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RESUMO

Siqueira, A. H. Inferência em mistura dinâmica de gases utilizando redes
bayesianas. 2019. 54p. Monografia (Trabalho de Conclusão de Curso) - Escola de
Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2019.

A detecção e medição de gases é uma preocupação que surgiu há mais de um século. Do uso
de pequenos animais para detecção de gases nocivos no século 20, até utilização de sensores
semicondutores atualmente, o problema ainda é bastante relevante em diversas áreas
como diagnóstico médico, análise de alimentos e monitoramento de ambientes industriais.
Apesar dos avanços na tecnologia, os sensores atuais sofrem com problemas como baixa
seletividade, respostas não lineares e instabilidade, dificultando seu uso para medição de
concentração de gases em misturas de gases. Neste trabalho é proposto o uso de rede
bayesiana gaussiana para inferência das concentrações individuais de dois gases (CO e
C2H2) em uma mistura de gases no tempo.

Palavras-chave: Redes Bayesianas, Redes Bayesianas Gaussianas, Mistura de Gases,
Série Temporal.





ABSTRACT

Siqueira, A. H. Inference in dynamic gas mixtures using bayesian networks.
2019. 54p. Monografia (Trabalho de Conclusão de Curso) - Escola de Engenharia de São
Carlos, Universidade de São Paulo, São Carlos, 2019.

Gas detection and measurement is a concern that has emerged over a century ago. From the
use of small animals to detect harmful gases in the 20th century, to the use of semiconductor
sensors today, the problem is still quite relevant in many areas such as medical diagnosis,
food analysis and industrial safety. Despite advances in technology, today’s sensors suffer
from problems such as low selectivity, nonlinear responses, and instability, making it
difficult to use for gas concentration measurement in gas mixtures. This work proposes
the use of Gaussian Bayesian Networks to infer the individual concentrations of two gases
(CO and C2H2) in a mixture of gases over time.

Keywords: Bayesian Network, Gaussian Bayesian Network, Gas Mixture, Time Series.





19

1 INTRODUÇÃO

A detecção e medição de gases é uma preocupação que surgiu há mais de um século,
com o uso de animais pequenos como canários, coelhos e ratos em minas de carvão para
detecção de gases nocivos aos trabalhadores sendo comum no início do século 20 (BURRELL;
SEIBERT, 1914). Desde então, com o avanço da tecnologia, foram desenvolvidos outros
métodos como a lanterna de segurança e, mais tarde, sensores eletrônicos para detecção de
gases. Atualmente, os sensores de gases utilizados são, predominantemente, transdutores
que convertem informação química em alguma forma de sinal elétrico, sendo classificados
de acordo com seu princípio de operação (YUNUSA et al., 2014). Assim, com o aumento
da variedade e qualidade de sensores disponíveis, nas últimas décadas diversos estudos e
aplicações foram desenvolvidas em áreas como diagnóstico médico, análise de alimentos e
monitoramento de ambientes industriais (LIU; ZHOU; LEI, 2015).

Contudo, sensores de gás do tipo metal-óxido semicondutor sofrem com uma baixa
seletividade, respostas não lineares e instabilidade. Apesar da melhora desses sensores nos
últimos anos, ainda é impossível identificar diversos gases com apenas um sensor (LIU;
ZHOU; LEI, 2015).

Uma forma de abordar esse problema é o uso de um vetor com vários sensores de
gases de modelos diferentes, assim obtendo mais informações sobre o gás. Em teoria, é
possível desenvolver uma expressão matemática baseada no conhecimento da forma de
funcionamento do sensor e nos dados obtidos, mas na pratica alguns dos parâmetros para
expressão precisam ser estabelecidos de forma empírica. Com o aumento no número de
componentes de gases a expressão matemática para os sensores se torna mais complexa,
já que a detecção de uma molécula pode ser influenciada pela presença de outro tipo de
molécula (SUNDGREN et al., 1991).

Outra abordagem proposta para esse problema é o uso de técnicas de inteligencia
artificial para reconhecimento de padrões através de conjunto de dados extraídos do vetor
de sensores através de experimentos, eliminando a necessidade de um modelo criado a
partir da teoria de operação de cada modelo de sensor (Bermak; Belhouari, 2006).

Dentre os modelos de inteligência artificial propostos na literatura, as Redes
Bayesianas se destacam por descreverem probabilidade condicional entre vértices de um
grafo. Essa característica trás implicações interessante, neste modelo não existe vértices
de entrada ou saída, a partir de uma evidencia em qualquer nó pode-se inferir o valor
mais provável dos outros vértices, assim este modelo trabalha bem quando existem dados
faltantes, como é muito comum na área médica, por exemplo. Este modelo também captura
a relação de causa e efeito entre as variáveis (NEAPOLITAN, 2004).
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Neste trabalho, é proposto o uso de Redes Bayesianas com variáveis contínuas para
inferência da concentração de uma mistura de gases, a partir de um vetor de sensores de
gases metal-óxido semicondutores.

1.1 Objetivos

O objetivo geral deste trabalho é produzir uma rede bayesiana para inferência
das concentrações individuais de dois gases em uma mistura que varia no
tempo. Mais especificamente, pode-se dividir nos seguintes objetivos secundários:

• Estudo de modelos bayesianos com variável continua;

• Implementação do algoritmo de aprendizado de parâmetros do modelo;

• Construção de um ou mais modelos a partir dos parâmetros obtidos;

• Implementação do algoritmo de inferência dos gases nos modelos;

• Comparação dos resultados.

1.2 Organização

O trabalho está organizado em 5 capítulos. No capítulo 2 é feito um breve estudo
sobre teoria probabilística básica, teoria básica de grafos e redes bayesianas gaussianas.
No capitulo 3 são apresentadas as linguagens de programação, bibliotecas utilizadas e o
método de implementação e teste dos modelos. No capítulo 4 são apresentados os resultados
obtidos com os modelos. Finalmente, o capítulo 5 apresenta discussão dos resultados e as
considerações finais.
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2 TEORIA

Neste capitulo serão discutidos os princípios teóricos necessários para contextualizar
este trabalho, tratando dos fundamentos da teoria probabilística, fundamentos de teoria
de grafos e por fim, redes Bayesianas.

2.1 Teoria Probabilística Básica

Neste capitulo serão apresentados alguns conceitos necessários para o desenvolvi-
mento das ideias presentes nas próximas seções.

Um dos conceitos mais importantes da teoria probabilística e fundamental para
este trabalho é a probabilidade condicional.

WALPOLE (2006) define que, dado dois eventos A e B, tal que a probabilidade do
evento B seja diferente de zero. Então a probabilidade de ocorrer o evento A dado que o
evento B foi observado, isto é, a probabilidade condicional, é dada por:

P (A|B) = P (A ∩B)
P (B) dado que P (B) > 0. (2.1)

Na equação 2.1, o termo P (A ∩B) representa a probabilidade da intersecção dos
eventos A e B. No caso deste termo ser igual a zero, diz-se que os eventos A e B são
mutuamente exclusivos.

Segundo WALPOLE (2006), os eventos A e B são considerados independentes se
pelo menos uma das condições a seguir for verdadeira:

1. P (A|B) = P (A) e P (B) 6= 0.

2. P (A) = 0 ou P (B) = 0.

Então, a probabilidade da intersecção dos eventos A e B, no caso dos eventos serem
independentes, é dado por:

P (A ∩B) = P (A|B)P (B) = P (A)P (B). (2.2)

O Teorema de Bayes permite a inferência da probabilidade de determinado evento,
dado o conhecimento da ocorrência de algum evento conhecido. O teorema é definido a
seguir.
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Dado dois eventos A e B, de forma que a probabilidades de ambos não seja nula,
tem-se

P (A|B) = P (B|A)P (A)
P (B) . (2.3)

Ainda, esse resultado pode ser expandido. Supondo uma série de eventos mutua-
mente exclusivos e exaustivos A1, A2, Ak, de forma que a P (Ai) 6= 0 para i = 1, 2, ..., k, e
algum evento B tal que P (B) 6= 0, então:

P (Ak|B) = P (Ak ∩B)∑k
i=1 P (Ai ∩B)

= P (Ak)P (B|Ak)∑k
i=1 P (Ai)P (B|Ai)

. (2.4)

A prova pode ser encontrada em WALPOLE (2006, p. 71).

Quando não se tem informações sobre a probabilidade condicional de algum evento,
e se tem as informações do lado direito da equação 2.3 ou 2.4, é possível fazer uma
inferência bayesiana.

Segundo WALPOLE (2006, p. 172) “A distribuição contínua mais importante
em todo campo da estatística é a distribuição normal”. Essa distribuição é caracterizada
pelo seu gráfico em formato de sino, e é extensamente utilizada em diversas áreas do
conhecimento. É descrita com a seguinte formula:

p(x) = N(x;µ, σ2) = 1√
2πσ

e− (x−µ)2

2σ2 , −∞ < x < ∞. (2.5)

Na equação 2.5, diz-se que a variável aleatória X tem uma distribuição normal com
média E(X) = µ e variância V (X) = σ2.

Uma distribuição normal possui média zero e variância infinita representa completa
incerteza, enquanto um distribuição com média contante e variância zero representa
completa certeza sobre o estado da variável.

Uma distribuição normal multivariada é uma generalização da distribuição normal
unidimensional (NEAPOLITAN, 2004). Neste caso, uma um vetor X que possui distribuição
normal multivariada é representada da seguinte forma:

ρX(x) = N(x;µ,ψ) (2.6)

onde o vetor X é um vetor n-dimensional de variáveis aleatórias, denotado na
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equação 2.7.

X =


X1

X2
...
Xn

 (2.7)

A matriz de covariância ψ e o vetor µ de médias são denotados, respectivamente,
como nas equações 2.8 e 2.9:

ψ =


V (X1) Cov(X1, X2) . . . Cov(X1, Xn)

Cov(X2, X1) V (X2) . . . Cov(X2, Xn)
... ... . . . ...

Cov(Xn, X1) Cov(X1, X2) . . . V (Xn)

 (2.8)

µ =


µ1

µ2
...
µn

 (2.9)

A matriz de covariância ψ também é comumente representada pela equação 2.10,
esta segunda notação é a adotada nas seções seguintes por simplicidade.

ψ =


σ2

1 σ12 . . . σ1n

σ21 σ2
2 . . . σ2n

... ... . . . ...
σn1 σn2 . . . σ2

n

 (2.10)

Ainda, NEAPOLITAN (2004, p. 418), define a matriz de precisão T como sendo a
matriz inversa de ψ.

T = ψ−1 (2.11)

2.2 Teoria Básica de Grafos

A teoria de grafos estuda estruturas chamadas de grafo, que representam a relação
entre objetos. Como estabelecido por WEST (2000), um grafo G é definido por um
conjunto não vazio de vértices V(G), um conjunto de arestas E(G), e a relação que
associa cada aresta a dois vértices.

A relação entre os vértices, neste caso é simétrica. Mas existem casos que se deseja
modelar relações assimétricas entre os vértices. Nestes casos usa-se um grafo direcionado.
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Um grafo direcionado G(V,E), como estabelecido por WEST (2000), é definido
por um conjunto não vazio de vértices V, um conjunto de arestas E, e a relação que
associa cada aresta a um par ordenado de vértices. Neste caso, se (X,Y ) ∈ E, diz-se que
existe uma aresta de X para Y , porém, no contexto desse trabalho, X é denominado pai
de Y , e Y é denominado descendente de X.

Dado um grafo G(V,E), supondo que existam os vértices V (G) = [X1, X2, ..., Xn]
para n ≥ 2, e que existam as arestas (Xi, Xi+1) ∈ E(G) para 1 ≤ i ≤ n− 1. O conjunto
de n arestas que conectam os vértices de X1 até Xn é chamado de caminho de X1 a
Xn. Ainda, o caminho de um nó até ele mesmo é denominado ciclo direto. Mas, no caso
de não ocorrer a repetição de nenhum vértice no caminho ele é chamado de caminho
simples.

Supondo, então, um grafo direcionado G que não possua caminho que seja um
ciclo direto. Este grafo é chamado de grafo acíclico dirigido, referido daqui em diante
como DAG (Directed Acyclic Graph) (NEAPOLITAN, 2004, p. 31). Um exemplo de um
grafo acíclico dirigido com quatro vértices é ilustrado na figura 1.

Figura 1: Exemplo de DAG

2.3 Redes Bayesianas

Os assuntos abordadas nas seções 2.1 e 2.2 são fundamentais para tratar das Redes
Bayesianas. Contudo, existe mais uma definição importante a ser abordada: a condição de
Markov.

Supondo que exista distribuição de probabilidade conjunta P de um conjunto de
variáveis aleatórias V e um DAG G(V,E). Diz-se que (G,P) satisfaz a condição de
Markov se para cada variável X ∈ V , X é condicionalmente independente do conjunto
de todos os seus não-descendentes dado o conjunto de todos os seus pais. Denota-se os
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não-descendentes de X como NDX e os pais de X como PAX , dessa forma, indica-se essa
relação como:

Ip({X}, NDX |PAX). (2.12)

Caso o conjunto (G,P) satisfaça a condição de Markov, diz-se então, que G e P
satisfazem a condição de Markov entre si (NEAPOLITAN, 2004, p. 31).

Finalmente, dado uma distribuição de probabilidade conjunta P de um conjunto
de variáveis aleatórias V e um DAG G(V,E), chama-se (G, P) uma rede bayesiana
se G e P satisfazem a condição de Markov entre si (NEAPOLITAN, 2004, p. 40).

Figura 2: Uma rede bayesiana

A figura 2 mostra uma rede bayesiana com três variáveis aleatórias. A descrição de
cada uma das variáveis está detalhada na tabela 1.

Tabela 1: Descrição das variáveis aleatórias da figura 2

Variavel Valor Descrição

S s1 Sprinkler foi utilizado
s2 Sprinkler não utilizado

C c1 Choveu
c2 Não choveu

G g1 Grama está molhada
g2 Grama não está molhada

Dado um conjunto de variáveis aleatórias V, se para cada X,Y ∈ V for definida
uma aresta de X para Y , e se, e somente se X é uma causa direta de Y, chama-se a DAG
resultante de DAG causal NEAPOLITAN (2004).

O conceito de causalidade entre X e Y , neste contexto, pode ser entendido como a
fato de uma mudança nos valores de X causar uma variação, algumas vezes, no valor de
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Y . NEAPOLITAN (2004) e COOPER (1999) fazem uma discussão mais aprofundada do
significado de causalidade e de como uma DAG causal em geral satisfaz a condição de
Markov. Contudo, a definição mais simples é suficiente para este trabalho.

Uma rede bayesiana gaussiana é uma rede bayesiana onde seus vértices são exclusi-
vamente variáveis aleatórias com distribuição normal, como ilustra a figura 3.

Figura 3: Uma rede bayesiana gaussiana

2.4 Inferência em Rede com Variáveis Continuas

O algoritmo descrito nesta seção é proposto por NEAPOLITAN (2004, p. 185-190)
para inferência em redes bayesianas gaussianas individualmente conectadas.

Suponha uma rede bayesiana gaussiana onde cada uma das variáveis aleatória tem
sua distribuição definida por uma combinação linear de seus pais. Assim, sendo PAX os
pais de X, pode-se escrever que:

x = wX +
∑

Z∈P AX

bxzz (2.13)

onde wX tem distribuição N(wX ; 0, σ2
WX

) e modela a incerteza em relação ao valor de X, e
bXZ representa a influencia de Z em X. Dessa forma a distribuição da variável X é dada
por:

ρ(x|pax) = N(x;
∑

Z∈P Ax

bxzz, σ
2
WX

) (2.14)

Note que o vértice X não tem média própria, sua média é uma combinação linear
de seus pais. Contudo, a variância é própria do vértice. Porém, caso de um vértice raiz,
isto é, um vértice que não tem nenhum pai, sua distribuição é dada simplesmente por:

ρ(x) = N(x;µx, σ
2
X). (2.15)

A seguir, são apresentadas as fórmulas utilizadas no algoritmo de inferência. E,
neste caso, para proporcionar uma leitura mais fácil, a variância é representada por σ, ao
invés de σ2.
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Valor λ é:

σλ
X =

 ∑
U∈CHX

1
σλ

UX

−1

(2.16)

µλ
X = σλ

X

∑
U∈CHX

µλ
UX

σλ
UX

(2.17)

Valor π é:

σπ
X = σWX

∑
Z∈P AX

b2
XZσ

π
XZ (2.18)

µπ
X =

∑
Z∈P AX

bXZµ
π
XZ (2.19)

A média e variância esperada para uma variável X é calculada:

σX = σπ
Xσ

λ
X

σπ
X + σλ

X

(2.20)

µX = σπ
Xµ

π
X + σλ

Xµ
λ
X

σπ
X + σλ

X

(2.21)

A mensagem π de Z para um filho X:

σπ
XZ = 1

σπ
Z

+
∑

Y ∈CHZ−{X}

1
σλ

Y Z

(2.22)

µπ
XZ =

µπ
Z

σπ
Z

+∑
Y ∈CHZ−{X}

µλ
Y Z

σλ
Y Z

1
σπ

Z
+∑

Y ∈CHZ−{X}
1

σλ
Y Z

(2.23)

A mensagem λ de X para um pai Y:

σλ
Y X = 1

b2
Y X

σλ
Y + σλ

WY
+

∑
Z∈P AY

b2
Y Zσ

π
Y Z

 (2.24)

µλ
Y X = 1

bY X

µλ
Y +

∑
Z∈P AY

bY Zµ
π
Y Z

 (2.25)

Ao se instanciar uma variável V com valor v̂, faz-se:

σπ
V = σλ

V = σV = 0. (2.26)
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µπ
V = µλ

V = µV = v̂. (2.27)

A ignorância total em relação ao valor de determinada variável é representado pela
distribuição normal:

N(x, µ = 0, σ = ∞). (2.28)

O algoritmo proposto para cálculo de expectativa das variáveis aleatórias na
rede possui quatro funções principais: iniciarRede, atualizarRede, enviarMensagemPi,
enviarMensagemLambda. Para facilitar a leitura, os valores λ e π de um vértice A serão
representados valλA e valπA, respectivamente. Ainda, as mensagens λ e π do vértice A para
o B serão representadas menλ

AB e menπ
BA, respectivamente.

Note também que os valores e as mensagens λ e π representam uma distribuição
normal, e nos algoritmos apresentados os valores e mensagens serão denotados como tal.
Finalmente, os algortimos para as funções são apresentados a seguir:

Algoritmo 1 Inicialização da Rede
1: função iniciarRede(RedeBayesiana& B = (G(E, V ),P ))
2: para cada X ∈ V faça
3: valλX = N(x; 0,∞); . Ignorância total
4: para cada Z pai de X faça
5: menλ

XZ = N(x; 0,∞); . Inicializa mensagem λ
6: para cada Y filho de X faça
7: menπ

Y X = N(x; 0,∞); . Inicializa mensagem π
8:
9: para cada vértice raiz R faça

10: expectativaR = N(r;µR, σR); . Inicializa valor da expectativa
11: valπR = N(r;µR, σR); . Inicializa valor π
12: para cada X filho de R faça
13: enviarMensagemPi(R,X); . Atualiza filhos em relação a expectativa
14:
15: fim função
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Algoritmo 2 Atualização da Rede
1: função atualizarRede(RedeBayesiana& B = (G(E, V ),P ), Evidencias& A, Vér-

tice V, Valor v)
2: A = A ∪ V ; . Adiciona variável a lista de evidencias
3: valπV = valλV = expectativaV = N(v; v, 0); . Certeza em relação a V
4:
5: para cada Z pai de V tal que Z /∈ A faça
6: enviarMensagemLambda(V,Z); . Atualiza pais em relação a expectativa
7: para cada X filho de V faça
8: enviarMensagemPi(V,X); . Atualiza filhos em relação a expectativa
9:

10: fim função

Algoritmo 3 Mensagem Lamda de Y para X
1: função enviarMensagemLambda(Vértice Y, Vértice X)
2: menλ

Y X = calcular_mensagem_lambda(); . eq. 2.24 e 2.24
3: valλX = calcular_valor_lambda(); . eq. 2.16 e 2.17
4: expectativaX = calcular_expectativa(); . eq. 2.20 e 2.21
5:
6: para cada Z pai de X tal que Z /∈ A faça
7: enviarMensagemLambda(X,Z); . Atualiza pais em relação a expectativa
8: para cada W filho de X tal que W 6= Y faça
9: enviarMensagemPi(X,W); . Atualiza filhos em relação a expectativa

10:
11: fim função

Algoritmo 4 Mensagem Pi de Z para X
1: função enviarMensagemPi(Vértice Z, Vértice X)
2: menπ

XZ = calcular_mensagem_pi(); . eq. 2.22 e 2.22
3:
4: se X /∈ A então
5: valπX = calcular_valor_pi(); . eq. 2.18 e 2.19
6: expectativaX = calcular_expectativa(); . eq. 2.20 e 2.21
7: para cada Y filho de X faça
8: enviarMensagemPi(X,W); . Atualiza filhos em relação a expectativa
9: fim se

10:
11: se σπ

X 6= ∞ então . Se estiver inicializado
12: para cada W pai de X tal que W 6= Z e W /∈ A faça
13: enviarMensagemLambda(X,W);
14:
15: fim função
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2.5 Aprendizado de Parâmetros de Rede com Variáveis Continuas

Segundo NEAPOLITAN (2004), "Uma rede bayesiana gaussiana determina uma
distribuição normal multivariada não singular, e vice e versa". Dessa forma, é possível
transformar uma rede bayesiana em uma distribuição normal multivariada, realizar a
aprendizagem de parâmetros e por fim retornar o modelo para forma de rede bayesiana
gaussiana.

Nesta seção é apresentado como é realizado a aprendizagem de parâmetros em uma
distribuição normal multivariada e a conversão do modelo para rede bayesiana gaussiana.

Contudo, antes dessa discussão, é necessário estabelecer uma definição para os
vértices da rede um pouco diferente da proposta na equação 2.13. Nesta equação, WX

tinha distribuição N(wX ; 0; σ2
WX

), mas nesta seção é proposto que WX não tenha mais
que, necessariamente, ter média zero e passando a ser representado com uma distribuição
N(wX ;E(WX);σ2

WX
).

Com essa nova definição, a probabilidade condicional de um vértice Xi de uma
rede gaussiana bayesiana é:

ρX(xi|pai) = N(xi;µi +
∑

Xj∈P Ai

bij(xj − µj), σ2
i ) (2.29)

Note que essa notação incorpora a média do vértice que aparece na definição da
distribuição normal multivariada, onde cada variável no vetor tem média e variância
própria, além dos valores de covariância entre as variáveis.

Figura 4: Uma rede bayesiana gaussiana

Outra observação importante é que essa nova definição da distribuição de WX pode
ser levada para notação anterior criando um vértice auxiliar Z, pai de Xi, de tal forma
que Z tenha média µi, variância zero e bXZ = 1.
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2.5.1 Variáveis Normalmente Distribuídas Multivariadas

Seja um vetor X com distribuição normal multivariada, supondo uma amostra
normal multivariada D=[X(1), X(2), ..., X(M)] com os parâmetros {A,R}, onde A é um
vetor que representa a convicção existente a respeito do valor da média de X e R é uma
matriz que representa a convicção existente a respeito do valor da matriz de precisão de
X, pode-se calcular:

x̄ =
∑M

h=1 x
(h)

M
(2.30)

s =
M∑

h=1
(x(h) − x̄)(x(h) − x̄)T (2.31)

E então, a função de densidade a posteriori de R é dada por:

ρR(r|d) = Wishart(r;α∗, β∗) (2.32)

onde:

β∗ = β + s+ vM

v +M
(x̄− µ)(x̄− µ)T (2.33)

α∗ = α +M (2.34)

e a função de densidade condicional a posteriori de A é dada por:

ρA(a|r, d) = N(a;µ∗, (v∗r)−1) (2.35)

onde:

µ∗ = vµ+M x̄

v +M
(2.36)

v∗ = v +M (2.37)

Neste contexto, os valores µ, v e β representam, respectivamente, a média, o
tamanho e a matriz de covariância da amostra hipotética onde foi baseada o convicção
a priori do valor de A. Para modelar ignorância total sobre o modelo estudado a priori,
basta admitir β = 0, v = 0 e α = −1 nas expressões 2.33, 2.34, 2.36 e 2.37.
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Finalmente, a nossa convicção a posteriori para o valor de XM+1 é dado pela
distribuição:

ρX(M+1)(x(M+1)|d) = t(x(M+1);α∗ − n+ 1,µ∗,
v∗(α∗ − n+ 1)

v∗ + 1 β∗) (2.38)

O desenvolvimento das equações é feito por NEAPOLITAN (2004) e a prova pode
ser encontrada em (DEGROOT, 2005).

2.5.2 Conversão para Rede Bayesiana Gaussiana

O método de obtenção do vetor de média e matriz de precisão de uma distribuição
de uma distribuição normal multivariada a partir de uma rede bayesiana gaussiana,
abordado nesta seção, foi proposto em (SHACHTER; KENLEY, 1989).

Seja:

ti = 1
σ2

i

(2.39)

e:

bi =


bi1
...

bi,i−1

 (2.40)

e o vetor de média da distribuição normal multivariada relativa a rede bayesiana
gaussiana:

µ =


µ1
...
µn

 (2.41)

O algoritmo apresentado na figura 5 cria a matriz de precisão, onde n é o número
de vértices na rede bayesiana:
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Início

n = número de vértices

T = t1 e i = 2

i <= n ?

Ti =
(
Ti−1 + tibib

T
i −tibi

−tibT
i ti

)
i = i+ 1

T = Tn

T

Fim

sim

não

Figura 5: Algoritmo para obtenção de matriz de precisão

Um exemplo de dessa matriz para n igual a quatro é:

T4 =



b2
41

σ2
4

+ b2
31

σ2
3

+ b2
21

σ2
2

+ 1
σ2

4

b41b42
σ2

4
+ b31b32

σ2
3

− b21
σ2

2

b41b43
σ2

4
− b31

σ2
3

− b41
σ2

4
b41b42

σ2
4

+ b31b32
σ2

3
− b21

σ2
2

b2
42

σ2
4

+ b2
32

σ2
3

+ 1
σ2

2

b42b43
σ2

4
− b32

σ2
3

− b42
σ2

4
b41b43

σ2
4

− b31
σ2

3

b42b43
σ2

4
− b32

σ2
3

b2
43

σ2
4

+ 1
σ2

3
s − b43

σ2
4

− b41
σ2

4
− b42

σ2
4

− b43
σ2

4
− 1

σ2
4

 (2.42)

2.5.3 Aprendendo os Parâmetros de uma Rede Gaussiana Bayesiana

A função de densidade de probabilidade encontrada na equação 2.38 não se trata
de uma gaussiana, mas sim de uma distribuição t. Contudo, uma distribuição t(x;α,µ,T )
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pode ser aproximada por uma distribuição N(x;µ,T−1), quando o limite de α tende ao
infinito (DEGROOT, 2005).

Assim, com o uso dessa aproximação, pode-se encontrar a distribuição normal
multivariada a partir da teoria apresentada na seção 2.5.1. Pela equação 2.38, obtém-se
diretamente µ e T−1∗ é dado por:

T−1∗ = v∗(α∗ − n+ 1)
v∗ + 1 β∗ (2.43)

Fazendo o lado esquerdo da equação 2.43 igual a matriz simbólica obtida pelo
algoritmo da seção 2.5.2 e calculando o valor numérico do lado direito da equação com
uma amostra, como descrito na seção 2.5.1, obtêm-se um sistema de equações que, ao ser
resolvido, permite obter os valores σ2∗

i e b∗
ij da rede bayesiana gaussiana de interesse. O

valor de µ∗ da rede é obtido direto da equação 2.38.

2.6 Desvio Médio Absoluto

O desvio médio absoluto é uma métrica para descrever a performance de um deter-
minado modelo (WILLMOTT; MATSUURA, 2005). Neste caso, essa métrica representa a
média da diferença absoluta entre os valores reais e as predições do modelo.

O desvio médio absoluto é dado por:

DMA =
∑n

i=1 |yi − ŷi|
n

(2.44)

onde n é o número de pontos comparados, yi é o dado real (rótulo), ŷi é a predição
do modelo, e DMA tem a mesma grandeza do que yi e ŷi.
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3 MATERIAIS E MÉTODOS

Neste capítulo será apresentada a metodologia empregada nos experimentos, bem
como o conjunto de dados estudado e as tecnologias utilizadas para implementação de
software necessário para este trabalho.

3.1 Conjunto de Dados: Mistura de Gases

O conjunto de dados utilizado neste trabalho trata-se de uma série temporal de 16
sensores expostos à uma mistura de gases com concentração variando ao longo do tempo,
sendo as misturas etileno (C2H4) e metano (CH4) no ar, e etileno e monóxido de carbono
(CO) no ar, disponibilizado em arquivo CSV. Em particular, as análises deste trabalho
foram desenvolvidas apenas para a mistura de etileno e CO.

Os sensores utilizados são sensores químicos da Figaro Inc., incluindo os modelos
TGS-2600, TGS-2602, TGS-2610, TGS-2620, sendo que o sistema possui quatro sensores
de cada tipo. Os sensores foram dispostos em um compartimento com volume de 60 ml,
onde foi injetado um fluxo constante de gás de 300 ml/min, e as amostras foram feitas em
uma frequência de 100 Hz ininterruptamente por um período de 12 horas (FONOLLOSA
et al., 2015).

Cada um dos modelos de sensores utilizados tem aplicação e sensibilidade a diferen-
tes gases. Os sensores TGS-2600 e TGS-2602 são utilizados para detecção de contaminantes
no ar como etanol, amônia, CO e hidrogênio (FIGARO USA INC., 2015 e 2013). O modelo
TGS-2610 é sensivel a gases liquefeitos de petróleo como propano, iso-butano e metano
(FIGARO USA INC., 2017). Já o TGS-2620 é geralmente utilizado para detecção de gases
e vapores de solventes como etanol (FIGARO USA INC., 2014).

Figura 6: Da esquerda para direita: sensores TGS-2600, TGS-2602, TGS-2610, TGS-2620
(imagem adaptada da ficha de especificação dos componentes)

Na primeira hora de amostras os gases nunca se sobrepõem, isto é, pelo menos
um dos gases sempre está com concentração igual a zero. A partir da segundo hora, os
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gases começam a se sobrepor, porém os gases não variam simultaneamente em nenhum
momento. As figuras 7 e 8 mostram o comportamento dos gases na primeira e segunda
hora, respectivamente.

Figura 7: Concentração de CO e Etileno na primeira hora

Figura 8: Concentração de CO e Etileno na segunda hora
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3.2 Software

Foram utilizadas duas linguagens para implementação dos algoritmos necessários:
Python e C++. A primeira foi utilizada em conjunto com as bibliotecas numpy, pandas,
matplotlib e sympy para implementação dos algoritmos de aprendizado, parâmetros da rede
e visualização de dados por ser uma linguagem de alto nível facilitando a implementação.
Enquanto a segunda foi utilizada com a framework Qt5 para implementação do algoritmo
de inferência em redes bayesianas gaussianas descrito na seção 2.4 por ser uma linguagem
de alta eficiência.

3.2.1 Python

Com uma sintaxe concisa e com foco em legibilidade de código fonte, estruturas
de alto nível nativas e uma grande comunidade, Python é hoje uma das linguagens de
programação mais populares existentes.

Python foi lançada por Guido van Rossum em 1991, é uma linguagem de alto nível,
interpretada por bytecode em máquina virtual Python e multi-paradigma, suportando
programação modular, programação funcional e orientação a objeto (BORGES, 2014).

Numpy é um pacote de Python voltado para computação científica, incluindo vetores
multidimensionais de objetos, operações otimizadas com vetores, rotinas de ordenação,
operações matemáticas e estatísticas básicas, entre outras funcionalidades (OLIPHANT,
2006). Esse pacote foi utilizado devido sua eficiência em operações com matrizes.

Pandas é uma biblioteca de Python para manipulação de dados, incluindo estruturas
e operações de manipulação de tabelas numéricas e séries temporais. Essa biblioteca fornece
operações como amostragem, ordenação, filtro e concatenação de conjunto de dados e por
isso se torna praticamente indispensável na análise de dados (MCKINNEY, 2012).

Sympy é uma biblioteca para computação simbólica em Python. Usando símbolos
essa biblioteca é capaz de resolver equações aritméticas, cálculo e álgebra (MEURER et
al., 2017).

Matplotlib é um pacote para criação de gráficos em Python, capaz de gerar desde
gráficos de linha, histogramas, gráficos de dispersão e até mesmo gráficos de superfícies .
Os gráficos deste trabalho foram criados com esta biblioteca (HUNTER, 2007).

3.2.2 C++

A linguagem de programação C++ é um linguagem multi-paradigma, podendo ser
imperativa, orientada a objetos ou genética, baseada na linguagem C. Idealizada para ser
tão eficiente quanto C, porém com suporte a outros paradigmas, C++ pode ser utilizado
em ambientes onde os recursos de hardware são extremamente limitados como sistemas
embarcados (STROUSTRUP, 2000).
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Qt é uma framework para desenvolvimento de aplicações com interface gráfica ou
aplicações de console multiplataforma em C++ (ENG, 2016). A versão mais recente neste
momento é Qt5, e é utilizado em diversos sistemas embarcados como smart TVs e centrais
multimídia de automóveis. Alguns exemplos de empresas que usam Qt em seus produtos
são: LG, Samsumg, Autodesk e Ford.

Esta framework é construída em cima do conceito do QObject e Event Loop,
permitindo programação orientada a eventos em C++. Além disso, possui implementações
de estruturas de alto nível como Hash, vetores e listas otimizados, e interfaces como serial
e rede, aumento o nível da linguagem e permitindo um desenvolvimento acelerado.

3.3 Rede Bayesiana

A metologia do experimento consiste em três etapas principais: aprendizado dos
parâmetros da rede bayesiana gaussiana a partir dos dados, aplicação dos parâmetros em
uma rede e finalmente, a inferência dos valores de interesse na rede.

Para aprendizado da rede, o conjunto de dados foi separado em duas partes: treino
e teste. O conjunto de teste foi escolhido como sendo as quatro primeiras horas do dado
e o conjunto de treino, as oito horas seguintes. E com o conjunto de dados de treino,
excluindo-se a coluna de tempo, foi executado o procedimento descrito na seção 2.5 com
as 18 colunas restantes, assumindo ignorância prévia.

O procedimento para aprendizado de parâmetros da rede bayesiana gaussiana,
nesse caso, consiste dos seguintes passos:

1. Encontrar matriz de precisão numérica a partir do conjunto de dados utilizando a
equação 2.43.

2. Encontrar a matriz de precisão simbólica utilizando o algoritmo descrito na figura 5
para n igual a 18.

3. Igualar a matriz simbólica à matriz numérica.

4. Resolver o sistema de equações construído a partir da igualdade.

A execução do procedimento foi feito com script em Python, durante o qual, cada
variável aleatória da tabela foi nomeada como Xi, onde o índex i varia de 1 a 18, conforme
consta na tabela 2. Ao fim do procedimento de aprendizado foram obtidos os parâmetros
média atualizada µ∗

i , variância atualizada σ2∗
i e coeficiente de correlação entre as variáveis

atualizada b∗
ij, onde j é menor do que i.
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Tabela 2: Relação entre variável e índex para algoritmo de aprendizado de parâmetros

Descrição Nome
CO X1
Etileno X2
TGS-2602-1 X3
TGS-2602-2 X4
TGS-2600-1 X5
TGS-2600-2 X6
TGS-2610-1 X7
TGS-2610-2 X8
TGS-2620-1 X9

Descrição Nome
TGS-2620-2 X10
TGS-2602-3 X11
TGS-2602-4 X12
TGS-2600-3 X13
TGS-2600-4 X14
TGS-2610-3 X15
TGS-2610-4 X16
TGS-2620-3 X17
TGS-2620-4 X18

Como discutido na seção anterior, existem duas formas de modelar um variável
aleatória contínua em uma rede bayesiana gaussiana, a primeira é uma variável onde a
média é dada por uma média própria somada a influência dos vértices pais, e a segunda,
uma variável onde a média é dada estritamente pelos vértices pais, mas, que tem um
vértice pai auxiliar que representa a média da variável aleatória.

Considerando essas duas abordagens, são propostas duas estruturas. A primeira,
chamada de Estrutura A, ilustrada na figura 9, representando a primeira abordagem e
segue a nomenclatura da tabela 2.

Figura 9: Rede bayesiana gaussiana para inferência de concentração em mistura de gases:
Estrutura A

A segunda estrutura proposta, chamada de Estrutura B, ilustrada na figura 10
leva em consideração a segunda abordagem. Neste caso, são necessários a inclusão de mais
16 vértices que tem função de vértices auxiliares contendo a média dos 16 vértices dos
sensores. A nova nomenclatura é especificada na tabela 3.
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Figura 10: Rede bayesiana gaussiana para inferência de concentração em mistura de gases:
Estrutura B

Tabela 3: Relação entre variável e índex para Estrutura B

Descrição Nome
CO X1
Etileno X2
µT GS−2602−1 X3
µT GS−2602−2 X4
µT GS−2600−1 X5
µT GS−2600−2 X6
µT GS−2610−1 X7
µT GS−2610−2 X8
µT GS−2620−1 X9
µT GS−2620−2 X10
µT GS−2602−3 X11
µT GS−2602−4 X12
µT GS−2600−3 X13
µT GS−2600−4 X14
µT GS−2610−3 X15
µT GS−2610−4 X16
µT GS−2620−3 X17

Descrição Nome
µT GS−2620−4 X18
TGS-2602-1 X19
TGS-2602-2 X20
TGS-2600-1 X21
TGS-2600-2 X22
TGS-2610-1 X23
TGS-2610-2 X24
TGS-2620-1 X25
TGS-2620-2 X26
TGS-2602-3 X27
TGS-2602-4 X28
TGS-2600-3 X29
TGS-2600-4 X30
TGS-2610-3 X31
TGS-2610-4 X32
TGS-2620-3 X33
TGS-2620-4 X34

Utilizando programa para inferência desenvolvido em C++, é feito a inferência da
concentração dos fases CO e Etileno no conjunto de dados de treino e de teste para cada
uma das estruturas utilizando todos os 16 sensores como evidência.

Para comparar a eficiência do modelo, é calculado o desvio médio absoluto dos
valores inferidos contra os valores reais tanto no conjunto de treino quanto no conjunto de
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teste. Ainda, é calculado o desvio médio absoluto da média dos valores reais do conjunto
de treino contra os valores reais, para comparação.

Um modelo que prevê sempre a média do conjunto de dados utilizado para treino
é a regressão mais simples possível, e por isso é utilizada como base de comparação com o
modelo obtido.
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4 RESULTADOS

Neste capítulo serão apresentados os resultados obtidos nos experimentos descritos
no capítulo anterior, passando pelas duas estruturas propostas.

4.1 Aprendizado

Ao final do método de aprendizado de parâmetros, obteve-se o vetor de média
atualizada µ∗ e o vetor de variância atualizada σ2∗, como apresentado na tabela 4. Também
obteve-se os coeficientes de correlação atualizados b∗

ij, conforme as tabelas 5, 6 e 7.

Tabela 4: Médias µ∗
i e variâncias σ2∗

i atualizadas

i µ∗
i σ2∗

i

1 1.110E+02 1.355E+03
2 5.177E+00 1.840E+00
3 1.918E+03 1.882E+04
4 1.518E+02 7.428E+04
5 4.329E+03 7.459E+04
6 4.738E+03 6.790E+01

i µ∗
i σ2∗

i

7 1.789E+03 2.888E+02
8 2.094E+03 2.356E+01
9 5.001E+03 9.234E+02
10 5.310E+03 6.178E+01
11 1.300E+03 2.994E+02
12 1.295E+03 2.756E+01

i µ∗
i σ2∗

i

13 4.948E+03 3.657E+02
14 3.942E+03 3.893E+01
15 8.643E+02 1.824E+01
16 9.817E+02 7.188E+00
17 5.379E+03 1.271E+02
18 4.328E+03 6.355E+01

Tabela 5: Coeficientes de correlação atualizados b∗
ij (colunas 1 à 6)

b∗
i,j 1 2 3 4 5 6

1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 −2.33E−03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
3 3.08E+00 1.62E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
4 −3.88E−01 1.56E+01 −2.70E−02 0.00E+00 0.00E+00 0.00E+00
5 1.17E−01 1.70E+02 8.36E−01 8.23E−02 0.00E+00 0.00E+00
6 7.48E−02 −3.12E−01 8.10E−02 2.10E−04 1.06E+00 0.00E+00
7 4.30E−01 3.45E+00 1.52E−01 2.02E−04 1.58E−01 2.31E−02
8 6.98E−02 −1.63E+00 1.20E−02 −1.54E−04 4.62E−02 −1.19E−01
9 −8.61E−02 2.00E+01 −1.87E−01 −2.23E−03 2.12E+00 −1.27E+00
10 4.21E−02 1.48E+00 1.21E−02 4.23E−04 −2.39E−02 1.20E−02
11 1.72E−01 2.81E−01 4.58E−01 −2.51E−03 −1.62E+00 1.41E+00
12 −1.12E−02 −9.98E−01 2.10E−03 2.56E−04 3.13E−02 5.21E−03
13 1.49E−01 −3.05E+00 −8.17E−02 −2.52E−03 −9.97E−02 1.30E+00
14 −2.73E−03 −6.55E−01 4.91E−02 3.06E−04 3.13E−01 −4.10E−01
15 −8.42E−03 1.09E−01 2.29E−02 2.51E−04 2.98E−01 −2.37E−01
16 −6.20E−03 −2.10E−01 −5.07E−03 −1.56E−04 1.31E−01 −1.32E−01
17 6.61E−02 2.74E+00 6.94E−03 −4.30E−05 2.74E−01 −1.13E+00
18 5.82E−02 −1.16E−01 −6.40E−03 −5.47E−04 −5.37E−01 7.37E−03
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Tabela 6: Coeficientes de correlação atualizados b∗
ij (colunas 7 à 12)

b∗
i,j 7 8 9 10 11 12

1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
4 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
7 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
8 1.24E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
9 2.68E+00 −7.86E−01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
10 −6.20E−02 −7.91E−02 1.09E+00 0.00E+00 0.00E+00 0.00E+00
11 −5.70E−01 −2.45E−01 −3.51E−01 5.61E−01 0.00E+00 0.00E+00
12 −1.52E−01 9.35E−02 −1.15E−01 9.24E−02 1.01E+00 0.00E+00
13 −3.20E+00 1.54E+00 −6.54E−01 7.48E−01 −3.23E−01 7.42E−01
14 −4.59E−01 7.30E−01 8.41E−02 6.65E−02 −4.52E−02 7.37E−02
15 7.27E−01 −2.25E−01 4.90E−02 −1.04E−01 1.58E−01 −1.77E−01
16 2.33E−01 −2.54E−02 3.28E−02 −4.51E−02 1.07E−01 −8.27E−02
17 4.28E−01 −1.07E+00 −2.23E−01 1.06E+00 4.25E−01 −6.31E−01
18 −1.65E−01 1.39E+00 3.23E−01 2.63E−02 −1.51E−01 2.35E−01

Tabela 7: Coeficientes de correlação atualizados b∗
ij (colunas 13 à 18)

b∗
i,j 13 14 15 16 17 18

1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
4 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
7 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
8 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
11 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
12 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
13 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
14 6.96E−01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
15 −2.45E−02 −1.05E−02 0.00E+00 0.00E+00 0.00E+00 0.00E+00
16 3.02E−02 −1.63E−02 6.54E−01 0.00E+00 0.00E+00 0.00E+00
17 8.88E−01 3.00E−01 −6.95E−02 3.85E−01 0.00E+00 0.00E+00
18 8.21E−02 6.09E−01 −1.66E+00 2.46E−01 2.46E−01 0.00E+00
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4.2 Estrutura A

No aprendizado de parâmetro obteve-se uma tabela de coeficientes de correlação
contendo mais relações do que previsto pela Estrutura A, ilustrada pela figura 9. Todos os
coeficientes não previstos pelo modelo foram ignorados.

As figuras 11 e 12 mostram, respectivamente, o resultado da inferência dos gases
CO e Etileno durante a primeira hora do conjunto de treino (quinta hora absoluta) contra
os dados reais. O resultado do cálculo do DMA do conjunto de treino contra a inferência
da estrutura A, DMA do conjunto de treino contra a média, bem como o percentual de
melhora do erro da Estrutura A em relação a média é descrito na tabela 8.

Já as figuras 13 e 14 mostram, respectivamente, o resultado da inferência dos gases
CO e Etileno durante a segunda hora do conjunto de teste contra os dados reais. Os
resultados das métricas para o conjunto de teste estão na tabela 9.

Tanto no conjunto de treino quanto de teste, o modelo obteve um desempenho
ruim na inferência da concentração do monóxido de carbono, enquanto para o etileno o
modelo foi capaz de reproduzir o comportamento da concentração desse gás, com um erro
30,41% menor do que erro para média do valor das concentrações no conjunto de treino.

Figura 11: Inferência e set point para CO com Estrutura A em conjunto de treino
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Figura 12: Inferência e set point para Etileno com Estrutura A em conjunto de treino

Tabela 8: Comparação do desvio médio absoluto do conjunto de treino com inferência e
média dos dados (Estrutura A)

Gás DMA inferência (ppm) DMA média (ppm) Percentual de melhora
Etileno 4.1937 5.3059 20.96%
CO 339.6126 140.8641 -141.09%

Figura 13: Inferência e set point para CO com Estrutura A em conjunto de teste
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Figura 14: Inferência e set point para Etileno com Estrutura A em conjunto de teste

Tabela 9: Comparação do desvio médio absoluto do conjunto de teste com inferência e
média dos dados (Estrutura A)

Gás DMA inferência (ppm) DMA média (ppm) Percentual de melhora
Etileno 3.4009 4.8869 30.41%
CO 320.9922 153.7820 -108.73%

4.3 Estrutura B

Assim como na primeira estrutura, todos os coeficientes não previstos pela Estrutura
B, ilustrada pela figura 10, foram ignorados. Neste caso os coeficientes de correlação entre
os gases e os sensores foram mantidos, os vértices dos sensores mantiveram sua variância
porém sua média foi modificada para zero, os vértices auxiliares recebem variância zero a
média de seus respectivos vértices de sensores. Ainda, a coeficiente entre o vértice auxiliar
e seu respectivo vértice de sensor é igual a um.

As figuras 15 e 16 mostram, respectivamente, o resultado da inferência dos gases
CO e Etileno durante a primeira hora do conjunto de treino (quinta hora absoluta) contra
os dados reais. Os resultados das métricas para o conjunto de teste estão na tabela 10.
Ainda, as figuras 17 e 18 mostram, respectivamente, o resultado da inferência dos gases
CO e Etileno durante a segunda hora do conjunto de teste contra os dados reais, e as
métricas para o conjunto de teste estão na tabela 11.

Neste modelo obteve-se um resultado expressivo na inferência do monóxido de
carbono, obtendo um erro 39,72% e 23,63% menor do que a média do conjunto de treino
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na inferência do conjunto de treino e de teste respectivamente. Porém, apresentou um
desempenho bastante ruim para inferência da concentração de etileno.

Figura 15: Inferência e set point para CO com Estrutura B em conjunto de treino

Figura 16: Inferência e set point para Etileno com Estrutura B em conjunto de treino
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Tabela 10: Comparação do desvio médio absoluto do conjunto de treino com inferência e
média dos dados (Estrutura B)

Gás DMA inferência (ppm) DMA média (ppm) Percentual de melhora
Etileno 5.2143 5.3059 1.73%
CO 84.9102 140.8641 39.72%

Figura 17: Inferência e set point para CO com Estrutura B em conjunto de teste

Figura 18: Inferência e set point para Etileno com Estrutura B em conjunto de teste
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Tabela 11: Comparação do desvio médio absoluto do conjunto de teste com inferência e
média dos dados (Estrutura B)

Gás DMA inferência (ppm) DMA média (ppm) Percentual de melhora
Etileno 4.7477 4.8869 2.85%
CO 117.4392 153.7820 23.63%
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5 CONCLUSÕES

Nos resultados obtidos no treinamento, pode-se observar os parâmetros da dis-
tribuição gaussiana encontrada para cada um dos nós e seus coeficientes de correlação,
que ilustram a característica de Redes Bayesianas possuírem parâmetros interpretáveis.
Observa-se, a partir da tabela de coeficientes de correlação, o quão sensível cada sensor
é a cada um dos gases da mistura, por exemplo, nota-se que sensores correspondentes a
variáveis aleatórias X15 e X16, ambos do modelo TGS-2610, tem coeficiente da ordem de
10−3 em relação a concentração de CO, a menor correlação entre sensores e gases da tabela
5, implicando uma baixa influência da concentração de CO no valor destes sensores.

Ainda, observa-se que os sensores correspondentes as variáveis aleatórias X7 e X8,
os dois também do modelo TGS-2610, apresentam coeficiente de correlação da ordem de
10−1 e 10−2 em relação a concentração de CO. O mesmo fenômeno pode ser observado
entre os outros pares de sensores. Assim, a diferença entre os coeficientes encontrados
para sensores do mesmo modelo sugere a existência de uma dependência espacial no valor
medido pelo sensor.

Dentre as estruturas A e B, construídas a partir da relação causal das variáveis e
com parâmetros obtidos a partir do algoritmo de aprendizado descrito na seção 2, nenhuma
das duas obteve sucesso na inferência de ambos os gases simultaneamente. Cada estrutura
obteve sucesso relativo na inferência da concentração de um dos gases, enquanto obteve
desempenho péssimo na inferência da concentração do outro gás.

A estrutura A obteve péssimo desempenho na inferência da concentração de CO,
com um desvio médio absoluto no conjunto de treino e de teste de 339 ppm e 320
ppm, respectivamente, enquanto simplesmente utilizar a média do conjunto de dados
como resultado da inferência obtém um desempenho bastante superior, com desvio médio
absoluto de 140 ppm e 153 ppm, para conjunto de treino e de teste, respectivamente.
Porém, na inferência da concentração de etileno, a estrutura obteve uma melhora de
20.96% e 30.41% em relação a média, para os conjuntos de treino e teste, respectivamente.

A estrutura B obteve um desempenho razoável na inferência da concentração de
CO, com uma melhora de 39.72% e 23.63% no desvio médio absoluto em relação a média,
para os conjuntos de treino e de teste, respectivamente. Porém, a estrutura não foi capaz
de obter um desempenho semelhante para inferência da concentração de etileno, tendo
um desvio médio absoluto de 5.2 ppm e 4.7 ppm para os conjuntos de treino e de teste,
respectivamente, sendo os valores muito próximos do resultado obtido para inferência com
média.

Embora as estruturas sejam baseadas nos mesmos parâmetros, os resultados foram
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bastante diferentes para cada uma delas. Essa divergência pode ser explicada pelo algoritmo
de inferência em redes bayesianas gaussianas utilizado neste trabalho, ter como exigência
que o grafo que forma a estrutura seja individualmente conectado. Apesar dessa exigência,
as redes causais possíveis para esse problema não são capazes de satisfazer a condição,
causando comportamento inesperado nos resultados da inferência. A escolha de outro
algoritmo de inferência pode melhorar os resultados, porém não existem muitas bibliotecas
gratuitas com inferência para variáveis contínuas completamente implementadas devido
sua complexidade.

Também é notável que a resposta de inferência da concentração dos gases apresenta
certo atraso em relação a concentração real. Esse comportamento surge devido ao atraso
da resposta dos próprios sensores de gases frente a uma variação abrupta da concentração
dos gases a que estão expostos. O modelo estático proposto não consegue contornar
esse problema, uma vez que sempre considera aquele instante isolado do histórico da
concentração dos gases. O modelo ideal para este caso seria um modelo dinâmico, que
é capaz de considerar os últimos valores adquiridos em uma série temporal e prever as
concentrações com maior acurácia mesmo enfrentando varições abruptas das concentrações
de interesse e sensores com respostas lentas.

Visto que o algoritmo de inferência não é adequado para as estruturas causais
propostas, os trabalhos futuros podem conter uma pesquisa sobre outros algoritmos de
inferências para redes bayesianas continuas na literatura e sua possível implementação
para comparação com os resultados obtidos neste trabalho. Ainda, pode-se discretizar o
problema e fazer uso de redes bayesianas discretas, para comparação dos resultados das
diferentes abordagens.
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