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RESUMO

MENDES, L. A. Modelo reduzido para previsão dos coeficientes aerodinâmicos
de asas trapezoidais: uma abordagem utilizando decomposição em valores
singulares. 2021. 65p. Monografia (Trabalho de Conclusão de Curso) - Escola de
Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2021.

Ferramentas computacionais são essenciais nas diferentes etapas de desenvolvimento de
uma nova aeronave. Em particular, nas etapas iniciais, há a necessidade de avaliar diferentes
configurações de modo a selecionar a que melhor atende às especificidades almejadas. Em
vista da necessidade de se realizar inúmeras simulações, modelos simplificados são bem-
vindos ao trazer uma primeira aproximação e um direcionamento sobre quais configurações
devem ser analisadas em maior profundidade. Nesse contexto, o presente trabalho visa
a análise de diferentes configurações de asas trapezoidais e a construção de um modelo
reduzido utilizando a decomposição em valores singulares. O projeto se divide em três
etapas: (i) simulação através da teoria da linha sustentadora de asas finitas trapezoidais
com diferentes parâmetros geométricos e aerodinâmicos bidimensionais utilizando-se um
código computacional desenvolvido em Python, (ii) análise de parte dessas simulações
utilizando a decomposição em valores singulares para construção de modelos reduzidos, e
(iii) uma avaliação do modelo desenvolvido com a parcela de simulações não utilizadas.
Ao final desse projeto, desenvolveram-se modelos simplificados para o coeficiente de
sustentação tridimensional, coeficiente de arrasto induzido e distribuição da circulação
sobre a envergadura, que, quando comparados às simulações, apresentam erros médios de
respectivamente 0.5%, 2.5% e 5.0%, inferiores a outros modelos reportados na literatura.
Os desenvolvimentos aqui realizados podem ser futuramente aplicados a dados obtidos de
outras ferramentas computacionais, com maior grau de fidelidade.

Palavras-chave: asas finitas, decomposição em valores singulares, modelos reduzidos,
teoria da linha sustentadora.





ABSTRACT

MENDES, L. A. Reduced model to predict trapezoidal wings aerodynamic
coefficients: an approach using singular value decomposition. 2021. 65p.
Monograph (Conclusion Course Paper) - Escola de Engenharia de São Carlos,
Universidade de São Paulo, São Carlos, 2021.

Computational tools are essential in the different stages of development of a new aircraft.
In particular, in initial stages, there is a need to evaluate different configurations in order
to select the one that best meets the desired specificities. Because of the need to carry
out numerous simulations, simplified models are welcome to bring a first approximation
and guidance on which configurations should be analyzed eith more detail. In this context,
this work aims to analyze different configurations of trapezoidal wings and to build a
reduced model using singular value decomposition. The project is divided into three stages:
(i) simulation through the theory of the sustaining line of finite trapezoidal wings with
different two-dimensional geometric and aerodynamic parameters using a computational
code developed in Python, (ii) analysis of part of these simulations using singular value
decomposition to build reduced models, and (iii) an evaluation of the model developed
with the portion of unused simulations. At the end of this project, simplified models for the
three-dimensional lift coefficient, induced drag coefficient and circulation distribution over
the span, which, when compared to the simulations, have average errors of 0.5%, 2.5% and
5.0% respectively, lower than other models reported in the literature. The developments
carried out here can be applied in the future to data obtained from other computational
tools, with a greater degree of fidelity.

Keywords: finite wings, lifting-line theory, reduced models, singular value decomposition.
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1 INTRODUÇÃO

1.1 Contexto

Um projeto aeronáutico é, assim como em muitas outras engenharias, um projeto
multidisciplinar. Requisitos e legislação, aerodinâmica, automação e controle, estruturas
e estabilidade são algumas dessas disciplinas que estão em constante contato umas com
as outras, em inúmeras conexões, difíceis até de serem listadas (RAYMER, 2012). Tanto
projetos mais antigos quanto os mais atuais apresentam esse caráter multidisciplinar. A
grande mudança, no entanto, se dá pelo aumento da complexidade das análises, cálculos e
simulações. Hoje, com a grande facilidade que os computadores trazem aos mais complexos
cálculos, eles se transformaram em ferramenta de trabalho de qualquer engenheiro. Todas as
áreas de atuação de um projeto aeronáutico são dependentes de ferramentas computacionais
para propiciar um produto final confiável e adequado.

Mesmo que os computadores atuais permitam cálculos muito mais complexos do
que se via há algumas décadas, ainda assim, devido ao enorme custo computacional que
a aeronáutica como um todo necessita, existem dificuldades relacionadas a isso. Estas
são agravadas pelo fato de que dentro do projeto, todas as disciplinas necessitam de uso
computacional intenso em principalmente dois momentos: na escolha inicial de parâmetros
e no refinamento destes. Vê-se um uso intenso em parte considerável do processo, mas
abre-se a possibilidade de uma ociosidade dessas máquinas complexas e caras em outras
ocasiões que não as citadas (ALYANAK, 2012).

É nesse contexto de melhor aproveitamento dos computadores que este trabalho
está inserido. Uma boa forma de agir quanto à isso é utilizar essa ociosidade para fazer
análises que poderão ser aproveitadas no futuro. A realização de um grande conjunto
de simulações de forma a gerar uma redução desses dados e o desenvolvimento de uma
ferramenta de baixo custo que forneça resultados aproximados é uma possibilidade. No
caso deste trabalho, simulações aerodinâmicas, mas outras áreas poderiam se utilizar do
método.

Essa ferramenta de baixo custo, que claramente não apresentaria resultados de-
finitivos, traria a oportunidade de obter parâmetros inicias da aeronave, essenciais ao
estabelecimento de um conceito, de forma muito mais eficiente e eficaz. Isso se deve ao
fato de que uma maior quantidade de simulações para os mais diversos parâmetros é mais
importante do que a exatidão destas, já que aumenta-se a variabilidade das características
simuladas e consequentemente a probabilidade de escolha de um conceito mais aprimorado.
A exatidão, por outro lado, fica a cargo dos futuros refinamentos que irão acontecer ao
longo do projeto.
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Espera-se que com essa solução, a empresa aeronáutica estabeleça uma aceleração
processual pela diminuição de tempo gasto com simulações iniciais, além de uma maior
possibilidade de atingir melhores resultados finais, já que as simulações mais refinadas
partirão de um modelo mais preciso e com um direcionamento melhor de que condições
devem ser analisadas realmente nessa etapa.

1.2 Objetivos

O presente trabalho de conclusão de curso visa o desenvolvimento de um modelo
de baixo custo para uma estimativa inicial das características aerodinâmicas de asas
trapezoidais utilizando a decomposição em valores singulares. Como objetivos, especificam-
se:

• Familiarizar-se com o uso de Python

• Realizar simulações de um conjunto de asas finitas trapezoidais e suas respostas
aerodinâmicas comuns

• Estudar as respostas das simulações

• Desenvolver um modelo simplificado para a geração das repostas aerodinâmicas

• Realizar uma comparação entre as simulações e o modelo simplificado

1.3 Visão geral do documento

De forma a facilitar o acompanhamento e compreensão deste trabalho, o texto foi
dividido em capítulos, apresentadas a seguir.

Neste primeiro capítulo, as motivações e os objetivos do estudo de um modelo de
baixo custo foram abordados, assim como o contexto de sua relevância para os projetos
aeronáuticos atualmente.

No Capítulo 2, a fundamentação teórica do trabalho será apresentada, de forma
a facilitar o entendimento do texto por completo. Informações acerca de asas finitas, do
método de cálculo de constantes aerodinâmicas, da solução numérica escolhida e da teoria
por trás do modelo simplificado utilizado serão expostas.

No Capítulo 3 será apresentada a metodologia utilizada para a criação das asas a
serem analisadas, para o cálculo das características aerodinâmicas das asas pelas simulações
e para a geração do modelo de baixo custo final.

No Capítulo 4 os resultados obtidos por todos os algorítimos serão exibidos, desde
as respostas aerodinâmicas encontrados para os inúmeras configurações de asas finitas
trapezoidais até os resultados e a verificação do modelo simplificado gerado.
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Finalmente, no Capítulo 5, as conclusões obtida pelo trabalho e as inferências
alcançadas serão apresentadas.
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2 FUNDAMENTAÇÃO TEÓRICA

De forma a possibilitar um bom entendimento da metodologia, das considerações
adotadas e dos resultados apresentados nesse trabalho, os principais temas relacionados
à elaboração deste serão apresentados nesse capítulo. Inicialmente, apresentar-se-ão os
conceitos da aerodinâmica de asas finitas, seguido da Teoria da Linha de Sustentação e de
sua solução numérica e, por último, uma breve explicação do método de Decomposição
em Valores Singulares e suas aplicações na identificação de modelos.

2.1 Teoria da linha de sustentação

2.1.1 Sistema de vórtices

A ideia de substituir uma asa por um sistema de vórtices foi a principal ideia
de Lanchester. Esse sistema é composto por três partes: o vórtice de partida, o vórtice
de esteira e o vórtice colado. O vórtice de partida está relacionado à retirada de uma
asa do repouso, ou seja, quando ela passa por mudanças na velocidade ou no ângulo de
ataque, por exemplo. Após esses momentos, ele não influencia mais na circulação, que fica
estabilizada (HOUGHTON; CARPENTER, 2016).

A força de sustentação (L) em asas ou aerofólios é gerada pela circulação no
entorno dela, que apresenta como resultado uma diferença de pressão entre o extradorso e
o intradorso. Em situações de sustentação positiva, a pressão no intradorso é maior do
que no extradorso. Com isso, não vemos somente a geração da força de sustentação, mas
também a tendência do escoamento em contornar a ponta da asa, saindo da superfície
inferior para a superior. Dessa forma, uma componente de velocidade surge ao longo da
envergadura, da raiz a ponta no intradorso e da ponta a raiz no extradorso, causando o
surgimento do vórtice de esteira, um em cada ponta da asa, como mostrado pela Figura 1.
É o vórtice de esteira que explica o downwash, a componente de velocidade vertical que
altera o ângulo de ataque geométrico (ANDERSON, 2016).

Diferentemente do vórtice de partida e do vórtice de esteira, o vórtice colado não se
trata de uma entidade física. Ele é um conjunto de vórtices criados hipoteticamente para
possibilitar a substituição da asa. Essa é a essência da Teoria da Asa Finita, desenvolver
um sistema equivalente de vórtices colados que simulem as propriedades e efeitos da asa
sobre o escoamento (HOUGHTON; CARPENTER, 2016).

Um conceito importante para o entendimento dos vórtices é Teorema dos Vórtices
de Helmholtz, o qual estabelece que: a intensidade do filamento de um vórtice é constante
em seu comprimento e o vórtice não tem início ou término em um fluido. Dessa forma, o
sistema apresentado composto pelos três vórtices se verifica no Teorema. Devido à baixa
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CHAPTER 5 Incompressible Flow over Finite Wings 427

5.1 INTRODUCTION: DOWNWASH
AND INDUCED DRAG

In Chapter 4 we discussed the properties of airfoils, which are the same as the
properties of a wing of infinite span; indeed, airfoil data are frequently denoted as
“infinite wing” data. However, all real airplanes have wings of finite span, and the
purpose of the present chapter is to apply our knowledge of airfoil properties to
the analysis of such finite wings. This is the second step in Prandtl’s philosophy
of wing theory, as described in Section 4.1. You should review Section 4.1 before
proceeding further.

Question: Why are the aerodynamic characteristics of a finite wing any differ-
ent from the properties of its airfoil sections? Indeed, an airfoil is simply a section
of a wing, and at first thought, you might expect the wing to behave exactly the
same as the airfoil. However, as studied in Chapter 4, the flow over an airfoil
is two-dimensional. In contrast, a finite wing is a three-dimensional body, and
consequently the flow over the finite wing is three-dimensional; that is, there is a
component of flow in the spanwise direction. To see this more clearly, examine
Figure 5.3, which gives the top and front views of a finite wing. The physical
mechanism for generating lift on the wing is the existence of a high pressure on
the bottom surface and a low pressure on the top surface. The net imbalance of
the pressure distribution creates the lift, as discussed in Section 1.5. However, as

Figure 5.3 Finite wing. In this figure, the curvature of the
streamlines over the top and bottom of the wing is exaggerated
for clarity.

Figura 1 – Representação do vórtice de esteira

Fonte: Anderson (2016)

influência do vórtice de partida, pode-se modelar o sistema de vórtices da asa com o vórtice
colado e com dois vórtices de esteira. Esse sistema de três lados é chamado de vórtice
ferradura, como mostrado pela Figura 2.
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calculation of the lift distribution L(y) [or the circulation distriution !(y)] is
one of the central problems of finite-wing theory. It is addressed in the following
sections.

In summary, we wish to calculate the induced drag, the total lift, and the lift
distribution for a finite wing. This is the purpose of the remainder of this chapter.

5.3 PRANDTL’S CLASSICAL LIFTING-LINE
THEORY

The first practical theory for predicting the aerodynamic properties of a finite wing
was developed by Ludwig Prandtl and his colleagues at Göttingen, Germany,
during the period 1911–1918, spanning World War I. The utility of Prandtl’s
theory is so great that it is still in use today for preliminary calculations of finite-
wing characteristics. The purpose of this section is to describe Prandtl’s theory and
to lay the groundwork for the modern numerical methods described in subsequent
sections.

Prandtl reasoned as follows. A vortex filament of strength ! that is somehow
bound to a fixed location in a flow—a so-called bound vortex—will experience a
force L ′ = ρ∞V∞! from the Kutta-Joukowski theorem. This bound vortex is in
contrast to a free vortex, which moves with the same fluid elements throughout
a flow. Therefore, let us replace a finite wing of span b with a bound vortex,
extending from y = −b/2 to y = b/2, as sketched in Figure 5.12. However,
due to Helmholtz’s theorem, a vortex filament cannot end in the fluid. Therefore,
assume the vortex filament continues as two free vortices trailing downstream
from the wing tips to infinity, as also shown in Figure 5.12. This vortex (the
bound plus the two free) is in the shape of a horseshoe, and therefore is called a
horseshoe vortex.

A single horseshoe vortex is shown in Figure 5.13. Consider the downwash
w induced along the bound vortex from −b/2 to b/2 by the horseshoe vortex.
Examining Figure 5.13, we see that the bound vortex induces no velocity along
itself; however, the two trailing vortices both contribute to the induced velocity

Figure 5.12 Replacement of the finite wing with a bound vortex.Figura 2 – Representação do vórtice ferradura

Fonte: Anderson (2016)
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2.1.2 Lei de Biot-Savart

A Lei de Biot-Savart inicialmente desenvolvida para relacionar a indução de um
campo magnético por uma corrente elétrica, teve sua aplicação expandida para a velocidade
induzida ao fluido pelos vórtices. Sendo Γ a intensidade do filamento do vórtice, δs um
segmento desse filamento e r o vetor que liga o filamento a um ponto P , como apresentado
na Figura 3, a velocidade no ponto P é dada por:

δv = Γ
4πr2 sin θδs (2.1)

Considerando-se um filamento semi-infinito e integrando a Equação 2.1 com θ ∈
[π/2, π], observa-se que V = Γ

4πh
. Essa velocidade induzida será atribuída aos vórtices

de esteira (downwash), criando um ângulo de ataque induzido, essencial ao estudo do
desempenho aerodinâmico da asa.
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FIGURE 7.6

Implication of Helmholtz’s law—vortex lines of equal but opposite strength combine (or split
from) the vortex line of strength !.

FIGURE 7.7

Finite-length segment of a straight vortex line. Ends A and B can be viewed as limits of
integration within a longer vortex line or as physical limits of this vortex segment in this
direction, such as for the head of a horseshoe vortex.

tex tube and the tube’s strength (circulation). Only the fluid motion aspects will be
pursued here, except to remark that the term induced velocity, which describes the
velocity generated at a distance by the vortex tube, was borrowed from electromag-
netism. Derivation of the application of the Biot-Savart law to fluids is lengthy and
can be found in few texts. We proceed with example applications of the law:

δv = !

4πR2 sin θδs (7.1)

where the directions of δv, δs, and q are shown in Fig. 7.7.

Special Cases of the Biot-Savart Law
Usually, integration of Eq. (7.1) in a specific geometry is needed to yield applicable
results. This integration, of course, varies with the length and shape of the finite
vortex being studied. The vortices of immediate elementary interest are all straight
lines that vary only in their overall length.

Figura 3 – Indução de velocidade pelo vórtice

Fonte: Houghton e Carpenter (2016)

2.1.3 Teoria da linha de sustentação

O estudo da aerodinâmica 2D, com o desenvolvimento das equações de Laplace,
promoveu amplo conhecimentos acerca da teoria dos aerofólios finos e das características
de aerofólios com espessura. No entanto, o aumento de complexidade criada pela análise ae-
rodinâmica 3D impossibilitou à época prever com precisão as características aerodinâmicas
das asas finitas.

Com isso, Prandtl (1921), em seu estudo que relacionou a hidrodinâmica com a
aerodinâmica , tomou uma combinação dos já abordados vórtices ferraduras e propôs
um modelo confiável de substituição da asa, prevendo as características das asas finitas
(ANDERSON, 2016). Inicialmente, considerou-se a substituição da asa por um único
vórtice ferradura, de forma que ao longo da envergadura, o downwash w seria dada por:

w(y) = − Γ
4π

b

[(b/2)2 − y2] (2.2)

No entanto, quando y → ±b/2 ⇒ w → ∞, ou seja, nas pontas existiria uma
velocidade induzida infinita, como representado pela Figura 4. Após anos de estudo, a
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solução encontrada foi de ao invés de utilizar um vórtice ferradura para substituir a asa,
uma grande quantidades desses vórtices deveriam ser usados, com os vórtices colados
sobrepostos ao longo de uma linha sobre a envergadura - a linha de sustentação.CHAPTER 5 Incompressible Flow over Finite Wings 437

Figure 5.13 Downwash distribution along the y axis for a
single horseshoe vortex.

along the bound vortex, and both contributions are in the downward direction.
Consistent with the xyz coordinate system in Figure 5.13, such a downward ve-
locity is negative; that is, w (which is in the z direction) is a negative value when
directed downward and a positive value when directed upward. If the origin is
taken at the center of the bound vortex, then the velocity at any point y along
the bound vortex induced by the trailing semi-infinite vortices is, from Equa-
tion (5.11),

w(y) = − !

4π(b/2 + y)
− !

4π(b/2 − y)
(5.12)

In Equation (5.12), the first term on the right-hand side is the contribution from the
left trailing vortex (trailing from −b/2), and the second term is the contribution
from the right trailing vortex (trailing from b/2). Equation (5.12) reduces to

w(y) = − !

4π

b
(b/2)2 − y2

(5.13)

This variation of w(y) is sketched in Figure 5.13. Note that w approaches −∞
as y approaches −b/2 or b/2.

The downwash distribution due to the single horseshoe vortex shown in Fig-
ure 5.13 does not realistically simulate that of a finite wing; the downwash ap-
proaching an infinite value at the tips is especially disconcerting. During the early
evolution of finite-wing theory, this problem perplexed Prandtl and his colleagues.
After several years of effort, a resolution of this problem was obtained which, in
hindsight, was simple and straightforward. Instead of representing the wing by a
single horseshoe vortex, let us superimpose a large number of horseshoe vortices,
each with a different length of the bound vortex, but with all the bound vortices

Figura 4 – Velocidade induzida infinita para o caso de vórtice único

Fonte: Anderson (2016)

Extrapolando essa quantidade para infinitos vórtices ferradura, a parcela dw da
velocidade induzida em uma localização arbitrária y0 pode ser expressa como:

dw = − (dΓ/dy)
4π(y0 − y)dy (2.3)

onde dy é uma parcela infinitesimal da linha de sustentação e a mudança de circulação
ao longo de y vale dΓ = (dΓ/dy)dy. Dessa forma, a intensidade da circulação do vórtice
de esteira deve ser igual à mudança da circulação ao longo da linha sustentadora. Tal
situação está demonstrada na Figura 5.

Logo, integrando a parcela infinitesimal dw ao longo de toda a envergadura
y = [−b/2, b/2] encontra-se o downwash em um determinado ponto y0 da envergadura,
representado pela equação dada por:

w(y0) = − 1
4π

∫ b/2

−b/2

dΓ/dy

y0 − y
dy (2.4)

Em posse da informação da velocidade induzida de downwash é possível ampliar a
análise, calculando-se o ângulo de ataque induzido αi. Sabe-se que:

αi = tan−1
(

−w(y0)
V∞

)
(2.5)
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Figure 5.15 Superposition of an infinite number of horseshoe vortices along the
lifting line.

Let us single out an infinitesimally small segment of the lifting line dy located
at the coordinate y as shown in Figure 5.15. The circulation at y is !(y), and
the change in circulation over the segment dy is d! = (d!/dy) dy. In turn,
the strength of the trailing vortex at y must equal the change in circulation d!
along the lifting line; this is simply an extrapolation of our result obtained for
the strength of the finite trailing vortices in Figure 5.14. Consider more closely
the trailing vortex of strength d! that intersects the lifting line at coordinate y,
as shown in Figure 5.15. Also consider the arbitrary location y0 along the lifting
line. Any segment of the trailing vortex dx will induce a velocity at y0 with a
magnitude and direction given by the Biot-Savart law, Equation (5.5). In turn, the
velocity dw at y0 induced by the entire semi-infinite trailing vortex located at y
is given by Equation (5.11), which in terms of the picture given in Figure 5.15
yields

dw = − (d!/dy) dy
4π(y0 − y)

(5.14)

The minus sign in Equation (5.14) is needed for consistency with the picture
shown in Figure 5.15; for the trailing vortex shown, the direction of dw at y0 is
upward and hence is a positive value, whereas ! is decreasing in the y direction,
making d!/dy a negative quantity. The minus sign in Equation (5.14) makes the
positive dw consistent with the negative d!/dy.

The total velocity w induced at y0 by the entire trailing vortex sheet is the
summation of Equation (5.14) over all the vortex filaments, that is, the integral of
Equation (5.14) from −b/2 to b/2:

w(y0) = − 1
4π

∫ b/2

−b/2

(d!/dy) dy
y0 − y

(5.15)

Figura 5 – Representação dos infinitos vórtices

Fonte: Anderson (2016)

Considerando que w(y0) é muito menor que V∞, o ângulo e seu valor de tangente
podem ser considerados iguais, logo:

αi = −w(y0)
V∞

(2.6)

Substituindo pelo valor encontrado de w(y0), obtêm-se a equação que representa o
valor do ângulo de ataque induzido pelo downwash, dada por:

αi(y0) = − 1
4πV∞

∫ b/2

−b/2

dΓ/dy

y0 − y
dy (2.7)

Sabendo que o ângulo de ataque efetivo αeff = α − αi, o coeficiente de sustentação
Cℓ pode ser descrito como na equação a seguir:

Cℓ(y0) = a0[αeff (y0) − αℓ=0(y0)] (2.8)

sendo que a0 equivale a inclinação da curva Cℓ×α e αℓ=0 ao ângulo de ataque de sustentação
nula ao longo da envergadura - abrindo possibilidade para torção geométrica.

Um conceito que precisa ser adicionado se trata do Teorema de Kutta–Zhukovsky,
que cria a relação entre a sustentação por unidade de envergadura ℓ e a circulação Γ
apresentada pela equação a seguir (HOUGHTON; CARPENTER, 2016):

ℓ(y0) = ρV∞Γ(y0) = 1
2ρV 2

∞c(y0)cl(y0) (2.9)

Pode-se definir a partir da Equação 2.9 a relação a seguir

Cℓ(y0) = 2Γ(y0)
V∞c(y0)

(2.10)
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Substituindo a Equação 2.10 na Equação 2.8, tem-se:

αeff (y0) = Γ(y0)
πV∞c(y0)

+ αℓ=0(y0) (2.11)

Substituindo as Equações 2.7 e 2.11 em αeff − α − αi, define-se a Equação Funda-
mental da Teoria da Linha de Sustentação de Prandtl da seguinte forma (ANDERSON,
2016):

α(y0) = Γ(y0)
πV∞c(y0)

+ αℓ=0(y0) + 1
4πV∞

∫ b/2

−b/2

dΓ/dy

y0 − y
dy (2.12)

A Equação 2.12 tem apenas como incógnita a distribuição da circulação Γ(y0),
já que os outros termos são dependentes de características geométricas e aerodinâmicas
do aerofólio implementado na asa. Dessa forma, com a determinação da circulação, os
coeficientes aerodinâmicos da asa podem ser calculados, tornando a Teoria da Linha
Sustentadora um problema que consiste na determinação daquela.

2.1.4 Coeficientes aerodinâmicos de uma asa finita

Agora é possível determinar também os coeficientes aerodinâmicos tridimensionais
da asa. Primeiramente, pode-se integrar a sustentação por unidade de envergadura pelo
seu comprimento completo, obtendo-se o valor da sustentação proporcionada pela asa:

L = ρV∞

∫ b/2

−b/2
Γ(y) dy (2.13)

que adimensionalizado gera o coeficiente de sustentação:

CL = L

ρV 2
∞S

= 2
V∞S

∫ b/2

−b/2
Γ(y) dy (2.14)

Substituindo a Equação 2.9 na relação di ≈ lαi e integrando ao longo da envergadura,
obtemos o arrasto induzido da asa:

Di = ρV∞

∫ b/2

−b/2
Γ(y)αi(y) dy (2.15)

que adimensionalizado gera o o coeficiente de arrasto induzido:

CD,i = Di

ρV 2
∞S

= 2
V∞S

∫ b/2

−b/2
Γ(y)αi(y) dy (2.16)

2.2 Solução numérica da linha sustentadora

Existem algumas possibilidades de solução para as equações acima descritas, consi-
derando que a solução vem com a determinação da distribuição da circulação. Uma das
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técnicas mais utilizadas, por exemplo, é a solução via séries de Fourier. Neste caso, a
circulação Γ é dada por:

Γ(θ) = 2bV∞

N∑
i=1

Ai sin iθ (2.17)

onde θ varia de 0 a π. A precisão dos resultados se dá pelo valor de N.

Abordagens recentes desenvolvidas no Departamento de Engenharia Aeronáutica
da Escola de Engenharia de São Carlos da Universidade de São Paulo propõem o uso do
Método dos Elementos Finitos para determinação de uma solução aproximada a partir
do método de Galerkin. Utilizando-se o MEF, a construção da aproximação do campo
é obtida pela contribuição dos subdomínios. Ainda, nesse contexto, a aproximação da
circulação nos subdomínios (elementos) é realizada a partir da sobreposição de funções
polinomiais (LIORBANO, 2019).

Essas funções são combinações lineares de funções que são linearmente indepen-
dentes. O resultado para cada discretização é exatamente uma combinação linear dessas
funções independentes. A precisão está diretamente ligada a duas variáveis: o número de
funções independentes utilizadas para montar as soluções discretizadas e o próprio número
de discretizações. Uma boa acuracidade com baixo custo computacional é vista com uma
escolha acertada das funções para o problema (DUNCAN, 1937).

Foge do escopo deste trabalho a criação do equacionamento para solução do
problema pelo método acima descrito. Como base, tomou-se a implementação já feita por
Liorbano (2019).

A proposta de Liorbano (2019) para a solução numérica da equação da linha
sustentadora é a aplicação do Método dos Elementos Finitos. Dessa forma, o campo
de circulações ao longo da envergadura resulta das contribuições de cada elemento de
circulação distribuído ao longo desta. Nesse sentido, diferentemente da solução clássica via
séries de Fourier, vê-se uma aproximação local no âmbito do elemento finito de circulação.
A distribuição de circulação global da asa é aproximada por:

Γ(y) =
N∑

e=1
Ne(y) Γe (2.18)

onde N refere-se ao número de elementos utilizados na discretização, Ne é a matriz com
as funções de forma utilizadas para aproximação no contexto do elemento, e Γe são os
valores nodais de circulação do elemento. As funções de forma utilizadas são polinomiais e
construídas utilizando a técnica dos elementos finitos. Nos desenvolvimentos que seguem,
serão utilizadas aproximações lineares do campo de circulação no elemento finito (Figura 6).
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−b/2 b/2

∑n
i=1 ϕi · γi

=
−b/2 b/2

ϕn ×γn

+
...
+

−b/2 b/2

ϕ3 ×γ3

+

−b/2 b/2

ϕ2 ×γ2

+

−b/2 b/2

ϕ1 ×γ1

Figura 6 – Exemplo para a aproximação da circulação por Galerkin com funções lineares
com 7 estações

2.3 Decomposição em valores singulares

A decomposição em valores singulares (SVD) se trata de um dos mais importantes
métodos de fatoração de matrizes, já que proporciona garantidamente uma decomposição
de matriz estável e que pode ser usada para os mais diversos propósitos. Ele é capaz
de determinar de forma sistemática uma aproximação em pequenas dimensões para um
entrada de dados de grande dimensão, como os que serão utilizados neste trabalho. Tal
capacidade é extremamente voltada a dados pois não necessita de um vasto conhecimento
ou de intuição, já que os padrões são descobertos através dos próprios dados. Além disso,
o SVD também proporciona uma representação hierárquica dos dados em função de um
sistema de coordenadas definido pelas relações mais dominantes, ou seja, através de uma
base de vetores singulares dos mais aos menos dominantes, de forma que um de seus
principais usos é a redução de dimensão, utilizando somente os vetores mais relevantes
(BRUNTON; KUTZ, 2019).

2.3.1 Definição de SVD

Considere um grande conjunto de dados X ∈ Cn×m:
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X =


| | |

x1 x2 · · · xm

| | |

 (2.19)

onde xk ∈ Cn são colunas com as medidas de simulações, experimentos ou até o estado
físico de um sistema em determinado momento, que evolui no tempo. O índice k indica de
qual simulação, medida ou momento do tempo aquela medida faz referência.

O SVD é uma decomposição de matriz única da seguinte forma:

X = UΣV∗ (2.20)

onde U ∈ Cn×n e V ∈ Cm×m são matrizes unitárias1 com colunas ortonormais e Σ ∈ Rn×m

é uma matriz com números reais não negativos e decrescentes na diagonal e zeros fora dela.
O símbolo ∗ representa uma transposição da matriz complexa conjugada (BRUNTON;
KUTZ, 2019).

As colunas da matriz U são chamadas de vetores singulares esquerdos e abrangem o
espaço dos perfis de expressão das respostas. As linhas da matriz V∗ são os vetores singulares
direitos e abrangem um espaço de respostas em ordem da mais até a menos significante (as
primeiras linhas tem maior presença nas respostas). Já os elementos diagonais de Σ são os
valores singulares e remetem à significância (os primeiros elementos, maiores, multiplicam
as primeiras linhas dos vetores singulares direitos) (WALL; RECHTSTEINER; ROCHA,
2003).

Quando n ≥ m, a matriz Σ apresenta no máximo m elementos diferentes de zero
na diagonal. Dessa forma, podemos definir a forma econômica do SVD como sendo:

X = UΣV∗ =
[
Û Û⊥

] Σ̂
0

V∗ = ÛΣ̂V∗ (2.21)

onde Û ∈ Cn×m é a matriz U econômica, Û⊥ ∈ Cn×n−m é uma matriz complementar e
ortogonal a Û, Σ̂ ∈ Cm×m é uma matriz diagonal com os valores singulares e V∗ ∈ Cm×m.
A Figura 7 ilustra graficamente essas matrizes.

2.3.2 Aproximação de uma matriz

Neste momento, passa-se a analisar uma das características mais importantes do
SVD: a hierarquia de representatividade das linhas de V∗. Aproximações de baixo posto
podem ser facilmente criadas quando selecionam-se os primeiros r valores e vetores direitos
singulares, com descarte do termos restantes. Uma forma generalizada dessa aproximação
1 uma matriz quadrada unitária, quando multiplicada por sua transposta, resulta na matriz

identidade (HORN; JOHNSON, 2012)
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=X Û Û
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Σ

V∗

= Û

Σ̂ V∗

Figure 1.1 Schematic of matrices in the full and economy SVD.

For non-square matrices X, the economy SVD is more efficient:

>>[Uhat ,Shat ,V] = svd(X , ’econ’) ; % economy sized SVD

Python
>>> import numpy as np
>>> X = np. random. rand(5, 3) % create random data matr ix
>>> U , S, V = np. l inalg.svd(X , ful l_matr ices=True) % ful l SVD
>>> Uhat , Shat , Vhat = np. l inalg.svd(X , ful l_matr ices=False)

% economy SVD

R
> X <- repl icate(3, rnorm(5))
> s <- svd(X)
> U <- s$u
> S <- diag(s$d)
> V <- s$v

Mathematica
In:= X=RandomReal[{0,1},{5,3}]
In:= {U,S,V} = SingularValueDecomposi t ion[X]

Other Languages
The SVD is also available in other languages, such as Fortran and C++. In fact, most SVD
implementations are based on the LAPACK (Linear Algebra Package) [13] in Fortran. The

Figura 7 – Representação das matrizes completa e econômica do SVD

Fonte: Brunton e Kutz (2019)

determinou o chamado SVD Truncado como a aproximação ótima de baixo posto para a
matriz X e é comumente referido como o Teorema de Eckart-Young [2.3.1] (ECKART;
YOUNG, 1936).

Teorema 2.3.1 (Teorema de Eckart-Young) A aproximação de posto r ótima para
X, no sentido de mínimos quadrados, é dada pelo truncamento SVD de posto r de X̃ de
forma que:

∥X − B∥F ≥ ∥X − X̃∥F (2.22)

onde B é qualquer matriz de posto r e ∥ · ∥F é a norma de Frobenius 2.

Logo, segundo o teorema, sabe-se que a matriz X̃ dada pelo truncamento das
matrizes do SVD é a matriz de posto r que melhor se aproxima da matriz X. Caso
escolhamos um valor de r menor do que o número de valores singulares de X, teremos uma
aproximação, ou seja: X ≈ ŨΣ̃Ṽ∗. Mas se escolhermos um truncamento em que todos os
valores singulares não nulos apareçam (levando em conta de que a decomposição SVD pode
trazer valores singulares iguais a zero) teremos um resultado exato. Uma representação
gráfica das matrizes truncadas pode ser vista na Figura 8.
2 A norma de Frobenius é definida como ∥A∥F =

√∑m
i=1

∑n
j=1 |aij |2 onde A ∈ Cm×n (STRANG,



351.2 Matrix Approximation 9













=












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Figure 1.2 Schematic of truncated SVD. The subscript ‘rem’ denotes the remainder of Û, !̂ or V
after truncation.

Consider the image of Mordecai the snow dog in Fig. 1.3. This image has 2000 × 1500
pixels. It is possible to take the SVD of this image and plot the diagonal singular values,
as in Fig. 1.4. Figure 1.3 shows the approximate matrix X̃ for various truncation values
r . By r = 100, the reconstructed image is quite accurate, and the singular values account
for almost 80% of the image variance. The SVD truncation results in a compression of
the original image, since only the first 100 columns of U and V, along with the first 100
diagonal elements of !, must be stored in Ũ, !̃ and Ṽ.

First, we load the image:

A=imread(’ . . /DATA/dog. jpg’) ;
X=double(rgb2gray(A)) ; % Convert RBG->gray, 256 bi t->double.
nx = size(X,1) ; ny = size(X ,2) ;
imagesc(X) , axis off , colormap gray

and take the SVD:

[U,S,V] = svd(X) ;

Next, we compute the approximate matrix using the truncated SVD for various ranks
(r = 5, 20, and 100):

for r=[5 20 100]; % Truncat ion value
Xapprox = U( : ,1:r)*S(1:r ,1:r)*V( : ,1:r)’ ; % Approx. image
f igure, imagesc(Xapprox) , axis off
t i t le([’r=’ ,num2str(r , ’%d’) , ’]) ;

end

Figura 8 – Representação das matrizes truncadas

Fonte: Brunton e Kutz (2019)

Dois gráficos que ajudam a entender a capacidade de simplificação de uma matriz
pelo SVD podem ser vistos na Figura 9. Nesse caso arbitrário, é possível identificar na
Figura 9a que os primeiros valores singulares são muito mais expressivos do que os outros,
principalmente por se tratar de um gráfico logarítmico. Mais interessante é o representado
na Figura 9b, onde temos a razão entre a soma acumulada até determinado valor singular
e a soma total destes. Num universo de 1500 valores singulares, os 100 primeiros deles -
ou pouco menos de 7% - trazem praticamente 80% das características da matriz inicial.
Reduziu-se drasticamente as matrizes U, Σ e V em Ũ, Σ̃ e Ṽ sem perdas equivalentes na
matriz gerada pelas simplificações.

2.3.3 Solução aproximada de um sistema linear qualquer

Muitos dos problemas físicos existentes podem ser representados como:

Ax = b (2.23)

onde a matriz A e o vetor b são conhecidos e o vetor x não, sendo a resposta do sistema.
Quando A é uma matriz quadrada e inversível, o problema é facilmente resolvido. No
entanto, quando A é uma matriz singular ou retangular, vários possíveis casos aparecem,
onde pode-se ter nenhuma, uma ou infinitas soluções.

2019)
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Figure 1.4 (a) Singular values σk . (b) Cumulative energy in the first k modes.
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Figure 1.5 Correlation matrices XX∗ and X∗X for a matrix X obtained from an image of a dog. Note
that both correlation matrices are symmetric.

dominant correlations in the data X. The relationship between the SVD and correlations in
the data will be explored more in Section 1.5 on principal components analysis.

Interpretation as Dominant Correlations
The SVD is closely related to an eigenvalue problem involving the correlation matrices
XX∗ and X∗X, shown in Fig. 1.5 for a specific image, and in Figs. 1.6 and 1.7 for generic
matrices. If we plug (1.3) into the row-wise correlation matrix XX∗ and the column-wise
correlation matrix X∗X, we find:

XX∗ = U
[
!̂

0

]
V∗V

[
!̂ 0

]
U∗ = U

[
!̂2 0
0 0

]
U∗ (1.7a)

X∗X = V
[
!̂ 0

]
U∗U

[
!̂

0

]
V∗ = V!̂2V∗. (1.7b)

(a) Valores singulares
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dominant correlations in the data X. The relationship between the SVD and correlations in
the data will be explored more in Section 1.5 on principal components analysis.

Interpretation as Dominant Correlations
The SVD is closely related to an eigenvalue problem involving the correlation matrices
XX∗ and X∗X, shown in Fig. 1.5 for a specific image, and in Figs. 1.6 and 1.7 for generic
matrices. If we plug (1.3) into the row-wise correlation matrix XX∗ and the column-wise
correlation matrix X∗X, we find:

XX∗ = U
[
!̂

0

]
V∗V

[
!̂ 0

]
U∗ = U

[
!̂2 0
0 0

]
U∗ (1.7a)

X∗X = V
[
!̂ 0

]
U∗U

[
!̂

0

]
V∗ = V!̂2V∗. (1.7b)

(b) Razão da soma cumulativa sobre a soma
total dos valores singulares

Figura 9 – Análise gráfica dos valores singulares

Fonte: Brunton e Kutz (2019)

Um sistema indeterminado onde A ∈ Cm×n e n ≫ m, ou seja, a matriz é mais
larga do que alta, têm-se menos equações do que incógnitas. Geralmente tais sistemas
apresentam posto completo de coluna por terem mais destas do que o necessário. Por isso
se trata de um sistema indeterminado, já que não existem valores em b suficientes para
determinar uma única solução de x.

Por outro lado, sistema sobredeterminado onde A ∈ Cm×n e n ≪ m, ou seja, a
matriz é mais alta do que larga, têm-se menos equações do que incógnitas. Logo tais
sistemas não podem apresentar posto completo de coluna por terem menos destas do que
o necessário. Por isso se trata de um sistema sobredeterminado, garantindo-se que existem
valores em b que não tem solução em x. A única forma, no caso, de existir solução é se b

está no espaço de colunas de A (BRUNTON; KUTZ, 2019).

Para ambos os casos, existem resultados aproximados considerados ideais. Para os
sistemas indeterminados onde existem infinitas soluções, espera-se encontrar a matriz x

onde sua norma de Frobenius ∥x∥F é mínima. Já no caso sobredeterminado, com nenhuma
solução exata, temos que ∥Ax − b∥F deve ser mínima. Solucionando as aproximações
acima por SVD, deve-se tomar a matriz truncada equivalente A = ŨΣ̃Ṽ∗, de forma que é
possível invertê-la e obter a pseudo-inversa de Moore-Penrose 3:

A† = ṼΣ̃−1Ũ∗ =⇒ A†A = Im×m (2.24)

3 A matriz pseudo-inversa de Moore-Penrose, descrita pela primeira vez por Moore (1920) é a
mais conhecida generalização da inversão de uma matriz e muito utilizada para retratar a
melhor solução para sistemas lineares sem solução exata (BEN-ISRAEL; GREVILLE, 2003)
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Substituindo na Equação 2.23, a solução x nos termos acima indicados vale:

A†Ax = A†b =⇒ x̃ = ṼΣ̃−1Ũ∗b (2.25)

Substituindo de volta a solução encontrada na Equação 2.25 na Equação 2.23,
têm-se:

Ax̃ = ŨΣ̃Ṽ∗ṼΣ̃−1Ũ∗b =⇒ Ax̃ = ŨŨ∗b (2.26)

Como ŨŨ∗ não é necessariamente a matriz identidade, x̃ será a solução exata
quando b está dentro do espaço de colunas de Ũ e portanto no espaço de colunas de A

(BRUNTON; KUTZ, 2019).
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3 METODOLOGIA

Neste capítulo, serão apresentadas as duas etapas principais deste trabalho: a criação
e a execução da ferramenta ligada ao cálculo da linha sustentadora e dos coeficientes
aerodinâmicos tridimensionais e os mesmos passos para a ferramenta relacionada ao modelo
de baixo custo e decomposição em valores singulares. Na Figura 10 é possível ver com
mais detalhes essas etapas e suas interações.

Ferramenta para 
cálculo da linha 
sustentadora

Resultados 
aerodinâmicos 
das asas finitas

Divisão dos 
resultados

Ferramenta para 
criação dos diversos 

casos

Base de dados com as 
atributos geométricos e 

da aerodinâmica 
bidimensional

Resultados para 
criação do modelo  

para criação
do modelo

Resultados 
aerodinâmicos 
das asas finitas

para  teste
do modelo

Modelo inicial

Criação do
modelo

de baixo custo

Teste

Medidas de 
confiabilidade do 

modelo

Modelo de
baixo custo final

não atende
expectativas

atende
expectativas

Figura 10 – Fluxograma da metodologia

3.1 Ferramenta para cálculo da Linha Sustentadora

3.1.1 Ferramenta inicial e modificações

Uma análise dos coeficientes aerodinâmicos de inúmeras configurações de asas
trapezoidais será feita, utilizando-se a Teoria da Linha de Sustentação. Tal escolha se
deve ao modesto poder computacional de máquinas domésticas para lidar com métodos
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Tabela 1 – Valores das entradas fixas

Atributo Detalhe Valor
U velocidade do escoamento 1
cr tamanho da corda na raiz da asa 1

Nelem número de divisões para discretização da asa 50

Tabela 2 – Variação das características geométricas e aerodinâmicas dos casos avaliados

Atributo Detalhe Mínimo Máximo Casos
AR alongamento da asa 6 14 21
λ afilamento da asa 0.1 1 19
α ângulo de ataque da asa no escoamento −15◦ 15◦ 16
a0 inclinação da curva Cℓ × α 1.8π 2.2π 5
αℓ0 ângulo de ataque para sustentação nula −5◦ 0◦ 6
θ torção geométrica na ponta da asa −3◦ 3◦ 7

Total 1340640

mais complexos, como por exemplo, a dinâmica dos fluídos computacional (CFD), que
apresentaria resultados muito mais precisos, mas a um custo alto.

Para tanto, uma ferramenta computacional já disponível para o cálculo dos coefici-
entes aerodinâmicos pelo método escolhido foi utilizada. Essa ferramenta implementada
em Python apresenta sua solução através do método numérico descrito na Seção 2.2.
Uma explicação metodológica desta implementação não foi abordada por não estar ligado
diretamente ao objetivo do trabalho, mas pode ser encontrada em Liorbano (2019).

Esta ferramenta computacional se mostrava útil para cálculos de uma única con-
figuração e sem as características de entrada optadas para as análises. Para tanto, uma
modificação no código foi feita, de forma a adequá-lo a necessidade, sem, no entanto,
alterar a essência de cálculo deste.

3.1.2 Entradas

Podemos separar as entradas em fixas e variáveis. As entradas fixas se tratam das
características que não se alteram entre os diversos casos analisados. Elas estão listadas
na Tabela 1.

Já as entradas variáveis são as características geométricas ou aerodinâmicas bidi-
mensionais que vão variar para cada caso. Decidiu-se por seis desses atributos, de forma
a possibilitar uma análise ampla de asas trapezoidais. Para cada uma dessas variáveis,
um valor mínimo, um máximo e o número de casos foi definido. Essas informações estão
listadas na Tabela 2.

Para a criação da base de dados de entradas, com suas 1.3 milhão de asas trape-
zoidais, seis laços, um inserido dentro do outro, foram programados, variando dentro das
características mínimas e máximas.
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Em meio aos testes iniciais, uma preocupação surgiu acerca do tempo necessário
para execução. Mesmo havendo uma máquina que poderia ficar totalmente alocada a esse
processo, a probabilidade de perda de dados no caminho aumentava, devido a possíveis
variações na rede elétrica, por exemplo. Para tanto, tendo em mente que o Python por
padrão só se utiliza do poder computacional de um thread da máquina, buscou-se utilizar
em totalidade o computador, acelerando o processo.

Hodiernamente, mesmo que as máquinas domésticas não cheguem perto de máquinas
específicas e clusters, é inegável que elas possuem capacidades muito maiores do que
há alguns anos. Dessa forma uma paralelização do código através do recurso joblib foi
implementada, sendo possível utilizar por completo a máquina em questão.

3.1.3 Saídas

Os três resultados obtidos pela ferramenta computacional são o coeficiente de
sustentação tridimensional da asa, o coeficiente de arrasto induzido e a distribuição da
circulação ao longo da envergadura. Para cada caso executado, o código, como forma de
minimizar a possibilidade de perda de dados adicionava a um arquivo não só os resultados,
mas também as entradas que levaram a eles. Com a paralelização, não necessariamente os
casos eram salvos na ordem em que foram criados, então escolheu-se agregá-los no mesmo
arquivo.

3.2 Ferramenta para análise preliminar dos resultados

Inicialmente, após os dados serem gerados, foi necessário uma análise preliminar
deles, tanto com relação à linha sustentadora e os coeficientes aerodinâmicos encontrados
quanto em relação a matriz SVD que pode ser gerada.

3.2.1 Análise dos coeficientes aerodinâmicos

Como informado na Seção 3.1.3, as saídas da ferramenta computacional são o
coeficiente de sustentação tridimensional da asa, o coeficiente de arrasto induzido e a
distribuição da circulação ao longo da envergadura. Nesta etapa, faz-se uma análise dos
dois primeiros.

De forma a reduzir a quantidade de gráficos encontrados, uma simplificação inicial
dos dados foi feita. Levando em conta que o valor de CL está diretamente ligado aos valores
do ângulo de ataque e do ângulo de ataque para sustentação nula, criou-se um valor único
que englobasse todos essas variáveis, a inclinação da curva do coeficiente de sustentação
da asa pelo ângulo de ataque efetivo, como explicitado:

CLα = CL

α − αℓ=0
(3.1)
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Com isso, valores de CLα em função das outras variáveis da Tabela 2 podem ser
descritos como:

CLα := f(AR, λ, a0, θ) (3.2)

Gráficos de CLα em função de pares de variáveis entre as acima, com os outros
valores fixos foram criados. Quando o θ aparece entre essas variáveis, é necessário fixar
também o valor de α e αℓ=0 pois são valores acoplados e não é possível obter um único
valor de CLα quando fixamos θ, mas variamos α ou αℓ=0.

3.2.2 Análise da matriz SVD gerada

Como forma de analisar a eficiência de representação dos resultados de forma
simplificada pelo SVD, algumas operações foram feitas. Uma das formas mais simples
de identificar se a matriz de resultados é de baixo posto é plotar os valores singulares
e a razão da soma acumulada pela soma total destes. Com isso, é possível identificar a
significância que é obtida com certo número pequeno de valores.

Além disso, outra forma utilizada seria calcular o erro e entre a matriz de dados
iniciais X e o dados criados pela multiplicação das matrizes truncadas ŨΣ̃Ṽ ∗, pela norma
de Frobenius entre a subtração de ambas a matrizes, abrindo-se a possibilidade de se plotar
os valores de e para cada incremente de valor singular, calculados pela seguinte equação:

e = ∥X − ŨΣ̃Ṽ ∗∥F (3.3)

3.3 Ferramenta para criação dos modelos reduzidos

O objetivo final deste trabalho se encaminha para a criação de um modelo reduzido
para os coeficientes aerodinâmicos da asa tridimensional que considere todas as variáveis
avaliadas. Esse processo foi iniciado com um entendimento básico acerca das respostas,
como visto nas seções anteriores.

Um ponto importante e de interesse é especificar uma base de dados para criação
do modelo, quanto uma para verificação posterior. Dessa forma uma aferição livre de
uma possível tendência é possível. Para isso, criou-se um arquivo com 30% das linhas
dos resultados para criação do modelo e o os outros 70% para verificação utilizando uma
ferramente de escolha randômica disponível no pacote numpy do Python. Posteriormente
cada uma dessas bases foi utilizada de acordo com seu objetivo inicial.

3.3.1 Coeficiente de sustentação

A criação dos modelos foi iniciada pelo modelo do coeficiente de sustentação. Para
isso, teve-se como ponto de partida um modelo já estabelecido na literatura. O modelo
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escolhido foi o presente em Anderson (2016) e será nomeado assim:

CLAnderson
= a0

1 − a0
πAR

(α − αℓ=0) (3.4)

A partir dele, idealizou-se a inserção de uma série de novos termos que introduzissem
mais variáveis, de forma a obter resultados mais precisos. Uma atenção foi dada a relevância
física para acréscimo dos termos, como o fato de se obter coeficientes nulos quando o
ângulo de ataque efetivo e o θ forem nulos. A ferramenta foi implementada buscando a
seguinte formulação:

CLmodelo
= a0

1 − a0
πAR

[
(α − αℓ=0) · p1 + v2 · p2 + . . . + vn · pn

]
(3.5)

onde os valores pk são os coeficientes e vk o cálculo das variáveis da parcela, que podem
ser um conjunto delas acopladas. Vários modelos e testes foram criados e feitos ao longo
do trabalho.

3.3.2 Coeficiente de arrasto induzido

De forma análoga ao proposto acima, um modelo já amplamente aceito, que
chamaremos de Anderson, foi escolhido:

CDiAnderson
= C2

L

πAR
(3.6)

e o modelo intencionado também se trata do acréscimo de novos termos com as variáveis
não atendidas acima. Da mesma forma atentou-se à relevância física desses termos, de
forma a não termos resquícios de valor quando o coeficiente de arrasto induzido deve ser
nulo. A seguinte formulação será utilizada:

CDimodelo
= C2

L

πAR
·
[
p1 + p2 · v2 + . . . + pn · vn

]
(3.7)

onde os valores pk são os coeficientes e vk o cálculo das variáveis da parcela, como já
descrito.

3.3.3 Distribuição da circulação

Tentou-se seguir o mesmo método, de forma que ele se torne um padrão a ser
seguido para o estabelecimento de modelos reduzidos. No caso da circulação, pequena
adequações são necessárias, já que para os coeficientes um único valor era buscado e agora
espera-se obter uma distribuição. Além disso, não há na literatura modelo semelhante
aos utilizados acima. Dessa forma, os parâmetros serão multiplicados por distribuições de
circulação relevantes para os dados encontrados, retiradas da análise da decomposição em
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valores singulares das simulações, como representado no modelo a seguir:

Γ = U∞c
[
Γ1(p11v11 + p12v12 + · · · + p1nv1n)+

+ Γ2(p21v21 + p22v22 + · · · + p2nv2n) + . . .

· · · + Γm(pm1vm1 + pm2vm2 + · · · + pmnvmn)
]

(3.8)

onde Γm são as distribuições de circulação relevantes, vmn as parcelas calculadas a partir
dos parâmetros da asa e pmn os coeficientes relacionados às parcelas. Os valores de U∞,
que representa a velocidade do escoamento e de c, a corda, foram adicionados de forma
a estabelecer um multiplicativo para a circulação encontrada, pois os valores de Γ1 e Γ2

foram calculados tendo por base esses parâmetros unitários, como mostrado na Tabela 1.

3.3.4 Solução dos coeficientes

A solução dos coeficientes foi baseada na fundamentação apresentada na Seção
2.3.3. Com as parcelas de variáveis a serem utilizadas calculadas de acordo com cada caso
e o resultado esperado para os coeficientes aerodinâmicos, pode-se solucionar um sistema
de equações e encontrar os coeficientes. Os coeficientes podem ser calculados como:

Ax = b =⇒


v11 . . . v1n

... . . . ...
vm1 . . . vmn




p1
...

pn

 =


S1
...

Sn

 (3.9)

onde m indica o caso a ser avaliado e n a parcela da equação, de forma que v se trata
do cálculo da variáveis atrelados às parcelas e p aos coeficientes. O termo Sn faz alusão
ao valor encontrado pelas simulações. A ferramenta computacional busca encontrar os
melhores valores dos coeficientes para a redução do erro em geral.

No caso da circulação, como não existe apenas um valor de resultado para a
simulação, mas uma distribuição a abordagem foi levemente diferente, de forma que vmn e
Sn não contém mais somente um número, mas uma coluna de números relativos a cada
ponto da distribuição ao longo da envergadura. De forma a facilitar os cálculos, somente a
circulação de meia envergadura foi selecionada, devido ao caráter simétrico existente.

3.4 Análise do modelo

Como forma de constatar a eficiência do modelo criado, análises acerca dos erros
quando comparamos os resultados pela Teoria da Linha de Sustentação com os modelos,
tanto o de Anderson quanto o criado foram feitas.

O primeiro método de análise se deu utilizando a equação a seguir:

erro = ∥M − S∥F

∥S∥F

(3.10)
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onde M se trata da matriz de resultados encontrada pelo modelo para os parâmetros
analisados e S a matriz de resultados da simulação para os mesmos parâmetros. Atentou-se
à utilização da norma de Frobenius. Isso traz uma visão eficiente do erro proporcional
atrelado aos modelos.

O segundo método se deu com a criação de gráficos com pontos espalhados. Nas
abscissas têm-se o valor do coeficiente de sustentação das simulações e nas ordenadas o
valor y = M − S. Desse modo, é possível visualizar o quanto de erro existe para cada
amplitude de S. Esse método traz visões interessantes acerca da distribuição dos erros
encontrados pelo modelo, principalmente quando plotados em conjunto com o modelo de
Anderson.

Um aprofundamento também foi feito a fim de entender a distribuição desses
erros quando os relacionamos aos parâmetros das asas. Para isso, calculou-se a norma
de Frobenius como na Equação 3.10, mas somente para um parâmetro específico. Por
exemplo, para α = 10◦, tomou-se somente os resultados com essa característica para o
cálculo do erro. Com isso foi possível entender como o modelo reage a cada parâmetro.

Além disso, uma análise estatística também foi implementada. Nesse caso, calculou-
se o desvio padrão dos erros atrelados aos coeficientes como na Equação 3.4. Dessa forma,
foi possível adicionar aos modelos valores aos quais somados ao resultado indicarão os
limites relacionados à incerteza do modelo.
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4 RESULTADOS

Neste capítulo serão apresentados tanto os resultados relativos à linha de sustentação
e os coeficientes aerodinâmicos tridimensionais e suas relações com as entradas quanto as
observações acerca do SVD e o percurso para o modelo reduzido encontrado.

4.1 Influência dos parâmetros no coeficiente CLα

Como apresentado na Seção 3.2, gráficos acerca dos resultados do coeficiente de
sustentação foram criados a fim de identificar a dependência dos parâmetros utilizados para
a construção do modelo. É possível observar estes resultados na Figura 11 e as principais
observações são apresentadas abaixo.

• AR × λ (Figura 11a): gráfico com ordenadas relacionando o alongamento e as
abcissas o afilamento, com θ = 0◦ e a0 = 2π. É perceptível que o CLα cresce com o
aumento do alongamento e quando λ ≈ 0.3. Tal fato condiz com o fato de que asas
elipsoides e com grande alongamento são mais eficientes (ANDERSON, 2016).

• AR × a0 (Figura 11b): com λ = 0.5, e θ = 0◦ percebe-se aumento do CLα tanto
com o aumento do alongamento, pela melhora da eficiência quanto com o aumento
do a0 - inclinação da curva de Cℓ × α para o aerofólio

• AR × θ (Figura 11c): com λ = 0.5, a0 = 2π e αℓ=0 = 0◦ nota-se aumento do CLα

com o aumento do alongamento, e aumento de θ

• λ×a0 (Figura 11d): com AR = 10 e θ = 0◦ nota-se aumento do CLα com o aumento
de a0 e máxima eficiência com afilamentos próximos de 0.3

• λ × θ (Figura 11e): com AR = 10, a0 = 2π e αℓ=0 = 0◦ nota-se aumento do CLα

com o aumento de θ e máxima eficiência com afilamentos próximos de 0.3

• a0 × θ (Figura 11f): com AR = 10, λ = 0.5 e αℓ=0 = 0◦ nota-se aumento do CLα

com o aumento de θ e de a0

4.2 Criação dos modelos reduzidos

4.2.1 Coeficiente de sustentação

Iniciou-se o processo conferindo se um simples multiplicador no modelo de Anderson,
obtendo-se um primeiro modelo no formato explicitado na Seção 3.3.1:
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Figura 11 – Análise da sensibilidade de CLα em relação aos parâmetros de projeto

CLMendes
= 0.98 a0

1 − a0
πAR

(α − αℓ=0) (4.1)

Uma pequena melhora no erro foi encontrada, mas ainda não a esperada para um
modelo robusto. É possível ver a comparação dos erros na Tabela 3 e na Figura 12.

Continuou-se então a buscar um modelo mais eficiente. Dessa forma, intencionou-se
adicionar uma nova variável, no caso θ, de forma a adicionar mais refinamento, obtendo-se



49

Figura 12 – Comparação do erro do coeficiente de sustentação para o modelo 1

o segundo modelo:

CLMendes
= a0

1 − a0
πAR

[
0.981(α − αℓ=0) + 0.424θ

]
(4.2)

Uma redução significativa, como demonstrado pela Tabela 3 e pela Figura 13, de
aproximadamente 90%, foi encontrada nesse momento. Tal situação era esperada devido à
primeira análise observada na Figura 11, onde o parâmetro θ proporcionava mudanças
expressivas no valor de CLα.

Figura 13 – Comparação do erro do coeficiente de sustentação para o modelo 2

Ainda objetivando uma maior redução do erro, optou-se por adicionar termos
relacionados ao afilamento, já que esse parâmetro também promovia mudanças importantes
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no valor de CLα segunda a Figura 11. Dessa forma, duas parcelas foram criadas, de forma
a estarem acopladas aos parâmetros já existentes, obtendo-se a equação:

CLMendes
= a0

1 − a0
πAR

{[
(0.996 − 0.027λ)(α − αℓ=0)

]
+
[
(0.388 + 0.066λ)θ

]}
(4.3)

Com essa última adição, o erro foi reduzido à metade do segundo modelo, mudança
ainda expressiva. Tais dados podem ser observados na Tabela 3 e na Figura 14.

Figura 14 – Comparação do erro do coeficiente de sustentação para o modelo final

Tabela 3 – Comparação de erros do coeficiente de sustentação dos modelos

Modelo Erro na base de teste Erro na base total
Anderson 9.1451% 9.1440%
Mendes 1 8.9289% 8.9266%
Mendes 2 0.9936% 0.9930%
Mendes 0.5077% 0.5078%

É possível passar agora a análise em relação aos parâmetros da asa. A Figura 15
apresenta os gráficos acerca disso.

Pode-se perceber que o modelo apresenta erros pequenos para a maioria dos
parâmetros, menores do que 0.5%, exceto para afilamentos menores do que 0.1 e maiores
do que 0.9 e para ângulos de ataque entre −7◦ e 2◦. Dessa forma, concluí-se que mesmo
com as regiões onde os erros são maiores, esses ainda podem ser considerados baixos para
fins de estabelecimento de um modelo reduzido.
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Figura 15 – Média do erro do modelo de CL para cada parâmetro

4.2.2 Coeficiente de arrasto induzido

Tendo em vista a boa eficiência do modelo para cálculo do coeficiente de sustentação,
iniciou-se a criação do modelo para arrasto induzido utilizando-se o formato do modelo de
Anderson, mas com o CL encontrado acima. Dessa forma, obteve-se o seguinte modelo:

CDiMendes
= 1.042

C2
LMendes

πAR
(4.4)

Inicialmente, no primeiro modelo, é possível ver uma grande melhoria, de forma
a entender que utilizar um coeficiente de sustentação mais assertivo já é suficiente para
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Figura 16 – Comparação do erro do coeficiente de arrasto induzido para o primeiro modelo

melhorar o resultado, como podemos observar na Tabela 4 e na Figura 16.

Intencionando-se melhorar o resultado e levando em conta o grande número de
modelos que utilizam o coeficiente de Oswald e no equacionamento, tentou-se aplicar
alguma correção em função do valor do afilamento. Levou-se em conta o caráter próximo a
curvas quadráticas quando análises acerca do afilamento são feitas. Dessa forma, chegou-se
no modelo final ilustrado a seguir.

CDiMendes
=

C2
LMendes

πAR

(
1.029 − 0.022λ + 0.068λ2

)
(4.5)

A adição possibilitou uma ligeira melhora na assertividade do modelo, como visto
na Tabela 4 e na Figura 17.

Figura 17 – Comparação do erro do coeficiente de arrasto induzido para o modelo final
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Tabela 4 – Comparação de erros do coeficiente de arrasto induzido dos modelos

Modelo Erro na base de teste Erro na base total
Anderson 13.3220% 13.3158%
Mendes 1 2.6047% 2.6045%
Mendes 2.1801% 2.1791%
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(f) Erro do CDi para θ

Figura 18 – Média do erro do modelo de CDi para cada parâmetro

Pode-se perceber que o modelo apresenta erros para a maioria dos parâmetros
como demonstrado pela Figura 18, mas estes são menores do que 3.5%, exceto para para
ângulos de ataque entre −6◦ e 1◦. É possível concluir, no entanto, que mesmo com erros
no máximo para esses casos, ainda assim podem ser considerados baixos para fins de
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estabelecimento de um modelo reduzido.

4.2.3 Distribuição da circulação

Iniciou-se a criação do modelo da distribuição de circulação através de uma avaliação
da decomposição em valores singulares da matriz de resposta da circulação, tendo-se
inicialmente a análise dos próprios valores singulares, representada na Figura 19.

É possível observar na Figura 19a que os valores singulares inicias, aqueles que
indicam maior significâncias das linhas de V , são realmente bem maiores do que os outros,
ainda mais considerando que se trata de um gráfico em escala logarítmica. Tal situação
fica mais clara com a Figura 19b, onde o acumulado da soma dos valores singulares chega
a 98.5% da soma de todos estes quando escolhemos somente os 2 primeiros.
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Figura 19 – Análise gráfica dos valores singulares do SVD criado para a circulação

Representando de forma mais assertiva ainda o erro referente a simplificação
comparadas a matriz original, continua-se a constatar o resultado acima, como podemos
ver na Figura 20.

Com isso, no caso dos resultados da circulação temos ótimas aproximação com o
uso da matriz truncada com dois postos, valor muito menor do que os 51 originais.

Continuando a análise do SVD, pode-se ainda adentrar nas propriedades da matriz
V . Para tanto, plotou-se na Figura 21 as primeiras linhas da matriz V de forma a visualizar
os padrões encontrados nas distribuições de circulação. Os valores numéricos relacionados
aos pontos plotados estão disponíveis na Tabela 7 no Apêndice A.

Tendo por bases essas informações, tem-se a base de circulações relevantes do
modelo apresentado na equação 3.8.

Iniciou-se o modelo adicionando um termo relacionado ao coeficiente de sustentação
encontrado na Seção 4.2.1, que será importante para indicar a amplitude das distribuições
utilizadas. Com isso, o primeiro modelo é dado por:
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Figura 20 – Erro de Frobenius entre a matriz simplificada e original
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Figura 21 – Principais circulações de V

ΓMendes = U∞cCL,Mendes

(
1.771Γ1 − 0.003Γ2

)
(4.6)

Um erro alto foi encontrado como é possível observar na Tabela 5, fato condizente
com o esperado, já que não considera-se parâmetros importantes à distribuição da circu-
lação. Continuando, optou-se por inserir um termo relacionado ao alongamento. Como
implementado no modelo do arrasto induzido, o valor do inverso de AR foi escolhido,
gerando-se o seguinte modelo:

ΓMendes = U∞cCL,Mendes

[(
1.729 − 0.178

AR

)
Γ1 +

(
0.025 − 0.526

AR

)
Γ2

]
(4.7)

Houve, com essa adição, pequena alteração no erro, como visualizado na Tabela 5.
Com isso, um novo parâmetro foi adicionado, o de afilamento e o alongamento foi retirado,
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devido ao sua baixa influência no modelo. Novamente, como estabelecido no modelo de
CDi, termos semelhantes a uma função quadrática foram inseridos.

ΓMendes = U∞cCL,Mendes

[(
0.980 + 1.431λ − 0.134λ2

)
Γ1+

+
(
−0.324 + 0.598λ − 0.085λ2

)
Γ2

]
(4.8)

De fato, com essa última adição foi possível chegar num modelo muito mais assertivo,
como demonstrado pela Tabela 5.

Tabela 5 – Comparação de erros da distribuição de circulação dos modelos

Modelo Erro na base de teste Erro na base total
Mendes 1 22.0874% 22.0957%
Mendes 2 22.0710% 22.0793%
Mendes 4.9131% 4.9119%

De forma a aprofundar a análise das medidas de erros, como já implementado
para os outros modelos, uma avaliação deles em relação aos parâmetros foi feita, como
representado pela Figura 22. Nela, pode-se concluir que os erros são praticamente constantes
e baixos para a maioria dos parâmetros, com exceção quando α varia entre −8◦ e 4◦. Tal
resultado é condizente com as outras análises já feitas e esperado devido à relação acoplada
do modelo de distribuição da circulação com o modelo de coeficiente de sustentação.

4.3 Modelos reduzidos finais e suas variações estatísticas

Como forma de aperfeiçoar os modelos, uma análise estatística foi implementada.
A Figura 23 apresenta os histogramas relacionados ao erro de cada modelo. O histograma
tem por objetivo entender a frequência em que cada valor de erro está presente. Pode-se
concluir que os modelos apresentam resultados muito próximos aos das simulações, pois os
erros com maior frequência são os próximos de zero. Além disso, o desvio padrão dos erros
também não são elevados.

Em posse dessas informações, intenciona-se adicionar um fator aos modelos bus-
cando trazer uma aspecto de confiança nos resultados. A Tabela 6 apresenta tais valores.

Tabela 6 – Valores estatísticos de confiança dos modelos

Modelo µ σ ∆68% ∆95% ∆99.7%
CL 0.000156 0.004400 0.004531 0.008779 0.013212
CDi -0.000113 0.004400 0.000922 0.001708 0.002528
Distribuição da circulação 0.0001502 0.014961 0.015043 0.029940 0.044349

Com isso, obtêm-se os modelos finais com intervalos de confiança:
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(f) Erro da distribuição de circulação para θ

Figura 22 – Média do erro do modelo da distribuição de circulação para cada parâmetro

CLMendes
= a0

1 − a0
πAR

{[
(0.996 − 0.027λ)(α − αℓ=0)

]
+
[
(0.388 + 0.066λ)θ

]}
±∆C,CL

(4.9)

CDiMendes
=

C2
LMendes

πAR

(
1.029 − 0.022λ + 0.068λ2

)
± ∆C,CDi

(4.10)
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Figura 23 – Histograma dos erros para os modelos criados

ΓMendes = U∞c

{
CL,Mendes

[(
0.980 + 1.431λ − 0.134λ2

)
Γ1+

+
(
−0.324 + 0.598λ − 0.085λ2

)
Γ2

]
±∆C,circ

}
(4.11)

onde ∆C são os valores apresentados na Tabela 6, podendo ser utilizados para 68, 95 ou
99.7% de confiança.
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5 CONCLUSÕES E PERSPECTIVAS

Ao longo do presente trabalho, pôde-se ter uma visão geral acerca da teoria da
linha sustentadora e de métodos computacionais para o seu cálculo, além da possibilidade
de redução do modelo através da decomposição em valores singulares.

A criação de modelos simplificados possibilitaram, com poucos parâmetros de
entrada, ótimas aproximações quando comparadas aos valores encontrados através das
simulações com teoria da linha sustentadora para o coeficiente de sustentação, o coeficiente
de arrasto induzido e a distribuição da circulação sobre a envergadura, com erros médios
inferiores à 0.5%, 2.5% e 5.0%. Modelos que foram propostos com atenção aos significados
físicos. Dessa forma, a possibilidade apresentada na introdução, de eficiência num início de
projeto se mostrou viável, já que simulações poderiam ser feitas muito mais velozmente a
um custo computacional inferior.

Além disso, a plausibilidade de expansão dos métodos utilizados para outras áreas
não só da Engenharia Aeronáutica - ou até mesmo da engenharia em si - pode ser atingida
com a metodologia utilizada, possibilitando à outros alcançarem resultados semelhantes.

Ainda, é inegável que o presente trabalho somente estabelece um protótipo, que
pode ser futuramente refinado e então atingir mais adequados e complexos modelos, não
deixando de lado o objetivo de abreviar projetos e potencializar os resultados destes. Como
perspectivas de continuidade, propõe-se a análise considerando asas com enflechamento
e diedro, expandindo-se assim os modelos para outras configurações de asa, ou, ainda,
a aplicação de procedimentos análogos aos aqui propostos utilizando-se ferramentas
computacionais de maior fidelidade. Nesse sentido, propõe-se o desenvolvimento de modelos
reduzidos para previsão dos coeficientes aerodinâmicos de aerofólios considerando efeitos
não lineares, como estol.
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APÊNDICE A – CIRCULAÇÕES PARA O MODELO DE DISTRIBUIÇÃO DE
CIRCULAÇÃO

Na Tabela 7 é possível obter os valores numéricos das circulações relevantes.

Tabela 7 – Valores da distribuição de Γ1 e Γ2

% da Γ1 Γ2semi-envergadura
0% -0,19824 0,295496
2% -0,194971 0,259162
4% -0,190654 0,214572
6% -0,185853 0,167883
8% -0,180866 0,122275
10% -0,17583 0,07917
12% -0,170813 0,03929
14% -0,165846 0,00297
16% -0,160933 -0,029663
18% -0,156066 -0,058597
20% -0,151222 -0,08388
22% -0,146375 -0,105596
24% -0,14149 -0,123838
26% -0,136526 -0,138701
28% -0,131435 -0,150267
30% -0,126162 -0,158605
32% -0,120641 -0,163759
34% -0,114793 -0,165739
36% -0,108514 -0,164512
38% -0,101671 -0,159984
40% -0,094074 -0,151967
42% -0,085426 -0,140104
44% -0,075339 -0,123858
46% -0,062346 -0,101347
48% -0,048083 -0,074279
50% 0 0


