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RESUMO

Siqueira, A. H. Inferéncia em mistura dindmica de gases utilizando redes
bayesianas. 2019. 54p. Monografia (Trabalho de Conclusdo de Curso) - Escola de
Engenharia de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, 2019.

A detecgao e medicao de gases é uma preocupagao que surgiu ha mais de um século. Do uso
de pequenos animais para deteccao de gases nocivos no século 20, até utilizacao de sensores
semicondutores atualmente, o problema ainda é bastante relevante em diversas areas
como diagnéstico médico, andlise de alimentos e monitoramento de ambientes industriais.
Apesar dos avancos na tecnologia, os sensores atuais sofrem com problemas como baixa
seletividade, respostas nao lineares e instabilidade, dificultando seu uso para medicao de
concentracao de gases em misturas de gases. Neste trabalho é proposto o uso de rede
bayesiana gaussiana para inferéncia das concentragoes individuais de dois gases (CO e

CyHs) em uma mistura de gases no tempo.

Palavras-chave: Redes Bayesianas, Redes Bayesianas Gaussianas, Mistura de Gases,

Série Temporal.






ABSTRACT

Siqueira, A. H. Inference in dynamic gas mixtures using bayesian networks.
2019. 54p. Monografia (Trabalho de Conclusao de Curso) - Escola de Engenharia de Sao
Carlos, Universidade de Sao Paulo, Sao Carlos, 2019.

Gas detection and measurement is a concern that has emerged over a century ago. From the
use of small animals to detect harmful gases in the 20th century, to the use of semiconductor
sensors today, the problem is still quite relevant in many areas such as medical diagnosis,
food analysis and industrial safety. Despite advances in technology, today’s sensors suffer
from problems such as low selectivity, nonlinear responses, and instability, making it
difficult to use for gas concentration measurement in gas mixtures. This work proposes
the use of Gaussian Bayesian Networks to infer the individual concentrations of two gases

(CO and CyH>) in a mixture of gases over time.

Keywords: Bayesian Network, Gaussian Bayesian Network, Gas Mixture, Time Series.
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1 INTRODUCAO

A deteccao e medigao de gases é uma preocupacao que surgiu ha mais de um século,
com o uso de animais pequenos como canarios, coelhos e ratos em minas de carvao para
deteccao de gases nocivos aos trabalhadores sendo comum no inicio do século 20 (BURRELL;
SEIBERT, 1914). Desde entao, com o avango da tecnologia, foram desenvolvidos outros
métodos como a lanterna de seguranca e, mais tarde, sensores eletronicos para deteccao de
gases. Atualmente, os sensores de gases utilizados sdo, predominantemente, transdutores
que convertem informacgao quimica em alguma forma de sinal elétrico, sendo classificados
de acordo com seu principio de operagdo (YUNUSA et al., 2014). Assim, com o aumento
da variedade e qualidade de sensores disponiveis, nas tultimas décadas diversos estudos e
aplicacoes foram desenvolvidas em areas como diagndstico médico, anédlise de alimentos e
monitoramento de ambientes industriais (LIU; ZHOU; LEI, 2015).

Contudo, sensores de gas do tipo metal-6xido semicondutor sofrem com uma baixa
seletividade, respostas nao lineares e instabilidade. Apesar da melhora desses sensores nos
ultimos anos, ainda é impossivel identificar diversos gases com apenas um sensor (LIU;
ZHOU:; LEI, 2015).

Uma forma de abordar esse problema é o uso de um vetor com varios sensores de
gases de modelos diferentes, assim obtendo mais informacoes sobre o gas. Em teoria, é
possivel desenvolver uma expressao matematica baseada no conhecimento da forma de
funcionamento do sensor e nos dados obtidos, mas na pratica alguns dos parametros para
expressao precisam ser estabelecidos de forma empirica. Com o aumento no niimero de
componentes de gases a expressao matematica para os sensores se torna mais complexa,
ja que a deteccao de uma molécula pode ser influenciada pela presenca de outro tipo de
molécula (SUNDGREN et al., 1991).

Outra abordagem proposta para esse problema é o uso de técnicas de inteligencia
artificial para reconhecimento de padroes através de conjunto de dados extraidos do vetor
de sensores através de experimentos, eliminando a necessidade de um modelo criado a

partir da teoria de operacao de cada modelo de sensor (Bermak; Belhouari, 2006).

Dentre os modelos de inteligéncia artificial propostos na literatura, as Redes
Bayesianas se destacam por descreverem probabilidade condicional entre vértices de um
grafo. Essa caracteristica tras implicagoes interessante, neste modelo nao existe vértices
de entrada ou saida, a partir de uma evidencia em qualquer n6é pode-se inferir o valor
mais provavel dos outros vértices, assim este modelo trabalha bem quando existem dados
faltantes, como é muito comum na area médica, por exemplo. Este modelo também captura
a relacao de causa e efeito entre as variaveis (NEAPOLITAN, 2004).
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Neste trabalho, é proposto o uso de Redes Bayesianas com varidveis continuas para
inferéncia da concentracao de uma mistura de gases, a partir de um vetor de sensores de

gases metal-6xido semicondutores.

1.1 Objetivos

O objetivo geral deste trabalho é produzir uma rede bayesiana para inferéncia
das concentracgoes individuais de dois gases em uma mistura que varia no

tempo. Mais especificamente, pode-se dividir nos seguintes objetivos secundarios:

Estudo de modelos bayesianos com variavel continua;

o Implementagao do algoritmo de aprendizado de parametros do modelo;

Construcao de um ou mais modelos a partir dos parametros obtidos;
o Implementacgao do algoritmo de inferéncia dos gases nos modelos;

« Comparacao dos resultados.

1.2 Organizacao

O trabalho esta organizado em 5 capitulos. No capitulo 2 é feito um breve estudo
sobre teoria probabilistica basica, teoria basica de grafos e redes bayesianas gaussianas.
No capitulo 3 sao apresentadas as linguagens de programacao, bibliotecas utilizadas e o
método de implementacao e teste dos modelos. No capitulo 4 sdo apresentados os resultados
obtidos com os modelos. Finalmente, o capitulo 5 apresenta discussao dos resultados e as

consideragoes finais.



21

2 TEORIA

Neste capitulo serao discutidos os principios tedricos necessarios para contextualizar
este trabalho, tratando dos fundamentos da teoria probabilistica, fundamentos de teoria

de grafos e por fim, redes Bayesianas.

2.1 Teoria Probabilistica Basica

Neste capitulo serao apresentados alguns conceitos necessarios para o desenvolvi-

mento das ideias presentes nas proximas secoes.

Um dos conceitos mais importantes da teoria probabilistica e fundamental para

este trabalho é a probabilidade condicional.

WALPOLE (2006) define que, dado dois eventos A e B, tal que a probabilidade do
evento B seja diferente de zero. Entao a probabilidade de ocorrer o evento A dado que o

evento B foi observado, isto é, a probabilidade condicional, é dada por:

P(ANB)

dado que P(B) > 0. (2.1)

Na equagao 2.1, o termo P(A N B) representa a probabilidade da intersecgao dos
eventos A e B. No caso deste termo ser igual a zero, diz-se que os eventos A e B sao

mutuamente exclusivos.

Segundo WALPOLE (2006), os eventos A e B s@o considerados independentes se

pelo menos uma das condicoes a seguir for verdadeira:

1. P(A|B) = P(A) e P(B) % 0.

2. P(A)=0o0u P(B)=0.

Entao, a probabilidade da interseccao dos eventos A e B, no caso dos eventos serem

independentes, é dado por:

P(AN B) = P(A|B)P(B) = P(A)P(B). (2.2)

O Teorema de Bayes permite a inferéncia da probabilidade de determinado evento,
dado o conhecimento da ocorréncia de algum evento conhecido. O teorema ¢é definido a

seguir.
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Dado dois eventos A e B, de forma que a probabilidades de ambos nao seja nula,

tem-se

P(B]A)P(A)

P(AIB) = ==L

(2.3)

Ainda, esse resultado pode ser expandido. Supondo uma série de eventos mutua-
mente exclusivos e exaustivos Aj, A, Ag, de forma que a P(A;) #0 parai=1,2,....k, e

algum evento B tal que P(B) # 0, entao:

P(AynB)  P(A)P(B|A)
LI P(ANB) X, P(A)P(B|A;)

P(A;|B) = (2.4)

A prova pode ser encontrada em WALPOLE (2006, p. 71).

Quando nao se tem informacgoes sobre a probabilidade condicional de algum evento,
e se tem as informagoes do lado direito da equacgao 2.3 ou 2.4, é possivel fazer uma

inferéncia bayesiana.

Segundo WALPOLE (2006, p. 172) “A distribui¢do continua mais importante
em todo campo da estatistica é a distribuicao normal”. Essa distribuicao é caracterizada
pelo seu grafico em formato de sino, e é extensamente utilizada em diversas areas do

conhecimento. E descrita com a seguinte formula:

1 _(e=p)?

p(x) = N<xﬂl’[/7 02) - \/%6 202 , —00 < xr < . (25)

Na equacgao 2.5, diz-se que a variavel aleatoria X tem uma distribui¢do normal com
média F(X) = p e varidncia V(X) = o2

Uma distribuicao normal possui média zero e variancia infinita representa completa
incerteza, enquanto um distribuicao com média contante e variancia zero representa

completa certeza sobre o estado da variavel.

Uma distribui¢ao normal multivariada é uma generalizagdo da distribui¢cao normal
unidimensional (NEAPOLITAN, 2004). Neste caso, uma um vetor X que possui distribuicao

normal multivariada é representada da seguinte forma:

px(x) = N(z; p, ) (2.6)

onde o vetor X é um vetor n-dimensional de variaveis aleatérias, denotado na
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equagao 2.7.

Xy

X
x=|° (2.7)

Xy

A matriz de covaridncia ¢ e o vetor u de médias sdo denotados, respectivamente,

como nas equagoes 2.8 e 2.9:

V(X))  Cou(Xy,Xs) ... Cov(Xy,X,)
. C’ov()'(g,Xl) V('Xg) 5 Cov()_(z,Xn) (2.8)
Cov(kn,Xl) Cov(kl,XQ) V(}(n)
i
)= ‘fz (2.9)
fin

A matriz de covariancia ¢ também é comumente representada pela equacao 2.10,

esta segunda notacao é a adotada nas sec¢oes seguintes por simplicidade.

2

01 012 ... O1p
2
021 0y ... O92p
W = (2.10)
2
Op1 Op2 ... O,

Ainda, NEAPOLITAN (2004, p. 418), define a matriz de precisao T como sendo a

matriz inversa de 1.

T =q! (2.11)
2.2 Teoria Béasica de Grafos

A teoria de grafos estuda estruturas chamadas de grafo, que representam a relacao
entre objetos. Como estabelecido por WEST (2000), um grafo G é definido por um
conjunto nao vazio de vértices V(G), um conjunto de arestas E(G), e a relagdo que

associa cada aresta a dois vértices.

A relacdo entre os vértices, neste caso é simétrica. Mas existem casos que se deseja

modelar relagoes assimétricas entre os vértices. Nestes casos usa-se um grafo direcionado.



24

Um grafo direcionado G(V,E), como estabelecido por WEST (2000), é definido
por um conjunto nao vazio de vértices V, um conjunto de arestas E, e a relacao que
associa cada aresta a um par ordenado de vértices. Neste caso, se (X,Y) € E, diz-se que
existe uma aresta de X para Y, porém, no contexto desse trabalho, X é denominado pai

de Y, e Y é denominado descendente de X.

Dado um grafo G(V,E), supondo que existam os vértices V(G) = [ X1, Xa, ..., X;]
para n > 2, e que existam as arestas (X;, X;11) € E(G) para 1 <i <n — 1. O conjunto
de n arestas que conectam os vértices de X; até X,, é chamado de caminho de X; a
X,,. Ainda, o caminho de um né até ele mesmo é denominado ciclo direto. Mas, no caso
de nao ocorrer a repeticao de nenhum vértice no caminho ele é chamado de caminho

simples.

Supondo, entdao, um grafo direcionado G que nao possua caminho que seja um
ciclo direto. Este grafo é chamado de grafo aciclico dirigido, referido daqui em diante
como DAG (Directed Acyclic Graph) (NEAPOLITAN, 2004, p. 31). Um exemplo de um

grafo aciclico dirigido com quatro vértices é ilustrado na figura 1.

Figura 1: Exemplo de DAG

2.3 Redes Bayesianas

Os assuntos abordadas nas segoes 2.1 e 2.2 sao fundamentais para tratar das Redes
Bayesianas. Contudo, existe mais uma definicdo importante a ser abordada: a condicao de
Markov.

Supondo que exista distribuicdo de probabilidade conjunta P de um conjunto de
variaveis aleatérias V e um DAG G(V,E). Diz-se que (G,P) satisfaz a condicao de
Markov se para cada variavel X € V, X é condicionalmente independente do conjunto

de todos os seus nao-descendentes dado o conjunto de todos os seus pais. Denota-se os



25

nao-descendentes de X como N Dy e os pais de X como PAy, dessa forma, indica-se essa

relagdo como:

L,({X}, NDx|PAy). (2.12)

Caso o conjunto (G,P) satisfaca a condigdo de Markov, diz-se entdo, que G e P
satisfazem a condigdo de Markov entre si (NEAPOLITAN, 2004, p. 31).

Finalmente, dado uma distribuicao de probabilidade conjunta P de um conjunto
de varidveis aleatérias V e um DAG G(V,E), chama-se (G, P) uma rede bayesiana

se G e P satisfazem a condi¢ao de Markov entre si (NEAPOLITAN, 2004, p. 40).

P(s1|c1) = 0.02 P(c1) = 0.15
P(s1|c2) = 0.55

P(g1| s1,c1) = 0.99
P(g1| s1,c2) = 0.90
P(g1| s2,c1) = 0.95
P(g1| s2,c2) = 0.01

Figura 2: Uma rede bayesiana

A figura 2 mostra uma rede bayesiana com trés variaveis aleatérias. A descri¢ao de
cada uma das variaveis esta detalhada na tabela 1.

Tabela 1: Descricao das variaveis aleatorias da figura 2

Variavel Valor Descricao

g sl Sprinkler foi utilizado

s2 Sprinkler nao utilizado
o cl Choveu

c2 Nao choveu
G gl Grama estd molhada

g2 Grama nao estda molhada

Dado um conjunto de variaveis aleatorias V, se para cada X,Y € V for definida
uma aresta de X para Y, e se, e somente se X é uma causa direta de Y, chama-se a DAG
resultante de DAG causal NEAPOLITAN (2004).

O conceito de causalidade entre X e Y, neste contexto, pode ser entendido como a

fato de uma mudanca nos valores de X causar uma variacao, algumas vezes, no valor de
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Y. NEAPOLITAN (2004) e COOPER (1999) fazem uma discussao mais aprofundada do
significado de causalidade e de como uma DAG causal em geral satisfaz a condicao de

Markov. Contudo, a definicao mais simples é suficiente para este trabalho.

Uma rede bayesiana gaussiana ¢ uma rede bayesiana onde seus vértices sao exclusi-

vamente variaveis aleatérias com distribuigao normal, como ilustra a figura 3.

o ka(a) = N(a;10,52)
o ke(bla) = N(b;5a,22)

Figura 3: Uma rede bayesiana gaussiana

2.4 Inferéncia em Rede com Variaveis Continuas

O algoritmo descrito nesta se¢ao é proposto por NEAPOLITAN (2004, p. 185-190)

para inferéncia em redes bayesianas gaussianas individualmente conectadas.

Suponha uma rede bayesiana gaussiana onde cada uma das variaveis aleatéria tem
sua distribuicao definida por uma combinacao linear de seus pais. Assim, sendo PAy os

pais de X, pode-se escrever que:

r=wyx + Z by 2 (2.13)
ZePAx

onde wy tem distribuicdo N(wx;0, O"Q/VX) e modela a incerteza em relacao ao valor de X, e
bxz representa a influencia de Z em X. Dessa forma a distribuicao da variavel X é dada

por:

plalpay) = N(z; Y br.z,00,) (2.14)
ZePA,

Note que o vértice X nao tem média prépria, sua média é uma combinacao linear
de seus pais. Contudo, a variancia é prépria do vértice. Porém, caso de um vértice raiz,

isto é, um vértice que nao tem nenhum pai, sua distribui¢do é dada simplesmente por:

plw) = N(wi o, 0%). (2.15)

A seguir, sao apresentadas as formulas utilizadas no algoritmo de inferéncia. E,
neste caso, para proporcionar uma leitura mais facil, a variancia é representada por o, ao

invés de o2.
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Valor \ é:
1
1
A
Ox = Z o
UeCHx UXx
A A Ni\/X
Wx = 0x Z By
UeCHy PUX
Valor 7 é:

T 2 g
Ox = Owy Z bx70% 7
ZcPAx

™ iy
Ux = Z bx 7l 7
ZePAx

A média e varidncia esperada para uma variavel X é calculada:

o%ok
Ox = T 4 A
ok + oy

T, A A
_ OxHx T O0xHx
0% +03\(

125'e

A mensagem 7 de Z para um filho X:

1 1
Ra=t Y o

T A
9%Z  vyvecH,{x}9YVZ
1 1y z
F+ YvecH,—{x)
s _ Z YZ
Uxz = 3

o7 T XvecH,—(x} é
A mensagem \ de X para um pai Y:
A

Oyx = b2
YX ZePAy

A A T
oy + oy, + Z b%zayz}

1

A
,LL —=
YX bYX

1y + > byzlflr/Z]
ZePAy

Ao se instanciar uma variavel V com valor v, faz-se:

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)
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A ignorancia total em relacao ao valor de determinada variavel é representado pela

distribuicao normal:

N(z,p=0,0 = 0). (2.28)

O algoritmo proposto para célculo de expectativa das varidveis aleatérias na
rede possui quatro funcoes principais: iniciarRede, atualizarRede, enviarMensagemPi,
enviarMensagemlLambda. Para facilitar a leitura, os valores A e 7 de um vértice A serao
representados val)y e val®, respectivamente. Ainda, as mensagens A\ e 7 do vértice A para

o B serdo representadas men)z e men’ ,, respectivamente.

Note também que os valores e as mensagens \ e 7w representam uma distribuicao
normal, e nos algoritmos apresentados os valores e mensagens serao denotados como tal.

Finalmente, os algortimos para as fungoes sdo apresentados a seguir:

Algoritmo 1 Inicializacdo da Rede

1: funcao INICIARREDE(RedeBayesiana& B = (G(E,V), P))
2: para cada X € V faca
3 valy = N(x;0,00); > Ignorancia total
4 para cada 7 pai de X faga
5: men’ , = N(x;0,00); > Inicializa mensagem A
6 para cada Y filho de X facga
7 menfy = N(x;0,00); > Inicializa mensagem 7
8:
9: para cada vértice raiz R faga
10: expectativagr = N(7; g, OR); > Inicializa valor da expectativa
11: valf, = N(7; ir, OR); > Inicializa valor 7
12: para cada X filho de R faga
13: enviarMensagemPi(R,X); > Atualiza filhos em relacdo a expectativa
14:

15: fim funcao
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Algoritmo 2 Atualizacao da Rede

1:

—_
<

funcdo ATUALIZARREDE(RedeBayesiana& B = (G(E,V), P), Evidencias& A, Vér-
tice V, Valor v)

A=AUV,; > Adiciona variavel a lista de evidencias
valf, = val}y = expectativay = N(v;v,0); > Certeza em relagao a V

para cada Z pai de V tal que Z ¢ A faga

enviarMensagemLambda(V,Z); > Atualiza pais em relacdo a expectativa
para cada X filho de V faga
enviarMensagemPi(V,X); > Atualiza filhos em relagao a expectativa

fim funcao

Algoritmo 3 Mensagem Lamda de Y para X

— =
)

fungdo ENVIARMENSAGEMLAMBDA (Vértice Y, Vértice X)

menyy = calcular _mensagem_ lambda(); > eq. 2.24 e 2.24
valy = calcular _valor_lambda(); >eq. 2.16 e 2.17
expectativax = calcular__expectativa(); >eq. 2.20 e 2.21

para cada Z pai de X tal que Z ¢ A faga

enviarMensagemLambda(X,Z); > Atualiza pais em relacao a expectativa
para cada W filho de X tal que W # Y faga
enviarMensagemPi(X,W); > Atualiza filhos em relagdo a expectativa

: fim funcao

Algoritmo 4 Mensagem Pi de Z para X

10:
11:
12:
13:
14:
15:

funcao ENVIARMENSAGEMPI(Vértice Z, Vértice X)

: men% , = calcular_mensagem__pi(); > eq. 2.22 e 2.22

1
2
3:
4: se X ¢ A entao
5:
6.
7
8
9

val% = calcular_valor_pi(); >eq. 2.18 € 2.19
expectativax = calcular__expectatival(); > eq. 2.20 e 2.21
para cada Y filho de X faga
enviarMensagemPi(X,W); > Atualiza filhos em relacdo a expectativa
: fim se
se 0% # oo entao > Se estiver inicializado

para cada W pai de X tal que W # Z e W ¢ A faga
enviarMensagemLambda(X,W);

fim funcao
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2.5 Aprendizado de Parametros de Rede com Variaveis Continuas

Segundo NEAPOLITAN (2004), "Uma rede bayesiana gaussiana determina uma
distribuicao normal multivariada nao singular, e vice e versa'. Dessa forma, é possivel
transformar uma rede bayesiana em uma distribuicdo normal multivariada, realizar a
aprendizagem de parametros e por fim retornar o modelo para forma de rede bayesiana

gaussiana.

Nesta secao é apresentado como é realizado a aprendizagem de parametros em uma

distribuicdo normal multivariada e a conversao do modelo para rede bayesiana gaussiana.

Contudo, antes dessa discussao, é necessario estabelecer uma definicdo para os
vértices da rede um pouco diferente da proposta na equagao 2.13. Nesta equacao, W
tinha distribuigao N(wx;0; J%VX), mas nesta secao é proposto que Wy nao tenha mais
que, necessariamente, ter média zero e passando a ser representado com uma distribuicao

N(wx; E(Wx); o9y, )-

Com essa nova defini¢do, a probabilidade condicional de um vértice X; de uma

rede gaussiana bayesiana é:
px(wilpa;) = N(wi i+ Y bi(xy — ), 07) (2.29)
XjEPAi

Note que essa notagao incorpora a média do vértice que aparece na defini¢ao da
distribuicao normal multivariada, onde cada varidvel no vetor tem média e variancia

propria, além dos valores de covariancia entre as variaveis.

F 42 F 22
5 2

31 )
F 52
1

Figura 4: Uma rede bayesiana gaussiana

Outra observacao importante é que essa nova definicdo da distribui¢do de W pode
ser levada para notacao anterior criando um vértice auxiliar Z, pai de X, de tal forma

que Z tenha média p;, variancia zero e by, = 1.
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2.5.1 Variaveis Normalmente Distribuidas Multivariadas

Seja um vetor X com distribuicao normal multivariada, supondo uma amostra
normal multivariada D=[X® X® .. X®)] com os pardmetros {A,R}, onde A é um
vetor que representa a convicgao existente a respeito do valor da média de X e R é uma
matriz que representa a convic¢ao existente a respeito do valor da matriz de precisao de

X, pode-se calcular:

B Zyzl M)
= 2.30
5= 2= (230)
M
s=Y (z —z) (™ — z)" (2.31)
h=1
E entao, a funcao de densidade a posteriori de R é dada por:
pr(r|d) = Wishart(r; a*, 5%) (2.32)
onde:
M
= ptst (@ - (@ - ) (2.33)
af=a+M (2.34)
e a funcao de densidade condicional a posteriori de A é dada por:
palalr,d) = N(a; p*, (v'r)™") (2.35)
onde:
. uvpu+Mz
== = 2.36
v+ M ( )
v'=v+M (2.37)

Neste contexto, os valores u, v e [ representam, respectivamente, a média, o
tamanho e a matriz de covariancia da amostra hipotética onde foi baseada o convicgao
a priori do valor de A. Para modelar ignorancia total sobre o modelo estudado a priori,
basta admitir # =0, v =0 e a = —1 nas expressoes 2.33, 2.34, 2.36 e 2.37.
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Finalmente, a nossa conviccdo a posteriori para o valor de XM+! é dado pela

distribuicao:

v (a* —n+1)
v +1

pxorsn (@MHV]d) = (@MD" —n 4+ 1, 0%,

£*) (2.38)

O desenvolvimento das equagoes é feito por NEAPOLITAN (2004) e a prova pode
ser encontrada em (DEGROOT, 2005).

2.5.2 Conversao para Rede Bayesiana Gaussiana

O método de obtencao do vetor de média e matriz de precisao de uma distribuicao
de uma distribuicdo normal multivariada a partir de uma rede bayesiana gaussiana,
abordado nesta segdo, foi proposto em (SHACHTER; KENLEY, 1989).

Seja:
1
= — 2.39
= (239)
e:
bi1
b = : (2.40)
bii-1

e o vetor de média da distribuicdo normal multivariada relativa a rede bayesiana

gaussiana:

H1
W= : (2.41)

Hn

O algoritmo apresentado na figura 5 cria a matriz de precisao, onde n é o niimero

de vértices na rede bayesiana:
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Inicio
A
/ n = numero de vértices /
A
T=tiei=2

nao
1<=n"? €
. 1=1+1
S11m
_ [ Tioa +tibib] —tib;
Ti= —t;bF t;
T="1T,
A
[+ ]
A
Fim

Figura 5: Algoritmo para obtencao de matriz de precisao

Um exemplo de dessa matriz para n igual a quatro é:

2 2 2
b421 T b321 (7221 % b41242 + b31232 _ 6221 b4lg43 _ 5321 _b421
0'4 0'3 0'2 0'4 0'42 0'3 0'2 0'4 0'3 U4
b4lg42 + b31332 _ b221 b422 + b322 % b42g43 _ b322 _b422

T4 — 04 o3 03 ) 93 93 g4 o3 04 (2_42)

baibsz _ b3y baobsz _ bao bis 1 b
0'2 0'2 0'2 0'2 0'2 0'2 0'2
1 3 1 3 1 3 1
_b421 _b422 bas _ 12
g U4 0'4 U4

2.5.3 Aprendendo os Parametros de uma Rede Gaussiana Bayesiana

A funcao de densidade de probabilidade encontrada na equacao 2.38 nao se trata

de uma gaussiana, mas sim de uma distribui¢ao t. Contudo, uma distribuicao ¢(x; o, po, T')
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pode ser aproximada por uma distribuigao N(z; u, T™1), quando o limite de « tende ao
infinito (DEGROOQOT, 2005).

Assim, com o uso dessa aproximacao, pode-se encontrar a distribuicdo normal
multivariada a partir da teoria apresentada na secao 2.5.1. Pela equacao 2.38, obtém-se

diretamente p e T~1* é dado por:

v*(a* —n+1)
v +1

T—l* —

B* (2.43)

Fazendo o lado esquerdo da equagao 2.43 igual a matriz simbdlica obtida pelo
algoritmo da secao 2.5.2 e calculando o valor numérico do lado direito da equacao com

uma amostra, como descrito na secao 2.5.1, obtém-se um sistema de equagoes que, ao ser
2

resolvido, permite obter os valores o;* e b}; da rede bayesiana gaussiana de interesse. O

valor de p* da rede é obtido direto da equagao 2.38.

2.6 Desvio Médio Absoluto

O desvio médio absoluto é uma métrica para descrever a performance de um deter-
minado modelo (WILLMOTT; MATSUURA, 2005). Neste caso, essa métrica representa a

média da diferenca absoluta entre os valores reais e as predi¢oes do modelo.

O desvio médio absoluto é dado por:

D |yi - @z|
n

DMA = (2.44)

onde n é o nimero de pontos comparados, y; é o dado real (rétulo), g; é a predicao

do modelo, e DMA tem a mesma grandeza do que y; e ;.
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3 MATERIAIS E METODOS

Neste capitulo serd apresentada a metodologia empregada nos experimentos, bem
como o conjunto de dados estudado e as tecnologias utilizadas para implementacao de

software necessario para este trabalho.

3.1 Conjunto de Dados: Mistura de Gases

O conjunto de dados utilizado neste trabalho trata-se de uma série temporal de 16
sensores expostos a uma mistura de gases com concentragao variando ao longo do tempo,
sendo as misturas etileno (CyHy) e metano (C'Hy) no ar, e etileno e mondxido de carbono
(CO) no ar, disponibilizado em arquivo CSV. Em particular, as analises deste trabalho

foram desenvolvidas apenas para a mistura de etileno e CO.

Os sensores utilizados sao sensores quimicos da Figaro Inc., incluindo os modelos
TGS-2600, TGS-2602, TGS-2610, TGS-2620, sendo que o sistema possui quatro sensores
de cada tipo. Os sensores foram dispostos em um compartimento com volume de 60 ml,
onde foi injetado um fluxo constante de gas de 300 ml/min, e as amostras foram feitas em
uma frequéncia de 100 Hz ininterruptamente por um periodo de 12 horas (FONOLLOSA
et al., 2015).

Cada um dos modelos de sensores utilizados tem aplicacao e sensibilidade a diferen-
tes gases. Os sensores TGS-2600 e TGS-2602 sao utilizados para deteccao de contaminantes
no ar como etanol, aménia, CO e hidrogénio (FIGARO USA INC., 2015 e 2013). O modelo
TGS-2610 é sensivel a gases liquefeitos de petréleo como propano, iso-butano e metano
(FIGARO USA INC., 2017). J&4 o TGS-2620 é geralmente utilizado para detecgao de gases
e vapores de solventes como etanol (FIGARO USA INC., 2014).

—
—
-—

B ?r/z/ 3 2:1

2600 0 .

4151/ @ e Y
|

Figura 6: Da esquerda para direita: sensores TGS-2600, TGS-2602, TGS-2610, TGS-2620
(imagem adaptada da ficha de especificacao dos componentes)

Na primeira hora de amostras os gases nunca se sobrepoem, isto ¢, pelo menos

um dos gases sempre estd com concentracgao igual a zero. A partir da segundo hora, os
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gases comecam a se sobrepor, porém os gases nao variam simultaneamente em nenhum

momento. As figuras 7 e 8 mostram o comportamento dos gases na primeira e segunda

hora, respectivamente.

17.5
500 —
115.0
400 L12.5
— ] — ] L10.0F
£ 300 £
a =
> 2
S — 75 &
— p— -
200 — — w
15.0
100
2.5
0 L0.0
0 500 1000 1500 2000 2500 3000 3500
tempo (s)
Figura 7: Concentracao de CO e Etileno na primeira hora
500 — =
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Figura 8: Concentracao de CO e Etileno na segunda hora
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3.2 Software

Foram utilizadas duas linguagens para implementacao dos algoritmos necessarios:
Python e C++. A primeira foi utilizada em conjunto com as bibliotecas numpy, pandas,
matplotlib e sympy para implementacao dos algoritmos de aprendizado, pardmetros da rede
e visualizacao de dados por ser uma linguagem de alto nivel facilitando a implementacao.
Enquanto a segunda foi utilizada com a framework Qt5 para implementacao do algoritmo
de inferéncia em redes bayesianas gaussianas descrito na se¢ao 2.4 por ser uma linguagem

de alta eficiéncia.

3.2.1 Python

Com uma sintaxe concisa e com foco em legibilidade de cédigo fonte, estruturas
de alto nivel nativas e uma grande comunidade, Python é hoje uma das linguagens de

programagcao mais populares existentes.

Python foi langada por Guido van Rossum em 1991, é uma linguagem de alto nivel,
interpretada por bytecode em méaquina virtual Python e multi-paradigma, suportando

programagao modular, programagao funcional e orientagao a objeto (BORGES, 2014).

Numpy é um pacote de Python voltado para computacao cientifica, incluindo vetores
multidimensionais de objetos, operacgoes otimizadas com vetores, rotinas de ordenacao,
operagoes matematicas e estatisticas basicas, entre outras funcionalidades (OLIPHANT,

2006). Esse pacote foi utilizado devido sua eficiéncia em operagdes com matrizes.

Pandas é uma biblioteca de Python para manipulacao de dados, incluindo estruturas
e operacoes de manipulacao de tabelas numéricas e séries temporais. Essa biblioteca fornece
operagoes como amostragem, ordenacao, filtro e concatenacao de conjunto de dados e por

isso se torna praticamente indispensavel na andlise de dados (MCKINNEY, 2012).

Sympy é uma biblioteca para computacao simbolica em Python. Usando simbolos
essa biblioteca é capaz de resolver equagbes aritméticas, calculo e algebra (MEURER et

al., 2017).

Matplotlib é um pacote para criacao de graficos em Python, capaz de gerar desde
graficos de linha, histogramas, graficos de dispersao e até mesmo graficos de superficies .
Os graficos deste trabalho foram criados com esta biblioteca (HUNTER, 2007).

3.2.2 CH+

A linguagem de programagao C++ ¢ um linguagem multi-paradigma, podendo ser
imperativa, orientada a objetos ou genética, baseada na linguagem C. Idealizada para ser
tao eficiente quanto C, porém com suporte a outros paradigmas, C++ pode ser utilizado
em ambientes onde os recursos de hardware sao extremamente limitados como sistemas

embarcados (STROUSTRUP, 2000).
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Qt é uma framework para desenvolvimento de aplicagoes com interface gréafica ou
aplicacoes de console multiplataforma em C++ (ENG, 2016). A versao mais recente neste
momento é Qt5, e é utilizado em diversos sistemas embarcados como smart TVs e centrais
multimidia de automédveis. Alguns exemplos de empresas que usam Qt em seus produtos

sao: LG, Samsumg, Autodesk e Ford.

Esta framework é construida em cima do conceito do QObject e Event Loop,
permitindo programacao orientada a eventos em C++4. Além disso, possui implementacoes
de estruturas de alto nivel como Hash, vetores e listas otimizados, e interfaces como serial

e rede, aumento o nivel da linguagem e permitindo um desenvolvimento acelerado.

3.3 Rede Bayesiana

A metologia do experimento consiste em trés etapas principais: aprendizado dos
parametros da rede bayesiana gaussiana a partir dos dados, aplicacao dos parametros em

uma rede e finalmente, a inferéncia dos valores de interesse na rede.

Para aprendizado da rede, o conjunto de dados foi separado em duas partes: treino
e teste. O conjunto de teste foi escolhido como sendo as quatro primeiras horas do dado
e o conjunto de treino, as oito horas seguintes. E com o conjunto de dados de treino,
excluindo-se a coluna de tempo, foi executado o procedimento descrito na se¢do 2.5 com

as 18 colunas restantes, assumindo ignorancia prévia.

O procedimento para aprendizado de parametros da rede bayesiana gaussiana,

nesse caso, consiste dos seguintes passos:

1. Encontrar matriz de precisao numérica a partir do conjunto de dados utilizando a

equacao 2.43.

2. Encontrar a matriz de precisao simbolica utilizando o algoritmo descrito na figura 5

para n igual a 18.
3. Igualar a matriz simbdlica a matriz numérica.

4. Resolver o sistema de equagdes construido a partir da igualdade.

A execucao do procedimento foi feito com script em Python, durante o qual, cada
variavel aleatoria da tabela foi nomeada como X;, onde o index i varia de 1 a 18, conforme
consta na tabela 2. Ao fim do procedimento de aprendizado foram obtidos os pardmetros

média atualizada p}, varidncia atualizada o* e coeficiente de correlagao entre as variaveis
*

atualizada bj;, onde j € menor do que i.
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Tabela 2: Relacao entre variavel e index para algoritmo de aprendizado de parametros

Descricao Nome Descricao Nome
CO X1 TGS-2620-2 X
Etileno X5 TGS-2602-3 Xy,
TGS-2602-1 X3 TGS-2602-4 X9
TGS-2602-2 X, TGS-2600-3 X3
TGS-2600-1 X5 TGS-2600-4 X4
TGS-2600-2 X, TGS-2610-3 X5
TGS-2610-1 X7 TGS-2610-4 X
TGS-2610-2 Xy TGS-2620-3 X7
TGS-2620-1 X, TGS-2620-4 X5

Como discutido na se¢ao anterior, existem duas formas de modelar um variavel
aleatéria continua em uma rede bayesiana gaussiana, a primeira é uma variavel onde a
média é dada por uma média prépria somada a influéncia dos vértices pais, e a segunda,
uma variavel onde a média é dada estritamente pelos vértices pais, mas, que tem um

vértice pai auxiliar que representa a média da variavel aleatoria.

Considerando essas duas abordagens, sao propostas duas estruturas. A primeira,
chamada de Estrutura A, ilustrada na figura 9, representando a primeira abordagem e

segue a nomenclatura da tabela 2.

Figura 9: Rede bayesiana gaussiana para inferéncia de concentracao em mistura de gases:
Estrutura A

A segunda estrutura proposta, chamada de Estrutura B, ilustrada na figura 10
leva em consideracao a segunda abordagem. Neste caso, sdo necessarios a inclusao de mais
16 vértices que tem funcao de vértices auxiliares contendo a média dos 16 vértices dos

sensores. A nova nomenclatura é especificada na tabela 3.
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Figura 10: Rede bayesiana gaussiana para inferéncia de concentracao em mistura de gases:
Estrutura B

Tabela 3: Relacao entre variavel e index para Estrutura B

Descricao Nome Descricao Nome
CO X4 UTGS—2620-4  X18
Etileno X TGS-2602-1 X9
HUTGS—2602-1 X3 TGS-2602-2 Xy
HTGs—2602—2 X4 TGS-2600-1 Xy
HUTGS—2600-1 X5 TGS-2600-2 X
HWTGS—2600-2 X6 TGS-2610-1 X3
HUTGS—2610-1 X7 TGS-2610-2 X4
HUTGs—2610-2 X8 TGS-2620-1 X5
HTGs—2620-1 X9 TGS-2620-2 X
UTGS—2620-2  X10 TGS-2602-3  Xoy
HTGS—2602-3  X11 TGS-2602-4  Xog
HTGS—2602—4 X12 TGS-2600-3 X
HUTGS—2600-3  X13 TGS-2600-4 X3
HTGS—2600-4 X14 TGS-2610-3 X3
HUTGs—2610-3  X15 TGS-2610-4 X3
UTGs—2610-4 X16 TGS-2620-3 X3
HTGS—2620-3  X17 TGS-2620-4 X34

Utilizando programa para inferéncia desenvolvido em C++, é feito a inferéncia da
concentracao dos fases CO e Etileno no conjunto de dados de treino e de teste para cada

uma das estruturas utilizando todos os 16 sensores como evidéncia.

Para comparar a eficiéncia do modelo, é calculado o desvio médio absoluto dos

valores inferidos contra os valores reais tanto no conjunto de treino quanto no conjunto de
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teste. Ainda, é calculado o desvio médio absoluto da média dos valores reais do conjunto

de treino contra os valores reais, para comparacao.

Um modelo que prevé sempre a média do conjunto de dados utilizado para treino
¢é a regressao mais simples possivel, e por isso ¢ utilizada como base de comparagdo com o
modelo obtido.






4 RESULTADOS

no capitulo anterior, passando pelas duas estruturas propostas.

43

Neste capitulo serao apresentados os resultados obtidos nos experimentos descritos

4.1 Aprendizado

Ao final do método de aprendizado de parametros, obteve-se o vetor de média

atualizada p* e o vetor de varidncia atualizada o?*, como apresentado na tabela 4. Também

obteve-se os coeficientes de correlacao atualizados b

75

Tabela 4: Médias u} e varidncias o2* atualizadas

conforme as tabelas 5, 6 e 7.

*

2%

*

2%

*

2%

L 0 L % 9 L 9

1 1.110E402 1.355E+03 7 1.789E+03 2.888E+402 13 4.948E+03 3.657E+02
2 5.177TE4+00 1.840E400 8  2.094E+03 2.356E+01 14 3.942E+03 3.893E+01
3 1.918E+03 1.882E404 9 5.001E4+03 9.234E+02 15 8.643E+02 1.824E+01
4 1.518E+02 7.428E+04 10 5.310E403 6.178E+01 16 9.817E+02 7.188E+00
5 4.329E+03 7.459E+04 11 1.300E4+03 2.994E+02 17 5.379E+03 1.271E+402
6 4.738E+03 6.790E+01 12 1.295E+03 2.756E+01 18 4.328E+403 6.355E+01

Tabela 5: Coeficientes de correlagao atualizados b;f‘j (colunas 1 & 6)

b ; 1 2 3 4 5 6

1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 —2.33E—03 0.00E+00 0.00E+400 0.00E+400 0.00E+400 0.00E+400
3 3.08E+00 1.62E+01 0.00E+-00 0.00E+00 0.00E+00 0.00E+00
4 —3.88E—-01 1.56E4+01 —2.70E—02 0.00E+00 0.00E+00 0.00E+00
5 1.17E-01 1.70E+02 8.36E—01 8.23E—02 0.00E+00 0.00E+00
6 748E—-02 —3.12E-01 8.10E—-02 2.10E—-04 1.06E+00 0.00E+00
7 4.30E—01 3.45E400 1.52E—-01 2.02E—-04 1.58E—-01 2.31E—02
8 6.98E—02 —1.63E+00 1.20E—-02 —1.54E—-04 4.62E—-02 —-1.19E-01
9 —8.61E—02 2.00E4+01 —-187E-01 —2.23E—03 2.12E4+00 —1.27E+400
10 4.21E-02 1.48E+00 1.21E—-02 4.23E-04 —2.39E-02 1.20E—02
11 1.72E-01 2.81E-01 458E—-01 —-251E-03 —1.62E+00 1.41E+00
12 —1.12E-02 —-9.98E-01 2.10E—03 2.56E—04 3.13E—02 5.21E—03
13 1.49E—01 —3.05E+00 —-8.17TE—02 —2.52E—03 —9.97E—02 1.30E+00
14 —-2.73E—-03 —6.55E—01 4.91E—-02 3.06E—04 3.13E—-01 —4.10E-01
15 —8.42E—-03 1.09E—-01 2.29E—-02 2.51E—-04 2.98E—-01 —2.37E—-01
16 —-6.20E-03 -—-2.10E—-01 —-5.0TE—03 —1.56E—04 1.31E-01 —-1.32E-01
17 6.61E—02 2.74E400 6.94E—03 —4.30E—05 2.74E—-01 —1.13E400
18 5.82E—02 —-1.16E—01 —-6.40E—03 —-547E—04 —-537E—01 7.37TE—03
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Tabela 6: Coeficientes de correlacdo atualizados bj; (colunas 7 a 12)

i?j

7

8

9

10

11

12

O I O Ui W=

)
)

11
12
13
14
15
16
17
18

0.00E+00
0.00E+-00
0.00E4-00
0.00E4-00
0.00E4-00
0.00E4-00
0.00E+-00
1.24E+00

0.00E+00
0.00E+-00
0.00E4-00
0.00E4-00
0.00E4-00
0.00E4-00
0.00E+-00
0.00E+-00

0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00

2.68E4-00
—6.20E-02
—5.70E-01
—1.52E-01
—3.20E4-00
—4.59E-01
7.27TE-01
2.33E-01
4.28E—-01
—1.65E-01

—7.86E—-01
—7.91E-02
—2.45E-01
9.35E-02
1.54E+00
7.30E-01
—2.25E-01
—2.54E—-02
—1.07E+00
1.39E+00

0.00E+00
1.09E+00
—3.51E-01
—1.15E-01
—6.54E-01
8.41E—-02
4.90E—-02
3.28E—-02
—2.23E-01
3.23E-01

0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
5.61E-01
9.24E-02
7.48E—-01
6.66E—02

—1.04E-01
—4.51E-02

1.06E+00
2.63E—-02

0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
1.01E+00

—3.23E-01
—4.52E-02

1.58E—-01
1.07E-01
4.25E-01

—1.51E-01

0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00

0.00E+00
0.00E+00
0.00E+00
0.00E+00
7.42E-01
7.37TE—02
—1.77E-01
—8.27TE—-02
—6.31E-01
2.35E-01

Tabela 7: Coeficientes de correlagao atualizados b}

(colunas 13 a 18)

b

Z7.j

13

14

15

16

17

18

CO 1O UL W N

Ne)

10
11
12
13
14
15
16
17
18

0.00E4-00
0.00E+-00
0.00E4-00
0.00E4-00
0.00E4-00
0.00E4-00
0.00E+-00
0.00E4-00
0.00E4-00
0.00E4-00
0.00E4-00
0.00E+-00
0.00E+-00
6.96E—-01

—2.45E-02

3.02E-02
8.88E—01
8.21E—-02

0.00E4-00
0.00E+-00
0.00E4-00
0.00E4-00
0.00E4-00
0.00E4-00
0.00E+-00
0.00E+-00
0.00E4-00
0.00E4-00
0.00E4-00
0.00E+-00
0.00E+-00
0.00E4-00

—1.00E-02
—1.63E-02

3.00E-01
6.09E—01

0.00E4-00
0.00E+-00
0.00E4-00
0.00E4-00
0.00E4-00
0.00E4-00
0.00E+-00
0.00E+-00
0.00E4-00
0.00E4-00
0.00E4-00
0.00E+-00
0.00E+-00
0.00E4-00
0.00E4-00
6.54E—-01
—6.95E—-02
—1.66E4-00

0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
3.85E—-01
2.46E-01

0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
2.46E-01

0.00E4-00
0.00E+-00
0.00E4-00
0.00E4-00
0.00E4-00
0.00E4-00
0.00E+-00
0.00E4-00
0.00E4-00
0.00E4-00
0.00E4-00
0.00E+-00
0.00E4-00
0.00E4-00
0.00E4-00
0.00E4-00
0.00E+-00
0.00E+-00
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4.2 Estrutura A

No aprendizado de parametro obteve-se uma tabela de coeficientes de correlagao
contendo mais relagoes do que previsto pela Estrutura A, ilustrada pela figura 9. Todos os

coeficientes nao previstos pelo modelo foram ignorados.

As figuras 11 e 12 mostram, respectivamente, o resultado da inferéncia dos gases
CO e Etileno durante a primeira hora do conjunto de treino (quinta hora absoluta) contra
os dados reais. O resultado do calculo do DMA do conjunto de treino contra a inferéncia
da estrutura A, DMA do conjunto de treino contra a média, bem como o percentual de

melhora do erro da Estrutura A em relacao a média é descrito na tabela 8.

Ja as figuras 13 e 14 mostram, respectivamente, o resultado da inferéncia dos gases
CO e Etileno durante a segunda hora do conjunto de teste contra os dados reais. Os

resultados das métricas para o conjunto de teste estao na tabela 9.

Tanto no conjunto de treino quanto de teste, o modelo obteve um desempenho
ruim na inferéncia da concentracdo do monoéxido de carbono, enquanto para o etileno o
modelo foi capaz de reproduzir o comportamento da concentragao desse gés, com um erro

30,41% menor do que erro para média do valor das concentracoes no conjunto de treino.

700 1 —— CO - set point
—— CO - inferéncia F (

600

500 (‘ (‘

400

300

Concentracao (ppm)
|
|

0 — S L e

38500 39000 39500 40000 40500 41000 41500 42000
tempo (s)

Figura 11: Inferéncia e set point para CO com Estrutura A em conjunto de treino
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—— Etileno - set point
| —— Etileno - inferéncia H

Concentragao (ppm)
= PJ PJ
wx (<] ()

T
B

=
o

0 1 i l | (]

38500 39000 39500 40000 40500 41000 41500 42000
tempo (s)

Figura 12: Inferéncia e set point para Etileno com Estrutura A em conjunto de treino

Tabela 8: Comparagao do desvio médio absoluto do conjunto de treino com inferéncia e
média dos dados (Estrutura A)

Gas DMA inferéncia (ppm) DMA média (ppm) Percentual de melhora

Etileno 4.1937 5.3059 20.96%
CO 339.6126 140.8641 -141.09%

—— CO - set point

700 1 _ P
—— CO - inferéncia

Concentracao (ppm)

L |

3500 4000 4500 5000 5500 6000 6500 7000
tempo (s)

Figura 13: Inferéncia e set point para CO com Estrutura A em conjunto de teste
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Figura 14: Inferéncia e set point para Etileno com Estrutura A em conjunto de teste

Tabela 9: Comparacao do desvio médio absoluto do conjunto de teste com inferéncia e
média dos dados (Estrutura A)

Gas DMA inferéncia (ppm) DMA média (ppm) Percentual de melhora

Etileno 3.4009 4.8869 30.41%
CO 320.9922 153.7820 -108.73%

4.3 Estrutura B

Assim como na primeira estrutura, todos os coeficientes nao previstos pela Estrutura
B, ilustrada pela figura 10, foram ignorados. Neste caso os coeficientes de correlagao entre
os gases e os sensores foram mantidos, os vértices dos sensores mantiveram sua variancia
porém sua média foi modificada para zero, os vértices auxiliares recebem variancia zero a
média de seus respectivos vértices de sensores. Ainda, a coeficiente entre o vértice auxiliar

e seu respectivo vértice de sensor ¢ igual a um.

As figuras 15 e 16 mostram, respectivamente, o resultado da inferéncia dos gases
CO e Etileno durante a primeira hora do conjunto de treino (quinta hora absoluta) contra
os dados reais. Os resultados das métricas para o conjunto de teste estao na tabela 10.
Ainda, as figuras 17 e 18 mostram, respectivamente, o resultado da inferéncia dos gases
CO e Etileno durante a segunda hora do conjunto de teste contra os dados reais, e as

métricas para o conjunto de teste estao na tabela 11.

Neste modelo obteve-se um resultado expressivo na inferéncia do monoéxido de

carbono, obtendo um erro 39,72% e 23,63% menor do que a média do conjunto de treino
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na inferéncia do conjunto de treino e de teste respectivamente. Porém, apresentou um

desempenho bastante ruim para inferéncia da concentracao de etileno.

—— CO - set point —]
500 1 —— CO - inferéncia

400 | ﬂ ﬂ
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o
e
5 300 | _]
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1]
S
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S 200 1
(=]
J
100 |
o \ | L | L L
38500 39000 39500 40000 40500 41000 41500 42000
tempo (s)

Figura 15: Inferéncia e set point para CO com Estrutura B em conjunto de treino
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Figura 16: Inferéncia e set point para Etileno com Estrutura B em conjunto de treino
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Tabela 10: Comparacao do desvio médio absoluto do conjunto de treino com inferéncia e
média dos dados (Estrutura B)

Gas DMA inferéncia (ppm) DMA média (ppm) Percentual de melhora

Etileno 5.2143 5.3059 1.73%
CO 84.9102 140.8641 39.72%
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Figura 17: Inferéncia e set point para CO com Estrutura B em conjunto de teste
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Figura 18: Inferéncia e set point para Etileno com Estrutura B em conjunto de teste
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Tabela 11: Comparagao do desvio médio absoluto do conjunto de teste com inferéncia e
média dos dados (Estrutura B)

Gas DMA inferéncia (ppm) DMA média (ppm) Percentual de melhora

Etileno 4.7477 4.8869 2.85%
CO 117.4392 153.7820 23.63%
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5 CONCLUSOES

Nos resultados obtidos no treinamento, pode-se observar os parametros da dis-
tribuicdo gaussiana encontrada para cada um dos nés e seus coeficientes de correlagao,
que ilustram a caracteristica de Redes Bayesianas possuirem parametros interpretaveis.
Observa-se, a partir da tabela de coeficientes de correlagao, o quao sensivel cada sensor
¢ a cada um dos gases da mistura, por exemplo, nota-se que sensores correspondentes a
variaveis aleatérias X5 e X4, ambos do modelo TGS-2610, tem coeficiente da ordem de
1073 em relacdo a concentracdo de CO, a menor correlacio entre sensores e gases da tabela

5, implicando uma baixa influéncia da concentragao de CO no valor destes sensores.

Ainda, observa-se que os sensores correspondentes as variaveis aleatérias X7 e Xy,
os dois também do modelo TGS-2610, apresentam coeficiente de correlacdo da ordem de
107! e 1072 em relacdo a concentracao de CO. O mesmo fenémeno pode ser observado
entre os outros pares de sensores. Assim, a diferenca entre os coeficientes encontrados
para sensores do mesmo modelo sugere a existéncia de uma dependéncia espacial no valor

medido pelo sensor.

Dentre as estruturas A e B, construidas a partir da relagao causal das variaveis e
com parametros obtidos a partir do algoritmo de aprendizado descrito na se¢cao 2, nenhuma
das duas obteve sucesso na inferéncia de ambos os gases simultaneamente. Cada estrutura
obteve sucesso relativo na inferéncia da concentragdo de um dos gases, enquanto obteve

desempenho péssimo na inferéncia da concentragao do outro gas.

A estrutura A obteve péssimo desempenho na inferéncia da concentracao de CO,
com um desvio médio absoluto no conjunto de treino e de teste de 339 ppm e 320
ppm, respectivamente, enquanto simplesmente utilizar a média do conjunto de dados
como resultado da inferéncia obtém um desempenho bastante superior, com desvio médio
absoluto de 140 ppm e 153 ppm, para conjunto de treino e de teste, respectivamente.
Porém, na inferéncia da concentragao de etileno, a estrutura obteve uma melhora de

20.96% e 30.41% em relacao a média, para os conjuntos de treino e teste, respectivamente.

A estrutura B obteve um desempenho razoavel na inferéncia da concentracao de
CO, com uma melhora de 39.72% e 23.63% no desvio médio absoluto em relacdo a média,
para os conjuntos de treino e de teste, respectivamente. Porém, a estrutura nao foi capaz
de obter um desempenho semelhante para inferéncia da concentracao de etileno, tendo
um desvio médio absoluto de 5.2 ppm e 4.7 ppm para os conjuntos de treino e de teste,
respectivamente, sendo os valores muito proximos do resultado obtido para inferéncia com
média.

Embora as estruturas sejam baseadas nos mesmos parametros, os resultados foram
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bastante diferentes para cada uma delas. Essa divergéncia pode ser explicada pelo algoritmo
de inferéncia em redes bayesianas gaussianas utilizado neste trabalho, ter como exigéncia
que o grafo que forma a estrutura seja individualmente conectado. Apesar dessa exigéncia,
as redes causais possiveis para esse problema nao sdo capazes de satisfazer a condicao,
causando comportamento inesperado nos resultados da inferéncia. A escolha de outro
algoritmo de inferéncia pode melhorar os resultados, porém nao existem muitas bibliotecas
gratuitas com inferéncia para variaveis continuas completamente implementadas devido

sua complexidade.

Também é notavel que a resposta de inferéncia da concentracao dos gases apresenta
certo atraso em relagao a concentracao real. Esse comportamento surge devido ao atraso
da resposta dos proprios sensores de gases frente a uma variacao abrupta da concentracao
dos gases a que estdo expostos. O modelo estatico proposto nao consegue contornar
esse problema, uma vez que sempre considera aquele instante isolado do histérico da
concentracao dos gases. O modelo ideal para este caso seria um modelo dindmico, que
é capaz de considerar os ultimos valores adquiridos em uma série temporal e prever as
concentracgoes com maior acuracia mesmo enfrentando varigoes abruptas das concentragoes

de interesse e sensores com respostas lentas.

Visto que o algoritmo de inferéncia nao é adequado para as estruturas causais
propostas, os trabalhos futuros podem conter uma pesquisa sobre outros algoritmos de
inferéncias para redes bayesianas continuas na literatura e sua possivel implementacao
para comparacao com os resultados obtidos neste trabalho. Ainda, pode-se discretizar o
problema e fazer uso de redes bayesianas discretas, para comparacao dos resultados das

diferentes abordagens.
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