UNIVERSIDADE DE SAO PAULO

Escola de Engenharia de Sao Carlos

Analisador Ldogico para Analise On-
Chip de Sistemas Digitais
Implementados em FPGA

Gabriel Santos da Silva

Sao Carlos - SP

Analisador Logico para Analise On-Chip de Sistemas
Digitais Implementados em FPGA

Gabriel Santos da Silva

Orientador: Maximiliam Luppe

Monografia de concluséo de curso apresentada a Escola
de Engenharia de Sdo Carlos - EESC-USP - para
obtenc&o do titulo de Engenheiro Eletricista com Enfase

em Eletrbnica.

USP — Sao Carlos
Junho de 2011

AUTORIZO A REPRODUGAO E DIVULGAGAO TOTAL OU PARCIAL DESTE
TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRONICO,
PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalografica preparada pela Secéo de Tratamento
da Informacéo do Servigo de Biblioteca— EESC/USP

S586a

Silva, Gabriel Santos da

Analisador ldégico para andlise On-Chip de sistemas
digitais implementados em FPGA / Gabriel Santos da Silva
; orientador Maximiliam Luppe -- Sdo Carlos, 2011.

Monografia (Graduacdo em Engenharia Elétrica com
énfase em Eletrdnica) -- Escola de Engenharia de Sé&o
Carlos da Universidade de S&o Paulo, 2011.

1. Dispositivos reconfiguraveis. 2. FPGA. 3.
Analisador ldégico. 4. Ferramentas de desenvolvimento. I.
Titulo.

FOLHA DE APROVACAO

Nome: Gabriel Santos da Silva

Titulo: “Analisador Ldégico para Analise On-Chip de Sistemas
Digitais Implementados em FPGA”

Trabalho de Conclusao de Curso defendido e aprovado

em 701 06104/

com NOTA _OJ}O (Aeve , Zere), pela comissao julgadora:

e
Prof. AssoEEdo EY ndro LUI/Llnharl Rodrigues - EESC/USP

Prof. Dr. Marcelo Andrade da Costa Vieira - EESC/USP

/y W fe Y

Prof. Associado Homeroﬁf:htabel
Coordenador da CoC—Engenharza Elétrica
EESC/USP

Dedicatoria

Dedico este trabalho aos meus pais, Gilson e Valéria, pessoas essenciais em minha
vida, responsaveis pela pessoa que sou hoje e por chegar aonde cheguei. Obrigado por tantas
alegrias, por tantos ensinamentos, por serem meus amigos e por sempre me permitirem

arriscar em novas jornadas na vida.

Aos meus amigos Ulisses e Jodo, companheiros em todos os momentos de faculdade.

Devo muito a vocés, meus irméos. Obrigado pela amizade indispensavel nesses anos.

E em especial a minha avo Tina, tdo presente em meus pensamentos na conclusdo de

mais esta fase da minha vida.

Agradecimentos

Agradeco a Deus por todas as gracas em minha vida.

A minha familia, por todos os momentos vividos até hoje, pela companhia e apoio

incontestaveis.

Ao Prof. Maximiliam Luppe, meu orientador, pela paciéncia nesses trés anos de
parceria, desde a Iniciacdo Cientifica até este Projeto de Graduacdo; pelos ensinamentos e

pela dedicacao.

Aos meus amigos de Pindamonhangaba, Béarbara, Bruna, Camila, Carol, Kenzo,
Natalia, Nicolas, Pedro e Rodrigo, pelos étimos finais de semana tdo esperados durante a

faculdade, e pela amizade que se fortalece a cada dia, mesmo com a distancia.

A todos os amigos conquistados durante a graduacdo. Em especial, a Atila e Bruno,
grandes amigos de republica e kitnete, pelo companheirismo e conversas “a toa” até altas
horas; e a Fernando, pela parceria nas tentativas de estudo e considera¢cdo nos momentos
dificeis. Espero que todas estas amizades possam durar independentemente dos caminhos

escolhidos por cada um.

Resumo

Um problema existente na analise de sinais digitais em sistemas embarcados
implementados em FPGA é a visualizacdo dos sinais entre os diversos modulos (On-Chip).
Mesmo os fabricantes de FPGA possuindo aplicativos para este tipo de analise, 0s mesmos
sdo restritos apenas aos dispositivos dos seus proprios fabricantes, sendo ideal um maodulo
interno que fosse open-source. Baseando-se nestes pontos decidiu-se pelo desenvolvimento de
um analisador l6gico On-Chip open-source. Desta forma, este projeto desenvolve um soft-
core referente ao analisador l6gico, envolvendo o estudo de linguagens de hardware, além do
estudo qualitativo das ferramentas de desenvolvimento dos principais fabricantes deste
dispositivo no mercado atualmente. Os resultados obtidos permitem comprovar a eficiéncia da
I6gica adotada na implementacdo dos moédulos; a capacidade da ferramenta de
desenvolvimento Lattice Diamond em comparacdo com as demais ferramentas adotadas pelo
mercado; e a dificuldade em superar as caracteristicas intrinsecas das FPGAs de diferentes
tecnologias, exemplificadas neste caso pelo uso dos elementos de memdria embarcadas das

FPGA'’s, para a implementacdo do modulo analisador l6gico.

Palavras-chave: dispositivos reconfiguraveis, FPGA, analisador l6gico, ferramentas de

desenvolvimento.

Abstract

One issue in the analysis of digital signals in embedded systems implemented in
FPGA is the visualization of signals between the various modules (On-Chip). Even the
manufacturers of FPGA possessing applications for this type of analysis, they are restricted
only to their own devices manufacturers, making it ideal an internal module that was open
source. Based on these points decided by the development of an On-Chip Logic Analyzer
open-source. Thus, this project develops a soft-core that refers to the logic analyzer, involving
the study of hardware description languages, beyond the qualitative study of the development
tools from leading manufacturers of this device on the market today. The results prove the
efficiency of the logic adopted in the implementation of the modules, the ability of the
Diamond Lattice development tool in comparison with other tools used by the market, and the
difficulty in overcoming the inherent characteristics of the FPGA’s from different
technologies, exemplified in this case by the use of embedded memory elements of FPGA’s,

to implement the logic analyzer module.

Keywords: reconfigurable devices, FPGA, logic analyzer, development tools.

Sumario

LISTADE ABREVIATURAS ... VIl
LISTADE TABELAS ...ttt et s X
LISTADE FIGURAS ...ttt XI
CAPITULO 1: INTRODUGAOcoovieecicseeeeeeee ettt 1
1.1. CONTEXTUALIZAGAO E MOTIVAGAOcviiiirieiiiiisieieietsesieieie s 1
1.2, OBIETIVOS. ... ettt ettt b et b e b bbb 2
1.3. ORGANIZAGAO DO TRABALHOccuviieiiiieesiieeeitteeesieeesieeesieeestee e snteeesnreeesnaaeanneeeans 2
CAPITULO 2: REVISAO BIBLIOGRAFICA.......coomiieineierseississesssensns 4
2.1. CONSIDERAGOES INICIAIS.....c.viiiiieriniiinieieieesisie ettt 4
2.2. SYSTEM ON CHIP E IP COREocutiiiiiiiiiesiie e 4
2.3. DISPOSITIVOS RECONFIGURAVEISociuviiiieiiiaiisieesieeie st 5
2.4 FP G A e 6
2.4.1. Blocos LAQicos CONfIQUIAVEISceeveeieiicieec e 7
2.4.2. BlOCOS 0€ INErCONEXE0c.veviviiiiiieieeiieieie et 8
2.5. DESENVOLVIMENTO EM FPGAooiiiiiiic e 9
2.5.1. Etapas de Projeto em FPGA ... 10
2.6. AMBIENTE INTEGRADO DE DESENVOLVIMENTO (IDE)......cccoveiiiieiieieciccieee 11
2.6.1. QUANTUS 11 9.0 ... e e 12
2.6.2. ISE DESIGN SUITE......eiuiiieieiieete et bbb 15
2.6.3. LattiCe DIAamONG.......ccooiiiiiiiiieiisieseee e 19
2.7. ARQUITETURA DAS FAMILIAS DE FPGAottt eveveeaaeaenees 24
2.7.1. Cyclone Il (EP2C20F48ACT).....coiiaiiiieieeie ettt 25
2.7.2. Spartan 3A(N) (XC3S50A-5TQLAA)........ovveoreeereeeeeeeeeeeeeeeeeeeeseseeeseesenenens 26

2.7.3. LatticeXP2 (LFXP2-5E-6TNL44C)coiiiiiiiiiiiieeieeeeeee e 27

2.8. LINGUAGEM DE DESCRICAO DE HARDWAREccveiiieeiiieesieeesnieeesnveeesnneeesnsee e 27
S TR V= o 1 o o SO 28
2.9. ANALISADOR LOGICO......ucuiiiiiiiiisieiiiis ittt 29
2.9.1. MeMOKIA FIFO ...t 30
2.10. CONSIDERAGOES FINAISuviiiiiie it e cieie sttt see et e et e e e e e snneeenes 32
CAPITULO 3: DESENVOLVIMENTO DO TRABALHOcccooveverieereinen. 33
3.1. CONSIDERAGOES INICIAIS.....cuiiiieiiriiisieisiee ettt 33
3.2 PROUJETO 1.ttt bbbt 33
3.3. DESCRICAO DAS ATIVIDADES REALIZADASceciiieeiiieesiteeesieeeseeeesieeesnree e 34
3.3. IMPLEMENTAGAO DOS COREScvvreriiiieieseeesisteseesesssse e s sssssseseessssesesesesens 34
3.3.1. Implementacéo do Analisador LOGICOcccccvevveieiiieiiece e 34
3.3.2. Implementacéo da MemoOria FIFOccooiiiiiiiincieeeseeese e 38
3.4. CONSIDERAGOES FINAIScutieeiiee et e ettt e eitee e s tte e stee e st e e st e snte e snnaeesnaeeesnree e e 40
CAPITULO 4: RESULTADOS OBTIDOS.......cooeviieeeeeeesieeeserisrsiesiesesseneesenesnenens 41
4.1, CONSIDERAGOES INICIAISuttiiiiiieie ittt e s e s saaba e e s e s e s s s s sabbares 41
4.2. SIMULAGOES DO ANALISADOR LOGICOcciviieiiiieiiee e iiee e siee e siee e see e snen e nnnee e 41
4.3. TESTE OPERACIONAL REFERENTE A IMPLEMENTAGCAO FiSICAcoccveeiiieciiienns 46
4.4. ANALISE DO PROCESSO DE SINTESEocuveiiiiiriieiienesieesie et 47
4.5. DISCUSSAO DOS RESULTADOS......cetiiiiiiiiarisiresieesteses st 50
4.6. DIFICULDADES E LIMITAGOES ..vviiiiiiiiiiiiiteiet ettt siibb e saabaaes 50
4.7. CONSIDERAGOES FINAISocitite ittt st cee et e s e s e e snae e e snae e e snaeeennnne e 51
CAPITULO 5: CONCLUSAOQovvrirriiciiiieeiseiss s sssssssenens 52
L I 70 i 1 211 =W o 0] =S 52
5.2. TRABALHOS FUTURODS ..ottt 52

REFERENCIAS ..ot e e et e e e et er e e s e e e s e e er e e e e e e er e 53

APENDICE A — CODIGO CONTADOR........cooomviereriiesisessiesessissiessess s 55
APENDICE B — ANALISADOR LOGICOccoooerirercieieeeecese e, 56
APENDICE C = MEMORIA FIFOcooviiiiiiieieiieree e, 58
APENDICE D — TESTBENCH (SIMULAGCAO ISE).....covviieieieeiiesveneesenenes 60
APENDICE E -CODIGO CONTADOR MODIFICADO..........ccocovvvemrirrnriinrrnien. 61

Vil

Lista de Abreviaturas

ASIC: Circuito Integrado de Aplicacdo Especifica (do inglés Application-specific
integrated circuit)

CLB: Bloco Logico Configuravel (do inglés Configurable Logic Block)

CPLD: Dispositivo Logico Programavel Complexo (do inglés)

DCM: Gerenciador de Temporizador Digital (do inglés Digital Clock Manager)

DSP: Processamento de Sinais Digitais (do inglés Digital Signal Processing)

DUV: Entidade Sob Teste(do inglés Design Under Verification)

EBR: Bloco de RAM dedicada (do inglés Embedded Block RAM)

EDIF: Formato de Transicdo de Design Eletrdnico (do inglés Electronic Design

Interchange Format)
EEPROM: EPROM Elétrica (do inglés Electrical EPROM)

EPROM: Memoria Somente de Leitura Apagavel e Programéavel (do inglés Erasable

Programmable Read Only Memory)
FIFO: Primeiro Dentro, Primeiro Fora (do inglés First In, First Out)

FPGA: Arranjo de Portas Programavel em Campo (do inglés Field-Programmable
Gate Array)

HCPLD: Dispositivo Logico Programavel de Alta Capacidade (do inglés High

Capacity Programmable Logic Device)

HDL: Linguagem de Descricdo de Hardware (do inglés Hardware Description
Language)

IDE: Ambiente de Desenvolvimento Integrado (do inglés Integrated Development

Environment)

IEEE: Insituto de Engenheiros Elétricistas e Eletronicos (do inglés Institute of
Electrical and Electronics Engineers)

IOB: Bloco de Entrada e Saida (do inglés In and Out Block)

viii

http://en.wikipedia.org/wiki/Application-specific_integrated_circuit
http://en.wikipedia.org/wiki/Application-specific_integrated_circuit

IP-Core: Nucleo de propriedade intelectual (do inglés Intellectual Property Core)
ISP: Programacdo Em Sistema (do inglés In System Programmability)

LAB: Bloco de Arranjo Logico (do inglés Logic Array Block)

LE: Elemento Ldgico (do inglés Logical Element)

LUT: Tabela de Pesquisa (do inglés Look-Up Table)

MOS: Semicondutor de Oxido de Metal (do inglés Metal Oxide Semiconductor)
PAL: Matriz Logica Programavel (do inglés Programmable Array Logic)

PFF: Unidade Funcional Programavel sem RAM (do inglés Programmable Functional
Unit without RAM)

PFU: Unidade Funcional Programéavel (do inglés Programmable Functional Unit)
PIC: Célula Programéavel de Entrada e Saida (do inglés Programmable I/O Cell)
PLA: Arranjo Logico Programavel (do inglés Programmable Logic Array)

PLD: Dispositivo Logico Programavel (do inglés Programmable Logic Device)

PROM: Memdria Programavel Somente de Leitura (do inglés Programmable Read-

Only Memory)
RAM: Memoria de Acesso Aleatdrio (do inglés Random Access Memory)
RTL: Nivel de Transferéncia entre Registradores (do inglés Register Transfer Level)
SoC: Sistema Operacional em Chip (do inglés System on Chip)

SPLD: Dispositivo Logico Programavel Simples (do inglés Simple Programmable

Logic Device)
SRAM: RAM Estatica (do inglés Static RAM)
ULA: Unidade Logica Aritmética
USB: Barramento Serial Universal (do inglés Universal Serial Bus)

VHDL: HDL para Circuitos Integrados de Alta Velocidade (do inglés Very High
Speed Integrated Circuit HDL)

Lista de Tabelas

Tabela 1 — Elementos configuraveis e bits de memdria utilizados na sintese de um soft-

core implementado e de Um IP-COre geradocccoviieieiieiiie i 49

Lista de Figuras

Figura 1 - Arquitetura de Uma FPGAoooi e 7
Figura 2 - Ambiente de Trabalho (QUArtus H)........cccooeiiiiiniiiieiee e 12
Figura 3 - NeW ProjeCt WIZard.........cccooeiiiiiiiiiieicee s 13
Figura 4 - ProCesS0 08 SINTESEciviveiieiieiesie e ese st ste et ste e e e e 14
Figura 5 - Processe de Simulacdo (QUArtus)cccoccevveiieieiieie e 14
Figura 6 - Mega Wizard PIug-In Manager...........ccceoeeieiineiineniseeieee s 15
Figura 7 - Ambiente de Trabalho (ISE)cooiiiiiiiiiee 16
FIQUIA 8 - NBW PIrOJECL.......ciiiiiiiicie ettt et nn e 17
Figura 9 - Processo de SiNteSe (ISE)civeiiiiiieeiecie s 17
FIQUIE L0 - ISTM ittt bbb 18
Figura 11 - IP (CORE Generator & Architecture Wizard).........ccccceovveieneiencnnnenn 19
Figura 12 - Area de Trabalho (DIiamond)cccoueeevieieeiieeseeseee s 20
Figura 13 - Criando Um NOVO Projetocceiiiiieiiiiic e 21
Figura 14 - Processo de Sintese (Diamond)cccooerieirernieneseneeese s 22
FIgura 15 — ACHIVE-HDLciiiiiiiiee s 23
FIQUIA 16 = IPEXPIESS ...veevieie ettt ettt et sttt st ste e s te e be et esaeesteennesreenreenaeas 24
Figura 17 - Ciclos de Escrita e Leitura da Memoria FIFOcccoov i, 31
Figura 18 - Diagrama de Blocos do Analisador LOGICOc.ccceevveiveiieieeiieiieceeine 35
Figura 19 - Diagrama de Maquina de Estados do Analisador LOGICO.........c.cccevrunnens 35
Figura 20 - Fluxograma do Analisador LOGICOccceeerieiiiinininieieee s 36
Figura 21 - Diagrama de Méaquina de Estados da Memdria FIFO.............c..ccccoeeenen. 38
Figura 22 - Fluxograma Memoria FIFO ..o 40

Figura 23 - Simulacéo do Projeto utilizando Quartus Il (Trigger Interno e Externo)..43

Xi

Figura 24 - Simulacdo do Projeto utilizando ISE (Trigger Interno e Externo) 44
Figura 25 - Simulacdo do Projeto utilizando Diamond (Trigger Interno e Externo) ...45
Figura 26 - Kit DK-CYCIH-2C20N.......cocciiiiiiiiinieieniee e 46

Figura 27 - Ferramenta Programmercoviiveiieerieiieseesie e seesie e siee e nessnesseenne s 47

Xii

file:///H:/Monografia%20-%20Projeto%20de%20Formatura%20-%20Gabriel%20Santos%20da%20Silva%20(2).docx%23_Toc295837089

CAPITULO 1: INTRODUCAO

1.1. Contextualizacdo e Motivagao

Nos ultimos anos o crescimento, tanto em diversidade, quanto em densidade, dos
dispositivos reconfiguraveis e de suas ferramentas de desenvolvimento, tem favorecido a
implementacdo de sistemas complexos em logica integrada e programavel, System on Chip
(SoC), em um curto espaco de tempo. Altera, Lattice e Xilinx sdo exemplos de empresas
que desenvolvem solugdes na area de sistemas reconfiguraveis digitais, cada uma delas

possuindo suas respectivas ferramentas de desenvolvimento: Quartus Il, Diamond e ISE.

Trabalhar com Field-programmable Gate Array (FPGA) pode remeter ao estudo de
soft-cores de microcontroladores e de periféricos para sistemas embarcados. Estes nlcleos
apresentam como principais vantagens o fato de poderem ser reutilizados (um mesmo soft-
core pode ser utilizado em diversos projetos, sem custo adicional e sem gasto com tempo
de projeto) e serem portateis (podem ser adequados a diversas plataformas de
desenvolvimento de dispositivos reconfiguraveis). O uso das ferramentas de
desenvolvimento de dispositivos reconfiguraveis, aliadas ao uso de linguagens de
descricdo de hardware possibilita 0 desenvolvimento de novos soft-cores para a area de

instrumentacao.

Um problema existente na analise de sinais digitais em sistemas embarcados
implementados em FPGA € a visualizacao dos sinais entre os diversos modulos (On-Chip).
Mesmo os fabricantes de FPGA possuindo aplicativos para este tipo de analise, 0s mesmos
sd0 restritos apenas aos dispositivos dos seus préprios fabricantes, sendo ideal um mdédulo
interno que fosse open-source. Baseando-se nestes pontos decidiu-se pelo desenvolvimento

de um analisador l6gico On-Chip open-source.

O analisador l6gico € um instrumento de medida especifico para analise e
comparacéo de sinais digitais, oferece um grande nimero de canais de entrada, permitindo
trabalhar com circuitos mais complexos. O inconveniente desse equipamento esta em seu
alto preco, justificado por apresentar mais recursos do que 0 necessario em pequenas

aplicacdes.

Para garantir que o analisador l6gico implementado seja open-source ha a
necessidade de verificar seu funcionamento em diferentes ferramentas de desenvolvimento.
A escolha das mesmas tem como base o ambiente atual do mercado de dispositivos
reconfiguraveis, optando pelas empresas que mais se destacam no ramo. Como
mencionado, existe também a necessidade do estudo das linguagens de descricdo de
hardware (HDL), optando-se pela linguagem Verilog, devido & maior facilidade de
aprendizagem em relacdo a “Very High Speed Integrated Circuits” HDL (VHDL), visto
que esta opc¢édo se assemelha a linguagem C, amplamente trabalhada na area de eletrénica

digital.

Este projeto foi elaborado a fim de solucionar os problemas citados neste item,
criando o Analisador légico para analise On-Chip de sistemas digitais implementados em

FPGA, sendo uma solucdo barata e ndo condicionada ao seu fabricante.
1.2. Objetivos

Este trabalho da continuidade ao trabalho de iniciacdo cientifica, tendo como
objetivos principais o estudo das ferramentas de desenvolvimento de Dispositivos
Reconfiguraveis existentes no mercado; a implementacdo de soft-cores de um analisador
I6gico para analise de sistemas digitais intra-FPGA integrado ao estudo de linguagens de
descricdo de hardware (Verilog); e a analise do desempenho dos soft-cores

implementados, avaliando a relacdo de desempenho por célula légica reconfiguravel.
1.3. Organizacao do Trabalho

A fim de uma melhor compreensdo das atividades realizadas neste projeto, esta

monografia € organizada da seguinte maneira:

e No Capitulo 2 é apresentada uma revisdo bibliografica sobre os assuntos
pertinentes a este projeto: tecnologia dos dispositivos reconfiguraveis, em

especial FPGA, e no desenvolvimento de projetos envolvendo a mesma;

e No Capitulo 3 séo descritas a metodologia adotada para a implementagéo

dos modulos necessarios para a execucao do projeto;

No Capitulo 4 sdo apresentados os resultados obtidos e uma andlise dos
mesmos. Também sdo expostas as principais dificuldades e limitacGes

encontradas durante a realizagdo deste projeto;

O Capitulo 5 contém uma concluséo acerca do projeto de Graduacéo, além
de possiveis trabalhos futuros que possam tomar como base este projeto e

contribuicdes que 0 mesmo fornece ao autor.

CAPITULO 2: REVISAO BIBLIOGRAFICA

2.1. Consideracdes Iniciais

Este capitulo tem como objetivo apresentar os contetidos técnicos e conceituais
utilizados durante a elaboracdo do projeto em questdo; entre eles encontram-se a descri¢ao
de um analisador l6gico, do tipo de memoria utilizada pelo mesmo, além de abordar a

tecnologia de FPGA, suas arquiteturas e plataformas de desenvolvimento.
2.2. System on Chip e IP Core

O avanco da tecnologia digital em relacdo ao nivel de integracdo de componentes
em chip propiciou o desenvolvimento de sistemas complexos em uma Unica pastilha de
silicio, que podem incluir processadores, modulos de memoria e controladores de entrada e
saida; sistemas estes denominados Systems on Chip (SOCs). Por sua vez, 0s projetos de
SOCs estdo se tornando cada vez mais complexos e a necessidade de integracdo e
comunicagdo entre diversos sistemas embarcados - sistemas com capacidade
computacional dentro de um circuito integrado - estd se tornando caracteristica chave dos

sistemas modernos.

Para conseguir atender as exigéncias de mercado, os projetistas de SOCs devem
buscar novos métodos de projeto em nivel de sistema. Estes métodos deverdo possibilitar o
desenvolvimento de hardware e software de forma eficaz, e também o reuso de blocos
previamente projetados e verificados que executam tarefas especificas, os quais recebem o
nome de Intellectual Property Cores (IP-Cores) [Moraes, 2004]. Podem-se destacar como
principais vantagens associadas ao uso de SOCs e destes nucleos; baixo custo de
fabricacdo em série; alta qualidade; baixa poténcia consumida; pequeno tamanho e alta
velocidade. Os cores, segundo [Gupta, 1997], seguem a seguinte classificacao:

Soft Core — Consiste de uma descricdo em HDL, codigo fonte, que pode ser

mapeada para diferentes processos de fabricacdo, independente da tecnologia;

Firm Core — Nducleo que contem mais estruturas, normalmente um netlist
dependente da tecnologia, pronto para etapas mais avancadas do processo de

desenvolvimento de projetos;

Hard Core - Inclui layout e informagdes referentes a temporizagdo do circuito para
uma determinada tecnologia, uma organizacao preé-definida que ndo pode ser modificado

pelo projetista.
2.3. Dispositivos Reconfiguraveis

Os componentes de logica programavel sao dispositivos que possuem em sua légica
interna centenas ou milhares de portas logicas, flip-flops e registradores e sdo chamados de
dispositivos logicos programaveis, Programmable Logic Devices (PLD). Evoluem de
acordo com a necessidade de implementacdo de fun¢Ges mais complexas, sendo divididos,
de acordo com [Brown, 1996] em duas classes: Simple Programmable Logic Devices
(SPLDs) e High Capacity Programmable Logic Devices (HCPLDs).

SPLD, ou arranjo légico programavel, consiste de um circuito que possui uma
estrutura interna baseada em um conjunto de portas AND-OR. Estes arranjos sé podem ser
programados uma vez, ou seja, definida sua funcdo logica ela ndo podera ser mudada. Seus
principais representantes sao: Programmable Read-Only Memory (PROM), dispositivos
onde o arranjo AND é pré-definido em féabrica e somente o arranjo OR é programavel;
Programmable Array Logic (PAL), dispositivos opostos a PROM, onde as portas AND sao
programaveis enquanto as portas OR sdo pré-conectadas em fabrica; e Programmable
Logic Arrays (PLA), dispositivo que possui tanto a matriz de portas AND quanto a matriz

de portas OR programaveis.

HCPLDs, ou arranjos de portas programaveis, sdo estruturas mais genéricas e
versateis que as baseadas na estrutura tradicional AND-OR. A principal vantagem deste
tipo de circuito em comparacdo com os arranjos l6gicos programaveis € a possibilidade de
reprogramacao do comportamento de um circuito quantas vezes forem necessarias. Sdo
representados por Complex PLD (CPLD), dispositivos que utilizam em sua estrutura varios
PLD’s interligados através de conexdes programaveis; e FPGA, dispositivo que possui
uma arquitetura baseada em blocos l6gicos configuraveis - Configuration Logical Blocks
(CLB), blocos de entrada e saida - In/Out Blocks (IOB), e chaves de interconexdo

programaveis.

2.4. FPGA

Os dispositivos mais utilizados atualmente para computacdo reconfigurdvel sdo as
FPGA'’s, projetadas inicialmente para prototipacdo de circuitos, apesar do seu custo e
acesso. Apresenta como principal vantagem a possibilidade de modificacdo da estrutura de
hardware de um sistema através de um processo denominado reconfiguracdo, o qual
permite o desenvolvimento incremental, corre¢do de erros de projeto, além da adi¢do de
novas fungdes de hardware [Moraes, 2004].

A FPGA se destaca na implementacdo de circuitos digitais, oferecendo uma boa
relacdo custo/beneficio, suportando a implementacdo de circuitos logicos relativamente
grandes. Apresenta maior flexibilidade que microprocessadores de uso geral e menor custo
que os circuitos integrados de aplicacdo especifica (ASIC) [Eskinazi, 2005]. Normalmente
as aplicacdes implementadas em FPGA sdo mais lentas e consomem mais energias que as

implementas em ASIC, mas as deste caso sé se justificam pela producdo em larga escala.

Focada em obter o resultado I6gico final desejado em cada projeto implementado, a
FPGA é composta por uma matriz de CLB’s cercados por uma rede de interconexao
programavel e os 10B’s [Martins 2003]. Estes IOB’s sdo programaveis e servem como
interface entre 0 mundo exterior e a logica interna do dispositivo. Sdo constituidos por
buffers bidirecionais com saida em alta-impedancia, logo, através de uma programacao
adequada pode-se configurar um pino da FPGA para funcionar como entrada, saida,
bidirecional ou coletor-aberto. Os CLB’s e a rede de interconexdo seréo descritos a seguir.

D I:l FPGA
L O 0o O O O B B
L \ﬂ SGOG000 .
i%gﬁﬁﬁﬁﬂ&%
D I:I . ﬁ{}ﬁ{}ﬁf}u*_\
i nEnlnEninitnteln i
Rede de Interconexdo Programavel ﬁ IR A i E I0B (Input / Output Block)
BOOOOnORG s
SOOOO0000:
[=t ipspipigepepipidy
cerEs S
[Hssy /
el

CLB (Cenfigurable Logic Block)
Figura 1 - Arquitetura de uma FPGA

2.4.1. Blocos Logicos Configuraveis

Os CLB’s formam um arranjo bi-dimensional de linhas e colunas. A arquitetura
destes blocos légicos varia de familia para familia e de fabricante para fabricante, mas
basicamente sdo compostos de pontos de entrada e registradores. Os pontos de entrada se
conectam a blocos que implementam fungdes puramente combinacionais como Lookup
Table (LUT), multiplexadores que direcionam o fluxo dos sinais internos do CLB. Os
registradores, tipicamente flip-flops, estdo ligados as saidas e também podem realimentar
as entradas dos geradores de fungfes combinacionais.

Todos os elementos ldgicos que compdem uma FPGA sdo configuraveis e
propiciam grande flexibilidade para a implementacdo de funcdes. Esta diferenca em termos
de simplicidade/complexidade destes elementos é chamada granularidade do dispositivo

reconfiguravel

Granularidade Fina: menor quantidade de logica ou poder computacional nas
unidades de reconfiguracdo [Hartenstein, 2001]. Oferece maior flexibilidade de
implementacdo de algoritmos em hardware, melhor desempenho devido a uma maior
aproximacdo entre a arquitetura pos-configuracdo e o algoritmo implementado, mas
também um alto custo de roteamento e de energia durante a reconfiguracdo, além de

maiores atrasos da propagacdo dos sinais. Usa portas logicas como blocos basicos de

construcdo, além de blocos funcionais compostos por tabelas, flip flops e mux [Moraes,
2001].

Granularidade Grossa: maior quantidade l6gica ou poder computacional nas
unidades reconfiguraveis, possuindo blocos de construcBes maiores, Unidades Logicas
Aritméticas (ULASs), multiplicadores, deslocadores, etc. S&o indicados para aplicacfes que
envolvem computagdes mais complexas como manipulagdes de imagens e outras tipicas
aplicacdes de caminho de dados, com manipulacdo de dados com largura (codificacdo) de

varios hits.
2.4.2. Blocos de Interconexao

Os blocos de interconexdo possuem chaves programaveis, comutadores que
permitem conectar os blocos l6gicos de maneira conveniente, em fungdo da necessidade de
cada projeto [Pontes, 2006]. A rede de interconexdo programavel é composta por
diferentes tipos de segmentos de conexdo, capazes de interligar a maioria das entradas e
saidas dos CLB’s entre si e aos I0B’s. Isso tudo permite que circuitos complexos,
maquinas de estado e algoritmos sejam implementados nos FPGA’s [Martins, 2003]. As
propriedades destes comutadores, tamanho, resisténcia em condugdo e capacitancia
parasita, definem a eficiéncia e o desempenho do dispositivo. As tecnologias mais usadas
na implementacdo dos mesmos sdo as tecnologias de programacdo baseada em memoria
estatica - Static Random Access Memory (SRAM), transistores e porta flutuante (floating

gate).

SRAM - nessa tecnologia, a chave de roteamento ou comutador é um transistor de
passagem ou um multiplexador controlado por uma memoria estatica de acesso aleatorio
SRAM. Ocupa muito espaco no circuito integrado e exige hardware externo auxiliar que
deve ser montado junto com os blocos ldgicos, entretanto tem como vantagem a

possibilidade de ser rapidamente configurada.

Anti-fusivel - essa tecnologia baseia-se num dispositivo de dois terminais que no
estado ndo programado apresenta uma alta impedancia (circuito aberto, modo de corte).
Aplicando-se uma tensao, o dispositivo forma um caminho de baixa impedéancia entre seus
terminais (circuito fechado, modo de condugdo). Essa € uma opcdo mais barata que a

opcéo de RAM estética.

http://pt.wikipedia.org/wiki/RAM

Porta flutuante - a tecnologia de porta flutuante (floating gate) baseia-se em
transistores Metal Oxide Semiconductor (MQOS), especialmente construido com dois gates
flutuantes semelhantes aos usados nas memorias Erasable Programmable Read Only
Memory (EPROM) e Electrical EPROM (EEPROM). A maior vantagem dessa tecnologia
é a sua capacidade de programacéo e retencdo de dados. Da mesma forma que em uma
memoria EEPROM, os dados podem ser programados com o circuito integrado instalado

na placa, caracteristica denominada In System Programmability (ISP).
2.5. Desenvolvimento em FPGA

Uma caracteristica importante das FPGA’s ¢ sua capacidade de ser programada em
campo pois sua funcionalidade ndo € definida na fundi¢do do chip e sim pelo projetista da
aplicacdo final, que usa métodos de reconfiguracdo

O processo de criacdo de uma logica digital ndo é muito diferente do
desenvolvimento de sistemas embarcados. Uma estrutura de descricdo de hardware é
escrita em uma linguagem de alto nivel (usualmente VHDL e Verilog), o codigo é
compilado e copiado para ser executado. Normalmente utilizam-se estas linguagens para
realizar um modelo Register Transfer Level (RTL) do projeto, ou seja, uma descri¢do do
projeto através do fluxo (transferéncia) de dados entre os seus registradores, controlado por

um sinal de clock [Souza, 2008].

Descrever circuito como um esquematico digital é também possivel. O esquematico
é uma representacdo visual de portas e componentes 16gicos combinacionais e seqlienciais
do hardware que fazem parte da solucdo implementada no sistema reconfiguravel,
obrigando o desenvolvedor a ter conhecimento de componentes I6gicos e desenvolvimento
de hardware. A parte da solucdo implementada em hardware reconfiguravel ¢é
desenvolvida utilizando ferramentas que a partir da captura do esquematico geram os bits
de configuracdo de um determinado dispositivo reconfigurdvel. Essa abordagem
geralmente ndo é aplicada a projetos grandes por causa da dificuldade que existe em se

fazer uma representacdo grafica de muitos componentes.

A principal diferenga entre o design de hardware e software € a maneira que o
desenvolvedor precisa pensar para resolver um problema. Desenvolvedores de software

tendem a pensar seqiiencialmente, mesmo quando estdo desenvolvendo aplicagdes

9

multitarefa. As linhas de codigo sdo escritas para serem executadas em uma ordem, pelo
menos dentro de uma tarefa em particular. Durante o projeto de hardware os designers
precisam programar em paralelo, todos os sinais sdo processados desta maneira, pois
trafegam através de um caminho de execucao préprio até o destino do sinal de saida. Sendo
assim, a descricdo do hardware cria estruturas que podem ser "executadas” todas ao

mesmo tempo, usualmente sincronizadas através de um sinal, como o de clock.

2.5.1. Etapas de Projeto em FPGA

Tipicamente, a etapa de inicio de um projeto em FPGA é a de compilagdo, que
consiste em duas etapas. Primeiro uma representacao intermediaria do projeto do hardware
é produzida, passo chamado de sintese (synthesis). A sintese consiste na traducdo do
cddigo da linguagem HDL para uma linguagem mais préxima da implementacdo, uma
representacdo chamada de netlist. Netlist independe de um FPGA ou CPLD em particular;
ele é armazenado geralmente em um formato padrdo, conhecido como Electronic Design
Interchange Format (EDIF) [Barr, 1999]. A existéncia prévia de layouts para 0s

componentes de hardware selecionados facilita bastante este processo.

A segunda etapa neste processo de traducdo é chamada de "place & route
(posicionar e rotear), este passo envolve tragar as estruturas Idgicas descritas no netlist em
macro celulas, interconexdes e pinos reais de entrada e saida. Este processo € similar a
etapa de desenvolvimento de uma placa de circuito impresso, permitindo otimizacgdes
manuais ou automaticas das disposi¢fes. O resultado deste processo é um bitstream, bits
de configuracdo de um dispositivo, determinando a fun¢do que o mesmo ira desempenhar a
partir do momento em que é configurado ou reconfigurado [Barr, 1999]. Neste momento
sdo especificadas também as portas de entrada ou de saida de cada elemento reconfiguravel
da matriz, gerando a configuracdo do roteamento dos dados. Quanto melhor o roteamento,
melhor a utilizacdo da é&rea do dispositivo reconfigurdvel e melhor o desempenho

conseguido na execucdo das funcdes configuradas no dispositivo.

Seguem-se apds estas etapas os periodos de simulacdo funcional. A verificagdo
funcional tem o objetivo de checar todas as funcionalidades de projeto e assegurar que
estas estdo ocorrendo da maneira especificada. Os testes em projetos de hardware podem

10

ser realizados através de elementos chamados testbenches, usados para criar simulagdes
para 0 modelo do Design Under Verification (DUV) ou Entidade Sob Teste (EST) que é
representado em alguma linguagem de descricdo de hardware. A fungdo do testbench é
criar estimulos que consigam ativar as funcionalidades desejadas no EST [Souza, 2008].
Os valores obtidos com a simulacdo da entidade de projeto podem ser observados através

de uma janela propria da ferramenta de simulacéo, utilizando formas de onda.

Uma vez criado um bitstream para uma FPGA € necessario baixa-lo no dispositivo.
Os dispositivos de légica programaveis sdao como memoria, as mesmas siglas sdo
utilizadas: PROM (para os programaveis apenas uma vez), EPROM, flash, etc. As
tecnologias EEPROM e flash incluem suporte a gravagéo "in-circuit, se assemelhando aos
micro-controladores, podendo suportar inclusive as interfaces JTAG. Em adicdo as
tecnologias de memdria permanente, existem também dispositivos baseados na tecnologia
SRAM com indices de memoria temporarios, necessitando ter seus dados recarregados
apo6s cada restauracdo do sistema ou do chip. Atualmente seu contetdo pode ser
manipulado on-the-fly; onde o bitstream é carregado de uma origem remota através de uma
rede, de modo que o projeto do hardware pode ser atualizado de forma tdo simples quanto

acontece com software.
2.6. Ambiente Integrado de Desenvolvimento (IDE)

Toda a parte de projeto, processamento, simulacdo e programacgdo de FPGA séo
feitas através de programas especificos, e cada fabricante disponibiliza programas que
suportam suas proprias FPGA’s ou fazem parcerias com empresas que produzam tais
programas. Devido a isso, esses programas especificos — Integrated Development
Environment (IDE) — possuem caracteristicas distintas e diferentes formas de realizar os
processos de desenvolvimento de FPGA, como sintese e simulag&o.

Este item tem como objetivo abordar partes do processo de desenvolvimento em
FPGA em trés ferramentas: Quartus Il (Altera), ISE Design Suite (Xilinx) e Lattice
Diamond (Lattice), a fim de demonstrar algumas de suas especificidades.

11

2.6.1. Quartus 11 9.0

O Quartus Il pertence a empresa Altera que lancou, em 1984, o primeiro CPLD e
ocupa o segundo lugar no mercado de dispositivos ldgicos reconfiguraveis. Ao inicializar

este IDE encontra-se o ambiente de trabalho exibido pela Figura 2.

4, Quartus II =T
File Edit View Project Assignments Processing Tools Window Help
[peda|@smeoa X< €2&(C>Tx[c5|k|e|® (w0

Project Navigator

Emty |
£y Complation Herarchy|

AIRSRA

Status ———————————— 1.
Module Progress % | Tme ©

x

QUARTUS'I1

Version 9.0

® Documentation

*[Czype | Message |

System /i Processin o 7, Estalnfo) Info b Waming A Citical Waming }y Evor } Suppressed } Flag /
8 [Message: 1| ¥ [Locaton] Locae

Figura 2 - Ambiente de Trabalho (Quartus II)

Primeiramente, cria-se um novo projeto, fornecendo, passo a passo, suas principais
informacdes: o diretdrio onde ele sera criado, o seu nome, o0 home da entidade que ficara
no topo de sua hierarquia (automaticamente sera dado a este arquivo o nome do projeto),
arquivos de design previamente implementados a serem adicionados, familia, dispositivo e
ferramentas opcionais de sintese, simulagdo e anélise temporal. Os campos onde deverdo
ser inseridas essas informac0es, as diversas janelas onde 0s mesmos se encontram e um

resumo geral das caracteristicas do projeto é apresentado pela Figura 3.

12

| Select the famdy and device you want to taiget for complation.
IlheN_ew Project Wizard helps you create a new project and preliminary project settings, including the W, [Device oy Ere—— =
oloring Fordy: [P <] | | o —
- 5’0}!:! ?!ﬁ! an? dilf:dlnry Hil ot Am
. Lame of the toplevel design entity v
. Project files and lbraiies Ghoeers (1o
- Target device family and device -
. EDA tool settings Taget device R |l
Yo hange the seings | isting project and speciy addiional project-wide settings with e neaedb o ey ¥ Show advanced devices
‘ou can change the settings for n existing project and specify additional project-wide settings wit B .
the Selfings command (Assignments menu. ou can use the various pages of the Selings diaog box ' Specfic device selected in ‘Avalable devices' is r
to add functionality to the project.
; Avalable devices
"M Whti the working drectom for this project? g e [Cowv. [LEs [Userls. | Memor. | Embed. | PLL
EP2C20AF 48447 1V 18752 315 233616 52 4
12\305p 2\ quaitus] J EP2C204F484I8 L) 107 me swcie &3 A
P iy U A tools -- ot tus Il soft - with t
- e of this proect? :Pigﬁg Specify the other EDA tools -- in addiion to the Quartus Il soltware - used the projec!
I J EP2C20F 256CE
| s Moeortmortos
What i the name of the top-level design entity for this project? This name is case sensitive and must T =
exactly match the entty name in the design fle. EPZC20F4ACT (| Toolname: [chone: =
N -] ' { E
r
| Use Existing Project Settings S‘
E Simulation
Select the: design fles you want to inchude in the project. Click Add Al to add all design files in the: Tool name: [‘Nmﬂ ﬂ
project diectory to the project. Note: you can ahvays add design fles to the project later. [
\4'. s ‘When you click Finish, the project will be created with the following settings:
- [ES | [[Proiect deectory:
e name i setry/sy... |HDL version AddAl g - Timing Analysis c/ahera/90sp2/quartus/
Toolname: (IS | Project name: teste
e Toplevel design entily teste
MNurmber of fles added: 0
= Number o user lbraries added: 0
Device assignments:
Farnily name: Cyelone II
Device: EP2C20F484C7
EDA tools:
 — Design entiy/synthesis: <None>
Simulation: <None>
Tim lysis: <None>
Operating conditions:
Core voktage: i
T ————— e Junciion temperature range: 065 °C

Figura 3 - New Project Wizard
Apbs a criacdo de um novo projeto e do desenvolvimento de um cddigo-fonte,

sintetiza o a fim de verificar sua sintaxe implementacdo na FPGA. O Quartus Il 9.0 possui
uma ferramenta de sintese integrada, logo, ndo é necessario o uso de outra ferramenta para

este processo, mesmo oferecendo esta opgao.

Na Figura 4 encontram-se, indicados por setas e circulos, alguns dos pontos
relevantes para realizar o processo de sintese. A janela Project Navigator, contém, em suas
trés abas (Hierarchy, Files e Design Units), informac6es a respeito do arquivo ou projeto
aberto na area de trabalho, como por exemplo, endereco e hierarquia do arquivo em relagéo
a um projeto. A janela Status identifica por meio de barras de 0 a 100%, a situacdo das
etapas da compilagdo. Na regido superior da Figura 4 encontra-se a barra de ferramentas da
area de trabalho, contendo o botdo para inicio da compilacdo (simbolo roxo). Na regido
inferior encontram-se as abas Warnings e Error, importantes para a visualizacdo de
possiveis erros ou ambiguidades na sintaxe do cddigo implementado. Por ultimo, na regido
referente a area de trabalho, depois de completada a sintese, encontra-se o Flow Summary,

um resumo das informacdes deste processo.

13

teste e - [J_/ISE Xima/blahftesie final/aniog isev]

Msr@eS| o) n wo 8|88 4 e

A an

| @ omstsnign P T T r——

Flaw Summary

essfl - Wed Oct 27 10:3539 2010
1

Total memary bits 0/239616(0%)
Embeckded Multiier 68 slemerts 0./ 52(0%
Total PLLs 0/4(0%)

=
For Helo.oress 1 A can GoB W[e

Figura 4 - Processo de Sintese

O Quartus I1 9.0 também possui um simulador integrado, além de permitir o uso do
simulador ModelSim. A partir de sua ultima versdo, 10.0, o simulador integrado foi
removido. Uma das maneiras mais simples de simular o projeto é por meio de um arquivo
Vector Waveform. Este arquivo permite a insercdo dos sinais a serem simulados que
preenchem a area de trabalho de forma semelhante a Figura 5. Nesta figura a seta indica a
barra de ferramentas de simulacdo, e o circulo a sua inicializacdo. A janela Status, que
anteriormente indicava a situacdo do processo de sintese, passa a indicar a situacdo do
processo de simulagé&o.

1M teste_ise.vwf HeBRH o e M @ &% 42le
@ Il aster Time Bar 100.0ns 4| | Pointer: 33988 ns Interval 23988 ng Start: Ops End 1.0ms
[% A Vel 0 ps TBDiDns 32DiDns dBDiD ns B-dDiD ns BDDiDns BBDiDns 1 12us T%Eus
Name 100. 100.0ns
% &, o
&) 0 acr H 1
1 ok HE T
[= ont KD 1 H H 1 H § 7 H] [B T
Yo % D7 gout H X
e
o 1 |12 sel_t H
L i3 trig H
Z FH state H 1]
YE)E]
X[I Iy
fy b
e
| R
B 2

Figura 5 - Processe de Simulacéo (Quartus I1)

Este simulador integrado permite ao usuario modificar, de forma simples, 0s sinais
a serem simulados, fornecendo a eles novos valores em intervalos de tempo especificos.
Além disto, as modifica¢bes nos codigos-fontes fornecem um retorno de visualizagao facil

e dindmico.

14

Este IDE possui um gerador de IP-cores, o Mega Wizard Plug-In Manager. A
Figura 6 indica duas janelas referentes a este aplicativo. A janela inferior seleciona qual o
IP-core, a ferramenta e a linguagem de descricdo de hardware a serem utilizadas, campos
indicados por circulos. A janela superior indica uma das etapas pelas quais o usuario deve
percorrer para configurar seu IP-core, no caso a memoria FIFO. Seus circulos
exemplificam algumas destas configuracGes: largura de dados, nimero de palavras e sinal
de clock. Nas demais etapas o usuario pode escolher os sinais de controle, o tipo de acesso
de leitura, o tipo de bloco de memdria, entre outras opg¢des para a implementacdo. Esta
ferramenta € muito préatica, fornece ao usuario, na janela superior, uma simbologia

equivalente a memoria configurada.

; _a FIFO
/ About Documentation

ection M
tection Py

SCFIFO Options Rdreq Option, Blk Type Optimization, Circuitry Pro

Currently selected device family:

mem_fifo2

data[7..0] q[7.0]

wrreq full How wide should the FIFD be?
rdreq empty
LISEderr..U] D_S—ff‘: erent output width ana set ty

How deep should the FIFO be?
Do you want & common dock for reading and writing the FIFG?

clock

& bits x 255 word

#! ‘Yes, synchronize both reading and writing to ‘dodk’.

Create one set of full fempty control signals.
Mo, synchrenize reading and writing to 'rddk’ and "wrdk',
respectively. Create a set of full fempty control signals for each dock.
‘which megafunction would vou like o customize? W_h\cr_; device family wil pou be ‘Cyclune I -
Select a megafunction from the lizt below HE
E1-[#] Installed Plug-ns ‘which type of output file do vou want to create?
~[7] Altera SOPC Builder G RHDL
-8 Anthmetls:) WHDL
Resource Usage [£-8 Communications Vel HDL
Q3
24 1ut + 1 M4K + 26 reg 3 g DsP sied
&) Gates ,
? Browse...
=& 10 What name do pou want for the output file?
- Interfaces ‘F:\Documents\FacuI\IC\Quartus Alterahteste_finalvmem_fifo2
- JTAG-accessible Extensions
[—]ﬁ mory Compiler
[Return to this page for another create operation

Figura 6 - Mega Wizard Plug-1n Manager
2.6.2. ISE Design Suite

O ISE pertence a empresa Xilinx, maior fabricante de dispositivos ldgicos
reprogramaveis, liderando este mercado desde a década de 90. Ao iniciar este IDE, o
mesmo apresenta uma janela a esquerda da sua tela inicial para que o usuério inicie seu
trabalho, podendo optar por criar um novo projeto, abrir um existente, entre outros,

conforme indicado na Figura 7.

15

B8 ISE Project Navigator
File Edit View Project Source Process Tools Window Help
DAEO L XDEX|wd|RAPRYARIAZS D0 FR[GE L9

| Getting Started 8 x|

No project is open

Figura 7 - Ambiente de Trabalho (ISE)

Optando pela criagdo de um novo projeto, novas janelas se abrirdo para que o
usuario forneca as caracteristicas desejadas para 0 mesmo (semelhante ao Quartus 1),
sendo elas demonstradas na Figura 8. As vérias informagdes necessarias sdo indicadas por
setas e estdo circuladas as op¢des de ferramenta de sintese e simulacdo. Diferentemente do
Quartus Il, a ferramenta de simulagdo ndo é integrada ao IDE, apenas pertencente a mesma

fabricante, Xilinx.

16

Create New Project

necfy project locaton and type.

N,

Enter a name, locations, and comment for the project

4
M Create New Source

Youmay optionally create one source at this tme. You can 8dd existing sources on the next page, and later create
‘additionsl sources with the Project->New Source” command,

Create a new source
Name: teste
Scurce File Type New Source...
Location: | F:\Documents Facul[CYISE Xinwlteste . : §
Desaription: | i - -
. | "Add Existing Sources
[Device Properties
added after the project the
speoy device and project propertes. Source" or Project->Add Copy of Source” commands.
Select the device and design flom for the project Add exetng sources
Property Name Value Source File Copy to Project | [Add source |
Product Cateqory All = 1
Family Spartan3A and Spartan3AN [~ .
Device XCISS0A (=]
Seectthe type of o devels) | package QL]
Top-evel source type: Speed s =] o
oL _________| eate2
Jop-Level Sovsce Trpe v :\Documents\Facul \IC\ISE Xilinx\teste2
Synthesis Tool XST (VHDL/ Verilog) [~ 1n, ry:
IW: [s.mumm 1Sim (VHDL/Verilog) 3] Description:
‘Prefered Lanqusqe Veriiog T=[ve Info Top Level Scurce Type: HDL
Manual Compile Order
ily: SpartandA and SpartandAN
Enable Enhanced Design Summary ¥ xe3s50a
Enable Message Filtering Tqied
Display Incremental Messages -5
[Moreinfo Next Carcel | e irte

Cancel

Figura 8 - New Project

O processo de sintese utiliza a ferramenta Synthesize-XST, opg¢do default para este
processo, aplicativo integrado pertencente a propria Xilinx.

TR

Figura 9 - Processo de Sintese (ISE)

01098 INTHeCt SEMES (67421 M010 - LRI}

ringrven [Eerar———— Srmeam
kbt (o TS <
Tmmgct Device X e LW *Wamngx < Mg
Produt Veoiem |02 113 +Rewting flesudes
fosspacant = T
| (o ——— e —— [T eap—
[T T —————— %]
Lok Uiee tiom |t Mekbe (UtRatn
| " 04 2]
| v)‘W. %
[o) yax| s
| wl 1l A
| A |
Dctobal Reurts 18]
Ropnt e Pt |Gomerated Uroes | Wamkas Tals
Tty Japiet Crut |ouzz pmxWITN |0 leox 0
-«nm -W:V | | | |
=
Pk 3¢ A Pt
Pover pert
st 1A B e gt
T

Pode-se dividir a Figura 9 em trés janelas principais, a area de trabalho - parte

maior, Hirearchy - superior a esquerda, e Processes - inferior a esquerda. A seta em

Hirearchy indica qual arquivo esta no topo da hierarquia do projeto, enquanto que a seta

em Processes indica a inicializacdo da sintese dos mdédulos, entre outros processos. O

circulo indica as categorias dos processos encontrados em Processes, implementacéo

(opcdo para o processo atual), simulagdo comportamental e simulagdo post-route. A

analise de warnings e errors se da por meio da janela Design Summary, janela sobreposta a

17

area de trabalho indicada pela seta mesma, que surge apds o término do processo de
sintese. Vale ressaltar que para a compilacdo de alguns cdodigos deve-se modificar a opgéo
loop iteration limit nas propriedades de sintese, visto que a mesma € pequena em sua
condicéo default.

Para realizar a simulagdo do projeto este IDE utiliza-se um arquivo de testbench,
juntamente ao aplicativo ISim, simulador ndo integrado a ISE mas pertencente a propria
Xilinx. Antes de se inicializar este processo, deve-se modificar a categoria de processo de
Implementation para Behavioral Simulation, o que modifica a janela Processes,
apresentando as seguintes agdes: Behavioral Check Syntax e Simulate Behavioral Model. A
primeira acdo verifica a sintaxe do arquivo de testbench relacionado ao projeto e a segunda
inicia o processo de simulacdo em si. Se a sintaxe do testbench estiver correta, ao se
inicializar a simulacdo, uma nova janela se abrird automaticamente com a ferramenta I1Sim,
mostrando, por meio de formas de onda, a resposta do processo desejado, conforme a
Figura 10.

B o« [Dorall mu g™

Figura 10 - 1Sim

Esta figura apresenta as duas barras de ferramentas do ISim, com fungdes que
facilitam a visualizagdo do resultado da simulagdo. Devido ao uso de testbench, menos

pratico que um arquivo waveform, e do ISim, este processo se torna bem mais trabalhoso.

18

A realizacdo e visualizacdo de pequenas alteracBes a serem simuladas € bem menos

dinmica, sendo necessario retornar ao ISE ao invés de realiza-las no proprio 1Sim.

Como o Quartus |1, o ISE também possui uma ferramenta de geracao de IP-core,
(IP CORE Generator & Architecture Wizard). A Figura 11 mostra duas janelas referentes
ao aplicativo, a inferior, para selecdo de qual IP-core se deseja trabalhar, e a superior, para
sua configuracdo. Esta janela por sua vez se divide em duas areas, a da esquerda, com um
esquematico do IP-core (memdria FIFO), modificando-o a medida que ele € configurado; e
a da direita, possuindo etapas de configuracdo semelhantes ao o Mega Wizard Plug-In

Manager.

P Symbal 5

* gl Fifo Generator “L

FIFO Implementation

Chosse e FIFD implementaion from ore of the folowing:
Sepported Frateres.
Ty (1] (2)) 04 (8)
@ Common Clock (LK) Block RAM x

$FUL Cammon Clock (LK) Destrbuted RAM X
Common Clock (CLX) Shift Rngester
Buitin FIFO

o — Independent Clocks (RD1_CLK, WR,_CLK) Block RAM XX

Trdependent Clocks (RD_CLK, WR_CLK] Ditrbuted RAM X0
K} Bult-in FIFO

(1) Mos-symmetric aspect ratoes (dferent reed and write data widths)
{2) First-Word Fall- Theough

(3) Uses fuk-n FFO prmanes. | S2lect 1P
(4) ECC spport)
15) Dynaam Err pecon Create Coregen or Archibechure Wrzerd IP Corz.

Vi by Function | e by Name

Narme “ Vewsion Llicense

N & Fibre Chanmel Core M4 8

11

J " 11
Filtr litter on cinale DM outnut clack (DCMta § 11
FR Compile 10

% e e

Floating-point 40
Formar \ baard (OCM 11 -
Saaich IP Catalag: [g |
1 ARIP versars | Oy IF comantble with chasan park

Figura 11 - IP (CORE Generator & Architecture Wizard)

2.6.3. Lattice Diamond

O Lattice Diamond pertence a empresa Lattice Semicondutor, pioneira do sistema
de programacéo ISP e uma das trés maiores fabricantes de dispositivos reconfiguraveis de
todo o mercado internacional. Em sua inicializacdo, o Diamond apresenta uma pagina
inicial contendo suas opcOes iniciais e diversos links de acesso rdpido a projetos

trabalhados anteriormente e a guias de usuério e tutoriais, como mostra a Figura 12.

19

Lattice Diamond - Start Page

le Edit View Project Design Process Tools Window Help
A-Er-rHaS | payihie B R QQAQQ B EiAQIEEREDO
PESESESCEEQES<BS (<]
File List g x Start Page [£] & x
User Guides Reference Guides
Lattice Diamond User Guide Strategy
Managing Projects Constraints
% Import spLEVER Project... Entering the Design Hardware How-To
Simulating the Design IPexpress Modules
Recent Projects: Applying Design Constraints FRGA Libraries
(] teste se Implementing the Design Command Line
{7 teste_ise Analyzing Static Timing Tel Commands
[teste_mem_gerada Analyzing Power Consumption Glossary
] teste_mem_diamond Analyzing Signal Integrity Design Tool Reference
Programming the FPGA Tutorial
Reveal User Guide Lattice Diamend Tuterial
Software Update Center
Softw PdL e Applying Engineering Change Orders Lattice on the web
urrenty running Lattice Diamond software version:
- DD"BS qum Other Tool Guides Lattice Semiconductor
e Active-HDL (Windows only) What's New at Lattice
No updates avalable. Synplify Pro User Guide
Last check time: qua 27, out 09:23:05 2010 Lattice Forums
Synplify Pro Reference Manual Lattice Solutions
ispWM System Help Lattice Technical Literature
Tel/Tk (windows only) LatticeCORE Modules
FileList | Process
Cutput 8 X Warning 8 X
[T Corsole | Eror | warning |
Ready Mem Usage: 102,844 K

Figura 12 - Area de Trabalho (Diamond)

A sequiéncia de criacdo de um projeto é semelhante as ja abordadas, com diversas

janelas para selecdo das configuraces desejadas, conforme mostra a Figura 13. As

configuracdes iniciais do projeto estdo indicadas por setas. A Ultima janela apresenta um

resumo das configuracdes do projeto.

20

Figura 13 - Criando um Novo Projeto

Create a Lattice Diamond Project Select Device 4
Specify a target device for the project. v .,‘, v
This wizard wil guide you through the creation of a new project.
To create a Lattice Diamond project you will need to provide a
name and location for your project. Next you wil import source Select Device: Device Information:
files. You may adjust implementation options. Finally you wil \Fami . \ = Voltage: LV
process the source files to produce a programming fie for a SOy piDevice: tage: 3
speific FPGA device. LatticeEC LAXP2-SE LUT: 4752
LatticeECP LFXP2-5E Registers: 3564
LatticeECP2 LAXP2-8E £ EBR Bits: 16X
To continue, dick Next. LatticeXP LFXP2-8E EBR Blocks: 9
LatticeXP2 LAXP2-17E Dist RAM: 10.1%
\ MachXO LFXP2-17E > DsP: 3
Project Name i s ’ by Speed grade:() Package type: PLL: 2
Enter a name oject and spedify a drectory where the project data o
bl ek ik o Y o 5 G | [ToFP134 v] o -
- Operating conditions: PCS: =
oject: T = e
e ZS -
Name: 2 : 1
jeate Part Names:
—————
Location: ~ F:/Documents/Facul/IC/Diamond Lattice v | Browse... [LPXP2-SE-6TNI44C =)
: Online [=s=-stoss footoses =
Implementation: Project Information D
Name? teste The new project will be generated with the following spedifications. v " v
Location: F:/Dx /Diamond L
Project:
\Add Source > ’ijiect Name: teste
Add HOL, EDIF netiist, LPF constraints, or other fies. @ Project Location: F:/Documents/Facul/IC/Diamond Lattice
> Implementation Name: teste
Device: LFXP2-5E-6TN144C
Source fles: iAddSou-oe Remove Source
[<o | [ool |
Copy source to implementation directory
[<Back | [mext>][conca |

Ap0s a criagdo de um novo projeto e do desenvolvimento dos cédigos desejados, a

area de trabalho assume a forma encontrada na Figura 14, iniciando o processo de sintese.

Nesta figura destacam-se duas abas, File List e Process, encontradas a esquerda do

ambiente de trabalho. A primeira apresenta 0s arquivos incorporados ao projeto e a

segunda os processos pelos quais ele pode ser submetido. Para iniciar a sintese do projeto

basta um duplo clique na regido circulada, contendo o nome do processo e da sua

ferramenta integrada, Synplify Pro, que, diferentemente dos demais IDE’s, é um aplicativo

de outra empresa, empresa Synopsys.

21

E Xilinx/blah/teste_final/anlog_ise.v]

A-E - q
YEQELNSCEEQRA=BES B E
File List B3 \ R startPage
[teste_ise H‘ 1
W LFXP2-5E-6TN144C 2
Strategies Process

B e

L Synthesize Design
T Synplify Pro

Ngdbuild Report
To for Lattice D-2009.12L-1, Build 040R, Jan 20 2010
mond\1.0\synpbase

t

[Place & Route
[Signal/Pad
[JEDEC
[data_width-1:0142; 4 I Analysis Reports
2:0)atate; e

trig:
[data_width-1:0]datal;
aclrl;

0
OOO00gtutzann

P

[Plac oute Trace
[® 170 Timing Analysis
[10 550 Analysis

~| [T Consdle [Error | warning |
Ini1 Coli1 s Mem Usage: 111496 K

Figura 14 - Processo de Sintese (Diamond)

Com a sintese do projeto realizada, o usuario pode analisar o report deste processo,
indicado pela seta presente na area de trabalho do Diamond. Para a visualizacdo de
possiveis erros e warnings utiliza-se a janela mais inferior da Figura 14, também indicada

por uma seta.

Para o processo de simulacdo utiliza-se uma ferramenta externa que necessita de
projeto proprio, Active-HDL Lattice WebEdition 8.2, aplicativo também pertencente a
outra empresa, empresa Aldec. Para a criacdo deste projeto existem etapas de criacao
semelhantes as demais, com suas configuragfes: nome, ferramenta de simulagdo (a
ferramenta ModelSim pode ser utilizada), tipo de processo e arquivos-fontes de sinais.
Apdbs a criacdo deste novo projeto, abre-se o Active-HDL, com uma éarea de trabalho

conforme apresentada pela Figura 15.

22

2 (= o= No simulation

OO U U U

St | Hlkeys | Precined

S Fies /¥ Stnciure , csouces
Cl i SR Select signals

and stimulator type

Figura 15 — Active-HDL
O Active-HDL possui uma janela central onde podem ser vistos 0s arquivos abertos

e simulados. Ademais da central, possui também uma janela inferior, Console, contendo a
descricdo de possiveis erros e warnings, e uma janela lateral a esquerda, Design Browser.
Esta possui abas Uteis para 0 usuario, sua aba Files mostra os arquivos ja contidos no
projeto e fornece a opc¢éo de se criar um novo, enquanto que a aba Structure, apresenta a
escolha do arquivo “raiz” do projeto. O arquivo “raiz” fornece sinais para a simulagdo,
recebendo a palavra top em vermelho ao lado do seu nome Esta escolha deve ser feita pelo
campo top-level selection, regido circulada da janela Design Browser. Os atalhos mais

utilizados durante o processo de simulacdo também estdo circulados.

Mesmo a simulacdo sendo feita por um arquivo waveform, a forma de atribuicédo de
valores aos sinais a serem simulados é diferente da anterior, sendo necessario o uso da
janela sobreposta as demais, responsavel pela selecdo de um sinal e o tipo de valor a ser
atribuido. O Active-HDL ndo é uma ferramenta de simulagdo muito simples devido a
forma como se atribui valores aos sinais, sendo visualizados somente ap0s a finalizac¢éo do
processo. Apesar disto, possui como diferencial o fato do usuério poder modificar e
compilar os codigos do projeto original no proprio Active-HDL, permitindo uma réapida

visualizacao das respostas a pequenas alteraces.

Sua ferramenta de geracdo de IP-core é a IPexpress, mais simples que as demais,
possuindo apenas uma etapa de configuragdo. A Figura 16 indica duas janelas, a inferior

com opcbes de qual IP-core, linguagem de descricdo de hardware e familia deseja-se

23

trabalhar, e a op¢do customize, responsavel pela abertura da janela superior. Esta, por sua

vez, possui as possiveis configuracbes da memoria, indicadas pelo circulo, e sua

representacdo, indicada pela seta.

Configuration | Generate Log

FIFO

= Data[17:0] [EIR) | o
— Clock Empty—=
—3 WiEn Full—
—3 RdEn

AlmostE mpty—

— Reset AlmostFull—-

Estimated Resource Usage:
Ur: 129

-l =
LUT: 1
EBR: 1
Reg: 34

Bus Ordering Style:
Big Endian [MSE:LSE] >

™ Import IPX to Diamond project

Corfiguration |

FIFO Impley lan
o Based

ddress_depth |512 [2131072)

[~ Enable Dutput Register

Flag Control
¥ #Imast Empty Flag

Agsert |10 (1-512)

 LUT Based

D ata_width |18 [1-256]

I Cortralled by RdEn

Static - Dual Thieshold hdl
Deassert [12 [1-512)

Almast Full Flag Static - Dual Threshald ﬂ
eyt [G02 [1612] Deassert [506 [-512)
Name Version """ FIFO 4.8
i sin-Cos_Table 12)
E Subtractor 31 Macro Type: Module Version: 4.8
4 (£ DSP_Modules Module Name: FIFO
I MAC 33 —
3 Mo 10 ProjectPath: acul/ic/Dismond Latticefparametros | Browse... |
ot MULTADDSUB 40 File Name: ~
ik MULTADDSUBSUM 40
4 2y Memory_Modules Moglié Cutput: | verilog Y -]
4 &4 Distributed_RAM evice Family: LatticeXP2
i} Distributed_DPRAM 35
- N 3 =
i} Distributed_ROM 24 e LPXP2-SE-STNIMC
1o} Distributed SPRAM 35
4 % EBR_Components
i} RAM_DP 6.1 [customize |
{n} RAM_DP_TRUE 71 L
71 7

) g
1% RAM_Based_Shift_Register 4.1

Figura 16 - IPexpress

Vale ressaltar que, para a simulacdo do cddigo gerado referente a memoria FIFO

utilizando o Active-HDL, foi necessario adicionar ao mesmo duas linhas de comando

obtidos em fdruns do préprio Diamond:

PUR PUR_INST(.PUR(1'b1));

GSR GSR_INST(.GSR(1'b1));

2.7. Arquitetura das Familias de FPGA

Os principais fabricantes de FPGA possuem varias familias de dispositivos, cada

qual voltada para tipos diferentes de aplicacdes. Devido a disponibilidade do laboratério

que apoiou o0 desenvolvimento deste projeto, foram escolhidas as seguintes familias e
arquiteturas: Cyclone Il (EP2C20F484C7) [Altera, 2008], Spartan 3A(N) (XC3S50A-
5TQ144) [Xilinx, 2009] e LatticeXP2 (LFXP2-5E-6TN144C) [Lattice, 2010].

24

Na analise destes dispositivos um aspecto muito importante € o estudo de suas
arquiteturas internas, considerando os blocos l6gicos e os de interconexdo. A seguir

apresenta-se a analise das arquiteturas dos dispositivos reconfiguraveis citados.
2.7.1. Cyclone Il (EP2C20F484C7)

Dispositivos da familia Cyclone Il contém uma arquitetura bi-dimensional para
implementar a I6gica personalizada, responsavel pelas conexdes de Logic Array Blocks
(LAB’s), blocos de memorias, multiplicadores, etc. Estes LAB’s contém 16 elementos
I6gicos, pequenas unidades responsaveis pela implementacdo de funcgdes logicas. Estdo
presentes também nessa arquitetura blocos de memoria denominados M4K, dispostos em
colunas entre alguns LAB’s; e os blocos de multiplicadores embutidos, dispostos da

mesma maneira.

Como ja citado, a menor unidade Idgica da arquitetura do Cyclone Il é o elemento
l6gico, Logical Element (LE). Ele é compacto e fornece diversos recursos como: LUT de
quatro entradas, podendo implementar qualquer funcdo de quatro variaveis; um registrador
programavel; um bloco carry chain; entre outros. O Quartus Il é responsavel por adequé-lo
para seu melhor modo de operacdo: modo normal, apropriado para funcGes gerais de ldgica
e fungdes combinacionais, e modo aritmético, ideal para implementar contadores, por

exemplo.

Além dos 16 LE’s, cada LAB consiste de: sinais de controle, cadeia de
registradores, locais de interconex&o, etc. Estas conexdes locais realizam a transferéncia de
dados entre LE’s de um mesmo LAB, enquanto que a cadeia de registradores realiza essa
transferéncia entre LE’s de diferentes LAB’s. Essas conexdes garantem a eficiéncia de area

e 0 desempenho do processo de sintese.

A memoria embutida do Cyclone Il consiste de colunas de blocos de memoria
M4K. Estes blocos possuem registradores de entrada e de saida, além de serem capazes de

implementar varios tipos de memoria (single-port RAM, ROM, FIFO buffers, etc.).

Dispositivos Cyclone 1l possuem ainda blocos multiplicadores otimizados para
multiplicacdo intensiva de fungdes de processamento digital de sinais (DSP), podendo
operar como um multiplicador de 18-bit ou dois independentes de 9-bit.

25

2.7.2. Spartan 3A(N) (XC3S50A-5TQ144)

A arquitetura da geracdo Spartan-3 consiste de cinco elementos programaveis
fundamentais: CLB’s que podem operar para implementagdo logica e armazenamento de
dados por meio de LUT’s; blocos de RAM que armazenam dados na forma de blocos de
18-Kbit; blocos multiplicadores; e os Digital Clock Manager (DCM’s). Esta geracdo
possui uma rica rede de tracos que interconectam esses elementos funcionais e transmitem
sinais entre 0s mesmos, possuindo uma chave matricial associada que permite maultiplas

conexdes no roteamento.

Os DCM’s fornecem capacidades avangadas de clock para aplicagdes das FPGA’s
da geracdo Spartan-3. Estes blocos eliminam distor¢Ges do sinal de clock, multiplicam ou
dividem a frequéncia do clock de entrada para sintetizar uma nova freqiiéncia de clock,

realiza mudancas de fase do sinal, entre outras aplicacGes.

Toda a geragdo Spartan-3 apresenta blocos de RAM’s de 18 Kbits organizados em
colunas. Usando as varias opc¢des de configuracdo destes blocos, os mesmos podem criar
RAM, ROM, FIFO, grandes LUT’s, conversores de largura de dados, buffers circulares e

registradores de deslocamento.

Os CLB’s constituem o principal recurso logico para implementacdo sincrona e
combinatdria de circuitos e estdo dispostos em uma matriz regular de linhas e colunas.
Cada um destes elementos possuem quatro slices, que por sua vez, possuem duas LUT’s
para implementacdo légica e armazenamento de dados, dois flip-flops ou latches,

multiplexadores, carry-in e carry-out

Os slices séo agrupados em pares e divididos em dois grupos: os pares da esquerda,
que suportam funcdes l6gicas e de memoria, e os da direita que suportam somente funcdes
logicas. Ambos os grupos possuem duas LUT’s de quatro entradas, dois elementos
armazenadores, dois multiplexadores, além de elementos aritmeticos e de carry. Os pares
da esquerda podem ser utilizados como RAM de 16x1 ou registradores de deslocamento. A
combinacdo de uma LUT e um elemento armazenador € definida como uma célula logica,

e um slice equivale a 2,25 celulas logicas.

Os multiplicadores tém um funcionamento semelhante aos blocos multiplicadores

do item anterior, sendo que neste caso, eles implementam apenas multiplicadores de 18-bit.

26

2.7.3. LatticeXP2 (LFXP2-5E-6TN144C)

Cada dispositivo LatticeXP2 possui uma matriz de blocos légicos cercada por
Programmable 1/0 Cells (PIC’s). Entre as fileiras de blocos 16gicos se encontram linhas de
Embedded Block RAM (EBR’s), blocos de memorias, ¢ uma fileira de Digital Signal
Processing (DSP).

Existem dois tipos de blocos l6gicos, o Programmable Functional Unit (PFU),
responsavel por funcgdes logicas, aritméticas, RAM e ROM, e o Programmable Functional
Unit without RAM (PFF), responsavel pelas func@es logicas, aritméticas e ROM. Todos 0s
blocos séo alocados em uma matriz bi-direcional, mas cada fileira possui apenas um dos
tipos, além disso, ambos possuem quatro slices interligados. Trés dos quatro slices
existentes nos blocos logicos possuem duas LUT’s de quatro entradas e dois registradores,
enquanto o ultimo slice ndo possui registradores. Para o tipo PFU, os trés primeiros slices
podem trabalhar como memoria distribuida.

Os slices podem operar em quatro modos distintos: modo Légico, onde suas LUTs
sdo configuradas com quatro entradas; modo Ripple, permite uma eficiente implementacgéo
de pequenas funcdes aritméticas, gerando dois sinais de carry para funces que necessitem
concatenar slices; modo RAM, onde podem ser construidas memdrias 16x4-bit de porta

Unica ou uma pseudo 16x2-bit com porta dupla; e modo ROM.

Dispositivos LatticeXP2 possuem uma ou mais fileiras de blocos EBR’s, blocos de
memorias de 18 Kbits, sendo que cada bloco pode ser configurado como RAM ou ROM de
diversos parametros. FIFO’s podem ser implementadas com blocos EBR’s utilizando

PFU’s como légica suporte.

Além destes elementos, esta gera¢do contém uma ou mais fileiras de blocos DSP’s,
possuidores de multiplicadores e somadores/acumuladores para fungdes complexas de

processamento de sinal.
2.8. Linguagem de Descricao de Hardware

Ao projetar o hardware de um sistema embutido, HDL’s podem ser utilizadas para
realizar a descri¢do dos circuitos eletrénicos, executando sua légica ndo somente de acordo

com o fluxo do algoritmo, mas também seguindo a temporizacdo de um ou mais clocks.

27

Essas linguagens permitem descrever a forma como os circuitos operam, possibilitando
também a sua simulacdo antes mesmo de sua fabricacdo. As linguagens mais populares sao
VHDL e Verilog, que podem ser utilizadas como entrada para simulacdo e sintese automatica
de circuitos, através da utilizacdo de ferramentas comerciais bastante difundidas [Carro 2003].

Um programa utilizando HDL pode ser escrito basicamente usando dois tipos
(modelos) de descricdo: estrutural e comportamental. Na descricdo estrutural, é
apresentada a organizacdo fisica e topoldgica do sistema, ou seja, sdo especificadas as
entradas e/ou saidas, os componentes ldgicos, a interligacdo deles e os sinais que compdem
o0 sistema. Esta descricdo pode ser usada como entrada para 0 processo de simulacdo da

mesma forma que uma entrada esquematica.

Na descricdo comportamental é necessaria somente a descri¢cdo do comportamento
do circuito, o funcionamento de cada um de seus componentes. Um programa que utiliza
esse tipo de descricdo possui 0 mesmo formato de um programa fonte escrito em uma
linguagem de programacdo de alto nivel. Essa abordagem diminui a necessidade de
conhecimento em projeto de hardware, aumentando a facilidade de desenvolvimento do
sistema, no entanto, os sistemas gerados a partir desse tipo de descri¢cdo podem ndo ser tdo

otimizados em questdes de desempenho e area de dispositivo ocupada.

Portanto o diferencial de uma HDL é a sua capacidade de descrever
simultaneamente o comportamento de componentes individuais e como estdo interligados
[Tala], sendo processada seqiiencialmente nas estruturas individuais e de forma
concorrente entre estas estruturas. Em termos gerais o objetivo principal da HDL ¢é

caracterizar a sintese e propiciar a simulacao de projetos eletronicos.

2.8.1. Verilog

Verilog é uma das duas principais HDL’s juntamente da linguagem VHDL. VHDL
foi definido com um padrdo do Institute of Electrical and Electronics Engineers (IEEE) em
1987 [Amore, 2005]. Por sua vez Verilog foi aceito por este processo de padronizacao
apenas em 2001, apesar de ter sido criada em 1985 pela Gateway Design System
Corporation, agora pertencente a Cadence Design Systems, Inc’s Systems Division.

Verilog, por sua grande semelhanca com a linguem C, é preferida pela maioria dos

28

profissionais de engenharia elétrica e da computacdo. Este também foi o quesito decisivo
para a escolha do Verilog para a implementacgéo deste projeto.

A linguagem Verilog fornece ao designer digital um meio de descrever um sistema
digital em uma ampla gama de niveis de abstracdo, e, a0 mesmo tempo, fornece acesso a
ferramentas de projeto auxiliado por computador para ajudar no processo de design a estes
niveis. Uma representacdo abstrata ajuda o designer explorar alternativas de arquitetura
através de simulacbes e detectar pontos criticos do projeto antes de comecar o projeto
detalhado.

2.9. Analisador Logico

Na andlise de circuitos digitais é importante saber o que ocorre simultaneamente
com niveis légicos em diversos pontos de um circuito [Ribeiro, 1989]. Normalmente os
sistemas digitais operam com um fluxo continuo de dados, usualmente apresentados em
um periodo de tempo controlado por um sinal de temporizacdo. Para verificar se o
funcionamento do sistema esta correto, h4 a necessidade de testar os dados e analisar 0s
valores encontrados. O uso do analisador légico possibilita visualizar e analisar esses

dados.

O Analisador Ldgico € um instrumento de medida que captura os dados de um
circuito digital para posterior analise, de modo similar a um osciloscopio, mas difere deste
por ser capaz de visualizar os sinais de multiplos canais. Além de verificar o correto
funcionamento do sistema digital, os sinais capturados podem medir tempos entre
mudancas de nivel, nimero de estados l6gicos, etc. Utiliza-se um analisador 16gico quando
€ necessaria a andlise de uma determinada condicdo logica, copiando uma grande
quantidade de dados digitais do sistema ao que esta ligado, e por Gltimo, disponibilizando a
visualizagdo destes dados e o diagrama de fluxo do sistema.

Os dados podem ser apresentados através de um monitor, em forma de onda ou em
valores numeéricos (base decimal, hexadecimal ou binaria). Isto pode ser realizado através
de circuitos logicos habilitados em um determinado intervalo de tempo. O sinal amostrado
¢ uma palavra binaria que deve ser armazenada em uma memoria possuindo o menor
tempo de acesso possivel, para ndo interferir na velocidade de aquisi¢cdo de dados. Esta

memoria sera melhor abordada no item seguinte.

29

http://pt.wikilingue.com/es/Diagrama_de_fluxo

Um circuito de temporizagdo interno controla a amostragem e a armazenagem dos
sinais de entrada, possibilitando o dispositivo ver a resposta do sistema apds uma
ocorréncia especifica [Silva 2002]. Esta temporizacdo normalmente € disparada por um
sinal externo, um sinal de temporizacdo do circuito a ser testado. Muitos analisadores
I6gicos também possuem um temporizador interno que pode ser usado para manusear
fungdes de temporizagdo. Estes sinais, tanto o externo quanto o interno, definem uma das

principais caracteristicas de um analisador l6gico, sua capacidade de disparo (trigger).

A logica de funcionamento do analisador l6gico € definida atraves das opc¢des do
modo de captura e do modo de disparo. O modo de captura possui duas formas: o0 modo de
sincronismo, onde sdo colhidas amostras em intervalos regulares, com base em um clock
interno ou externo; e 0 modo de estado, onde um ou mais sinais séo definidos como clock,
e os dados sdao amostrados nas bordas destes sinais. Uma vez que o modo de captura do
analisador l6gico € escolhido, a condicao de disparo pode ser ajustada, podendo variar de
uma simples borda de sinal a um conjunto de condigdes que devem ser cumpridas. Apds
definir ambas as configuracdes, o analisador 16gico pode ser executado uma unica vez, ou

repetidamente.

Atualmente, dentre as categorias de analisadores légicos disponiveis no mercado
encontra-se a categoria PC-based, onde o hardware se conecta a um computador através
do cabo Universal Serial Bus (USB) ou Ethernet e retransmite os sinais capturados para o
software no computador. Esta categoria de dispositivos € geralmente muito menor e mais
barata, ndo necessitando de displays externos ou entradas de hardware, como teclados ou

botdes, sendo a categoria utilizada no projeto.
2.9.1. Memoria FIFO

Para o armazenamento dos dados adquiridos pelo analisador 16gico pode-se adotar
uma memodria do tipo First In, First Out (FIFO). Este tipo de memoéria é comumente usado
em eletrdnica para circuitos de controle de fluxo, usualmente partindo do hardware em
direcdo ao software. Sua nomenclatura, First In, First Out, faz referéncia a sua forma de
organizacdo e manipulacdo de dados relativos a prioridade, o dado que vem em primeiro
lugar é também lido em primeiro lugar, analogo ao comportamento de pessoas em uma
fila.

30

http://translate.googleusercontent.com/translate_c?hl=pt-BR&langpair=en%7Cpt&u=http://en.wikipedia.org/wiki/USB&rurl=translate.google.com&twu=1&usg=ALkJrhhu0c9RiGQmVXoEtkJWTM664X3DIA
http://translate.googleusercontent.com/translate_c?hl=pt-BR&langpair=en%7Cpt&u=http://en.wikipedia.org/wiki/Ethernet&rurl=translate.google.com&twu=1&usg=ALkJrhiAggFFY990D7QelFhOqHr9PCmdZA
http://translate.googleusercontent.com/translate_c?hl=pt-BR&sl=en&u=http://en.wikipedia.org/wiki/Electronics&prev=/search%3Fq%3Dhttp://en.wikipedia.org/wiki/FIFO%26hl%3Dpt-BR%26client%3Dfirefox-a%26hs%3DYz2%26rls%3Dorg.mozilla:pt-BR:official&rurl=translate.google.com&twu=1&usg=ALkJrhjCyRKtzhChumnxgJqCuwub2mVApQ

A memoria FIFO é caracterizada por um conjunto de ponteiros de leitura e escrita,
armazenamento e l6gica de controle. O armazenamento pode ser feito por meio de SRAM,
flip-flops, latches ou outras formas adequadas. Sua lIdgica de controle € baseada em seus
varios sinais de controle, os mais utilizados sdo: full, empty, write_enable e read_enable.
Ha também o sinal de clock, este define se a FIFO é sincrona, onde o mesmo clock é usado
tanto para leitura e escrita, ou assincrona, onde dois sinais de clock distintos sdo usados

para estes processos.

Em hardware, a memoria FIFO é usada para fins de sincronizacdo, geralmente
implementada utilizando um ponteiro de leitura e outro de escrita. Inicialmente a memoria
se encontra vazia e estes ponteiros possuem o endereco da sua primeira posi¢do. Quando o
ponteiro de leitura iguala o seu endereco ao endereco do ponteiro de escrita a memoria
fornece um sinal empty em nivel alto. Para o caso contrario, quando o ponteiro de escrita
alcanca o endereco do ponteiro de leitura, a memdria fornece um sinal full em nivel alto. O
controle de fluxo gera os sinais empty e full para que os dados da entrada ndo substituam o

conteddo ja armazenado na memodria.

A Figura 17 representa 0s processos de escrita e leitura, respectivamente, de uma

memoria FIFO, indicando os principais sinais de controle.

Write Interface

I I

| | | | |] |

LN T D L i D e

DIN p(D_%_02_X_03_X i Y !

] L]]] Ly |] 1 |] 1

o ! i i I I i $ i

i i i | | 1—4 | i |

FRead Intarface

| | | I | I | | |
HD_GLF_{’T_{T_{__}__{__{__{_

| I | I | I i | |

HD_EN 1 1 _If]] 1 I1|| 1

S e S S W SR b

DOUT X D1 X b2 X D3 X .

| | | | | ¥ |] : : :

sy T4 4 b bV

Figura 17 - Ciclos de Escrita e Leitura da Memdria FIFO

31

2.10. Consideracdes Finais

Como mencionado anteriormente, foram introduzidos, de forma sucinta, os
conceitos e as ferramentas adotadas na elaboracdo do projeto, necessarios para o seu
melhor entendimento. Deseja-se, portanto, que a leitura dos proximos capitulos deste

documento possa ser feita de forma mais satisfatoria

32

CAPITULO 3: DESENVOLVIMENTO DO
TRABALHO

3.1. Consideracdes Iniciais

Todo o desenvolvimento das atividades realiza-se nas ferramentas computacionais
Quartus 11, da Altera, ISE, da Xilinx e Diamond, da Lattice. A elaboracdo de uma versdo
inicial dos codigos referentes ao Analisador l6gico e sua memdria é feita utilizando o
Quartus 11, devido ao fato deste projeto ser baseado no uso de dispositivos reconfiguraveis

da propria Altera, utilizados nos trabalhos anteriores.

Apds a conclusdo do desenvolvimento dos codigos mencionados, as outras duas
ferramentas citadas, ISE e Diamond, sdo utilizadas para generalizagdo dos cddigos
elaborados, a fim de se obter um cédigo aberto. As simulacGes, tanto para a analise dos
cores, quanto para a validacdo do funcionamento e medidas de desempenho dos mesmos,
sdo executadas no Quartus II, e nos softwares integrados para simulacdo, ISim Simulator,

para o ISE, e Active-HDL, para o Diamond.

Sé&o utilizadas as linguagens de descricdo de hardware VHDL e Verilog, conforme
a necessidade, para a analise dos cores de micro controladores. A escolha da utilizacdo de
linguagens de descricdo de hardware, ao contrario da implementa¢do em esquematico,
facilita a implementacdo e a modificacdo, tanto dos moédulos, quanto da propria

arquitetura.
3.2. Projeto

A proposta do projeto todo pode ser descrita em trés etapas distintas:

1. Estudo da ferramenta de desenvolvimento Quartus Il — empresa Altera —
para elaboragdo dos moédulos do Analisador Logico e de sua memoria de
armazenamento de dados, além de simulagbes posteriores a fim de

validar seu funcionamento.

2. Estudo das demais ferramentas de desenvolvimento, ISE — empresa

Xilinx — e Diamond — empresa Lattice, para que, em posse dos méodulos

33

citados, possam ser realizadas supostas modificacBes necessarias para
generalizé-los, tornando-os codigos abertos.

3. Estudo das arquiteturas das FPGA’s adotadas pelos dispositivos em
questdo, e simulacdo dos modulos generalizados, variando seus
pardmetros de entrada a fim de efetuar uma anlise comparativa e

qualitativa destes dispositivos.
3.3. Descricéo das Atividades Realizadas

Tendo como base as trés etapas descritas na secdo anterior, descreve-se nesta a
implementacdo dos modulos referentes ao analisador I6gico e sua memdria FIFO. As
demais etapas — simulacdo dos modulos e anélise dos processos de sintese — estdo descritas
no capitulo seguinte, CAPITULO 4: RESULTADOS OBTIDOS.

3.3. Implementacao dos Cores

Para a implementacdo do projeto do Analisador LoOgico € necessario o
desenvolvimento de dois médulos distintos: do préprio analisador e de sua memoria FIFO.
Em ambos os modulos, para definicdo de suas ldgicas, utilizam-se méaquina de estados.
Esta modelagem requer registradores para armazenar o estado das variaveis e um bloco de

I6gica combinacional que determina o estado de maquina de estado.

Ademais destes dois modulos implementa-se um codigo exemplo afim de definir a
atuacdo do analisador légico. Este codigo exemplo é um simples contador sincrono com a
mesma largura de dados do analisador l6gico. Desta forma podem-se comprovar quais
dados sdo capturados pelo analisador l6gico e se a seqliencia dos mesmos esta correta.
Vale ressaltar que todos os codigos desenvolvidos se encontram nos Apéndices ao final

deste documento.
3.3.1. Implementacédo do Analisador Logico

A ldogica funcional de um analisador l6gico pode ser descrita conforme a Figura 18. Os
blocos nomeados como Estagio de Disparo e Base de Tempo representam o modo de
captura e a condicdo de disparo, configuragdes abordadas anteriormente. O bloco memoria

representa a memoria FIFO responsavel pelo armazenamento dos dados adquiridos e o

34

http://pt.wikipedia.org/wiki/Registrador

ultimo bloco, interface, é responsavel pela forma que os dados sdo apresentados ao usuario,

ndo implementada neste projeto.

'

ESTAGIO
DE
DISPARO

[|

BASE DE

DADOS

MEMORIA

TEMPO

|

4

INTERFACE

Figura 18 - Diagrama de Blocos do Analisador Logico

A Figura 19 a seguir representa uma maquina de estado do analisador l6gico e a

Figura 20 a um fluxograma com os principais sinais utilizados para a implementagédo do

codigo referente ao analisador I6gico.

dado = all one

Figura 19 - Diagrama de Maquina de Estados do Analisador L4gico

35

Estado
Inicial
SO

A

Estado Estado
> Trigger Interno Trigger Externo —
S2 S1

= all one

A

Estado > Estado
> Leitura Escrita
S4 > S3

A\ 4

Figura 20 - Fluxograma do Analisador Logico

Vale ressaltar que o fluxograma néo leva em consideracdo a influéncia do sinal de

entrada cilear. Independente do estado que o dispositivo se encontra ao ocorrer uma

36

transicdo para nivel alto deste sinal, o fluxo de dados se dirige para o estado SO,
reiniciando todo o processo. O estado SO representa a inicializagdo das fungbes do
analisador légico, zerando os pedidos de leitura e escrita e verificando a op¢éo de trigger —

externo ou interno - adotado pelo usuario.

Caso a escolha tenha sido pelo trigger externo (se1 _trig = 0), 0 fluxo de dados se
dirige para o estado S1. Neste estado o analisador se mantém em um laco de espera
enquanto ndo ocorrer uma transi¢do positiva do sinal de entrada trig. Este sinal representa
0 trigger externo, sendo o mesmo associado a algum outro sinal advindo do codigo que se
deseja analisar. Caso a memoria FIFO esteja toda preenchida, a mesma envia um sinal de
aviso (full = 1) e o préximo estado serd S4, caso contrario (full = 0) 0 estado seguinte

sera S3.

Caso a escolha tenha sido pelo trigger interno (sel trig = 1) 0 proximo estado
serd S2. Como acontece no estado S1, o analisador se mantém em um lago de espera
enquanto a entrada de dados ndo apresentar a palavra de trigger escolhida, no caso, a
palavra “all ones” - palavra com todos seus bits em nivel alto. Depois de reconhecida a
palavra de trigger (dado = all one), 0 nivel do sinal fu11 da memoria FIFO é analisado,

seguindo os mesmos fluxos descritos anteriormente.

O estado S3 é o ciclo de escrita da memoria, nele a memoria recebe o sinal write
request em nivel alto e comeca a gravar os dados presentes em sua entrada. Pela
implementacdo, a gravacdo se mantém enquanto a memdria ndo estiver totalmente
preenchida, ou seja, enquanto o sinal fu11 ndo estiver em nivel alto. Quando esta transi¢ao
ocorrer (fu11 = 1) o fluxo retorna para SO, reiniciando o processo. Este retorno para SO
ocorre a fim de evitar que a memdria, ao ser totalmente preenchida, comece a ler os dados

armazenados automaticamente, necessitando assim de outro sinal de disparo.

O estado S4 € o ciclo de leitura da memdria, nele a memoria recebe o sinal read
request e€m nivel alto e comega a enviar para a sua saida os sinais previamente
armazenados no estado S3. Esta leitura se mantém enquanto a memoria ndo estiver
completamente vazia, ou seja, enquanto o sinal empty nédo estiver em nivel alto. Apds isso

ocorrer (empty = 1) 0 analisador se dirige para S3, onde se reinicia o ciclo de escrita.

37

3.3.2. Implementacdo da Memoaria FIFO

Este item tem como objetivo explicar a logica adotada para a implementacdo de
uma memoria FIFO, descrita por meio do diagrama de maquina de estados presente na
Figura 21 ou por meio do fluxograma presente na Figura 22. O estado g0 é o estado inicial
da memdria FIFO, onde todos seus sinais de controle apresentam resposta em nivel baixo;
gl é o estado “esvaziar”, estado de espera pelo sinal habilitador de leitura rd_en; q2 é 0
estado de leitura, onde todas as posi¢cdes da memoria tém seus conteudos direcionados para
a saida da memoria, g3 € o estado “preencher”, estado de espera pelo sinal habilitador de
escrita wr_en, € g4 é o estado de escrita, onde os dados presentes na entrada da memdria

sdo enviados, um a um, para as posi¢des da memoria.

Figura 21 - Diagrama de Maquina de Estados da Meméria FIFO

Considerando que a memoria se inicia vazia (full = 0 € empty = 1), 0 fluxo
segue de g0 para g3. Neste estado, o fluxo entra em loop, esperando por uma transicao
positiva do sinal habilitador de escrita (write en = 1), €, a0 recebé-la, o fluxo segue para
g4. O dispositivo se mantém no estado de escrita até todas as posi¢des de memoria serem
preenchidas com os dados recebidos em sua entrada, apresentando o sinal fu11 em nivel
alto e empty em nivel baixo. Ao ser completamente preenchida, a memdria muda seu

fluxo de g4 para q0.

38

Com a memoria cheia, o fluxo segue de g0 para ql, neste estado a maquina entra
em loop, até receber uma transi¢do positiva do sinal habilitador de leitura (read en = 1),
quando se direciona de gl para g2. O dispositivo se mantém neste Gltimo estado esperando
que o contetdo de todas as posi¢cbes de memoria seja lido, esvaziando novamente a

memoria, apresentando o sinal fu11 em nivel baixo e empty em nivel alto.

Vale ressaltar que esta logica possui também um sinal de clear, independente do
estado que o dispositivo se encontre ao receber uma transi¢do positiva do sinal a11 clear,

ele se direciona para o estado q0, estado inicial, reiniciando o processo.

Outra maneira de se obter um codigo referente & memaria FIFO necesséria para a
aquisicdo de dados é por meio dos aplicativos de geracdo de IP-cores encontrados nas
ferramentas de desenvolvimento. Foi gerada por meio da ferramenta Quartus Il um IP-core
referente a memoria FIFO, este médulo combinado com o modulo do analisador l6gico
forneceu os resultados esperados. Idealmente, um IP-core deve ser totalmente portatil, isto
é, ser facilmente inserido em tecnologias de qualquer fornecedor ou em qualquer
metodologia de projeto, mas estes codigos ndo foram aceitos nas demais ferramentas
abordadas, ISE e Diamond. Este fato justifica a implementacao deste codigo proprio para a

memdria FIFO, adequando-o a cada ferramenta de desenvolvimento trabalhada.

39

Estado
Inicial
qo

A\ 4

A

Estado Estado
> “Esvaziar” “Preencher” <
ql g3

Estado _4q Estado
> Leitura - Escrita «
g2 q4

Memoria
Cheia ?

Posicdes
Lidas ?

Figura 22 - Fluxograma Memoria FIFO
3.4. Consideracg0Oes Finais

Neste capitulo foi apresentado o projeto desenvolvido e as implementacOes

realizadas, focando nas considerag0es adotadas para as mesmas.

40

CAPITULO 4: RESULTADOS OBTIDOS

4.1. Consideracgdes Iniciais

Neste capitulo encontram-se as simulacGes dos cores implementados e a analise
qualitativa e quantitativa dos trés dispositivos. Consta também com a implementacéo fisica
do projeto utilizando o kit da Altera fornecido pelo laboratério.

4.2. Simulacdes do Analisador Ldgico

A fim de ogarantir o correto funcionamento dos mddulos previamente
implementados, foi feita a simulagdo dos mesmos nos trés IDE’s escolhidos, realizando as
alteracOes de sintaxe exigidas a cada novo dispositivo de desenvolvimento. A principio, 0s
trés soft-cores foram implementados e simulados utilizando o IDE Quartus Il, e como
exemplo de alteracdes na sintaxe inicial tem-se: forma da declaracdo do sinal de saida da
memoria FIFO ao utilizar o ISE, e forma de declaracdo dos mddulos como componentes

dentro de um cédigo ao utilizar o Diamond.

ApoGs ter garantido que a sintaxe dos mesmos fosse aceita para as trés IDE’s,
simulou-se o projeto todo, adotando como parametros para o analisador l16gico 0 maximo
de quatro palavras de quatro bits de largura. Observam-se os resultados que se seguem,
ressaltando que, para os trés casos, o projeto foi simulado com suas duas opcGes de trigger,

interno e em seguida externo.

A Figura 23apresenta a simulacgdo realizada por meio do Quartus Il e os sinais por
ele apresentados. Para o primeiro caso, trigger interno, tem-se a indicacdo de cada um dos
estados que o fluxo de dados percorre, das ocorréncias da palavra definida como disparo,
dos dados salvos e lidos da memdria. Para o segundo caso, trigger externo, tem-se
novamente a indicacdo dos estados percorridos, dados salvos e lidos da memoria, e das
ocorréncias de pulsos externos de disparo. Como se pode observar, o fluxo dos dados
obedece a légica implementada do analisador 16gico. O sinal ac1r em nivel alto mantém o
processo no seu estado inicial, sendo direcionado para os estados S1 ou S2, dependendo do
tipo de disparo. Estes disparos iniciam o processo de escrita, S3, encerrado apds a memoria
ter adquirido a quantidade maxima de palavras, e de leitura, S4, encerrado apds o ultimo

dado salvo na memoria ser enviado para a saida. Vale ressaltar que antes de se iniciar o

41

estado de leitura, o fluxo de dados retorna ao estado inicial e em seguida ao estado de
espera, aguardando pelo segundo sinal de disparo.

A Figura 24 apresenta a simulacéo realizada por meio do ISE, e os sinais por ele
apresentados, com exce¢do do sinal state. Como se pode analisar, a resposta das
simulacBes € praticamente a mesma resposta apresentada pela Figura 23, seguindo as
mesmas variagdes do fluxo de dados. A Gnica mudanca consideravel nesta simulacgdo se da
pela resposta do analisado l6gico ao sinal acir em nivel alto, forcando os sinais gout,

sel tetrigaassumirem valores desconhecidos.

A Figura 25 apresenta a simulacdo do projeto realizada por meio do Diamond, esta
inclui além dos sinais apresentados pelo Quartus Il, 0s sinais rdreq, wrreq, empty € full,
sinais de controle da memdria FIFO. As saidas apresentadas nesta simulacdo sdo as
mesmas apresentadas nos dois casos anteriores. Da mesma forma que ocorreu com a
simulacéo realizada por meio do ISE, enquanto o sinal acir se mantém em nivel alto,
algumas saidas desta simulacdo assumem valores desconhecidos, no caso, 0s sinais gout,
rdreq € wreqg. Devido aos sinais de controle da meméria FIFO, a Figura 25 apresenta
outras quatro andlises, a relagcdo dos estados de escrita e leitura com 0s sinais wrreq €
rdregq, respectivamente; e as transi¢cdes dos sinais empty € full, representando 0 momento
em que a memoria comeca a ser preenchida com dados e 0 momento em que a mesma
inicia o envio destes dados para sua saida. Estas analises sdo indicadas por circulos e retas

tracejadas, respectivamente.

42

ouIa1x%] Oulagx]

EJLDS] BiNyaT 138811 |edy) E1IDS] SEY- 1] I L S
opelis3 ope}s] opels] opels3 ope1sy opelsy | OPEISH
€) | v F SRS S ¢ € SR SN

[I
A osedsiq ap _um_:n_|..llll|
e . A B | 0
(o b s vk ez A A 0 3 I a0 e v 6k 8 d s 9k s
sopi| mOtmnI SOAJES SOpPER '\ _|.
oulalu| Dui=3uj
B1D5] BIN}ia] 1288 | IBRb] ED5] 1288 [EloU]
OpE1S] opels3 opeysy | OPEI=3 opels3 OpEe3s3 OpE}s]
AR ¢ ¥ 4 E 0] € i Z]
b -
=op| mow_mn.‘. . 3uo ||e = opep i Kl e & .‘.mco lIe = opep L

H =F B | 716,
H B £ 4
H s zL<am
H yob @ | s&@
H wE | &
H 4 |
H pe | pam
. =
i R E (e
H Fes ZL <
H nob @ [@
H wWE [&
H P L
H pe [Tpam

Figura 23 - Simulacdo do Projeto utilizando Quartus Il (Trigger Interno e Externo)

43

sopi| sopeQ

sopi| sopeq

OO OO OOl

oJedsiqg 2p
sos|ng

e Lt A T X T NN

soA|es sope(

3U0 ||e = opep

1ea)o ap
jeuls

desfd ap

|euls

T

buy @

}|as @

1pe @

lo:clinob g
[0:€hw g

u; 9]
vies
ipe Je
w9

[o:elinob iy 4

ol iy

Figura 24 - Simulacdo do Projeto utilizando ISE (Trigger Interno e Externo)

44

EpeIzeAsa eanya ap EpIyousaud 14253 3P
OpUas ELIDWSA opels3 Opuas eLOWSN opelsy

[E1a1y]
opels]

Iy

ar

=

dydwa

Jr

banm

Jr

oui=3u]

osedsig

baupl

Jr

[s0pi| sopep

¥ i L i o £ I Iy

aERE

Jr

—1

_
—
_
|
Fa

50n|B5 S0pED _u,x

jlylala]

DT G - G- - G T S G S G

U

Gy

| I.IJIIIIIJIIII
* OLQO_D Ip 505|Ng ’1

s

Jlal=

B [s s [e [[e) v S S = gy

A2

EpelZEASS Binya] 2p epiyaua=aid BJLOS] 3p
Opuss eLIOWS ope)sy Opuas ELOWSA opels]

Iy

ydwa

ar

banm

Jr

Oula)x]

b

Jr

==y S0P sopep

aERE

Jr

|
| ouedsiq
[
[

hab

U

Gy

=

Jlal=

A2

Figura 25 - Simulacdo do Projeto utilizando Diamond (Trigger Interno e Externo)

45

4.3. Teste Operacional Referente a Implementacéo Fisica

A implementacéo fisica dos modulos previamente simulados foi realizada no kit de
desenvolvimento DK-CYCII-2C20N da empresa Altera, pertencente a familia Cyclone 1I.

O kit pode ser visto na Figura 24.

Porta USB Blaster Oscilador 28 MHz

Botdo On/Off e Alimentacao,

Chave Run/Prog

Display de 7 segmentos Chaves Seletoras

Figura 26 - Kit DK-CYCII-2C20N
Esta figura indica, dentre os varios componentes do Kit, os utilizados nesta prética.
Para a realizacdo da mesma foi necessario alterar o codigo referente ao contador,
relacionando as suas entradas c1k, trig, sel trig € aclr ao oscilador de 28 MHz e
as chaves seletoras, respectivamente, e a sua saida gout ao display de 7 segmentos. O uso

do display de 7 segmentos exigiu uma l6gica de conversédo do sinal advindo de qgout .

Os demais itens indicados na Figura 26 representam 0s componentes responsaveis
pela programacdo da FPGA existente no kit. O acionamento da placa € feita pelo botédo
ON/OFF, a conexdo com o IDE se da por meio da porta USB Blaster, e a chave Run/Prog

habilita o envio das informacdes.

46

File Edit Processing Tools Window

¥ Enable realtime ISP to allow backgriound programming [for M2 11 devices)
Program.

@ File Configure

Stop teste_ise. sof EPZCTOFE36 006290C1 FFFFFFFF
Auto Detect
Delete

& Add File...
Change File...
Save File...

(2 4dd Device...
Up
Drowen

Blark-

Verify Blark Secynty
O

Bit | Erase
O

Device Checksum Uszercode Examine

ISP
CLAMP
O

Figura 27 - Ferramenta Programmer

Apo6s a configuragdo do kit para a programacao da FPGA, posiciona-se a chave na
opcao Run e utiliza-se a ferramenta Programmer indicada pela Figura 27. As marcagdes
representam os campos: hardware, responsavel pela conexdo (USB Blaster), modo de

comunicacdo (JTAG) e inicio de gravagéo.

Primeiramente realizaram-se simulacdes com o codigo modificado, a fim de
verificar se ele apresenta as mesmas respostas da Figura 21, em seguida, programou-se a
FPGA com os modulos ja abordados. Devido a alta freqiiéncia do oscilador presente no kit
ndo foi possivel analisar com precisdao o funcionamento do analisador I6gico trabalhando
na opcdo trigger interno, a saida apresentada pelo display de 7 segmentos se modificava
constantemente. Em contra partida pode-se comprovar o funcionamento do dispositivo em
sua opcao de trigger externo, ja que, adotando uma chave seletora como sinal de disparo,

fica a cargo do usuario reiniciar o ciclo de captura de dados.
4.4. Analise do Processo de Sintese

Para aplicacdes reais do analisador 16gico, 0 mesmo necessita de um maior nimero
de bits de dados e de palavras, adotaram-se entdo os parametros: 1024 palavras de 8 bits.
Ao tentar realizar a sintese do projeto com estes novos parametros obtiveram-se erros em
todos os trés casos. Estes erros se devem ao fato de que as trés ferramentas de sintese
utilizaram elementos l6gicos ao invés de blocos de memdria na implementacdo do soft-

core referente a memoria FIFO, sendo eles insuficientes para estes novos parametros.

47

A fim de solucionar este problema, iniciaram-se testes utilizando as memorias
fornecidas pelas ferramentas geradoras de IP-cores, Mega Wizard Plug-In Manager do
Quartus II, IP (Core Generator & Architecture Wizard) do ISE e IPexpress do Diamond.
Estes cddigos gerados, ao serem submetidos ao processo de simulacdo, apresentam o
mesmo comportamento que o codigo implementado referente @ memoria FIFO e utilizam
blocos de memoria em suas sinteses. Possuem como desvantagem o fato de funcionarem,

unicamente, com os IDE’s dos seus proprios fabricantes.

Para realizar uma analise comparativa destes trés processos de sintese, verificou-se
o0s reports fornecidos pelos mesmos ao utilizar tanto o soft-core implementado quanto o
IP-core gerado. Esta analise apresenta um alto nivel de dificuldade devido as diferentes
nomenclaturas adotadas por cada arquitetura. Para a melhor compreensdo do que estes
termos representam, sintetizaram-se ambos os tipos de memdria com diferentes
parametros, comparando item a item, além de estudar a arquitetura das FPGA’s contidas
nos dispositivos escolhidos. Vale ressaltar que a escolha dos dispositivos se deu pela

disponibilidade em laboratorio, sendo os trés pertencentes a categoria Low Cost FPGA.

O report fornecido pelo IDE da empresa Altera, Analysis & Synthesis Summary
Reports, possui, dentre as suas diversas informagdes, o nimero total de elementos légicos,
incluindo o total de fun¢Bes combinacionais e de unidades I6gicas; de registradores; e de
bits de memoria utilizados e disponiveis. Na Tabela 1 encontram-se os dados referentes aos

elementos l6gicos, registradores e bits de memdria.

O report fornecido pelo ISE, Synthesis Report, possui uma forma diferente de
abordagem. Analisa 0 uso de células no processo de sintese, dividindo-as entre BELS,
elementos l6gicos basicos como inversores, LUT’s, flip-flops/latches e buffers. Adota-se,
ao verificar todo o documento, que os flip-flops/latches sdo considerados como
registradores, enquanto que os LUT’s sdo considerados os elementos logicos. ESstas
consideracOes se devem ao fato de que cada LE da arquitetura Cyclone Il possui apenas
uma LUT. Para analisar a utilizacdo de blocos de memoria, é importante verificar os
reports gerados para o processo de Map. Na — Tabela 1 encontram-se os dados referentes
as LUT’s, aos registradores e aos blocos de memoria. Os reports desta ferramenta definem

como bloco de memdria o conjunto de 18 Kbits de memorias.

48

O Diamond fornece o documento Resource Usage Report, que também indica por
meio de LUT’s e bits de registradores os itens a serem comparados. Da mesma forma que
acontece com o ISE, utilizaram-se os reports gerados no processo de Map para a analise
dos blocos de memoria. Na Tabela 1 encontram-se os dados referentes as LUT’s, aos bits
de registradores e aos blocos de memoria. Nota-se que neste caso o fator limitante é
representado pelos slices do bloco légico PFU e nao as LUT’s como nos demais, utilizando
480 slices de um total de 405 (119%) ao sintetizar o projeto com a memoria implementada.
Os reports desta ferramenta definem como bloco de memdria o conjunto de 18 Kbits de

memarias.

De posse dos reports devidamente analisados constroi-se a tabela 1. Nesta tabela
sdo apresentados os dados referentes aos elementos reconfiguraveis e de memoria
utilizados na sintese da memdria obtida por soft-core e da obtida pela ferramenta de
geracdo de IP-core.

Tabela 1 — Elementos configuraveis e bits de memdria utilizados na sintese de um soft-core

implementado e de um IP-core gerado

Software Quartus Il ISE Digmond
Eamilia Cyclone II Spartan3A(N) LatticeXP2
. . XC3S50A- LFXP2-5E-
Dispositivo EP2C20F484C7 5TQ144 6TN144C
Slice (PFU +

Logic Element | Slice (M + L)

Memoria Elementos PFF)
P 23.078/18.752 7.917/704
Implementada Configuraveis 0 0 979/2.376
(123%) (1124%) (41%)
Elementos Logic Element Slice (M + L) Slice (PFU +
L 79/18.752 PFF)
Configuraveis 0 29/704 (4%) 0
Memoria Gerada (<1%) 97/4.752 (4%)

(IP_Core)
8.192/23.9616 | 18.432/55.296 | 18.432/165.888

Bits de Memodria (3%) (33%) (11%)

Para melhor entendimento desta tabela deve-se focar nas seguinte relac6es entre 0s

elementos configuraveis de cada uma das trés arquiteturas:

49

LAB =16 LE’s =16 * (LUT + registrador)
CLB =4 Slices (M + L) =4*(2 LUT’s + 2 registradores)

PFU/PFF =4 Slices = 3*(2 LUT’s + 2 registradores) + 2LUT’s
4.5. Discussao dos resultados

Apesar do sucesso no funcionamento do analisador l6gico, ou seja, 0s resultados
obtidos nas simulagcdes dos codigos implementados foram de acordo com o esperado,
verificou-se a dificuldade de se obter um cddigo geneérico (open-source) compativel com
os diversos fabricantes de FPGA’s. Isto se deve, principalmente, as caracteristicas
intrinsecas das mesmas, no caso deste projeto, exemplificadas pelos IP-cores e reports
gerados, ja que o uso de codigo gerado por uma ferramenta de desenvolvimento se mostrou

altamente limitado.

A respeito do uso dos IDE’s conclui-se que o ISE exige maior esforco devido a sua
interface ndo muito amigavel, ainda que ndo se possa negar a grande gama de recursos por
ele apresentado. O Diamond se mostra como a melhor opcéo, apresenta uma interface
amigavel, semelhante a fornecida pelo IDE da empresa Altera, além de inimeros recursos
tais quais os do ISE, mas de uso mais simples. Mesmo seu processo de simulacdo
apresentando uma forma complicada de atribuicdo de valores aos sinais a serem
analisados, ele ¢ mais simples do que o processo que se utiliza de um testbench. Por sua
vez, seu processo de sintese também se mostrou eficiente, visto que a divisdo dos blocos
I6gicos em PFF e PFU permitiu que o seu fator limitante ultrapassasse apenas 19% do total
permitido. Pelo fato deste IDE ser um produto recente da empresa Lattice Semiconductor,
estando em sua primeira versao, acredita-se que o mesmo sofrera diversas atualizaces em
um futuro préximo, tornando-se um forte competidor neste mercado, sendo valido

acompanhar o seu desenvolvimento.
4.6. Dificuldades e Limitacdes

No decorrer do desenvolvimento deste projeto foram encontradas algumas
dificuldades relacionadas ao uso e instalagdo dos softwares abordados e a analise dos

reports fornecidos pelos mesmos.

50

Para a instalacdo do ISE Design Suite foi necessario realizar alteracdes na
configuragdo dos computadores utilizados no desenvolvimento deste projeto, além de
alterar algumas configuraces especificas do proprio software. Para a simulacdo do IP-core
gerado pelo aplicativo IPexpress, do IDE Diamond, foi necessario acrescentar duas linhas
de codigo no mesmo. Em todos os casos foi de grande ajuda pesquisar possiveis solugdes
para estes problemas em foruns onlines. Com relacdo a analise dos reports, esta

dificuldade foi descrita anteriormente.

Além destas dificuldades, este projeto é limitado devido as proprias FPGA’s, suas
diferentes arquiteturas, etc. Esta limitagdo se deve também a incompatibilidade entre os IP-
cores gerados pelas suas ferramentas de desenvolvimento e aos processos de sintese.

4.7. Considerac0des Finais

Neste capitulo foram apresentados os principais resultados obtidos. Os resultados
mostraram que, mesmo com a evolucdo das aplicacdes envolvendo FPGA’s, o
desenvolvimento do projeto foi limitado pelas caracteristicas intrinsecas das mesmas e

pelas técnicas de sintese de seus dispositivos.

No proximo capitulo serd apresentada a conclusdo deste trabalho, além de
contribuicdes desse projeto, consideracdes sobre o curso de graduacao, e também possiveis

trabalhos futuros em relacdo a esse projeto.

51

CAPITULO 5: CONCLUSAO

5.1. Contribuicbes

A utilizacdo de diferentes ferramentas de desenvolvimento é uma pratica incomum,
normalmente o projetista utiliza tecnologias — FPGA e IDE — de apenas um fabricante.
Logo este documento fornece vérias informacdes a respeito destes softwares e aplicativos
que podem facilitar o trabalho de outros projetistas inexperientes em determinada
tecnologia. Este projeto permite também, por meio de suas analises, escolher uma

tecnologia especifica para determinada aplicagéo.

Num ambito pessoal, 0 projeto contribuiu para que o autor pudesse se aprofundar
na teoria dos dispositivos reconfiguraveis, FPGA especificamente. A maior parte da teoria
apresentada neste documento foi abordada de forma superficial durante a graduacdo, e
pertence a area de eletrbnica digital, area de grande evolucdo atualmente. Com base no
projeto, o autor foi capaz de desenvolver outro trabalho relacionado ao tema, o artigo
“Analise Comparativa e Qualitativa de Ferramentas de Desenvolvimento de FPGA’s”,

publicado no VII Southern Programmable Logic Conference, categoria Designer Forum.
5.2. Trabalhos Futuros

Ao completar este projeto observa-se que 0 mesmo pode ser continuado a fim de
que o analisador logico possa ter seus sinais apresentados externamente, utilizando
recursos como JTAG ou mesmo comunicacdo 12C. Em posse de uma interface de facil uso,
como um display de LCD, os sinais amostrados de um cddigo exemplo, como o contador
neste projeto, podem ser visualizados de maneira direta por qualquer usuario, sem a
necessidade de uma ferramenta de simulacdo. Logo, os desafios se baseiam na maneira de
adquirir estes sinais, envia-los por meio de um barramento e amostra-los corretamente em

alguma interface.

Outro aspecto que pode ser melhor trabalhado em projetos futuros é a elaboracéo de
modulos referentes a memorias que possam ser sintetizados utilizando blocos de memoria

ao invés de elementos logicos, maior fator limitante neste projeto.

52

REFERENCIAS

ALTERA, Cyclone Il Device Handbook, Volume 1. Cl15V1-3.3, 2008. Disponivel
em: www.altera.com/literature/hb/cyc2/cyc2_cii5v1.pdf.

AMORE, R. VHDL Descricao e Sintese de Circuitos Digitais. LTC Editora ,
2005.

BARR, M. Programmable Logic: What's it to Ya?, Embedded Systems
Programming, pp. 75-84, June, 1999.

BROWN, S; ROSE, J. Architecture of FPGAs and CPLDs: A Tutorial, IEEE
Design and Test of Computers, Vol. 13, No. 2, pp. 42-57, 1996.

CARRO, L.; WAGNER, F. R. Sistemas Computacionais Embarcados. In: JAI'03 —
XXI1I Jornadas de Atualizacdo em Informaética, 2003, Campinas.

ESKINAZI, R. LIMA, M. E. NASCIMENTO, P. S. e GUILHERMINO, A. FPGAS
dinamicamente reconfiguraveis: fluxo de projeto e vantagens na concepcao de circuitos
integrados, Congresso Brasileiro de Tecnologia — CONBRATEC, 2005

GUPTA, R; ZORIAN, Yervant. Introduction to core-based design. IEEE Design
and Test of Computers. 1997

HARTENSTEIN, R. A Decade of Reconfigurable Computing:A Visionary
Retrospective. In: Proceedings of the Conference on Design, Automation and Test in
Europe, p. 642-649, Piscataway, NJ, USA. IEEE Press, 2001.

LATTICE Semiconductor. Lattice XP2 Family Handbook. HB1004 Version 02.5,
2010. Disponivel em: http://www.latticesemi.com/documents/HB1004.pdf.

MARTINS, C. A. P. S; ORDONEZ, E. D. M; CORREA, J. B. T; e CARVALHO,
M. B. Computacdo Reconfigurdvel: Conceitos, Tendéncias e Aplica¢Bes. In: Jornada de
Atualizacdo em Informatica (JAI, 2003),p. 339-388, Campinas, SP, Brasil, 2003.

MORAES, F., MESQUITA, D. Tendéncias em Reconfiguracdo dinamica de
FPGAs. SCR'2001 - Seminario de Computacdo Reconfigurdvel. Belo Horizonte, MG,
Setembro, 2001.

53

MORAES, F; CALAZANS, N; MOLLER, L; BRIAO, E; CARVALHO, E.
Dynamic and Partial Reconfiguration in FPGA SoCs: Requirements Tools and a Case
Study. In: ROSENSTIEL, Wolfgang. Reconfigurable Computing. New York, USA. 2004.

PONTES, D.F; MADEIRA, C.S; Aplicacdo Da Linguagem Descritiva De
Hardware No Ensino De Circuitos Digitais, | Congresso de Pesquisa e Inovacgdo da Rede
Norte Nordeste de Educagdo Tecnoldgica. Natal-RN - 2006.

RIBEIRO, C. H. Projeto de um Analisador Logico Baseado em PC. Dissertacdo de
Mestrado no Ita, 1989.

SILVA, L.C; Aplicacdo de Computador Pessoal como Equipamento de Bancada
Multifuncional de Baixo Custo para Laboratdrios de Eletronica e Microprocessadores.

Dissertacdo de Mestrado: Universidade Federal de Itajuba. Itajuba, 2002.

SOUZA, A.R.C; Desenvolvimento e Implementacdo em FPGA de um Sistema
Portétil para Aquisicdo e Compressdo sem Perda de Eletrocardiogramas. Dissertacdo de
Pds-Graduacdo: Universidade Federal do Paraiba. Jodo Pessoa, 2008.

TALA, D. K, Verilog Tutorial. Disponivel em: www.asic-world.com

XILINX. Spartan-3AN FPGA FamilyData Sheet DS557-1 (v3.2), 2009. Disponivel

em: www.xilinx.com/support/documentation/data_sheets/ds557.pdf.

54

APENDICE A — Codigo Contador

//Gabriel Santos da Silva
//Cbdigo - Contador (exemplo de uso do analisador 1ldégico)

module count (clk, aclr, sel t, trig, cnt, qgout);

//pardmetros do analisador ldégico (também da memdéria FIFO)
parameter largura dado = 4;
parameter numeros dado = 8;

//sinais de entrada e saida
input clk;

input aclr;

input sel t;

input trig;

wire [2:0]state;

wire rdreq;

wire wrreq;

wire empty;

wire full;

wire [largura dado-1:0]qg;

output reg [largura dado-1:0]cnt;
output reg [largura dado-1:0]gout;

//analisador ldégico

// "mdédulo do analisador ldégico"

// #(largura do dado, numero de palavras)"nome" (entradas e saidas)
anlog# (largura dado,numeros_dado)

rec(clk,cnt,qg,aclr,sel t,trig,state,rdreq,wrreq, empty, full);

//incializacdo das variéaveis
initial
cnt = 0;

//1lbégica do contador
always @ (negedge clk) begin

cnt = cnt + 1; //a cada descida de clock acrescenta um ao contador
gqout = gy

end

endmodule

55

APENDICE B - Analisador L6gico

//Gabriel Santos da Silva
//Cbédigo - Analisador Ldégico

//declaracdo de mdéddulo com state,

simulacéao
module

anlog(clk,datal,g2,aclrl,sel t,trig,state,rdreql,wrreql, emptyl,fulll);

//paradmetros da membéria FIFO
parameter data width = 3;
parameter num palavras = 6;
//sinais das entradas e saidas
input clk;

input sel t;

input trig;

input [data width-1:0]datal;
input aclrl;

output [data width-1:0]g2;
output [2:0]state;

output emptyl;

output fulll;

output reg rdreql;

output reg wrreql;

//sinals auxiliares
reg [data width-1:0] flag;

//madquina de estados
reg [2:0]state;
parameter sO0O = 0, sl =1, s2

//memébria FIFO
//"mbédulo da memdria"

emptyl e fulll para analise de

//# (largura do dado, numero de palavras)

//"nome" (entradas e saidas)

mem fifo# (data width,num palavras)
mem(clk,aclrl,datal, rdreql,wrreql, fulll, emptyl, g2) ;

//1lbégica do analisador

always @ (posedge clk or posedge aclrl)

begin

if (aclrl == 1l)begin //aclr além de reiniciar a gravacdo na memodria
também retorna ao estado 0, ideal

state = s0; //sempre que iniciar o programa ele enviar um uUnico pulso de

inicializacéo.
end

else begin
case (state)

s0: begin //estado de inicializacéo

rdreql = 0;

wrreqgl = 0;
if (sel t == 0) //seleciona entre trigger externo ou interno
state = sl;

56

else

state = s2;

end

sl: begin //estado de trigger externo

if (trig == 1'bl) // se o trigger receber algum sinal externo inicia o
processo

if (fulll == 1) //caso j& tenha ocorrido o ciclo de escrita
state = s4;

else //caso ainda nao tenha ocorrido o ciclo de escrita
state = s3;

else

state = sl; //loop de espera pelo sinal externo de trigger
end

s2: begin //estado de trigger interno
flag = datal + 1'bl; //flag para auxilio da palavra de trigger devido

variacdo do seu tamanho

if (flag == 0) // palavra de triger compativel

if (fulll == 1) //caso j& tenha ocorrido o ciclo de escrita
state = s4;

else

state = s3; //se a palavra for a de trigger inicia o processo
else

state = s2; //loop de espera pela palavra de trigger compativel
end

s3: begin //estado de escrita na memdbria

rdreqgl = 0;

wrreql = 1; //solicitacdo de escrita

if (fulll == 1)
state = s0;

// memdéria atinge seu nivel maximo

else //enquanto a memdéria ndo estiver preenchida mantém os mesmos pedidos

e gravando

state = s3;

end

s4: begin //estado de leitura da memdbria
rdreql = 1; //solicitacdo de leitura
wrreql = 0;

if (emptyl == 1) //memdria vazia

state = s3;

else //enquanto ndo estiver completamente vazia mantém os pedidos e lendo
state = s4;

end

endcase

end

end

endmodule

57

APENDICE C — Mem®dria FIFO

// Gabriel Santos da Silva
// Cébdigo - Memébébria FIFO

//OBS: todos os parametros, entradas e saidas sdo os encontrados em uma
memédria FIFO sincrona, tanto do QUARTUS quanto do ISE.

module mem fifo ise(clk, all clr, data, rd en, wr en, full, empty,q):;

//pardmetros da membria
parameter width = 4;
parameter num word = 7;
//sinais de entrada e saida
input clk;

input all clr;

input [width-1:0]data;
input rd en;

input wr_en;

output reg full;

output reg empty;

output reg [width-1:0]1qg;

//sinais auxiliares

//[a:0]vetor([b:0] - a indica a posicdo do vetor e b o vetor dentro do
//vetor de vetores

reg [width-1:0]mem[num word-1:0];

integer i;

//madquina de estados

reg [2:0]state;

parameter s inicial = 0, s write =1, s read = 2, s clear = 3,
s_preencher = 4, s esvaziar = 5;

//inicializacdo das variaveis
initial begin
full = 0

empty = 0;

i = 0;

state = s _inicial;
end

//1lbégica da memdéria FIFO

always @ (negedge clk or posedge all clr) begin

if (all clr == 1)

state = s _clear;

else begin

case (state)

s _inicial: begin //estado para verificar se a meméria ja& estd cheia ou
ndo (obs: vale ressaltar que para efeito de testes, a memdria se
inicializarad sempre vazia)

if (full == 0)

state = s _preencher;
else

state = s_esvaziar;

58

end
s _preencher: begin //estado apenas para espera do write enable.
if (wr_en == 1)

state = s _write;
else
state = s _preencher;

end

s write: begin //estado para escrita na meméria. Ao inicializar a escrita
ela continuard até preencher por completo a memdria

empty = 0;

if (i !== num word) begin

mem[i]=data;

i =1+ 1;

state = s _write;

end

else begin

full=1;

state = s _inicial;

end

end

s_esvaziar: begin //estado apenas para espera do read enable.
if (rd en == 1)

state = s _read;
else

state = s_esvaziar;
end

s _read: begin //estado para leitura da meméria. Ao inicializar a leitura,
ela continuard até ler todos os dados da memdria

full = 0;

if (1 !== 0) begin

i = 1-1;

g = mem[num word-1-i];

state = s_read;

end

else begin

empty = 1;

state = s _inicial;

end

end

s _clear: begin //estado de reset da meméria, tem g ser testado.

i = 0;

full = 0;

empty = 1;

q=0;
while (1
mem[i] =
i = 1i+1;
end

i=0;
state = s inicial;
end

endcase

end

end

endmodule

!== num word) begin //preenche a meméria com 0's
0;

59

APENDICE D - Testbench (Simulacéo ISE)

//Gabriel Santos da Silva
//Cbdigo - Testebench para o contador (utilizando o analisador e a
//membdria como componentes)

module sim ise;

//sinais de entrada
reg clk;

reg aclr;

reg sel t;

reg trig;

//sinais de saida
wire [3:0] cnt;
wire [3:0] gout;

// Instantiate the Unit Under Test (UUT)
//mbédulo da Unidade em Teste (UUT)
counter ise uut (

.clk(clk),

.aclr (aclr),

.sel t(sel t),

.trig(triqg),

.cnt (cnt),

.gout (gout)

)

//periodo do clock para simulacédo
always

#10 clk = ~clk;

initial begin

//inicializacdo das variaveis

clk = 0;
aclr = 1;
#20 aclr = ~aclr;
trig = 0;

//trigger interno
sel t = 1;

//trigger externo
/*sel t = 0;

#30 trig = ~trig;
#20 trig ~trig;
#150 trig = ~trig;
#20 trig = ~trig;
#300 trig = ~trig;
#20 trig = ~trig;*/
end

endmodule

APENDICE E -C6digo Contador Modificado

// Gabriel Santos da Silva
// Cbdigo - Contador (exemplo de uso do analisador 16gico)

module counter ise(iCLK 28,cnt, qgout,state,oHEX0O D, 1iSW);

//pardmetros do analisador ldégico (também da memdéria FIFO)
parameter largura dado = 4;
parameter numeros dado = 4;

//sinais de entrada e saida

input iCLK 28; //atribuic&o a pinagem do kit
input [3:0]1iSW; //atribuic¢do a pinagem do kit
output [2:0]state;

wire rdreq;

wire wrreq;

wire empty;

wire full;

output reg [largura dado-1l:0]cnt;

//analisador ldégico

// "mbébdulo do analisador ldégico" #(largura do dado, numero de
palavras) "nome" (entradas e saidas)

anlog ise

(largura dado,numeros_dado) rec (iCLK 28,cnt,qg,aclr,sel t,trig,state,rdreq
,wrreq, empty, full);

//incializacdo das variédveis
initial cnt = 0;

//lbégica do contador
always @ (negedge iCLK 28) begin

cnt = cnt + 1; //a cada descida de clock acrescenta um ao contador
gqout = gy
sel t = iSW[0];//associacdo dos sinais de entrada com sinais externos

advindos do kit
trig = iSW[1];
aclr = 1SW[2];

case (gout) //lbégica de conversdo para o display de 7 segmentos
4'h0: oHEXO D = 7'b1000000;
4'hl: oHEXO D = 7'b1111001;
4'h2: oHEXO D = 7'b0100100;
4'h3: oHEXO D = 7'b0110000;
4'h4: oHEXO D = 7'b0011001;
4'h5: oHEXO D = 7'b0010010;
4'h6: oHEXO D = 7'b0000010;
4'h7: oHEXO D = 7'b1111000;
4'h8: oHEXO D = 7'b0000000;
4'h9: oHEXO D = 7'b0011000;
4'hA: oHEXO D = 7'b0001000;
4'hB: oHEXO D = 7'b0000011;
4'hC: oHEXO D = 7'b1000110;
4'hD: oHEXO D = 7'b0100001;
4'hE: oHEXO D = 7'b0000110;

61

4'hF: oHEXO D
endcase

end

endmodule

7'b0001110;

62

