

UNIVERSIDADE DE SÃO PAULO
ESCOLA DE ENGENHARIA DE SÃO CARLOS

RAPHAEL TIN CARLINI KOHN

Ambiente de Testes Estatísticos Para Geradores de
Números Aleatórios Aplicado em Softwares de Análise

Numérica

São Carlos
2020

RAPHAEL TIN CARLINI KOHN

Ambiente de Testes Estatísticos Para Geradores de Números Aleatórios
Aplicado em Softwares de Análise Numérica

Trabalho de Conclusão de Curso apresentado à
Escola de Engenharia de São Carlos, da
Universidade de São Paulo

Curso de Engenharia Elétrica com Ênfase em
Eletrônica

Orientador: Prof. Dr. Maximiliam Luppe

São Carlos
2020

AUTORIZO A REPRODUÇÃO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalográfica elaborada pela Biblioteca Prof. Dr. Sérgio Rodrigues Fontes da
EESC/USP com os dados inseridos pelo(a) autor(a).

Kohn, Raphael Tin Carlini

 K79a Ambiente de testes estatísticos para geradores de
números aleatórios aplicado em softwares de análise
numérica / Raphael Tin Carlini Kohn; orientador
Maximiliam Luppe. São Carlos, 2020.

Monografia (Graduação em Engenharia Elétrica com

ênfase em Eletrônica) -- Escola de Engenharia de São
Carlos da Universidade de São Paulo, 2020.

1. ambiente de testes estatísticos. 2. gerador de

números aelatórios. 3. testes randômicos. 4. oscilador
em anel. 5. caos determinístico. 6. ltspice. 7. octave.
8. NIST. I. Título.

Eduardo Graziosi Silva - CRB - 8/8907

Powered by TCPDF (www.tcpdf.org)

 1 / 1

http://www.tcpdf.org

A minha namorada Alexia, por toda paciência, apoio e

companheirismo demonstrados durante não apenas

esse projeto, mas nos últimos anos que me trouxeram

até aqui.

A meus pais e minha irmã, que sempre me

incentivaram e acreditaram em mim.

A meus amigos e amigas que me acompanharam na

trajetória da graduação.

Agradecimentos

Agradeço inicialmente Alexia, minha namorada e companheira de longa data, que

esteve presente nos momentos bons, ruins e necessários.

A minha família, que me forneceu o amor, apoio, conforto e paciência.

Ao professor Maximiliam Luppe, que me deu a oportunidade de participar neste

projeto e as condições para terminá-lo mesmo contra todas as adversidades.

Aos amigos que me acompanharam na jornada da graduação até aqui, em especial

Victor Koiti, Gustavo, Carlos, Ítalo, Victor Jácomo, Leon, Valeria, Antônio, Melissa e Rodolfo.

Aos colegas da Calina Marketing Digital, local que amadureci muito nos últimos 3

anos.

“A verdadeira medida de um homem não é sua
inteligência ou quão alto ele sobe neste sistema
esquisito. Não, a verdadeira medida de um
homem é esta: com que rapidez ele consegue
responder às necessidades dos outros e quanto
de si mesmo ele consegue dar.”

Philip K. Dick

Resumo
KOHN, R. T. C. Ambiente de Testes Estatísticos Para Geradores de Números
Aleatórios Aplicado em Softwares de Análise Numérica . 2020. Dissertação – Escola de
Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2020.

Com o aumento da demanda por sistemas de criptografia/proteção de dados, as

pesquisas e projetos de novos geradores de números aleatórios, essenciais para esse tipo
de aplicação, se tornam cada mais mais necessários. Como o objetivo desse tipo de
gerador é criar uma onda com comportamento aleatório, o projeto acaba sendo mais
empírico do que teórico, visto que a modelagem de um gerador necessita de validação de
suas sequências utilizando testes estatísticos. Estes, por sua vez, exigem grandes
quantidades de dados, inviabilizando o desenvolvimento de tal projeto sem um sistema de
coleta de dados robusto. Naturalmente, isso acaba dificultando o avanço da pesquisa na
área, visto que equipamentos de aquisição de dados costumam ser caros e de difícil
acesso. Dessa forma, este trabalho teve dois objetivos: primeiro, desenvolver um ambiente
de testes estatísticos que precise de nenhuma ou pouca adaptação para validar dados
gerados por geradores de números aleatórios de qualquer fonte (testes de bancada,
simulações em SPICE, etc); segundo, simular um circuito de gerador de números aleatórios
do tipo Asynchronous Linear Feedback Shift Register , uma topologia baseada em geradores
do tipo Linear Feedback Shift Register e implementada em tecnologia TSMC 180nm,
validando-o no ambiente de testes estatístico. No fim, conseguimos desenvolver a
simulação do circuito na topologia proposta e três testes estatísticos dentro do ambiente de
testes, o que foi o suficiente para validarmos os dados provenientes da simulação e
obtermos indícios de que a topologia testada consegue gerar sequências aleatórias.
Entretanto, ainda existe espaço para aprofundar tanto a simulação do circuito quanto o
algoritmo, complementando-o com mais testes.

Palavras-chave: Ambiente de testes estatísticos, gerador de números aleatórios, testes
randômicos, oscilador em anel, caos determinístico, ltspice, octave, NIST.

Abstract
KOHN, R. T. C. Statistical test suite for Random Number Generators Applied in
numerical analysis software. 2020. – Escola de Engenharia de São Carlos, Universidade
de São Paulo, São Carlos, 2020.

With the increasing demand for encryption/data protection systems, research and

projects for new random number generators, essential for this type of application, becomes
increasingly needed. As the objective of this type of generator is to create a wave with
random behavior, which means the process is much more empirical than theoretical, given
that modeling the generator requires validating its output with statistical tests. These tests
require large amounts of data, thus, it is not possible to develop such a project without a
robust data collection system. Naturally, this ends up hampering the advancements of
research in the area, since data capture equipment is often expensive and difficult to access.
Thus, this work had two objectives: first, to develop a statistical test suite that can be easy
adapted for any random number generator source (bank tests, simulations in SPICE, etc.);
second, to simulate a random number generator circuit with the Asynchronous Linear
Feedback Shift Register configuration, a topology based on Linear Feedback Shift Register
random generators and implemented in TSMC 180nm technology, using the statistical test
suite of the first objective to validate the circuit. In the end, we managed to develop the
simulation of the proposed topology and three statistical tests in the algorithm, which was
enough to obtain indications that the tested topology can generate random sequences.
However, there is still space to deepen the simulation of the circuit and to complement the
algorithm with more statistical tests.

Keywords: Statistical test suite, random number generator, randomness tests, ring oscillator,
deterministic chaos, ltspice, octave, NIST.

Lista de Ilustrações

Figura 1 - Exemplos de circuitos LFSR
Figura 2 - Máquina de estados resultante
Figura 3 - TERO TRNG
Figura 4 - “Corrida” entre A e B
Figura 5 - Topologia ALFSR
Figura 6 - Exemplo arquivo final gerado pela simulação de LTSpice
Figura 7 - Circuito completo do gerador de números aleatórios
Figura 8 - Inputs e Diretrizes SPICE.
Figura 9 - Seletor de configuração
Figura 10 - Circuito de coleta
Figura 11 - Exemplo coleta dados
Figura 12 - ALFSR
Figura 13 - Circuito interno da célula de atraso
Figura 14 - Formas de ondas dos Bits 1, 2 e 3.
Figura 15 - Forma de onda da saída que será analisada
Figura 16 - Resultado teste de validação do algoritmo NIST no Octave
Figura 17 - Resultado testes estatísticos das configurações entre os bits
111.111.111.000...111.111.111.111 do ALFSR - p.
Figura 18 - Formas de ondas da simulação de temperatura.

Lista de Abreviaturas e siglas

ALFSR Asynchronous Linear Feedback Shift-Register.
CMOS Complementary Metal Oxide Semiconductor
FPGA Field Programmable Gate Array
LFSR Linear Feedback Shift-Register.
PRNG Pseudo Random Number Generator.
RNG Random Number Generator.
SPICE Simulation Program with Integrated Circuits Emphasis.
TRNG True Random Number Generator.
TERO Transient Effect Ring Oscillator
TSMC Taiwan Semiconductor Manufacturing Company

Lista de Tabelas
Tabela 1 - Traduzida da página 13 de I.T.L Computer Security Division, “NIST SP 800-22, A
Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic
Applications” [Online]. Disponível em
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf [Acessado:
01-jun-2020].

Tabela 2 - Potência x Configuração.

Tabela 3 - Comparação entre os valores de P do algoritmo de Octave e a tabela referência
do NIST.

Tabela 4 - Valores P por temperatura.

Tabela 5 - Resultados de aleatoriedade por temperatura.

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf

Sumário

1 Introdução 23
1.1 Motivação 23
1.2 Objetivos 23

2 Revisão Bibliográfica 25
2.1 Conceitos de Aleatoriedade 25
2.2 Imprevisibilidade 25
2.3 Testes de aleatoriedade 26
2.4 Caos Determinístico 27
2.5 Geradores de Números Aleatórios 28

2.5.1 Contextualização 28
2.5.2 Topologias 28

3 Materiais e Métodos 33
3.1 Simulação 33

3.1.1 LTSpice 33
3.1.2 Topologia ALFSR 34

3.2 Ferramentas para Classificação Dados 35
3.2.1 Métodos de Preparação dos Dados 35
3.2.2 Testes NIST 37

Resultados e Discussões 40
4.1 Simulação ALFSR LTSpice 41

4.1.1 Inputs e diretrizes de Spice 41
4.1.2 Seletor de configuração 43
4.1.3 Circuito de coleta 44
4.1.4 ALFSR 45
4.1.5 Resultado 47

4.2 Algoritmo Octave NIST 48
4.2.1 Validação Testes NIST 49
4.2.2 Teste Aleatoriedade ALFSR 50

4.3 Variações de temperatura 51

5 Conclusão 54

Referências 56

Apêndice A - Códigos de avaliação de teste estatístico do NIST em formato “.m” 59

Apêndice B - Códigos de avaliação de circuito ALFSR em formato “.m” 62

Apêndice C - 35 primeiras linhas do arquivo em formato “.txt” gerado pelo LTSpice 64

Apêndice D - Esquemático dos componentes utilizados no projeto. 66

23

1 Introdução

1.1 Motivação

O desenvolvimento e aplicação de geradores de números aleatórios tem crescido

nas últimas décadas, motivado principalmente pela preocupação de se proteger o grande

volume de dados gerados e trocados hoje em dia por equipamentos tecnológicos [1].

Entretanto, o processo de desenvolvimento desses geradores tem um foco maior

nos dados empíricos do que na teoria, muito por conta da natureza dos sinais gerados e de

seu objetivo de torná-los imprevisíveis.

Quem tiver o interesse de desenvolver este tipo de gerador necessitará validar seus

dados antes de poder validar/melhorar sua modelagem, o que pode se mostrar um desafio

visto que os testes de validação exigem um grande número de dados, necessitando de um

sistema de aquisição robusto, o que não é acessível a todos.

Esta dificuldade de validação empírica motivou este trabalho para viabilizar uma

maneira de pesquisadores desenvolverem projetos sobre o tema utilizando softwares

gratuitos, com uma interface amigável e facilmente adaptável para diversas fontes de

dados.

Também surgiu a necessidade de se validar uma nova topologia de geradores de

números aleatórios que será aplicado em um outro trabalho. Desta forma, este projeto irá

desenvolver tanto uma interface de testes estatísticos para números aleatórios quanto uma

simulação de um gerador de números aleatórios, além de avaliar essa simulação utilizando

a interface de testes.

1.2 Objetivos

Com a motivação de facilitar o acesso a testes estatísticos para geradores aleatórios

e validar a topologia que será detalhada mais adiante, foram traçados dois objetivos

principais para o projeto:

1. Criar um programa de fácil utilização que consiga realizar os testes de aleatoriedade

da interface de testes do Institucional Nacional de Padrões e Tecnologias dos EUA

(NIST).

2. Simular um circuito de gerador de números aleatórios e validar seus dados utilizando

o programa do primeiro objetivo.

24

Para explicar o planejamento e execução do projeto para alcançar esses dois

objetivos, dividimos a monografia em outros quatro capítulos: Revisão Bibliográfica, onde

explicaremos a parte teórica do trabalho e introduziremos conceitos importantes para

entender o funcionamento dos produtos finais do projeto; Materiais e Métodos, capítulo no

qual entraremos mais a fundo sobre quais foram as ideias e ferramentas utilizadas para

atingir cada um dos objetivos propostos; Resultados e Discussões, momento em que

apresentaremos os resultados finais tanto o programa do primeiro objetivo quanto a

simulação do circuito do segundo objetivo, além de descrever validações e análises feitas

em cima de ambos; e, por fim, a Conclusão, onde comparamos os resultados obtidos com

os objetivos que estabelecemos aqui na Introdução, além de propor próximos passos para o

projeto.

25

2 Revisão Bibliográfica

Nesta seção apresentamos conceitos sobre sequências de números aleatórios que

serão cruciais para o entendimento dos testes feitos pelo ambiente de testes estatísticos.

2.1 Conceitos de Aleatoriedade

Uma sequência de eventos é chamada aleatória se cada um de seus elementos

independe dos outros (passados ou futuros).

Um ótimo exemplo prático é o lançamento de uma moeda honesta (50% de chance

de cara ou coroa), onde cada lançamento independe de outros e, dado um longo tempo, a

sequência sempre tenderá a ter uma proporção igual de caras e coroas. Entretanto, é

curioso perceber como dependendo do tamanho das amostras até mesmo uma sequência

considerada ideal pode ser confundida como não aleatória: a moeda pode gerar tanto a

sequência 1 = “1001111010” quanto 2 = “1111111111”.

Essa confusão só ocorre quando não diferenciamos uma “geração aleatória” de um

“arranjo aleatório” [2]. Se olharmos apenas para a capacidade de “geração aleatória” do

lançamento da moeda (o gerador que estamos avaliando no caso), estaremos avaliando

apenas a chance individual de cada lançamento, o que faz com que concluamos que as

duas sequências têm a mesma chance de ocorrer. Entretanto, se olharmos para a

capacidade do gerador de criar “arranjos aleatórios”, estaremos olhando para as chances

das sequências ocorrerem, com a sequência 1 (“1001111010”) tendo uma chance de ocorrer

maior por se aproximar mais da distribuição de 50% entre 1s e 0s característica do gerador

avaliado.

Essa percepção é extremamente importante para os testes de aleatoriedade que

nos propomos a implementar, visto que a quantidade de dados das sequências simuladas é

o fator mais limitante em todo o projeto e, ao mesmo tempo, o que garante que os testes

sejam válidos.

2.2 Imprevisibilidade

Outra característica essencial para uma sequência de elementos ser considerada

aleatória é que nenhum evento consiga ser previsto com outros passados. Essa

característica é chamada de “imprevisibilidade futura” [1].

26

Aqui, também é interessante trazer outro exemplo de aparente contradição dos

conceitos com o paradoxo de pi [2]: a sequência do número pi: 314159265358979323846…

não só aparenta ser aleatória como também passa nos testes de aleatoriedade (como

veremos em sua forma binária na seção 5.2). Entretanto, existem fórmulas matemáticas que

conseguem prever o valor número de pi - ou seja, sua sequência pode ser classificada

como aleatória, mas também existem métodos matemáticos que prevêem sua forma.

Isso salienta novamente a importância de considerar o ponto de vista que se está

tendo nas análises: uma conclusão parte da visão computacional, enquanto a outra, da

estatística. Essas “previsões” são, na verdade, aproximações de expansões decimais

obtidas empiricamente e que convergem para pi, onde cada número de casas decimais

diferentes necessita de uma fórmula diferente. Logo, do ponto de vista estatístico, ele não é

previsível, visto que não existe nenhuma fórmula para calcular individualmente cada um de

seus elementos.

2.3 Testes de aleatoriedade

Um teste de aleatoriedade é, no fundo, um teste estatístico que busca validar uma

“hipótese nula” (H0). No caso desta aplicação, tal hipótese trata se a sequência testada é

aleatória. Acompanhada dela, temos a “hipótese alternativa” (Ha), uma hipótese

complementar por assim dizer, que diz que a sequência testada não é aleatória.

Com isso, temos duas possibilidades de resultados no teste: ou H0 é verdadeiro (e a

onda é aleatória) ou Ha é verdadeiro (e a onda não é aleatória) [1]. Entretanto, existe a

possibilidade do teste falhar e chegarmos a um falso negativo ou positivo.

Tabela 1. Tabela verdade sobre os testes.

Resultado Conclusão

Aceitar H0 Rejeitar H0 (Aceitar Ha)

H0 Verdadeiro Sem erro Falso Negativo

Ha Verdadeiro Falso Positivo Sem erro

Fonte: Traduzido da página 13 de [1].

Seja a probabilidade de um Falso Negativo ocorrer, o de um Falso Positivo e n o α β

número de bits na sequência.

27

 é conhecido como o nível de significância do teste por ser um número fixo, α

enquanto é variável, já que uma sequência não aleatória pode se apresentar aleatória de β

diversas maneiras.

A relação entre , e n nos possibilita que, com apenas o valor de dois dos três α β

conseguimos encontrar o terceiro valor. Com isso, fixa-se os valores de n e de tal α

maneira que seja o menor possível, visto que não conseguimos controlá-lo [1]. β

Na prática, isso estabelece uma proporção entre n e e dita o mínimo de dados α

necessários para o teste em questão dado determinado nível de significância. Cada teste

estatístico fornece no fim o valor de P , um número de zero a um que indica quão forte é a

evidência de que a aquela sequência é aleatória (sendo zero não aleatória e um máxima

aleatoriedade) [1].

O valor de P é comparado com o de e, caso seja maior, a hipótese H0 não é α

rejeitada com uma confiabilidade de (e o próximo teste é feito. É este o motivo de)1 − α α

ser chamado de nível de significância, pois ele determina a precisão do processo. Um valor

comum a ser adotado é o de “ , que significa que a valor de confiança para que a .01"α = 0

sequência seja aleatória é de 99% (apenas um a cada cem testes vão resultar em um falso

negativo), deixando os testes precisos o suficiente. Em cada teste chega-se ao valor de P

ao comparar seus resultados à uma distribuição de referência, normalizando o valor entre

zero e um - ou seja, para esse valor comum de , valor de P precisa ser menor que .01α = 0

0.01 para H0 ser rejeitada[1].

As especificidades dos testes implementados no trabalho serão detalhadas na

secção 3.2.1.2.

2.4 Caos Determinístico

Sistemas determinísticos permitem prever qualquer ponto no tempo, dado que se

saiba suas condições iniciais [8]. Entretanto, alguns desses sistemas apresentam uma

grande sensibilidade para variações nos dados iniciais, dando a impressão de que sejam

aleatórios, mesmo que isso seja causado apenas por uma falta de precisão na medição dos

parâmetros. Esses casos são definidos como Sistemas Caóticos Determinísticos e, apesar

de não serem aleatórios, ainda assim são considerados imprevisíveis já que uma pequena

variação nas condições iniciais acarreta em resultados finais ao longo do tempo muito

distintos.

28

2.5 Geradores de Números Aleatórios

Todos os conceitos explicados até agora são aplicados na geração de números

aleatórios: sistemas que, como o nome diz, servem para gerar uma sequência de números

que seja aleatória. Sua demanda vem principalmente de aplicações envolvendo criptografia

e segurança de dados, exigindo nesses casos que os geradores sejam robustos o suficiente

para aguentar tentativas de invasões aos dados que estiverem auxiliando na codificação.

2.5.1 Contextualização

Generalizando, existem dois tipos de geradores: os aleatórios (TRNG - True

Random Number Generator) e os pseudo-aleatórios (PRNG - Pseudo Random Number

Generator). Enquanto os primeiros são obtidos primariamente de fontes de entropia, como

ruído térmico de um transistor ou efeito fotoelétrico, os últimos são compostos de fontes

determinísticas, como algoritmos [3][4][5].

Entretanto, analisando as topologias desenvolvidas nos últimos anos, percebe-se

que nenhum desses dois tipos de geradores atendem às necessidades: os TRNGs por não

serem robustos [3] e os PRNGs por não serem aleatórios o suficiente. A solução foi juntar

os dois tipos em um só: PRNGs que utilizam fontes de entropia como sementes para a

geração de seus números, resultando em sistemas caóticos, imprevisíveis por definição e

robustos o suficiente para ataques e/ou variações de temperatura, tensão, etc.

2.5.2 Topologias

Nesta secção, serão dados exemplos de topologias dos sistemas caóticos descritos

anteriormente. Os exemplos apresentam uma característica em comum: todos se utilizam

do fato de serem implementados com semicondutores (seja dentro de FPGAs - Field

Programmable Gate Array ou diretamente com transistores CMOS - Complementary Metal

Oxide Semiconductor), obtendo sua fonte de entropia do ruído interno de seus

componentes.

Um exemplo de topologia PRNG são os LFSR (Linear Feedback Shift-Register),

circuitos que se baseiam em osciladores em anel compostos por flip-flops para gerar sua

pseudo aleatoriedade. Na figura 1 podemos encontrar duas variações: a variação (a),

chamada de Fibonacci; e a variação (b), chamada Galois [15]. A Característica que

diferencia um do outro é a posição das portas XOR, pois na Fibonacci um das entradas das

portas vem de posições centrais do circuito enquanto na Galois todas as XOR recebe a

29

saída do circuito. Entretanto, o funcionamento de ambos é praticamente o mesmo: a cada

iteração, a saída das XOR são atualizadas, “empurrando” a sequência de bits e atualizando

as próprias entradas das XORs - por exemplo, na variação (a) da figura 1, a próxima

iteração fará com que as posições 1, 11, 13, 14 e 16 fiquem com os valores 0, 1, 0, 0 e 0

respectivamente. No caso, ambas variações tem 16 bits, o que significa que existem

combinações entre as posições de bits possíveis, fazendo com o que o gerador 216 − 1

repita a sequência das combinações eventualmente, algo que pode ser explorado para

invasões. Além disso, quando se implementa LFSRs, costuma-se utilizar flip-flops para

armazenar e propagar os bits de cada posição, o que significa que é necessário um clock

controlando as iterações do circuito.

Figura 1. Exemplos de circuitos LFSR

Fonte: Página 60 de [15].

Em 2009, Zhang propôs um circuito CMOS composto por duas portas lógicas XOR

e uma XNOR, resultando em uma máquina de estados com comportamento descrita na

Figura 2 [4]. Essa configuração apresenta características de um sistema caótico e funciona

assincronamente, não dependendo de um clock e, consequentemente, tornando o circuito

menos suscetível a ataques. Segundo [11], as redes propostas até então ou eram síncronas

ou lentas demais para aplicações, destacando o circuito de Zhang.

30

 Figura 2. Máquina de estados resultante

Fonte: Imagem retirada da pág. 4 de [4].

Outro exemplo de topologia é o criado por Yang [9], onde se utilizou duas linhas de

atraso composta por inversores (diferente dos LFSRs convencionais que utilizam flip-flops),

ligadas por portas NAND, conforme Figura 3. Essas duas linhas formam um oscilador em

anel, sendo controladas por meio de trem de pulsos nas entradas A e B das NANDs. A

diferença de fase entre essas duas entradas determina a saída em Out, onde A “mais

rápido” que B faz com que a saída comece a tender para “1”, enquanto caso B seja “mais

rápido” do que A, a saída tende para “0” (Figura 4). Esse circuito costuma ser conhecido

como TERO - Transient Effect Ring Oscilator.

Figura 3. TERO TRNG

Fonte: Imagem retirada da pág. 2 de [9].

Figura 4. “Corrida” entre A e B

Fonte: Imagem retirada da pág. 2 de [9].

31

Esses foram apenas alguns exemplos de topologias diferentes para geradores de

números aleatórios, existindo diversas outras que não foram exploradas aqui. Entretanto, as

topologias descritas, somadas aos outros conceitos introduzidos no restante do capítulo,

são o suficiente para o entendimento do projeto final, seus métodos e resultados.

Nos próximos capítulos, detalharemos mais sobre como esses tópicos explicados

aqui se encaixam com o projeto, além de explicar o que exatamente foi feito, quais foram os

resultados obtidos e como isso se compara com as expectativas iniciais do projeto.

32

33

3 Materiais e Métodos
O projeto se dividiu em duas partes: a simulação do circuito de gerador de número

aleatório em LTSpice e a criação do algoritmo de checagem de aleatoriedade conforme

padrão NIST.

3.1 Simulação

Para a simulação do circuito, foi necessário definir tanto qual ferramenta seria
utilizada além de quais componentes e topologia comporiam o circuito final.

3.1.1 LTSpice

Foi escolhido simular o circuito em Spice, que traduzindo para o português significa

Programa de Simulação com Ênfase em Circuitos Integrados, utilizando o programa

LTSpice. Ele foi escolhido tanto por ser um software gratuito quanto pela familiaridade pelo

seu uso em disciplinas da graduação.

Esse tipo de programa costuma ter quatro tipos de simulação:

1. Análise DC

2. Análise AC

3. Análise da polarização

4. Análise Transiente

No caso, estamos interessados apenas na análise transiente, visto que queremos

analisar o circuito no domínio do tempo. Nela, o programa basicamente computa qual o

comportamento do circuito assim que ele é ligado (tendo a possibilidade de descrever as

condições de contorno, caso necessário). Para circuitos não-lineares (como o caso deste

projeto), ele utilizar o Método de Newton–Raphson [14] para calcular as iterações de cada

nódulo do sistema.

Um ponto importante na simulação é o passo máximo que ela pode dar (max step) -

essa variável é uma das que mais impacta tanto na precisão da simulação, quanto no

tempo dela. Isso ocorre pois o método LTSpice é otimizado para, caso os dados gerados

em instantes sucessivos tenham pequenas variações, a distância entre os instantes

analisados seja gradativamente incrementada, permitindo que a simulação seja realizada

num menor tempo - entretanto, isso pode acarretar erros grosseiros de computação,

principalmente em circuitos com instabilidades. Por conta disso, configurar um max step

34

condizente com o período dos dados garante que a simulação computará todos os pontos

necessários, mesmo que isso aumente o tempo total.

3.1.2 Topologia ALFSR

A topologia escolhida para o projeto é um LFSR Assíncrono (ALFSR - Asynchronous

Linear Feedback Shift Register), implementado em tecnologia CMOS TSMC 180nm (figura

5). Nela, os flip-flops originais dos LFSR convencionais exemplificados na seção 2.5.2 são

substituídos por “células de atraso” com três bits de seleção (S0, S1 e S2) que permitem

escolher o tempo de atraso - isso é possível pois dentro de cada uma dessas células

existem sete buffers que resultam em oito tempos de atrasos diferentes (sem buffer, um

buffer, dois buffers, …, sete buffers), onde três colunas de MUX controladas pelos bits de

seleção tornam possível essa escolha do tempo de atraso. Os Buffers são compostos por

dois inversores em série - os subcircuitos das células de atraso serão detalhados mais

adiante.

Figura 5. Topologia ALFSR

Fonte: Própria

As células de atraso foram baseadas no trabalho de Yang [09], o circuito do tipo

TERO apresentado na secção 2.5.2. A novidade introduzida pelo ALFSR é a presença de

seletores para escolher por quantas linhas de atraso o sinal passará dentro da célula,

resultando em configurações para o circuito total de quatro células. Isso possibilita o 2 8 − 1

35

desenvolvimento em projetos futuros de um circuito de proteção de ataques que consegue

mudar a configuração escolhida assim que percebe que a saída não é mais aleatória.

3.2 Ferramentas para Classificação Dados

Para verificar quais configurações do circuito são aleatórias, desenvolveu-se um

código na ferramenta Octave para avaliação da aleatoriedade de suas saídas, utilizando o

algoritmo do NIST. A escolha do Octave foi feita pois ele permite preparar os dados para a

simulação de uma forma mais amigável e prática do que o Test Suite do NIST em C, o qual

exige que seus dados entrem diretamente como binários - desta forma, os testes

estatísticos continuam sendo funções independentes do resto do algoritmo como no Test

Suite do NIST, mas com a diferença que o código criado no Octave permite adaptar os

dados recebidos independente da fonte e com inputs e adaptações necessárias feitas do

usuário sejam mínimas.

Para garantir a confiabilidade do algoritmo, foram utilizados os métodos de validação

oferecidos pelo próprio NIST e que serão apresentados mais adiante.

O algoritmo foi desenvolvido em duas partes distintas:

1. Preparação dos dados em formato de texto do LTSpice

2. Testes Estatísticos validados pelo NIST

Dessa forma os testes estatísticos não ficam presos a preparação de dados

específica para LTSpice, permitindo que eles sejam reutilizados independente da fonte que

será testada. O único trabalho, neste caso, seria montar um código que organize os dados

no padrão dos testes.

3.2.1 Métodos de Preparação dos Dados

O objetivo desta parte do código é receber os dados da fonte e prepará-los para o

padrão que os testes foram programados. No caso deste trabalho, foi desenvolvido apenas

um programa para preparação de dados gerados pelo LTSpice, mas o código pode ser

facilmente adaptado em trabalhos futuros para qualquer fonte, como outros simuladores

SPICE ou dados retirados de circuitos em bancada.

Na figura 6 é possível encontrar as primeiras linhas de um arquivo de texto que é

gerado pelo circuito final simulado no LTSpice (no apêndice C existe uma versão mais

completa). Neste caso, foram incluídas oito variáveis do circuito, totalizando nove colunas

visto que a primeira coluna é o tempo de simulação de cada um dos pontos salvos. Vale

destacar que as três colunas essenciais para o programa funcionar são V(clk_coleta),

36

V(rstn) e V(rnd0_clk), que representam o clock do circuito de coleta, o reset de troca de

configuração e a saída final do circuito pós etapa de coleta, respectivamente.

Figura 6. Exemplo arquivo final gerado pela simulação de LTSpice

Fonte: Própria.

A preparação em si conta com as seguintes etapas:

1. Inputs Iniciais

a. Aqui o usuário indica quais as colunas que incluem os dados a serem

avaliados, os dados de clock, os dados de tempo, quantas

configurações do circuito estão inclusas (representada pelo número

de bits a disposição), a tolerância dos testes estatísticos e por fim,

quantos testes serão rodados.

b. O código também prepara parte dos vetores que serão necessários

desde o começo do código.

2. Vetor Clock

a. Nesta parte o código detecta em quais linhas houve subida de borda

do vetor de clock, preenchendo um vetor que será utilizado na

próxima etapa para filtrar quais linhas dos dados serão de fato

utilizados na análise.

b. Esta etapa é fundamental, visto que os dados do LTSpice não tem

uma cadência temporal estabelecida, podendo variar de 0 até o valor

de “max time step” da simulação. Logo, mesmo uma onda que já

tenha passado por um processo de coleta dentro da simulação

precisa passar por este processo para que o algoritmo consiga avaliar

corretamente a onda.

c. O código faz uma checagem para que o vetor de clock não tenha

nenhum valor preenchido durante a troca de configurações (reset

diferente de 1.8V). Desta forma, isso não precisa ser repetido nas

próximas etapas, visto que as únicas linhas válidas serão aquelas nas

quais clock = 1.

3. Preencher Matrizes com os dados a serem avaliados.

a. Aqui, o código preenche matrizes de três dimensões com todos os

dados que serão utilizados dentro dos testes estatísticos.

37

i. Linhas = Dados

ii. Coluna = Configuração

iii. Matriz = Onda/Fonte

b. Essa organização permite que se avalie num mesmo arquivo TXT de

LTSpice múltiplas configurações de múltiplas saídas/pontos do

circuito simulado.

c. OBS: Um ponto de melhora detectado para o código é conseguir

avaliar simulações com “.step param” sem precisar editar previamente

os arquivos. Atualmente ele não consegue ler totalmente os TXTs

gerados nesse tipo de simulação pois o LTSpice inclui uma linha de

texto entre as “runs”.

3.2.2 Testes NIST

Até o momento da entrega do projeto, foram criados os três primeiros testes do

NIST. Como explicado na seção 2.1.1, o erro de Tipo 2 é minimizado São eles:

1. Teste Frequência (Monobit).

O objetivo é avaliar se a proporção entre 1s e 0s é aproximadamente a mesma que

uma sequência binária realmente aleatória: ou seja, metade “1” e metade “0”. No caso, isso

é feito utilizando como referência estatística a distribuição meia normal. Na prática, isso se

traduz em realizar a soma Sn dos n elementos da sequência binária 𝜀=𝜀 1 ,𝜀 2 ,𝜀 3 …𝜀 𝑛 analisada

no teste:

 n −1S = ∑
n

i=1
2* εi

O segundo passo é dividir Sn por e então calcular a erfc (função complementar √n

do erro) do resultado obtido dividido pela raiz de 2. O resultado final é o valor de P e todo

esse processo pode ser compactado na seguinte equação:

)valor de P erfc (= √2n
Sn∣ ∣

38

O valor de P então é comparado com a , sendo a hipótese nula não rejeitada caso

ele seja maior. O algoritmo também armazena em uma matriz de Resultados o valor “1”

caso H0 não tenha sido rejeitada e “0” caso tenha.

O número de bits mínimo recomendado pelo NIST é n= 100.

2. Teste Frequência em Bloco.

O objetivo deste teste é descobrir se a proporção entre 1s e 0s próximo de ½

encontrada no primeiro teste também é válida em repartições menores da onda e não

apenas no total. Um exemplo da necessidade deste teste é a sequência “11110000” que

passaria no primeiro, mas seria recusada no segundo, conforme será explicado adiante. Ele

usa como referência a distribuição Qui-Quadrado ().χ2

Sejam então os n bits da sequência divididos em N blocos de dados com M bits ε

cada. O primeiro passo é computar a proporção de 1s dentro de cada um dos N blocos, πi

seguindo a fórmula:

, onde 1<= i <= N πi = M

∑
M

j=1
ε(i 1) M+j− *

Aqui, i representa qual dos N blocos estamos calculando a proporção. Essa equação

basicamente faz a soma de todos os elementos do bloco N , que resulta no número total de

1s do bloco, e a divide pela quantidade M de bits dentro do bloco. A posição do elemento a

ser calculado é dada por , ou seja, para o primeiro bloco (i =1) a equação (i) " " − 1 * M + j

somará os elementos entre as posições e , para o segundo bloco (i =2), a soma " "ε1 " "εM

será com os elementos entre as posições e e assim por diante - desta " "ε(M+1) " "ε2 M*

forma, a fórmula consegue valer para qualquer bloco N da sequência ,, garantindo que ε

não haverá sobreposição de elementos entre os blocos.

Em seguida calcula-se a função de Qui-Quadrado:

χ2 = 4 * M ∑
N

i=1
(π)i − 2

1 2

E então computa-se o Valor de P (Pvalue) utilizando a função gamma incompleta

(igamc) da seguinte forma:

value gamc(,) P = i 2
N

2
χ2

Caso Pvalue > , a hipótese nula não é rejeitada. α

39

Os valores mínimos recomendados são ; ; 00 N n ≥ 1 ≥ M 0 M ≥ 2 00N < 1

É por isso que a sequência citada anteriormente, “11110000”, não passa neste

segundo teste: se considerarmos N =2 apenas para demonstrarmos este exemplo, teríamos

os blocos de dados “1111” e “0000”. Ambos claramente não tem uma proporção de “1s”

próxima de ½, o que faz a sequência original falhar no teste.

3. Teste das Corridas.

A função deste teste é entender se existe alguma sequência longa demais de algum

dos bits, indicando um comportamento “constante” da onda, sem variação para gerar

imprevisibilidade suficiente para ser considerada aleatória. O resultado é o mesmo para

corridas de 1s ou de 0s, então escolhemos fazer corridas de 1s.

O primeiro passo é calcular a proporção de 1s da sequência inteira, parecido π ε

com o que foi feito no teste anterior:

π = n

∑
n

j=1
εj

O segundo é computar o teste estatístico Vn:

, sendo V n = ∑
n 1−

k=1
r(k) + 1

=0, caso contrário, =1 ⇒ r(k) ε(k) = ε(k+1) r(k)

O Pvalue é calculado então desta forma:

) value rfc(P = e
2 π (1 π)√2n −

V 2nπ (1 π)∣ n− − ∣

Sendo Pvalue> , então a hipótese nula não é rejeitada. α

O valor mínimo recomendado é . 00 n ≥ 1

Ainda existem outros testes nos documentos de referência do NIST, mas este

trabalho tratará apenas desses três que foram apresentados. Independente, o ambiente de

testes foi desenvolvido de tal forma que a adição de novos testes é simples, logo não será

um problema complementar essa parte do projeto no futuro.

Neste capítulo apresentamos as duas principais ferramentas em que desenvolvemos

o projeto, LTSpice e Octave. Ambos os programas são gratuitos e de fácil acesso/utilização,

servindo para a proposta do trabalho de facilitar a validação de geradores de números

aleatórios para outras pesquisas. Além disso, também falamos mais a fundo sobre a

topologia ALFSR do circuito que simulamos, mostrando as novas propostas que ele traz em

relação a topologias existentes.

40

Na próxima parte da monografia, vamos explorar de uma forma mais prática como

ocorreu a implementação da simulação e os resultados obtidos ao analisar os dados obtidos

da simulação dentro do ambiente de testes estatísticos. Também trazemos a validação do

ambiente de testes em si, utilizando valores referência fornecidos pelo NIST.

41

Resultados e Discussões
Nesta seção serão detalhadas tanto a simulação do ALFSR dentro do LTSpice,

quanto o algoritmo criado dentro do Octave para avaliar os resultados da simulação.

4.1 Simulação ALFSR LTSpice

O circuito (Figura 7) da simulação pode ser dividido em três partes principais: o

seletor de configuração; o circuito de coleta e o gerador de números aleatórios ALFSR.

Além disso, existe uma parte na simulação que inclui os Inputs e diretrizes de Spice

utilizados na simulação. Começaremos explicando os inputs primeiramente e depois

descreveremos o comportamento de cada uma das partes principais do circuito.

Figura 7. Circuito completo do gerador de números aleatórios

Fonte: própria

4.1.1 Inputs e diretrizes de Spice

Os parâmetros da simulação foram escolhidos da seguinte forma:

● c = 0,0025 μs - período do clock de coleta de dados.

● n = 8 - número de configurações testadas

42

● d = c*125 - o tempo de onda ativa das ondas do seletor de configuração. Calculado

de tal forma que garanta pelo menos 125 pontos para cada configuração.

● p = d*2 - o período das ondas de seleção;

● c2 = - tempo ativo (duty cicle) de "c" c
2

● r = 0,97*d variável para garantir que o tempo de reset seja apenas 3% de d,

garantindo que o reset ocorre com o mínimo de perda possível

● t = d*n - o tempo que a simulação vai rodar. Garante que toda simulação vai coletar

a mesma quantidade de dados de cada configuração.

● Para configurar as ondas de seleção de bit foram criados os parâmetros p1...p12 e

d1 ... d12 , todos dependentes de p , seguindo a fórmula “ *100* n ”. Na prática, cada 2 n

bit tem a metade da frequência do anterior. Juntos, formam um contador binário de

12 bits.

● O comando “.ic” garante que partes sensíveis do circuito não tenham um valor inicial

que possam alterar a resposta do circuito sem aviso, como as entradas da porta

XNOR e os bits de seleção, já que caso as duas portas da XNOR fiquem “1”, o

circuito todo “trava” em “1” e para de oscilar.

● O comando “.param” foi utilizado para declarar as variáveis, incluindo qualquer

dependência que tenham com outras.

● O comando “save” foi utilizado para acelerar a simulação, salvando apenas os

valores indicados e que serão utilizados.

Todos esses valores foram implementados no código de simulação nas diretrizes do

spice, conforme a figura 8.

Figura 8. Inputs e Diretrizes SPICE.

Fonte: própria

43

4.1.2 Seletor de configuração

Responsável por selecionar qual configuração será utilizada, seu funcionamento é

de um contador binário de doze bits, conforme explicado na seção 5.1.2. Entretanto, para a

simulação tratada aqui, foram variados apenas os três bits da últimas célula de atraso -

todos os outros foram travados em nível “1”, conforme visto na figura 10. Os resultados das

ondas dos bits 1, 2 e 3 podem ser vistos na figura 9.

 Figura 9. Formas de ondas dos Bits 1, 2 e 3.

Fonte: própria

Figura 10. Seletor de configuração

Fonte: própria

44

4.1.3 Circuito de coleta

O circuito de coleta da figura 11 garante que serão coletados dados binários das
saídas do ALFSR, de acordo com o período c configurado na parte de inputs - no caso da
simulação, foi escolhido o valor de 0,0025 μs.

Figura 11. Circuito de coleta

Fonte: própria

A Figura 12 contém um exemplo do funcionamento da coleta. É possível perceber

também no começo da onda que RND0 se mantém como 0 por um tempo: é nesse intervalo

que o reset está “ativo”. Importante notar que, por ser um circuito específico da simulação

para coletar dados binários de saída prontos para o ambiente de testes, foram usados

flip-flops padrões do LTSpice, que trabalham com a tensão de 1V. Por esse motivo a tensão

do clock de coleta, V(clk_coleta), aparece como 1V na figura 11.

45

 Figura 12. Exemplo coleta dados

Fonte: própria

4.1.4 ALFSR

Essa é a parte do circuito que gera os dados aleatórios, sendo composta

basicamente de células de atraso e uma porta XNOR (figura 13). O esquemático dos

componentes utilizados estão no apêndice D - Esquemático dos componentes utilizados no

projeto.

Figura 13. ALFSR

Fonte: própria

As células de atraso foram colocadas em série, utilizando-se as saídas das duas

últimas como entradas para uma porta XNOR , que alimenta o sinal para a primeira célula,

retroalimentando o circuito.

Entretanto, existe a possibilidade das duas entradas da porta XNOR terem nível

lógico “1” ao mesmo tempo, o que faz com que a saída da porta também seja “1” e o circuito

46

“trave” em nível lógico alto, independente da escolha de configuração. Por isso, foi

implementado uma porta AND entre a XNOR e a entrada da primeira célula a fim de resetar

o circuito em toda alteração de configuração. Tal processo é garantido pela entrada “RSTn”

da porta AND representada na Figura 7, cujo período é d segundos (conforme a seção

5.1.2) e duty cycle , 97%. Na Figura 15 é possível conferir a forma de onda na prática.

A saída de cada um dos elementos do ALFSR foi desviada para o circuito de coleta

a fim de analisar seus comportamentos, passando apenas por mais um Buffer para

estabilizar o sinal.

Cada uma das células de atraso (Figura 14) é composta por sete Buffers, que por

sua vez são construídos com dois inversores em série. Três “colunas” de MUXes de duas

entradas e uma saída, controladas pelos Bits de seleção, determinam quantos buffers o

sinal terá que cruzar até sair da célula. Como as três primeiras células estão como “1”,

então o delay é máximo.

Figura 14. Circuito interno da célula de atraso

Fonte: Própria

47

4.1.5 Resultado

A Figura 15 mostra as oito configurações simuladas, tendo a onda de reset e um

gráfico indicando qual o número da configuração em relação ao tempo para deixar mais

claro qual onda pertence a qual combinação de bits.

Figura 15. Forma de onda da saída que será analisada

Fonte: Própria

Avaliando o consumo de cada configuração, podemos montar a tabela 2. Nela, o I

da segunda coluna é a corrente RMS do circuito e a terceira coluna contém a tensão V de

alimentação do circuito. Considerando que essa é a corrente aproximada que atravessa

todo o circuito, conseguimos multiplicá-la pela tensão e obter a potência média total I*V de

cada configuração na quarta coluna.

Já a quinta coluna contém os dados de Bit Rate de cada configuração. Esse valor é

calculado dividindo o número de bits finais gerados pelo tempo que a configuração ficou

ligada (considerando não apenas as entradas seletoras das células de atraso, mas também

se a entrada do controle de reset está ligada, permitindo o funcionamento do circuito).

Na última coluna é calculada a energia por bit aleatório, utilizando a seguinte

equação [3]:

EB = I V*
Bit Rate

48

Tabela 2: Potência x Configuração

Configuração
4ª Célula I (A) V (V) I*V (W)

Bit Rate
(bit/s) EB (J/bit)

000 4,67E-05 1,80E+00 8,41E-05 4,88E+07 1,72E-12

001 6,27E-05 1,80E+00 1,13E-04 4,88E+07 2,31E-12

010 5,09E-05 1,80E+00 9,17E-05 4,88E+07 1,88E-12

011 4,87E-05 1,80E+00 8,76E-05 4,88E+07 1,79E-12

100 5,26E-05 1,80E+00 9,47E-05 4,88E+07 1,94E-12

101 4,13E-05 1,80E+00 7,43E-05 4,88E+07 1,52E-12

110 5,48E-05 1,80E+00 9,86E-05 4,88E+07 2,02E-12

111 4,45E-05 1,80E+00 8,01E-05 4,88E+07 1,64E-12

Média 5,03E-05 1,80E+00 9,05E-05 4,88E+07 1,85E-12
Fonte: Própria

Onde EB é a Energia gasta pela geração de bit aleatório (I , V e Bit Rate já foram

apresentados). Com esses cálculos podemos ver que o custo energético fica na casa de pJ,

bem abaixo do próprio circuito resultante que propõe esse mesmo tipo de estudo de outro

circuito gerador de números aleatórios [3], onde ele fica na casa de nJ.

4.2 Algoritmo Octave NIST

Foram desenvolvidos cinco algoritmos, podendo ser encontrados no apêndice:

● Um para cada um dos três testes NIST descritos na seção 3.2.1.

● Um para coleta de dados da simulação do LTSpice.

● Um para coleta de dados dos arquivos de validação do NIST.

Como dito anteriormente, um dos objetivos do projeto era desenvolver um algoritmo

de testes NIST que fosse independente do algoritmo que trata a fonte de dados. Como

visto, conseguimos concluir essa parte, já que o código de avaliação estatística é o mesmo

utilizado tanto para os arquivos de validação quanto para a simulação do LTSPice.

Inicialmente a intenção era desenvolver todos os quinze testes disponíveis na

interface do NIST, mas por limitações foi possível implementar apenas os três primeiros,

descritos anteriormente.

49

4.2.1 Validação Testes NIST

No material guia do ambiente de testes estatísticos do NIST [1] é disponibilizado

uma tabela com os Pvalues de ondas disponíveis juntas do programa em C desenvolvido

pelo instituto.

Foi rodado o algoritmo de testes do Octave utilizando o algoritmo de preparo de

dados para testar quatro sequências disponibilizadas pelo NIST, sendo elas:

1. Expansão binária de (pi) π

2. Expansão binária de (neperiano) ε

3. Expansão binária de √2

4. Expansão binária de √3

Os resultados obtidos estão na figura 16.

Figura 16. Resultado teste de validação do algoritmo NIST no Octave

Fonte: Própria

Comparando os resultados obtidos com a tabela disponibilizada pelo NIST, temos os

dados da tabela 3. Com isso, podemos concluir que os três testes implementados

funcionam com os mesmos resultados que o ambiente de testes do NIST.

50

 Tabela 3. Comparação entre os Pvalues do algoritmo de Octave e a tabela referência do

NIST.

Testes

Pi

OCTAVE Pi NIST Erro Pi

Neperiano

OCTAVE

Neperiano

NIST

Erro

Neperiano

 √2

OCTAVE NIST √2

Erro

 √2 OCTAVE √3 NIST √3 Erro √3

Teste

frequência

monobit 0,578211 0,578211 0,00% 0,953749 0,953749 0,00% 0,811881 0,811881 0,00% 0,6100514618 0,610051 0,00%

Teste

frequência

em bloco 0,380615 0,380615 0,00% 0,211072 0,211072 0,00% 0,833222 0,833222 0,00% 0,4739612657 0,473961 0,00%

Teste das

corridas 0,419268 0,419268 0,00% 0,561917 0,561917 0,00% 0,313427 0,313427 0,00% 0,2611232603 0,261123 0,00%

Fonte: Própria

4.2.2 Teste Aleatoriedade ALFSR

Rodando os dados da simulação de LTspice no algoritmo validado gera o resultado

da figura 17.

Figura 17. Resultado testes estatísticos das configurações entre os bits

111.111.111.000...111.111.111.111 do ALFSR

Fonte: Própria

51

Como é possível avaliar na matriz “Resultado”, as configurações 000 (1ª coluna),

001(2ª coluna) e 100 (5ª coluna) se provaram não aleatórias por falharem em pelo menos

um dos testes (o que os faz falhar automaticamente em todos os seguintes).

Entretanto, as demais configurações passaram em todos os testes, indicando que

elas podem ser de fato aleatórias e que o circuito tem a capacidade de gerar números

aleatórios.

4.3 Variações de temperatura

Foi feito também uma simulação final variando a temperatura do circuito para

observar se isso afetaria os testes de aleatoriedade de uma configuração. Baseado nos

teste explicados anteriormente, a configuração 111 foi simulada novamente com mais tempo

para cinco valores de temperatura: 0ºC, 15ºC, 30ºC, 45ºC e 60ºC. Parte das formas de onda

resultantes do sistema de coleta estão na figura 12 - as temperaturas estão arranjadas de

cima (mais frio, começando de 0º) para baixo (mais quente, terminando em 60ºC).

52

Figura 18. Formas de ondas da simulação de temperatura.

Fonte: Própria

A tabela 4 são apresentados os valores de P e na tabela 5, seus respectivos

resultados de aleatoriedade testando cada uma das temperaturas no mesmo algoritmo de

teste NIST do Octave apresentado anteriormente para . Na tabela 5, um resultado .01α = 0

“1” significa que a temperatura passou naquele teste estatístico e que a hipótese de

aleatoriedade foi aprovada, enquanto “0” significa o contrário, que a hipótese foi rejeitada.

53

 Tabela 4. Valores P por temperatura.

PValue 0ºC 15ºC 30ºC 45ºC 60ºC

Teste frequência monobit 0,0065 0,1290 0,6580 0,8003 0,6580

Teste frequência em
bloco 0,3450 1,0000 0,9998 0,9989 0,0000

Teste das corridas 0,2989 0,0000 0,1305 0,5706 0,5230

Fonte: própria

 Tabela 5. Resultados de aleatoriedade por temperatura

Resultado (Alpha=0.01) 0ºC 15ºC 30ºC 45ºC 60ºC

Teste frequência monobit 0 1 1 1 1

Teste frequência em bloco 1 1 1 1 0

Teste das corridas 1 0 1 1 1

Fonte: própria

É possível perceber que as únicas duas temperaturas que passaram em todos os

testes foram as de 30ºC e 45ºC, indicando que o circuito talvez não funcione tão bem fora

dessa faixa. São necessários mais testes com outras configurações para entender se isso é

uma característica da configuração ou do circuito como um todo, além de explorar mais a

faixa entre 15ºC e 30ºC e entender qual seria a menor temperatura para o qual a

configuração não é recusada em nenhum teste.

Concluídas as apresentações e análises, vemos que tanto a simulação do circuito

quanto o ambiente de testes foram entregues e com resultados satisfatórios para este

trabalho. A simulação mostrou indícios de que consegue gerar sequências aleatórias em

mais de uma configuração e dentro da faixa de temperatura entre 30º e 45º, que, apesar de

apenas duas temperaturas terem passado em todos os testes, ainda são necessários mais

testes para determinar exatamente quais as temperaturas mínimas e máximas de operação

do circuito para cada configuração diferente. Já o ambiente de testes foi validado e

mostrou-se confiável para avaliar sequências aleatórias, necessitando agora ser aprimorado

com a ampliação dos testes estatísticos que ele engloba.

54

5 Conclusão
Como dito anteriormente, o trabalho atingiu seus objetivos, sendo possível mostrar

que a ideia de separar os algoritmos de tratamento de dados e de testes estatísticos no

Octave tornou esta análise mais versátil, principalmente considerando que a intenção é a de

preparar uma biblioteca com esses testes estatísticos e disponibilizá-los como funções

próprias de pacotes do Octave. Além disso, obtivemos indícios de que o circuito ALFSR

simulado tem a capacidade de gerar números aleatórios em diferentes configurações e

temperaturas.

É de interesse também desenvolver um pacote de processamento dos sinais, pois

mesmo que o algoritmo de processamento tenha sido feito pensando nos dados de LTspice,

o usuário ainda precisa tomar alguns cuidados para que ele funcione sem necessidade de

adaptações além dos dados de entrada. O principal problema que não foi resolvido foi a

incompatibilidade com dados coletados de simulações que utilizem o comando .step param,

já que o LTspice dessa forma inclui uma linha de string no começo de cada corrida diferente.

Outro ponto que é necessário ressaltar: qualquer algoritmo de processamento de

dados precisa declarar algumas variáveis que o algoritmo de NIST vai usar, sendo assim, os

testes estatísticos são dependentes de uma forma que não fica atualmente muito clara no

código - a solução de torná-los um pacote de funções resolverá o problema, visto que essas

variáveis seriam inputs.

Como trabalhos futuros, propõe-se terminar de desenvolver todos os testes NIST, a

fim de concluir a avaliação da topologia de ALFSR, além de continuar testando as

configurações restantes em diferentes temperaturas, avaliando para encontrar aquelas que

se mostrarem mais estáveis e com um custo/benefício energético melhor.

55

56

Referências
[1] I.T.L Computer Security Division, “NIST SP 800-22, A Statistical Test Suite for Random
and Pseudorandom Number Generators for Cryptographic Applications” [Online]. Disponível
em https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf
[Acessado: 01-jun-2020].

[2] KIRSCHENMANN, P., “Concepts of randomness”, J. Philos. Log., vol. 1, no 3, p.
395–414, ago. 1972

[3] PARK, M., RODGERS, J., LATHROP, D. (2015). True random number generation using
CMOS Boolean chaotic oscillator. Microelectronics Journal. 46. 10.1016/j.mejo.2015.09.015.

[4] ZHANG, R., CAVALCANTE, H., GAO, Z., GAUTHIER, D., SOCOLAR, J., ADAMS, M.,
LATHROP, D., (2009). Boolean Chaos. Physical review. E, Statistical, nonlinear, and soft
matter physics. 80. 045202. 10.1103/PhysRevE.80.045202.

[5] PARK, M., RODGERS, J., LATHROP, D., (2012). Modeling chaos in on-chip
ultra-wideband chaotic oscillator. IEEE MTT-S International Microwave Symposium digest.
IEEE MTT-S International Microwave Symposium. 1-3. 10.1109/MWSYM.2012.6259678.

[6] ADDABBO, T., FORT, A., MORETTI, R., MUGNAINI, M., VIGNOLI, V.,
GARCIA-BOSQUE, M., "Lightweight True Random Bit Generators in PLDs: Figures of Merit
and Performance Comparison," 2019 IEEE International Symposium on Circuits and
Systems (ISCAS), Sapporo, Japan, 2019, pp. 1-5, doi: 10.1109/ISCAS.2019.8702791.

[7] CARREIRA, L. B. Gerador de números aleatórios digital, reconfigurável, de baixa
latência com detecção e correção de viés de saída. 2019. 198 f, Dissertação - Escola de
Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2019.

[8] CATTANI, M., Deterministic Chaos Theory: Basic Concepts. Rev. Bras. Ensino Fís., São
Paulo , v. 39, n. 1, e1309, 2017 . Disponível em
<http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172017000100409&lng=pt
&nrm=iso>. acessos em 23 jun. 2020. Epub 17-Out-2016.
https://doi.org/10.1590/1806-9126-rbef-2016-0185 .

[9] YANG, K., BLAAUW, D., SYLVESTER, D., "An All-Digital Edge Racing True Random
Number Generator Robust Against PVT Variations," in IEEE Journal of Solid-State Circuits,
vol. 51, no. 4, pp. 1022-1031, April 2016, doi: 10.1109/JSSC.2016.2519383.

[10] ANTOGNETTI, P., MASSOBRIO, G., 1993. Semiconductor Device Modeling with Spice
(2nd. ed.). McGraw-Hill, Inc., USA.
[11] Rosin, David. (2015). Dynamics of Complex Autonomous Boolean Networks.
10.1007/978-3-319-13578-6.

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf
https://doi.org/10.1590/1806-9126-rbef-2016-0185

57

[12] LTSpice, Versão 17, Analog Devices Inc.,
https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html

[13] EATON, J. W., BATEMAN, D., HAUBERG, S., WEHBRING, R., (2014). GNU Octave
version 5.2.0 manual: a high-level interactive language for numerical computations.
CreateSpace Independent Publishing Platform. ISBN 1441413006, URL
http://www.gnu.org/software/octave/doc/interpreter/

[14] SPICE Differentiation. Disponível em:
< https://www.analog.com/ru/technical-articles/spice-differentiation.html >. Acesso em
25/06/2020.

[15] ROSIN, D. P., Dynamics of Complex Autonomous Boolean Networks. Springer
International Publishing, 2015. ISBN 3319135775, 9783319135779.

https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html
http://www.gnu.org/software/octave/doc/interpreter/
https://www.analog.com/ru/technical-articles/spice-differentiation.html

58

59

Apêndice A - Códigos de avaliação de teste estatístico do NIST em formato “.m”

60

61

62

Apêndice B - Códigos de avaliação de circuito ALFSR em formato “.m”

63

64

65

Apêndice C - 35 primeiras linhas do arquivo em formato “.txt” gerado pelo LTSpice

66

Apêndice D - Esquemático dos componentes utilizados no projeto.

Figura D-1. Porta AND (and02)

67

Figura D-2. Buffer (buf02)

68

Figura D-3. Mux (mux21)

69

Figura D-4. Mux Não Inversor (mux21_ni)

70

Figura D-5. Porta XNOR (xnor2)

