para a rede de 47 usinas solares: (a)
Centralidade de Grau, (b) Centralidade de Intermediação, (c) Coeficiente de
Aglomeração Local e (d) PageRank.
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Para compreender o perfil dessas métricas no conjunto de dados tem-se os histogra-
mas das suas distribuições Figura 5 acima.

Percebe-se que a Centralidade de Grau se concentra predominantemente entre 0,12
e 0,22. A distribuição exibe uma assimetria positiva e um caráter bimodal, com modas em
aproximadamente 0,13 e 0,19; sendo o primeiro modo mais proeminente e o segundo mais
suave.

A assimetria positiva, juntamente com a bimodalidade, sugere que, embora a maioria
das usinas possua um número similar e mais baixo de conexões diretas (primeiro modo),
existe um grupo menor de usinas (segundo modo) que se destaca por possuir um número
consideravelmente maior de conexões, caracterizando-as como potenciais hubs locais com
grande interação direta.

Essa evidência da existência de diferentes papéis topológicos na rede é fundamental,
pois sugere que a influência de uma usina no sistema não é homogênea. Para investigar o
impacto dessas diferentes posições estruturais no desempenho dos modelos de previsão,
definimos formalmente, na Seção 3.5, um conjunto de "usinas-arquétipo’"(como Hub, Nó
Isolado, etc.) para uma análise mais aprofundada.

Já a Centralidade de Intermediação também demonstra uma forte assimetria
positiva, com a maioria dos nós apresentando valores baixos, concentrados em um modo
em torno de 0.05. Isso indica que a maior parte das usinas não atua predominantemente
como intermediária nos fluxos da rede.

Contudo, a presença de dois nós com valores excepcionalmente altos (próximos a
0,5) aponta para a existência de algumas poucas usinas que são cruciais como pontes,
concentrando a função de intermediação e sendo vitais para a conectividade global e o
fluxo eficiente entre diferentes partes do grafo.

O Coeficiente de Aglomeração Local apresenta uma distribuição com curtose média
e um aspecto bimodal suave, com valores predominantemente concentrados em torno de
0,7.

Este valor, relativamente elevado, sugere que a rede possui uma tendência significa-
tiva à formação de comunidades locais, onde as usinas vizinhas a um nó também tendem
a ser vizinhas entre si, indicando vizinhanças densas na estrutura.

A bimodalidade suave observada pode indicar a coexistência de regiões com dife-
rentes níveis de coesão local na rede.

Por fim, o PageRank também apresenta uma distribuição bimodal, com um modo
principal de maior amplitude em torno de 0,020 e um segundo modo menor, porém distinto,
em aproximadamente 0,028. Esta bimodalidade indica uma diferenciação na influência
estrutural das usinas.

A maioria delas possui um nível de influência similar (primeiro modo), enquanto
um grupo restrito de cerca de seis usinas (segundo modo) se destaca com um PageRank
significativamente maior, posicionando-as como candidatas a nós centrais ou hubs de
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influência na rede, importantes para a disseminação de dinâmicas.
A alta curtose associada ao primeiro modo reforça a concentração da maioria das

usinas em torno desse nível de importância basal.
Considerando que realizar uma análise minuciosa de cada uma das usinas é um

trabalho intensivo e extensivo, busca-se definir modelos-padrão de análise das usinas,
auxiliando na seleção de exemplos para análise temporal e na compreensão da relação
entre posição estrutural e geração.

3.4 Análise de séries temporais e estimação dos resíduos

Uma série temporal é qualquer conjunto de observações indexadas temporalmente.
Essas observações podem ocorrer de forma periódica ou irregular, podendo apresentar
dependência entre valores passados, presentes e futuros.

Neste trabalho analisam-se múltiplas séries temporais multivariadas, onde cada
série temporal tem várias variáveis exógenas que afetam a geração de energia solar, como
a temperatura, velocidade do vento e umidade relativa.

As componentes mais comuns na modelagem de séries temporais são: tendência,
sazonalidade, ruído e estacionariedade.

Existe uma tendência quando há uma alteração a longo prazo, seja de forma
crescente ou decrescente da variável observada. E pode ser modelada como uma função
f [t], onde t é o tempo:

yt = f [t] + ϵt, (3.5)

onde yt é a variável observada no tempo t e ϵt é o erro aleatório ou ruído.
A sazonalidade é observada quando a série temporal é afetada por fatores que

ocorrem em intervalos de tempo característicos. Para uma série yt com sazonalidade s,
isso pode ser modelado como:

yt = µt + s[t] + ϵt, (3.6)

onde s(t) representa o efeito sazonal da série no tempo t e µt é a tendência ou média de
longo prazo. A frequência f da sazonalidade é a quantidade de ciclos ou padrões que se
repetem ao longo do tempo.

O ruído é a parte imprevisível da série, associada a flutuações aleatórias que não
seguem padrões definidos. Pode-se modelar o ruído como um processo estocástico, que é
descrito por uma sequência de erros aleatórios ϵt, tal que:

ϵt ∼ N(0, σ2), (3.7)

onde ϵt é o erro no tempo t e σ2 é a variância do ruído.
A estacionariedade da série é uma propriedade que não depende do instante de

tempo no qual foi observada. Para que uma série temporal seja estacionária no sentido
amplo(ou fracamente estacionária), a média, a variância e a covariância da série devem ser
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constantes ao longo do tempo. Logo, a série segue que yt:

E[yt] = µ, Var(yt) = σ2, Cov(yt, yt+h) = γh, (3.8)

onde E[yt] é a esperança (média) de yt, Var(yt) é a variância, e Cov(yt, yt+h) é a covariância
entre yt e yt+h, para qualquer h.

O SARIMA (Seasonal AutoRegressive Integrated Moving Average) é utilizado
para a previsão de séries temporais univariadas, levando em consideração as técnicas que
compõem o seu nome:

• S: Sazonalidade(S);

• AR: Autoregressão(AR);

• I: Integração(I);

• MA: Média Móvel(MA);

A sazonalidade nesse modelo é o número de observações que compõem um ciclo
sazonal, podendo ser qualquer intervalo regular. Já a autoregressão modela o relacionamento
entre o seu valor presente e os valores passados a partir da autocorrelação do sinal. Um
processo AR(p) pode ser expresso como: yt = c + ϕ1yt−1 + · · · + ϕpyt−p + ϵt, onde ϕi são os
coeficientes autorregressivos e ϵt é o termo de erro.

A diferenciação busca capturar a quantidade de diferenciações necessárias para
tornar os dados estacionários, fazendo isso através da aplicação de diferenças sucessivas
nos dados até que a série se torne estacionária, eliminando tendências e sazonalidades.
Além disso, a média móvel utiliza de resíduos de previsões anteriores para a previsão de
valores futuros.

Um processo MA(q) é modelado como: yt = µ + ϵt + θ1ϵt−1 + · · · + θqϵt−q, onde θi

são os coeficientes da média móvel e ϵt são os erros passados.
SARIMA(p, d, q)(P, D, Q)s onde:

• p: ordem da parte autorregressiva (AR);

• d: número de diferenciações para tornar a série estacionária;

• q: ordem da média móvel (MA);

• P, D, Q: ordens sazonais dos componentes AR, I e MA, respectivamente;

Para a escolha do melhor modelo ARIMA, utilizam-se os critérios da metodologia
Box-Jenkins (BOX; JENKINS, 1970), que propõe uma abordagem iterativa baseada na
identificação, estimação e verificação do modelo.

Inicialmente, aplicam-se testes de estacionariedade para definir o número de di-
ferenciações necessárias. Esse número é representado por d (não-sazonal) e D (sazonal),
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conforme a estrutura da série. A verificação pode ser feita visualmente (presença de tendên-
cia ou sazonalidade) ou por testes estatísticos, como o teste de Dickey-Fuller aumentado
(ADF). O ADF é baseado no seguinte modelo:

∆yt = α + βt + γyt−1 +
p∑

i=1
δi∆yt−i + εt (3.9)

Para rejeitar a hipótese nula (γ = 0), que indica que a série é não-estacionária, precisa-se
de valores pequenos do p-valor (normalmente < 0,05).

Funções de autocorrelação (ACF) também auxiliam na identificação da ordem de
diferenciação. A ACF é definida por:

ρk =
∑T

t=k+1(yt − ȳ)(yt−k − ȳ)∑T
t=1(yt − ȳ)2 (3.10)

Os correlogramas da ACF indicam os parâmetros p e q do modelo: um corte abrupto na
PACF sugere um modelo AR(p), enquanto um corte abrupto na ACF sugere um modelo
MA(q).

Como a identificação visual nem sempre é conclusiva, testa-se uma grade de
combinações possíveis. A seleção se baseia em critérios de informação como o Akaike
Information Criteria(AIC) e o Bayesian Information Criteira(BIC), que penalizam a
complexidade do modelo:

AIC = −2 ln(L̂) + 2k (3.11)

BIC = −2 ln(L̂) + k ln(n) (3.12)

em que L̂ é a verossimilhança, k o número de parâmetros, e n o número de observações.
O AIC mede a qualidade preditiva esperada de um modelo, penalizando modelos

mais complexos a fim de reduzir o overfitting, porém esse ajuste de modelos é mais leve do
que o BIC, o que pode fazer com que o AIC aponte para modelos mais complexos. Já o
BIC mede comparativamente os modelos com base na sua verossimilhança, penalizada pela
complexidade, o que tende a escolhas mais conservadoras de modelos, podendo reduzir o
overfitting. Apesar de rigoroso, o BIC assume que um dos modelos é o verdadeiro modelo
e não mede a performance do modelo fora da amostra de treino.

Após a escolha do modelo, avalia-se seu desempenho pelos resíduos. Espera-se
que estes se comportem como ruído branco, ou seja, sem autocorrelação ou estrutura
sistemática. Essa verificação é feita por meio do teste de Ljung-Box e pela inspeção visual
dos correlogramas dos resíduos.

Apesar de sua robustez à baixa quantidade de variáveis exógenas, o SARIMA
apresenta limitações: modela apenas uma sazonalidade por vez, tem baixa adaptabilidade
a eventos abruptos e costuma perder precisão em previsões de longo prazo.
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3.5 Análise funcional

Esta seção aprofunda a análise dos perfis temporais de geração das usinas repre-
sentativas dos arquétipos – Lapa, Floresta e Castilho – e como suas séries interagem com
vizinhas e variáveis climáticas, buscando ligar topologia da rede e padrões funcionais.

Levando em consideração as propriedades das métricas de grafo e sua interpretação,
definem-se três arquétipos de usinas para analisar a hipótese da influência estrutural do
grafo:

• Hub (Lapa): Caracteriza-se por estar entre o 10% de usinas com maior centralidade
de grau e entre o 10% com maior PageRank.

• Nó Isolado (Floresta): Caracteriza-se por estar entre os 10% de usinas com menor
grau de centralidade e entre os 10% de menor PageRank.

• Membro de Comunidade (Castilho): Caracteriza-se por estar entre os 10% de
usinas com maior coeficiente de aglomeração local, mas não estar entre os 10% de
maior centralidade de grau.

A Figura 6 ilustra a atuação desses três nós na rede com base nos PageRanks, que
variam entre 0.018 e 0.030. Observa-se que o Nó Isolado (Floresta) possui um PageRank
consistentemente baixo, mesmo estando conectado à rede.

O Membro de Comunidade (Castilho) apresenta um PageRank intermediário e
se integra a outros nós, refletindo sua participação em um sub-grafo interno com maior
densidade. Por fim, o Hub (Lapa) exibe um PageRank elevado, inserido em sub-grafos
com alta densidade e com conexões a outras usinas de alto PageRank, evidenciando sua
posição central e influente na rede.

Para aprofundar a análise, selecionam-se Lapa, Floresta e Castilho como represen-
tantes de cada arquétipo. A Figura 7 apresenta as distribuições da geração horária (MW)
para estas usinas.

Dada a sazonalidade diurna da geração de energia solar, essas distribuições são
naturalmente bimodais, com um modo forte em torno de zero (correspondente à produção
nula no período noturno) e outro modo representando a geração durante o dia. Cada
uma dessas usinas apresenta um perfil de geração distinto durante a janela de análise,
possivelmente influenciado por padrões operacionais específicos ou por variáveis exógenas
em escala local. A usina Lapa exibe uma distribuição com bimodalidade pronunciada, onde
o modo de geração diurna se concentra próximo a 50 MW, com frequência comparável à
da geração nula. Isso sugere que, durante o período de produção, a usina tende a operar
em um patamar de geração consistente.

Já a usina Floresta apresenta uma distribuição com uma cauda direita mais longa
e um segundo modo mais disperso (achatado) em comparação com Lapa. Isso indica um
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Hub: Lapa

Nó Isolado: Floresta

Comunidade: Castilho

Influência Estrutural (PageRank) e Arquétipos de Usinas na Rede Solar
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Figura 6 – Visualização da rede de usinas solares destacando arquétipos baseados em sua
influência estrutural (PageRank) e conectividade.

perfil de geração com maior variabilidade durante as horas diurnas, onde a energia é
produzida em uma faixa mais ampla (entre 20 MW e 75 MW) com frequências similares,
mas sem um pico de geração tão concentrado quanto Lapa.

Por fim, a usina Castilho tem um perfil de distribuição com uma cauda direita
acentuadamente longa, sugerindo picos de geração horária de maior intensidade. Contudo,
a frequência de ocorrência desses picos de alta intensidade é menor.

O perfil de geração indica que, embora não gere energia de forma intensa continua-
mente, quando o faz, atinge patamares de geração elevados (frequência similar entre 50
MW e 200 MW), mas de forma mais intermitente do que os outros arquétipos.

A Tabela 4 apresenta o sumário estatístico dessas três usinas, detalhando suas
características de geração horária (MW) ao longo do período de análise. É possível verificar
que todas as usinas possuem registros para todos os passos horários e exibem uma geração
efetiva mais concentrada a partir do percentil 75.

Os conjuntos Lapa e Floresta apresentam perfis de geração com estatísticas descri-
tivas mais próximas entre si, enquanto o Castilho se destaca por sua geração mais intensa,
com uma média e desvio padrão significativamente maiores.

Além disso, observa-se que a usina Castilho não apresenta valores nulos em sua
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Figura 7 – Distribuição da geração para as usinas arquétipos - Hub (Lapa), Nó Isolado
(Floresta) e Membro de Comunidade (Castilho). As estatísticas descritivas
apresentadas referem-se à distribuição global da amostra observada na janela de
análise. Ressalta-se que a série temporal bruta de geração solar é inerentemente
não-estacionária devido à forte componente sazonal diária.

Tabela 4 – Estatísticas descritivas comparativas para a geração horária (MW) das usinas
arquétipo ( Lapa, Floresta, Castilho) no período de análise.

Métrica Lapa Floresta Castilho
timestep 4368,00 4368,00 4368,00
Média 12,58 17,96 55,14
Std 19,36 25,15 71,95
Mínimo 0,00 0,00 0,05
1% 0,00 0,00 0,14
5% 0,00 0,00 0,14
10% 0,00 0,00 0,15
25% 0,00 0,00 0,15
50% 0,00 0,44 1,10
75% 23,95 35,28 126,89
90% 48,67 62,77 172,50
95% 52,17 70,34 190,24
99% 56,26 76,63 202,57
Max 65,00 80,04 204,16
Assimetria 1,18 1,09 0,84
Curtose −0,30 −0,34 −0,98
Zeros (%) 54,12 45,76 0,00
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distribuição de geração (0% de zeros), o que é uma particularidade notável. Mesmo
com um valor mínimo de 0.05 MW, seu perfil indica que a geração, quando ocorre, é
predominantemente de alta intensidade para os 25% superiores de sua produção.

Os comportamentos observados nessas três usinas, quando relacionados aos arqué-
tipos definidos, sugerem que os papéis funcionais na rede não têm uma relação direta e
exclusiva com a intensidade de energia gerada em condições normais.

A Figura 6 ilustra a atuação desses três nós na rede com base nos PageRanks, que
variam entre 0.018 e 0.030. Observa-se que o Nó Isolado (Floresta) possui um PageRank
consistentemente baixo, mesmo estando conectado à rede. O Membro de Comunidade (
Castilho) apresenta um PageRank intermediário e se integra a outros nós, refletindo sua
participação em um sub-grafo interno com maior densidade. Por fim, o Hub ( Lapa) exibe
um PageRank elevado, inserido em sub-grafos com alta densidade e com conexões a outras
usinas de alto PageRank, evidenciando sua posição central e influente na rede.

Para aprofundar a análise, selecionam-se os arquétipos Lapa, Floresta e Castilho,
cujas distribuições de geração horária (MW) são apresentadas na Figura 7. A usina Lapa
(Hub) exibe uma distribuição com bimodalidade pronunciada, sugerindo um patamar de
geração consistente em torno de 50 MW durante o período de produção. Em contraste, a
usina Floresta (Nó Isolado) apresenta um perfil mais disperso e com uma cauda direita
mais longa, indicando maior variabilidade durante as horas diurnas (entre 20 MW e
75 MW). Por fim, o perfil da usina Castilho (Comunidade) é marcado por uma cauda
acentuadamente longa, sugerindo picos de geração de alta intensidade, embora menos
frequentes.

Os comportamentos observados nessas três usinas, quando relacionados aos arquéti-
pos definidos, sugerem que os papéis funcionais na rede não possuem uma relação direta e
exclusiva com a intensidade média de energia gerada. A identificação e a caracterização
inicial desses arquétipos fornecem uma base para investigar se diferentes papéis estruturais
se traduzem em comportamentos temporais distintos.

Visando compreender as dinâmicas das usinas, foram realizadas estimações de
modelos SARIMA para séries diferenciadas, considerando a forte sazonalidade diária
presente em todas as séries. Para isso, utilizou-se a biblioteca ‘pmdarima‘ para identificar
parâmetros adequados a cada uma das 47 usinas, empregando o módulo ‘auto_arima‘
para otimização automática. Além disso, os modelos estimados servem como base para
obter os seus resíduos e realizar mais testes estatísticos.

Após as estimações, o teste ADF foi aplicado às séries resultantes para confirmar
sua estacionariedade. Os resultados dessas análises são sumarizados na Tabela 5, que
relaciona a estrutura do grafo com a estacionariedade das séries.
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Tabela 5 – Resumo estatístico por tipo de relação — Estrutura e ADF

Relação Nº Usinas Hops (Média) Hops (Mín) Hops (Máx) ADF

Arquétipo (Comunidade) 1 0,00 0 0 0,0
Arquétipo (Hub) 1 0,00 0 0 0,0
Arquétipo (Isolado) 1 0,00 0 0 0,0
Não Relacionado 9 7,6 2 14 0,0
Viz. Adj. 19 1,00 1 1 0,0
Viz. Func. (Hub) 4 6,00 1 8 0,0
Viz. Func. (Isolado) 4 4,25 2 7 0,0

A Tabela 5 também apresenta o número de hops (saltos entre nós) para diferentes
tipos de relações, como vizinhos de adjacência e nós funcionalmente próximos aos arquétipos.
Um hop representa o caminho mínimo necessário para uma informação atravessar o grafo,
sendo um parâmetro relevante no design de arquiteturas de aprendizado de máquina ao
denotar o campo de percepção de cada nó.

Observa-se que vizinhos de adjacência estão a 1 hop de distância, enquanto os
vizinhos dos arquétipos exibem diferentes números de hops médios conforme sua função
na rede, ilustrando a variabilidade da distância estrutural entre os diferentes grupos de
usinas.

A Tabela 6 apresenta o resumo estatístico dos resíduos dos modelos SARIMA
para cada tipo de relação, utilizando o teste de Ljung-Box, que avalia a presença de
autocorrelação nos resíduos. Essa análise é feita para determinar se os modelos SARIMA
capturaram toda a estrutura temporal ou se ainda há informações não explicadas, as quais
podem ser atribuídas a influências não-temporais ou interações complexas entre as usinas.

Tabela 6 – Resumo estatístico por tipo de relação — Ljung-Box e Resíduos

Relação LB (Média) LB (Mín) LB (Máx) % Res. N/B

Arquétipo (Comunidade) 0,6477 0,6477 0,6477 0,00
Arquétipo (Hub) 0,0053 0,0053 0,0053 100,00
Arquétipo (Isolado) 0,8681 0,8681 0,8681 0,00
Não Relacionado 0,5108 0,0053 0,8681 11,11
Viz. Adj. 0,5014 0,0005 0,9985 15,79
Viz. Func. (Hub) 0,5109 0,1427 0,9169 0,00
Viz. Func. (Isolado) 0,4313 0,1262 0,8388 0,00

As séries temporais foram diferenciadas para remover a sazonalidade diária (24
passos horários), que se mostra muito forte em todas elas. Assim, a maioria das séries
estimadas apresentou ordens típicas como (1,0,1)(1,1,0), com p-valor(que representa a
probabilidade de observar os dados caso a hipótese nula seja verdadeira) do teste de
Ljung-Box > 0.05, o que confirma que os resíduos se assemelham a ruído branco.

No entanto, é importante salientar que as usinas Lapa (Hub), Pereira Barreto
e Jaíba 4 Dist apresentaram p-valor de Ljung-Box < 0.05, indicando que os modelos
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SARIMA não foram capazes de remover completamente a autocorrelação residual nessas
séries.

Essas evidências indicam que existem relações complexas em algumas usinas que
não são plenamente capturadas por modelos de séries temporais clássicos univariados.
Embora as estimações dos modelos SARIMA tenham sido realizadas de maneira compu-
tacionalmente exaustiva, testando diversas combinações de parâmetros, não foi possível
obter resíduos puramente semelhantes a ruído branco para todas as séries, reforçando a
limitação da abordagem clássica para o problema estudado.

Para complementar a análise de interdependência, a Tabela 7 sumariza a Informação
Mútua (MI) entre os diferentes tipos de relação. A Informação Mútua é uma medida da
dependência estatística entre duas variáveis, quantificando a quantidade de informação
compartilhada entre elas.

Diferente da correlação linear, a MI é capaz de capturar relações não-lineares,
indicando o quanto o conhecimento sobre uma variável reduz a incerteza sobre a outra. A
MI entre duas variáveis aleatórias discretas X e Y é definida como:

I(X; Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log
(

p(x, y)
p(x)p(y)

)
(3.13)

onde p(x,y) é a probabilidade de conjunta de X e Y, e p(x) e p(y) são as probabilidades
marginais. Para variáveis contínuas, as somas são substituídas por integrais. Um valor de
MI igual a zero indica independência total entre as variáveis, enquanto valores maiores
indicam uma maior dependência, independentemente da natureza linear ou não linear
dessa relação.

Neste trabalho, para viabilizar o cálculo computacional e capturar robustamente as
não-linearidades, as séries temporais de resíduos foram discretizadas utilizando o método
de quantis (quantile binning) com k = 10 intervalos. Dessa forma, os valores de MI obtidos
expressam a redução de incerteza na unidade de nats (logaritmo natural). Assim, na
Tabela 7, a auto-dependência (MI da usina consigo mesma) foi fixada como referência
unitária (1,0000) para fins de comparação relativa, enquanto os demais valores refletem a
magnitude absoluta calculada pelo estimador.

A partir da Tabela 7, verifica-se que os vizinhos de adjacência e os nós não
relacionados diretamente ainda possuem uma presença de resíduos não-brancos em até 15%
das séries. Isso serve como evidência adicional de que relações mais complexas persistem
nos dados, não sendo passíveis de serem plenamente capturadas por métodos clássicos.

A Tabela 8 sumariza a Informação Mútua (MI) entre os diferentes tipos de re-
lação, fornecendo uma medida de dependência entre as séries de geração das usinas,
independentemente da causalidade.
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Tabela 7 – Resumo estatístico por tipo de relação — Informação Mútua

Tipo de Relação MI (Média) MI (Mín) MI (Máx) % MI Alto (>0.5)

Arquétipo (Comunidade) 1,0000 1,0000 1,0000 100,00
Arquétipo (Hub) 1,0000 1,0000 1,0000 100,00
Arquétipo (Isolado) 1,0000 1,0000 1,0000 100,00
Não Relacionado (Distância) 0,5212 0,4226 0,6919 44,44
Viz. Adj. 0,5823 0,3268 0,8182 78,95
Viz. Func. (Hub) 0,5733 0,3760 0,8182 75,00
Viz. Func. (Isolado) 0,6298 0,4961 0,7265 75,00

As análises dos resultados das Tabelas 5, 6 e 7 revelam sobre a dinâmica da rede:

• A Tabela 6 mostra que, para o Arquétipo Lapa (Hub), os resíduos do SARIMA
persistem como autocorrelacionados (100% de resíduos não-ruído branco e baixo p-
valor LB de 0.0053). Isso indica que, mesmo após a modelagem temporal univariada,
há uma estrutura residual significativa, possivelmente devido à sua posição de hub e
a influências não capturadas pelo modelo SARIMA isolado, mas sim por interações
complexas na rede.

• A Tabela 7, de Informação Mútua, evidencia uma forte dependência entre usinas
com apenas 1 hop de distância (Viz. Adj.), com uma média de MI elevada (0.5823) e
uma alta porcentagem de MI alto (>0.5), corroborando a relevância da proximidade
geográfica.

• Usinas mais distantes, seja funcionalmente (Viz. Func. - Hub e Isolado) ou geografi-
camente (Não Relacionado), ainda podem apresentar uma MI significativa, sugerindo
que interdependências existem mesmo para nós não diretamente adjacentes no grafo
k-NN.

Essas análises fornecem a base empírica para a abordagem de modelagem espaço-
temporal, pois demonstram que a dinâmica de geração de uma usina não é apenas uma
função do seu próprio histórico, mas é influenciada por sua posição estrutural na rede e
pelas interações com seus vizinhos.
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3.6 Engenharia de variáveis

A performance dos modelos preditivos é impactada pela qualidade e pertinência
das variáveis de entrada. A engenharia de features consiste na criação de novas variáveis a
partir dos dados brutos e informações estruturais, visando enriquecer o conjunto de dados
e otimizar a capacidade de aprendizado dos modelos.

Neste trabalho, a estratégia de engenharia de features foi segmentada em duas
abordagens distintas, alinhadas às classes de modelos: uma abordagem extensiva para a
referência XGBoost e outra, mais parcimoniosa, para as arquiteturas baseadas em grafos.

Para o modelo XGBoost, foi desenvolvido um conjunto exaustivo de 84 variáveis.
Sua robusta arquitetura, que incorpora técnicas de gradient boosting e mecanismos de
regularização L1 e L2, permite processar um conjunto de informações e inferir a relevância
de cada feature, mitigando o risco de sobreajuste.

Este conjunto abrangeu as seguintes categorias: climáticas, sazonais, variáveis
defasadas (lags), janelas móveis, interações entre variáveis e métricas de grafo, conforme
detalhado na Tabela 8.

Em contrapartida, para as arquiteturas GAT-LSTM e GCN-1D, optou-se por um
conjunto de features mais conciso. A justificativa para essa decisão é dupla: primeiramente,
o elevado custo computacional associado ao treinamento de GNNs com um número
excessivo de variáveis; e, fundamentalmente, a própria natureza desses modelos.

As GNNs são projetadas para aprender representações das interdependências
espaciais a partir da topologia do grafo e do mecanismo de propagação de mensagens. Dessa
forma, a inclusão explícita de métricas de rede como features de entrada é potencialmente
redundante.

O conjunto de variáveis para os modelos em grafo, detalhado na Tabela 9, focou
em fornecer os dados climáticos, sazonais e de lags de geração essenciais.

Tabela 9 – Features utilizadas nos modelos GCN1D e GAT-LSTM, organizadas por cate-
goria.

Categoria Features

Climáticas ALLSKY_KT, ALLSKY_SFC_SW_DWN, RH2M, WS10M, T2M
Sazonais dayofweek_cos, dayofweek_sin, dayofyear_cos, dayofyear_sin,

hour_cos, hour_sin, month_cos, month_sin
Lags (históri-
cos)

val_geracao_lag_1, val_geracao_lag_2, val_geracao_lag_3, val_-
geracao_lag_6, val_geracao_lag_9, val_geracao_lag_12, val_-
geracao_lag_24, val_geracao_lag_48
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Tabela 8 – Features utilizadas no modelo XGBoost, organizadas por categoria.

Categoria Features

Localização nom_usina, din_instante, latitude, longitude, location, closest_-
latitude, closest_longitude, distance_km

Climáticas ALLSKY_SFC_SW_DWN, T2M, RH2M, WS10M, ALLSKY_KT
Sazonais hour_sin, hour_cos, dayofweek_sin, dayofweek_cos, month_sin,

month_cos, dayofyear_sin, dayofyear_cos
Lags val_geracao_lag_1, val_geracao_lag_2, val_geracao_lag_3, val_-

geracao_lag_6, val_geracao_lag_9, val_geracao_lag_12, val_ge-
racao_lag_24, val_geracao_lag_48, ALLSKY_SFC_SW_DWN_-
lag_1, ALLSKY_SFC_SW_DWN_lag_2, ALLSKY_SFC_SW_-
DWN_lag_6, ALLSKY_SFC_SW_DWN_lag_12, T2M_lag_1,
T2M_lag_2, T2M_lag_6, T2M_lag_12, RH2M_lag_1, RH2M_-
lag_2, RH2M_lag_6, RH2M_lag_12, WS10M_lag_1, WS10M_-
lag_2, WS10M_lag_6, WS10M_lag_12, ALLSKY_KT_lag_1,
ALLSKY_KT_lag_2, ALLSKY_KT_lag_6, ALLSKY_KT_lag_-
12

Janelas móveis val_geracao_rolling_mean12H_cleft, val_geracao_rolling_-
std12H_cleft, val_geracao_rolling_min12H_cleft, val_gera-
cao_rolling_max12H_cleft, val_geracao_rolling_mean24H_cleft,
val_geracao_rolling_std24H_cleft, val_geracao_rolling_min24H_-
cleft, val_geracao_rolling_max24H_cleft, val_geracao_rolling_-
mean48H_cleft, val_geracao_rolling_std48H_cleft, val_gera-
cao_rolling_min48H_cleft, val_geracao_rolling_max48H_cleft,
val_geracao_rolling_mean168H_cleft, val_geracao_rolling_-
std168H_cleft, val_geracao_rolling_min168H_cleft, val_geracao_-
rolling_max168H_cleft, ALLSKY_SFC_SW_DWN_rolling_-
mean6H_cleft, ALLSKY_SFC_SW_DWN_rolling_sum6H_cleft,
ALLSKY_SFC_SW_DWN_rolling_mean12H_cleft, ALLSKY_-
SFC_SW_DWN_rolling_sum12H_cleft

Interações T2M_x_RH2M, ALLSKY_SFC_SW_DWN_x_hour_cos,
WS10M_x_val_geracao_lag_1, val_geracao_rolling_mean12H_-
cleft_x_ALLSKY_KT, val_geracao_lag_1_x_val_geracao_lag_-
24, T2M_lag_1_x_T2M_lag_6

Métricas de
grafo

pagerank, degree_centrality, local_clustering_coefficient, between-
ness_centrality, is_hub, is_isolated_node, is_community_member
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4 METODOLOGIA

A Análise Exploratória de Dados consolidou o conjunto de dados para a modelagem
e forneceu duas linhas de evidência que justificam a abordagem espaço-temporal do
trabalho. Primeiramente, a análise da estrutura em grafo permitiu a identificação de
arquétipos de usinas com base em seu papel topológico (Hub, Comunidade, Nó Isolado),
fornecendo uma base para a avaliação granular dos resultados no Capítulo 5.

Em segundo lugar, a análise da dinâmica das séries revelou a insuficiência de modelos
puramente univariados. Embora a maioria das séries tenha sido adequadamente modelada
por ordens SARIMA, o teste de Ljung-Box indicou a persistência de autocorrelação nos
resíduos de usinas estruturalmente importantes, como o Hub(Lapa), evidenciando uma
complexidade temporal não capturada por completo. Esta observação é corroborada pela
análise de Informação Mútua, que revelou dependências não-lineares significativas entre
usinas adjacentes.

O conjunto desses achados — a complexidade interna de certas séries e a inter-
dependência externa entre elas — constitui a justificativa empírica para a metodologia
detalhada neste capítulo.

Para lidar com essa complexidade, estabelece-se como linha de base o XGBoost,
um modelo amplamente validado na literatura para dados tabulares. Sua robustez deriva
da combinação de técnicas de gradient boosting com mecanismos de regularização L1 e L2,
o que o torna um benchmark de alta performance.

Em contrapartida, serão exploradas duas arquiteturas de grafos, o GAT-LSTM
e o GCN-1D, projetadas para aprender diretamente a partir da estrutura do grafo e da
evolução temporal dos dados.

Para além da previsão pontual, a metodologia visa quantificar a incerteza das
estimativas. Para isso, todos os modelos serão treinados com a função de perda Pinball
Loss para realizar regressão quantílica, permitindo a geração de intervalos de predição.

A seguir, serão detalhados os fundamentos de cada modelo, a construção do grafo,
a função de perda, as métricas de avaliação e a configuração experimental.

4.1 XGBoost

XGBoost é um algoritmo que utiliza árvores de decisão otimizadas para a previsão
da variável alvo em problemas de aprendizado supervisionado, amplamente testado na
comunidade de inteligência artificial nos últimos anos, principalmente em dados tabulares
ou estruturados.

Para explicar o funcionamento do algoritmo, vamos inicialmente dividir o seu
funcionamento em três partes: árvores de decisão, aprendizado de conjuntos e gradient
boosting.
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As árvores de decisão utilizam regras decisórias para dividir as variáveis em folhas
com base no critério de decisão estabelecido.

Com base nas variáveis disponíveis, estima-se o número mínimo de regras para
verificar a probabilidade de fazer uma decisão correta - i.e. prever a decisão adequadamente
com as melhores regras possíveis.

O boosting busca melhorar a previsão dos modelos a partir de agregações de modelos
mais simples ou fracos a fim de obter modelos mais generalizados e robustos. Já para o
gradient boosting essa ideia é preservada, porém utilizando uma função objetivo que tem
o seu erro minimizado através do aprendizado do gradiente da função objetivo.

Nele, o modelo é construído de forma aditiva, onde cada nova árvore fraca é treinada
para predizer os resíduos do modelo combinado das árvores anteriores, seguindo a direção
do gradiente descendente da função de perda.

A ideia do aprendizado de conjunto(ensemble) é de utilizar vários modelos de
aprendizado de máquina para o mesmo conjunto de dados e agregar os seus resultados
para obter um melhor modelo. O XGBoost utiliza de árvores de decisão com gradiente
aumentado para realizar essa agregação dos modelos, essa técnica treina um conjunto de
árvores e a cada iteração utiliza o erro residual da previsão do modelo anterior para o
próximo modelo do conjunto.

Assim, a predição final é uma soma ponderada das previsões das árvores do conjunto.
Isso proporciona uma minimização tanto do viés da previsão quanto do underfitting.

O XGBoost implementa essa técnica com otimizações adicionais: regularização,
paralelização e controle de complexidade das árvores. Dessa forma, o modelo combina
todas as árvores em uma soma ponderada que reduz tanto o viés quanto o underfitting.
Finalmente, o algoritmo realiza a predição da variável alvo por meio de um conjunto de
árvores de decisão. A predição final para a i-ésima amostra é dada por:

ŷi =
K∑

k=1
fk(xi), fk ∈ F (4.1)

onde cada fk representa uma árvore de decisão, e F é o espaço de funções das árvores
possíveis. O treinamento do modelo busca minimizar a seguinte função objetivo:

L(ϕ) =
n∑

i=1
l(yi, ŷ

(t)
i ) +

K∑
k=1

Ω(fk) (4.2)

onde l é a função de perda (por exemplo, erro quadrático), e Ω é o termo de regularização
definido por:

Ω(f) = γT + 1
2λ

T∑
j=1

w2
j + α

T∑
j=1

|wj| (4.3)

com T sendo o número de folhas da árvore, e wj os pesos atribuídos à j-ésima folha, γ

a penalidade da complexidade (ou custo de adicionar uma folha à árvore), λ o termo de
regularização L2 e α o termo de regularização L1. Essa estrutura promove regularização e
controle da complexidade do modelo, contribuindo para evitar overfitting.
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Os principais hiperparâmetros que influenciam o desempenho do XGBoost incluem:

• Taxa de aprendizado (η): define o impacto de cada nova árvore na predição final.
A cada iteração obtém-se diretamente os novos pesos das novas features, de modo
que esse parâmetro diminui os pesos das features de forma conservadora, isto é, cada
árvore corrige o erro anterior de forma mais gradual. Assim, η funciona como um
fator de amortecimento, controlando a agressividade das correções e diminuindo o
risco de overfitting.

• max_depth: controla a profundidade máxima das árvores. Árvores mais profundas
capturam mais complexidade, mas podem superajustar.

• min_child_weight: número mínimo de amostras necessárias em uma folha para
que ela seja dividida. Ajuda a controlar o overfitting.

• gamma (γ): ganho mínimo de perda necessário para realizar uma divisão em uma
árvore, quanto maior o γ, mais conservador será o modelo.

• lambda (λ): parâmetro para a regularização norma L2 nos pesos das features, au-
mentar esse parâmetro acarreta em um aumento da penalização da norma quadrática
desses pesos.

• alpha (α): parâmetro para a regularização norma L1 nos pesos das features, aumentar
esse parâmetro acarreta em um aumento da penalização absoluta desses pesos.

• subsample e colsample_bytree: frações de amostras e variáveis usadas para
construir cada árvore, assim o primeiro evita que o modelo dependa de dados de
treino específicos, o segundo evita que o modelo dependa demais de certas variáveis.

Além de ser eficiente e amplamente adotado, o XGBoost é robusto em uma grande gama
de problemas de aprendizado supervisionado, assim como proporciona uma interpretação
do modelo (e.g., importância das features), o que acrescenta o seu valor em aplicações
práticas.

4.2 LSTM

O método LSTM, introduzido por (HOCHREITER; SCHMIDHUBER, 1997), é uma
arquitetura das redes neurais recorrentes (RNNs) projetada para capturar dependências
de longo prazo em sequências temporais.

Um dos principais desafios das RNNs tradicionais é o problema do desaparecimento
do gradiente, que ocorre durante o treinamento por retropropagação em sequências longas,
dificultando o aprendizado de relações temporais distantes. O LSTM foi criado para
mitigar esse problema, permitindo que informações importantes sejam mantidas por longos
períodos.
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A estrutura do LSTM baseia-se na recorrência, conforme descrito por (HOCHREI-
TER; SCHMIDHUBER, 1997), que ocorre por meio de células conectadas sequencialmente,
em que cada célula recebe a entrada atual xt e a saída anterior ht−1, gerando uma nova
saída ht enquanto atualiza seu estado interno. Essa arquitetura permite à rede adaptar
suas estimativas com base tanto no contexto presente quanto no passado recente.

Assim, a saída oculta ht representa a informação codificada naquele instante,
enquanto que o estado Ct da célula contém as informações de longo prazo, sendo o estado
interno mantido separado da saída oculta.

Na Figura 8, A representa a célula recorrente, xt é o vetor de entrada no tempo t e
ht é a saída estimada. O diagrama mostra como uma única célula se repete ao longo do
tempo, formando uma cadeia que processa as sequências temporais.

Figura 8 – Uma rede neural recorrente é composta por células idênticas e sequenciais. Fonte:
(OLAH, 2015); estrutura baseada em (HOCHREITER; SCHMIDHUBER,
1997).

Diferentemente das RNNs tradicionais, que tem apenas uma célula simples, o LSTM
incorpora múltiplas portas que regulam efetivamente o fluxo de informação.

A célula LSTM possui quatro componentes principais: porta de esquecimento, porta
de entrada, estado da célula e porta de saída. O objetivo dessas portas é controlar quais
informações devem ser esquecidas, armazenadas ou expostas, com base nas entradas e no
histórico.

A Figura 9 ilustra a arquitetura interna da célula LSTM. A linha horizontal superior
representa o fluxo contínuo de memória — chamado de estado da célula (Ct) — que carrega
informações relevantes ao longo da sequência.
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Figura 9 – A célula do LSTM é composta por múltiplas portas que regulam o fluxo de
informação. Fonte: (OLAH, 2015); estrutura baseada em (HOCHREITER;
SCHMIDHUBER, 1997).

A primeira parte da célula é a porta do esquecimento, mostrada na figura 10 abaixo.
Essa porta decide quais informações do estado anterior devem ser descartadas. Ela recebe
como entrada o vetor xt e a saída da célula anterior ht−1, e aplica uma função sigmoide -
destacada pelo bloco em amarelo:

ft = σ(Wf [ht−1, xt] + bf ) (4.4)

Figura 10 – Porta de esquecimento: controla o que deve ser removido do estado de célula
anterior. Fonte: (OLAH, 2015); estrutura baseada em (HOCHREITER; SCH-
MIDHUBER, 1997).

O vetor ft, com valores entre 0 e 1, atua como um filtro que controla o quanto do
estado anterior será preservado.

Em seguida, tem-se a atuação da porta de entrada e a atualização do estado, aqui
o modelo avalia quais novas informações devem ser adicionadas ao estado da célula. Esse
processo ocorre em duas etapas, destacadas na figura abaixo:
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Figura 11 – As portas de entrada e os candidatos de memória colaboram na atualização
do estado interno da célula. Fonte: (OLAH, 2015); estrutura baseada em
(HOCHREITER; SCHMIDHUBER, 1997).

A primeira etapa trata da porta de entrada, destacada na figura como a sigmoide
na esquerda, que determina quais valores serão atualizados a partir da entrada atual xt: e
da saída da célula anterior, ht−1,

it = σ(Wi[ht−1, xt] + bi) (4.5)

Já a segunda etapa, a tangente hiperbólica destacada à direita na figura, tem-se a
geração de candidatos a serem armazenados:

C̃t = tanh(WC [ht−1, xt] + bC) (4.6)

Com esses vetores, o estado da célula é atualizado de modo que parte do estado
anterior é preservada via ft ⊙ Ct−1 e parte é renovada com as novas informações relevantes
it ⊙ C̃t da seguinte forma:

Ct = ft ⊙ Ct−1 + it ⊙ C̃t (4.7)

Figura 12 – Porta de saída: define quais informações da célula serão utilizadas como
saída ht. Fonte: (OLAH, 2015); estrutura baseada em (HOCHREITER; SCH-
MIDHUBER, 1997).
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Assim, o estado atual da célula Ct a ser transmitido através da linha horizontal
superior é calculado com base na memória Ct−1 e da nova seleção de candidatos a terem
informações relevantes.

Por fim, a porta de saída determina quais partes do estado da célula serão usadas
como saída para o próximo tempo, como mostrado na figura abaixo:

Figura 13 – Porta de saída: define quais informações da célula serão utilizadas como
saída ht. Fonte: (OLAH, 2015); estrutura baseada em (HOCHREITER; SCH-
MIDHUBER, 1997).

Primeiro, na sigmoide destacada em amarelo na figura, calcula-se:

ot = σ(Wo[ht−1, xt] + bo) (4.8)

E a saída final da célula ht é obtida través do produto de Hadamard do resultado
da sigmoide anterior com a tangente hiperbólica seletora das informações da célula atual
Ct:

ht = ot ⊙ tanh(Ct) (4.9)

Essa saída ht - memória a curto prazo - é utilizada tanto como output da célula
atual Ct - memória a longo prazo - quanto como entrada para a célula seguinte, mantendo
o encadeamento temporal.

Em suma, o funcionamento do LSTM é feito através das seguintes funções supraci-
tadas:
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ft = σ(Wf [ht−1, xt] + bf ) Porta de esquecimento (2.8)
it = σ(Wi[ht−1, xt] + bi) Porta de entrada (2.9)

C̃t = tanh(WC [ht−1, xt] + bC) Candidatos à memória (2.10)
Ct = ft ⊙ Ct−1 + it ⊙ C̃t Atualização do estado da célula (2.11)
ot = σ(Wo[ht−1, xt] + bo) Porta de saída (2.12)
ht = ot ⊙ tanh(Ct) Saída da célula (2.13)

Com essa estrutura, o LSTM consegue armazenar informações por longos períodos,
aprendendo a ignorar ou reforçar dados conforme necessário para a tarefa objetivo.

Em relação ao seu treinamento, o LSTM não difere significativamente de outras
técnicas de aprendizado de máquina; este aspecto será detalhado na seção dedicada à
função de perda e ao processo de treinamento.

A habilidade do algoritmo em preservar e manipular informações relevantes ao
longo de extensas janelas temporais é fundamental para problemas de previsão no setor
energético, nos quais as variáveis apresentam fortes correlações temporais e padrões sazonais
complexos.

Essa característica permite ao modelo capturar relações de dependência de longo
prazo que métodos tradicionais tendem a ignorar, aumentando a precisão e a robustez das
previsões, conforme demonstrado por (KONG et al., 2019) em cenários reais de previsão
energética.

4.3 Modelos de Aprendizado Profundo em Grafos

Os métodos estudados constituem uma classe de modelos de aprendizado profundo
projetados para processar dados organizados sob a forma de grafos. Diferentemente das
redes neurais tradicionais, que operam majoritariamente sobre dados tabulares ou imagens,
as GNNs exploram explicitamente a estrutura relacional intrínseca aos grafos, em que os
nós representam entidades e as arestas, suas conexões ou relações.

O principal objetivo das GNNs é aprender representações (ou embeddings) dos nós,
das arestas ou do grafo como um todo, preservando tanto a informação estrutural quanto
os atributos associados aos componentes da rede.

Considerando o caráter espaço-temporal do problema tratado neste trabalho, as
arquiteturas baseadas em GNNs têm se destacado como alternativas de ponta para a
modelagem desse tipo de fenômeno, possibilitando capturar a dinâmica entre as usinas a
partir de matrizes de adjacência, sejam elas estáticas ou dinâmicas (YU; YIN; ZHU, 2018;
SONG et al., 2020; WU et al., 2021).

Assim, torna-se viável investigar como as correlações entre as usinas evoluem ao
longo do tempo, inclusive levando-se em conta variáveis exógenas.
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Para simplificar a construção das representações do grafo, uma estratégia possível
é a definição dos vértices com base nas distâncias geográficas entre pares de usinas, o que
reduz a complexidade espaço-temporal do modelo, mantendo, entretanto, sua capacidade
representativa, conforme demonstrado na literatura especializada (LI et al., 2018; ZHENG
et al., 2020).

A dinâmica temporal do problema é incorporada diretamente pelas operações
fundamentais dessas arquiteturas, como agregação de informações e passagem de mensagens
entre os nós, o que possibilita modelar interdependências complexas tanto no espaço quanto
no tempo.

Essas propriedades diferenciam as GNNs dos métodos clássicos discutidos ante-
riormente, os quais são capazes de capturar padrões temporais, mas não consideram
explicitamente as relações espaciais e tampouco permitem inferências sobre outras locali-
dades além daquelas diretamente modeladas (WU et al., 2021; SONG et al., 2020).

Assim, a generalização proporcionada pela modelagem em grafos permite não apenas
avaliar a contribuição individual de cada usina, mas sobretudo compreender como o sistema
de geração solar, considerado em sua totalidade, impacta a operação e a confiabilidade da
rede de distribuição elétrica (CHEN et al., 2021; WU et al., 2021).

Neste contexto, os modelos de redes neurais em grafos analisados nesta seção incluem:
Graph Attention Networks (GAT-LSTM) e Graph Convolutional Networks (GCN-1D),
(KIPF; WELLING, 2017; VELIČKOVIĆ et al., 2018; YU; YIN; ZHU, 2018; SONG et al.,
2020).

4.3.1 Fundamentos

Um grafo é definido como uma estrutura G = (V, A), em que V representa o
conjunto de vértices (ou nós) e A o conjunto de arestas que conectam pares de vértices. As
propriedades dessa estrutura de dados relevantes para esse trabalho são: direcionalidade,
pesos das arestas de conexão e a conexão entre os nós.

Em um grafo não direcionado, as conexões entre os pares de nós são bidirecionais,
i.e. a relação entre eles é simétrica, com influência ou associação mútuas logo Aij = Aji.

Em contraste, em um grafo direcionado essa relação não é recíproca, as conexões
entre os nós possuem uma orientação específica, de modo que o nó A tem influência do nó
B, mas a recíproca não é necessariamente verdade, assim caracteriza-se a assimetria das
associações entre nós: Aij ̸= Aji.
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Figura 14 – Exemplos de grafos não direcionado e direcionado. Figura de autoria própria.

Essa propriedade é representada através da matriz de adjacência, que expressa as
conexões entre os nós de um grafo. Nessa matriz, as linhas e colunas correspondem aos
nós, e define-se que cada elemento Aij = 1, se existe uma conexão entre o nó i e o nó j, e
Aij = 0 caso contrário.

Como exemplo ilustrativo, considere os dois grafos apresentados na Figura 14: um
não direcionado e outro direcionado, com suas respectivas matrizes de adjacência.

• Grafo não direcionado: Matriz de adjacência:

Nós: {1, 2, 3, 4, 5}
Conexões: 1 — 2, 1 — 3, 1 — 4, 4 — 5

A =



0 1 1 1 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0


• Grafo direcionado: Matriz de adjacência:

Nós: {1, 2, 3, 4, 5}
Conexões: 1 → 4; 1 → 3; 2 → 1;
4 → 5;

A =



0 0 1 1 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0


Observe que, como esperado, a matrizes de adjacência do grafo não direcionado é simétrica,
refletindo a reciprocidade das conexões entre os nós (Aij = Aji). Por outro lado, a matriz
de adjacência do grafo direcionado é assimétrica, e nesse examplo também é esparsa, visto
que nem todas as conexões possíveis entre os nós estão presentes.

Para simplificação do problema de previsão de múltiplas séries temporais e con-
siderando a relação mútua entre os regimes espaço-temporais das usinas, a matriz de
adjacência escolhida para o trabalho será não-direcional.
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A segunda propriedade refere-se aos pesos das arestas presentes em um grafo.
Enquanto a primeira propriedade tratou da existência e direção das conexões entre os
nós, agora busca-se entender a força dessa associação, ou seja, o peso atribuído às arestas.
Na modelagem proposta neste trabalho, a força da associação entre os nós é baseada nas
distâncias geográficas.

As arestas de um grafo podem ser classificadas em dois tipos: não-ponderadas ou
ponderadas, o primeiro caso as arestas não possuem pesos, assim leva-se em consideração
apenas se há uma conexão ou não. Já no segundo tipo, além de se considerar se existe ou
não uma relação entre nós, também define-se o quão forte ela é.

Figura 15 – Comparação entre grafos não ponderado e ponderado, evidenciando a ausência
ou presença de pesos nas arestas. Figura de autoria própria.

A terceira propriedade é da conectividade dos nós, que podem estar conectados ou
desconectados. Um nó é considerado conectado quando ao menos um outro nó compartilha
uma aresta com ele, assim caso um nó esteja desconectado, ele não compartilha nenhuma
aresta com outro nó do grafo, ou seja, está isolado da rede.

No grafo conectado, todos os nós possuem ao menos uma aresta que os liga a outros
nós, permitindo a circulação de informações por toda a estrutura. No grafo não conectado,
há nós isolados que não se conectam a nenhum outro, o que impede o fluxo de informações
entre todas as partes do grafo.

Figura 16 – Grafo conectado e não conectado. Figura de autoria própria.
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Isso é importante no contexto de aprendizado em grafos, pois o isolamento de nós
pode significar a ausência de compartilhamento de informações na rede, impactando a
propagação de sinais e na efetividade desses modelos.

Considerando o aspecto espaço-temporal do trabalho, optou-se por construir um
grafo G = (V, E) não direcionado, não ponderado e conectado. Essas escolhas visam
simplificar a análise e aumentar a interpretabilidade dos resultados.

4.3.2 Construção do grafo

A matriz de adjacência A foi construída a partir da distância geográfica entre as
usinas, calculada pela fórmula de Haversine (4.10), gerando uma matriz quadrada de
dimensão igual ao número de usinas, contendo as distâncias relativas entre todos os pares.

Essa matriz representa a força da associação entre as usinas com base na proximidade
espacial, partindo da premissa de que usinas mais próximas tendem a compartilhar
condições ambientais e operacionais similares.

A fórmula de Haversine calcula a distância entre dois pontos considerando a
geometria da Terra, a partir das latitudes e longitudes (SINNOTT, 1984):

d = 2r · arcsin

√√√√sin2

(
∆ϕ

2

)
+ cos(ϕ1) cos(ϕ2) sin2

(
∆λ

2

) (4.10)

onde:

• d é a distância entre os dois pontos;

• r é o raio médio da Terra (≈ 6371 km);

• ∆ϕ = ϕ2 − ϕ1 é a diferença de latitude (em radianos);

• ∆λ = λ2 − λ1 é a diferença de longitude (em radianos);

• ϕ1, ϕ2 são as latitudes dos pontos.

O resultado é uma matriz de distâncias DH , quadrada, com dimensão igual ao
número de usinas N , contendo as distâncias geodésicas entre todos os pares.

O uso das distâncias geográficas para estruturar o grafo é uma abordagem comum
em estudos que utilizam GNNs para previsão de energia fotovoltaica, como exemplificado
por (WOSCHITZ, 2023), que também emprega a distância de Haversine para modelar
interações espaciais.

A partir da matriz DH , define-se a estrutura do grafo aplicando o critério de
k-vizinhos mais próximos (k-NN), técnica fundamental para identificar vizinhanças em
espaços métricos (BISHOP, 2006, Capítulo 2).
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Cada nó i é conectado aos seus k vizinhos mais próximos, com k = ceil(0.1 ·(N −1)).
A ordenação dos vizinhos é feita diretamente pelas distâncias Haversine, sem normalização
nesta etapa.

Diferente de abordagens que utilizam pesos contínuos nas arestas, normalizando
distâncias para definir características ponderadas (WOSCHITZ, 2023), aqui optou-se por
manter a matriz de adjacência A binária. Essa decisão se baseia na premissa de que a
topologia do k-NN já incorpora a informação de proximidade na estrutura da rede. Assim,
A indica apenas a presença ou ausência da conexão, valorizando a influência da topologia.

Para garantir a simetria de A, necessária para grafos não direcionados, a conexão
(i, j) é estabelecida (A(i, j) = 1) se a usina j está entre os k vizinhos mais próximos da
usina i, ou se i está entre os k vizinhos de j. Caso contrário, A(i, j) = 0. Essa construção
resulta em uma matriz simétrica e estática.

O processo de seleção k-NN e a simetrização são ilustrados na Figura 17.

Figura 17 – Ilustração do processo de construção do grafo via k-NN com k = 2: (a)
disposição inicial dos nós representando usinas; (b) seleção unilateral dos
k-vizinhos mais próximos (setas tracejadas); (c) grafo final não direcionado,
onde uma aresta (i, j) existe se i está entre os k vizinhos de j ou vice-versa.
Figura de autoria própria.
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Primeiro, adicionam-se auto-conexões para cada nó, gerando Ã = A + I, onde I

é a matriz identidade. Isso permite que a informação do próprio nó seja considerada na
agregação.

Depois, calcula-se a matriz diagonal de graus D̃, onde cada elemento D̃ii = ∑
j Ãij

é o grau do nó i, incluindo sua auto-conexão. A normalização simétrica é então aplicada:

Â = D̃−1/2ÃD̃−1/2 (4.11)

Essa normalização assegura que a agregação das informações dos vizinhos e do
próprio nó seja equilibrada, evitando que nós com muitos vizinhos dominem o processo de
propagação na GNN e contribuindo para a estabilidade do aprendizado.

Embora a topologia do grafo definido por A seja estática, os sinais nos nós apresen-
tam variações temporais, capturadas pela passagem de mensagens da GNN. Isso permite
aprender representações dinâmicas e identificar padrões espaço-temporais.

O critério de conexão — conectar cada nó aos seus k vizinhos mais próximos, com
k cerca de 10% do número total de outras usinas — foi definido empiricamente, buscando
um equilíbrio entre capturar interdependências espaciais e manter a rede parcimoniosa.
Análises futuras podem investigar a sensibilidade dessa escolha e otimizar o grau médio
da rede.

Após a definição da topologia do grafo por meio da matriz Ã (matriz de adjacência
com auto-conexões), que estabelece as conexões espaciais entre as usinas, incorporam-se
as informações dinâmicas que variam no tempo. As GNNs operam com a representação
inicial de cada nó através de um feature vector (vetor de características ou atributos), que
encapsula suas informações em um dado instante.

O objetivo do aprendizado em grafos é transformar esses feature vectors em em-
beddings (representações de alta dimensionalidade) que capturam tanto os atributos do
nó quanto seu contexto estrutural na rede. Esses embeddings representam a informação
aprendida do nó, enriquecida por suas interações com a vizinhança.

O processo pelo qual as GNNs geram esses embeddings é denominado passagem de
mensagens, um paradigma central que envolve duas operações fundamentais: agregação
e combinação. Em GNNs genéricas, a atualização da representação de um nó v para a
camada k é comumente expressa pela combinação de suas características anteriores h(k−1)

v

com a informação agregada de seus vizinhos. Essa agregação é realizada por meio de uma
operação que utiliza explicitamente a matriz de adjacência normalizada, Â.

Para uma camada GNN típica, a atualização dos embeddings dos nós pode ser
formalizada da seguinte forma:

H(k) = σ(ÂH(k−1)W (k)) (4.12)

onde H(k) é a matriz de embeddings dos nós na camada k (com H(0) sendo a matriz inicial
de feature vectors X), Â é a matriz de adjacência normalizada do grafo, W (k) é a matriz
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Figura 18 – O diagrama detalha as operações de agregação e atualização para um nó de
interesse (nó 5). ). Figura de autoria própria.

de pesos treináveis da camada k, e σ é uma função de ativação não linear (e.g., ReLU).
Nesta formulação, a operação de agregação é capturada pela multiplicação ÂH(k−1),

onde cada linha da matriz resultante representa a soma ponderada dos embeddings dos
vizinhos (incluindo a auto-conexão) para cada nó.

A operação de combinação é realizada pela multiplicação pela matriz de pesos W (k)

e aplicação da função de ativação σ, que transforma e refina essa informação agregada em
novos embeddings. Este mecanismo iterativo permite que cada nó incorpore informações
de sua vizinhança na construção de embeddings contextuais. Esse processo é ilustrado na
Figura 18.

Iterando essas operações ao longo de k camadas, as GNNs capturam interações
tanto locais quanto globais, permitindo que a informação flua por múltiplos hops no grafo,
culminando na criação de embeddings contextualmente ricos para cada nó. Na figura, as
representações da camada anterior (h(k−1)) dos vizinhos (nós 1 e 4) são agregadas, e essa
mensagem agregada é combinada com a representação do próprio nó 5 (h(k−1)

5 ) para gerar
sua nova representação na camada atual (h(k)

5 )
No contexto de aprendizado de máquina em grafos, a distinção entre aprendizado

transdutivo e indutivo é fundamental (WU et al., 2021; HAMILTON; YING; LESKOVEC,
2017). O aprendizado transdutivo foca na inferência sobre dados que já foram observados e
são parte da estrutura do grafo de treinamento, enquanto o aprendizado indutivo capacita
o modelo a generalizar para dados ou nós completamente novos, não presentes durante o
treinamento (HAMILTON; YING; LESKOVEC, 2017). Para o problema deste trabalho
essa distinção impacta a capacidade do modelo de lidar com a evolução da rede ou a adição
de novas usinas (VELIČKOVIĆ et al., 2018).

Neste trabalho, o foco principal é na previsão de séries temporais ao nível do nó,
visando obter predições para todas as usinas (nós) do grafo em um horizonte futuro.
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Para tanto, as séries temporais de geração e das variáveis exógenas de cada usina são
transformadas em sequências fixas, utilizando janelas temporais de dados históricos como
entrada para o modelo preditivo.

4.4 GAT-LSTM

A extração de padrões locais dentro dessas séries temporais é feita através de
convoluções temporais, que atuam sobre as sequências para identificar características
relevantes em diferentes dinâmicas. Assim, a incorporação de mecanismos de memória,
como o LSTM, é utilizada para capturar dependências de curto e longo prazo nas séries
temporais, garantindo que essas influênciam sejam capturadas na previsão.

Dessa forma, a escolha da arquitetura GAT-LSTM justifica-se pela sua capacidade
de integrar o processamento espacial das relações de grafo com a modelagem temporal de
dependências de curto e longo prazo.

Dentro das GNNs, a Graph Attention Network (GAT), representa uma arquitetura
que se destaca por incorporar o mecanismo de atenção no processo de agregação de
mensagens entre os nós.

Para um par de nós conectados (i,j), a GAT calcula um coeficiente de atenção eij

que calcula a relevância do nó vizinho j para a representação do nó i. Este coeficiente é
derivado da concatenação das representações transformadas de ambos os nós, seguida por
uma transformação linear e a aplicação de uma função de ativação não linear, como a
LeakyReLU. O coeficiente eij pode ser expresso como:

eij = LeakyReLU(aT [Whi, ||, Whj]) (4.13)

onde hi e hj são os embeddings dos nós i e j, W é uma matriz de pesos compartilhada
aplicada a todas as arestas, a é um vetor de pesos de atenção aprendível, e denota a
operação de concatenação.

Para tornar esses coeficientes comparáveis e garantir que a soma das importâncias
dos vizinhos seja unitária, os valores eij são normalizados por meio de uma função Softmax
sobre todos os vizinhos do nó i. Isso gera os pesos de atenção αij:

αij = softmaxj(eij) = exp(eij)∑
k∈N i exp(eik) (4.14)

onde Ni representa o conjunto de vizinhos do nó i. Esses pesos αij indicam diretamente
o quanto o nó j contribui para a atualização da representação do nó i. Este mecanismo
permite que a GAT atribua uma importância diferenciada a cada vizinho, mesmo que
todos estejam conectados, focando nos nós mais relevantes para a tarefa em questão.

Após o cálculo dos pesos de atenção normalizados, a nova representação do nó
i para a próxima camada é obtida através de uma soma ponderada das características
de seus vizinhos e, opcionalmente, de sua própria característica, utilizando os pesos de
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Figura 19 – O diagrama detalha como a representação do nó central (nó 1) é atualizada a
partir de suas próprias características (h(k−1)

1 ) e das características de seus
vizinhos (h(k−1)

j , para j ∈ {2, 3, 4, 5}). Figura de autoria própria.

atenção αij:
h′i = σ

(∑
j ∈ N i ∪ iαijWhj

)
(4.15)

Essa operação permite que cada nó aprenda a focar nos vizinhos mais relevantes, tornando
o processo de agregação mais flexível e adaptativo à estrutura local da rede.

O mecanismo de atenção pode ser empregado com a utilização de múltiplas cabeças
de atenção, onde várias instâncias independentes do processo de atenção são executadas
em paralelo. Cada cabeça opera com um conjunto diferente de parâmetros (matrizes de
pesos W e vetores a), calculando sua própria atenção e agregação de forma independente.

Isso permite que o modelo capture diferentes tipos de relações ou importâncias entre
os vizinhos. Os resultados dessas múltiplas cabeças de atenção são então concatenados
(para formar uma representação mais rica e de maior dimensão) ou somados (para manter
a dimensão), formando a representação final do nó para a próxima camada.

O princípio de funcionamento da GAT, incluindo o cálculo e a agregação dos
coeficientes de atenção sob o mecanismo de multi-atenção, O GAT calcula um peso de
atenção (α1,j) para cada vizinho, que é então utilizado para ponderar a contribuição
dos vizinhos na agregação. O resultado dessa agregação ponderada é combinado com a
representação do próprio nó para gerar a nova representação do nó 1 na camada k (h(k)

1 ),
visualizado na Figura 19. O funcionamento da GAT-LSTM ocorre da seguinte forma: a
cada instante de tempo t da sequência de entrada, a camada GAT processa os atributos de
todos os nós para aquele momento, utilizando a matriz de adjacência do grafo. O resultado
dessa camada é um novo conjunto de embeddings para cada nó, h(t,GAT)

v , que encapsulam
as informações espaciais ponderadas para o tempo t.

Essa sequência de embeddings espacialmente informados, [h(1,GAT)
v , h(2,GAT)

v , . . . , h(T,GAT)
v ],

é então alimentada sequencialmente a uma camada LSTM. Essa, por sua vez, é responsável
por capturar as dependências temporais de longo prazo entre esses embeddings espacial-
mente enriquecidos, produzindo um estado final que representa a dinâmica espaço-temporal
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integrada do nó ao longo da janela de tempo. A sequência desses embeddings é então
alimentada a uma camada LSTM, que modela as dependências temporais de longo prazo,
obtendo a previsão da geração (Yt).

Os hiperparâmetros-chave incluem o número de camadas GAT e LSTM, a dimensi-
onalidade dos embeddings, o número de cabeças de atenção (para o GAT), e a taxa de
aprendizado, que são ajustados para otimizar o desempenho do modelo. Uma ilustração
detalhada desse fluxo de informações e da arquitetura do GAT-LSTM pode ser vista na
Figura 20.

Figura 20 – A cada instante de tempo, as características iniciais (Xt) de todas as usinas são
processadas por uma camada GAT para capturar as dependências espaciais,
gerando embeddings enriquecidos. Figura de autoria própria.

4.5 GCN1D

A arquitetura Graph Convolutional Network 1-Dimension(GCN-1D) utiliza convo-
luções baseadas em polinômios de Chebyshev com modificações - feitas para adequar o
operador à séries temporais, assim, ao invés de aplicar uma transformação linear entre o
vetor de entrada e os pesos da transformação, aplica-se uma convolução de uma dimensão
no vetor de entrada.

No modelo original proposto por (KIPF; WELLING, 2017) as convoluções em grafo,
que aproximam o operador de filtragem espectral em torno do Laplaciano do grafo. Nessa
formulação, a convolução em grafos(GraphConv) é definido por:

y = gθ ∗ gX =
K∑

k=0
Pk(L̃)CNN1D(X) (4.16)
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Onde θk ∈ RCxO, C canais de entrada e O canais de saída são os filtros treináveis
da camada de convolução. E Pk(L̃) são os polinômios de Chebyshev definidos como:
P0 = 1; P1 = L̃; Pk = 2L̃Pk−1 − Pk−2.

Os pesos θk carregam as informações dos coeficientes de Chebyshev para o operador
de filtro inicial da arquitetura, assim a convolução em grafo é aplicada para o vetor de
entrada X ∈ RNxCxD e retorna y ∈ RNxOxW , sendo D e W passos anteriores e futuros.
Pk(L̃) ∈ RNxN são os polinômios de Chebyshev de ordem k avaliados no laplaciano escalado
L̃ = 2L/Λmax − In.

Entretanto, na implementação prática deste trabalho, o operador baseado em
Chebyshev foi substituído por uma camada GCNConv da biblioteca PyTorch Geometric.
Essa camada corresponde a uma simplificação da formulação espectral, equivalente ao
caso K=1, em que a filtragem é feita diretamente pela matriz de adjacência normalizada:

Â = D̃−1/2ÃD̃−1/2 (4.11)

H(k) = σ(ÂH(k−1)W (k)) (4.12)

Dessa forma, a GCNConv realiza uma agregação de primeira ordem, propagando infor-
mações apenas entre vizinhos diretos. Isso reduz o custo computacional e simplifica o
treinamento, mas também altera a natureza do filtro: o operador deixa de ser um polinômio
de alta ordem do laplaciano e passa a atuar como um filtro passa-baixas suave no domínio
espectral.

Essa convolução é aplicada com polinômios de ordem até K-1 do laplaciano escalado
e é espacialmente localizado, dependendo somente de nós com até K-hops de distância do
nó de interesse.

Tendo em vista que o problema de previsão de incertezas do trabalho trata de
séries temporais, as convoluções utilizadas são causais, de modo a não violar a causalidade
temporal necessária para prever passos futuros, i.e., a previsão p(xt+1|x1, ..., xt) feita pelo
modelo num passo de tempo τ não pode depender de nenhuma variável de passos futuros
xt+1, ..., xt. Para os dados unidimensionais, como os da geração solar, a convolução causal
pode ser implementada transladando os dados de entrada - basta adicionar um pad na
esquerda da sequência de entrada e isso assegura que a camada de convolução não recorre
de vazamento de dados para realizar as suas predições.
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Figura 21 – Arquitetura do modelo GCN-1D. As entradas são processadas por uma camada
GCNConv para agregação espacial, seguida por uma convolução 1D causal
que extrai padrões temporais para gerar a previsão final

4.6 Limitações na modelagem das GNNs

A modelagem com GNNs envolve decisões de projeto que resultam em limitações
e custo-benefício fundamentais. A primeira reside na dependência da topologia do grafo,
que atua como um viés indutivo. Conexões mal especificadas podem introduzir ruído (no
caso de arestas irrelevantes) ou impedir a propagação de informação (no caso de arestas
ausentes), prejudicando o aprendizado.

Neste contexto, a escolha por uma topologia estática representa um equilíbrio
deliberado entre fidelidade do modelo e viabilidade computacional.

Para a rede analisada, composta por 47 usinas geograficamente distantes dentro
do cinturão solar brasileiro, a hipótese de interdependências fixas é uma aproximação
razoável, pois as correlações são em sua maioria atrelada a fenômenos meteorológicos de
macroescala. Essas correlações são em sua maioria decorrente da irradiância similar na
região do cinturão solar brasileiro e das sazonalidades horária e diária.

A implementação de uma matriz de adjacência dinâmica, embora teoricamente
superior para capturar variações funcionais, implicaria um aumento proibitivo no custo
computacional em todas as etapas do projeto, desde a engenharia de features até o
treinamento do modelo.

Outra limitação inerente a muitas arquiteturas, como a GCN, é a tendência à
suavização, conforme analisado, operadores de agregação simples atuam como filtros
passa-baixas, fazendo com que as representações dos nós se tornem mais similares a cada
camada de propagação.
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Embora o problema seja mais acentuado em redes profundas, essa característica
pode atenuar sinais locais de alta frequência, como rampas de geração de energia solar,
mesmo em arquiteturas rasas, representando um equilíbrio entre a captura de padrões
regionais e a fidelidade a eventos locais.

4.7 Previsão conforme e incertezas

Os capítulos anteriores detalharem a construção de modelo para estimativas pontuais
ỹ ou quantílicas qα. Porém, o objetivo da quantificação de incerteza é a construção de
regiões de predição - intervalos R(x) que devem conter o valor real y com uma probabilidade
pré-definida.

Esta seção formaliza a passagem de estimativas de modelo para regiões de predição
com garantias estatísticas, baseando-se no framework teórico da Previsão Conforme
(IZBICKI, 2025).

Uma maneira de fazer isso é utilizar os quantis estimados pelo modelo treinado a
partir da função de pinball(Seção 4.8), formando uma região de plug-in:

Rplug−in(x) = [q̂a/2(x), q̂1−a/2(x)] (4.17)

Conforme discutido por (IZBICKI, 2025, Seção 5.2), embora essa região de plug-in capture
a incerteza aleatória, ela não leva em conta a incerteza epistêmica na estimação dos quantis
q̂. Sendo esses quantis apenas estimativas a partir dos dados disponíveis, a região conforme
resultante frequentemente falha em atingir a cobertura nominal desejada. Por exemplo,
um intervalo de 90% pode conter a observação real em apenas 85% das vezes, tornando as
garantias de incertezas não confiáveis.

Para superar a limitação dos métodos plug-in, a Previsão Conforme oferece um
framework agnóstico ao modelo, projetado para produzir regiões de predição com cobertura
marginal garantida (IZBICKI, 2025; VOVK; GAMMERMAN; SHAFER, 2005). A garantia
é marginal por se aplicar em média sobre a distribuição de dados, e é obtida através de um
processo de calibração. A metodologia split conformal, a mais comum, segue os seguintes
passos:

• Partição dos Dados: O conjunto de dados é dividido em um conjunto de treino e
um de calibração, disjuntos. O modelo preditivo (XGBoost ou GNN) é treinado
exclusivamente no conjunto de treino.

• Cálculo dos Escores de Não-Conformidade: O modelo treinado é então usado para
prever os resultados no conjunto de calibração. Para cada ponto i neste conjunto,
calcula-se um escore de não-conformidade, que mede o quão atípica ou errada foi
a predição. Para problemas de regressão, o escore mais simples é o erro absoluto
residual:
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si = |yi − ŷi| (4.18)

Esses escores formam uma distribuição empírica do erro que o modelo comete em
dados que não viu durante o treino.

• Calibração do Limiar: Para um nível de erro α desejado, por exemplo, α = 0.1
para 90% de cobertura), calcula-se o limiar q = (1 − α) quantil dos escores de
não-conformidade. Este limiar representa, heuristicamente, o pior erro que o modelo
cometeu em 90% dos casos no conjunto de calibração.

• Construção da Região Conforme: Para uma nova predição ŷteste, o intervalo de
predição final é construído simetricamente:

R(ŷteste) = [ŷteste − q, ŷteste + q] (4.19)

A teoria da Previsão Conforme garante que, sob a premissa de que os dados são
trocáveis, o PICP resultante será no mínimo de 1 − α. Essa garantia é forte por ser
independente da complexidade do modelo ou da distribuição dos dados.

A garantia teórica da Previsão Conforme depende da premissa de trocabilidade,
que é violada por séries temporais devido à autocorrelação e não-estacionariedade. A
distribuição dos erros de um modelo de previsão solar, por exemplo, não é constante ao
longo do dia.

A aplicação do método previsão conforme padrão a dados de séries temporais, como
feito neste trabalho, resulta em intervalos homoscedásticos, de largura constante 2q, que
não se adaptam à volatilidade local.

Consequentemente, os intervalos podem ser excessivamente largos em períodos
estáveis, como no início da manhã, e demasiadamente estreitos durante períodos de alta
variabilidade (rampas de geração), comprometendo a cobertura condicional.

Embora métodos mais avançados existam para lidar com dados não trocáveis, eles
fogem ao escopo desta análise. Portanto, a Previsão Conforme será utilizada aqui como
uma ferramenta para gerar uma referência inicial de incerteza com cobertura marginal,
com a ressalva de que a obtenção de garantias condicionais em séries temporais constitui
uma importante direção para trabalhos futuros.

4.8 Função de Perda

Para que os modelos de aprendizado de máquina possam gerar previsões de incerteza,
em vez de apenas estimativas pontuais, é necessário um critério de otimização adequado.
Esta seção apresenta a função de perda quantílica, o mecanismo que permite treinar os
modelos para estimar diretamente os quantis da distribuição condicional da geração.
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O processo de treinamento de um modelo consiste em minimizar uma função de
perda, que quantifica o erro das previsões.

A função de perda adotada para os modelos foi a perda quantílica, também
conhecida como perda de pinball. Ela permite que o modelo estime um quantil específico
da distribuição de probabilidade da variável alvo, em vez de apenas a média. Sua fórmula
é dada por:

Lτ (y, ŷ) =

τ(y − ŷ) se y ≥ ŷ (subestimação)

(1 − τ)(ŷ − y) se y < ŷ (superestimação)
(4.20)

Onde:

• y é o valor real.

• ŷ é o valor previsto pelo modelo para um determinado quantil.

• τ é o quantil alvo, um valor no intervalo (0, 1).

A característica principal desta função é a sua assimetria, que permite direcionar
o modelo para estimar diferentes pontos da distribuição condicional da variável alvo. Os
modelos foram treinados para prever três quantis distintos: 0.1, 0.5 e 0.9, cada um com
um objetivo específico:

• τ = 0.1

Para este quantil, a função de perda penaliza mais a superestimação (quando ŷ > y)
com um peso de 1 − τ = 0.9, enquanto a subestimação (y ≥ ŷ) recebe um peso
menor, de τ = 0.1. Para minimizar essa perda assimétrica, o modelo aprende a gerar
previsões conservadoras, com o objetivo de que o valor real seja superior à previsão
em 90% das vezes, estabelecendo uma fronteira inferior para as estimativas.

• τ = 0.5

Quando o quantil alvo é a mediana, os pesos para subestimação e superestimação
são iguais: τ = 0.5 e 1 − τ = 0.5.

• τ = 0.9

De forma oposta ao quantil 0.1, aqui a função de perda penaliza mais a subestimação
(y ≥ ŷ) com um peso de τ = 0.9. A superestimação (ŷ > y) recebe um peso de
apenas 1 − τ = 0.1.

Logo, o modelo aprende a gerar previsões otimistas, estabelecendo uma fronteira
superior onde se espera que o valor real seja inferior à previsão em 90% das vezes.

Assim, o uso da perda quantílica para os quantis 0.1 e 0.9 viabiliza a construção de
um intervalo de predição de 80%. A qualidade e a calibração desses intervalos, bem como



76

a acurácia da estimativa mediana (quantil 0.5), serão avaliadas por meio das métricas
descritas a seguir.

4.9 Métricas de Avaliação

Uma vez que o objetivo do trabalho abrange tanto a acurácia da previsão pontual
quanto a qualidade dos intervalos de incerteza, é necessário um conjunto de métricas que
avalie ambas as dimensões.

Esta seção define os critérios que serão utilizados para comparar o desempenho dos
modelos, focando na calibração e precisão dos intervalos, bem como no erro das estimativas
pontuais.

• PICP (Prediction Interval Coverage Probability): Mede a proporção de
observações reais que se encontram dentro dos limites do intervalo de predição. Para
um intervalo de confiança de (1 − α)100%, um PICP idealmente se aproximaria de
1 − α, avaliando a calibração e a confiabilidade da estimativa de incerteza.

PICP = 1
n

n∑
i=1

ci, onde ci =

1, se ŷL
i ≤ yi ≤ ŷU

i

0, caso contrário
(4.21)

Nesta equação, ŷL
i e ŷU

i representam, respectivamente, os limites inferior e superior
do intervalo de predição para a i-ésima observação.

• PINAW (Prediction Interval Normalized Average Width): Avalia a largura
média dos intervalos de predição, normalizada pela amplitude da variável alvo. Esta
métrica quantifica a precisão da incerteza; intervalos mais estreitos (PINAW menor)
são desejáveis, desde que mantenham um nível de PICP adequado.

PINAW = 1
nR

n∑
i=1

(ŷU
i − ŷL

i ) (4.22)

Onde R é a amplitude dos dados observados (R = max(yi) − min(yi)), garantindo
que a métrica seja adimensional e comparável entre diferentes problemas.

• RMSE (Root Mean Squared Error): É a raiz quadrada do MSE. Sua vantagem
é que a métrica fica na mesma unidade da variável alvo, tornando o erro mais
interpretável.

RMSE =
√

MSE =
√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (4.23)

• MAE (Mean Absolute Error): Mede a média dos erros absolutos. É menos
sensível a outliers que o RMSE, pois não eleva os erros ao quadrado.

MAE = 1
n

n∑
i=1

|yi − ŷi| (4.24)
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• R2 (Coeficiente de Determinação): Indica a proporção da variância dos dados
que é explicada pelo modelo. Um valor próximo de 1 significa um bom ajuste.

R2 = 1 −
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2 (4.25)

Com estas métricas definidas, possui-se o ferramental necessário para realizar uma
avaliação quantitativa e comparativa dos modelos propostos, o que será detalhado no
capítulo de Resultados e Discussão.

4.10 Configuração Experimental

O conjunto de dados foi dividido seguindo o padrão 60% para treino, 20% para
validação e 20% para teste. Os modelos foram treinados para realizar previsões multi-passo,
sendo avaliados nos horizontes de H+1, H+3, H+6, H+12 e H+24.

Para o XGBoost, a previsão foi implementada para treinar um modelo por horizonte
e quantil. O tuning de hiperparâmetros foi feito com a biblioteca Optuna, executando
100 trials com a técnica de pruning para descartar conjuntos de hiperparâmetros pouco
promissores.

Para os modelos de aprendizado profundo (GAT-LSTM e GCN-1D), a função de
perda pinball foi ponderada entre os horizontes de previsão. Adotaram-se os pesos [1.0,
1.25, 1.5, 2.0, 2.5] para os horizontes H+1, H+3, H+6, H+12 e H+24, respectivamente,
atribuindo maior importância aos erros em previsões de longo prazo, que são inerentemente
mais difíceis.

Para o GAT-LSTM, os hiperparâmetros da rede, detalhados na Tabela 10, foram
definidos com base em testes preliminares. O treinamento utilizou o otimizador Adam
com taxa de aprendizado de 1e-3 e parada antecipada com paciência de 15 épocas para
monitorar a perda na validação e prevenir overfitting.

Para o GCN-1D, a arquitetura foi configurada com uma camada GCNConv de
64 canais, seguida por uma convolução 1D causal com 128 canais de saída e um kernel
de tamanho 3. Os seus hiperparâmetros se encontram na tabela 11. Assim como no
GAT-LSTM, utilizou-se o otimizador Adam com taxa de aprendizado de 1e-3 e parada
antecipada com paciência de 15 épocas.

O ambiente computacional foi selecionado para otimizar o tempo de execução:

• O treinamento do XGBoost foi realizado em CPU.

• O treinamento do GAT-LSTM e GCN-1D, mais intensivos computacionalmente,
foram acelerados em GPU utilizando a plataforma Google Colab.
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Tabela 10 – Hiperparâmetros utilizados no modelo GAT-LSTM

Hiperparâmetro Valor

Canais ocultos GAT 64
Cabeças de atenção 8
Dropout GAT 0.3
Tamanho da camada LSTM 128
Número de camadas LSTM 1
Dropout LSTM 0.0
Learning rate 0.001
Número de épocas 300
Paciência 15

Tabela 11 – Hiperparâmetros utilizados no modelo GCN-1D.

Hiperparâmetro Valor
Canais ocultos GCN 64
Canais de saída Conv1D 128
Tamanho do kernel Conv1D 3
Taxa de aprendizado 0.001
Número de épocas 100
Paciência 15

Partindo das lacunas identificadas na Análise Exploratória de Dados, principalmente
a persistência de autocorrelação espacial nos resíduos de modelos temporais clássicos,
este capítulo construiu o arcabouço metodológico para investigar a hipótese central do
trabalho.

Foi estabelecida uma comparação sistemática entre a abordagem de modelo local,
representada pelo XGBoost, e a de modelos globais, materializada pelas arquiteturas GNN
GAT-LSTM e GCN-1D. Detalhou-se o processo de construção do grafo, cuja topologia
estática baseada em proximidade geográfica foi justificada como um equilíbrio deliberado
entre a captura de correlações de macroescala e a viabilidade computacional.

Para atender ao objetivo de quantificar incertezas, a metodologia integrou a função
de perda quantílica como meio de treinamento para a estimação de intervalos. Adicional-
mente, foi introduzida a Previsão Conforme como um framework para a calibração desses
intervalos, com uma análise crítica de sua aplicabilidade em séries temporais não trocáveis.

O desempenho dessas abordagens será avaliado por um conjunto duplo de métricas,
capazes de mensurar tanto a acurácia da previsão pontual (RMSE, MAE) quanto a
qualidade dos intervalos de incerteza (PICP, PINAW).
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Essa metodologia, portanto, estabelece as bases para a avaliação empírica das
hipóteses do trabalho, cujos resultados são apresentados e discutidos a seguir.



5 RESULTADOS E DISCUSSÃO

Neste capítulo, são apresentados e discutidos os resultados dos modelos de aprendi-
zado de máquina propostos, com o objetivo de validar empiricamente a hipótese central
do trabalho: a de que a modelagem explícita das interdependências espaciais, via GNNs e
GCNs, pode oferecer ganhos de previsibilidade e uma melhor quantificação de incertezas
em comparação a modelos puramente locais.

Conforme estabelecido na Análise Exploratória de Dados (Capítulo 3), a insuficiência
dos modelos clássicos (SARIMA) e a presença de autocorrelação residual (Tabela 6) já
indicavam a necessidade de arquiteturas mais complexas, capazes de lidar com a natureza
espacial do problema.

As seções a seguir, portanto, avaliam a performance dos modelos locais (XGBoost)
versus a abordagem de portfólio dos modelos globais (GNNs).

5.1 Desempenho geral e comparativo dos modelos

Uma análise agregada dos resultados, consolidada nas Tabelas 16 a 21 (Apêndice),
oferece uma visão panorâmica do desempenho geral dos modelos GNN no conjunto de teste
completo. Observa-se que o GCN-1D apresenta, de forma geral, RMSE consistentemente
menor e R2 superior ao GAT-LSTM em praticamente todos os horizontes e quantis. Este
resultado sugere que, para a topologia de rede estudada, a arquitetura convolucional mais
simples foi mais eficaz em generalizar os padrões espaço-temporais.

A análise dos resultados gráficos será feita para cada usina-arquétipo escolhida,
refletindo sobre como cada modelo se comportou no horizonte em questão.

No horizonte H+1 (Figura 22), todos os modelos demonstraram alta capacidade
de aderência à dinâmica de geração. Para o Conjunto Lapa (Hub), é notável a precisão
da mediana do XGBoost. No entanto, no período de 29-30/05: enquanto os modelos
previram uma geração amena, consistente com o comportamento esperado para as condições
climáticas, os valores realizados foram nulos.

Este padrão sugere a ocorrência de curtailment, , uma redução deliberada da geração
de energia por ordem do operador do sistema, que os modelos em grafos, influenciados
pela produção dos vizinhos, não conseguiram antecipar. O XGBoost, focado no histórico
local, também foi induzido ao erro, mas a discrepância levanta uma questão fundamental
sobre a sensibilidade dos modelos a fatores exógenos não-físicos.

Para o Conjunto Castilho (Comunidade), o XGBoost novamente se destaca pela
precisão pontual, com um RMSE de 14.65 MW e R2 de 0.68 (Tabela 12). Os modelos
em grafos, embora visualmente razoáveis, apresentaram intervalos de incerteza mais
largos. Contudo, o GCN-1D obteve um R2 excepcional de 0.92, indicando que, para este
arquétipo, a informação espacial dos vizinhos foi valiosa para explicar a variância da
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geração, superando o modelo local neste quesito.
No Conjunto Floresta (Nó Isolado), todos os modelos apresentaram aderência

satisfatória. O GCN-1D (RMSE de 7.77 MW; R2 de 0.78) e o XGBoost (RMSE de 7.80
MW; R2 de 0.29) foram precisos. A superioridade do R2 do GCN-1D sugere que, mesmo
para um nó isolado, a informação contextual dos poucos vizinhos melhora a capacidade de
generalização do modelo em curtíssimo prazo.

Figura 22 – Comparativo de desempenho dos modelos GAT-LSTM, GCN-1D e XGBoost
para o horizonte de previsão H+1.

À medida que o horizonte de previsão se estende para H+3 (Figura 23) e H+6
(Figura 24), observa-se uma degradação clara na performance dos modelos GNN. Para
o Conjunto Lapa, a capacidade de modelar o curtailment se perde, e a performance se
deteriora drasticamente. A Tabela 12 quantifica este colapso: no H+3, o R2 do GAT-LSTM
torna-se negativo (-0.33), indicando que a previsão do modelo é pior do que uma simples
média dos dados. O XGBoost, em contraste, mantém sua consistência, com um RMSE
estável (7.70 MW) e um R2 positivo, ainda que modesto (0.20).

Para o Conjunto Castilho, o XGBoost se firma como o modelo mais robusto,
mantendo um RMSE em torno de 19 MW e R2 de 0.46 em H+6. Os modelos em grafos,
embora ainda capturem a morfologia geral do sinal, perdem precisão nos picos e vales,
resultando em erros significativamente maiores (RMSE de 37.38 MW para GCN-1D em
H+6).
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Figura 23 – Comparativo de desempenho dos modelos GAT-LSTM, GCN-1D e XGBoost
para o horizonte de previsão H+3.

Nos horizontes mais longos (Figuras 25 e 26), a superioridade do modelo local
(XGBoost) torna-se incontestável em termos de robustez. Para o Conjunto Lapa (Hub), os
modelos GNN falham completamente em generalizar, com valores de R2 consistentemente
negativos e massivos (e.g., -2.33 para GAT-LSTM em H+12), tornando-os inutilizáveis
para previsões operacionais. O XGBoost, por outro lado, mantém um desempenho estável,
com RMSE em torno de 7-8 MW para todos os horizontes, um feito notável que evidencia
sua capacidade de aprender padrões temporais robustos a partir de dados locais.

Para os arquétipos Castilho e Floresta, observa-se o mesmo padrão: o XGBoost
mantém um erro (RMSE) relativamente constante, enquanto o erro dos modelos GNN
escala significativamente com o horizonte. É digno de nota que, para o Conjunto Castilho,
o GCN-1D ainda consegue explicar uma porção da variância em H+24 (R2 de 0.66), um
desempenho superior ao do XGBoost (R2 de 0.62), apesar de um erro absoluto maior. Isso
sugere que, mesmo em longo prazo, a informação espacial ajuda a capturar a tendência,
mas falha em acertar a magnitude.
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Figura 24 – Comparativo de desempenho dos modelos GAT-LSTM, GCN-1D e XGBoost
para o horizonte de previsão H+6.

Figura 25 – Comparativo de desempenho dos modelos GAT-LSTM, GCN-1D e XGBoost
para o horizonte de previsão H+12.
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Figura 26 – Comparativo de desempenho dos modelos GAT-LSTM, GCN-1D e XGBoost
para o horizonte de previsão H+24.

A análise comparativa entre os arquétipos revela a influência da topologia da rede
no desempenho dos modelos, validando a hipótese central deste trabalho.

O Hub (Lapa) se mostrou o mais desafiador para os modelos GNN. A sua alta
centralidade o torna suscetível não apenas a padrões climáticos regionais, mas também
a dinâmicas operacionais complexas do sistema, como o curtailment. Os modelos GNN,
ao agregarem informações dos vizinhos, foram influenciados por um sinal físico (geração
esperada pelo clima) que conflitava com a realidade operacional (geração zerada por ordem
externa). Este achado sugere que, para nós-chave do sistema, modelos puramente espaço-
temporais podem ser frágeis se não incorporarem variáveis operacionais. A consistência do
XGBoost neste cenário reforça o valor de modelos locais que aprendem os padrões únicos
de um ativo específico.

O arquétipo de nó Isolado (Floresta), contrariamente ao Hub, tem a dinâmica de
geração do nó isolado mais autocontida. A menor influência de vizinhos torna o problema
mais próximo de uma previsão de série temporal univariada clássica. Isso explica por que
todos os modelos tiveram um bom desempenho inicial. No entanto, a superioridade do
XGBoost em manter um RMSE baixo em todos os horizontes, mesmo com um R2 inferior,
indica que ele aprendeu um modelo de erro médio mais consistente, enquanto os GNNs,
mesmo com menos vizinhos, ainda sofrem com a degradação da informação espacial ao
longo do tempo.
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Já o arquétipo de nó comunidade (Castilho), foi o cenário onde a arquitetura GNN,
especialmente o GCN-1D, demonstrou seu maior potencial. A forte conexão com um cluster
de vizinhos geograficamente próximos forneceu informação rica e altamente correlacionada,
permitindo ao GCN-1D atingir um R2 de 0.92 em H+1, superando amplamente o XGBoost.
Este resultado corrobora a hipótese de que, em regiões de alta densidade de usinas com
regimes climáticos homogêneos, a modelagem explícita das interdependências espaciais
oferece uma vantagem competitiva significativa para previsões de curtíssimo prazo.

5.2 Análise da calibração e desempenho em rampas

A análise da qualidade dos intervalos de incerteza revela uma limitação crítica e
sistêmica de ambos os modelos GNN: uma sistemática subcobertura. Este comportamento
não se restringe aos arquétipos, mas se manifesta de forma generalizada em quase todas
as 47 usinas, conforme detalhado nas Tabelas 15 e 16.

O objetivo era um PICP de 80% (correspondente aos quantis 0.1 e 0.9). No entanto,
para o GAT-LSTM (Tabela 25), observa-se uma ampla dispersão na calibração, com valores
de PICP que variam desde 48.82% até 86.64%, mas com a grande maioria das usinas
apresentando cobertura bem abaixo do nível nominal. O GCN-1D (Tabela 26) apresentou
uma calibração ainda mais pobre, com a maior parte das usinas concentrada em uma faixa
de cobertura entre 50% e 65%.

Este padrão geral é bem exemplificado pela análise focada nos arquétipos (Tabelas
13 e 14). Neles, o GAT-LSTM alcançou, no máximo, 79.20% (Lapa), caindo para apenas
52.25% (Castilho), enquanto o GCN-1D variou entre 50.24% e 61.58%. Estes números
indicam que os modelos são excessivamente confiantes em suas previsões, gerando intervalos
de predição estreitos demais para capturar a verdadeira variabilidade dos dados. Entre os
dois, o GAT-LSTM consistentemente produziu intervalos mais largos (maior PINAW), o
que explica sua cobertura ligeiramente melhor em diversas usinas, porém ao custo de uma
menor precisão.

O desempenho sob estresse, avaliado em cenários de rampa (Tabela 15), expõe
ainda mais essa fragilidade. Para o GAT-LSTM, o PICP em eventos de rampa despencou
de 69.12% para 39.68%. O GCN-1D teve uma queda similar, de 66.38% para 53.98%. Este
resultado demonstra que os intervalos de predição, calibrados na totalidade dos dados,
são inadequados para conter a volatilidade das rampas de geração. As rampas, por sua
natureza de alta magnitude e frequência, representam os eventos que mais desafiam a
capacidade preditiva e de quantificação de incerteza dos modelos.
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Tabela 12 – Comparativo de Métricas de Acurácia (RMSE e R2) para a Previsão Mediana
(Quantil 0.5) por Arquétipo e Horizonte de Previsão.

Arquétipo: Hub ( Lapa)
Métrica H+1 H+3 H+6 H+12 H+24
GCN-1D
RMSE (MW) 7.04 12.80 16.51 27.60 20.64
R2 0.84 0.47 0.28 -0.83 -0.32
GAT-LSTM
RMSE (MW) 8.70 20.29 20.29 37.24 29.53
R2 0.75 -0.33 -0.33 -2.33 -1.71
XGBoost
RMSE (MW) 7.19 7.70 7.72 7.93 7.33
R2 0.30 0.20 0.20 0.15 0.28

Arquétipo: Comunidade ( Castilho)
Métrica H+1 H+3 H+6 H+12 H+24
GCN-1D
RMSE (MW) 16.06 28.79 37.38 46.22 36.83
R2 0.92 0.73 0.56 0.53 0.66
GAT-LSTM
RMSE (MW) 19.17 37.77 47.98 58.97 36.68
R2 0.88 0.53 0.27 0.23 0.66
XGBoost
RMSE (MW) 14.65 18.61 19.20 16.99 16.09
R2 0.68 0.49 0.46 0.58 0.62

Arquétipo: Nó Isolado ( Floresta)
Métrica H+1 H+3 H+6 H+12 H+24
GCN-1D
RMSE (MW) 7.77 14.38 18.23 20.48 17.76
R2 0.78 0.33 0.01 0.01 0.19
GAT-LSTM
RMSE (MW) 9.87 20.60 26.80 24.61 16.96
R2 0.65 -0.38 -1.14 -0.43 0.26
XGBoost
RMSE (MW) 7.80 8.05 8.03 8.66 8.59
R2 0.29 0.24 0.25 0.13 0.14
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Tabela 13 – Validação dos arquétipos no modelo GAT-LSTM.

Arquétipo Usina PICP (%) PINAW

Hub Lapa 79.20 0.19

Isolado Floresta 76.00 0.14

Comunidade Castilho 52.25 0.09

Tabela 14 – Validação dos arquétipos no modelo GCN-1D.

Arquétipo Usina PICP (%) PINAW

Hub Lapa 50.24 0.08

Isolado Floresta 62.17 0.11

Comunidade Castilho 61.58 0.13

Tabela 15 – Desempenho sob cenários de estresse (rampas > 91.90 MW) - GAT-LSTM

Cenário PICP (%) PINAW Nº de Pontos

Não Rampa (Normal) 69.12 0.03 37 776

Rampa (Estresse) 39.68 0.09 1 986

Desempenho sob cenários de estresse (rampas > 91.90 MW) - GCN-1D

Cenário PICP (%) PINAW Nº de Pontos

Não Rampa (Normal) 66.38 0.03 37 776

Rampa (Estresse) 53.98 0.11 1 986

5.3 Limitações Observadas

A análise dos resultados revela limitações intrínsecas às abordagens de modelagem
adotadas, cujas causas podem ser rastreadas até seus fundamentos teóricos. Uma limitação
primária, e talvez a mais crítica do ponto de vista da quantificação de incertezas, reside
na má calibração dos intervalos de predição gerados pelos modelos GNN. Conforme
evidenciado pelos valores de PICP consistentemente abaixo do nível nominal de 80%
(Tabelas 13 e 14), os modelos se mostraram excessivamente otimistas. Este fenômeno está
diretamente ligado à natureza da regressão quantílica via função de perda pinball, como
discutido na Seção 4.7.

Tal abordagem é eficaz em estimar a incerteza aleatória, inerente à variabilidade
dos dados, mas falha em incorporar a incerteza epistêmica, associada ao próprio modelo. A
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ausência de um framework de calibração mais robusto, como a Previsão Conforme, resulta
em intervalos que não alcançam a cobertura estatística desejada.

Adicionalmente, os modelos GNN demonstraram uma vulnerabilidade a eventos
operacionais não-físicos, como o curtailment observado no arquétipo Hub. A arquitetura
GNN opera sob o pressuposto de que nós espacialmente próximos devem exibir correlações
em seu comportamento, princípio fundamental para a agregação de informação via passagem
de mensagens (Seção 4.3).

Este mecanismo permite capturar fenômenos climáticos regionais, mas se torna uma
falha quando um evento local, como uma ordem de despacho do ONS, desacopla a geração
de uma usina das condições de seus vizinhos. O modelo continua a prever geração baseado
no consenso da vizinhança, expondo uma relação custo-benefício da modelagem espacial:
sua força na captura de padrões regionais é também sua fraqueza diante de dinâmicas que
não respeitam a topologia geográfica.

A degradação acentuada do desempenho em horizontes de previsão estendidos, como
H+12 e H+24, representa outra limitação significativa das arquiteturas GNN, conforme
ilustrado na Tabela 12 com valores de R2 que se tornam negativos. Este comportamento
pode ser atribuído ao acúmulo de erros em previsões multi-passo, um problema exacerbado
no contexto dos grafos.

Neles, erros não se acumulam apenas no tempo, mas também no espaço, pois uma
previsão incorreta para um nó no instante t é propagada como uma característica errônea
para seus vizinhos no instante t+1, contaminando a rede. Em contrapartida, a notável
estabilidade do XGBoost, treinado sob uma estratégia de previsão direta (um modelo por
horizonte, conforme Seção 4.10), demonstra a robustez desta abordagem para mitigar o
acúmulo de erros.

Finalmente, a análise de desempenho em rampas (Tabela 15) evidenciou a dificuldade
dos modelos GNN em capturar eventos de alta frequência. Esta limitação é inerente à
mecânica da convolução em grafos que, conforme discutido na Seção 4.6, atua como um
filtro passa-baixas. O processo de agregação, ao atualizar a representação de um nó a
partir de uma média ponderada de seus vizinhos, inerentemente suaviza as características
do sinal. Picos e rampas de geração, que são eventos locais e de alta frequência, são
atenuados neste processo, resultando em previsões mais conservadoras. Este é o equilíbrio
da modelagem em grafos: a capacidade de capturar padrões regionais se dá ao custo da
fidelidade a eventos locais e transientes.
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6 CONSIDERAÇÕES FINAIS

Este trabalho realizou uma comparação sistemática entre modelos de previsão
locais (XGBoost) e globais baseados em grafos (GNNs) aplicados à geração fotovoltaica
no SIN, com o objetivo de investigar como a modelagem das interdependências espaciais
entre usinas pode contribuir para a previsibilidade e quantificação das incertezas em séries
temporais multi-site.

Os resultados revelaram uma relação de compromisso entre acurácia determinística
e calibração probabilística. O modelo local XGBoost apresentou desempenho mais estável
e previsões mais bem calibradas em horizontes variados, especialmente em usinas com
características operacionais únicas — como eventos de curtailment ou regimes climáticos
atípicos. Já as arquiteturas baseadas em grafos (GAT-LSTM e GCN-1D), embora tenham
capturado relações espaciais e melhorado a explicação da variância em horizontes de
curtíssimo prazo, apresentaram degradação mais rápida da performance ao longo do tempo
e subestimação sistemática dos intervalos de incerteza, refletindo desafios ainda abertos
na literatura de modelagem espaço-temporal probabilística.

A principal contribuição deste estudo está em integrar conceitos de aprendizado de
máquina, redes complexas e quantificação de incertezas (UQ) em um framework coerente e
aplicável ao contexto brasileiro. A utilização de uma metodologia de arquétipos — baseada
em métricas de centralidade e influência estrutural — permitiu interpretar os resultados
não apenas em termos de erro médio, mas também em função da posição topológica das
usinas e de sua correlação climática, evidenciando que a incerteza da previsão é em parte
estrutural e espacialmente correlacionada, e não apenas fruto de ruído estocástico.

Do ponto de vista científico, o trabalho contribui ao trazer para o domínio da
previsão solar nacional uma análise comparativa rigorosa entre abordagens locais e globais
sob a ótica da incerteza preditiva. Ao empregar previsões quantílicas e métricas de
calibração como PICP e PINAW, a pesquisa avança no entendimento de como diferentes
arquiteturas representam a dispersão preditiva, conectando-se diretamente aos desafios
atuais de Uncertainty Quantification em energias renováveis: distinguir incertezas aleatórias,
epistêmicas e estruturais em sistemas de alta variabilidade.

Importa ressaltar que as arquiteturas em grafos foram aqui implementadas de forma
fundamental — com topologia estática e agregação de primeira ordem — como um esforço
deliberado para isolar o papel da informação espacial. Essa decisão metodológica foi crucial
para compreender os limites e benefícios reais da conectividade antes da introdução de
mecanismos mais sofisticados.

Para trabalhos futuros, propõe-se a extensão para filtros espectrais de ordem
superior (Chebyshev, k > 1) e mecanismos de atenção dinâmica, capazes de ajustar
as relações espaciais e temporais em tempo real. Além disso, a integração com Redes



90

Neurais Informadas pela Física (PINNs) e dados operacionais do sistema elétrico — como
perfis de despacho, controle de tensão e condições meteorológicas de alta resolução —
representa uma via promissora para incorporar de forma explícita a natureza física das
variáveis exógenas e não apenas o padrão histórico de geração local. De igual importância,
a transição das previsões quantílicas para abordagens totalmente probabilística, como
inferência Bayesiana ou Deep Ensembles, poderá permitir a decomposição explícita das
incertezas aleatória e epistêmica, fortalecendo o papel da previsão solar como ferramenta
de apoio à operação e ao planejamento do SIN.

Em síntese, ao combinar fundamentos de séries temporais, aprendizado profundo e
teoria de grafos, este trabalho oferece uma visão integrada sobre a origem e a estrutura
das incertezas na geração fotovoltaica, contribuindo para a construção de modelos mais
interpretáveis, calibrados e úteis para a gestão segura e eficiente do sistema elétrico
brasileiro.
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APÊNDICES



APÊNDICE A – RESULTADOS DETALHADOS E MÉTRICAS POR USINA

Tabela 16 – Resultados do modelo GCN1D no conjunto de teste.

Horizonte Pinball Loss MAE MSE RMSE R2

H+1 2.8044 13.0675 1037.2212 32.1963 0.8738
H+3 5.2657 25.4463 3346.7427 57.8467 0.5877
H+6 7.2134 33.1230 4401.4473 66.3331 0.4739
H+12 9.4119 44.4776 5709.8481 75.5680 0.4813
H+24 5.7261 23.3264 3620.4336 60.1658 0.6378

Tabela 17 – Resultados do modelo GCN1D para o quantil 0.5 no conjunto de teste.

Horizonte Pinball Loss MAE MSE RMSE R2

H+1 4.9532 9.9063 553.8802 23.5404 0.9326
H+3 9.2064 18.4128 1575.0679 39.6857 0.8060
H+6 12.3528 24.7056 2439.8599 49.3890 0.7084
H+12 15.9471 31.8943 3179.4846 56.3988 0.7112
H+24 9.0317 18.0634 2200.9451 46.9344 0.7798

Tabela 18 – Resultados do modelo GCN1D para o quantil 0.9 no conjunto de teste.

Horizonte Pinball Loss MAE MSE RMSE R2

H+1 2.7181 18.8594 1405.3160 37.4955 0.8290
H+3 4.7595 29.6587 3597.8274 59.9836 0.5568
H+6 6.3240 36.5882 4763.7910 68.9963 0.4306
H+12 8.2468 43.7967 5758.4966 75.9046 0.4769
H+24 5.6353 24.1675 3486.3477 59.0377 0.6512



97

Tabela 19 – Métricas de desempenho do GAT_LSTM para o quantil 0.1.

Horizonte Pinball Loss MAE MSE RMSE R2

H+1 3.2991 15.7422 1331.4901 36.49 0.8380

H+3 7.5196 29.9540 4501.1875 67.09 0.4455

H+6 12.1564 43.8447 7609.0098 87.25 0.0905

H+12 17.9105 57.0348 8681.8252 93.19 0.2113

H+24 5.0644 28.8002 4056.9126 63.71 0.5941

Tabela 20 – Métricas de desempenho do GAT_LSTM para o quantil 0.5 (Mediana).

Horizonte Pinball Loss MAE MSE RMSE R2

H+1 6.0241 12.0482 867.2909 29.46 0.8945

H+3 12.8022 25.6044 2936.9878 54.17 0.6382

H+6 18.3426 36.6852 4295.4448 65.57 0.4866

H+12 23.9936 47.9872 5479.6895 74.00 0.5022

H+24 8.2591 16.5182 2316.4758 48.13 0.7682

Tabela 21 – Métricas de desempenho do GAT_LSTM para o quantil 0.9.

Horizonte Pinball Loss MAE MSE RMSE R2

H+1 3.7688 18.6266 1460.3765 38.21 0.8223

H+3 7.7157 34.5262 4707.4668 68.60 0.4200

H+6 11.7499 45.8079 6929.7617 83.25 0.1717

H+12 14.3510 53.1434 7622.6514 87.34 0.3075

H+24 5.9373 23.4732 2882.8921 53.72 0.7116

Tabela 22 – Métricas de desempenho do XGBoost para o quantil 0.1 por Arquétipo.

Usina H+1 H+3 H+6 H+12 H+24
Pinball Loss
Conj. Castilho 2.2581 2.6422 3.3385 2.6616 2.4720
Conj. Floresta 1.4598 1.2363 1.1066 1.1142 1.0727
Conj. Lapa 0.7800 0.9871 1.0300 1.0660 1.1249
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Tabela 23 – Métricas de desempenho do XGBoost para o quantil 0.5 (Mediana) por
Arquétipo.

Métrica H+1 H+3 H+6 H+12 H+24
Arquétipo: Comunidade (Conj. Castilho)
RMSE (MW) 14.65 18.61 19.20 16.99 16.09
R2 0.68 0.49 0.46 0.58 0.62
Arquétipo: Nó Isolado (Conj. Floresta)
RMSE (MW) 7.80 8.05 8.03 8.66 8.59
R2 0.29 0.24 0.25 0.13 0.14
Arquétipo: Hub (Conj. Lapa)
RMSE (MW) 7.19 7.70 7.72 7.93 7.33
R2 0.30 0.20 0.20 0.15 0.28

Tabela 24 – Métricas de desempenho do XGBoost para o quantil 0.9 por Arquétipo.

Usina H+1 H+3 H+6 H+12 H+24
Pinball Loss
Conj. Castilho 2.0942 2.6863 3.0945 2.9556 2.4149
Conj. Floresta 1.1158 1.2781 1.2012 1.0978 1.0966
Conj. Lapa 1.0136 1.0602 1.0843 1.1003 1.0874
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Tabela 25 – Métricas de incerteza por usina no modelo GAT_LSTM, ordenadas por PICP.

Usina PICP (%) PINAW
Sol do Sertão 48.82 0.06
Serra do Mel C 49.76 0.06
Sol do Cerrado 50.12 0.12
Belmonte 51.18 0.09
Castilho 52.25 0.09
Janaúba 52.72 0.11
Ciranda 53.90 0.11
Futura 54.85 0.10
Rio Alto 56.26 0.12
Paracatu 56.62 0.17
Helio Valgas 56.74 0.16
Lar do Sol 56.97 0.16
Pirapora 2 56.97 0.18
Guaimbê 57.09 0.11
São Gonçalo 59.57 0.12
Ituverava 61.58 0.11
Pereira Barreto 62.41 0.10
S. Basílio (Solar) 64.42 0.16
FV SJP 64.66 0.13
Nova Olinda 64.78 0.18
Juazeiro Solar 2 65.60 0.14
Boa Hora 66.08 0.11
Araxá 66.08 0.15
Alex 66.08 0.07

Usina PICP (%) PINAW
Banabuiu 66.90 0.07
Luzia 70.09 0.14
Francisco Sá 70.33 0.19
Calcário 71.04 0.06
Pedranópolis 73.52 0.17
Lavras 74.23 0.10
Jaiba 4 Dist 75.41 0.17
Dracena 75.77 0.20
Floresta 76.00 0.14
Juazeiro Solar 77.07 0.15
Sol do Piauí 77.54 0.24
Horizonte 77.78 0.15
Pitombeira 78.96 0.17
Lapa 79.20 0.19
S. Solar Barreiras 80.38 0.14
Serra do Mato 80.50 0.14
Sol do Futuro 80.85 0.16
Bom Jesus 81.09 0.20
Tacaratu (Solar) 81.56 1.08
Assú V 81.91 0.26
São Pedro 82.03 0.26
BJL 85.11 0.28
Flor de Mandacaru 86.64 3.58

Tabela 26 – Métricas de incerteza por usina no modelo
GCN-1D, ordenadas por PICP.

Usina PICP (%) PINAW

Sol do Piauí 48.46 0.13

Lapa 50.24 0.08

Boa Hora 51.18 0.07

Araxá 51.18 0.12

Pedranópolis 52.01 0.13
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Tabela 26 – – continuação

Usina PICP (%) PINAW

Dracena 53.31 0.15

Bom Jesus 54.14 0.09

Francisco Sá 54.61 0.12

Guaimbê 56.50 0.11

Calcário 56.74 0.05

São Pedro 56.86 0.10

BJL 57.45 0.12

Horizonte 57.80 0.08

Jaiba 4 Dist 57.80 0.10

Sertão Solar Barreiras 58.27 0.11

Flor de Mandacaru 58.63 3.13

Castilho 61.58 0.13

Paracatu 61.94 0.12

Pereira Barreto 62.17 0.12

Floresta 62.17 0.11

Assú V 63.12 0.15

Banabuiu 63.83 0.06

Juazeiro Solar 63.95 0.11

FV SJP 65.01 0.08

Ituverava 65.13 0.09

Alex 66.43 0.08

Nova Olinda 66.78 0.09

Juazeiro Solar 2 66.78 0.12

Pirapora 2 68.79 0.13

S. Basílio (Solar) 69.62 0.12

Ciranda 70.33 0.10

Tacaratu (Solar) 71.04 0.85

Luzia 71.28 0.11
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Tabela 26 – – continuação

Usina PICP (%) PINAW

Pitombeira 71.39 0.11

Rio Alto 72.46 0.11

Serra do Mato 73.17 0.14

Serra do Mel C 73.52 0.11

Lar do Sol 76.00 0.12

Belmonte 77.07 0.12

Sol do Sertão 77.30 0.11

Helio Valgas 77.42 0.12

Sol do Cerrado 77.66 0.13

Sol do Futuro 79.31 0.16

Janaúba 83.57 0.13

Futura 84.28 0.13

São Gonçalo 84.75 0.12

Lavras 87.71 0.14
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