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Abstract

The objective of this work is to study the application of piezoelectric materials in aerospace

structures. Using the software developed by Wayhs-Lopes, L.D., this analysis is based

on an electro-mechanically coupled plate configuration, exploring the properties of such

materials, their integration into finite element models, the implementation of supersonic

aerodynamic loading based on the Piston Theory, and the simulation of the coupled

piezoaeroelastic system. The study aims to analyze the aeroelastic evolution and flutter

boundary, seeking to increase the flutter speed through the use of piezoelectric materials.

The expected outcome is an enhanced flutter tolerance and improved aeroelastic stability

through passive control strategy.

Keywords: Piezoelectricity; Aeroelasticity; Piston theory; Supersonic flow; Finite

element method; Flutter control; Passive damping;
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1 INTRODUCTION

1.1 Contextualization

Aeroelastic phenomena in high-speed flight, particularly under supersonic conditions, play

a critical role in the design and operational safety of aerospace structures. Dynamic

instabilities such as flutter can emerge, causing rapid structural failure and posing serious

risks to control surfaces of supersonic aircraft, missile fins, and other lifting components.

Therefore, flutter often imposes limits on the operational flight envelope, restricting speed,

altitude, and maneuverability.

To analyze such phenomena, high-fidelity aeroelastic simulations combining CFD

(Computational Fluid Dynamics) offer detailed insights but are often too computatio-

nally expensive for early-stage design or parametric investigations. Simplified quasi-static

aerodynamic models like piston theory enable efficient approximation of supersonic ae-

rodynamic loads and integrate naturally into finite-element formulations of thin plates.

At the same time, piezoelectric materials can provide passive and/or active vibration-

control strategies for aeroelastic systems. Furthermore, they can provide energy har-

vesting by converting mechanical strain into electrical energy, which is attractive for

power-limited platforms such as UAVs and guided munitions, but will not be discussed

here. Embedding shunted piezoelectric layers into a thin-plate structure creates a coupled

piezoaeroelastic system capable of dissipating vibrational energy and possibly raising the

flutter speed, thereby extending operational life.

1.2 Objectives and work scope

This work studies the properties of piezoelectric materials and a simplified coupling of

aerodynamic, elastic, and electrical domains—accounting for shunt impedance—to track

aeroelastic evolution and the flutter boundary, aiming to increase flutter speed. It adapts

the Python-based finite-element code developed by Wayhs-Lopes, L.D., which models a

Kirchhoff thin plate with piston-theory aerodynamics, to evaluate flutter mitigation under

supersonic flow.
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2 MATHEMATICAL AND THEORY FRA-

MEWORK

Initially, it is important to define what are smart materials and, more specifically, piezo-

electric effect and its general properties. Throughout this document, Voigt notation will

be used for tensor representation.

2.1 Smart Materials and the Piezoelectric Effect

Smart materials are characterized by their ability to convert energy between different phy-

sical domains—mechanical, electrical, thermal, among others—through intrinsic coupling

mechanisms. [3, 9]

These materials respond to external stimuli such as mechanical stress, electric fields, or

temperature variations, producing measurable changes in shape, voltage, or other physical

properties, as shown in Figure [1] provided by Leo, D.J. (2007) [10].

Figure 1 – Visual representation of coupling between physical domains

Fonte: Leo, D.J. (2007) [10]

Among the various types, piezoelectric materials are a well-established class of smart

materials that exhibit electromechanical coupling: they generate electrical charge when

mechanically deformed (direct effect) and undergo mechanical strain when subjected to

an electric field (converse effect).

This bidirectional energy conversion makes piezoelectric materials particularly useful

in applications such as sensors, actuators, vibration control, and energy harvesting [15] [6].

Their behavior is governed by a set of coupled constitutive equations linking mechanical
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stress and strain to electrical field and displacement which are going to be discussed in

the next subsection.

2.1.1 Direct piezoelectric effect

When a linear elastic material is subjected to mechanical stress, the linear stress–strain

relationship is given by:

S = sT (2.1)

where S is the mechanical strain, T is the applied stress, and s is the mechanical compli-

ance (the inverse of Young’s modulus, Y ). Unlike ordinary materials, however, piezoelec-

trics also generate an electric displacement coupled to mechanical loading, a phenomenon

known as the direct piezoelectric effect. This effect is governed, in the linear range, by:

D = dT (2.2)

where D is the electric displacement [C/m2], and d is the piezoelectric strain coefficient

[C/N]. The applied stress reorients internal electric dipoles, producing a measurable charge

on electrodes attached to the material.

2.1.2 Converse piezoelectric effect

The piezoelectric materials also exhibit the converse piezoelectric effect, where an applied

electric field induces mechanical strain.

Consider a piezoelectric material subjected to a constant voltage across its electrodes.

Assuming the material behaves as a perfect insulator, the applied voltage generates an

electric field E [V/m], which reorients the internal electric dipoles. At low field levels, the

resulting electric displacement D is linearly related to the electric field by:

D = εE (2.3)

where ε is the dielectric permittivity of the material [F/m]. Beyond a certain field strength,

this relationship becomes nonlinear due to dipole saturation.

More importantly, the electric field also induces mechanical deformation. In the linear

regime, the induced strain S is proportional to the applied electric field:

S = dE (2.4)

here, d is again the piezoelectric strain coefficient, now with units of m/V.

Therefore, we can rewrite the equations discussed before using a matrix notation to

provide the linear constitutive piezoelectric equations,:
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[
S

D

]
=

[
s d

d ε

][
T

E

]
(2.5)

The diagonal terms (s and ε) correspond to purely elastic and purely dielectric beha-

vior, while the off-diagonal terms d quantify the strength of the piezoelectric coupling.

The symmetry of the matrix reflects the reciprocity of the direct and converse effects.

2.1.3 Piezoelectric coupling coefficient

Equation (2.5) can be inverted to express stress and electric field as functions of strain

and electric displacement:

[
T

E

]
=

1

sε− d2

[
ε −d
−d s

][
S

D

]
(2.6)

Introducing the piezoelectric coupling coefficient k, defined as:

k =
d√
sε
, with 0 < k2 < 1, (2.7)

we can rewrite Equation (2.6) as:

[
T

E

]
=

1

1− k2

[
1
s

−k2

d

−k2

d
1
ε

][
S

D

]
(2.8)

where the factor 1/(1 − k2) > 1 reflects the energy-conversion inefficiency inherent to

piezoelectric transduction. The parameter k thus provides a normalized measure of elec-

tromechanical coupling efficiency, widely used for material comparison.

2.1.4 Boundary conditions

Due to electromechanical coupling, the effective material properties of piezoelectric devices

depend on both mechanical and electrical boundary conditions.

Consider a piezoelectric material under mechanical stress T . If a short-circuit electrical

boundary is applied (E = 0), the Equation (2.5) reduces to:

S = sT (2.9)

D = dT (2.10)

Now, under an open-circuit condition where no charge flow occurs (D = 0), using the

inverse constitutive form, we get:
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T =
1

s(1− k2)
S (2.11)

E =
k2

d(1− k2)
S (2.12)

This shows that the mechanical compliance changes with the electrical boundary con-

dition:

S =

sT (short-circuit)

s(1− k2)T (open-circuit)
(2.13)

it follows that:

sD = sE(1− k2) (2.14)

where superscripts D and E denote constant electric displacement and constant electric

field, respectively. This notation clarifies that mechanical compliance s is not intrinsic,

but depends on the electrical boundary.

An analogous effect occurs for dielectric permittivity. Under mechanical boundary

conditions, the permittivity changes:

εS = εT (1− k2) (2.15)

here, εS corresponds to a stress-free condition (T = 0), and εT to a strain-free (clamped,

S = 0) condition.

Notably, the piezoelectric strain coefficient d is independent of boundary conditions.

2.1.5 Final constitutive notation

For our modeling, the stress tensor must be in the left side of the equation. Therefore,

having in mind everything it was discussed until now, we can rewrite Equation (2.5) as:[
T

D

]
=

[
cEp −et

e εS

][
S

E

]
(2.16)

Where:

• T: stress tensor

• D: electric displacement tensor

• S: strain tensor

• E: electric field tensor
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• cE: matrix of elastic stiffness under constant electric field

• e: matrix of piezoelectric constraints (coupling factor)

• εS: matrix of electric permittivity under a stress-free condition

It is also important to take into account that, for our model, we are using piezoelectric

constraints for a ”closed circuit”, as it will become clear in the modeling of our final system.

To better understand the mathematical modeling behind the final system, it is also

important to understand the Kirchhoff’s model for a thin plate.

2.2 Kirchhoff’s model

Kirchhoff-Love plate theory, also known as Classical Plate Theory, is a fundamental model

for the analysis of thin plates subjected to transverse loads. In the context of an aeroelastic

electromechanical model, such as the one being developed in your work, understanding

this theory is crucial for describing the structural behavior of both the host plate and the

piezoelectric layers.

2.2.1 Fundamental Hypotheses of Kirchhoff-Love Theory

According to Reddy [16], the formulation of the structural model based on Kirchhoff-Love

plate theory relies on three main hypotheses:

1. Transverse Normals Remain Straight and Do Not Experience Elonga-

tion: Straight lines that are perpendicular to the mid-surface of the plate before

deformation remain straight and do not undergo elongation after deformation. This

implies that the strain in the thickness direction (S3 =
∂w
∂z
) is zero.

2. Transverse Shear Strains are Neglected: Transverse shear strains are conside-

red negligible. This means that S4 =
∂v
∂z

+ ∂w
∂y

= 0 and S5 =
∂u
∂z

+ ∂w
∂x

= 0.

3. In-Plane Displacements Vary Linearly with the Thickness Coordinate:

The in-plane dis- placements (u and v) vary linearly with the thickness coordinate

z and are assumed to be due to bending only (u = ∂u
∂z
z and v = ∂v

∂z
z).

These hypotheses allow the degrees of freedom to be expressed as functions of the

independent transverse displacement w and its spatial derivatives (∂w
∂x

and ∂w
∂y
). Specifi-

cally, the displacement in the z-direction (w) is the only independent variable remaining

in Hamilton’s equation that will be presented in the next subsections of this documents.

So, having understood how the degrees of freedom should be written, let’s move on to

the 2D finite element model.
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2.2.2 Finite Element Formulation for Thin Plate Modeling

To describe the mechanical behavior of the piezoelectric composite plate, a bi-dimensional

finite element model is employed using rectangular four-node elements. Following what

have been described in the last subsection and what was presented in the work of Wayhs-

Lopes, L. D., we have that each node has three mechanical degrees of freedom: the trans-

verse displacement w, and two bending rotations, and for each we have its correspondent

strain tensor defined as:

u =


u

v

w

 =

 −z 0 0

0 −z 0

0 0 1




∂w
∂x
∂w
∂y

w

 = Z


∂w
∂x
∂w
∂y

w

 ,

S =


Sx

Sy

2Sxy

 = −z


∂2w
∂x2

∂2w
∂y2

2 ∂2w
∂x∂y

 .

(2.17)

θx =
∂w

∂y
, θy =

∂w

∂x
(2.18)

Thus, each element has 4 × 3 = 12 degrees of freedom, which are collected in the

elemental vector:

ψ =



w1

θx1

θy1

w2

θx2

θy2

w3

θx3

θy3

w4

θx4

θy4



∈ R12×1

The continuous displacement field w(x, y) is approximated within each element using a

cubic polynomial in the local coordinates r, s ∈ [−1, 1], centered at the element’s geometric

midpoint:

w(r, s) = pT (r, s) a

where a ∈ R12×1 is the vector of polynomial coefficients, and p(r, s) is the monomial

vector:
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p(r, s) =



1

r

s

r2

rs

s2

r3

r2s

rs2

s3

r3s

rs3


The nodal values (wk, θxk, θyk) at each node k = 1, . . . , 4, which compose ψ, are used

to determine the coefficients a. Since:

w(rk, sk) = p(rk, sk) · a⇒ a = p−1(rk, sk) · w(rk, sk) (2.19)

Using the relations of the Equation [2.18], it is simple to arrive in the following equa-

tion:

w(r, s) = Γ(r, s) · ψ,Γ = pP−1 (2.20)

where P ∈ R12×12 is a constant matrix constructed by evaluating p, ∂p/∂r, and ∂p/∂s

at the nodal coordinates (rk, sk).

The first derivatives with respect to global coordinates are given by:

∂w

∂x
= Γx(r, s)ψ,

∂w

∂y
= Γy(r, s)ψ (2.21)

where:

Γx =
∂p

∂r
· 2

Lx

·P−1, Γy =
∂p

∂s
· 2

Ly

·P−1 (2.22)

with Lx and Ly being the dimensions of the element in the x and y directions.

The full displacement vector u can be reconstructed under the Kirchhoff–Love as-

sumptions using a transformation matrix Z, leading to:

u = Z

Γx

Γy

Γ

ψ = ZBηψ (2.23)

Similarly, the strain field is given by:
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S =


Sx

Sy

2Sxy

 = −z


Γxx

Γyy

2Γxy

ψ = −zBκψ (2.24)

The second derivatives of p are computed as:

∂2p

∂x2
=
∂2p

∂r2

(
2

Lx

)2

,
∂2p

∂y2
=
∂2p

∂s2

(
2

Ly

)2

,
∂2p

∂x∂y
=

∂2p

∂r∂s

(
2

Lx

· 2

Ly

)
(2.25)

These expressions are used to build the strain–displacement matrix Bκ, essential for

assembling the stiffness matrix in the finite element formulation of the Kirchhoff plate.

In summary, we were able to write the displacement field u and the strain field S as

function of w and the position on the plate (x, y).

Since the FEM is well described, the last missing part to understand the piezoaeroe-

lastic model is the aerodynamic part: the Piston Theory.

2.3 Piston Theory for Supersonic Flow

Following the foundational work of Ashley and Zartarian [1], piston theory has been

widely adopted as a simplified approach for modeling aerodynamic loading in supersonic

regimes. It provides a first-order analytical model for estimating unsteady aerodynamic

pressure on surfaces in supersonic flow. It assumes small disturbances propagating along

streamlines and neglects effects such as flow separation, viscosity, and shock-boundary

layer interaction. This theory is particularly suited for slender structures, such as panels

or control surfaces, where detailed CFD simulations are impractical during early design

stages.

Consider a panel undergoing out-of-plane deformation w(x, t). The interaction between

the surface and the surrounding supersonic flow induces a pressure perturbation ∆p, which

acts normal to the panel. The resultant aerodynamic force is obtained by integrating this

pressure over the panel’s surface Axy:

Faz =

∫
Axy

∆p(x, t) dA (2.26)

In the classical first-order piston theory, the pressure difference is expressed as a linear

combination of the local slope and velocity of the surface:

∆p(x, t) = −
(
α
∂w

∂x
+ β

∂w

∂t

)
(2.27)

where the aerodynamic coefficients are defined as:
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α =
2q√

Ma2 − 1
, (2.28)

β =
2q

V
· Ma2 + 2

(Ma2 − 1)3/2
, (2.29)

q =
1

2
ρV 2 (2.30)

Here, ρ is the air density, V is the freestream velocity, and Ma is the Mach num-

ber. The term ∂w/∂x accounts for compressive effects due to the surface slope, while

∂w/∂t reflects unsteady inertial loading. The negative sign indicates that the resulting

aerodynamic force opposes the panel’s motion.

Piston theory is valid for Ma > 1 and will be used in this piezoaeroelastic analy-

ses, since it provides accurate trend predictions with significantly reduced computational

effort.

With that we have all the information needed to conceive the elemental model for the

system.
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3 MODEL GOVERNING EQUATIONS

3.1 Governing Equations of a Single Finite Element

The formulation of the governing equations for a single element of an electromechanical

aeroelastic plate is based on the generalized Hamilton’s principle, which states that the

time variation of the total Lagrangian (kinetic energy minus potential energy), plus the

virtual work of non-conservative forces (aerodynamic and electrical), must be zero:∫ t2

t1

(δT − δU + δWe + δW + δWa) dt = 0 (3.1)

Where:

• T is the total kinetic energy of the system, including the host structure and the

piezoelectric layers;

• U is the total strain (elastic) energy stored in the host and piezoelectric materials;

• We is the electrical energy stored in the piezoelectric layers due to the electric field;

• W is the external work done by non-conservative mechanical forces and electric

charges extracted from the system and it is related to the circuit connected to the

plates;

• Wa is the work done by aerodynamic forces on the plate surface;

• δ indicates the first variation with respect to the virtual displacements and electric

potential.

The terms are defined as:

T =

∫
Vs

1

2
ρsu̇

T u̇ dVs +

∫
Vp

1

2
ρpu̇

T u̇ dVp (3.2)

U =

∫
Vs

1

2
STTs dVs +

∫
Vp

1

2
STTp dVp (3.3)

We =

∫
Vp

1

2
ETD dVp (3.4)

δW = δvpQ (3.5)

∆p(w) = −
(
α
∂w

∂x
+ β

∂w

∂t

)
(3.6)

where:
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• ρs, ρp are the densities of the substrate and piezoelectric layers, respectively;

• u is the displacement vector;

• S is the strain vector; Ts, Tp are the stress vectors in the substrate and piezoelectric

layers;

• E is the electric field vector; D is the electric displacement vector;

• vp is the electrical potential across the piezoelectric layer;

• Q is the charge extracted from the element and passed to the external circuit;

• ∆p is the aerodynamic pressure variation due to supersonic flow;

• w is the transverse displacement of the plate;

• α, β = are piston theory coefficients presented before.

To define the system matrices, it is necessary to identify all physical contributions

associated with the mechanical displacement vector ψ, its first and second derivatives,

and the electric potential vp.

Structural Matrices

The mass and stiffness matrices account for the mechanical behavior of both the host

structure and the piezoelectric layers:

m =

∫
Vs

BT
ηZ

TρsZBη dVs +

∫
Vp

BT
ηZ

TρpZBη dVp (3.7)

k =

∫
Vs

z2BT
κcsBκ dVs +

∫
Vp

z2BT
κc

E
p Bκ dVp (3.8)

The matrix m captures inertial effects from both the base plate (subscript s) and the

piezoelectric layers (subscript p), where ρ denotes density and Z is the transformation

matrix linking displacements to the mid-surface. The stiffness matrix k includes ben-

ding rigidity contributions, weighted by z2, consistent with Kirchhoff plate theory, and

depends on the material stiffness tensors cs and cEp for the elastic and piezoelectric layers,

respectively.

Aerodynamic Matrices

Aerodynamic effects are incorporated via additional stiffness and damping-like matrices,

derived from piston theory for supersonic flows:
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ka = −α
∫
Axy

ΓTΓx dA (3.9)

ca = −β
∫
Axy

ΓTΓ dA (3.10)

here, α and β are aerodynamic coefficients that depend on the freestream conditions

(Mach number, density, and velocity), while Γ and its derivatives represent the shape

functions used to describe transverse displacement within the element. The matrix ka

contributes to the aerodynamic stiffness, and ca to the aerodynamic damping — both

critical for capturing flutter behavior.

Electromechanical Coupling

The coupling between mechanical and electrical domains due to the piezoelectric effect is

captured by the vector θp:

θp =

∫
Vp

zBT
κe

TBE dVp (3.11)

This term links structural deformation to electric charge generation (direct effect),

and conversely, the application of voltage to induced mechanical strain (inverse effect).

The piezoelectric constant matrix e is coupling factor presented before.

Electrical Capacitance

Finally, the capacitance associated with the piezoelectric layers is given by:

Cp =

∫
Vp

BT
Eϵ

SBE dVp (3.12)

This scalar represents the electrical energy storage capacity of the piezoelectric mate-

rial, where ϵS is the permittivity matrix under constant strain. It directly influences the

charge-voltage dynamics of the system and plays a central role when external electrical

circuits (e.g., shunt networks) are introduced.

Together, these element-level matrices define the dynamic behavior of the coupled

piezoaeroelastic system. In the next section, they will be assembled into global matrices

to form the full system of equations governing the time evolution and stability of the

structure under supersonic flow.

By applying the calculus of variations and separating the contributions of the mecha-

nical degrees of freedom ψ and the electrical degree of freedom vp, we obtain the coupled

equations of motion for a single element:

mψ̈ + caψ̇ + (k+ ka)ψ − θvp = f (3.13)



34

Cpv̇p +
1

Zeq

vp + θ
T ψ̇ = 0 (3.14)

where:

• ψ ∈ R12×1 is the vector of nodal mechanical degrees of freedom: vertical displace-

ment w and slopes θx, θy at each of the four nodes.

• vp is the electrical potential difference across the piezoelectric layer.

• m and k are the elemental structural mass and stiffness matrices.

• ca and ka are the aerodynamic damping and stiffness matrices from piston theory.

• θ is the electromechanical coupling vector.

• Cp is the capacitance of the element.

• Zeq is the equivalent shunt impedance of the external circuit.

Therefore, the formulation of the finite element model enables the definition of the

system matrices at the element level, capturing the contributions from mechanical iner-

tia, stiffness, aerodynamic loading, piezoelectric coupling, and electrical storage. These

matrices form the foundation of the coupled electromechanical system.

3.2 Final Model: Global Equations

Once the element-level formulations are established, the standard finite element assembly

procedure is applied to construct the global system of equations governing the aeroelastic

electromechanical behavior of the structure.

In the most general formulation, each finite element is initially considered to possess

its own independent electrical degree of freedom, corresponding to the voltage vp across

its piezoelectric layer. This leads to the construction of a global capacitance matrix

Cp ∈ Rne×ne , and a global electromechanical coupling matrix Θ ∈ Rnm×ne , where ne is

the number of elements and nm the total number of mechanical degrees of freedom.

However, in practice, the electrodes bracketing the piezoelectric layers are highly con-

ductive, allowing groups of elements to be electrically connected through a shared elec-

trode region. Each of these regions is wired to a single external shunt circuit, and thus

responds with a common voltage output vi. If we define nr as the number of such electrode

regions, the electrical problem is greatly reduced in size and complexity.

The electrical assembly then proceeds as follows:

• The total capacitance Cp,ii of region i is obtained by summing the capacitances of

all elements it contains.
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• The i-th column of the global coupling matrix Θ is constructed by summing the

electromechanical coupling vectors of all elements belonging to region i.

The reduced system involves the following quantities:

• M,K ∈ Rnm×nm : global structural mass and stiffness matrices;

• Ca,Ka ∈ Rnm×nm : global aerodynamic damping and stiffness matrices, derived from

piston theory;

• Θ ∈ Rnm×nr : global electromechanical coupling matrix;

• Cp ∈ Rnr×nr : global capacitance matrix for the electrode regions;

• v ∈ Rnr×1: vector of voltages from each region;

• ψ ∈ Rnm×1: vector of mechanical degrees of freedom;

• F ∈ Rnm×1: external mechanical force vector (here assumed zero).

The coupled system of differential equations in the time domain can now be written

as:

Mψ̈ +Caψ̇ + (K+Ka)ψ −Θv = F

Cpv̇ + Z−1
eq v +ΘT ψ̇ = 0

(3.15)

The matrix Z−1
eq ∈ Cnr×nr is the inverse of the equivalent impedance of the external

shunt circuits, describing the electrical dynamics of the system. Assuming linear RLC

components in each region, it takes the form:

Z−1
eq =

(
jωL+R+

1

jωCext

)−1

(3.16)

Here, L,R,Cext ∈ Rnr×nr are diagonal matrices whose i-th diagonal entries correspond

to the inductance, resistance, and external capacitance of the i-th shunt circuit. In this

work, external capacitors are not considered, and thus Cext = 0.

To incorporate this impedance expression into the time-domain formulation, one ap-

plies the Laplace transform to the second Equation of [3.15], performs algebraic manipu-

lation, and then returns to the time domain. This yields the final coupled system:

Mψ̈ +Caψ̇ + (K+Ka)ψ −Θv = 0

LΘT ψ̈ +RΘT ψ̇ +C−1ΘTψ + LCpv̈ +RCpv̇ + (C−1Cp + I)v = 0
(3.17)

This system represents the full coupling between the structural, aerodynamic, and

electrical domains. The first equation governs the structural dynamics under the influence

of both mechanical and electrical effects. The second equation captures the electrical
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response induced by mechanical deformation and describes how energy is dissipated or

harvested via external electrical circuits.

This aspect is central to the current work: by converting mechanical energy into

electrical energy, which is then dissipated in the shunt circuits, the piezoelectric layers

function as passive vibration absorbers. This energy dissipation mechanism is expected to

attenuate aeroelastic responses, such as flutter, and thus enhance the structural stability

under supersonic flow conditions.
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4 MODAL ANALYSIS - EIGENVECTOR

PROBLEM

The idea is to translate the model explained before into a structured code in order to test

the hypothesis of structural stability increase due to the energy harvest system.

First of all, we can rewrite the Equation (3.17) in a matrix form:

[
M 0

LΘT LCp

][
ψ̈

v̈

]
+

[
Ca 0

RΘT RCp

][
ψ̇

v̇

]
+

[
K+Ka −Θ

C−1ΘT C−1Cp + I

][
ψ

v

]
= 0 (4.1)

With that in mind, we can create the variable u defined as:

u =

[
ψ

v

]
(4.2)

Therefore, we can rewrite the system as follows:

Aü+Bu̇+Cu = 0 (4.3)

Where:

A =

[
M 0

LΘT LCp

]
, B =

[
Ca 0

RΘT RCp

]
, C =

[
K+Ka −Θ

C−1ΘT C−1Cp + I

]
(4.4)

This modification is very appropriate since the differential Equation [4.3] has a very

well known behavior and we can explore the solution using the state-space form.

We can also rewrite the previous equations as:{
ü = −A−1Bu̇−A−1Cu

u̇ = u̇
(4.5)

That being the case, we have to apply another transformation:

x =

[
u̇

u

]
(4.6)

where x will be the space-state variable.

So, using this change of variables, we have:

ẋ =

[
−A−1B −A−1C

I 0

]
x (4.7)
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This is a linear time-invariant system, therefore it can be analyzed by assuming solu-

tions of exponential form, which is a classical approach in the study of linear differential

equations. The solution is assumed to take the form:

x(t) = Xeλt (4.8)

where X ∈ Cn is a constant vector representing the mode shape, and λ ∈ C is a scalar

representing the exponential growth rate (or decay rate) and frequency.

Substituting Equation [4.8] into the differential equation:

d

dt

(
Xeλt

)
=

[
−A−1B −A−1C

I 0

]
Xeλt (4.9)

Computing the derivative on the left-hand side leads to:

λXeλt =

[
−A−1B −A−1C

I 0

]
Xeλt (4.10)

Since eλt ̸= 0, it can be canceled from both sides of the equation, resulting in:

λX =

[
−A−1B −A−1C

I 0

]
X (4.11)

This is a standard eigenvalue problem, where the scalar λ is an eigenvalue and the

vector X is the corresponding eigenvector of the system matrix. Solving this problem

provides key insights into the system dynamics:

• If Re(λ) < 0, the mode decays exponentially — indicating a stable response.

• If Re(λ) > 0, the mode grows with time — leading to instability.

• If λ is purely imaginary, the mode corresponds to an undamped oscillation.

And that becomes clear as the definition of the damping factor is:

ζ =
−Re(λ)

|λ|
(4.12)

So, if Re(λ) > 0, then ζ < 0, which implicates a unstable system. For our analysis,

it is important to find the point where Re(λ) is zero. This condition, where the real

part of the dominant eigenvalue crosses zero, marks a dynamic bifurcation: the onset of

flutter. At this point, the system oscillates with no net energy loss or gain, corresponding

to purely imaginary eigenvalues. The imaginary part of the critical eigenvalue defines the

flutter frequency, expressed as

ωf = Im(λ)
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This frequency characterizes the structural oscillation at the onset of instability and

serves as a fundamental reference in aeroelastic analyses. Consequently, identifying the

vibration frequency associated with the dominant mode is essential, as it allows for the

tuning of the electromechanical system to maximize damping at this critical condition. By

aligning the control strategy with this frequency, it becomes possible to enhance energy

dissipation and effectively delay the onset of divergent aeroelastic phenomena.
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5 SHUNT CIRCUIT PARAMETERS

The model of this study has a resistive-inductive (RL) shunt circuit, which can be used

to enhance the damping characteristics [20, 12].

Figure 2 – Plate model – Piezoelectric layer and shunt circuit

Source: Modified from Wayhs-Lopes, L.D.

To achieve optimal energy dissipation, the electrical parameters of the shunt must be

carefully tuned to interact effectively with the mechanical dynamics of the structure. A

fundamental strategy in this context is to tune the RL circuit to a desired mechanical

frequency, typically the flutter frequency ωf . This tuning is achieved by adjusting the

inductance Li and the resistance Ri, so that the natural (resonant) frequency of the

electrical circuit matches the frequency of the aeroelastic phenomena.

From standard LC circuit theory, the tuning frequency ωt is given by:

ωt =
1√
LiC̄p

, (5.1)

where Li is the inductance and C̄p is the equivalent capacitance of the electrode region,

which may include multiple finite elements grouped under a single external circuit. This

expression is derived from the governing equation:

Liq̈ +Riq̇ +
1

C̄p

q = 0. (5.2)

To introduce energy dissipation into the system, a resistor Ri is added in series with

the inductor, forming a classical RLC series circuit. This configuration not only allows

the circuit to be tuned to the structural vibration frequency, but also enables controlled

dissipation of energy through electrical damping.

The damping behavior of such a circuit is governed by the damping ratio ζ, defined

by the standard second-order system analogy:
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ζ =
Ri

2

√
C̄p

Li

, (5.3)

where C̄p is the equivalent capacitance of the piezoelectric layers and Li is the induc-

tance in the shunt branch. Rearranging the equation allows one to compute the resistance

necessary to achieve a target damping ratio ζ:

Ri = 2ζ

√
Li

C̄p

. (5.4)

This expression provides a useful reference when designing the shunt circuit, parti-

cularly in guiding the initial selection of electrical resistance. In principle, setting the

tuning frequency ωt equal to the dominant structural or aeroelastic frequency (e.g., the

pre-flutter frequency ωf ) and selecting a target damping ratio ζ enables the computation

of a corresponding resistance via Equation (5.4).

However, defining an appropriate value for ζ is not straightforward in coupled elec-

tromechanical systems. Unlike classical second-order oscillators, where ζ directly charac-

terizes the system’s transient response, here it pertains only to the electrical subdomain.

The actual damping introduced into the global system depends on:

• the electromechanical coupling strength between the piezoelectric layers and the

structure;

• the proximity between the electrical tuning frequency and the structural modes;

• and the spatial and modal distribution of the piezoelectric patches.

As such, the global damping behavior may not correlate directly with the nominal

value of ζ, and its initial selection remains somewhat arbitrary. Iterative or parametric

studies are typically necessary to identify effective configurations.

As discussed by Hagood and von Flotow [7], optimal power transfer occurs when the

circuit is tuned to a modal frequency and the resistance is adjusted according to the

piezoelectric coupling coefficient. Still, if the patches are poorly placed or the targeted

mode exhibits low strain energy in their region, the resulting energy dissipation remains

limited.

Therefore, while Equation (5.4) offers a valuable electrical design rule, the optimal

configuration of R and L for suppressing aeroelastic instabilities must be determined

based on the full electromechanical system response.

With these relations established, the next section applies the model and explores its

results.
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6 IMPLEMENTATION AND DISCUSSION

OF RESULTS

6.1 Structural and Piezoelectric Properties

The structural and piezoelectric parameters considered in the model are summarized in

Table 1.

A bimorph configuration (see Figure [2]) is adopted, with continuous piezoelectric

layers symmetrically bonded to the upper and lower surfaces of the metallic substrate.

Each piezoelectric patch has thickness hp = 1.0 × 10−4 m, and the material employed is

PZT-5A. The electrodes are assumed to be perfectly conductive and grouped uniformly

across the domain. The upper and lower electrodes are connected in series and interface

with an external RL shunt circuit.

The piezoelectric, dielectric, and elastic properties of PZT-5A are defined according

to standardized values [7] and consistent with the values used by Wayhs-Lopes, L. D. In

particular, the effective coupling coefficient used in the nondimensional analysis satisfies

the relation k = d/
√
sε, where d is the piezoelectric constant, s the compliance, and ε the

dielectric permittivity.

Table 1 – Mechanical and piezoelectric properties of the substrate and PZT-5A piezoe-
lectric layer

Property Value

Plate length, L [m] 0.300

Plate width, w [m] 0.300

Substrate thickness, hs [m] 1.0× 10−3

Piezo layer thickness, hp [m] 1.0× 10−4

Young’s modulus (substrate), Ys [GPa] 210

Poisson’s ratio (substrate), νs [-] 0.33

Density (substrate), ρs [kg/m³] 7930

Piezoelectric coupling coeff., d31 [pC/N] -190

Elastic compliance, sE11 [m²/N] 16.4× 10−12

Dielectric permittivity, εT33/ε0 [-] 1800

Source: Elaborated by the author.

A finite element mesh with 16× 16 Kirchhoff plate elements is employed for all simu-

lations. The electrode region is discretized identically, with electrical degrees of freedom

concentrated in a single node group associated with the global capacitance matrix Cp.
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This setup allows consistent comparison between open-circuit and shunted configurations

while preserving mechanical resolution.

6.2 Short-Circuit Conditions

In this configuration, the electrodes of the piezoelectric layers are connected through

a vanishing impedance (R = 0 Ω, L = 10−9 H), effectively imposing a short-circuit

condition. This enforces E = 0, which, according to the constitutive relations discussed

in Section 2.1.4, results in reduced stiffness of the piezoelectric material due to the absence

of electric field counteraction.

Figures [3] and [4] show the evolution of the real and imaginary parts of the eigenvalues

under short-circuit conditions, based on a mode-tracked analysis. As observed in Figure

[3], flutter occurs at Ma = 3.066, where a complex-conjugate pair of eigenvalues crosses

into the unstable region, indicated by a positive real part. As the numerical model is

discretized, and flutter is theoretically defined at the point where the real part of the

eigenvalue crosses zero, we adopt for simplicity the convention that the flutter speed

corresponds to the first Mach number at which a mode exhibits a real part greater than

or equal to zero. Therefore, the true flutter speed may be underestimated by up to one

Mach step, in this case, 0.001.

Since the higher-order vibration modes demonstrated greater stability, for the sake of

clarity, only the first four modes (i.e., the first eight eigenvalues) are shown in the plots.

Figure 3 – Real part of eigenvalues under short-circuit conditions with modal tracking

Source: Elaborated by the author.

The label ”same as λx”indicates that the corresponding mode follows a trajectory
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coincident with mode λx, based on a numerical similarity criterion. It is important to

note that the complex conjugate of an eigenvalue is also an eigenvalue of the problem.

Therefore, eigenvalues 1 and 2 correspond to vibration mode 1, eigenvalues 3 and 4 to

mode 2, and so on. From Figure [3], we observe that the eigenvalues associated with

the second vibration mode (λ3 and λ4) are the ones that become unstable as the Mach

number increases and cross into the right-half complex plane.

The corresponding modal frequencies are shown in Figure [4].

Figure 4 – Modal frequencies under short-circuit conditions

Source: Elaborated by the author.

It is evident from Figure 4 that coalescence between the first and second modes occurs

at approximately Mach 3.049. In other words, the modal frequencies of the first and second

modes approach each other and, in this particular case, merge, resulting in a frequency

degeneracy where the two curves are no longer distinguishable. This phenomenon is a

classical precursor to flutter onset, as the interaction and merging of modes lead to the

destabilization observed in the real part of the eigenvalues.

Additionally, after the onset of flutter, the first mode retains a negative real part,

indicating it remains stable, even though its frequency is nearly identical to that of the

unstable mode at the flutter boundary. This highlights the importance of accurate modal

identification.

The eigenvalues of the first four modes are represented in the complex plane in Figure

[5]. This plot further confirms the flutter bifurcation mechanism: as the Mach number

increases, a pair of eigenvalues migrates from the left-half to the right-half plane, resulting

in the loss of system stability. The trajectory in the complex plane is typical of a classical

flutter event, with the real part crossing zero and the imaginary part indicating the

oscillatory character of the instability.
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Figure 5 – First four modes of the system represented in the complex plane at the flutter
Mach under short-circuit condition

Source: Elaborated by the author.

It is also apparent from the frequency and eigenvalue evolution plots that, at the

flutter condition, the first and second modes have nearly identical frequencies, although

only the second mode becomes unstable. No evidence of instability was observed for the

higher-order modes within the analyzed Mach number range.

6.3 Open-Circuit Conditions

In the open-circuit configuration, the shunt circuit presents a very high resistance (R =

6 · 106 Ω), effectively imposing a no-displacement condition in the electrical domain (D =

0). As discussed in Section 2.1.4, this leads to an increase in the effective stiffness of the

piezoelectric material, since the compliance is reduced by a factor of (1−k2), theoretically
making the piezoelectric material more resistant to deformation.

Figures [6] and [7] show the real and imaginary parts of the eigenvalues under this

configuration. Flutter occurs at Ma = 2.969, which is slightly lower than in the short-

circuit case. As seen in Figure [6], the real part of the eigenvalues associated with the

second vibration mode becomes positive at this Mach number, signaling the onset of

instability.
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Figure 6 – Real part of eigenvalues under open-circuit conditions with modal tracking

Source: Developed by the author.

The evolution of the real part of the eigenvalues is qualitatively similar to the short-

circuit case, but the instability develops at a lower Mach number. Figure [7] shows the

corresponding modal frequencies.

Figure 7 – Modal frequencies under open-circuit conditions

Source: Developed by the author.

Once again, the aeroelastic evolution displays a coalescence of the first and second

modes, visible as their frequencies converge and become indistinguishable near the flutter

boundary. This behavior is consistent with the classic flutter mechanism, where mode
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merging precedes instability. For clarity, the first four modes are shown in the complex

plane at the flutter Mach number, as illustrated in Figure [8].

Figure 8 – First four modes of the system represented in the complex plane at the flutter
Mach under open-circuit conditions

Source: Developed by the author.

It is noteworthy that, although the open-circuit configuration theoretically increases

the structural stiffness of the piezoelectric sheets, it actually results in a lower critical

Mach number for flutter compared to the short-circuit case. This seemingly counterin-

tuitive outcome highlights that aeroelastic instability is not dictated by stiffness alone.

The dynamic stability is influenced by a combination of modal energy distribution, elec-

tromechanical coupling, and the absence of dissipative mechanisms in the open-circuit

scenario.

In the open-circuit case, the piezoelectric layers introduce reactive effects, but do not

provide effective energy dissipation. This can lead to increased feedback into the structure

and a reduction in the overall flutter margin. In contrast, the short-circuit case suppresses

this feedback by imposing E = 0, decoupling the electrical and mechanical responses.

Thus, the earlier coalescence of modes and lower flutter Mach number observed in the

open-circuit configuration can be attributed to the lack of dissipation and the unfavorable

dynamic coupling, rather than to stiffness effects alone. This reinforces the importance of

properly designed shunt circuits to enhance aeroelastic stability, which will be explored

in the subsequent sections.
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6.4 Preliminary Mapping of Flutter Behavior under Shunt Circuit

Variation

In this subsection, the effect of varying resistance R and inductance L values in a passive

shunt circuit connected to piezoelectric layers is explored. The goal is to evaluate how

the electrical tuning influences the onset of aeroelastic instability.

Given that practical applications are limited by commercially available passive com-

ponents, we restricted the analysis to the following ranges:

• R ∈ [10−1, 104] Ω, log-spaced over 9 values

• L ∈ [10−2, 10] H, also log-spaced over 9 values

This results in a grid of 81 circuit configurations. For each pair (R,L), a flutter analysis

was performed using a coarse Mach number step of 0.1, starting at Ma = 2.5. The analysis

stops as soon as the real part of the dominant eigenvalue becomes positive.

The resulting surface map of flutter Mach number is shown in Figure [9]. This to-

pological representation highlights how circuit tuning can be used to delay or anticipate

aeroelastic instability.

Figure 9 – Flutter Mach number as a function of log10(R) and log10(L) for the passive
shunt circuit

Source: Developed by the author.



50

The map reveals that the inductance L exerts a much more significant influence on the

flutter boundary than the resistance R. This behavior indicates that dissipation alone—as

governed by R—is insufficient to meaningfully alter the global aeroelastic response unless

the circuit is also dynamically tuned. In particular, variations in reactance (linked to L)

have a stronger impact on system stability, especially when approaching resonance with

a structural mode.

This observation aligns with the well-established idea that passive shunt circuits must

interact resonantly with the structural dynamics to be effective. When the circuit is far

from such resonance, increasing resistance has little effect in delaying instability. The

observed sensitivity to inductive tuning underscores the need to properly design circuit

parameters based on the modal characteristics of the structure.

To reduce computational cost, this preliminary study was conducted with a coarse

resolution in both the Mach sweep and the discretization of circuit elements. Nevertheless,

the results successfully captured key trends and allowed identification of a promising

configuration:

Maximum flutter Mach number found: Ma = 3.3

Achieved with: R = 0.2371 Ω, L = 0.1778 H

It is important to remember that the Mach step used is 0.1, so the true flutter Mach

value may be up to 0.1 lower.

This result corresponds to a clear local maximum in the flutter Mach surface. While

it may not represent the global optimum, it already provides a valuable indication of a

promising operating region.

To refine the analysis, the next section will consider this configuration as a reference

point. The goal will be to investigate whether it is possible to enhance damping by using

the relations provided in Section 5.

6.5 Search for Optimized Shunt Parameters

After identifying a promising region in the (R,L) design space through a coarse parametric

sweep, a local refinement was performed to more precisely assess the system’s behavior

near the best-performing configuration. The goals of this step are: (i) to confirm whether

the selected point truly corresponds to a local maximum in flutter onset, and (ii) to

accurately characterize the evolution of the dominant eigenmodes close to instability.

The Mach number was swept with a finer resolution (step size of 0.001), starting from

Ma = 3.110. Figures [10], [11], and [12] illustrate the evolution of the tracked eigenvalues

and the precise Mach at which flutter occurs.
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Figure 10 – Real part of eigenvalues near the optimal shunt configuration

Source: Developed by the author.

As shown in Figure 10, flutter onset is observed at Ma = 3.151, where the real part

of the first mode crosses zero and becomes positive. Prior to this point, all eigenvalues

remain in the stable region with negative real parts. It is important to note, however,

that the eigenvalues related to the fourth mode have a very small real part.

Compared to previous configurations, a noticeable separation emerges in the real parts

of the lower modes, which were previously much closer together. This increased separation

indicates enhanced modal damping as a result of the tuned shunt circuit. The correspon-

ding modal frequencies are shown in Figure [11].

Figure 11 – Modal frequencies near the optimal shunt configuration

Source: Developed by the author.
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Once again, we observe the coalescence of the first two modes, but their frequencies do

not approach each other as closely as in previous cases; they do not merge before flutter

occurs. This underscores the influence of the shunt circuit in modifying the system’s

modal frequencies and increasing the margin to instability. Figure [12] helps clarify this

phenomenon, displaying the first four modes in the Argand-Gauss plane at the flutter

condition.

Figure 12 – First four modes of the system represented in the complex plane at the flutter
Mach for R = 0.2371 Ω, L = 0.1778 H

Source: Developed by the author.

In addition to the first mode, which is now located in the right half-plane (unstable),

it is also evident that the fourth mode is marginally stable, with a very small negative

real part (Re{λ7,8} = −5.6929×10−2). This suggests that the fourth mode is close to the

stability boundary, but does not become unstable at this condition.

With this information, it is possible to pursue a more targeted tuning of the system.

Building on the previous analysis, the next step is to refine the electrical parameters of

the RL shunt circuit using the relations presented in Section 5.

Initially, using the data from the mode that becomes unstable (here, the first mode)

appears to be the most logical choice for maximizing damping, as it tunes the shunt circuit

to the frequency of the mode that first experiences flutter. However, applying Equation

(5.1) with the obtained flutter frequency yields an inductance of L = 0.4017 H, which

quickly moves away from the local optimum indicated in Figure [9]. This reveals the limi-
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tation of relying solely on the most unstable mode, especially in coupled electromechanical

systems.

Given this non-intuitive result, an alternative is to use the data from mode 4, as its

real part is very close to zero (see Figure [12]), indicating low damping and significant

participation in the system’s dynamic response. The calculated parameters are:

• Optimal inductance: Lopt = 0.1859 H

• Optimal resistance: Ropt = 0.4742 Ω for ζ = 0.001

Selecting a physically meaningful value of ζ (damping ratio) in coupled electromecha-

nical systems is not straightforward. In this work, ζ was chosen by trial and error to

balance flutter suppression and dynamic energy transfer. The chosen value, ζ = 0.001,

did not substantially affect the order of magnitude of the resistance. Notably, the values

obtained for R and L are in the vicinity of the region highlighted as optimal in Figure [9].

After updating the shunt circuit with these refined values, the system response was

re-evaluated using a new fine Mach sweep. The goal was to confirm whether the new

parameters further delay flutter onset and thus enhance system stability. The results are

shown in Figures [13], [14], and [15].

Figure 13 – Real part of eigenvalues with updated shunt circuit

Source: Developed by the author.

Figure [13] demonstrates that flutter now occurs at Ma = 3.159, representing a modest

but clear improvement compared to the previous configuration, which was at Ma = 3.151,

and the same dominant eigenvalue (first mode) crosses the imaginary axis to become

unstable.
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Figure 14 – Modal frequencies with updated shunt circuit

Source: Developed by the author.

Even though the first and second modes do not cross, Figure 14 shows the clear

coalescence of their frequencies as Mach increases, a hallmark of the aeroelastic evolution

to instability. Figure [15] depicts the final positions of the dominant modes in the complex

plane at the flutter boundary.

Figure 15 – First four modes of the system represented in the complex plane at the flutter
Mach for R = 0.4156 Ω, L = 0.1859 H

Source: Developed by the author.
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These results confirm that fine-tuning the shunt circuit effectively increases the flutter

margin, even if moderately. The critical Mach number rises by ∆Ma = 0.008, highlighting

the system’s sensitivity to electrical boundary conditions and the efficacy of targeted

electromechanical tuning.

Moreover, by tuning the shunt circuit to the fourth vibration mode, the module of its

real part is increased, Re{λ7,8} = −4.2671×10−1, compared to the previous configuration,

indicating greater modal damping for this mode. This modification delays the onset of

divergent aeroelastic phenomena, even though this mode is not the one that becomes uns-

table. Overall, the results reinforce the importance of targeted shunt tuning to maximize

aeroelastic stability in piezoelectric-integrated structures.

6.6 Overall Comparison

Table 2 – Comparison of flutter results for different shunt circuit configurations

Case R [Ω] L [H] Maflutter ωflutter [rad/s] Unstable Mode

Open circuit (OC) 6× 106 1× 10−9 2.969 751.75 2nd

Closed circuit (SC) 0 1× 10−9 3.066 756.11 2nd

First local maximum 0.2371 0.1778 3.151 760.47 1st

Optimized point 0.4156 0.1859 3.159 761.10 1st

Source: Developed by the author.

Table 2 reveals the main effects of electrical boundary conditions and shunt circuit tuning

on flutter:

• Non-monotonic stability: The critical Mach number is not maximized by electri-

cal stiffness alone; the open-circuit yields the lowest flutter margin, indicating that

stability is driven by the interplay between stiffness, damping, and mode coupling.

• Mode switching: Instability shifts from the second mode (open and short-circuit)

to the first mode in shunt-tuned cases, demonstrating strong electromechanical cou-

pling and parameter sensitivity.

• Shunt tuning effect: RL shunt circuits, when tuned near optimal, raise the flutter

Mach number and flutter frequency. Even moderate improvements confirm the

practical impact of targeted passive damping.

In summary, optimized shunt circuits demonstrably enhance flutter margins in piezoelectric-

integrated structures, but this benefit relies on careful tuning and understanding of the

coupled dynamics.
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7 CONCLUSION

This work presented the analysis of a numerical model for a piezoaeroelastic plate opera-

ting in supersonic flow, with piezoelectric layers connected to passive resistive-inductive

(RL) shunt circuits. The formulation combined Kirchhoff–Love plate theory and Piston

Theory to represent the aerody- namic forces, with Hamilton’s principle applied to derive

the coupled electromechanical equations of motion. A finite element framework was used

to simulate modal behavior, capturing the structural deformation, aerodynamic loading,

electromechanical coupling, and electrical energy dissipation.

The initial analyses compared flutter behavior under short-circuit and open-circuit

electrical con- ditions. Notably, despite higher stiffness in the open-circuit configura-

tion, flutter occurred at a lower Mach number (2.969) compared to the short-circuit case

(3.066). This non-monotonic response demonstrates that increased stiffness alone does

not guarantee improved aeroelastic stability. Instead, the interplay between electrical

boundary conditions, energy dissipation, and modal interactions fundamentally governs

the system’s stability threshold. The results further revealed a shift in the critical insta-

bility mode: while flutter originated in the second mode for open- and short-circuit cases,

it switched to the first mode for tuned shunt configurations, highlighting the strong mode

coupling and the need for mode-resolved analysis.

To mitigate flutter, an RL shunt circuit was introduced and systematically tuned

using parametric sweeps and frequency-matching strategies. The optimized configuration

raised the flutter Mach number to 3.159, demonstrating the effectiveness of targeted

passive damping. This enhancement, though moderate, was achieved by fine-tuning the

circuit parameters and actively accounting for the coupled, nonlinear dynamics of the

system. The results confirmed that passive shunt circuits can delay insta- bility not

simply by increasing system stiffness, but by introducing modal damping and modifying

the spectral properties at the flutter boundary.

A key limitation of the present study lies in the uniform coverage of the plate with

piezoelectric material. While this simplifies modeling, it does not necessarily improve

electromechanical coupling or damping efficiency, as demonstrated by Erturk et al. [5].

Only regions of high modal strain contribute meaningfully to energy conversion, and

covering the entire surface may add unnecessary mass and even reduce effectiveness due

to cancellation effects at strain nodes.

Future work should therefore focus on the optimal placement of piezoelectric patches,

using modal strain energy distributions or topology optimization [14, 18]. Such strategies

would enable more effective damping with less material, while further improvements could
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be achieved by extending the model to multi-modal coupling, adaptive circuits, or robust

control approaches.

In summary, this study demonstrates the viability of passive piezoelectric damping for

increasing the flutter margin in supersonic panels. The results underscore the importance

of detailed, mode-resolved analysis and precise shunt tuning in harnessing the full poten-

tial of passive control. At the same time, the findings highlight the inherent nonlinearities

and sensitivities of the coupled system, pointing to the need for advanced optimization

strategies and practical design considerations in future applications.
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