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“Tocar uma nota errada é insignificante
Tocar sem paixdo é inaceitdvel.”

- Ludwig van Beethoven






Resumo

A controlabilidade de sistemas dindmicos tem sido estudada tanto pela engenharia quanto pela
matemadtica a fim de se obter técnicas e mecanismos de controle eficazes e robustos. Com o ad-
vento da Internet e cada dia mais sistemas interconectados, o estudos da controlabilidade de sis-
temas em rede tem se apresentado como um desafio e requerer técnicas mais sofisticadas das que
ja sdo atualmente empregadas. O presente trabalho estuda a controlabilidade de redes complexas
dindmicas e o como suas estruturas alteram a controlabilidade quando seus nés sao substituidos
por nés multidimensionais. Serd demonstrado que para nés multidimensionais suas dinamicas
internas ndo influenciam na controlabilidade geral quando a estrutura global da rede for forte o
suficiente. Também serda demonstrado que, para quase toda dindmica interna de cada n6, a rede
permanece completamente controlavel.

Palavras-chave: controlabilidade, sistemas dindmicos, equacoes diferenciais, redes complexas, gra-

fos, redes dindmicas.






Abstract

Controllability of dynamical systems has been studied by engineering and mathematics in order
to develop efficient and robust control techniques and mechanisms. With the advent of Internet
and each day more systems interconnected, the study of controllability of networked systems has
been presented as a challenge and require more sofisticated techniques. The present work studies
controllability of dynamical complex networks and how their structures can change controllability
when their nodes are substituted by multidimensional nodes. It will be demonstrated that for mul-
tidimensional nodes their internal dynamics do not influence controllability when the network’s
global structure is strong enough. Also it will be shown that for almost all internal dynamics of each

node the network remains completely controllable.

Keywords: controllability, dynamical systems, differential equations, complex networks, graphs,

dynamical networks.
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1 Introducao

O estudo das Leis do Movimento de Isaac Newton juntamente com o desenvolvimento do célculo
diferencial e integral de Gottfried W. Leibniz, possibilitaram a consolidacdo de uma area de estudos
que hoje denomina-se Equagcoes Diferenciais.

Simplificadamente pode-se dizer que uma equacao diferencial estabelece relagées entre gran-
dezas e suas taxas da variacdo. Dentro do contexto do estudo do movimento, a principal equacdo
diferencial estabelecida por Isaac Newton afirma que a taxa de variacdo da quantidade de movi-
mento de um ponto material é igual ao somatério das forcas externas aplicadas a ele (ver [1]). Em

notacdo matemadtica, escreve-se
(ext) _ apP

dat
em que F©Y ¢ a resultante de todas as forcas externas e P é a quantidade de movimento do ponto
material em questao.
Para a engenharia é de grande interesse o estudo de sistemas cuja dindmica pode ser descrita
por equacdes diferenciais. Estes sistemas dindmicos sdo geralmente constituidos por uma entrada,
varidveis de estado internas que representam o funcionamento do sistema, e saidas (ver [2]). A

Figura 1 representa um modelo de sistema dindmico com entradas e saidas e varidveis internas.

=u(t) —E=fx,u)— y=| : |=Txu

Um Vi

Figura 1 — Representacdo de um sistema dinamico

Na Figura 1 f é uma func¢do que relaciona as varidveis internas, as entradas e a taxa de variacao
das varidaveis internas do sistema; T' € uma transformacao que estabelece a saida que é produzida
a partir de cada varidvel interna e cada entrada do sistema.

A Teoria de Controle se preocupa em estudar mecanismos que permitam se obter as saidas de-
sejadas de um sistema dindmico através da manipulacdo das entradas deste sistema ([2]). Mais
precisamente, um dos problemas abordados neste trabalho é o de se determinar quando é possivel
se obter func¢des de entrada capazes de levar o sistema de um estado inicial para um estado final
desejado.

Com o constante crescimento da Internet, diversos sistemas estdo a cada dia se conectando
mais e mais com outros sistemas e criando milhares de redes cujo comportamento depende de
muitas varidveis cujo controle é muitas vezes invidvel. A Internet das Coisas (Internet of Things - IoT,
as Redes Inteligentes de Energia (Smart Grids), veiculos autbnomos que trocam informacodes entre
si sdo exemplos de sistemas dindmicos conectados em rede e que exigem um modelo matemético
mais sofisticado para seu entendimento e manipulacao.

O presente trabalho busca obter bases matematicas generalistas para se tratar situacdes em que
sistemas dinamicos estdo conectados em rede e interagindo entre si. Busca-se entender como a
estrutura de conexdes desta rede influencia a controlabilidade do sistema como um todo e como

os sistemas individuais afetam globalmente a rede formadas por eles.
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2 Sistemas Dinamicos

2.1 Equacoes Diferenciais Ordindrias

Uma Equacgdo Diferencial Ordindria é uma equagdo cuja incégnita € uma funcgao e que estabelece
uma relagdo entre a fungdo incognita e suas derivadas.

Seja n € N um natural positivo, U € R x R” um aberto e f : U — R” uma funcao continua em
U. Consideremos o problema de se encontrar uma funcéo x : I — R”, sendo I um intervalo e x

diferencidvel em I, cujo grafico esteja contido em U e tal que
x(e)=f(t, x(1)) 2.1

para qualquer t € 1.
A Equacdo 2.2 é a equacdo diferencial que representa este problema.

x=f(t,x) 2.2)

Dado um ponto (fy, xg) € U (fH € R e x5 € R"), se, além de se exigir que a funcdo x : I — R”
satisfaca a Equacéao (2.1), também se exigir que

x(to) = xo, (2.3)

denominamos este um problema de valor inicial (PV.1.).

Um funcdo x, definida em um intervalo e diferenciavel neste intervalo, que satisfaca a Equacao
(2.1) é denominada uma soluc¢do da equacao diferencial; se satisfizer as Equacoes (2.1) e (2.3), é
solucao do problema de valor inicial.

O problema de valor inicial serd representado pelo par de equagoes

{ﬂﬂ=fﬂmwn

X(t()): Xo-

(2.4)

Conforme estda demonstrado no capitulo 10 de [3] sempre existe solucdo para um problema de

valor inicial (2.4). Mais precisamente, temos o Teorema 2.1.

Teorema 2.1 (Cauchy-Peano). Sejam f : U — R" uma fungdo continua no aberto U C R x R",
(g, Xo) € U um ponto ea > 0 e b > 0 reais tais que o retdngulo R, ,, = [ty—a, to+ a] x B(xy, b) C
U. Defina M como sendo uma cota superior de ||f(¢t, x)|| no retdngulo R, ;. Seja o niimero real
a =min{a, b/M}. Entdo existe (pelo menos) uma solucédo do problema de valor inicial definida no
intervalo fechado [ty —a, ty + a]. [ |

O Teorema 2.1 nos garante apenas a existéncia de solucdo para o problema de valor inicial, mas
sob suas hip6teses ndo ha necessariamente unicidade de solucdo, como € o caso do problema de
valor inicial a seguir.

Seja f:RxR — Rtal que f(t, x)=nx""1/" sendo n > 2 um natural qualquer fixado. Quer se

mostrar que o problema de valor inicial

{ﬂmznuuwww"

x(t) = Xo

(2.5)
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tem mais de uma solucao.
Para isto basta se observar que o caminho identicamente nulo, x(¢)=0 para todo ¢ €R, é solu-
¢do da Equacdo (2.5) e que a fungdo definida por (2.6)

(1) 0 1<0 (2.6)
X = .
t", >0

também é solucdo da Equacio (2.5).

Sobre o argumento (¢, x) € U da funcao f, diz-se que t é a varidvel temporal e que x é a varidvel
espacial.

A funcdo f : U — R" definida no aberto U C R x R" € lipschitziana na varidvel espacial em U

(ou simplesmente lipschitziana em U) quando existir uma constante real K > 0 tal que

f (e, %)= f(t, Yl < Kllx =yl

para quaisquer pontos (t, x), (t, y) € U cujas primeiras coordenadas sejam iguais. Diz-se ainda que
K é uma constante de Lipschitz ou que f satisfaz a condigdo de Lipschitz.
A fim de se garantir unicidade de solucdo do problema de valor inicial, a hip6tese adicional de

que a funcao f deve ser lipschitziana em U deve ser acrescentada, e isto nos fornece o Teorema 2.2.

Teorema 2.2 (Picard-Lindelof). Sejam f : U — R" uma fungdo continua no aberto U C R x R”,
(ty, Xo) € U um pontoea >0 e b > 0 reais tais que o retdngulo R, , = [ty —a, ty+a] x B(xy,b) C U.
Defina M como sendo uma cota superior de ||f(t, x)|| no retdngulo R, ;,. Seja o niimero real a =
min{a, b/M}. Se f é lipschitziana na varidvel espacial em R, ;,, entdo existe uma vinica solugéo do

problema de valor inicial definida no intervalo fechado [ty —a, ty + a]. ]

Observemos que a func¢ado f pode ser escrita como um vetor de n coordenadas do tipo f(¢, x) =
(fi(t, x),..., f(t, x)), sendo x = (x1, Xp,..., X,). Definimos a derivada parcial espacial de f como

sendo a funcao % :U — M(n) (em que M (n) é o conjunto das matrizes n x n) tal que

ofi,, o

s 2x X} 8xn(t'x)
(t,X)Hé(t,xh : . : 2.7)
9 fn 0 fn
5x1(t’x) 3xn(t'x)

Conforme descrito em [3], usando a desigualdade do valor médio, obtemos que, quando a de-
rivada parcial espacial de f for uma aplicagdo continua em U, f terd uma constante de Lipschitz
quando for restrita a um conjunto compacto. Portanto, pode-se trocar a hipétese de que f é lips-
chitziana no Teorema 2.2 pela hip6tese de que f tem derivada parcial espacial continua, o que é
mais simples de se verificar a fim de se garantir a unicidade da solucao.

Entende-se por solug¢do maximal do problema de valor inicial (2.4) um caminho diferencidvel
x : I - R" tal que, dada qualquer outra solucao %(¢): J — R"” do mesmo problema de valor inicial,
teremos, necessariamente, J C I e X(¢)= x(t) paratodo t € JNI. (Observemos que J NI # 0 pois x
e X sao solucdes do mesmo problema de valor inicial.)

Conforme demonstrado em [3], temos o Teorema 2.3

Teorema 2.3. Nas condi¢oes do Teorema 2.2, existe uma tinica solug¢do maximal x : I — R" para o

problema de valor inicial (2.4). Além disso, I é um intervalo aberto. [ ]
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Doravante, quando nos referirmos a solu¢do de um problema de valor inicial, estaremos tra-
tando da solu¢do maximal do problema.

Um caso particular de equacao diferencial é quando a fun¢do f nio depende da varidvel tem-
poral. Mais precisamente, teremos f : E — R" em que E € R” é um aberto. Neste caso, teremos
que a Equacao (2.4) serd dada por (2.8)

{ x(t)=f(x(1)) o

x(t0)= Xo-

Quando f for uma transformacao linear T : R"” — R", e se A< M(n) for a matriz que representa

T na base canoénica de R”, a Equagdo (2.8) se resume a Equacdo (2.9).

{ %(t)=Ax(1))

x(t) = Xo

(2.9)

denominada equagdo diferencial linear.
Conforme demonstrado no primeiro capitulo de [4], toda equacao diferencial linear tem solucao

cujo dominio é toda a reta real e é dada pela Equacao (2.10),
x(t)=e'x, (2.10)

em que e’ é dado por

00 k
e”‘:Z(tA') . 2.11)
&kl

Muitas vezes é comum se escrever exp(tA) no lugar de e ‘4.

Em geral, dada uma sequéncia de matrizes de mesma dimensao {My };.cy, definimos

e’} N
D> M= NIEI;OZMIC 2.12)
k=0 k=0

quando este limite existir. E demonstrado também em [4] que a série apresentada na Equacao (2.11)
converge para qualquer matriz quadrada A.

2.2 Teoria de Controle

O problema cléssico que a teoria de controle se propde a estudar é o de se obter uma funcao u(t):
I — R™ tal que a equacgdo diferencial (2.13)

{ #(£)=a(t)x(t)+ Bu(r)

X(to) = Xo

(2.13)

tenha uma solug¢éo x : I — R” com um certo comportamento desejado. (Na Equagdo (2.13),a: I —
M(n) é uma funcao continua cuja imagem é uma matriz quadrada n x n e B é uma matriz n x m).
Em [3], demonstra-se que a solucdo maximal x de (2.13) tem como dominio o intervalo I. Em
particular, pode-se tomar I =R.
Agora vamos nos atentar ao caso em que a é constante, i.e., a(t)=A € M(n)paratodo t € I =
[y, t1]. O problema se reduz a Equagao (2.14)

{ #()=Ax(t)+ Bu(t)

X(tg)z Xo-

(2.14)
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cuja solucdo é dada pela Equacao 2.15

t

x(t):etA[e_t"AonrJ e_TABu(T)dT] (2.15)
to

paratodo t €[tg, ;]

Considere agora que I =R. Definimos que o sistema dado pela Equacao (2.14) é completamente
controldvel (c.c.) quando, dados quaisquer x, € R”, t; € R e x; € R”, existir um real #; > f; e uma
funcao u:[1y, ;] — R tal que, a solucdo x da Equagao (2.14) seja tal que x(#;) = x;.

A fim de se estudar a controlabilidade do sistema da Equagao (2.14), é conveniente definirmos
amatriz n x mn

U(A,B)=[B AB A?’B ... A"2%B A"'B] (2.16)

denominada matriz de controlabilidade associada a este sistema.

Conforme demonstrado em [5], temos o Teorema 2.4.

Teorema 2.4. Para que o sistema da Equacgdo (2.14) seja completamente controldvel, é necessdrio e
suficiente que a matriz de controlabilidade U (A, B) associada a este sistema tenha posto mdximo, i.e,
rank(U(A, B))=n.

Demonstragdo. Necessidade (=): suponhamos, por absurdo, que o sistema seja controldvel, mas
que rank(U (A, B)) < n. Entdo existiria (ver [6]) um vetor linha ¢ € R” néo nulo tal que

gB=0, gAB=0, ..., gA" 'B=0. (2.17)

Por hipdtese, existem t; > ¢y e u : [ty, 1;] — R” tais que, dados xy, x; € R" arbitrérios, teremos
x(f;) = x;. Em particular, podemos tomar x; = 0. Pela Equacao 2.15, e pelo fato de que e‘4 tem

inversa (ver [4]) para qualquer ¢ € R e qualquer A € M (n), podemos escrever

5]
-Xp = etOAf e " Bu(r)dr. (2.18)
I

0

Pelo Teorema A.1, podemos escrever
e A= (O + 1 ()A+... 4+ 1y (H)A"! (2.19)

para todo t €[#; t1], e assim, a Equacdo 2.18 se torna

3]
-Xp = etOAf (rO(T)I +r(T)A+...+ rn_l(T)A”_l) Bu(t)dr. (2.20)
fo
multiplicando os dois lados de 2.20 a esquerda por g, chegamos a conclusdo que g x; = 0. Como
Xy foi escolhido arbitrariamente, isto implicaria que g = 0, que estd em contradicdo com a forma
como ¢ foi escolhido. Portanto rank(U (A, B)) = n.
Suficiéncia (<): Por hip6tese, rank(U (A, B)) = n. Escolheremos arbitrariamente x,, x; € R”,

to R e t; > ty. Consideremos a matriz
I
— _ T
sz e ™BBTe ™ dr (2.21)
4

Primeiro provaremos que M é invertivel.



2.2. Teoria de Controle 25

Seja @ € R um vetor coluna qualquer e i, : [fy; f;] — R dada por y,(t) = a’ e~*4B. Teremos

entao ,

«"Ma= f TR =f g DRdz 20 2.22)
f 7

0
Assim, M é positiva semi-definida; portanto, serd ndo-invertivel se, € somente se, existir um & # 0
tal que @’ Ma = 0. Se fosse este o caso, em virtude da Equacéo 2.22, da continuidade de ', e da

continuidade da norma, teriamos /4(¢) =0 para todo ¢ €[ty; t;], 0 que implicaria que
&([—tA+%A2—...)B:0 (2.23)
para todo t €[ty; t;]. Desta maneira teriamos
@B=0, aAB=0, aA*B=0, ... (2.24)

implicando que rank(U (A, B)) < n (pois & # 0), o que vai contra a hipétese inicial. Entdo M € inver-
tivel.

Por causa da inversibilidade de M, podemos usar o sinal de controle u como sendo
u(t)=—BTe A MY (e A xy— e 11 x,). (2.25)

Ao se substituir 2.25 em 2.15, o valor da solu¢do no instante #; serd

Iy
— — AT — — —
x(tl)zetlA[e toAxo—f e " BBTe ™ M l(e " xy—e “Axl)dr]
I

0

i
=eh4 [e_toAxo— (J e_TABBTe_TATdT) MY (e7l0Ax,— e_tlel)] (2.26)
I

0

=el e xg— MM (e " xy—e " x )]

= xl ,
que era o que queriamos demonstrar. [ |

Observagdo: na demonstracdo do Teorema 2.4, a hipétese de que o sistema deva ser comple-
tamente controldvel, pode ser substituida por uma caracteristica ligeiramente mais abrangente.
Em um sistema completamente controldvel, garante-se simplesmente a existéncia de um instante
) > ty para o qual existe uma funcao u(t) que controla o sistema no intervalo [#, t;]; todavia, ob-
servemos que, a existéncia da funcdo u foi demonstrada para um instante arbitrdrio de t; > t,.
Portanto, a existéncia de um #; > £, que justifique um sistema ser controldvel, nos garante que sua
matriz de controlabilidade tem posto méaximo, implicando na possibilidade de uma escolha arbi-
traria de um instante #; > t,.

Fica entdo estabelecido o Coroldrio 2.4.1, deduzido diretamente da demonstra¢do do Teorema
2.4.

Coroldrio 2.4.1. Sejaum sistema descrito pela Equagdo (2.14). Se, dados quaisquer xo € R" e x; € R",
seexistir t| > ty para o qual exista uma fungdo de controle u : [ ty, t;] — R™ que proporcione x(t;) = x1,

entdo para qualquer t, > ty também serd possivel se obter uma fungdo u com tal propriedade.

Em [5] também encontra-se o Corolario 2.4.2 do Teorema 2.4.
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Corolario 2.4.2. Serank(B)= p, entéo a condigéo sobre a matriz de controlabilidade no Teorema 2.4
sereduz a
rank((B AB ... A" PB])=n. (2.27)

Demonstragdo. Definamos a matriz
U.=[B AB ... A*B] (2.28)

para todo natural k e Uy =[B]=B.

Primeiro provaremos que, se rank(U;) = rank(U,, ), entdo, rank(U;) = rank(U; ;) = rank(Uj,,) =
rank(Up3)=....

De fato, se rank(U;) = rank(Uj, ), isto significa que cada coluna da matriz A*1B é combina-
¢do linear das colunas de U;. Ou seja, a matriz A aplicada em uma coluna de U, resulta em uma
combinac3o linear de colunas de U;.

Como as colunas de U, sdo combinacoes lineares das colunas de Uj, entdo A aplicada em uma
colunade U;,; também resultard em uma combinacao linear de colunas de Uj e portanto, se o posto
de U for igual ao posto de U;,, o posto de Uy, serd igual ao posto de Uy, ; e U;. O resultado segue
por inducao.

Tomemos o menor [ natural para o qual o posto de U; ndo aumenta. E entdo suficiente provar-
mos que, quando rank(B)=p, [ < n—p.

De fato, pela forma como ¢ foi escolhido, paratodo k tal que 0 < k < /—1, o posto de U, aumenta
pelo menos uma unidade quando k aumenta de uma unidade. Como rank(B) =rank(U) = p, tere-
mos que p +¢ <rank(U;) < n. Portanto, { < n—p. [ |
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3 Redes Complexas

3.1 Conceitos gerais

Fixemos um natural n € N. Denominaremos V = {i € N; 1 <i < n} o conjuntos dos vértices ou nds
e E C V2 o conjunto das arestas (edges em inglés). Um grafo orientado (ou rede orientada) é o par
G =(V, E) formado por nés e arestas.

Intuitivamente, o conjunto das arestas indica quando um né aponta para outro. Mais precisa-
mente, diremos que o né i aponta para o né j quando (i, j) € E. Pensando do ponto de vista de
trafego de informacao, o n6 i envia informacao para o né j quando (i, j)€ E.

Uma outra maneira de representar uma rede orientada, descrita no segundo capitulo de [7], é
usar o conceito de matriz de adjacéncias.

A matriz de adjacéncias A = (a;;) (ver [7]) da rede orientada G = (V, E) € definida da seguinte

forma:

aijz{l, se(j,i)eE a1

0, se(j,i)¢E.

Uma generalizacdo do conceito de redes orientadas sdo as redes orientadas ponderadas. Neste
caso, a matriz de adjacéncias seria definida por

w;; R\ {0}, se(j,i)eE
aij= ij \ {0} (] ) 3.2)
0, se(j,i)¢E.
em que w;; sdo denominados os pesos de cada aresta (j, i) € E.
Em [8] o conceito de matriz de adjacéncias é usado para descrever o sistema dinadmico
x(t)=Ax(t)+ Bu(t) 3.3)
em que A é amatriz de adjacéncias de uma rede, x()= (xl(t), ey Xi(8), .., xn(t)) € R é um vetor

cujas coordenadas representam, por exemplo, a quantidade de informacao que passa pelo i-ésimo
noé desta rede de comunicagdo, B € uma matriz n x m e u(t) = (ul(t), ey ui(t), .., um(t)) e R™
é um vetor cujas coordenadas sdo sinais de controle que agem sobre alguns nés podendo, even-
tualmente, algum né néo ser controlado diretamente por nenhum dos sinais u;(¢). Na verdade,
podemos sempre considerar que m = n, u(t) € R"”, B M(n) e escolhermos a k-ésima coluna de B
preenchida com zeros a fim de ndo se considerar a k-ésima entrada de controle. No caso de cada
sinal de controle ser aplicado exclusivamente em um tnico né, pode-se escolher uma ordenacao
conveniente dos noés de tal forma que B seja uma matriz diagonal.

Uma questdo natural seria: qual a menor quantidade de nés que precisam ser diretamente con-
trolados a fim de se conseguir controlar a rede por inteiro?

Pelo Teorema 2.4, esta rede é completamente controldvel se, e somente se, a matriz de contro-
labilidade associada a ela tiver posto méximo.

A tarefa se resume entdo a encontrar as matrizes diagonais B com o menor nimero possivel de

entradas ndo nulas tais que a matriz de controlabilidade

[B AB A’B ... A" 2B A"'B] (3.4)
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tenha posto maximo. Notemos que se tomarmos B = I,,, ou seja, tivermos sinal de controle sobre
todos os nés da rede, trivialmente, o sistema sera controlavel.

Sejam dj,...,d, os elementos da diagonal de B, e dy,,...,d),  0s elementos ndo nulos na dia-
gonal. Estudar a controlabilidade do sistema (3.3) é equivalente a se estudar a controlabilidade no
caso em que dy, = ... =dj, =1, pois sempre existe uma funcdo linear invertivel que transforma

uma matriz na outra. Isto €, sempre existe uma matriz invertivel T = {¢;;} € M(n) tal que

0 T = 0 =R (3.5)

m

Para se verificar isto, basta se tomar

dlsei=jeieldy, ..., di}
tij=4 Lsei=ji¢{dy, ..., dg} (3.6)
0,sei#j

Com isto, teremos que rank(U (A, B)) = rank(U (A, B’)). A fim de se encontrar quais n6s precisam
ou nio serem controlados, consideram-se as 2" — 1 matrizes diagonais B’ ndo nulas cujas entradas
sejam 1 ou zero e calcula-se o posto das matrizes U(A, B’). O ntmero de entradas ndo nulas da
matriz B’ com o menor nimero de entradas ndo nulas que faz U (A, B’) ter posto maximo é o numero
minimo n.,;, de nés que precisam ser controlados a fim de se obter completa controlabilidade na
rede.

A possibilidade de se substituir os elementos ndao nulos por 1 nas matrizes que representam a
rede estd relacionada com a controlabilidade estrutural (ver [9] e [10]) da rede. Intuitivamente, o
fato de a controlabilidade da rede néo ser alterada pela transformacgdo T' da Equacao 3.5 significa
que estas redes sdo estruturalmente equivalentes.

Um minimum driver set (MDS) é qualquer conjunto de nds de tamanho n.,;, que, quando con-
trolados, permitem a completa controlabilidade da rede.

Para exemplificar, consideremos a rede cuja dindmica é descrita pela Equacao (3.7).

) =13 0 1 || no)|+]0 2 0| w], 3.7)
X'3(t) 02 0 X3(t) 0 0 0 u3(t)
A B

A Figura 2 ilustra este caso.
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Up

X2
Figura 2 — Exemplo de rede dindmica
Neste caso, apesar de a rede ser controlada por duas entradas atuando em dois nés distintos,

seus minimum driver sets sao qualquer um dos conjuntos com um Unico noé, pois se tomassemos

B como sendo qualquer uma das matrizes

1 00 0 0O 0 0 0
0 0 0¢{, 010 ou 0 0 O
0 0 0 0 00 0 01

o sistema ainda seria completamente controlavel.

3.2 Generalizacao para n6s multidimensionais

Generalizando o problema , podemos pensar que cada né é um sistema dinamico por si s6 e que
interage com os demais nés de maneira semelhante a descrita na Equacdo (3.3).
Inicialmente consideremos que o i-ésimo n6é de uma rede seja representado por um sistema
dindmico da forma
%;(t)=F x;(¢)+ Bno u;(1). (3.8)
em que x;(1)=(x;1(2), ..., x;p(2)) €RP, u;(1) = (ujn(2), ..., u;(t)) €RP F, By € M(p).
Considerando agora que a matriz de adjacéncias da rede seja A, vamos modelar o problema

através da Equacao (3.9)
i(t) = (A® I, + 1, ® F)x(t) + (B® Byg)u(t), (3.9

em que ® é o produto de Kronecker (Definicdo A.2), I, e I, sdo as matrizes identidade de ordens n

e p respectivamente,

x(0)=(x02() oy x1p (6, ooy X2y X (8], ooy Xa(E) ooy X (1)) ER™P (3.10)

()= (uni(0) oo tap(0), oy un(E)yos tip(0), ooy Una()s-s U (1)) ER™P. (3.11)

Retomando o exemplo anterior, se uma rede com nés unidimensionais fosse descrita conforme

a Equacao (3.7),

o) =13 0 a1 || m@) [+]0 2 0| wo], 3.7)
S S——
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e o sistema dindmico do i-ésimo né representado pela Equacéo 3.12,

xll(t) 0 0 3 x,-l(t) 1 00 uil(t)
i(t) |=] 3 0 0 xp(t) [+]10 1 0 || un(e) |, 3.12)
xlg(t) -2 2 0 xi3(t) 0 0 1 Ml'3(t)
~—— ~———
F Bn(’l
anova rede seria descrita pela Equacao (3.13).
() ][ 0 -2 0 1 [ xu() ]
X12(1) 1 0 -2 x12(1)
J3(7) -2 0 0 -2 x13(7)
X1 (1) -10 X1(1)
Jpo(t) | = -1 Xpo(t) |+
Xp3(1) -2 0 -1 X3(1)
X31(1) 2 x31(1)
J30(1) 0 0 3 X35(1)
Xa3(t) || 0 -2 1L xs3() |
(A®I,,+In®F)
[ 0 1 [ wnte) ]
0 0 0 ulg(t)
0 uy3(1)
Uy (1)
Xo3(1)
uz (1)
0 0 0 ugz(t)
i 1L uss() |
(B®Bn6)

A Figura 3 ilustra como ficariam conectados os n6s multidimensionais da nova rede construida
pela Equacdo (3.13) a partir das matrizes A, B, F e B4 definidas nas Equagdes (3.7) e 3.12.
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Figura 3 — Exemplo de rede dindmica com nés multidimensionais

A partir destas definicdes a Conjectura 3.1 foi levantada.

Conjectura 3.1. Se o sistema dado pela Equagdo (3.3) for completamente controldvel e na Equagdo
(3.8) tivermos matriz B,s = I,, entao, para qualquer matriz F na Equagao (3.8) o sistema da Equagao

(3.9) é completamente controldvel.

Intuitivamente, esta conjectura estima que a controlabilidade da rede com nés unidimensionais
(Equacdo (3.3)) pode, de alguma maneira, ser preservada mesmo quando seus nds sao substituidos
por um sistema dindmico mais complexo.

Sabe-se que o conjunto dos sistemas controldveis, isto é, todos os pares de matrizes (A, B) €
M(n) x M(n, m) tais que U(A, B) tem posto méximo, € um conjunto é denso em M (n) x M(n, m)
(ver[11]). Nasecao a seguir, demonstraremos que, além disto, a conjectura 3.1 é verdade para quase

toda! matriz F.

1 Aexpressdo “para quase todo [ponto]” (“for almost all [point]”) é definida formalmente em [12].
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4 Resultados

Quando a matriz A tiver diagonal principal nula, a rede cuja dindmica é descrita pela Equacdo (3.3),
ndo tem arestas que saem e voltam para o proprio n6 de saida. Intuitivamente, é como se cada n6
ndo tivesse uma dindmica prépria.

Fazendo esta analogia com o caso em que cada n6 representa um sistema dinamico de p esta-
dos, esta situacao seria representada pelo caso em que F =0 na Equacao (3.8) e na Equacdo (3.9),
situacao ilustrada na Figura 4

Figura 4 — Exemplo de rede com dindmica nula em nés multidimensionais.

Todavia, observemos que uma rede descrita por (3.9) com F =0 e B4 = I, é equivalente a p

sistemas independentes do tipo

Wi (t)=Aw(t)+ Bzi(t) (4.1)

em que wy(t)=(x1.(%),..., X k(1)) € zi(t) = (u1x(), .- ., Uyi(t)), cada um com uma condicdo inicial
Xi(t9) = xor € R, para todo natural k de 1 a p. Esta situacgdo fica ilustrada pelas Figuras 5a, 5b e 5c.

7 N WY

(a) Primeira cépia do sistema (4.1)  (b) Segunda cépia do sistema (4.1) (c) p-ésima cépia do sistema (4.1)

Figura 5 — Independéncia entre as p redes quando F =0.

Em virtude do Corolério 2.4.1, se a matriz de controlabilidade U(A, B) tiver posto maximo, entao
para cada k de 1 a p, poderiamos escolher qualquer valor final x;; € R”, e um instante #; , comum

a todos os p sistemas com t; > t; tal que x;(;) = x1%.
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Sendo assim, se F =0 e B, = I, 0 sistema descrito pela Equagao (3.9) € completamente contro-
lavel se a matriz de controlabilidade U(A, B) tiver posto méaximo. Este raciocinio é a demonstracao
do Teorema 4.1.

Teorema 4.1. Sejam A uma matriz quadrada de ordem n, B uma matriz de ordem n x m e p >
0 um natural qualquer. A matriz de controlabilidade U (A, B) tem posto mdximo se, e somente se,
U((A® Ip),(B ® Ip)) também o tiver. [ |

Dada uma matriz X € M(n) cujo posto seja méaximo, existe uma vizinhanca aberta de X em
que seu posto nao se altera. Em outras palavras, se o determinante de X for ndo nulo, det(X) # 0,
existe uma vizinhando aberta de X, Uy, tal que, para toda matriz Y € Uy, tem-se det(Y)# 0. Isto é
decorrente do fato de que a funcdo determinante det: M(n) — R é uma funcdo continua em M(n)
e o conjunto R\ {0} é aberto.

Portanto, pela continuidade da matriz U((A® Ip + I,, ® F), B® Ip) com relacdo a matriz F, sa-
bemos que existe § > 0 tal que, para toda F com ||F|| < §, amatriz U(A® Ip+I,,® F),B® Ip) tem
ainda posto maximo, implicando no fato de que o sistema dado pela Equacao (3.9) (com B,5 = 1)
é completamente controldvel para toda matriz F em uma vizinhang¢a da matriz 0 com raio sufici-

entemente pequeno. Esta argumento é a demonstracao do Teorema 4.2.

Teorema 4.2. Se o sistema descrito pela Equagdo (2.14) for completamente controldvel, entdo o sis-
tema com nés multidimensionais, descrito pela Equacdo (3.9), se tiver B,; = I, também serd com-
pletamente controldvel resguardado que || F || seja suficientemente pequeno. Isto é, se o sistema (2.14)
for completamente controldvel, entdo existird 6 > 0 tal que, se||F|| < 0, o sistema (3.9) também serd
completamente controldvel. [ ]

Este teorema diz que, para alteracoes suficientemente pequenas na dindmica interna de cadané
darede, a controlabilidade é preservada. Em outras palavras, se a dindmica da rede unidimensional
representada por A for forte o suficiente, pode-se variar com certa liberdade a dindmica interna de

cada n6 que a controlabilidade da rede se mantém.

4.1 Dinamicas distintas para os nés

Até entdo, a dindmica de cada n6 da rede era a mesma para todos os nés, descrita pela matriz F.
Consideremos agora o caso mais geral em que o i-ésimo n6 é regido por uma dindmica prépria,
descrita pela matriz F;, i.e., a Equacdo (3.8) se torna a Equacao (4.2)

x;(£)=Fx;(t)+ Bpo u;(1). (4.2)

para todo inteiro i de 1 a n.

Portanto, o sistema que modela a dindmica da rede por completo, seria descrito por

x(t) = (A® I, + F)x(t) + (B® Byg)u(t), (4.3)
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em que a matriz # € M(np) é formada por blocos de matrizes quadradas de ordem p e é dada por:

R 0, 0,
0, K --- 0

g=|" 7 7 (4.4)
op OIH -~ F,

em que 0,, é a matriz nula de ordem p x p.

Novamente, supondo que B4 = I, € que a matriz de controlabilidade U(A, B) tenha posto ma-
ximo, como a matriz (A® I, +7) depende continuamente de (K, 5, ..., F,) € (M(p))", entdo existem
01,0y, ..., 0, tais que, se || F;|| < 6, para todo inteiro i de 1 a n, amatriz U((A® I, +7),(B®I,,)) tam-
bém terd posto maximo, garantindo, assim, a completa controlabilidade do sistema.

Definicao 4.1. Seja X um conjunto e u uma medida em X. Diz-se que os pontos de X tem quase
sempre uma propriedade P ou que quase todo ponto x € X tem a propriedade P quando o conjunto

N ={x € X; P(x) é falso} tem medida nula, ou seja, u(N)=0.

Teorema4.3. Seja um sistema como o descrito na Equagdo (4.3) em que o matriz U (A, B) tenha posto
mdximo e B,;= I,. Entdo para quase toda matriz F o sistema (4.3) é completamente controldvel.

Demonstragdo. Primeiramente observemos que podemos identificar o conjunto das matrizes qua-
dradas de ordem g com RY" de tal maneira que, uma matriz quadrada X € M(q) de ordem g pode

ser identificada como o vetor
q2
(X11r-eor Xigreenr Xiy oo or Xigoevor Xg1r e er Xgq) ERT .

Notemos também que o determinante de uma matriz quadrada de ordem g é um polinémio de
.z . P 2 . . .
q? variaveis com dominio em RY". Mais precisamente, se a matriz X = {x; j} quadrada tem ordem
g, entao

det(X)=P(X11,e0s Xigrerer Xilseer Xigreoor Xg1ye-+r Xgq)

emque P: R — R é um polindomio de g? variéveis.
Por simplicidade, definiremos U(%)= U ((A® Ip+.% ), B® Ip). Estamos interessados em calcular

amedida do conjunto

N={Z eM(np); U(F)ndo tem posto maximo}.

2,2
Para que U(%) ndo tenha posto méximo, é preciso que pelo menos uma de suas (" 2” ) subma-

trizes quadradas tenha determinante nulo. Seja S;(%) a i-ésima submatriz quadrada de U(Z). Em

2,2
virtude do Teorema A.2, paratodo i talque 1 <i < (" y ), 0 conjunto

{7 eM(np); det(5;(F))=0}

tem medida zero. Como reunido finita de conjuntos de medida zero tem medida zero, o conjunto

de todas as matrizes & que tornam o sistema (4.3) ndo-controldvel, tem medida zero. [ |
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5 Conclusoes

A principal conclusdo a respeito da variacdo das dindmicas internas dos nés multidimensionais
é que sempre serd possivel modificar suas dindmicas mantendo-se a controlabilidade da rede se
a dinamica interna de cada n6 for branda o suficiente, isto €, se a estrutura da rede original for
suficientemente significante, ganha-se liberdade para se escolher como os n6s multidimensionais
podem se comportar e ainda assim se manter a controlabilidade geral da rede.

Mais geralmente, a menos de um conjunto de medida nula, qualquer dindmica escolhida para
cada n6 multidimensional ainda mantém a completa controlabilidade da rede. Em outras pala-
vras, isto significa que a estrutura principal da rede se sobrepde quase sempre sobre as dinadmicas
escolhidas para cada n6. Em um certo sentido, significa que a estrutura da rede principal é quase
sempre o fator determinante a respeito da controlabilidade da rede com nés multidimensionais.!

! Aqui a expressdo “gquase sempre” também deve ser interpretada segundo a defini¢cao dada em [12].
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APENDICE A - Definicdes e Teoremas

Definicdo A.1. Seja f : R — R uma fungdo para a qual exista uma série de poténcias centrada em

zero Y. ¢ t* (sendo c; € R) convergente para todo t € R tal que

oo

f(t):chtk. A.1)

k=0

Seja A uma matriz quadrada. Definimos a matriz f(A) da seguinte maneira:
(e0]
FA)=> cpAr (A.2)
k=0

quando a série convergir.

Teorema A.1. Seja f uma fungdo como na Definicdo A.1 e A uma matriz de ordem n. Entdo existe
um polinémio r de grau no mdximo n—1 tal que

fA)=r(A)=rl +nA+...+ 1,1 A" (A.3)

Demonstragdo. Seja p(t)=py+pit+...+t" o polinébmio caracteristico da matriz A. Pelo Teorema
de Cayley-Hamilton,
Al =—pl—pA—...—p,_ A" (A.4)

isto é, A" é combinacdo linear das k-ésimas poténcias de A com k < n. De maneira recursiva,

podemos escrever também A, para qualquer natural i, como combinagcéo linear das k-ésimas po-

téncias de A com k < n. Seja entdo f(A) = Z?:o c;Al. Teremos que, para cada natural N, existem
coeficientes p vy, PNy - - -» Pin—1,n) tais que

N .

> A = ponI + A+ + oA (A.5)

i=0
pois cada poténcia de A que aparece no lado esquerdo é combinacao linear das k-ésimas poténcias
de Acom k < n.

Consideremos agora S = span({I, 4,...,A"'}) e 0 < d = dim(S) < n. Podemos entdo escolher
d elementos A, A", .. Ale-) em {I,A,...,A"'} de tal modo que o conjunto {A%, A"t ... Ald-1} seja
linearmente independente.

Podemos entdo encontrar, para cada natural N, coeficientes 1o ny, 11, n)- - -» la—1,n) tais que
D AT =10, n) AR+ 1 AT+ gy AT, (A.6)
i=0
Tomando o limite para N — oo dos dois lados de A.6, pelo fato do lado esquerdo convergir e pelo
fato de {A%, A",..., Ala-n} ser linearmente independente, as sequéncias {rjo xy}ven, {713} vens -+ -
{ra—1,n)} nen convergem, digamos, respectivamente, para ry, 1, ..., '4—;. Com isto demonstra-se o

que queriamos. [ |



Defini¢do A.2. Sejam A = {a;;} e B = {b;;} matrizes quaisquer de ordem m x n e p x q respecti-
vamente. Define-se o produto de Kronecker entre A e B como sendo a matriz de ordem mp x nq

aHB alnB
A®B=| = .. A7)

am,B -+ au,B

Teorema A.2. Seja P : R"” — R uma fungdo polinomial de n varidveis ndo constante. O conjunto
P~1({0}) é mensurdvel e tem medida zero.

Demonstragdo. Pelo fato de que polindmios sdo funcées mensuraveis e que o conjunto {0} C R é
mensuravel, o conjunto P~({0}) também o é.

A demonstracdo de que a medida deste conjunto é nula serd feita por inducao sobre a dimensao
n do dominio.

Claramente, para n = 1, o teorema ¢ verdadeiro, pois o Teorema Fundamental da Algebra nos
garante que polindmios de uma varidvel ndo constantes tem no maximo grau(P) raizes.

Agora suponhamos que, para todo polinémio Q € R[ X}, ..., X;,_;]\{0} o teorema seja verdadeiro.
Podemos escrever P explicitando-se as poténcias de X,,:

m
P(X1,.o0, Xp)= D QX1 ooy Xpoy)- XF.
k=0

Notemos que, pelo fato de P ndo ser constante, podemos escolher m de modo que Q,,, # 0.

Usando a hipétese de inducio, Q;l({o}) tem medida nula em R”*"! e, consequentemente,

A”(Pl({o}))zf 2p-1qopn(x)dA" (x) (A.8)
]Rn
= f f 2pqon(y, DAA)dA" " (y) (A.9)
R-1JR
=f f xp-gop(y, DAL)AL () (A.10)
Rr-1\Q;({0}) JR
= 0dA"(y) (A.11)
R7-1\Q;,({0})
=0, (A.12)

uma vez que, para todo y e R\ Q, 1({0}), existem no maximo uma quantidade finita de pontos ¢
tais que P(y1,..., Yu_1,t)=0. |

Observagdo: Na Equacdo (A.9) foi usado o Teorema de Fubini, demonstrado no Capitulo 10 de
[12].



