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Resumo  
KOHN,   R.   T.   C.    Ambiente   de   Testes   Estatísticos   Para   Geradores   de   Números  
Aleatórios   Aplicado   em   Softwares   de   Análise   Numérica .   2020.   Dissertação   –   Escola   de  
Engenharia   de   São   Carlos,   Universidade   de   São   Paulo,   São   Carlos,   2020.  

 
Com  o  aumento  da  demanda  por  sistemas  de  criptografia/proteção  de  dados,  as             

pesquisas  e  projetos  de  novos  geradores  de  números  aleatórios,  essenciais  para  esse  tipo              
de  aplicação,  se  tornam  cada  mais  mais  necessários.  Como  o  objetivo  desse  tipo  de               
gerador  é  criar  uma  onda  com  comportamento  aleatório,  o  projeto  acaba  sendo  mais              
empírico  do  que  teórico,  visto  que  a  modelagem  de  um  gerador  necessita  de  validação  de                
suas  sequências  utilizando  testes  estatísticos.  Estes,  por  sua  vez,  exigem  grandes            
quantidades  de  dados,  inviabilizando  o  desenvolvimento  de  tal  projeto  sem  um  sistema  de              
coleta  de  dados  robusto.  Naturalmente,  isso  acaba  dificultando  o  avanço  da  pesquisa  na              
área,  visto  que  equipamentos  de  aquisição  de  dados  costumam  ser  caros  e  de  difícil               
acesso.  Dessa  forma,  este  trabalho  teve  dois  objetivos:  primeiro,  desenvolver  um  ambiente             
de  testes  estatísticos  que  precise  de  nenhuma  ou  pouca  adaptação  para  validar  dados              
gerados  por  geradores  de  números  aleatórios  de  qualquer  fonte  (testes  de  bancada,             
simulações  em  SPICE,  etc);  segundo,  simular  um  circuito  de  gerador  de  números  aleatórios              
do  tipo Asynchronous  Linear  Feedback  Shift  Register ,  uma  topologia  baseada  em  geradores             
do  tipo Linear  Feedback  Shift  Register  e  implementada  em  tecnologia  TSMC  180nm,             
validando-o  no  ambiente  de  testes  estatístico.  No  fim,  conseguimos  desenvolver  a            
simulação  do  circuito  na  topologia  proposta  e  três  testes  estatísticos  dentro  do  ambiente  de               
testes,  o  que  foi  o  suficiente  para  validarmos  os  dados  provenientes  da  simulação  e               
obtermos  indícios  de  que  a  topologia  testada  consegue  gerar  sequências  aleatórias.            
Entretanto,  ainda  existe  espaço  para  aprofundar  tanto  a  simulação  do  circuito  quanto  o              
algoritmo,   complementando-o   com   mais   testes.   

 
Palavras-chave:  Ambiente  de  testes  estatísticos,  gerador  de  números  aleatórios,  testes           
randômicos,   oscilador   em   anel,   caos   determinístico,   ltspice,   octave,   NIST.  
  

 



 

  



 

Abstract  
KOHN,   R.   T.   C.     Statistical   test   suite   for   Random   Number   Generators   Applied   in  
numerical   analysis   software.    2020.   –   Escola   de   Engenharia   de   São   Carlos,   Universidade  
de   São   Paulo,   São   Carlos,   2020.  

 
With  the  increasing  demand  for  encryption/data  protection  systems,  research  and           

projects  for  new  random  number  generators,  essential  for  this  type  of  application,  becomes              
increasingly  needed.  As  the  objective  of  this  type  of  generator  is  to  create  a  wave  with                 
random  behavior,  which  means  the  process  is  much  more  empirical  than  theoretical,  given              
that  modeling  the  generator  requires  validating  its  output  with  statistical  tests.  These  tests              
require  large  amounts  of  data,  thus,  it  is  not  possible  to  develop  such  a  project  without  a                  
robust  data  collection  system.  Naturally,  this  ends  up  hampering  the  advancements  of             
research  in  the  area,  since  data  capture  equipment  is  often  expensive  and  difficult  to  access.                
Thus,  this  work  had  two  objectives:  first,  to  develop  a  statistical  test  suite  that  can  be  easy                  
adapted  for  any  random  number  generator  source  (bank  tests,  simulations  in  SPICE,  etc.);              
second,  to  simulate  a  random  number  generator  circuit  with  the Asynchronous  Linear             
Feedback  Shift  Register  configuration,  a  topology  based  on Linear  Feedback  Shift  Register             
random  generators  and  implemented  in  TSMC  180nm  technology,  using  the  statistical  test             
suite  of  the  first  objective  to  validate  the  circuit.  In  the  end,  we  managed  to  develop  the                  
simulation  of  the  proposed  topology  and  three  statistical  tests  in  the  algorithm,  which  was               
enough  to  obtain  indications  that  the  tested  topology  can  generate  random  sequences.             
However,  there  is  still  space  to  deepen  the  simulation  of  the  circuit  and  to  complement  the                 
algorithm   with   more   statistical   tests.  

 
Keywords:  Statistical  test  suite,  random  number  generator,  randomness  tests,  ring  oscillator,            
deterministic   chaos,   ltspice,   octave,   NIST.  
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1   Introdução  

1.1   Motivação  

O  desenvolvimento  e  aplicação  de  geradores  de  números  aleatórios  tem  crescido            

nas  últimas  décadas,  motivado  principalmente  pela  preocupação  de  se  proteger  o  grande             

volume   de   dados   gerados   e   trocados   hoje   em   dia   por   equipamentos   tecnológicos   [1].  

Entretanto,  o  processo  de  desenvolvimento  desses  geradores  tem  um  foco  maior            

nos  dados  empíricos  do  que  na  teoria,  muito  por  conta  da  natureza  dos  sinais  gerados  e  de                  

seu   objetivo   de   torná-los   imprevisíveis.  

Quem  tiver  o  interesse  de  desenvolver  este  tipo  de  gerador  necessitará  validar  seus              

dados  antes  de  poder  validar/melhorar  sua  modelagem,  o  que  pode  se  mostrar  um  desafio               

visto  que  os  testes  de  validação  exigem  um  grande  número  de  dados,  necessitando  de  um                

sistema   de   aquisição   robusto,   o   que   não   é   acessível   a   todos.  

Esta  dificuldade  de  validação  empírica  motivou  este  trabalho  para  viabilizar  uma            

maneira  de  pesquisadores  desenvolverem  projetos  sobre  o  tema  utilizando  softwares           

gratuitos,  com  uma  interface  amigável  e  facilmente  adaptável  para  diversas  fontes  de             

dados.   

Também  surgiu  a  necessidade  de  se  validar  uma  nova  topologia  de  geradores  de              

números  aleatórios  que  será  aplicado  em  um  outro  trabalho.  Desta  forma,  este  projeto  irá               

desenvolver  tanto  uma  interface  de  testes  estatísticos  para  números  aleatórios  quanto  uma             

simulação  de  um  gerador  de  números  aleatórios,  além  de  avaliar  essa  simulação  utilizando              

a   interface   de   testes.  

1.2   Objetivos  

Com  a  motivação  de  facilitar  o  acesso  a  testes  estatísticos  para  geradores  aleatórios              

e  validar  a  topologia  que  será  detalhada  mais  adiante,  foram  traçados  dois  objetivos              

principais   para   o   projeto:  

1. Criar  um  programa  de  fácil  utilização  que  consiga  realizar  os  testes  de  aleatoriedade              

da  interface  de  testes  do  Institucional  Nacional  de  Padrões  e  Tecnologias  dos  EUA              

(NIST).  

2. Simular  um  circuito  de  gerador  de  números  aleatórios  e  validar  seus  dados  utilizando              

o   programa   do   primeiro   objetivo.  
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Para  explicar  o  planejamento  e  execução  do  projeto  para  alcançar  esses  dois             

objetivos,  dividimos  a  monografia  em  outros  quatro  capítulos:  Revisão  Bibliográfica,  onde            

explicaremos  a  parte  teórica  do  trabalho  e  introduziremos  conceitos  importantes  para            

entender  o  funcionamento  dos  produtos  finais  do  projeto;  Materiais  e  Métodos,  capítulo  no              

qual  entraremos  mais  a  fundo  sobre  quais  foram  as  ideias  e  ferramentas  utilizadas  para               

atingir  cada  um  dos  objetivos  propostos;  Resultados  e  Discussões,  momento  em  que             

apresentaremos  os  resultados  finais  tanto  o  programa  do  primeiro  objetivo  quanto  a             

simulação  do  circuito  do  segundo  objetivo,  além  de  descrever  validações  e  análises  feitas              

em  cima  de  ambos;  e,  por  fim,  a  Conclusão,  onde  comparamos  os  resultados  obtidos  com                

os  objetivos  que  estabelecemos  aqui  na  Introdução,  além  de  propor  próximos  passos  para  o               

projeto.  
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2   Revisão   Bibliográfica  

Nesta  seção  apresentamos  conceitos  sobre  sequências  de  números  aleatórios  que           

serão   cruciais   para   o   entendimento   dos   testes   feitos   pelo   ambiente   de   testes   estatísticos.  

2.1   Conceitos   de   Aleatoriedade  

Uma  sequência  de  eventos  é  chamada  aleatória  se  cada  um  de  seus  elementos              

independe   dos   outros   (passados   ou   futuros).  

Um  ótimo  exemplo  prático  é  o  lançamento  de  uma  moeda  honesta  (50%  de  chance               

de  cara  ou  coroa),  onde  cada  lançamento  independe  de  outros  e,  dado  um  longo  tempo,  a                 

sequência  sempre  tenderá  a  ter  uma  proporção  igual  de  caras  e  coroas.  Entretanto,  é               

curioso  perceber  como  dependendo  do  tamanho  das  amostras  até  mesmo  uma  sequência             

considerada  ideal  pode  ser  confundida  como  não  aleatória:  a  moeda  pode  gerar  tanto  a               

sequência   1   =   “1001111010”   quanto   2   =   “1111111111”.   

Essa  confusão  só  ocorre  quando  não  diferenciamos  uma  “geração  aleatória”  de  um             

“arranjo  aleatório”  [2].  Se  olharmos  apenas  para  a  capacidade  de  “geração  aleatória”  do              

lançamento  da  moeda  (o  gerador  que  estamos  avaliando  no  caso),  estaremos  avaliando             

apenas  a  chance  individual  de  cada  lançamento,  o  que  faz  com  que  concluamos  que  as                

duas  sequências  têm  a  mesma  chance  de  ocorrer.  Entretanto,  se  olharmos  para  a              

capacidade  do  gerador  de  criar  “arranjos  aleatórios”,  estaremos  olhando  para  as  chances             

das  sequências  ocorrerem,  com  a  sequência  1  (“1001111010”)  tendo  uma  chance  de  ocorrer              

maior  por  se  aproximar  mais  da  distribuição  de  50%  entre  1s  e  0s  característica  do  gerador                 

avaliado.  

Essa  percepção  é  extremamente  importante  para  os  testes  de  aleatoriedade  que            

nos  propomos  a  implementar,  visto  que  a  quantidade  de  dados  das  sequências  simuladas  é               

o  fator  mais  limitante  em  todo  o  projeto  e,  ao  mesmo  tempo,  o  que  garante  que  os  testes                   

sejam   válidos.  

2.2   Imprevisibilidade  

Outra  característica  essencial  para  uma  sequência  de  elementos  ser  considerada           

aleatória  é  que  nenhum  evento  consiga  ser  previsto  com  outros  passados.  Essa             

característica   é   chamada   de   “imprevisibilidade   futura”   [1].   
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Aqui,  também  é  interessante  trazer  outro  exemplo  de  aparente  contradição  dos            

conceitos  com  o  paradoxo  de  pi  [2]:  a  sequência  do  número  pi:  314159265358979323846…              

não  só  aparenta  ser  aleatória  como  também  passa  nos  testes  de  aleatoriedade  (como              

veremos  em  sua  forma  binária  na  seção  5.2).  Entretanto,  existem  fórmulas  matemáticas  que              

conseguem  prever  o  valor  número  de  pi  -  ou  seja,  sua  sequência  pode  ser  classificada                

como   aleatória,   mas   também   existem   métodos   matemáticos   que   prevêem   sua   forma.  

Isso  salienta  novamente  a  importância  de  considerar  o  ponto  de  vista  que  se  está               

tendo  nas  análises:  uma  conclusão  parte  da  visão  computacional,  enquanto  a  outra,  da              

estatística.  Essas  “previsões”  são,  na  verdade,  aproximações  de  expansões  decimais           

obtidas  empiricamente  e  que  convergem  para  pi,  onde  cada  número  de  casas  decimais              

diferentes  necessita  de  uma  fórmula  diferente.  Logo,  do  ponto  de  vista  estatístico,  ele  não  é                

previsível,  visto  que  não  existe  nenhuma  fórmula  para  calcular  individualmente  cada  um  de              

seus   elementos.  

2.3   Testes   de   aleatoriedade  

Um  teste  de  aleatoriedade  é,  no  fundo,  um  teste  estatístico  que  busca  validar  uma               

“hipótese  nula”  ( H0 ).  No  caso  desta  aplicação,  tal  hipótese  trata  se  a  sequência  testada  é                

aleatória.  Acompanhada  dela,  temos  a  “hipótese  alternativa”  ( Ha ),  uma  hipótese           

complementar   por   assim   dizer,   que   diz   que   a   sequência   testada   não   é   aleatória.  

Com  isso,  temos  duas  possibilidades  de  resultados  no  teste:  ou H0  é  verdadeiro  (e  a                

onda  é  aleatória)  ou Ha  é  verdadeiro  (e  a  onda  não  é  aleatória)  [1].  Entretanto,  existe  a                  

possibilidade   do   teste   falhar   e   chegarmos   a   um   falso   negativo   ou   positivo.  

 

Tabela   1.   Tabela   verdade   sobre   os   testes.   

Resultado  Conclusão  

Aceitar    H0  Rejeitar    H0    (Aceitar    Ha )  

H0    Verdadeiro  Sem   erro  Falso   Negativo  

Ha    Verdadeiro  Falso   Positivo  Sem   erro  

Fonte:   Traduzido   da   página   13   de    [1].  

 

Seja  a  probabilidade  de  um  Falso  Negativo  ocorrer, o  de  um  Falso  Positivo  e n o  α         β         

número   de   bits   na   sequência.   
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 é  conhecido  como  o  nível  de  significância  do  teste  por  ser  um  número  fixo, α                

enquanto  é  variável,  já  que  uma  sequência  não  aleatória  pode  se  apresentar  aleatória  de  β               

diversas   maneiras.   

A  relação  entre , e n  nos  possibilita  que,  com  apenas  o  valor  de  dois  dos  três    α β              

conseguimos  encontrar  o  terceiro  valor.  Com  isso,  fixa-se  os  valores  de n  e  de  tal              α    

maneira   que     seja   o   menor   possível,   visto   que   não   conseguimos   controlá-lo   [1]. β  

Na   prática,   isso   estabelece   uma   proporção   entre    n    e     e   dita   o   mínimo   de   dados α  

necessários  para  o  teste  em  questão  dado  determinado  nível  de  significância.  Cada  teste              

estatístico  fornece  no  fim  o valor  de  P ,  um  número  de  zero  a  um  que  indica  quão  forte  é  a                     

evidência  de  que  a  aquela  sequência  é  aleatória  (sendo  zero  não  aleatória  e  um  máxima                

aleatoriedade)   [1].  

O valor  de  P  é  comparado  com  o  de  e,  caso  seja  maior,  a  hipótese H0  não  é          α           

rejeitada  com  uma  confiabilidade  de  (  e  o  próximo  teste  é  feito.  É  este  o  motivo  de      )1 − α             α

ser  chamado  de  nível  de  significância,  pois  ele  determina  a  precisão  do  processo.  Um  valor                

comum  a  ser  adotado  é  o  de  “ ,  que  significa  que  a  valor  de  confiança  para  que  a        .01"α = 0            

sequência  seja  aleatória  é  de  99%  (apenas  um  a  cada  cem  testes  vão  resultar  em  um  falso                  

negativo),  deixando  os  testes  precisos  o  suficiente.  Em  cada  teste  chega-se  ao valor  de  P                

ao  comparar  seus  resultados  à  uma  distribuição  de  referência,  normalizando  o  valor  entre              

zero  e  um  -  ou  seja,  para  esse  valor  comum  de , valor  de  P  precisa  ser  menor  que            .01α = 0         

0.01   para    H0    ser   rejeitada[1].  

As  especificidades  dos  testes  implementados  no  trabalho  serão  detalhadas  na           

secção   3.2.1.2.  

2.4   Caos   Determinístico  

Sistemas  determinísticos  permitem  prever  qualquer  ponto  no  tempo,  dado  que  se            

saiba  suas  condições  iniciais  [8].  Entretanto,  alguns  desses  sistemas  apresentam  uma            

grande  sensibilidade  para  variações  nos  dados  iniciais,  dando  a  impressão  de  que  sejam              

aleatórios,  mesmo  que  isso  seja  causado  apenas  por  uma  falta  de  precisão  na  medição  dos                

parâmetros.  Esses  casos  são  definidos  como  Sistemas  Caóticos  Determinísticos  e,  apesar            

de  não  serem  aleatórios,  ainda  assim  são  considerados  imprevisíveis  já  que  uma  pequena              

variação  nas  condições  iniciais  acarreta  em  resultados  finais  ao  longo  do  tempo  muito              

distintos.  



28  

2.5   Geradores   de   Números   Aleatórios  

Todos  os  conceitos  explicados  até  agora  são  aplicados  na  geração  de  números             

aleatórios:  sistemas  que,  como  o  nome  diz,  servem  para  gerar  uma  sequência  de  números               

que  seja  aleatória.  Sua  demanda  vem  principalmente  de  aplicações  envolvendo  criptografia            

e  segurança  de  dados,  exigindo  nesses  casos  que  os  geradores  sejam  robustos  o  suficiente               

para   aguentar   tentativas   de   invasões   aos   dados   que   estiverem   auxiliando   na   codificação.  

2.5.1   Contextualização  

Generalizando,  existem  dois  tipos  de  geradores:  os  aleatórios  (TRNG  - True            

Random  Number  Generator )  e  os  pseudo-aleatórios  (PRNG  - Pseudo  Random  Number            

Generator ).  Enquanto  os  primeiros  são  obtidos  primariamente  de  fontes  de  entropia,  como             

ruído  térmico  de  um  transistor  ou  efeito  fotoelétrico,  os  últimos  são  compostos  de  fontes               

determinísticas,   como   algoritmos   [3][4][5].   

Entretanto,  analisando  as  topologias  desenvolvidas  nos  últimos  anos,  percebe-se          

que  nenhum  desses  dois  tipos  de  geradores  atendem  às  necessidades:  os  TRNGs  por  não               

serem  robustos  [3]  e  os  PRNGs  por  não  serem  aleatórios  o  suficiente.  A  solução  foi  juntar                 

os  dois  tipos  em  um  só:  PRNGs  que  utilizam  fontes  de  entropia  como  sementes  para  a                 

geração  de  seus  números,  resultando  em  sistemas  caóticos,  imprevisíveis  por  definição  e             

robustos   o   suficiente   para   ataques   e/ou   variações   de   temperatura,   tensão,   etc.  

2.5.2   Topologias  

Nesta  secção,  serão  dados  exemplos  de  topologias  dos  sistemas  caóticos  descritos            

anteriormente.  Os  exemplos  apresentam  uma  característica  em  comum:  todos  se  utilizam            

do  fato  de  serem  implementados  com  semicondutores  (seja  dentro  de  FPGAs  - Field              

Programmable  Gate  Array  ou  diretamente  com  transistores  CMOS  - Complementary  Metal            

Oxide  Semiconductor ),  obtendo  sua  fonte  de  entropia  do  ruído  interno  de  seus             

componentes.  

Um  exemplo  de  topologia  PRNG  são  os  LFSR  ( Linear  Feedback  Shift-Register ),            

circuitos  que  se  baseiam  em  osciladores  em  anel  compostos  por  flip-flops  para  gerar  sua               

pseudo  aleatoriedade.  Na  figura  1  podemos  encontrar  duas  variações:  a  variação  (a),             

chamada  de  Fibonacci;  e  a  variação  (b),  chamada  Galois  [15].  A  Característica  que              

diferencia  um  do  outro  é  a  posição  das  portas  XOR,  pois  na  Fibonacci  um  das  entradas  das                  

portas  vem  de  posições  centrais  do  circuito  enquanto  na  Galois  todas  as  XOR  recebe  a                
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saída  do  circuito.  Entretanto,  o  funcionamento  de  ambos  é  praticamente  o  mesmo:  a  cada               

iteração,  a  saída  das  XOR  são  atualizadas,  “empurrando”  a  sequência  de  bits  e  atualizando               

as  próprias  entradas  das  XORs  -  por  exemplo,  na  variação  (a)  da  figura  1,  a  próxima                 

iteração  fará  com  que  as  posições  1,  11,  13,  14  e  16  fiquem  com  os  valores  0,  1,  0,  0  e  0                       

respectivamente.  No  caso,  ambas  variações  tem  16  bits,  o  que  significa  que  existem              

combinações  entre  as  posições  de  bits  possíveis,  fazendo  com  o  que  o  gerador  216 − 1              

repita  a  sequência  das  combinações  eventualmente,  algo  que  pode  ser  explorado  para             

invasões.  Além  disso,  quando  se  implementa  LFSRs,  costuma-se  utilizar  flip-flops  para            

armazenar  e  propagar  os  bits  de  cada  posição,  o  que  significa  que  é  necessário  um  clock                 

controlando   as   iterações   do   circuito.  

 

 

Figura   1.   Exemplos   de   circuitos   LFSR  

Fonte:   Página   60   de    [15].  

 

Em  2009,  Zhang  propôs  um  circuito  CMOS  composto  por  duas  portas  lógicas  XOR              

e  uma  XNOR,  resultando  em  uma  máquina  de  estados  com  comportamento  descrita  na              

Figura  2  [4].  Essa  configuração  apresenta  características  de  um  sistema  caótico  e  funciona              

assincronamente,  não  dependendo  de  um  clock  e,  consequentemente,  tornando  o  circuito            

menos  suscetível  a  ataques.  Segundo  [11],  as  redes  propostas  até  então  ou  eram  síncronas               

ou   lentas   demais   para   aplicações,   destacando   o   circuito   de   Zhang.  
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                                         Figura   2.   Máquina   de   estados   resultante  

                                   
Fonte:   Imagem   retirada   da   pág.   4   de   [4].  

 

Outro  exemplo  de  topologia  é  o  criado  por  Yang  [9],  onde  se  utilizou  duas  linhas  de                 

atraso  composta  por  inversores  (diferente  dos  LFSRs  convencionais  que  utilizam  flip-flops),            

ligadas  por  portas  NAND,  conforme  Figura  3.  Essas  duas  linhas  formam  um  oscilador  em               

anel,  sendo  controladas  por  meio  de  trem  de  pulsos  nas  entradas  A  e  B  das  NANDs.  A                  

diferença  de  fase  entre  essas  duas  entradas  determina  a  saída  em  Out,  onde  A  “mais                

rápido”  que  B  faz  com  que  a  saída  comece  a  tender  para  “1”,  enquanto  caso  B  seja  “mais                   

rápido”  do  que  A,  a  saída  tende  para  “0”  (Figura  4).  Esse  circuito  costuma  ser  conhecido                 

como   TERO   -    Transient   Effect   Ring   Oscilator.  

  

Figura   3.   TERO   TRNG  
 

 

 

 

 

 

Fonte:   Imagem   retirada   da   pág.   2   de   [9].  

 

Figura   4.   “Corrida”   entre   A   e   B  
 

 

 

 

 

 

Fonte:   Imagem   retirada   da   pág.   2   de   [9].  
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Esses  foram  apenas  alguns  exemplos  de  topologias  diferentes  para  geradores  de            

números  aleatórios,  existindo  diversas  outras  que  não  foram  exploradas  aqui.  Entretanto,  as             

topologias  descritas,  somadas  aos  outros  conceitos  introduzidos  no  restante  do  capítulo,            

são   o   suficiente   para   o   entendimento   do   projeto   final,   seus   métodos   e   resultados.   

Nos  próximos  capítulos,  detalharemos  mais  sobre  como  esses  tópicos  explicados           

aqui  se  encaixam  com  o  projeto,  além  de  explicar  o  que  exatamente  foi  feito,  quais  foram  os                  

resultados   obtidos   e   como   isso   se   compara   com   as   expectativas   iniciais   do   projeto.  
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3   Materiais   e   Métodos  
O  projeto  se  dividiu  em  duas  partes:  a  simulação  do  circuito  de  gerador  de  número                

aleatório  em  LTSpice  e  a  criação  do  algoritmo  de  checagem  de  aleatoriedade  conforme              

padrão   NIST.  

3.1   Simulação  

Para   a   simulação   do   circuito,   foi   necessário   definir   tanto   qual   ferramenta   seria  
utilizada   além   de   quais   componentes   e   topologia   comporiam   o   circuito   final.  

3.1.1   LTSpice  

Foi  escolhido  simular  o  circuito  em  Spice,  que  traduzindo  para  o  português  significa              

Programa  de  Simulação  com  Ênfase  em  Circuitos  Integrados, utilizando  o  programa            

LTSpice.  Ele  foi  escolhido  tanto  por  ser  um  software  gratuito  quanto  pela  familiaridade  pelo               

seu   uso   em   disciplinas   da   graduação.  

Esse   tipo   de   programa   costuma   ter   quatro   tipos   de   simulação:  

1. Análise   DC  

2. Análise   AC  

3. Análise   da   polarização  

4. Análise   Transiente  

No  caso,  estamos  interessados  apenas  na  análise  transiente,  visto  que  queremos            

analisar  o  circuito  no  domínio  do  tempo.  Nela,  o  programa  basicamente  computa  qual  o               

comportamento  do  circuito  assim  que  ele  é  ligado  (tendo  a  possibilidade  de  descrever  as               

condições  de  contorno,  caso  necessário).  Para  circuitos  não-lineares  (como  o  caso  deste             

projeto),  ele  utilizar  o  Método  de  Newton–Raphson  [14]  para  calcular  as  iterações  de  cada               

nódulo   do   sistema.  

Um  ponto  importante  na  simulação  é  o  passo  máximo  que  ela  pode  dar  (max  step)  -                 

essa  variável  é  uma  das  que  mais  impacta  tanto  na  precisão  da  simulação,  quanto  no                

tempo  dela.  Isso  ocorre  pois  o  método  LTSpice  é  otimizado  para,  caso  os  dados  gerados                

em  instantes  sucessivos  tenham  pequenas  variações,  a  distância  entre  os  instantes            

analisados  seja  gradativamente  incrementada,  permitindo  que  a  simulação  seja  realizada           

num  menor  tempo  -  entretanto,  isso  pode  acarretar  erros  grosseiros  de  computação,             

principalmente  em  circuitos  com  instabilidades.  Por  conta  disso,  configurar  um  max  step             
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condizente  com  o  período  dos  dados  garante  que  a  simulação  computará  todos  os  pontos               

necessários,   mesmo   que   isso   aumente   o   tempo   total.  

3.1.2   Topologia   ALFSR  

A  topologia  escolhida  para  o  projeto  é  um  LFSR  Assíncrono  (ALFSR  - Asynchronous              

Linear  Feedback  Shift  Register ),  implementado  em  tecnologia  CMOS  TSMC  180nm  (figura            

5).  Nela,  os  flip-flops  originais  dos  LFSR  convencionais  exemplificados  na  seção  2.5.2  são              

substituídos  por  “células  de  atraso”  com  três  bits  de  seleção  (S0,  S1  e  S2)  que  permitem                 

escolher  o  tempo  de  atraso  -  isso  é  possível  pois  dentro  de  cada  uma  dessas  células                 

existem  sete  buffers  que  resultam  em  oito  tempos  de  atrasos  diferentes  (sem  buffer,  um               

buffer,  dois  buffers,  …,  sete  buffers),  onde  três  colunas  de  MUX  controladas  pelos  bits  de                

seleção  tornam  possível  essa  escolha  do  tempo  de  atraso.  Os  Buffers  são  compostos  por               

dois  inversores  em  série  -  os  subcircuitos  das  células  de  atraso  serão  detalhados  mais               

adiante.  

 

Figura   5.   Topologia   ALFSR  

Fonte:   Própria  

 

As  células  de  atraso  foram  baseadas  no  trabalho  de  Yang  [09],  o  circuito  do  tipo                

TERO  apresentado  na  secção  2.5.2.  A  novidade  introduzida  pelo  ALFSR  é  a  presença  de               

seletores  para  escolher  por  quantas  linhas  de  atraso  o  sinal  passará  dentro  da  célula,               

resultando  em  configurações  para  o  circuito  total  de  quatro  células.  Isso  possibilita  o    2 8 − 1             
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desenvolvimento  em  projetos  futuros  de  um  circuito  de  proteção  de  ataques  que  consegue              

mudar   a   configuração   escolhida   assim   que   percebe   que   a   saída   não   é   mais   aleatória.  

3.2   Ferramentas   para   Classificação   Dados  

Para  verificar  quais  configurações  do  circuito  são  aleatórias,  desenvolveu-se  um           

código  na  ferramenta  Octave  para  avaliação  da  aleatoriedade  de  suas  saídas,  utilizando  o              

algoritmo  do  NIST.  A  escolha  do  Octave  foi  feita  pois  ele  permite  preparar  os  dados  para  a                  

simulação  de  uma  forma  mais  amigável  e  prática  do  que  o  Test  Suite  do  NIST  em  C,  o  qual                    

exige  que  seus  dados  entrem  diretamente  como  binários  -  desta  forma,  os  testes              

estatísticos  continuam  sendo  funções  independentes  do  resto  do  algoritmo  como  no  Test             

Suite  do  NIST,  mas  com  a  diferença  que  o  código  criado  no  Octave  permite  adaptar  os                 

dados  recebidos  independente  da  fonte  e  com  inputs  e  adaptações  necessárias  feitas  do              

usuário   sejam   mínimas.  

Para  garantir  a  confiabilidade  do  algoritmo,  foram  utilizados  os  métodos  de  validação             

oferecidos   pelo   próprio   NIST   e   que   serão   apresentados   mais   adiante.  

O   algoritmo   foi   desenvolvido   em   duas   partes   distintas:   

1. Preparação   dos   dados   em   formato   de   texto   do   LTSpice  

2. Testes   Estatísticos   validados   pelo   NIST  

Dessa  forma  os  testes  estatísticos  não  ficam  presos  a  preparação  de  dados             

específica  para  LTSpice,  permitindo  que  eles  sejam  reutilizados  independente  da  fonte  que             

será  testada.  O  único  trabalho,  neste  caso,  seria  montar  um  código  que  organize  os  dados                

no   padrão   dos   testes.  

3.2.1   Métodos   de   Preparação   dos   Dados  

O  objetivo  desta  parte  do  código  é  receber  os  dados  da  fonte  e  prepará-los  para  o                 

padrão  que  os  testes  foram  programados.  No  caso  deste  trabalho,  foi  desenvolvido  apenas              

um  programa  para  preparação  de  dados  gerados  pelo  LTSpice,  mas  o  código  pode  ser               

facilmente  adaptado  em  trabalhos  futuros  para  qualquer  fonte,  como  outros  simuladores            

SPICE   ou   dados   retirados   de   circuitos   em   bancada.  

Na  figura  6  é  possível  encontrar  as  primeiras  linhas  de  um  arquivo  de  texto  que  é                 

gerado  pelo  circuito  final  simulado  no  LTSpice  (no  apêndice  C  existe  uma  versão  mais               

completa).  Neste  caso,  foram  incluídas  oito  variáveis  do  circuito,  totalizando  nove  colunas             

visto  que  a  primeira  coluna  é  o  tempo  de  simulação  de  cada  um  dos  pontos  salvos.  Vale                  

destacar  que  as  três  colunas  essenciais  para  o  programa  funcionar  são  V(clk_coleta),             
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V(rstn)  e  V(rnd0_clk),  que  representam  o  clock  do  circuito  de  coleta,  o  reset  de  troca  de                 

configuração   e   a   saída   final   do   circuito   pós   etapa   de   coleta,   respectivamente.   

 

Figura   6.   Exemplo   arquivo   final   gerado   pela   simulação   de   LTSpice  

Fonte:   Própria.  

A   preparação   em   si   conta   com   as   seguintes   etapas:  

1. Inputs   Iniciais  

a. Aqui  o  usuário  indica  quais  as  colunas  que  incluem  os  dados  a  serem              

avaliados,  os  dados  de  clock,  os  dados  de  tempo,  quantas           

configurações  do  circuito  estão  inclusas  (representada  pelo  número         

de  bits  a  disposição),  a  tolerância  dos  testes  estatísticos  e  por  fim,             

quantos   testes   serão   rodados.  

b. O  código  também  prepara  parte  dos  vetores  que  serão  necessários           

desde   o   começo   do   código.  

2. Vetor   Clock  

a. Nesta  parte  o  código  detecta  em  quais  linhas  houve  subida  de  borda             

do  vetor  de  clock,  preenchendo  um  vetor  que  será  utilizado  na            

próxima  etapa  para  filtrar  quais  linhas  dos  dados  serão  de  fato            

utilizados   na   análise.  

b. Esta  etapa  é  fundamental,  visto  que  os  dados  do  LTSpice  não  tem             

uma  cadência  temporal  estabelecida,  podendo  variar  de  0  até  o  valor            

de  “max  time  step”  da  simulação.  Logo,  mesmo  uma  onda  que  já             

tenha  passado  por  um  processo  de  coleta  dentro  da  simulação           

precisa  passar  por  este  processo  para  que  o  algoritmo  consiga  avaliar            

corretamente   a   onda.  

c. O  código  faz  uma  checagem  para  que  o  vetor  de  clock  não  tenha              

nenhum  valor  preenchido  durante  a  troca  de  configurações  (reset          

diferente  de  1.8V).  Desta  forma,  isso  não  precisa  ser  repetido  nas            

próximas  etapas,  visto  que  as  únicas  linhas  válidas  serão  aquelas  nas            

quais   clock   =   1.  

3. Preencher   Matrizes   com   os   dados   a   serem   avaliados.  

a. Aqui,  o  código  preenche  matrizes  de  três  dimensões  com  todos  os            

dados   que   serão   utilizados   dentro   dos   testes   estatísticos.  
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i. Linhas   =   Dados  

ii. Coluna   =   Configuração  

iii. Matriz   =   Onda/Fonte  

b. Essa  organização  permite  que  se  avalie  num  mesmo  arquivo  TXT  de            

LTSpice  múltiplas  configurações  de  múltiplas  saídas/pontos  do        

circuito   simulado.   

c. OBS:  Um  ponto  de  melhora  detectado  para  o  código  é  conseguir            

avaliar  simulações  com  “.step  param”  sem  precisar  editar  previamente          

os  arquivos.  Atualmente  ele  não  consegue  ler  totalmente  os  TXTs           

gerados  nesse  tipo  de  simulação  pois  o  LTSpice  inclui  uma  linha  de             

texto   entre   as   “runs”.  

 

3.2.2   Testes   NIST  

Até  o  momento  da  entrega  do  projeto,  foram  criados  os  três  primeiros  testes  do               

NIST.   Como   explicado   na   seção   2.1.1,   o   erro   de   Tipo   2   é   minimizado    São   eles:  

 

1. Teste   Frequência   (Monobit).  

O  objetivo  é  avaliar  se  a  proporção  entre  1s  e  0s  é  aproximadamente  a  mesma  que                 

uma  sequência  binária  realmente  aleatória:  ou  seja,  metade  “1”  e  metade  “0”.  No  caso,  isso                

é  feito  utilizando  como  referência  estatística  a  distribuição  meia  normal.  Na  prática,  isso  se               

traduz  em  realizar  a  soma Sn  dos n  elementos  da  sequência  binária  𝜀=𝜀 1 ,𝜀 2 ,𝜀 3 …𝜀 𝑛  analisada               

no   teste:  

  n −1S = ∑
n

i=1
2* εi  

 
O  segundo  passo  é  dividir Sn  por  e  então  calcular  a  erfc (função  complementar         √n         

do  erro)  do  resultado  obtido  dividido  pela  raiz  de  2.  O  resultado  final  é  o valor  de  P  e  todo                     

esse   processo   pode   ser   compactado   na   seguinte   equação:  

 

)valor de P  erfc (=  √2n
Sn∣ ∣
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O valor  de  P  então  é  comparado  com a ,  sendo  a  hipótese  nula  não  rejeitada  caso                 

ele  seja  maior.  O  algoritmo  também  armazena  em  uma  matriz  de  Resultados  o  valor  “1”                

caso   H0   não   tenha   sido   rejeitada   e   “0”   caso   tenha.  

O   número   de   bits   mínimo   recomendado   pelo   NIST   é   n=   100.  

 

2. Teste   Frequência   em   Bloco.  

O  objetivo  deste  teste  é  descobrir  se  a  proporção  entre  1s  e  0s  próximo  de  ½                 

encontrada  no  primeiro  teste  também  é  válida  em  repartições  menores  da  onda  e  não               

apenas  no  total.  Um  exemplo  da  necessidade  deste  teste  é  a  sequência  “11110000”  que               

passaria  no  primeiro,  mas  seria  recusada  no  segundo,  conforme  será  explicado  adiante.  Ele              

usa   como   referência   a   distribuição   Qui-Quadrado   ( ).χ2  

Sejam  então  os n  bits  da  sequência  divididos  em N  blocos  de  dados  com M bits         ε           

cada.  O  primeiro  passo  é  computar  a  proporção  de  1s  dentro  de  cada  um  dos N  blocos,         πi           

seguindo   a   fórmula:  

,    onde   1<=    i    <=    N πi = M

∑
M

j=1
ε(i 1) M+j− *

 

 

Aqui, i  representa  qual  dos N  blocos  estamos  calculando  a  proporção.  Essa  equação              

basicamente  faz  a  soma  de  todos  os  elementos  do  bloco N ,  que  resulta  no  número  total  de                  

1s  do  bloco,  e  a  divide  pela  quantidade M  de  bits  dentro  do  bloco.  A  posição  do  elemento  a                    

ser  calculado  é  dada  por ,  ou  seja,  para  o  primeiro  bloco  ( i =1)  a  equação      (i ) "  " − 1 * M + j           

somará  os  elementos  entre  as  posições e  ,  para  o  segundo  bloco  ( i =2),  a  soma       "  "ε1  "  "εM          

será  com  os  elementos  entre  as  posições  e  e  assim  por  diante  -  desta        "  "ε(M+1)   "  "ε2 M*
       

forma,  a  fórmula  consegue  valer  para  qualquer  bloco N  da  sequência ,,  garantindo  que             ε    

não   haverá   sobreposição   de   elementos   entre   os   blocos.  

 

Em   seguida   calcula-se   a   função   de   Qui-Quadrado:  

χ2 = 4 * M ∑
N

i=1
(π )i − 2

1 2  

E  então  computa-se  o Valor  de  P  ( Pvalue )  utilizando  a  função  gamma  incompleta              

( igamc )   da   seguinte   forma:  

value gamc( , ) P = i 2
N

2
χ2

 

Caso    Pvalue > ,   a   hipótese   nula   não   é   rejeitada. α  
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Os   valores   mínimos   recomendados   são     ;   ;   00 N  n ≥ 1 ≥ M 0  M ≥ 2 00N < 1  

É  por  isso  que  a  sequência  citada  anteriormente,  “11110000”,  não  passa  neste             

segundo  teste:  se  considerarmos N =2  apenas  para  demonstrarmos  este  exemplo,  teríamos            

os  blocos  de  dados  “1111”  e  “0000”.  Ambos  claramente  não  tem  uma  proporção  de  “1s”                

próxima   de   ½,   o   que   faz   a   sequência   original   falhar   no   teste.  

 

3. Teste   das   Corridas.  

A  função  deste  teste  é  entender  se  existe  alguma  sequência  longa  demais  de  algum               

dos  bits,  indicando  um  comportamento  “constante”  da  onda,  sem  variação  para  gerar             

imprevisibilidade  suficiente  para  ser  considerada  aleatória.  O  resultado  é  o  mesmo  para             

corridas   de   1s   ou   de   0s,   então   escolhemos   fazer   corridas   de   1s.  

O  primeiro  passo  é  calcular  a  proporção de  1s  da  sequência inteira,  parecido        π      ε   

com   o   que   foi   feito   no   teste   anterior:  

π = n

∑
n

j=1
εj

 

O   segundo   é   computar   o   teste   estatístico   Vn:  

,   sendo V n = ∑
n 1−

k=1
r(k) + 1  

=0,   caso   contrário,   =1 ⇒ r(k)  ε(k) = ε(k+1) r(k)  

O    Pvalue    é   calculado   então   desta   forma:  

) value rfc(P = e
2 π (1 π )√2n  −  

V 2nπ (1 π )∣ n−  −  ∣  

 

Sendo    Pvalue> ,   então   a   hipótese   nula   não   é   rejeitada. α  

O   valor   mínimo   recomendado   é   . 00  n ≥ 1  

 

Ainda  existem  outros  testes  nos  documentos  de  referência  do  NIST,  mas  este             

trabalho  tratará  apenas  desses  três  que  foram  apresentados.  Independente,  o  ambiente  de             

testes  foi  desenvolvido  de  tal  forma  que  a  adição  de  novos  testes  é  simples,  logo  não  será                  

um   problema   complementar   essa   parte   do   projeto   no   futuro.  

Neste  capítulo  apresentamos  as  duas  principais  ferramentas  em  que  desenvolvemos           

o  projeto,  LTSpice  e  Octave.  Ambos  os  programas  são  gratuitos  e  de  fácil  acesso/utilização,               

servindo  para  a  proposta  do  trabalho  de  facilitar  a  validação  de  geradores  de  números               

aleatórios  para  outras  pesquisas.  Além  disso,  também  falamos  mais  a  fundo  sobre  a              

topologia  ALFSR  do  circuito  que  simulamos,  mostrando  as  novas  propostas  que  ele  traz  em               

relação   a   topologias   existentes.   
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Na  próxima  parte  da  monografia,  vamos  explorar  de  uma  forma  mais  prática  como              

ocorreu  a  implementação  da  simulação  e  os  resultados  obtidos  ao  analisar  os  dados  obtidos               

da  simulação  dentro  do  ambiente  de  testes  estatísticos.  Também  trazemos  a  validação  do              

ambiente   de   testes   em   si,   utilizando   valores   referência   fornecidos   pelo   NIST.  

 

 



41  

Resultados   e   Discussões  
Nesta  seção  serão  detalhadas  tanto  a  simulação  do  ALFSR  dentro  do  LTSpice,             

quanto   o   algoritmo   criado   dentro   do   Octave   para   avaliar   os   resultados   da   simulação.  

4.1   Simulação   ALFSR   LTSpice  

O  circuito  (Figura  7)  da  simulação  pode  ser  dividido  em  três  partes  principais:  o               

seletor  de  configuração;  o  circuito  de  coleta  e  o  gerador  de  números  aleatórios  ALFSR.               

Além  disso,  existe  uma  parte  na  simulação  que  inclui  os  Inputs  e  diretrizes  de  Spice                

utilizados  na  simulação.  Começaremos  explicando  os  inputs  primeiramente  e  depois           

descreveremos   o   comportamento   de   cada   uma   das   partes   principais   do   circuito.  

 

Figura   7.   Circuito   completo   do   gerador   de   números   aleatórios  

 

Fonte:   própria  

 

4.1.1   Inputs   e   diretrizes   de   Spice   

 

Os   parâmetros   da   simulação   foram   escolhidos   da   seguinte   forma:  

● c    =   0,0025   μs   -   período   do   clock   de   coleta   de   dados.  

● n    =   8   -   número   de   configurações   testadas  
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● d =  c*125  -  o  tempo  de  onda  ativa  das  ondas  do  seletor  de  configuração.  Calculado                 

de   tal   forma   que   garanta   pelo   menos   125   pontos   para   cada   configuração.  

● p    =   d*2   -   o   período   das   ondas   de   seleção;  

● c2    =     -    tempo   ativo   (duty   cicle)   de   "c" c
2  

● r  =  0,97*d  variável  para  garantir  que  o  tempo  de  reset  seja  apenas  3%  de  d,                 

garantindo   que   o   reset   ocorre   com   o   mínimo   de   perda   possível  

● t  = d*n  -  o  tempo  que  a  simulação  vai  rodar.  Garante  que  toda  simulação  vai  coletar                  

a   mesma   quantidade   de   dados   de   cada   configuração.  

● Para  configurar  as  ondas  de  seleção  de  bit  foram  criados  os  parâmetros  p1...p12  e               

d1 ... d12 ,  todos  dependentes  de p ,  seguindo  a  fórmula  “ *100* n ”.  Na  prática,  cada           2 n     

bit  tem  a  metade  da  frequência  do  anterior.  Juntos,  formam  um  contador  binário  de               

12   bits.  

● O  comando  “.ic”  garante  que  partes  sensíveis  do  circuito  não  tenham  um  valor  inicial               

que  possam  alterar  a  resposta  do  circuito  sem  aviso,  como  as  entradas  da  porta               

XNOR  e  os  bits  de  seleção,  já  que  caso  as  duas  portas  da  XNOR  fiquem  “1”,  o                  

circuito   todo   “trava”   em   “1”   e   para   de   oscilar.  

● O  comando  “.param”  foi  utilizado  para  declarar  as  variáveis,  incluindo  qualquer            

dependência   que   tenham   com   outras.  

● O  comando  “save”  foi  utilizado  para  acelerar  a  simulação,  salvando  apenas  os             

valores   indicados   e   que   serão   utilizados.  

 

Todos  esses  valores  foram  implementados  no  código  de  simulação  nas  diretrizes  do             

spice,   conforme   a   figura   8.   

 

Figura   8.   Inputs   e   Diretrizes   SPICE.  

 

Fonte:   própria  
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4.1.2   Seletor   de   configuração  

Responsável  por  selecionar  qual  configuração  será  utilizada,  seu  funcionamento  é           

de  um  contador  binário  de  doze  bits,  conforme  explicado  na  seção  5.1.2.  Entretanto,  para  a                

simulação  tratada  aqui,  foram  variados  apenas  os  três  bits  da  últimas  célula  de  atraso  -                

todos  os  outros  foram  travados  em  nível  “1”,  conforme  visto  na  figura  10.  Os  resultados  das                 

ondas   dos   bits   1,   2   e   3   podem   ser   vistos   na   figura   9.  

 

             Figura   9.   Formas   de   ondas   dos   Bits   1,   2   e   3.  

Fonte:   própria  

  

Figura   10.   Seletor   de   configuração  

Fonte:   própria  
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4.1.3   Circuito   de   coleta  

O  circuito  de  coleta  da  figura  11  garante  que  serão  coletados  dados  binários  das               
saídas  do  ALFSR,  de  acordo  com  o  período c  configurado  na  parte  de  inputs  -  no  caso  da                   
simulação,   foi   escolhido   o   valor   de   0,0025   μs.   
 

Figura   11.   Circuito   de   coleta  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fonte:   própria  

 

A  Figura  12  contém  um  exemplo  do  funcionamento  da  coleta.  É  possível  perceber              

também  no  começo  da  onda  que RND0  se  mantém  como  0  por  um  tempo:  é  nesse  intervalo                  

que  o  reset  está  “ativo”.  Importante  notar  que,  por  ser  um  circuito  específico  da  simulação                

para  coletar  dados  binários  de  saída  prontos  para  o  ambiente  de  testes,  foram  usados               

flip-flops  padrões  do  LTSpice,  que  trabalham  com  a  tensão  de  1V.  Por  esse  motivo  a  tensão                 

do   clock   de   coleta,   V(clk_coleta),   aparece   como   1V   na   figura   11.  
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            Figura   12.   Exemplo   coleta   dados  

 

Fonte:   própria  

4.1.4   ALFSR  

Essa  é  a  parte  do  circuito  que  gera  os  dados  aleatórios,  sendo  composta              

basicamente  de  células  de  atraso  e  uma  porta XNOR  (figura  13).  O  esquemático  dos               

componentes  utilizados  estão  no  apêndice  D  -  Esquemático  dos  componentes  utilizados  no             

projeto.   

Figura   13.   ALFSR  

 

Fonte:   própria  

 

As  células  de  atraso  foram  colocadas  em  série,  utilizando-se  as  saídas  das  duas              

últimas  como  entradas  para  uma  porta XNOR ,  que  alimenta  o  sinal  para  a  primeira  célula,                

retroalimentando   o   circuito.  

Entretanto,  existe  a  possibilidade  das  duas  entradas  da  porta XNOR  terem  nível             

lógico  “1”  ao  mesmo  tempo,  o  que  faz  com  que  a  saída  da  porta  também  seja  “1”  e  o  circuito                     
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“trave”  em  nível  lógico  alto,  independente  da  escolha  de  configuração.  Por  isso,  foi              

implementado  uma  porta AND  entre  a XNOR  e  a  entrada  da  primeira  célula  a  fim  de  resetar                  

o  circuito  em  toda  alteração  de  configuração.  Tal  processo  é  garantido  pela  entrada  “RSTn”               

da  porta AND  representada  na  Figura  7,  cujo  período  é d  segundos  (conforme  a  seção                

5.1.2)   e    duty   cycle ,   97%.   Na   Figura   15   é   possível   conferir   a   forma   de   onda   na   prática.  

A  saída  de  cada  um  dos  elementos  do  ALFSR  foi  desviada  para  o  circuito  de  coleta                 

a  fim  de  analisar  seus  comportamentos,  passando  apenas  por  mais  um  Buffer  para              

estabilizar   o   sinal.  

Cada  uma  das  células  de  atraso  (Figura  14)  é  composta  por  sete  Buffers,  que  por                

sua  vez  são  construídos  com  dois  inversores  em  série.  Três  “colunas”  de  MUXes  de  duas                

entradas  e  uma  saída,  controladas  pelos  Bits  de  seleção,  determinam  quantos  buffers  o              

sinal  terá  que  cruzar  até  sair  da  célula.  Como  as  três  primeiras  células  estão  como  “1”,                 

então   o   delay   é   máximo.   

Figura   14.   Circuito   interno   da   célula   de   atraso   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fonte:   Própria  
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4.1.5   Resultado  

A  Figura  15  mostra  as  oito  configurações  simuladas,  tendo  a  onda  de  reset  e  um                

gráfico  indicando  qual  o  número  da  configuração  em  relação  ao  tempo  para  deixar  mais               

claro   qual   onda   pertence   a   qual   combinação   de   bits.  

 

Figura   15.   Forma   de   onda   da   saída   que   será   analisada  

Fonte:   Própria  

 

Avaliando  o  consumo  de  cada  configuração,  podemos  montar  a  tabela  2.  Nela,  o I               

da  segunda  coluna  é  a  corrente  RMS  do  circuito  e  a  terceira  coluna  contém  a  tensão V  de                   

alimentação  do  circuito.  Considerando  que  essa  é  a  corrente  aproximada  que  atravessa             

todo  o  circuito,  conseguimos  multiplicá-la  pela  tensão  e  obter  a  potência  média  total I*V  de                

cada   configuração   na   quarta   coluna.   

Já  a  quinta  coluna  contém  os  dados  de Bit  Rate  de  cada  configuração.  Esse  valor  é                 

calculado  dividindo  o  número  de  bits  finais  gerados  pelo  tempo  que  a  configuração  ficou               

ligada  (considerando  não  apenas  as  entradas  seletoras  das  células  de  atraso,  mas  também              

se   a   entrada   do   controle   de   reset   está   ligada,   permitindo   o   funcionamento   do   circuito).  

Na  última  coluna  é  calculada  a  energia  por  bit  aleatório,  utilizando  a  seguinte              

equação   [3]:  

EB = I V*
Bit Rate  
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Tabela   2:   Potência   x   Configuração  

Configuração  
4ª   Célula  I   (A)  V   (V)  I*V   (W)  

Bit   Rate  
(bit/s)  EB    (J/bit)  

000  4,67E-05  1,80E+00  8,41E-05  4,88E+07  1,72E-12  

001  6,27E-05  1,80E+00  1,13E-04  4,88E+07  2,31E-12  

010  5,09E-05  1,80E+00  9,17E-05  4,88E+07  1,88E-12  

011  4,87E-05  1,80E+00  8,76E-05  4,88E+07  1,79E-12  

100  5,26E-05  1,80E+00  9,47E-05  4,88E+07  1,94E-12  

101  4,13E-05  1,80E+00  7,43E-05  4,88E+07  1,52E-12  

110  5,48E-05  1,80E+00  9,86E-05  4,88E+07  2,02E-12  

111  4,45E-05  1,80E+00  8,01E-05  4,88E+07  1,64E-12  

Média  5,03E-05  1,80E+00  9,05E-05  4,88E+07  1,85E-12  
Fonte:   Própria  

 

Onde EB  é  a  Energia  gasta  pela  geração  de  bit  aleatório  ( I , V  e Bit  Rate já  foram                   

apresentados).  Com  esses  cálculos  podemos  ver  que  o  custo  energético  fica  na  casa  de  pJ,                

bem  abaixo  do  próprio  circuito  resultante  que  propõe  esse  mesmo  tipo  de  estudo  de  outro                

circuito   gerador   de   números   aleatórios   [3],   onde   ele   fica   na   casa   de   nJ.   

4.2   Algoritmo   Octave   NIST  

Foram   desenvolvidos   cinco   algoritmos,   podendo   ser   encontrados   no   apêndice:  

● Um   para   cada   um   dos   três   testes   NIST   descritos   na   seção   3.2.1.  

● Um   para   coleta   de   dados   da   simulação   do   LTSpice.  

● Um   para   coleta   de   dados   dos   arquivos   de   validação   do   NIST.  

Como  dito  anteriormente,  um  dos  objetivos  do  projeto  era  desenvolver  um  algoritmo             

de  testes  NIST  que  fosse  independente  do  algoritmo  que  trata  a  fonte  de  dados.  Como                

visto,  conseguimos  concluir  essa  parte,  já  que  o  código  de  avaliação  estatística  é  o  mesmo                

utilizado   tanto   para   os   arquivos   de   validação   quanto   para   a   simulação   do   LTSPice.  

Inicialmente  a  intenção  era  desenvolver  todos  os  quinze  testes  disponíveis  na            

interface  do  NIST,  mas  por  limitações  foi  possível  implementar  apenas  os  três  primeiros,              

descritos   anteriormente.  
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4.2.1   Validação   Testes   NIST  

No  material  guia  do  ambiente  de  testes  estatísticos  do  NIST  [1]  é  disponibilizado              

uma  tabela  com  os Pvalues  de  ondas  disponíveis  juntas  do  programa  em  C  desenvolvido               

pelo   instituto.  

Foi  rodado  o  algoritmo  de  testes  do  Octave  utilizando  o  algoritmo  de  preparo  de               

dados   para   testar   quatro   sequências   disponibilizadas   pelo   NIST,   sendo   elas:   

1. Expansão   binária   de   (pi) π  

2. Expansão   binária   de   (neperiano)  ε  

3. Expansão   binária   de    √2  

4. Expansão   binária   de    √3  

 

Os   resultados   obtidos   estão   na   figura   16.  

 

Figura   16.   Resultado   teste   de   validação   do   algoritmo   NIST   no   Octave  

 

Fonte:   Própria  

Comparando  os  resultados  obtidos  com  a  tabela  disponibilizada  pelo  NIST,  temos  os             

dados  da  tabela  3.  Com  isso,  podemos  concluir  que  os  três  testes  implementados              

funcionam   com   os   mesmos   resultados   que   o   ambiente   de   testes   do   NIST.  
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  Tabela   3.   Comparação   entre   os    Pvalues    do   algoritmo   de   Octave   e   a   tabela   referência   do  

NIST.  

Testes  

Pi  

OCTAVE  Pi   NIST  Erro   Pi  

Neperiano  

OCTAVE  

Neperiano  

NIST  

Erro  

Neperiano   

 √2  

OCTAVE    NIST  √2  

Erro  

 √2    OCTAVE  √3    NIST  √3  Erro    √3  

Teste  

frequência  

monobit  0,578211  0,578211  0,00%  0,953749  0,953749  0,00%  0,811881  0,811881  0,00%  0,6100514618  0,610051  0,00%  

Teste  

frequência  

em   bloco  0,380615  0,380615  0,00%  0,211072  0,211072  0,00%  0,833222  0,833222  0,00%  0,4739612657  0,473961  0,00%  

Teste   das  

corridas  0,419268  0,419268  0,00%  0,561917  0,561917  0,00%  0,313427  0,313427  0,00%  0,2611232603  0,261123  0,00%  

Fonte:   Própria  

 

4.2.2   Teste   Aleatoriedade   ALFSR  

Rodando  os  dados  da  simulação  de  LTspice  no  algoritmo  validado  gera  o  resultado              

da   figura   17.  

 

Figura   17.   Resultado   testes   estatísticos   das   configurações   entre   os   bits  

111.111.111.000...111.111.111.111   do   ALFSR  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fonte:   Própria  
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Como  é  possível  avaliar  na  matriz  “Resultado”,  as  configurações  000  (1ª  coluna),             

001(2ª  coluna)  e  100  (5ª  coluna)  se  provaram  não  aleatórias  por  falharem  em  pelo  menos                

um   dos   testes   (o   que   os   faz   falhar   automaticamente   em   todos   os   seguintes).  

Entretanto,  as  demais  configurações  passaram  em  todos  os  testes,  indicando  que            

elas  podem  ser  de  fato  aleatórias  e  que  o  circuito  tem  a  capacidade  de  gerar  números                 

aleatórios.  

4.3   Variações   de   temperatura  

Foi  feito  também  uma  simulação  final  variando  a  temperatura  do  circuito  para             

observar  se  isso  afetaria  os  testes  de  aleatoriedade  de  uma  configuração.  Baseado  nos              

teste  explicados  anteriormente,  a  configuração  111  foi  simulada  novamente  com  mais  tempo             

para  cinco  valores  de  temperatura:  0ºC,  15ºC,  30ºC,  45ºC  e  60ºC.  Parte  das  formas  de  onda                 

resultantes  do  sistema  de  coleta  estão  na  figura  12  -  as  temperaturas  estão  arranjadas  de                

cima   (mais   frio,   começando   de   0º)   para   baixo   (mais   quente,   terminando   em   60ºC).  
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Figura   18.   Formas   de   ondas   da   simulação   de   temperatura.  

Fonte:   Própria  

 

A  tabela  4  são  apresentados  os  valores  de  P  e  na  tabela  5,  seus  respectivos                

resultados  de  aleatoriedade  testando  cada  uma  das  temperaturas  no  mesmo  algoritmo  de             

teste  NIST  do  Octave  apresentado  anteriormente  para .  Na  tabela  5,  um  resultado        .01α = 0       

“1”  significa  que  a  temperatura  passou  naquele  teste  estatístico  e  que  a  hipótese  de               

aleatoriedade   foi   aprovada,   enquanto   “0”   significa   o   contrário,   que   a   hipótese   foi   rejeitada.   
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  Tabela   4.   Valores   P   por   temperatura.  

PValue  0ºC  15ºC  30ºC  45ºC  60ºC  

Teste   frequência   monobit  0,0065  0,1290  0,6580  0,8003  0,6580  

Teste   frequência   em  
bloco  0,3450  1,0000  0,9998  0,9989  0,0000  

Teste   das   corridas  0,2989  0,0000  0,1305  0,5706  0,5230  

Fonte:   própria  

 

                   Tabela   5.   Resultados   de   aleatoriedade   por   temperatura   

Resultado   (Alpha=0.01)  0ºC  15ºC  30ºC  45ºC  60ºC  

Teste   frequência   monobit  0  1  1  1  1  

Teste   frequência   em   bloco  1  1  1  1  0  

Teste   das   corridas  1  0  1  1  1  

Fonte:   própria  

 

É  possível  perceber  que  as  únicas  duas  temperaturas  que  passaram  em  todos  os              

testes  foram  as  de  30ºC  e  45ºC,  indicando  que  o  circuito  talvez  não  funcione  tão  bem  fora                  

dessa  faixa.  São  necessários  mais  testes  com  outras  configurações  para  entender  se  isso  é               

uma  característica  da  configuração  ou  do  circuito  como  um  todo,  além  de  explorar  mais  a                

faixa  entre  15ºC  e  30ºC  e  entender  qual  seria  a  menor  temperatura  para  o  qual  a                 

configuração   não   é   recusada   em   nenhum   teste.  

Concluídas  as  apresentações  e  análises,  vemos  que  tanto  a  simulação  do  circuito             

quanto  o  ambiente  de  testes  foram  entregues  e  com  resultados  satisfatórios  para  este              

trabalho.  A  simulação  mostrou  indícios  de  que  consegue  gerar  sequências  aleatórias  em             

mais  de  uma  configuração  e  dentro  da  faixa  de  temperatura  entre  30º  e  45º,  que,  apesar  de                  

apenas  duas  temperaturas  terem  passado  em  todos  os  testes,  ainda  são  necessários  mais              

testes  para  determinar  exatamente  quais  as  temperaturas  mínimas  e  máximas  de  operação             

do  circuito  para  cada  configuração  diferente.  Já  o  ambiente  de  testes  foi  validado  e               

mostrou-se  confiável  para  avaliar  sequências  aleatórias,  necessitando  agora  ser  aprimorado           

com   a   ampliação   dos   testes   estatísticos   que   ele   engloba.   
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5   Conclusão  
Como  dito  anteriormente,  o  trabalho  atingiu  seus  objetivos,  sendo  possível  mostrar            

que  a  ideia  de  separar  os  algoritmos  de  tratamento  de  dados  e  de  testes  estatísticos  no                 

Octave  tornou  esta  análise  mais  versátil,  principalmente  considerando  que  a  intenção  é  a  de               

preparar  uma  biblioteca  com  esses  testes  estatísticos  e  disponibilizá-los  como  funções            

próprias  de  pacotes  do  Octave.  Além  disso,  obtivemos  indícios  de  que  o  circuito  ALFSR               

simulado  tem  a  capacidade  de  gerar  números  aleatórios  em  diferentes  configurações  e             

temperaturas.  

É  de  interesse  também  desenvolver  um  pacote  de  processamento  dos  sinais,  pois             

mesmo  que  o  algoritmo  de  processamento  tenha  sido  feito  pensando  nos  dados  de  LTspice,               

o  usuário  ainda  precisa  tomar  alguns  cuidados  para  que  ele  funcione  sem  necessidade  de               

adaptações  além  dos  dados  de  entrada.  O  principal  problema  que  não  foi  resolvido  foi  a                

incompatibilidade  com  dados  coletados  de  simulações  que  utilizem  o  comando  .step  param,             

já   que   o   LTspice   dessa   forma   inclui   uma   linha   de    string    no   começo   de   cada   corrida   diferente.  

Outro  ponto  que  é  necessário  ressaltar:  qualquer  algoritmo  de  processamento  de            

dados  precisa  declarar  algumas  variáveis  que  o  algoritmo  de  NIST  vai  usar,  sendo  assim,  os                

testes  estatísticos  são  dependentes  de  uma  forma  que  não  fica  atualmente  muito  clara  no               

código  -  a  solução  de  torná-los  um  pacote  de  funções  resolverá  o  problema,  visto  que  essas                 

variáveis   seriam   inputs.  

Como  trabalhos  futuros,  propõe-se  terminar  de  desenvolver  todos  os  testes  NIST,  a             

fim  de  concluir  a  avaliação  da  topologia  de  ALFSR,  além  de  continuar  testando  as               

configurações  restantes  em  diferentes  temperaturas,  avaliando  para  encontrar  aquelas  que           

se   mostrarem   mais   estáveis   e   com   um   custo/benefício   energético   melhor.  
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Apêndice   A   -   Códigos   de   avaliação   de   teste   estatístico   do   NIST   em   formato   “.m”  
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Apêndice   B   -   Códigos   de   avaliação   de   circuito   ALFSR   em   formato   “.m” 

 

 

 



63  

 

 

 



64  

 

 

 



65  

Apêndice   C   -   35   primeiras   linhas   do   arquivo   em   formato   “.txt”   gerado   pelo   LTSpice  
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Apêndice   D   -   Esquemático   dos   componentes   utilizados   no   projeto.   

 

Figura   D-1.   Porta   AND   (and02) 
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Figura   D-2.   Buffer   (buf02) 
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Figura   D-3.   Mux   (mux21) 
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Figura   D-4.   Mux   Não   Inversor   (mux21_ni)  
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Figura   D-5.   Porta   XNOR   (xnor2)  

 

 


