UNIVERSIDADE DE SAO PAULO
ESCOLA DE ENGENHARIA DE SAO CARLOS

RAPHAEL TIN CARLINI KOHN

Ambiente de Testes Estatisticos Para Geradores de
Numeros Aleatérios Aplicado em Softwares de Analise
Numérica

Sao Carlos
2020

RAPHAEL TIN CARLINI KOHN

Ambiente de Testes Estatisticos Para Geradores de Numeros Aleatorios
Aplicado em Softwares de Analise Numérica

Trabalho de Conclusdo de Curso apresentado a
Escola de Engenharia de Sao Carlos, da
Universidade de Sao Paulo

Curso de Engenharia Elétrica com Enfase em
Eletrénica

Orientador: Prof. Dr. Maximiliam Luppe

Sao Carlos
2020

AUTORIZO A REPRODUGCAO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRONICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalogréfica elaborada pela Biblioteca Prof. Dr. Sérgio Rodrigues Fontes da
EESC/USP com os dados inseridos pelo(a) autor(a).

K79a

Kohn, Raphael Tin Carlini

Anbi ente de testes estatisticos para geradores de
nuneros al eat6rios aplicado em softwares de anali se
nunérica / Raphael Tin Carlini Kohn; orientador
Maxi m | i am Luppe. Sao Carl os, 2020.

Monogr afi a (Graduagdo em Engenharia El étrica com
énfase em El etronica) -- Escola de Engenharia de Sédo
Carl os da Universi dade de S&o Paul o, 2020.

1. anbiente de testes estatisticos. 2. gerador de
nuneros aelatoérios. 3. testes randbmi cos. 4. oscil ador
emanel. 5. caos deterministico. 6. Itspice. 7. octave.
8. NIST. |I. Titulo.

Eduardo Graziosi Silva - CRB - 8/8907

http://www.tcpdf.org

FOLHA DE APROVAGAO

Nome: Raphael Tin Carlini Kohn

Titulo: “Ambiente de testes estatisticos para geradores de numeros
aleatérios aplicado em softwares de analise numérica”

Trabalho de Conclusdo de Curso defendido e aprovado
: em.2¢ 10p 17020 ,

~

com NOTA_7. U (¢ , =¥), pela Comissao Julgadora:

Prof, Dr. Maximiliam Luppe - Orientador - SEL/JEESC/USP
Prof. Dr. Joao Navarro Soares Jinior - SEL/EESC/USP

Prof, Dr. Joao Paulo Pereira do Carmo - SEL/EESC/USP

Coordenador da CoC-Engenharia Elétrica - EESC/USP:
Prof. Associado Rogério Andrade Flauzino

A minha namorada Alexia, por toda paciéncia, apoio e
companheirismo demonstrados durante ndo apenas
esse projeto, mas nos ultimos anos que me trouxeram

até aqui.

A meus pais e minha irm&, que sempre me

incentivaram e acreditaram em mim.

A meus amigos e amigas que me acompanharam na

trajetéria da graduagéo.

Agradecimentos

Agradeco inicialmente Alexia, minha namorada e companheira de longa data, que
esteve presente nos momentos bons, ruins e necessarios.

A minha familia, que me forneceu o amor, apoio, conforto e paciéncia.

Ao professor Maximiliam Luppe, que me deu a oportunidade de participar neste
projeto e as condi¢des para termina-lo mesmo contra todas as adversidades.

Aos amigos que me acompanharam na jornada da graduacéao até aqui, em especial
Victor Koiti, Gustavo, Carlos, italo, Victor Jacomo, Leon, Valeria, Antdnio, Melissa e Rodolfo.

Aos colegas da Calina Marketing Digital, local que amadureci muito nos ultimos 3

anos.

“A verdadeira medida de um homem nao € sua
inteligéncia ou quao alto ele sobe neste sistema
esquisito. N&o, a verdadeira medida de um
homem é esta: com que rapidez ele consegue
responder as necessidades dos outros e quanto
de si mesmo ele consegue dar.”

Philip K. Dick

Resumo

KOHN, R. T. C. Ambiente de Testes Estatisticos Para Geradores de Niumeros
Aleatérios Aplicado em Softwares de Analise Numérica. 2020. Dissertacdo — Escola de
Engenharia de S&o Carlos, Universidade de Sdo Paulo, S&o Carlos, 2020.

Com o aumento da demanda por sistemas de criptografia/protecdo de dados, as
pesquisas e projetos de novos geradores de niumeros aleatdrios, essenciais para esse tipo
de aplicagdo, se tornam cada mais mais necessarios. Como o objetivo desse tipo de
gerador é criar uma onda com comportamento aleatério, o projeto acaba sendo mais
empirico do que tedrico, visto que a modelagem de um gerador necessita de validagcédo de
suas sequéncias utilizando testes estatisticos. Estes, por sua vez, exigem grandes
quantidades de dados, inviabilizando o desenvolvimento de tal projeto sem um sistema de
coleta de dados robusto. Naturalmente, isso acaba dificultando o avango da pesquisa na
area, visto que equipamentos de aquisicdo de dados costumam ser caros e de dificil
acesso. Dessa forma, este trabalho teve dois objetivos: primeiro, desenvolver um ambiente
de testes estatisticos que precise de nenhuma ou pouca adaptagdo para validar dados
gerados por geradores de numeros aleatérios de qualquer fonte (testes de bancada,
simulagdes em SPICE, etc); segundo, simular um circuito de gerador de numeros aleatérios
do tipo Asynchronous Linear Feedback Shift Register, uma topologia baseada em geradores
do tipo Linear Feedback Shift Register e implementada em tecnologia TSMC 180nm,
validando-o no ambiente de testes estatistico. No fim, conseguimos desenvolver a
simulagao do circuito na topologia proposta e trés testes estatisticos dentro do ambiente de
testes, o que foi o suficiente para validarmos os dados provenientes da simulacao e
obtermos indicios de que a topologia testada consegue gerar sequéncias aleatérias.
Entretanto, ainda existe espaco para aprofundar tanto a simulacdo do circuito quanto o
algoritmo, complementando-o com mais testes.

Palavras-chave: Ambiente de testes estatisticos, gerador de numeros aleatdrios, testes
randdmicos, oscilador em anel, caos deterministico, ltspice, octave, NIST.

Abstract

KOHN, R. T. C. Statistical test suite for Random Number Generators Applied in
numerical analysis software. 2020. — Escola de Engenharia de Sao Carlos, Universidade
de Sao Paulo, Sao Carlos, 2020.

With the increasing demand for encryption/data protection systems, research and
projects for new random number generators, essential for this type of application, becomes
increasingly needed. As the objective of this type of generator is to create a wave with
random behavior, which means the process is much more empirical than theoretical, given
that modeling the generator requires validating its output with statistical tests. These tests
require large amounts of data, thus, it is not possible to develop such a project without a
robust data collection system. Naturally, this ends up hampering the advancements of
research in the area, since data capture equipment is often expensive and difficult to access.
Thus, this work had two objectives: first, to develop a statistical test suite that can be easy
adapted for any random number generator source (bank tests, simulations in SPICE, etc.);
second, to simulate a random number generator circuit with the Asynchronous Linear
Feedback Shift Register configuration, a topology based on Linear Feedback Shift Register
random generators and implemented in TSMC 180nm technology, using the statistical test
suite of the first objective to validate the circuit. In the end, we managed to develop the
simulation of the proposed topology and three statistical tests in the algorithm, which was
enough to obtain indications that the tested topology can generate random sequences.
However, there is still space to deepen the simulation of the circuit and to complement the
algorithm with more statistical tests.

Keywords: Statistical test suite, random number generator, randomness tests, ring oscillator,
deterministic chaos, Itspice, octave, NIST.

Lista de llustracoes

Figura 1 - Exemplos de circuitos LFSR

Figura 2 - Maquina de estados resultante

Figura 3 - TERO TRNG

Figura 4 - “Corrida” entre Ae B

Figura 5 - Topologia ALFSR

Figura 6 - Exemplo arquivo final gerado pela simulacéo de LTSpice
Figura 7 - Circuito completo do gerador de niumeros aleatérios

Figura 8 - Inputs e Diretrizes SPICE.

Figura 9 - Seletor de configuragao

Figura 10 - Circuito de coleta

Figura 11 - Exemplo coleta dados

Figura 12 - ALFSR

Figura 13 - Circuito interno da célula de atraso

Figura 14 - Formas de ondas dos Bits 1, 2 e 3.

Figura 15 - Forma de onda da saida que sera analisada

Figura 16 - Resultado teste de validagdo do algoritmo NIST no Octave
Figura 17 - Resultado testes estatisticos das configuragdes entre os bits
111.111.111.000...111.111.111.111 do ALFSR - p.

Figura 18 - Formas de ondas da simulagao de temperatura.

Lista de Abreviaturas e siglas

ALFSR Asynchronous Linear Feedback Shift-Register.

CMOS Complementary Metal Oxide Semiconductor

FPGA Field Programmable Gate Array

LFSR Linear Feedback Shift-Register.

PRNG Pseudo Random Number Generator.

RNG Random Number Generator.

SPICE Simulation Program with Integrated Circuits Emphasis.
TRNG True Random Number Generator.

TERO Transient Effect Ring Oscillator

TSMC Taiwan Semiconductor Manufacturing Company

Lista de Tabelas

Tabela 1 - Traduzida da pagina 13 de |.T.L Computer Security Division, “NIST SP 800-22, A
Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic
Applications” [Online]. Disponivel em
https://nvipubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf [Acessado:
01-jun-2020].

Tabela 2 - Poténcia x Configuragao.

Tabela 3 - Comparagéao entre os valores de P do algoritmo de Octave e a tabela referéncia
do NIST.

Tabela 4 - Valores P por temperatura.

Tabela 5 - Resultados de aleatoriedade por temperatura.

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf

Sumario

1 Introducgao 23
1.1 Motivagéo 23
1.2 Objetivos 23

2 Revisao Bibliografica 25
2.1 Conceitos de Aleatoriedade 25
2.2 Imprevisibilidade 25
2.3 Testes de aleatoriedade 26
2.4 Caos Deterministico 27
2.5 Geradores de Numeros Aleatorios 28

2.5.1 Contextualizagao 28
2.5.2 Topologias 28

3 Materiais e Métodos 33

3.1 Simulagao 33
3.1.1 LT Spice 33
3.1.2 Topologia ALFSR 34

3.2 Ferramentas para Classificagao Dados 35
3.2.1 Métodos de Preparacéo dos Dados 35
3.2.2 Testes NIST 37

Resultados e Discussoes 40

4.1 Simulagao ALFSR LTSpice 41
4.1.1 Inputs e diretrizes de Spice 41
4.1.2 Seletor de configuragao 43
4.1.3 Circuito de coleta 44
4.1.4 ALFSR 45
4.1.5 Resultado 47

4.2 Algoritmo Octave NIST 48
4.2.1 Validacao Testes NIST 49
4.2.2 Teste Aleatoriedade ALFSR 50

4.3 Variagdes de temperatura 51

5 Conclusao 54

Referéncias 56

Apéndice A - Codigos de avaliacao de teste estatistico do NIST em formato “.m” 59

Apéndice B - Cédigos de avaliagcao de circuito ALFSR em formato “.m” 62

Apéndice C - 35 primeiras linhas do arquivo em formato “.txt” gerado pelo LTSpice 64

Apéndice D - Esquematico dos componentes utilizados no projeto. 66

23

1 Introducao

1.1 Motivacgao

O desenvolvimento e aplicagdo de geradores de numeros aleatérios tem crescido
nas ultimas décadas, motivado principalmente pela preocupacéo de se proteger o grande
volume de dados gerados e trocados hoje em dia por equipamentos tecnologicos [1].

Entretanto, o processo de desenvolvimento desses geradores tem um foco maior
nos dados empiricos do que na teoria, muito por conta da natureza dos sinais gerados e de
seu objetivo de torna-los imprevisiveis.

Quem tiver o interesse de desenvolver este tipo de gerador necessitara validar seus
dados antes de poder validar/melhorar sua modelagem, o que pode se mostrar um desafio
visto que os testes de validagdo exigem um grande numero de dados, necessitando de um
sistema de aquisicao robusto, o que nao é acessivel a todos.

Esta dificuldade de validagcdo empirica motivou este trabalho para viabilizar uma
maneira de pesquisadores desenvolverem projetos sobre o tema utilizando softwares
gratuitos, com uma interface amigavel e facilmente adaptavel para diversas fontes de
dados.

Também surgiu a necessidade de se validar uma nova topologia de geradores de
numeros aleatérios que serd aplicado em um outro trabalho. Desta forma, este projeto ira
desenvolver tanto uma interface de testes estatisticos para numeros aleatérios quanto uma
simulagdo de um gerador de numeros aleatérios, além de avaliar essa simulagao utilizando

a interface de testes.

1.2 Objetivos

Com a motivagao de facilitar o acesso a testes estatisticos para geradores aleatérios
e validar a topologia que sera detalhada mais adiante, foram tracados dois obijetivos
principais para o projeto:

1. Criar um programa de facil utilizagdo que consiga realizar os testes de aleatoriedade
da interface de testes do Institucional Nacional de Padrées e Tecnologias dos EUA
(NIST).

2. Simular um circuito de gerador de numeros aleatérios e validar seus dados utilizando

0 programa do primeiro objetivo.

24

Para explicar o planejamento e execugdo do projeto para alcangar esses dois
objetivos, dividimos a monografia em outros quatro capitulos: Revisdo Bibliografica, onde
explicaremos a parte tedrica do trabalho e introduziremos conceitos importantes para
entender o funcionamento dos produtos finais do projeto; Materiais e Métodos, capitulo no
qual entraremos mais a fundo sobre quais foram as ideias e ferramentas utilizadas para
atingir cada um dos objetivos propostos; Resultados e Discussées, momento em que
apresentaremos os resultados finais tanto o programa do primeiro objetivo quanto a
simulagao do circuito do segundo objetivo, além de descrever validagbes e analises feitas
em cima de ambos; e, por fim, a Conclusao, onde comparamos os resultados obtidos com
os objetivos que estabelecemos aqui na Introducgéo, além de propor préximos passos para o

projeto.

25

2 Revisao Bibliografica

Nesta secdo apresentamos conceitos sobre sequéncias de numeros aleatérios que

serdo cruciais para o entendimento dos testes feitos pelo ambiente de testes estatisticos.

2.1 Conceitos de Aleatoriedade

Uma sequéncia de eventos é chamada aleatdria se cada um de seus elementos
independe dos outros (passados ou futuros).

Um o6timo exemplo pratico € o langamento de uma moeda honesta (50% de chance
de cara ou coroa), onde cada langamento independe de outros e, dado um longo tempo, a
sequéncia sempre tenderd a ter uma proporgao igual de caras e coroas. Entretanto, é
curioso perceber como dependendo do tamanho das amostras até mesmo uma sequéncia
considerada ideal pode ser confundida como nao aleatéria: a moeda pode gerar tanto a
sequéncia 1 = “1001111010” quanto 2 = “1111111111”.

Essa confusdo s6 ocorre quando nao diferenciamos uma “geracéo aleatéria” de um
“arranjo aleatério” [2]. Se olharmos apenas para a capacidade de “geracdo aleatdria” do
langamento da moeda (o gerador que estamos avaliando no caso), estaremos avaliando
apenas a chance individual de cada langamento, o que faz com que concluamos que as
duas sequéncias tém a mesma chance de ocorrer. Entretanto, se olharmos para a
capacidade do gerador de criar “arranjos aleatérios”, estaremos olhando para as chances
das sequéncias ocorrerem, com a sequéncia 1 (“1001111010”) tendo uma chance de ocorrer
maior por se aproximar mais da distribuicao de 50% entre 1s e Os caracteristica do gerador
avaliado.

Essa percepcido € extremamente importante para os testes de aleatoriedade que
nos propomos a implementar, visto que a quantidade de dados das sequéncias simuladas é
o fator mais limitante em todo o projeto e, ao mesmo tempo, o que garante que os testes

sejam validos.

2.2 Imprevisibilidade

Outra caracteristica essencial para uma sequéncia de elementos ser considerada
aleatéria é que nenhum evento consiga ser previsto com outros passados. Essa

caracteristica € chamada de “imprevisibilidade futura” [1].

26

Aqui, também é interessante trazer outro exemplo de aparente contradigdo dos
conceitos com o paradoxo de pi [2]: a sequéncia do numero pi: 314159265358979323846...
nao sO aparenta ser aleatéria como também passa nos testes de aleatoriedade (como
veremos em sua forma binaria na segéo 5.2). Entretanto, existem férmulas matematicas que
conseguem prever o valor numero de pi - ou seja, sua sequéncia pode ser classificada
como aleatdria, mas também existem métodos matematicos que prevéem sua forma.

Isso salienta novamente a importancia de considerar o ponto de vista que se esta
tendo nas analises: uma conclusdo parte da visdo computacional, enquanto a outra, da
estatistica. Essas “previsbes” sdo, na verdade, aproximacbdes de expansdes decimais
obtidas empiricamente e que convergem para pi, onde cada numero de casas decimais
diferentes necessita de uma férmula diferente. Logo, do ponto de vista estatistico, ele nao é
previsivel, visto que nao existe nenhuma férmula para calcular individualmente cada um de

seus elementos.

2.3 Testes de aleatoriedade

Um teste de aleatoriedade €, no fundo, um teste estatistico que busca validar uma
“hipotese nula” (HO). No caso desta aplicacao, tal hipétese trata se a sequéncia testada é
aleatdéria. Acompanhada dela, temos a ‘“hipotese alternativa” (Ha), uma hipdtese
complementar por assim dizer, que diz que a sequéncia testada nao é aleatéria.

Com isso, temos duas possibilidades de resultados no teste: ou HO é verdadeiro (e a
onda é aleatdria) ou Ha é verdadeiro (e a onda nao é aleatédria) [1]. Entretanto, existe a

possibilidade do teste falhar e chegarmos a um falso negativo ou positivo.

Tabela 1. Tabela verdade sobre os testes.

Resultado Concluséo

Aceitar HO Rejeitar HO (Aceitar Ha)
HO Verdadeiro Sem erro Falso Negativo
Ha Verdadeiro Falso Positivo Sem erro

Fonte: Traduzido da pagina 13 de [1].

Seja o a probabilidade de um Falso Negativo ocorrer, o de um Falso Positivo e n o

numero de bits na sequéncia.

27

a € conhecido como o nivel de significancia do teste por ser um nuamero fixo,
enquanto B € variavel, ja que uma sequéncia ndo aleatéria pode se apresentar aleatéria de
diversas maneiras.

A relacdo entre o,p e n nos possibilita que, com apenas o valor de dois dos trés
conseguimos encontrar o terceiro valor. Com isso, fixa-se os valores de n e a de tal
maneira que seja o menor possivel, visto que ndo conseguimos controla-lo [1].

Na pratica, isso estabelece uma proporcéo entre n e a e dita o minimo de dados
necessarios para o teste em questdo dado determinado nivel de significancia. Cada teste
estatistico fornece no fim o valor de P, um numero de zero a um que indica quao forte é a
evidéncia de que a aquela sequéncia é aleatdria (sendo zero ndo aleatéria e um maxima
aleatoriedade) [1].

O valor de P é comparado com o de a e, caso seja maior, a hipétese HO nao é
rejeitada com uma confiabilidade de (1 —a) e o préximo teste é feito. E este o motivo de o
ser chamado de nivel de significancia, pois ele determina a precisdo do processo. Um valor
comum a ser adotado € o de “a.=0.01", que significa que a valor de confianga para que a
sequéncia seja aleatoria é de 99% (apenas um a cada cem testes vao resultar em um falso
negativo), deixando os testes precisos o suficiente. Em cada teste chega-se ao valor de P
ao comparar seus resultados a uma distribuicdo de referéncia, normalizando o valor entre
zero e um - ou seja, para esse valor comum de a =0.01, valor de P precisa ser menor que
0.01 para HO ser rejeitada[1].

As especificidades dos testes implementados no trabalho serdo detalhadas na

secgao 3.2.1.2.

2.4 Caos Deterministico

Sistemas deterministicos permitem prever qualquer ponto no tempo, dado que se
saiba suas condi¢gdes iniciais [8]. Entretanto, alguns desses sistemas apresentam uma
grande sensibilidade para variagdes nos dados iniciais, dando a impressao de que sejam
aleatérios, mesmo que isso seja causado apenas por uma falta de precisao na medigédo dos
parametros. Esses casos sao definidos como Sistemas Cadticos Deterministicos e, apesar
de nao serem aleatdrios, ainda assim sao considerados imprevisiveis ja que uma pequena
variacao nas condigbes iniciais acarreta em resultados finais ao longo do tempo muito

distintos.

28

2.5 Geradores de Numeros Aleatorios

Todos os conceitos explicados até agora sdo aplicados na geragcdo de numeros
aleatdrios: sistemas que, como o0 nome diz, servem para gerar uma sequéncia de nimeros
que seja aleatdria. Sua demanda vem principalmente de aplicagdes envolvendo criptografia
e seguranca de dados, exigindo nesses casos que os geradores sejam robustos o suficiente

para aguentar tentativas de invasdes aos dados que estiverem auxiliando na codificagao.

2.5.1 Contextualizagao

Generalizando, existem dois tipos de geradores: os aleatdrios (TRNG - True
Random Number Generator) e os pseudo-aleatérios (PRNG - Pseudo Random Number
Generator). Enquanto os primeiros sdo obtidos primariamente de fontes de entropia, como
ruido térmico de um transistor ou efeito fotoelétrico, os ultimos sdo compostos de fontes
deterministicas, como algoritmos [3][4][5].

Entretanto, analisando as topologias desenvolvidas nos ultimos anos, percebe-se
que nenhum desses dois tipos de geradores atendem as necessidades: os TRNGs por nao
serem robustos [3] e os PRNGs por ndo serem aleatorios o suficiente. A solucdo foi juntar
os dois tipos em um s6: PRNGs que utilizam fontes de entropia como sementes para a
geracdo de seus numeros, resultando em sistemas cadticos, imprevisiveis por definicdo e

robustos o suficiente para ataques e/ou variagbes de temperatura, tensao, etc.

2.5.2 Topologias

Nesta seccao, serdo dados exemplos de topologias dos sistemas cadticos descritos
anteriormente. Os exemplos apresentam uma caracteristica em comum: todos se utilizam
do fato de serem implementados com semicondutores (seja dentro de FPGAs - Field
Programmable Gate Array ou diretamente com transistores CMOS - Complementary Metal
Oxide Semiconductor), obtendo sua fonte de entropia do ruido interno de seus
componentes.

Um exemplo de topologia PRNG sdo os LFSR (Linear Feedback Shift-Register),
circuitos que se baseiam em osciladores em anel compostos por flip-flops para gerar sua
pseudo aleatoriedade. Na figura 1 podemos encontrar duas variagdes: a variagao (a),
chamada de Fibonacci; e a variagdo (b), chamada Galois [15]. A Caracteristica que
diferencia um do outro € a posicao das portas XOR, pois na Fibonacci um das entradas das

portas vem de posi¢cdes centrais do circuito enquanto na Galois todas as XOR recebe a

29

saida do circuito. Entretanto, o funcionamento de ambos é praticamente o mesmo: a cada
iteracdo, a saida das XOR séo atualizadas, “empurrando” a sequéncia de bits e atualizando
as proprias entradas das XORs - por exemplo, na variagdo (a) da figura 1, a proxima
iteragao fara com que as posicoes 1, 11, 13, 14 e 16 fiquem com os valores 0, 1,0,0e 0

respectivamente. No caso, ambas variagcdes tem 16 bits, o que significa que existem
216 combinacdes entre as posigdes de bits possiveis, fazendo com o que o gerador

repita a sequéncia das combinag¢des eventualmente, algo que pode ser explorado para
invasbdes. Além disso, quando se implementa LFSRs, costuma-se utilizar flip-flops para
armazenar e propagar os bits de cada posigao, o que significa que é necessario um clock

controlando as iteragdes do circuito.

Figura 1. Exemplos de circuitos LFSR

(a)

—

11 13 14 16
1{0]1[{0]1[1]0[O[1[1[1]O[O]O[O]1
ol

Tag

16 14 13 11 1

|—10F)1F)01F)10011100001—|

Fonte: Pagina 60 de [15].

Em 2009, Zhang propbs um circuito CMOS composto por duas portas légicas XOR
e uma XNOR, resultando em uma maquina de estados com comportamento descrita na
Figura 2 [4]. Essa configuracdo apresenta caracteristicas de um sistema cadtico e funciona
assincronamente, ndo dependendo de um clock e, consequentemente, tornando o circuito
menos suscetivel a ataques. Segundo [11], as redes propostas até entdo ou eram sincronas

ou lentas demais para aplicagdes, destacando o circuito de Zhang.

30

Figura 2. Maquina de estados resultante

inputs| 1 2 3
00|00 1
01110
., 10110
111001

Fonte: Imagem retirada da pag. 4 de [4].

Outro exemplo de topologia é o criado por Yang [9], onde se utilizou duas linhas de
atraso composta por inversores (diferente dos LFSRs convencionais que utilizam flip-flops),
ligadas por portas NAND, conforme Figura 3. Essas duas linhas formam um oscilador em
anel, sendo controladas por meio de trem de pulsos nas entradas A e B das NANDs. A
diferenca de fase entre essas duas entradas determina a saida em Out, onde A “mais
rapido” que B faz com que a saida comece a tender para “1”, enquanto caso B seja “mais
rapido” do que A, a saida tende para “0” (Figura 4). Esse circuito costuma ser conhecido

como TERO - Transient Effect Ring Oscilator.

Figura 3. TERO TRNG

Fonte: Imagem retirada da pag. 2 de [9].

Figura 4. “Corrida” entre Ae B

Condition 1: Rising edge A is faster, Tyison = Trann.

start

Condition 2: Falling edge B is faster, T;;. v = Tranv i1
start

Fonte: Imagem retirada da pag. 2 de [9].

31

Esses foram apenas alguns exemplos de topologias diferentes para geradores de
numeros aleatorios, existindo diversas outras que nao foram exploradas aqui. Entretanto, as
topologias descritas, somadas aos outros conceitos introduzidos no restante do capitulo,
sao o suficiente para o entendimento do projeto final, seus métodos e resultados.

Nos préximos capitulos, detalharemos mais sobre como esses topicos explicados
aqui se encaixam com o projeto, além de explicar o que exatamente foi feito, quais foram os

resultados obtidos e como isso se compara com as expectativas iniciais do projeto.

32

33

3 Materiais e Métodos

O projeto se dividiu em duas partes: a simulagcado do circuito de gerador de numero
aleatdério em LTSpice e a criagdo do algoritmo de checagem de aleatoriedade conforme
padrao NIST.

3.1 Simulacao

Para a simulagao do circuito, foi necessario definir tanto qual ferramenta seria
utilizada além de quais componentes e topologia comporiam o circuito final.

3.1.1 LTSpice

Foi escolhido simular o circuito em Spice, que traduzindo para o portugués significa
Programa de Simulagdo com Enfase em Circuitos Integrados, utilizando o programa
LTSpice. Ele foi escolhido tanto por ser um software gratuito quanto pela familiaridade pelo
seu uso em disciplinas da graduacao.

Esse tipo de programa costuma ter quatro tipos de simulagéo:
Analise DC
Analise AC

Analise da polarizagao

W N =

Andlise Transiente

No caso, estamos interessados apenas na analise transiente, visto que queremos
analisar o circuito no dominio do tempo. Nela, o programa basicamente computa qual o
comportamento do circuito assim que ele é ligado (tendo a possibilidade de descrever as
condigbes de contorno, caso necessario). Para circuitos ndo-lineares (como o caso deste
projeto), ele utilizar o Método de Newton—Raphson [14] para calcular as itera¢cdes de cada
nodulo do sistema.

Um ponto importante na simulagdo é o passo maximo que ela pode dar (max step) -
essa variavel é uma das que mais impacta tanto na precisdo da simulacédo, quanto no
tempo dela. Isso ocorre pois o0 método LTSpice € otimizado para, caso os dados gerados
em instantes sucessivos tenham pequenas variagbes, a distdncia entre os instantes
analisados seja gradativamente incrementada, permitindo que a simulagédo seja realizada
num menor tempo - entretanto, isso pode acarretar erros grosseiros de computagao,

principalmente em circuitos com instabilidades. Por conta disso, configurar um max step

34

condizente com o periodo dos dados garante que a simulagdo computara todos os pontos

necessarios, mesmo que isso aumente o tempo total.

3.1.2 Topologia ALFSR

A topologia escolhida para o projeto € um LFSR Assincrono (ALFSR - Asynchronous
Linear Feedback Shift Register), implementado em tecnologia CMOS TSMC 180nm (figura
5). Nela, os flip-flops originais dos LFSR convencionais exemplificados na seg¢ado 2.5.2 sédo
substituidos por “células de atraso” com trés bits de selecédo (SO, S1 e S2) que permitem
escolher o tempo de atraso - isso é possivel pois dentro de cada uma dessas células
existem sete buffers que resultam em oito tempos de atrasos diferentes (sem buffer, um
buffer, dois buffers, ..., sete buffers), onde trés colunas de MUX controladas pelos bits de
selecado tornam possivel essa escolha do tempo de atraso. Os Buffers sdo compostos por
dois inversores em série - os subcircuitos das células de atraso serdo detalhados mais

adiante.

Figura 5. Topologia ALFSR

norA

norB

52
S1
S0
s2
S0

xXnor_out

Fonte: Propria

As células de atraso foram baseadas no trabalho de Yang [09], o circuito do tipo
TERO apresentado na seccao 2.5.2. A novidade introduzida pelo ALFSR ¢é a presenca de
seletores para escolher por quantas linhas de atraso o sinal passara dentro da célula,

resultando em 2° 1 configuragdes para o circuito total de quatro células. Isso possibilita o

35

desenvolvimento em projetos futuros de um circuito de protecdo de ataques que consegue

mudar a configuragao escolhida assim que percebe que a saida nao é mais aleatoria.

3.2 Ferramentas para Classificacdo Dados

Para verificar quais configuragbes do circuito sdo aleatdrias, desenvolveu-se um
cédigo na ferramenta Octave para avaliagao da aleatoriedade de suas saidas, utilizando o
algoritmo do NIST. A escolha do Octave foi feita pois ele permite preparar os dados para a
simulacdo de uma forma mais amigavel e pratica do que o Test Suite do NIST em C, o qual
exige que seus dados entrem diretamente como binarios - desta forma, os testes
estatisticos continuam sendo fungdes independentes do resto do algoritmo como no Test
Suite do NIST, mas com a diferenga que o cédigo criado no Octave permite adaptar os
dados recebidos independente da fonte e com inputs e adaptagdes necessarias feitas do
usuario sejam minimas.

Para garantir a confiabilidade do algoritmo, foram utilizados os métodos de validagéo
oferecidos pelo proprio NIST e que serdo apresentados mais adiante.

O algoritmo foi desenvolvido em duas partes distintas:

1. Preparagéo dos dados em formato de texto do LTSpice
2. Testes Estatisticos validados pelo NIST

Dessa forma os testes estatisticos nao ficam presos a preparacdo de dados
especifica para LTSpice, permitindo que eles sejam reutilizados independente da fonte que
sera testada. O unico trabalho, neste caso, seria montar um cédigo que organize os dados

no padréo dos testes.

3.2.1 Métodos de Preparacao dos Dados

O objetivo desta parte do codigo é receber os dados da fonte e prepara-los para o
padrdo que os testes foram programados. No caso deste trabalho, foi desenvolvido apenas
um programa para preparagdo de dados gerados pelo LTSpice, mas o cédigo pode ser
facilmente adaptado em trabalhos futuros para qualquer fonte, como outros simuladores
SPICE ou dados retirados de circuitos em bancada.

Na figura 6 é possivel encontrar as primeiras linhas de um arquivo de texto que é
gerado pelo circuito final simulado no LTSpice (no apéndice C existe uma versdo mais
completa). Neste caso, foram incluidas oito variaveis do circuito, totalizando nove colunas
visto que a primeira coluna é o tempo de simulacdo de cada um dos pontos salvos. Vale

destacar que as trés colunas essenciais para o programa funcionar sao V(clk_coleta),

36

V(rstn) e V(rnd0_clk), que representam o clock do circuito de coleta, o reset de troca de

configuragao e a saida final do circuito pos etapa de coleta, respectivamente.

2.820000000020000+0002
5.851428592654594e-813
1.17828571853891%-012
1.755428577796378e-012
2.348571437061837e-012

Figura 6. Exemplo arquivo final gerado pela simulagdo de LTSpice

time V(bitl) V(bit2) V(bit3) V(clk_coleta)

0.800000e+000
8.860000e+008
0.800000e+000
8.000000e+000
6.800000e+000

0.000000e+002 0.000200e+000 0.0000002+000 5.794203e-889 0.000000e+000 ©0.000000e+000 6.081074e
0.8600000e+008 0.000000e+800 4.681143e-883 3.833881e-885 0.000000e+8080 2.186514e-882 4.483265e
0.800000e+002 0.000000e+800 9.362286e-003 6.723530e-005 0.000000e+800 4.213029e-882 8.366953e-
0.000000e+000 ©0.000000e+00@ 1.404343e-8082 8.671926e-805 0.000000e+808 6.319543e-802 1.189112e-
0.800000e+008 ©.000000e+800 1.872457e-002 9.678270e-885 0.000000e+000 8.426857e-002 1.497578e

V(rnd@) V(rnd@_clk)

V(rstn) V(xnor_out)

Fonte: Propria.

A preparacao em si conta com as seguintes etapas:

1. Inputs Iniciais

a. Aqui o usuario indica quais as colunas que incluem os dados a serem

avaliados, os dados de clock, os dados de tempo, quantas
configuragdes do circuito estio inclusas (representada pelo numero
de bits a disposic&o), a tolerancia dos testes estatisticos e por fim,

quantos testes serdo rodados.

b. O cddigo também prepara parte dos vetores que serdo necessarios

desde o comecgo do cédigo.

2. Vetor Clock

a. Nesta parte o cddigo detecta em quais linhas houve subida de borda

do vetor de clock, preenchendo um vetor que sera utilizado na
proxima etapa para filtrar quais linhas dos dados serdo de fato
utilizados na analise.

Esta etapa é fundamental, visto que os dados do LTSpice ndo tem
uma cadéncia temporal estabelecida, podendo variar de 0 até o valor
de “max time step” da simulacdo. Logo, mesmo uma onda que ja
tenha passado por um processo de coleta dentro da simulagao
precisa passar por este processo para que o algoritmo consiga avaliar
corretamente a onda.

O codigo faz uma checagem para que o vetor de clock nao tenha
nenhum valor preenchido durante a troca de configuragbes (reset
diferente de 1.8V). Desta forma, isso ndo precisa ser repetido nas
proximas etapas, visto que as unicas linhas validas serao aquelas nas

quais clock = 1.

3. Preencher Matrizes com os dados a serem avaliados.

a. Aqui, o cédigo preenche matrizes de trés dimensdes com todos os

dados que serao utilizados dentro dos testes estatisticos.

-8e9
-884
a4
ge3
-ea3

37

i. Linhas = Dados
ii. Coluna = Configuragao
ii. Matriz = Onda/Fonte

b. Essa organizacao permite que se avalie num mesmo arquivo TXT de
LTSpice multiplas configuragbes de multiplas saidas/pontos do
circuito simulado.

c. OBS: Um ponto de melhora detectado para o cédigo € conseguir
avaliar simulagdes com “.step param” sem precisar editar previamente
0s arquivos. Atualmente ele ndo consegue ler totalmente os TXTs
gerados nesse tipo de simulagédo pois o LTSpice inclui uma linha de

texto entre as “runs”.

3.2.2 Testes NIST

Até o momento da entrega do projeto, foram criados os trés primeiros testes do

NIST. Como explicado na sec¢do 2.1.1, o erro de Tipo 2 é minimizado S&o eles:

1. Teste Frequéncia (Monobit).

O objetivo é avaliar se a proporgao entre 1s e Os é aproximadamente a mesma que
uma sequéncia binaria realmente aleatodria: ou seja, metade “1” e metade “0”. No caso, isso
é feito utilizando como referéncia estatistica a distribuicdo meia normal. Na pratica, isso se
traduz em realizar a soma Sn dos n elementos da sequéncia binaria e=¢,,¢,,¢,...€, analisada

no teste:

Sn=3 2«g-1
=1

O segundo passo € dividir Sn por n e entdo calcular a erfc (fungdo complementar
do erro) do resultado obtido dividido pela raiz de 2. O resultado final € o valor de P e todo

esse processo pode ser compactado na seguinte equagao:

valor de P = erfc(%)

38

O valor de P entdo € comparado com a, sendo a hipotese nula ndo rejeitada caso
ele seja maior. O algoritmo também armazena em uma matriz de Resultados o valor “1”
caso HO nao tenha sido rejeitada e “0” caso tenha.

O numero de bits minimo recomendado pelo NIST é n= 100.

2. Teste Frequéncia em Bloco.

O objetivo deste teste é descobrir se a proporgdo entre 1s e 0s proximo de %2
encontrada no primeiro teste também é valida em reparticdes menores da onda e nao
apenas no total. Um exemplo da necessidade deste teste é a sequéncia “11110000” que
passaria no primeiro, mas seria recusada no segundo, conforme sera explicado adiante. Ele
usa como referéncia a distribuicdo Qui-Quadrado (y?).

Sejam entdo os n bits da sequéncia ¢ divididos em N blocos de dados com M bits
cada. O primeiro passo é computar a proporgdo n; de 1s dentro de cada um dos N blocos,
seguindo a formula:

M
Z E(i—1)xM+j
1

S B — <=
T, = 7 ,onde 1<=j<=N

Aqui, i representa qual dos N blocos estamos calculando a proporcéo. Essa equagao
basicamente faz a soma de todos os elementos do bloco N, que resulta no numero total de
1s do bloco, e a divide pela quantidade M de bits dentro do bloco. A posi¢cédo do elemento a
ser calculado é dada por "(i— 1)« M +;", ou seja, para o primeiro bloco (/=1) a equagao
somara os elementos entre as posigbes "g,"e "g,," , para o segundo bloco (/=2), a soma

sera com os elementos entre as posigoes "g,.,," € "g,,)" € assim por diante - desta
forma, a formula consegue valer para qualquer bloco N da sequéncia ¢ ,, garantindo que

nao havera sobreposi¢do de elementos entre os blocos.

Em seguida calcula-se a fungao de Qui-Quadrado:
N

2
e :4*M2(ni_%)
=1
E entdo computa-se o Valor de P (Pvalue) utilizando a fungao gamma incompleta

(igamc) da seguinte forma:

Pvalue = igamc(%, Xzi)

Caso Pvalue> a, a hipdtese nula n&o é rejeitada.

39

Os valores minimos recomendados séo n> 100> MN ; M >20; N <100

E por isso que a sequéncia citada anteriormente, “11110000”, ndo passa neste
segundo teste: se considerarmos N=2 apenas para demonstrarmos este exemplo, teriamos
os blocos de dados “1111” e “0000”. Ambos claramente n&do tem uma proporcao de “1s”

préxima de %, o que faz a sequéncia original falhar no teste.

3. Teste das Corridas.

A fungao deste teste é entender se existe alguma sequéncia longa demais de algum
dos bits, indicando um comportamento “constante” da onda, sem variagdo para gerar
imprevisibilidade suficiente para ser considerada aleatéria. O resultado € 0 mesmo para
corridas de 1s ou de 0s, entdo escolhemos fazer corridas de 1s.

O primeiro passo € calcular a proporcdo n de 1s da sequéncia ¢ inteira, parecido

com o que foi feito no teste anterior:

™=

g
J

1

n

~.
Il

T =

O segundo é computar o teste estatistico Vn:
n—1
V,=>rk)+1,sendo
k=1
&k = Exr1) = 1(k) =0, caso contrario, r(k)=1
O Pvalue é calculado entdo desta forma:

_ |V ,—2nn (1-1)|
Pvalue = erfc(m)

Sendo Pvalue>a., entdo a hipotese nula nao é rejeitada.

O valor minimo recomendado é n > 100.

Ainda existem outros testes nos documentos de referéncia do NIST, mas este
trabalho tratara apenas desses trés que foram apresentados. Independente, o ambiente de
testes foi desenvolvido de tal forma que a adigdo de novos testes é simples, logo ndo sera
um problema complementar essa parte do projeto no futuro.

Neste capitulo apresentamos as duas principais ferramentas em que desenvolvemos
o projeto, LTSpice e Octave. Ambos os programas sao gratuitos e de facil acesso/utilizagao,
servindo para a proposta do trabalho de facilitar a validagdo de geradores de numeros
aleatérios para outras pesquisas. Além disso, também falamos mais a fundo sobre a
topologia ALFSR do circuito que simulamos, mostrando as novas propostas que ele traz em

relacao a topologias existentes.

40

Na préxima parte da monografia, vamos explorar de uma forma mais pratica como
ocorreu a implementagao da simulagao e os resultados obtidos ao analisar os dados obtidos
da simulacado dentro do ambiente de testes estatisticos. Também trazemos a validacédo do

ambiente de testes em si, utilizando valores referéncia fornecidos pelo NIST.

41

Resultados e Discussoes

Nesta secdo serdo detalhadas tanto a simulacdo do ALFSR dentro do LTSpice,
quanto o algoritmo criado dentro do Octave para avaliar os resultados da simulagéo.

4.1 Simulacao ALFSR LTSpice

O circuito (Figura 7) da simulagdo pode ser dividido em trés partes principais: o
seletor de configuragdo; o circuito de coleta e o gerador de niumeros aleatérios ALFSR.
Além disso, existe uma parte na simulagdo que inclui os Inputs e diretrizes de Spice
utilizados na simulagdo. Comecgaremos explicando os inputs primeiramente e depois

descreveremos o comportamento de cada uma das partes principais do circuito.

Figura 7. Circuito completo do gerador de numeros aleatérios

3 J\
RND4
vecy RND3
RND2
RND1
t RNDO AL
xnor_oul
o PRE
D Q———[RNDa_CIK>
—PCLK Qf
KnorA CLR
cella cella Az
knorB RSTn wn ann PRE
a5 as D Q RND3_CLK
+—CLK Qo
< CLR
VRSTn BIT12 BIT9 BIT1 A3
BIT11 8 BIT2 PRE
PULSE(0 1.8 0 50p 50p {r} {d}) BIT10 iv] D (_2 RND2_CLK
— = = F—PCLK ge
VRSTnl o a “ CLR
-] 2] A4
1.8 o o = PRE
- oA hoA oA D Q RND1_CLK
. o a a =
.inc..\Models\TSMC018_TT.md 8 8 8 [b
.tran 0 {t} 0 50p = - - CLR
o o o
.ic v(xnorA)=0 v(xnorB)=0 v(bit1)=0 v(bit2)=0 v(bit3)=0 3 C) g g C) g g C) g A5
.param n=8 d=c*100*1.25 t=d*n p=d*2 c=0.0025u c2=c/2 r=0.97*d VCC=1.8 : —0 : — 0 : =0 PRE
.param pl=p p2=p*2 p3=p*4 p4=p*8 p5=p*16 p6=p*32 p7=p*64 p8=p*128 p9=p*256 p10=p*512 p11=p*1024 p12=p*2048 % % 3 L—11D Q| RNDO_CLK
.param d1=p1/2 d10=p10/2 d11=p11/2 d12=p12/2 d2=p2/2 d3=p3/2 d4=p4/2 d5=p5/2 d6=p6/2 d7=p7/2 d8=p8/2 d9=p9/ 2 S S L Lok s
5 = =
.save V(xnor_out) V(bit1) V(bit2) V(bit3) V(clk_coleta) V(RNDO) V(rnd0_clk) I(xnor_out) V(RSTn) I(X4) o)) eI
ﬁ ﬁ ﬁ CLK_Coleta?)
=) 2 2
o o o
K_Coleta

PULSE(0 1000 {c2} {c})

<

Fonte: propria

4.1.1 Inputs e diretrizes de Spice

Os parémetros da simulagao foram escolhidos da seguinte forma:
e ¢ =0,0025 us - periodo do clock de coleta de dados.

e n =8 -numero de configuragdes testadas

42

e d=c*"125 - o tempo de onda ativa das ondas do seletor de configuragao. Calculado
de tal forma que garanta pelo menos 125 pontos para cada configuracgéo.

e p=d*2-o0 periodo das ondas de selegio;
o (2= % - tempo ativo (duty cicle) de "c"

e r = 0,97*d variavel para garantir que o tempo de reset seja apenas 3% de d,
garantindo que o reset ocorre com o0 minimo de perda possivel

e [=d*n - o0 tempo que a simulagao vai rodar. Garante que toda simulagio vai coletar
a mesma quantidade de dados de cada configuragao.

e Para configurar as ondas de selecao de bit foram criados os parametros p1...p12 e

d1...d12, todos dependentes de p, seguindo a formula “2 " *100*n”. Na pratica, cada

bit tem a metade da frequéncia do anterior. Juntos, formam um contador binario de
12 bits.

e O comando “.ic” garante que partes sensiveis do circuito ndo tenham um valor inicial
que possam alterar a resposta do circuito sem aviso, como as entradas da porta
XNOR e os bits de selegcado, ja que caso as duas portas da XNOR fiquem “1”, o
circuito todo “trava” em “1” e para de oscilar.

e O comando “.param” foi utilizado para declarar as variaveis, incluindo qualquer
dependéncia que tenham com outras.

e O comando “save” foi utilizado para acelerar a simulagdo, salvando apenas os

valores indicados e que serao utilizados.

Todos esses valores foram implementados no cédigo de simulagdo nas diretrizes do

spice, conforme a figura 8.

Figura 8. Inputs e Diretrizes SPICE.

.inc ..\Models\TSMC018_TT.md
.tran 0 {t} 0 50p
.ic v(xnorA)=0 v(xnorB)=0 v(bit1)=0 v(bit2)=0 v(bit3)=0

.param n=8 d=c*100%1.25 t=d*n p=d*2 c=0.0025u c2=c/2 r=0.97*d VCC=1.8
.param pl=p p2=p*2 p3=p*4 p4=p*8 p5=p*16 p6=p*32 p7=p*64 p8=p*128 p9=p*256 p10=p*512 p11=p*1024 p12=p*2048
.param d1=p1/2 d10=p10/2 d11=p11/2 d12=p12/2 d2=p2/2 d3=p3/2 d4=p4/2 d5=p5/2 d6=p6/2 d7=p7/2 d8=p8/2 d9=p9/2

.save V(xnor_out) V(bit1) V(bit2) V(bit3) V(clk_coleta) V(RNDO) V(rnd0_clk) I(xnor_out) V(RSTn)

Fonte: propria

43

4.1.2 Seletor de configuragao

Responsavel por selecionar qual configuragéo sera utilizada, seu funcionamento &
de um contador binario de doze bits, conforme explicado na se¢éo 5.1.2. Entretanto, para a
simulagao tratada aqui, foram variados apenas os trés bits da ultimas célula de atraso -
todos os outros foram travados em nivel “1”, conforme visto na figura 10. Os resultados das

ondas dos bits 1, 2 e 3 podem ser vistos na figura 9.

Figura 9. Formas de ondas dos Bits 1, 2 e 3.

VbV S

[
L3
W
1]

[T

\{pt)

Fonte: propria

Figura 10. Seletor de configuracéo

Fonte: propria

44

4.1.3 Circuito de coleta

O circuito de coleta da figura 11 garante que serao coletados dados binarios das
saidas do ALFSR, de acordo com o periodo ¢ configurado na parte de inputs - no caso da
simulagao, foi escolhido o valor de 0,0025 ps.

Figura 11. Circuito de coleta

Fonte: propria

A Figura 12 contém um exemplo do funcionamento da coleta. E possivel perceber
também no comego da onda que RNDO se mantém como 0 por um tempo: € nesse intervalo

que o reset esta “ativo”. Importante notar que, por ser um circuito especifico da simulagao
para coletar dados binarios de saida prontos para o ambiente de testes, foram usados
flip-flops padrées do LTSpice, que trabalham com a tenséo de 1V. Por esse motivo a tensao

do clock de coleta, V(clk_coleta), aparece como 1V na figura 11.

20V

45

Figura 12. Exemplo coleta dados

Viclk_coleta)

0.9V

AV

1.0V
0.9V
0.8V
0.1V
0.6V
0.5V
04V
0.3V
0.2V
04V
0.0V

0ns

| | T [— | — I T 1
Hons s 10ns Hins 3lns J0ns 1lns 0ns 30ns 400ns Hns
Fonte: propria

4.1.4 ALFSR

Essa é a parte do circuito que gera os dados aleatérios, sendo composta
basicamente de células de atraso e uma porta XNOR (figura 13). O esquematico dos

componentes utilizados estdo no apéndice D - Esquematico dos componentes utilizados no

projeto.
Figura 13. ALFSR
@{vcc} FL\

RND2
RND1

xnor_out RNDO

norA ‘

_ Cellz Cellz Cellz — Cells

norB RSTn TﬂT rl rl ry

|2} |2} |2} 8
VRSTn

PULSE(0 1.8 0 50p 50p {r} {d})

As células de atraso foram colocadas em série, utilizando-se as saidas das duas

Fonte: propria

ultimas como entradas para uma porta XNOR, que alimenta o sinal para a primeira célula,
retroalimentando o circuito.
Entretanto, existe a possibilidade das duas entradas da porta XNOR terem nivel

l6gico “1” ao mesmo tempo, o que faz com que a saida da porta também seja “1” e o circuito

420ns

46

“trave” em nivel légico alto, independente da escolha de configuracdo. Por isso, foi
implementado uma porta AND entre a XNOR e a entrada da primeira célula a fim de resetar
o circuito em toda alteracédo de configuracao. Tal processo é garantido pela entrada “RSTn”
da porta AND representada na Figura 7, cujo periodo é d segundos (conforme a secao
5.1.2) e duty cycle, 97%. Na Figura 15 é possivel conferir a forma de onda na pratica.

A saida de cada um dos elementos do ALFSR foi desviada para o circuito de coleta
a fim de analisar seus comportamentos, passando apenas por mais um Buffer para
estabilizar o sinal.

Cada uma das células de atraso (Figura 14) é composta por sete Buffers, que por
sua vez sdo construidos com dois inversores em série. Trés “colunas” de MUXes de duas
entradas e uma saida, controladas pelos Bits de selecido, determinam quantos buffers o
sinal tera que cruzar até sair da célula. Como as trés primeiras células estdo como “1”,
entdo o delay é maximo.

Figura 14. Circuito interno da célula de atraso

BRILNCC S B S LA

00
E by Modets |\ TEMOO1E_TT.med

Fonte: Propria

47

4.1.5 Resultado

A Figura 15 mostra as oito configuragbes simuladas, tendo a onda de reset e um
grafico indicando qual o niumero da configuragdo em relagao ao tempo para deixar mais

claro qual onda pertence a qual combinacéo de bits.

Figura 15. Forma de onda da saida que sera analisada

Vistn)

I | T I I T T
03s 06is 09 1.2 1.3 1.4 AT
Fonte: Propria

Avaliando o consumo de cada configuragdo, podemos montar a tabela 2. Nela, o /
da segunda coluna ¢é a corrente RMS do circuito e a terceira coluna contém a tensao V de
alimentacdo do circuito. Considerando que essa é a corrente aproximada que atravessa
todo o circuito, conseguimos multiplica-la pela tensdo e obter a poténcia média total /*V de
cada configuragado na quarta coluna.

Ja a quinta coluna contém os dados de Bit Rate de cada configuragéo. Esse valor é
calculado dividindo o nimero de bits finais gerados pelo tempo que a configuragao ficou
ligada (considerando ndo apenas as entradas seletoras das células de atraso, mas também
se a entrada do controle de reset esta ligada, permitindo o funcionamento do circuito).

Na ultima coluna é calculada a energia por bit aleatério, utilizando a seguinte

equacao [3]:

EB = I+V

" Bit Rate

T
2

48

Tabela 2: Poténcia x Configuracéo

Configuragao Bit Rate
42 Célula I (A) V (V) I*V (W) (bit/s) EB (J/bit)

000 4,67E-05 1,80E+00 8,41E-05 4,88E+07 1,72E-12
001 6,27E-05 1,80E+00 1,13E-04 4,88E+07 2,31E-12
010 5,09E-05 1,80E+00 9,17E-05 4,88E+07 1,88E-12
011 4,87E-05 1,80E+00 8,76E-05 4,88E+07 1,79E-12
100 5,26E-05 1,80E+00 9,47E-05 4,88E+07 1,94E-12
101 4,13E-05 1,80E+00 7,43E-05 4,88E+07 1,52E-12
110 5,48E-05 1,80E+00 9,86E-05 4,88E+07 2,02E-12
111 4,45E-05 1,80E+00 8,01E-05 4,88E+07 1,64E-12
Média 5,03E-05 1,80E+00 9,05E-05 4,88E+07 1,85E-12

Fonte: Propria

Onde EB é a Energia gasta pela geragao de bit aleatério (I, V e Bit Rate ja foram
apresentados). Com esses calculos podemos ver que o custo energético fica na casa de pJ,
bem abaixo do préprio circuito resultante que propde esse mesmo tipo de estudo de outro

circuito gerador de numeros aleatérios [3], onde ele fica na casa de nJ.

4.2 Algoritmo Octave NIST

Foram desenvolvidos cinco algoritmos, podendo ser encontrados no apéndice:
e Um para cada um dos trés testes NIST descritos na sec¢ao 3.2.1.
e Um para coleta de dados da simulagao do LTSpice.
e Um para coleta de dados dos arquivos de validacdo do NIST.

Como dito anteriormente, um dos objetivos do projeto era desenvolver um algoritmo
de testes NIST que fosse independente do algoritmo que trata a fonte de dados. Como
visto, conseguimos concluir essa parte, ja que o codigo de avaliagao estatistica € o mesmo
utilizado tanto para os arquivos de validagdo quanto para a simulagado do LTSPice.

Inicialmente a intencdo era desenvolver todos os quinze testes disponiveis na
interface do NIST, mas por limitagdes foi possivel implementar apenas os trés primeiros,

descritos anteriormente.

49

4.2.1 Validacao Testes NIST

No material guia do ambiente de testes estatisticos do NIST [1] & disponibilizado

uma tabela com os Pvalues de ondas disponiveis juntas do programa em C desenvolvido

pelo instituto.

Foi rodado o algoritmo de testes do Octave utilizando o algoritmo de preparo de

dados para testar quatro sequéncias disponibilizadas pelo NIST, sendo elas:

1.
2.

S

Expanséo binaria de = (pi)

Expansao binaria de ¢ (neperiano)

Expanséo binaria de \/5

Expansao binaria de \/5

Os resultados obtidos estdo na figura 16.

Figura 16. Resultado teste de validagao do algoritmo NIST no Octave

Inputs Iniciais Feitos.

teste = 1

Teste Monobit Finalizado.

teste = &

Tempo:

Tempo!

15.190613
Preencher os dados do txt em vetores para manipulao. Tempo: 15.20

95.914124

Teste Frequencia em Bloco Finalizado. Tempo: 97.190331

teste = 3

Teste das Corridas Finalizado.

Pvalue =

-

782
806
1927
.00000
Q0000
00000
.00000
00000
Q0000
. 00000
.00000
00000

s L0
wooom
1R

OO0 0000000000

Resultado =

0000000k KK
OO0 00000 KM

0000000k KK

L I I e Y e s s e O O e Y s |

.895375
21107
.56192
. 00000

Qo000

. 00000
.00000
. Q0000

Qo000

. 00000
.00000
.Q0000

[== = Iy = I = = I = I

00000000000

g1188
83322
31343
. 00000
00000
. 00000
. 00000
. 00000
00000
. 00000
. 00000
. 00000

Tempo: 179.896301

OO0 0000000000

.61005
. 47396
26112
.00000
.00000
.00000
.00000
. 00000
.00000
. 00000
.00000
.00000

Fonte: Propria

Comparando os resultados obtidos com a tabela disponibilizada pelo NIST, temos os

dados da tabela 3. Com isso, podemos concluir que os trés testes implementados

funcionam com os mesmos resultados que o ambiente de testes do NIST.

50

Tabela 3. Comparagéao entre os Pvalues do algoritmo de Octave e a tabela referéncia do

NIST.
Pi Neperiano Neperiano Erro \/2_ Erro
Testes OCTAVE PiNIST ErroPi OCTAVE NIST Neperiano OCTAVE \/Z_NIST \/2_ \/3_OCTAVE
Teste
frequéncia

monobit 0,578211 0,578211 0,00% 0,953749 0,953749 0,00% 0,811881 0,811881 0,00% 0,6100514618

Teste
frequéncia
embloco 0,380615 0,380615 0,00% 0211072 0,211072 0,00% 0,833222 0,833222 0,00% 0,4739612657

Teste das
corridas 0,419268 0,419268 0,00% 0,561917 0,561917 0,00% 0,313427 0,313427 0,00% 0,2611232603

Fonte: Propria

4.2.2 Teste Aleatoriedade ALFSR

\3 NIST

0,610051

0,473961

0,261123

Erro \/5

0,00%

0,00%

0,00%

Rodando os dados da simulagcéo de LTspice no algoritmo validado gera o resultado

da figura 17.

Figura 17. Resultado testes estatisticos das configuragbes entre os bits

111.111.111.000...111.111.111.111 do ALFSR

Inputs Iniciais Feitos. Tempo: 0.020218
Vetor Clock Finalizado. Tempo: 2.385364
Preencher os dados do txXt em vetores para manipulacdo. Tempo: 4.534225

teste = 1

Teste Monokit Finalizado. Tempo: 4.566452

tesce = 2

Teste Frequencia em Bloco Finalizado. Tempo: 4.607254
teste = 3

Teste das Corridas Finalizado. Tempo: 4.628571

Bvalue =

Columns 1 through &:

5.9552e-12 2.92%98e-04 7.1725e-01 7.1725e-01 1.0000e+00 2.04%8e-01
3.2448e-08 B.5756e-03 3.789%0e-01 4.0116e-01 1.6888e-03 1.7364e-02
5.1007e-12 B.5026e-04 3.7108e-01 . 7843e-01 3.6528e-01 9.7121e-01
Columns 7 and 8:
1.0000e+00 2.9791e-02
5.0042e-01 4,6945e-01
3.6528e-01 9.4584e-01
Resultado =

(=]
[=]
[
[
(=]
[
[
[

Fonte: Propria

51

Como é possivel avaliar na matriz “Resultado”, as configuragdes 000 (12 coluna),
001(22 coluna) e 100 (52 coluna) se provaram nao aleatérias por falharem em pelo menos
um dos testes (0 que os faz falhar automaticamente em todos os seguintes).

Entretanto, as demais configuragcbes passaram em todos os testes, indicando que
elas podem ser de fato aleatdrias e que o circuito tem a capacidade de gerar numeros

aleatorios.

4.3 Variacoes de temperatura

Foi feito também uma simulacido final variando a temperatura do circuito para
observar se isso afetaria os testes de aleatoriedade de uma configuracdo. Baseado nos
teste explicados anteriormente, a configuragdo 111 foi simulada novamente com mais tempo
para cinco valores de temperatura: 0°C, 15°C, 30°C, 45°C e 60°C. Parte das formas de onda
resultantes do sistema de coleta estdo na figura 12 - as temperaturas estdo arranjadas de

cima (mais frio, comegando de 0°) para baixo (mais quente, terminando em 60°C).

52

Figura 18. Formas de ondas da simulagéo de temperatura.

W Vimd0 cli
V-

V-

V-

10§V

|-

V-

V-

V-

104V

.

P
|9V

|0V

V-

V-

|-

V-

V-

V-

V-

W == —r— —r— = —_— = — = — —_————— e e — e e e —— e
oo Vi) R
|V

B

IV

6V

|5V

AV

|V

¥l

AV

Wb e — b e e e e i e i e —e
.y Vimdo el
V-

|8+

V-

|6V

V-

V-

ki3]

N

V-

Wy

" V{md0 clk)
V-

|0V

V-

6V

V-

V-

K5

V-

V-

‘ ‘

0858 030 095 1.0 1058 1.0l 1158 1.2 125 1.3y 135 140

Fonte: Propria

A tabela 4 sao apresentados os valores de P e na tabela 5, seus respectivos
resultados de aleatoriedade testando cada uma das temperaturas no mesmo algoritmo de
teste NIST do Octave apresentado anteriormente para o =0.01. Na tabela 5, um resultado
“1” significa que a temperatura passou naquele teste estatistico e que a hipotese de

aleatoriedade foi aprovada, enquanto “0” significa o contrario, que a hipétese foi rejeitada.

53

Tabela 4. Valores P por temperatura.

Teste frequéncia monobit 0,0065 0,1290 0,6580 0,8003 0,6580

Teste frequéncia em
bloco 0,3450 1,0000 0,9998 0,9989 0,0000

Teste das corridas 0,2989 0,0000 0,1305 0,5706 0,5230
Fonte: propria

Tabela 5. Resultados de aleatoriedade por temperatura

Resultado (Alpha=0.01) 0°C 15°C 30°C 45°C 60°C

Teste frequéncia monobit 0 1 1 1 1
Teste frequéncia em bloco 1 1 1 1 0
Teste das corridas 1 0 1 1 1

Fonte: propria

E possivel perceber que as Unicas duas temperaturas que passaram em todos os
testes foram as de 30°C e 45°C, indicando que o circuito talvez ndo funcione tdo bem fora
dessa faixa. S&0 necessarios mais testes com outras configura¢des para entender se isso é
uma caracteristica da configuragao ou do circuito como um todo, além de explorar mais a
faixa entre 15°C e 30°C e entender qual seria a menor temperatura para o qual a
configuragao nao é recusada em nenhum teste.

Concluidas as apresentacbes e analises, vemos que tanto a simulagéo do circuito
quanto o ambiente de testes foram entregues e com resultados satisfatérios para este
trabalho. A simulagdo mostrou indicios de que consegue gerar sequéncias aleatdrias em
mais de uma configuracdo e dentro da faixa de temperatura entre 30° e 45°, que, apesar de
apenas duas temperaturas terem passado em todos os testes, ainda s&o necessarios mais
testes para determinar exatamente quais as temperaturas minimas e maximas de operagao
do circuito para cada configuracdo diferente. Ja o ambiente de testes foi validado e
mostrou-se confiavel para avaliar sequéncias aleatdrias, necessitando agora ser aprimorado

com a ampliagdo dos testes estatisticos que ele engloba.

54

5 Conclusao

Como dito anteriormente, o trabalho atingiu seus objetivos, sendo possivel mostrar
que a ideia de separar os algoritmos de tratamento de dados e de testes estatisticos no
Octave tornou esta analise mais versatil, principalmente considerando que a intencéo € a de
preparar uma biblioteca com esses testes estatisticos e disponibiliza-los como fungdes
proprias de pacotes do Octave. Além disso, obtivemos indicios de que o circuito ALFSR
simulado tem a capacidade de gerar numeros aleatérios em diferentes configuragbes e
temperaturas.

E de interesse também desenvolver um pacote de processamento dos sinais, pois
mesmo que o algoritmo de processamento tenha sido feito pensando nos dados de LTspice,
0 usuario ainda precisa tomar alguns cuidados para que ele funcione sem necessidade de
adaptagbes além dos dados de entrada. O principal problema que néo foi resolvido foi a
incompatibilidade com dados coletados de simulagdes que utilizem o comando .step param,
ja que o LTspice dessa forma inclui uma linha de string no comego de cada corrida diferente.

Outro ponto que é necessario ressaltar: qualquer algoritmo de processamento de
dados precisa declarar algumas variaveis que o algoritmo de NIST vai usar, sendo assim, os
testes estatisticos sdo dependentes de uma forma que nao fica atualmente muito clara no
cédigo - a solucdo de torna-los um pacote de fungdes resolvera o problema, visto que essas
variaveis seriam inputs.

Como trabalhos futuros, propde-se terminar de desenvolver todos os testes NIST, a
fim de concluir a avaliagcdo da topologia de ALFSR, além de continuar testando as
configuragdes restantes em diferentes temperaturas, avaliando para encontrar aquelas que

se mostrarem mais estaveis e com um custo/beneficio energético melhor.

55

56

Referéncias

[1]1 L.T.L Computer Security Division, “NIST SP 800-22, A Statistical Test Suite for Random
and Pseudorandom Number Generators for Cryptographic Applications” [Online]. Disponivel
em https://nvipubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf
[Acessado: 01-jun-2020].

[2] KIRSCHENMANN, P., “Concepts of randomness”, J. Philos. Log., vol. 1, no 3, p.
395-414, ago. 1972

[3] PARK, M., RODGERS, J., LATHROP, D. (2015). True random number generation using
CMOS Boolean chaotic oscillator. Microelectronics Journal. 46. 10.1016/j.mejo.2015.09.015.

[4] ZHANG, R., CAVALCANTE, H., GAO, Z., GAUTHIER, D., SOCOLAR, J., ADAMS, M.,
LATHRORP, D., (2009). Boolean Chaos. Physical review. E, Statistical, nonlinear, and soft
matter physics. 80. 045202. 10.1103/PhysReVE.80.045202.

[5] PARK, M., RODGERS, J., LATHROP, D., (2012). Modeling chaos in on-chip
ultra-wideband chaotic oscillator. IEEE MTT-S International Microwave Symposium digest.
IEEE MTT-S International Microwave Symposium. 1-3. 10.1109/MWSYM.2012.6259678.

[6] ADDABBO, T., FORT, A., MORETTI, R., MUGNAINI, M., VIGNOLI, V.,
GARCIA-BOSQUE, M., "Lightweight True Random Bit Generators in PLDs: Figures of Merit
and Performance Comparison," 2019 IEEE International Symposium on Circuits and
Systems (ISCAS), Sapporo, Japan, 2019, pp. 1-5, doi: 10.1109/ISCAS.2019.8702791.

[71 CARREIRA, L. B. Gerador de numeros aleatérios digital, reconfiguravel, de baixa
laténcia com deteccao e correcao de viés de saida. 2019. 198 f, Dissertacao - Escola de
Engenharia de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, 2019.

[8] CATTANI, M., Deterministic Chaos Theory: Basic Concepts. Rev. Bras. Ensino Fis., Sao
Paulo, v.39,n.1, e1309, 2017 . Disponivel em
<http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172017000100409&Ing=pt
&nrm=iso>. acessos em 23 jun. 2020. Epub 17-Out-2016.
https://doi.org/10.1590/1806-9126-rbef-2016-0185.

[9] YANG, K., BLAAUW, D., SYLVESTER, D., "An All-Digital Edge Racing True Random
Number Generator Robust Against PVT Variations," in IEEE Journal of Solid-State Circuits,
vol. 51, no. 4, pp. 1022-1031, April 2016, doi: 10.1109/JSSC.2016.2519383.

[10] ANTOGNETTI, P., MASSOBRIO, G., 1993. Semiconductor Device Modeling with Spice
(2nd. ed.). McGraw-Hill, Inc., USA.

[11] Rosin, David. (2015). Dynamics of Complex Autonomous Boolean Networks.
10.1007/978-3-319-13578-6.

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf
https://doi.org/10.1590/1806-9126-rbef-2016-0185

57

[12] LTSpice, Versao 17, Analog Devices Inc.,
https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html

[13] EATON, J. W., BATEMAN, D., HAUBERG, S., WEHBRING, R., (2014). GNU Octave
version 5.2.0 manual: a high-level interactive language for numerical computations.
CreateSpace Independent Publishing Platform. ISBN 1441413006, URL
http://www.gnu.org/software/octave/doc/interpreter/

[14] SPICE Differentiation. Disponivel em:
<https://www.analog.com/ru/technical-articles/spice-differentiation.html>. Acesso em
25/06/2020.

[15] ROSIN, D. P., Dynamics of Complex Autonomous Boolean Networks. Springer
International Publishing, 2015. ISBN 3319135775, 9783319135779.

https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html
http://www.gnu.org/software/octave/doc/interpreter/
https://www.analog.com/ru/technical-articles/spice-differentiation.html

58

59

Apéndice A - Codigos de avaliagao de teste estatistico do NIST em formato “.m”

 J oy U W+

clear

clc

close

pkg load control

pkg load statistics

##fid = fopen('data.pi.pi');
##data = textscan(fid, '%f', -1);

###header = textscan(fid, '%s5%5%s%5%5%5%5%s5%5%s%s%s%s%s%s', 1);

##fid = fclose (fid);

t0 = clock();
#Caracteristicas do arguivo
#Coluna de tempo

#tc = 1;

#Coluna Clock

#cc = 2;

#Coluna modo

#bc = 9;

#Coluna Reset

#r = 8;

#Comeco coluna Dados

cd = 1;

#numero colunas de dados
nd = 1;

#bits a disposicao?

b=2;

#Tolerancia testes

a = 0.01;

#constantes

sqrt2 = 1.41421356237309504880;

#matrix dados

n = 1000000;

V(:,4) = load(' .sq1)
V(:,1) = load(' : B
V(:,2) = load(s i
V(:,3) = load(: } i

#Inicio Matrizes

Resultado = zeros(12, (2"b),nd);
Pvalue = zeros (12, (2*b),nd);
bitl = zeros (I “b),nd) ;

(2
bit0 = zeros(l, (2”b),nd);
Sn = zeros(l, (2"b),nd);

et=1;
elapsed time(et) = etime (clock (), t0);
printf(: -

#n = namero de cada corrida
n = 100¢(000;

et++;
elapsed time(et) = etime (clock (), t0);
printf(

",elapsed_time (et))

#Teste Frequencia (Monobit)

p=1;
teste=
while p<=nd
c=1;
while c<=size (V,2)
nv=1;

while nv<=n

Sn(l,c,p)=Sn(l,c,p)+(2*(V(nv,c))-1);

nv++;
end
Sobs(1,c,p)=abs(Sn(l,c,p))/sqrt(n);
Erfc(l,c,p) = Sobs(l,c,p)/sqgrt2;
Pvalue(l,c,p) = erfc(Erfc(l,c,p))’
if (Pvalue(teste,c,p)<a)

,elapsed time (et))

Resultado (teste,c,p) = 0; #N&o Passou

60

75 elseif Pvalue(teste,c,p)>=a;

76 Resultado (teste,c,p) = 1; #Passou
77 else

78 Resultado (teste,c,p) = -1; #Erro
79 endif

80 e+t

81 end

82 pt+;

83 end

85 et++;

86 elapsed time(et) = etime (clock (), t0);
87 printf (" t I : : ',elapsed time(et))
89 #Teste Frequencia em Bloco

90 o=1;

91 p=1;

92 M=128;

93 N=floor (n/M) ;

94 testet++;teste

95 while p<=nd

96 c=1;
97 while c<=size (V,”)
98 if (Resultado(teste-1,c,p)==1)
99 1=1;
100 while 1<=N
101 pi(l,c,p) = sum(V([M*(1-1)+1:M*1],c,p))/M;
102 1++;
103 end
104 X(l,c,p)=4*M*sum (((pi(:,c,p).—-(1/2)).72));
105 Pvalue (teste, c,p)=1-gammainc (X(1,c,p) /2,N/2);
106 if Pvalue (teste,c,p)<a
107 Resultado (teste,c,p) = 0; #Nao Passou
108 elseif Pvalue (teste,c,p)>=a
109 Resultado (teste,c,p) = 1; #Passou
110 else
111 Resultado (teste,c,p) = -1; #Erro
112 endif
113 else
114 endif
115 c++;
116 end
117 pt+ti
118 end
119
120 et++;
121 elapsed time(et) = etime (clock (), tO0);
122 printf ("1 I ",elapsed_time (et))
123
124
125 #Teste das Corridas
126 c=1;
127 teste++; teste
128 p=1;

129 Vn = zeros(l, (2”b),nd) ;
130 while p<=nd

131 e=lz

132 while c<=size(V,2)

133 if (Resultado(teste-1,c,p)==1)

134 1=2;

135 while 1<=n

136 if (v(l,c,p) !=V(1-1,c,p))

137 vn(l,c,p)++;

138 endif

139 1443

140 end

141 pimeno(l,c,p)=sum(V([l:n],c,p))/n;

142 Erfc arg =
abs(Vn(l,c,p)+1-2*n*pimono (1,c,p)* (1-pimono(l,c,p)))/ (2*sqgrt (2*n) *pimono(l,c,p) * (
-pimono(l,c,p)));

143 Pvalue(teste,c,p)=erfc(Erfc_arg);

144 if pPvalue(teste,c,p)<a

145 Resultado (teste,c,p) = 0; #Nao Passou

146 elseif Pvalue(teste,c,p)>=a

147 Resultado (teste,c,p) = ; #Passou

148 else

149 Resultado (teste,c,p) = -1 ;#Erro
150 endif

151 else

152 endif

153 et

154 end

155 pt+t;

156 end

157

158 etity

159 elapsed time(et) = etime (clock (), t0);
160 printf (:
161

162

163 Pvalue

164 Resultado

",elapsed time (et))

W JdJoy U WM

clear

clc

close

pkg load control

fid = fopen()i

data = textscan(fid, ,

fid = fclose (fid);

#Caracteristicas do arquivo
#Coluna de tempo

tc = 15

#Coluna Clock

cc = o7

#Coluna modo

#bc = 9;

#Coluna Reset

r = 8;

#Comeco coluna Dados

cd = 75

#numero colunas de dados
nd = 1;

#horario comeco simulacdo
t0 = clock;

#bits a disposicdo?

b = 3;
#Tolerancia testes
a = 0.01;

#numero de testes a serem rodados
nt = 3;

#matrix dados

f = cell2mat (data) ;

#Vetor tempo

t = £(:,tc);

#Inicio Matrizes

Resultado = zeros(nt, (2"b),nd) ;
Pvalue = zeros(nt, (2"b),nd);

bitl = zeros(l, (2"b),nd);

bit0 = zeros(l, (27b),nd);

Sn = zeros(l, (2*b),nd);

et=1;

elapsed _time(et) = etime (clock (), t0);
printf(

#Vetor Clock - ele serve para puxar apenas
1=2;

clk(:,1) = £(:,cc)*0;
while l<=size(f, 1)
if (£(1,r)==1.8)
if (f£(1-1,cc)!=1 && £(1l,cc)==1)
clk(l,1)=1;
else
clk(l,1)=0;
endif
else
clk(l, 1) = 0;
endif
1++;
end
et++;
elapsed time(et) = etime (clock (), t0);
printf(

#Preencher os dados do txt em vetores para
c=1l7
1=2;
1v=1;
while l<size(f, 1)
if (f(1,r)=
ctt;
lv=1;

=1.8 && £(1+1,r)!=1.8)

Apéndice B - Codigos de avaliagao de circuito ALFSR em formato “.m”

,elapsed_time (et))

os dados que v&o ser utilizados pelo teste

,elapsed_time (et))

manipulacgéo

62

63

else
if (clk(1,1)==1)
p = 1;
while p<=nd
V(lv,c,p) = f(1,cd+p-
pt+;
end
1v++;
else
endif
endif
1++;
end
#n = numero de cada corrida
n = size(V,1);
et++;
elapsed time(et) = etime (clock (),
printf(

,elapsed_time(et))

#Teste Frequencia (Monobit)

t0) ;

p=1;
teste=
while p<=nd
c=1;
while c<=size (V,2)
nv=1;
while nv<=n
Sn(l,c,p)=Sn(l,c,p)+(2*(V(nv,c,p))-1);
nv++;
end
Sobs(1,c,p) = abs(Sn(l,c,p))/sqgrt(n);
Erfc 1(1,c,p) = Sobs(l,c,p)/sqrt(2);
Pvalue(l,c,p) = erfc(Erfc 1(1,c,p));
if (Pvalue (teste,c,p)<a)
Resultado (teste,c,p) = 0; #Nao Passou
elseif Pvalue(teste,c,p)>=a;
Resultado (teste,c,p) = 1; #Passou
else
Resultado (teste,c,p) = -1; #Erro
endif
cHti
end
pt+;
end
et++;
elapsed _time(et) = etime (clock (), t0);
printf(relapsed time(et)
#Teste Frequencia em Bloco
c=1;
p=1;
M=20;
N=floor (n/M) ;
teste++;teste
while p<=nd
c=1;
while c<=size (V,”)
1=1;
while 1<=N
pi(l,c,p) = sum(V([M*(1l-1)+1:M*1],c,p))/M;
1++;
end
X(l,c,p)=4*M*sum (((pi(:,c,p).=(1/2))."2));
Pvalue (teste, ¢, p)=l-gammainc (X(1l,c,p)/2,N/2);

if Pvalue (teste,c,p)<a
Resultado (teste, c, p)

Resultado (teste, c,p)
else

Resultado (teste, c, p)
endif

)i

elseif Pvalue (teste,c,p)>=a

;

#Ndo Passou

i

#Passou

#Erro

ct++;
end
pt+;
end

et++;

elapsed_time (et) = etime (clock (), t0);
printf (relapsed time (et)

#Teste das Corridas

c=1;
teste++;teste
r=L;
Vn = zeros(l, (2°b),nd);
while p<=nd
c=1;
while c<=size(V,”)
1=2;
while 1<=n
if (V(l,c¢,p)!=V(1-1,c,p))
vn(l,c,p)++;
endif
1++;
end
pimono (1,c,p)=sum(V([1l:n],c,p))/n;
Erfc 3(l,c,p) =
abs(vn(l,c,p)+1-2*n*pimono(l,c,p)* (l-pimono(l,c,p)))/ (2*sqgrt (2*n) *pimono(l,c,p) * (
-pimono (l,c,p)));
Pvalue (teste,c,p)=erfc(Erfc 3(l,c,p));
if Pvalue(teste,c,p)<a
Resultado (teste,c,p) = 0; #Ndo Passou
elseif Pvalue(teste,c,p)>=a
Resultado (teste,c,p) = ; #Passou
else
Resultado (teste,c,p) = -1 ;#Erro
endif
ct++;
end
pt+;
end
et++;
elapsed time(et) = etime (clock (), t0);
printf (,elapsed_time (et)
Pvalue

Resultado

A A

64

time

ol W W R N RN PR R R R R RSO\ W LW R DR WRNE R NS

65

Apéndice C - 35 primeiras linhas do arquivo em formato “.txt” gerado pelo LTSpice

00000PE0REE00E00e+0E0

.851428592654594e-013
.178285718538919e-012
. 755428577796378e-012
.348571437061837e-0812
.925714296327297e-012

518857155592756e-812
096000014858214e-012
19200808029716429-012

.638400005943286e-011
.276800011886571e-011
.00800E00E0ARERA:-B11
.172319998811343e-011
.516959996434020e-011

206239991679400e-011
584799982178144e-011

.835151382892185e-811
.B0957496294370%-01@
.250000000000000-010
.27484258370562%-010
.322127511116887e-018

4182975259359483e-010
618637555584436e-010

.8171898008443523e-810
.858822012181207e-010
.244086094464725e-018
.4576525108869126e-010
.6518755608927120e-018

186793187098768e-818
318232576542547e-01@
719362060173625e-010
983781482878791e-010
248200985583958e-018

.5126208328289125e-0180

[

0000000000 000000000000 00000000000@

V(bitl) V(bit2) V(bit3) V(clk_coleta)
. BBBRARe+080
.000A00e+000
. BBPRARC+000
.BB0AAGe+000
. BBPRORe+000
. BBER00e+080
.B0PAARe+000
. 000RABe+000
.BB0AAGe+000
. BBPRORe+000
. BBER00e+080
.B0PAARe+000
. 000RABe+000
.000A00e+000
. BBPRARC+000
.BBPAAGe+000
.BOAAAAe+060
. BBER00e+080
.000A00e+000
. 000RABe+000
.BB0AAGe+000
. BBPRORe+000
. BBER00e+080
.B0PAARe+000
. 000RABe+000
.000A00e+000
. BBPRORe+000
.BBPAAGe+000
.BOAAAAe+060
. BBBRABe+000
.000A00e+000
. 000RABe+000
.BB0AAGe+000
. BBPRORe+000

=

OO OO0 OO TODODTIODTDOITDODDODOD D

.00e00Re+B00
.Beaoene+000
.00ee0Re+000
.000000e+000
.00ee0Re+000
.0eeeeee+B00

000000e+000
000000e+000
000000e+000

.00ee0Re+000
.0eeeeee+B00
.000000e+000
.000000e+000
.Beaoene+000

00ee0Re+000
00000 +B00

.00800Be+000
.0eeeeee+B00
.B6000Re+000
.000000e+000
.000000e+000

00ee0Re+B00
0eeeeee+B00

.000000e+000
.000000e+000
.Beaoene+000
.00ee0Re+000
. 00000 +B00

008000e+000
00e00Re+B00

.B6000Re+000
.000000e+000
.000000e+000
.00ee0Re+000

0000000000 IO IHDNIURIDHE0DE0O000E®

V(rnd@) V(rndd_clk)
a.
.bBERORe+RBE
. BBe0e0e+000
. 00e0e0e+000
. 0000e0e+000
. Bee0e0e+000
. 0B6080e+000
. 008080e+000
. 00e0e0e+000
. 0000e0e+000
. Bee0e0e+000
. 0B6080e+000
. 008080e+000
.bBERORe+RBE
. BBe0e0e+000
. 00e0e0e+000
. 008060e+000
. Bee0e0e+000
.0B8800e+BBE
. 008080e+000
. 00e0e0e+000
. 0000e0e+000
. Bee0e0e+000
. 0B6080e+000
. 008080e+000
.bBERORe+RBE
. 0000e0e+000
. 00e0e0e+000
. 008060e+000
. B0e0e0e+000
.0B8800e+BBE
. 008080e+000
. 00e0e0e+000
. 0000e0e+000

200000e+000

V(rstn) V(xnor_out)

PR RRRRRBRRPRERRBRRREBRONOEREERNREOWNNRERLOR®

000000e+000
681143e-003
362286e-003
484343e-802
872457e-002
34@571e-002
808686e-002
276800e-002
553680e-002
310720e-001
621440e-001
008080e-001
137856e-001
413568e-081
964992e-001
B67840e-001
868121e-001
@76600e-001
600000e+000
000000e+000
000080 +000
000000e+000
000000e+000
0080080e+000
000000e+000
feeeete+000
000000e+000
000000 +000
800000e+000
000000e+000
600000e+000
000000e+000
000080 +000

.000000e+000

5.7942083e-009
.833081e-005
.723538e-005
.671926e-805
.678270e-005
.742561e-8@5
.864800e-005
.844987e-005
.399844e-005
-2.725829e-805
-8.772958e-005
-2.833841e-004
1.955277e-005
6.554342e-004
2.237386e-003
1.941918e-003
9.5178608e-084
-2.673545e-003
-1.503868e-002
-1.992721e-002
-2.743278e-802
-3.877911e-002
.891497e-001
.514595e+800
. 753473 e+000
. 788906e+000
.800288e+000
.808365e+008
.799662e+006
.799882e+000
.799961e+000
.799974e+000
. 799984e+008
.799991e+006

o~ 00 WD WD 0D oY

PR RRPRR PR R R

0000000000 000000000000 000000000000

.60000Be+000
.B0e60Re+000
800000 +000
.600000e+000
. 600000 +000
.B0e0eBe+000
.80008Be+000
.000000e+000
.600000e+000
. 600000 +000
.B0e0eBe+000
.80008Be+000
.000000e+000
.B0e60Re+000
800000 +000
. 000000 +000
.600060e+000
.B0e0eBe+000
.00000Re+000
.000000e+000
.600000e+000
. 600000 +000
.B0e0eBe+000
.80008Be+000
.000000e+000
.B0e60Re+000
. 600000 +000
. 000000 +000
.600060e+000
.60000Be+000
.00000Re+000
.000000e+000
.600000e+000
. 600000 +000

e N e = T T T R R S e B e N e T I W .~

000000e+000
186514e-002

.213829e-002
.319543e-002
.426857e-002
.@53257e-001

26390%e-001
474560e-001
949120e-001

.898240e-001
.179648e+000
.800000e+000
. 800000e+000
. 560000+000

800000e+000
800000e+000

.800800e+000
. 800000 +000
. 360000e+000
. 800000e+000
. 800000e+000

800000e+000
800000e+000

.800000e+000
. 800000e+000
. 560000+000
.800000e+000
. 800000e+000

800000e+000
800000e+000

. 360000e+000
. 800000e+000
. 800000e+000
.800000e+000

881074e-009
403265e-004
366953e-004
189112e-003
4975782-803
762092¢-003
982654e-003
159265¢-003
994932e-003
.40852332-003
-8.876598e-00:
-3.433415¢-00:
-3.219894e-00:
-1.435945¢-00:
660681e-002
966211e-001
224717e-001
299587e-001
078251e+000
107980e+000
164449¢+000
266724e+000
4400252 +000
572770e+000
651812e+000
660187e+000
6365562+000
641687¢+000
738728e+000
766290e+000
789829¢+000
795165e+000
799050e+000
. 801486e+000|

[e e e e I =)

R el e el =l N R S R SRy P RV I .

Apéndice D - Esquematico dos componentes utilizados no projeto.

Figura D-1. Porta AND (and02)

66

67

Figura D-2. Buffer (buf02)

68

Figura D-3. Mux (mux21)

69

Figura D-4. Mux Nao Inversor (mux21_ni)

70

Figura D-5. Porta XNOR (xnor2)

