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Resumo 

Um problema existente na análise de sinais digitais em sistemas embarcados 

implementados em FPGA é a visualização dos sinais entre os diversos módulos (On-Chip). 

Mesmo os fabricantes de FPGA possuindo aplicativos para este tipo de análise, os mesmos 

são restritos apenas aos dispositivos dos seus próprios fabricantes, sendo ideal um módulo 

interno que fosse open-source. Baseando-se nestes pontos decidiu-se pelo desenvolvimento de 

um analisador lógico On-Chip open-source. Desta forma, este projeto desenvolve um soft-

core referente ao analisador lógico, envolvendo o estudo de linguagens de hardware, além do 

estudo qualitativo das ferramentas de desenvolvimento dos principais fabricantes deste 

dispositivo no mercado atualmente. Os resultados obtidos permitem comprovar a eficiência da 

lógica adotada na implementação dos módulos; a capacidade da ferramenta de 

desenvolvimento Lattice Diamond em comparação com as demais ferramentas adotadas pelo 

mercado; e a dificuldade em superar as características intrínsecas das FPGAs de diferentes 

tecnologias, exemplificadas neste caso pelo uso dos elementos de memória embarcadas das 

FPGA’s, para a implementação do módulo analisador lógico. 

Palavras-chave: dispositivos reconfiguráveis, FPGA, analisador lógico, ferramentas de 

desenvolvimento. 
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Abstract 

One issue in the analysis of digital signals in embedded systems implemented in 

FPGA is the visualization of signals between the various modules (On-Chip). Even the 

manufacturers of FPGA possessing applications for this type of analysis, they are restricted 

only to their own devices manufacturers, making it ideal an internal module that was open 

source. Based on these points decided by the development of an On-Chip Logic Analyzer 

open-source. Thus, this project develops a soft-core that refers to the logic analyzer, involving 

the study of hardware description languages, beyond the qualitative study of the development 

tools from leading manufacturers of this device on the market today. The results prove the 

efficiency of the logic adopted in the implementation of the modules, the ability of the 

Diamond Lattice development tool in comparison with other tools used by the market, and the 

difficulty in overcoming the inherent characteristics of the FPGA’s from different 

technologies, exemplified in this case by the use of embedded memory elements of FPGA’s, 

to implement the logic analyzer module. 

Keywords: reconfigurable devices, FPGA, logic analyzer, development tools. 
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CAPÍTULO 1: INTRODUÇÃO 

1.1. Contextualização e Motivação 

Nos últimos anos o crescimento, tanto em diversidade, quanto em densidade, dos 

dispositivos reconfiguráveis e de suas ferramentas de desenvolvimento, tem favorecido a 

implementação de sistemas complexos em lógica integrada e programável, System on Chip 

(SoC), em um curto espaço de tempo. Altera, Lattice e Xilinx  são exemplos de empresas 

que desenvolvem soluções na área de sistemas reconfiguráveis digitais, cada uma delas 

possuindo suas respectivas ferramentas de desenvolvimento: Quartus II, Diamond e ISE. 

Trabalhar com Field-programmable Gate Array (FPGA) pode remeter ao estudo de 

soft-cores de microcontroladores e de periféricos para sistemas embarcados. Estes núcleos 

apresentam como principais vantagens o fato de poderem ser reutilizados (um mesmo soft-

core pode ser utilizado em diversos projetos, sem custo adicional e sem gasto com tempo 

de projeto) e serem portáteis (podem ser adequados a diversas plataformas de 

desenvolvimento de dispositivos reconfiguráveis). O uso das ferramentas de 

desenvolvimento de dispositivos reconfiguráveis, aliadas ao uso de linguagens de 

descrição de hardware possibilita o desenvolvimento de novos soft-cores para a área de 

instrumentação. 

Um problema existente na análise de sinais digitais em sistemas embarcados 

implementados em FPGA é a visualização dos sinais entre os diversos módulos (On-Chip). 

Mesmo os fabricantes de FPGA possuindo aplicativos para este tipo de análise, os mesmos 

são restritos apenas aos dispositivos dos seus próprios fabricantes, sendo ideal um módulo 

interno que fosse open-source. Baseando-se nestes pontos decidiu-se pelo desenvolvimento 

de um analisador lógico On-Chip open-source.  

O analisador lógico é um instrumento de medida específico para análise e 

comparação de sinais digitais, oferece um grande número de canais de entrada, permitindo 

trabalhar com circuitos mais complexos. O inconveniente desse equipamento está em seu 

alto preço, justificado por apresentar mais recursos do que o necessário em pequenas 

aplicações. 
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Para garantir que o analisador lógico implementado seja open-source há a 

necessidade de verificar seu funcionamento em diferentes ferramentas de desenvolvimento. 

A escolha das mesmas tem como base o ambiente atual do mercado de dispositivos 

reconfiguráveis, optando pelas empresas que mais se destacam no ramo. Como 

mencionado, existe também a necessidade do estudo das linguagens de descrição de 

hardware (HDL), optando-se pela linguagem Verilog, devido à maior facilidade de 

aprendizagem em relação à “Very High Speed Integrated Circuits” HDL (VHDL), visto 

que esta opção se assemelha a linguagem C, amplamente trabalhada na área de eletrônica 

digital.  

Este projeto foi elaborado a fim de solucionar os problemas citados neste item, 

criando o Analisador lógico para análise On-Chip de sistemas digitais implementados em 

FPGA, sendo uma solução barata e não condicionada ao seu fabricante. 

1.2. Objetivos 

Este trabalho dá continuidade ao trabalho de iniciação científica, tendo como 

objetivos principais o estudo das ferramentas de desenvolvimento de Dispositivos 

Reconfiguráveis existentes no mercado; a implementação de soft-cores de um analisador 

lógico para análise de sistemas digitais intra-FPGA  integrado ao estudo de linguagens de 

descrição de hardware (Verilog); e a análise do desempenho dos soft-cores 

implementados, avaliando a relação de desempenho por célula lógica reconfigurável. 

1.3. Organização do Trabalho 

A fim de uma melhor compreensão das atividades realizadas neste projeto, esta 

monografia é organizada da seguinte maneira: 

 No Capítulo 2 é apresentada uma revisão bibliográfica sobre os assuntos 

pertinentes a este projeto: tecnologia dos dispositivos reconfiguráveis, em 

especial FPGA, e no desenvolvimento de projetos envolvendo a mesma; 

 No Capítulo 3 são descritas a metodologia adotada para a implementação 

dos módulos necessários para a execução do projeto;  
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 No Capítulo 4 são apresentados os resultados obtidos e uma análise dos 

mesmos. Também são expostas as principais dificuldades e limitações 

encontradas durante a realização deste projeto; 

 O Capítulo 5 contém uma conclusão acerca do projeto de Graduação, além 

de possíveis trabalhos futuros que possam tomar como base este projeto e 

contribuições que o mesmo fornece ao autor. 
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CAPÍTULO 2: REVISÃO BIBLIOGRÁFICA 

2.1. Considerações Iniciais 

Este capítulo tem como objetivo apresentar os conteúdos técnicos e conceituais 

utilizados durante a elaboração do projeto em questão; entre eles encontram-se a descrição 

de um analisador lógico, do tipo de memória utilizada pelo mesmo, além de abordar a 

tecnologia de FPGA, suas arquiteturas e plataformas de desenvolvimento.  

2.2. System on Chip e IP Core 

O avanço da tecnologia digital em relação ao nível de integração de componentes 

em chip propiciou o desenvolvimento de sistemas complexos em uma única pastilha de 

silício, que podem incluir processadores, módulos de memória e controladores de entrada e 

saída; sistemas estes denominados Systems on Chip (SOCs). Por sua vez, os projetos de 

SOCs estão se tornando cada vez mais complexos e a necessidade de integração e 

comunicação entre diversos sistemas embarcados - sistemas com capacidade 

computacional dentro de um circuito integrado - está se tornando característica chave dos 

sistemas modernos.  

Para conseguir atender as exigências de mercado, os projetistas de SOCs devem 

buscar novos métodos de projeto em nível de sistema. Estes métodos deverão possibilitar o 

desenvolvimento de hardware e software de forma eficaz, e também o reuso de blocos 

previamente projetados e verificados que executam tarefas específicas, os quais recebem o 

nome de Intellectual Property Cores (IP-Cores) [Moraes, 2004]. Podem-se destacar como 

principais vantagens associadas ao uso de SOCs e destes núcleos; baixo custo de 

fabricação em série; alta qualidade; baixa potência consumida; pequeno tamanho e alta 

velocidade. Os cores, segundo [Gupta, 1997], seguem a seguinte classificação: 

Soft Core – Consiste de uma descrição em HDL, código fonte, que pode ser 

mapeada para diferentes processos de fabricação, independente da tecnologia; 

Firm Core – Núcleo que contem mais estruturas, normalmente um netlist 

dependente da tecnologia, pronto para etapas mais avançadas do processo de 

desenvolvimento de projetos; 
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Hard Core - Inclui layout e informações referentes à temporização do circuito para 

uma determinada tecnologia, uma organização pré-definida que não pode ser modificado 

pelo projetista. 

2.3. Dispositivos Reconfiguráveis 

Os componentes de lógica programável são dispositivos que possuem em sua lógica 

interna centenas ou milhares de portas lógicas, flip-flops e registradores e são chamados de 

dispositivos lógicos programáveis, Programmable Logic Devices (PLD). Evoluem de 

acordo com a necessidade de implementação de funções mais complexas, sendo divididos, 

de acordo com [Brown, 1996] em duas classes: Simple Programmable Logic Devices 

(SPLDs) e High Capacity Programmable Logic Devices (HCPLDs).  

SPLD, ou arranjo lógico programável, consiste de um circuito que possui uma 

estrutura interna baseada em um conjunto de portas AND-OR. Estes arranjos só podem ser 

programados uma vez, ou seja, definida sua função lógica ela não poderá ser mudada. Seus 

principais representantes são: Programmable Read-Only Memory (PROM), dispositivos 

onde o arranjo AND é pré-definido em fábrica e somente o arranjo OR é programável; 

Programmable Array Logic (PAL), dispositivos opostos a PROM, onde as portas AND são 

programáveis enquanto as portas OR são pré-conectadas em fábrica; e Programmable 

Logic Arrays (PLA), dispositivo que possui tanto a matriz de portas AND quanto a matriz 

de portas OR programáveis. 

HCPLDs, ou arranjos de portas programáveis, são estruturas mais genéricas e 

versáteis que as baseadas na estrutura tradicional AND-OR. A principal vantagem deste 

tipo de circuito em comparação com os arranjos lógicos programáveis é a possibilidade de 

reprogramação do comportamento de um circuito quantas vezes forem necessárias. São 

representados por Complex PLD (CPLD), dispositivos que utilizam em sua estrutura vários 

PLD´s interligados através de conexões programáveis; e FPGA, dispositivo que possui 

uma arquitetura baseada em blocos lógicos configuráveis - Configuration Logical Blocks 

(CLB), blocos de entrada e saída - In/Out Blocks (IOB), e chaves de interconexão 

programáveis. 
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2.4. FPGA  

Os dispositivos mais utilizados atualmente para computação reconfigurável são as 

FPGA’s, projetadas inicialmente para prototipação de circuitos, apesar do seu custo e 

acesso. Apresenta como principal vantagem a possibilidade de modificação da estrutura de 

hardware de um sistema através de um processo denominado reconfiguração, o qual 

permite o desenvolvimento incremental, correção de erros de projeto, além da adição de 

novas funções de hardware [Moraes, 2004].  

A FPGA se destaca na implementação de circuitos digitais, oferecendo uma boa 

relação custo/benefício, suportando a implementação de circuitos lógicos relativamente 

grandes. Apresenta maior flexibilidade que microprocessadores de uso geral e menor custo 

que os circuitos integrados de aplicação específica (ASIC) [Eskinazi, 2005]. Normalmente 

as aplicações implementadas em FPGA são mais lentas e consomem mais energias que as 

implementas em ASIC, mas as deste caso só se justificam pela produção em larga escala.  

Focada em obter o resultado lógico final desejado em cada projeto implementado, a 

FPGA é composta por uma matriz de CLB’s cercados por uma rede de interconexão 

programável e os IOB’s [Martins 2003]. Estes IOB’s são programáveis e servem como 

interface entre o mundo exterior e a lógica interna do dispositivo. São constituídos por 

buffers bidirecionais com saída em alta-impedância, logo, através de uma programação 

adequada pode-se configurar um pino da FPGA para funcionar como entrada, saída, 

bidirecional ou coletor-aberto. Os CLB’s e a rede de interconexão serão descritos a seguir. 
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Figura 1 - Arquitetura de uma FPGA 

2.4.1. Blocos Lógicos Configuráveis 

Os CLB’s formam um arranjo bi-dimensional de linhas e colunas. A arquitetura 

destes blocos lógicos varia de família para família e de fabricante para fabricante, mas 

basicamente são compostos de pontos de entrada e registradores. Os pontos de entrada se 

conectam a blocos que implementam funções puramente combinacionais como Lookup 

Table (LUT), multiplexadores que direcionam o fluxo dos sinais internos do CLB. Os 

registradores, tipicamente flip-flops, estão ligados às saídas e também podem realimentar 

as entradas dos geradores de funções combinacionais.  

Todos os elementos lógicos que compõem uma FPGA são configuráveis e 

propiciam grande flexibilidade para a implementação de funções. Esta diferença em termos 

de simplicidade/complexidade destes elementos é chamada granularidade do dispositivo 

reconfigurável  

Granularidade Fina: menor quantidade de lógica ou poder computacional nas 

unidades de reconfiguração [Hartenstein, 2001]. Oferece maior flexibilidade de 

implementação de algoritmos em hardware, melhor desempenho devido a uma maior 

aproximação entre a arquitetura pós-configuração e o algoritmo implementado, mas 

também um alto custo de roteamento e de energia durante a reconfiguração, além de 

maiores atrasos da propagação dos sinais. Usa portas lógicas como blocos básicos de 
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construção, além de blocos funcionais compostos por tabelas, flip flops e mux [Moraes, 

2001]. 

Granularidade Grossa: maior quantidade lógica ou poder computacional nas 

unidades reconfiguraveis, possuindo blocos de construções maiores, Unidades Lógicas 

Aritméticas (ULAs), multiplicadores, deslocadores, etc. São indicados para aplicações que 

envolvem computações mais complexas como manipulações de imagens e outras típicas 

aplicações de caminho de dados, com manipulação de dados com largura (codificação) de 

vários bits. 

2.4.2. Blocos de Interconexão 

Os blocos de interconexão possuem chaves programáveis, comutadores que 

permitem conectar os blocos lógicos de maneira conveniente, em função da necessidade de 

cada projeto [Pontes, 2006]. A rede de interconexão programável é composta por 

diferentes tipos de segmentos de conexão, capazes de interligar a maioria das entradas e 

saídas dos CLB’s entre si e aos IOB’s. Isso tudo permite que circuitos complexos, 

máquinas de estado e algoritmos sejam implementados nos FPGA’s [Martins, 2003]. As 

propriedades destes comutadores, tamanho, resistência em condução e capacitância 

parasita, definem a eficiência e o desempenho do dispositivo. As tecnologias mais usadas 

na implementação dos mesmos são as tecnologias de programação baseada em memória 

estática - Static Random Access Memory (SRAM), transistores e porta flutuante (floating 

gate).  

SRAM - nessa tecnologia, a chave de roteamento ou comutador é um transistor de 

passagem ou um multiplexador controlado por uma memória estática de acesso aleatório 

SRAM. Ocupa muito espaço no circuito integrado e exige hardware externo auxiliar que 

deve ser montado junto com os blocos lógicos, entretanto tem como vantagem a 

possibilidade de ser rapidamente configurada. 

Anti-fusível - essa tecnologia baseia-se num dispositivo de dois terminais que no 

estado não programado apresenta uma alta impedância (circuito aberto, modo de corte). 

Aplicando-se uma tensão, o dispositivo forma um caminho de baixa impedância entre seus 

terminais (circuito fechado, modo de condução). Essa é uma opção mais barata que a 

opção de RAM estática. 

http://pt.wikipedia.org/wiki/RAM
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Porta flutuante - a tecnologia de porta flutuante (floating gate) baseia-se em 

transistores Metal Oxide Semiconductor (MOS), especialmente construído com dois gates 

flutuantes semelhantes aos usados nas memórias Erasable Programmable Read Only 

Memory (EPROM) e Electrical EPROM (EEPROM). A maior vantagem dessa tecnologia 

é a sua capacidade de programação e retenção de dados. Da mesma forma que em uma 

memória EEPROM, os dados podem ser programados com o circuito integrado instalado 

na placa, característica denominada In System Programmability (ISP). 

2.5. Desenvolvimento em FPGA 

Uma característica importante das FPGA’s é sua capacidade de ser programada em 

campo pois sua funcionalidade não é definida na fundição do chip e sim pelo projetista da 

aplicação final, que usa métodos de reconfiguração  

O processo de criação de uma lógica digital não é muito diferente do 

desenvolvimento de sistemas embarcados. Uma estrutura de descrição de hardware é 

escrita em uma linguagem de alto nível (usualmente VHDL e Verilog), o código é 

compilado e copiado para ser executado. Normalmente utilizam-se estas linguagens para 

realizar um modelo Register Transfer Level (RTL) do projeto, ou seja, uma descrição do 

projeto através do fluxo (transferência) de dados entre os seus registradores, controlado por 

um sinal de clock [Souza, 2008]. 

Descrever circuito como um esquemático digital é também possível. O esquemático 

é uma representação visual de portas e componentes lógicos combinacionais e seqüenciais 

do hardware que fazem parte da solução implementada no sistema reconfigurável, 

obrigando o desenvolvedor a ter conhecimento de componentes lógicos e desenvolvimento 

de hardware. A parte da solução implementada em hardware reconfigurável é 

desenvolvida utilizando ferramentas que a partir da captura do esquemático geram os bits 

de configuração de um determinado dispositivo reconfigurável. Essa abordagem 

geralmente não é aplicada a projetos grandes por causa da dificuldade que existe em se 

fazer uma representação gráfica de muitos componentes. 

A principal diferença entre o design de hardware e software é a maneira que o 

desenvolvedor precisa pensar para resolver um problema. Desenvolvedores de software 

tendem a pensar seqüencialmente, mesmo quando estão desenvolvendo aplicações 
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multitarefa. As linhas de código são escritas para serem executadas em uma ordem, pelo 

menos dentro de uma tarefa em particular. Durante o projeto de hardware os designers 

precisam programar em paralelo, todos os sinais são processados desta maneira, pois 

trafegam através de um caminho de execução próprio até o destino do sinal de saída. Sendo 

assim, a descrição do hardware cria estruturas que podem ser "executadas" todas ao 

mesmo tempo, usualmente sincronizadas através de um sinal, como o de clock. 

2.5.1. Etapas de Projeto em FPGA 

Tipicamente, a etapa de início de um projeto em FPGA é a de compilação, que 

consiste em duas etapas. Primeiro uma representação intermediária do projeto do hardware 

é produzida, passo chamado de síntese (synthesis). A síntese consiste na tradução do 

código da linguagem HDL para uma linguagem mais próxima da implementação, uma 

representação chamada de netlist. Netlist independe de um FPGA ou CPLD em particular; 

ele é armazenado geralmente em um formato padrão, conhecido como Electronic Design 

Interchange Format (EDIF) [Barr, 1999]. A existência prévia de layouts para os 

componentes de hardware selecionados facilita bastante este processo. 

A segunda etapa neste processo de tradução é chamada de "place & route 

(posicionar e rotear), este passo envolve traçar as estruturas lógicas descritas no netlist em 

macro células, interconexões e pinos reais de entrada e saída. Este processo é similar à 

etapa de desenvolvimento de uma placa de circuito impresso, permitindo otimizações 

manuais ou automáticas das disposições. O resultado deste processo é um bitstream, bits 

de configuração de um dispositivo, determinando a função que o mesmo irá desempenhar a 

partir do momento em que é configurado ou reconfigurado [Barr, 1999]. Neste momento 

são especificadas também as portas de entrada ou de saída de cada elemento reconfigurável 

da matriz, gerando a configuração do roteamento dos dados. Quanto melhor o roteamento, 

melhor a utilização da área do dispositivo reconfigurável e melhor o desempenho 

conseguido na execução das funções configuradas no dispositivo.  

Seguem-se após estas etapas os períodos de simulação funcional. A verificação 

funcional tem o objetivo de checar todas as funcionalidades de projeto e assegurar que 

estas estão ocorrendo da maneira especificada. Os testes em projetos de hardware podem 
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ser realizados através de elementos chamados testbenches, usados para criar simulações 

para o modelo do Design Under Verification (DUV) ou Entidade Sob Teste (EST) que é 

representado em alguma linguagem de descrição de hardware. A função do testbench é 

criar estímulos que consigam ativar as funcionalidades desejadas no EST [Souza, 2008]. 

Os valores obtidos com a simulação da entidade de projeto podem ser observados através 

de uma janela própria da ferramenta de simulação, utilizando formas de onda. 

Uma vez criado um bitstream para uma FPGA é necessário baixá-lo no dispositivo. 

Os dispositivos de lógica programáveis são como memória, as mesmas siglas são 

utilizadas: PROM (para os programáveis apenas uma vez), EPROM, flash, etc. As 

tecnologias EEPROM e flash incluem suporte à gravação "in-circuit, se assemelhando aos 

micro-controladores, podendo suportar inclusive as interfaces JTAG. Em adição às 

tecnologias de memória permanente, existem também dispositivos baseados na tecnologia 

SRAM com índices de memória temporários, necessitando ter seus dados recarregados 

após cada restauração do sistema ou do chip. Atualmente seu conteúdo pode ser 

manipulado on-the-fly; onde o bitstream é carregado de uma origem remota através de uma 

rede, de modo que o projeto do hardware pode ser atualizado de forma tão simples quanto 

acontece com software. 

2.6. Ambiente Integrado de Desenvolvimento (IDE) 

Toda a parte de projeto, processamento, simulação e programação de FPGA são 

feitas através de programas específicos, e cada fabricante disponibiliza programas que 

suportam suas próprias FPGA’s ou fazem parcerias com empresas que produzam tais 

programas. Devido a isso, esses programas específicos – Integrated Development 

Environment (IDE) – possuem características distintas e diferentes formas de realizar os 

processos de desenvolvimento de FPGA, como síntese e simulação.  

Este item tem como objetivo abordar partes do processo de desenvolvimento em 

FPGA em três ferramentas: Quartus II (Altera), ISE Design Suite (Xilinx) e Lattice 

Diamond (Lattice), a fim de demonstrar algumas de suas especificidades.  
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2.6.1. Quartus II 9.0 

O Quartus II pertence à empresa Altera que lançou, em 1984, o primeiro CPLD e 

ocupa o segundo lugar no mercado de dispositivos lógicos reconfiguráveis. Ao inicializar 

este IDE encontra-se o ambiente de trabalho exibido pela Figura 2. 

 
Figura 2 - Ambiente de Trabalho (Quartus II) 

Primeiramente, cria-se um novo projeto, fornecendo, passo a passo, suas principais 

informações: o diretório onde ele será criado, o seu nome, o nome da entidade que ficará 

no topo de sua hierarquia (automaticamente será dado a este arquivo o nome do projeto), 

arquivos de design previamente implementados a serem adicionados, família, dispositivo e 

ferramentas opcionais de síntese, simulação e análise temporal. Os campos onde deverão 

ser inseridas essas informações, as diversas janelas onde os mesmos se encontram e um 

resumo geral das características do projeto é apresentado pela Figura 3. 
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Figura 3 - New Project Wizard 

Após a criação de um novo projeto e do desenvolvimento de um código-fonte, 

sintetiza o a fim de verificar sua sintaxe implementação na FPGA. O Quartus II 9.0 possui 

uma ferramenta de síntese integrada, logo, não é necessário o uso de outra ferramenta para 

este processo, mesmo oferecendo esta opção.  

Na Figura 4 encontram-se, indicados por setas e círculos, alguns dos pontos 

relevantes para realizar o processo de síntese. A janela Project Navigator, contém, em suas 

três abas (Hierarchy, Files e Design Units), informações a respeito do arquivo ou projeto 

aberto na área de trabalho, como por exemplo, endereço e hierarquia do arquivo em relação 

a um projeto. A janela Status identifica por meio de barras de 0 a 100%, a situação das 

etapas da compilação. Na região superior da Figura 4 encontra-se a barra de ferramentas da 

área de trabalho, contendo o botão para início da compilação (símbolo roxo). Na região 

inferior encontram-se as abas Warnings e Error, importantes para a visualização de 

possíveis erros ou ambigüidades na sintaxe do código implementado. Por último, na região 

referente à área de trabalho, depois de completada a síntese, encontra-se o Flow Summary, 

um resumo das informações deste processo.  
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Figura 4 - Processo de Síntese 

O Quartus II 9.0 também possui um simulador integrado, além de permitir o uso do 

simulador ModelSim. A partir de sua última versão, 10.0, o simulador integrado foi 

removido. Uma das maneiras mais simples de simular o projeto é por meio de um arquivo 

Vector Waveform. Este arquivo permite a inserção dos sinais a serem simulados que 

preenchem a área de trabalho de forma semelhante à Figura 5. Nesta figura a seta indica a 

barra de ferramentas de simulação, e o círculo a sua inicialização. A janela Status, que 

anteriormente indicava a situação do processo de síntese, passa a indicar a situação do 

processo de simulação. 

Figura 5 - Processe de Simulação (Quartus II) 

Este simulador integrado permite ao usuário modificar, de forma simples, os sinais 

a serem simulados, fornecendo a eles novos valores em intervalos de tempo específicos. 

Além disto, as modificações nos códigos-fontes fornecem um retorno de visualização fácil 

e dinâmico.  
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Este IDE possui um gerador de IP-cores, o Mega Wizard Plug-In Manager. A 

Figura 6 indica duas janelas referentes a este aplicativo. A janela inferior seleciona qual o 

IP-core, a ferramenta e a linguagem de descrição de hardware a serem utilizadas, campos 

indicados por círculos. A janela superior indica uma das etapas pelas quais o usuário deve 

percorrer para configurar seu IP-core, no caso a memória FIFO. Seus círculos 

exemplificam algumas destas configurações: largura de dados, número de palavras e sinal 

de clock. Nas demais etapas o usuário pode escolher os sinais de controle, o tipo de acesso 

de leitura, o tipo de bloco de memória, entre outras opções para a implementação. Esta 

ferramenta é muito prática, fornece ao usuário, na janela superior, uma simbologia 

equivalente a memória configurada. 

 

Figura 6 - Mega Wizard Plug-In Manager 

2.6.2. ISE Design Suite 

O ISE pertence à empresa Xilinx, maior fabricante de dispositivos lógicos 

reprogramáveis, liderando este mercado desde a década de 90. Ao iniciar este IDE, o 

mesmo apresenta uma janela à esquerda da sua tela inicial para que o usuário inicie seu 

trabalho, podendo optar por criar um novo projeto, abrir um existente, entre outros, 

conforme indicado na Figura 7. 
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Figura 7 - Ambiente de Trabalho (ISE) 

Optando pela criação de um novo projeto, novas janelas se abrirão para que o 

usuário forneça as características desejadas para o mesmo (semelhante ao Quartus II), 

sendo elas demonstradas na Figura 8. As várias informações necessárias são indicadas por 

setas e estão circuladas as opções de ferramenta de síntese e simulação. Diferentemente do 

Quartus II, a ferramenta de simulação não é integrada ao IDE, apenas pertencente à mesma 

fabricante, Xilinx.  
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Figura 8 - New Project 

O processo de síntese utiliza a ferramenta Synthesize-XST, opção default para este 

processo, aplicativo integrado pertencente à própria Xilinx.  

 

Figura 9 - Processo de Síntese (ISE) 

Pode-se dividir a Figura 9 em três janelas principais, a área de trabalho - parte 

maior, Hirearchy - superior à esquerda, e Processes - inferior à esquerda. A seta em 

Hirearchy indica qual arquivo está no topo da hierarquia do projeto, enquanto que a seta 

em Processes indica a inicialização da síntese dos módulos, entre outros processos. O 

círculo indica as categorias dos processos encontrados em Processes, implementação 

(opção para o processo atual), simulação comportamental e simulação post-route. A 

análise de warnings e errors se dá por meio da janela Design Summary, janela sobreposta à 
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área de trabalho indicada pela seta mesma, que surge após o término do processo de 

síntese. Vale ressaltar que para a compilação de alguns códigos deve-se modificar a opção 

loop iteration limit nas propriedades de síntese, visto que a mesma é pequena em sua 

condição default.  

Para realizar a simulação do projeto este IDE utiliza-se um arquivo de testbench, 

juntamente ao aplicativo ISim, simulador não integrado a ISE mas pertencente a própria 

Xilinx. Antes de se inicializar este processo, deve-se modificar a categoria de processo de 

Implementation para Behavioral Simulation, o que modifica a janela Processes, 

apresentando as seguintes ações: Behavioral Check Syntax e Simulate Behavioral Model. A 

primeira ação verifica a sintaxe do arquivo de testbench relacionado ao projeto e a segunda 

inicia o processo de simulação em si. Se a sintaxe do testbench estiver correta, ao se 

inicializar a simulação, uma nova janela se abrirá automaticamente com a ferramenta ISim, 

mostrando, por meio de formas de onda, a resposta do processo desejado, conforme a 

Figura 10. 

 

Figura 10 - ISim 

Esta figura apresenta as duas barras de ferramentas do ISim, com funções que 

facilitam a visualização do resultado da simulação. Devido ao uso de testbench, menos 

pratico que um arquivo waveform, e do ISim, este processo se torna bem mais trabalhoso. 
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A realização e visualização de pequenas alterações a serem simuladas é bem menos 

dinâmica, sendo necessário retornar ao ISE ao invés de realizá-las no próprio ISim. 

Como o Quartus II, o ISE também possui uma ferramenta de geração de IP-core, 

(IP CORE Generator & Architecture Wizard). A Figura 11 mostra duas janelas referentes 

ao aplicativo, a inferior, para seleção de qual IP-core se deseja trabalhar, e a superior, para 

sua configuração. Esta janela por sua vez se divide em duas áreas, a da esquerda, com um 

esquemático do IP-core (memória FIFO), modificando-o à medida que ele é configurado; e 

a da direita, possuindo etapas de configuração semelhantes ao o Mega Wizard Plug-In 

Manager.  

 
Figura 11 - IP (CORE Generator & Architecture Wizard) 

2.6.3. Lattice Diamond 

O Lattice Diamond pertence à empresa Lattice Semicondutor, pioneira do sistema 

de programação ISP e uma das três maiores fabricantes de dispositivos reconfiguráveis de 

todo o mercado internacional. Em sua inicialização, o Diamond apresenta uma página 

inicial contendo suas opções iniciais e diversos links de acesso rápido a projetos 

trabalhados anteriormente e a guias de usuário e tutoriais, como mostra a Figura 12. 
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Figura 12 - Área de Trabalho (Diamond) 

A seqüência de criação de um projeto é semelhante as já abordadas, com diversas 

janelas para seleção das configurações desejadas, conforme mostra a Figura 13. As 

configurações iniciais do projeto estão indicadas por setas. A última janela apresenta um 

resumo das configurações do projeto. 
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Figura 13 - Criando um Novo Projeto 

Após a criação de um novo projeto e do desenvolvimento dos códigos desejados, a 

área de trabalho assume a forma encontrada na Figura 14, iniciando o processo de síntese. 

Nesta figura destacam-se duas abas, File List e Process, encontradas à esquerda do 

ambiente de trabalho. A primeira apresenta os arquivos incorporados ao projeto e a 

segunda os processos pelos quais ele pode ser submetido. Para iniciar a síntese do projeto 

basta um duplo clique na região circulada, contendo o nome do processo e da sua 

ferramenta integrada, Synplify Pro, que, diferentemente dos demais IDE’s, é um aplicativo 

de outra empresa, empresa Synopsys. 
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Figura 14 - Processo de Síntese (Diamond) 

Com a síntese do projeto realizada, o usuário pode analisar o report deste processo, 

indicado pela seta presente na área de trabalho do Diamond. Para a visualização de 

possíveis erros e warnings utiliza-se a janela mais inferior da Figura 14, também indicada 

por uma seta. 

Para o processo de simulação utiliza-se uma ferramenta externa que necessita de 

projeto próprio, Active-HDL Lattice WebEdition 8.2, aplicativo também pertencente a 

outra empresa, empresa Aldec. Para a criação deste projeto existem etapas de criação 

semelhantes as demais, com suas configurações: nome, ferramenta de simulação (a 

ferramenta ModelSim pode ser utilizada), tipo de processo e arquivos-fontes de sinais. 

Após a criação deste novo projeto, abre-se o Active-HDL, com uma área de trabalho 

conforme apresentada pela Figura 15. 
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Figura 15 – Active-HDL 

O Active-HDL possui uma janela central onde podem ser vistos os arquivos abertos 

e simulados. Ademais da central, possui também uma janela inferior, Console, contendo a 

descrição de possíveis erros e warnings, e uma janela lateral à esquerda, Design Browser. 

Esta possui abas úteis para o usuário, sua aba Files mostra os arquivos já contidos no 

projeto e fornece a opção de se criar um novo, enquanto que a aba Structure, apresenta a 

escolha do arquivo “raiz” do projeto. O arquivo “raiz” fornece sinais para a simulação, 

recebendo a palavra top em vermelho ao lado do seu nome Esta escolha deve ser feita pelo 

campo top-level selection, região circulada da janela Design Browser. Os atalhos mais 

utilizados durante o processo de simulação também estão circulados. 

Mesmo a simulação sendo feita por um arquivo waveform, a forma de atribuição de 

valores aos sinais a serem simulados é diferente da anterior, sendo necessário o uso da 

janela sobreposta às demais, responsável pela seleção de um sinal e o tipo de valor a ser 

atribuído. O Active-HDL não é uma ferramenta de simulação muito simples devido à 

forma como se atribui valores aos sinais, sendo visualizados somente após a finalização do 

processo. Apesar disto, possui como diferencial o fato do usuário poder modificar e 

compilar os códigos do projeto original no próprio Active-HDL, permitindo uma rápida 

visualização das respostas a pequenas alterações. 

Sua ferramenta de geração de IP-core é a IPexpress, mais simples que as demais, 

possuindo apenas uma etapa de configuração. A Figura 16 indica duas janelas, a inferior 

com opções de qual IP-core, linguagem de descrição de hardware e família deseja-se 
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trabalhar, e a opção customize, responsável pela abertura da janela superior. Esta, por sua 

vez, possui as possíveis configurações da memória, indicadas pelo círculo, e sua 

representação, indicada pela seta. 

 

Figura 16 - IPexpress 

Vale ressaltar que, para a simulação do código gerado referente à memória FIFO 

utilizando o Active-HDL, foi necessário adicionar ao mesmo duas linhas de comando 

obtidos em fóruns do próprio Diamond: 

PUR PUR_INST(.PUR(1'b1)); 

GSR GSR_INST(.GSR(1'b1)); 

2.7. Arquitetura das Famílias de FPGA 

Os principais fabricantes de FPGA  possuem várias famílias de dispositivos, cada 

qual voltada para tipos diferentes de aplicações. Devido à disponibilidade do laboratório 

que apoiou o desenvolvimento deste projeto, foram escolhidas as seguintes famílias e 

arquiteturas: Cyclone II (EP2C20F484C7) [Altera, 2008], Spartan 3A(N) (XC3S50A-

5TQ144) [Xilinx, 2009] e LatticeXP2 (LFXP2-5E-6TN144C) [Lattice, 2010]. 
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Na análise destes dispositivos um aspecto muito importante é o estudo de suas 

arquiteturas internas, considerando os blocos lógicos e os de interconexão. A seguir 

apresenta-se a análise das arquiteturas dos dispositivos reconfiguráveis citados. 

2.7.1. Cyclone II (EP2C20F484C7) 

Dispositivos da família Cyclone II contêm uma arquitetura bi-dimensional para 

implementar a lógica personalizada, responsável pelas conexões de Logic Array Blocks 

(LAB’s), blocos de memórias, multiplicadores, etc. Estes LAB’s contêm 16 elementos 

lógicos, pequenas unidades responsáveis pela implementação de funções lógicas. Estão 

presentes também nessa arquitetura blocos de memória denominados M4K, dispostos em 

colunas entre alguns LAB’s; e os blocos de multiplicadores embutidos, dispostos da 

mesma maneira. 

Como já citado, a menor unidade lógica da arquitetura do Cyclone II é o elemento 

lógico, Logical Element (LE). Ele é compacto e fornece diversos recursos como: LUT de 

quatro entradas, podendo implementar qualquer função de quatro variáveis; um registrador 

programável; um bloco carry chain; entre outros. O Quartus II é responsável por adequá-lo 

para seu melhor modo de operação: modo normal, apropriado para funções gerais de lógica 

e funções combinacionais, e modo aritmético, ideal para implementar contadores, por 

exemplo.  

Além dos 16 LE’s, cada LAB consiste de: sinais de controle, cadeia de 

registradores, locais de interconexão, etc. Estas conexões locais realizam a transferência de 

dados entre LE’s de um mesmo LAB, enquanto que a cadeia de registradores realiza essa 

transferência entre LE’s de diferentes LAB’s. Essas conexões garantem a eficiência de área 

e o desempenho do processo de síntese.  

A memória embutida do Cyclone II consiste de colunas de blocos de memória 

M4K. Estes blocos possuem registradores de entrada e de saída, além de serem capazes de 

implementar vários tipos de memória (single-port RAM, ROM, FIFO buffers, etc.).  

Dispositivos Cyclone II possuem ainda blocos multiplicadores otimizados para 

multiplicação intensiva de funções de processamento digital de sinais (DSP), podendo 

operar como um multiplicador de 18-bit ou dois independentes de 9-bit.  
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2.7.2. Spartan 3A(N) (XC3S50A-5TQ144) 

A arquitetura da geração Spartan-3 consiste de cinco elementos programáveis 

fundamentais: CLB’s que podem operar para implementação lógica e armazenamento de 

dados por meio de LUT’s; blocos de RAM que armazenam dados na forma de blocos de 

18-Kbit; blocos multiplicadores; e os Digital Clock Manager (DCM’s). Esta geração 

possui uma rica rede de traços que interconectam esses elementos funcionais e transmitem 

sinais entre os mesmos, possuindo uma chave matricial associada que permite múltiplas 

conexões no roteamento.  

Os DCM’s fornecem capacidades avançadas de clock para aplicações das FPGA’s 

da geração Spartan-3. Estes blocos eliminam distorções do sinal de clock, multiplicam ou 

dividem a freqüência do clock de entrada para sintetizar uma nova freqüência de clock, 

realiza mudanças de fase do sinal, entre outras aplicações. 

Toda a geração Spartan-3 apresenta blocos de RAM’s de 18 Kbits organizados em 

colunas. Usando as várias opções de configuração destes blocos, os mesmos podem criar 

RAM, ROM, FIFO, grandes LUT’s, conversores de largura de dados, buffers circulares e 

registradores de deslocamento.   

Os CLB’s constituem o principal recurso lógico para implementação síncrona e 

combinatória de circuitos e estão dispostos em uma matriz regular de linhas e colunas. 

Cada um destes elementos possuem quatro slices, que por sua vez, possuem duas LUT’s 

para implementação lógica e armazenamento de dados, dois flip-flops ou latches, 

multiplexadores, carry-in e carry-out  

Os slices são agrupados em pares e divididos em dois grupos: os pares da esquerda, 

que suportam funções lógicas e de memória, e os da direita que suportam somente funções 

lógicas. Ambos os grupos possuem duas LUT’s de quatro entradas, dois elementos 

armazenadores, dois multiplexadores, além de elementos aritméticos e de carry. Os pares 

da esquerda podem ser utilizados como RAM de 16x1 ou registradores de deslocamento. A 

combinação de uma LUT e um elemento armazenador é definida como uma célula lógica, 

e um slice equivale a 2,25 células lógicas.  

Os multiplicadores têm um funcionamento semelhante aos blocos multiplicadores 

do item anterior, sendo que neste caso, eles implementam apenas multiplicadores de 18-bit. 
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2.7.3. LatticeXP2 (LFXP2-5E-6TN144C) 

Cada dispositivo LatticeXP2 possui uma matriz de blocos lógicos cercada por 

Programmable I/O Cells (PIC’s). Entre as fileiras de blocos lógicos se encontram linhas de 

Embedded Block RAM (EBR’s), blocos de memórias, e uma fileira de Digital Signal 

Processing (DSP).  

Existem dois tipos de blocos lógicos, o Programmable Functional Unit (PFU), 

responsável por funções lógicas, aritméticas, RAM e ROM, e o Programmable Functional 

Unit without RAM (PFF), responsável pelas funções lógicas, aritméticas e ROM. Todos os 

blocos são alocados em uma matriz bi-direcional, mas cada fileira possui apenas um dos 

tipos, além disso, ambos possuem quatro slices interligados. Três dos quatro slices 

existentes nos blocos lógicos possuem duas LUT’s de quatro entradas e dois registradores, 

enquanto o ultimo slice não possui registradores. Para o tipo PFU, os três primeiros slices 

podem trabalhar como memória distribuída.  

Os slices podem operar em quatro modos distintos: modo Lógico, onde suas LUTs 

são configuradas com quatro entradas; modo Ripple, permite uma eficiente implementação 

de pequenas funções aritméticas, gerando dois sinais de carry para funções que necessitem 

concatenar slices; modo RAM, onde podem ser construídas memórias 16x4-bit de porta 

única ou uma pseudo 16x2-bit com porta dupla; e modo ROM. 

Dispositivos LatticeXP2 possuem uma ou mais fileiras de blocos EBR’s, blocos de 

memórias de 18 Kbits, sendo que cada bloco pode ser configurado como RAM ou ROM de 

diversos parâmetros. FIFO’s podem ser implementadas com blocos EBR’s utilizando 

PFU’s como lógica suporte.  

Além destes elementos, esta geração contém uma ou mais fileiras de blocos DSP’s, 

possuidores de multiplicadores e somadores/acumuladores para funções complexas de 

processamento de sinal. 

2.8. Linguagem de Descrição de Hardware 

Ao projetar o hardware de um sistema embutido, HDL’s podem ser utilizadas para 

realizar a descrição dos circuitos eletrônicos, executando sua lógica não somente de acordo 

com o fluxo do algoritmo, mas também seguindo a temporização de um ou mais clocks. 
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Essas linguagens permitem descrever a forma como os circuitos operam, possibilitando 

também a sua simulação antes mesmo de sua fabricação. As linguagens mais populares são 

VHDL e Verilog, que podem ser utilizadas como entrada para simulação e síntese automática 

de circuitos, através da utilização de ferramentas comerciais bastante difundidas [Carro 2003].  

Um programa utilizando HDL pode ser escrito basicamente usando dois tipos 

(modelos) de descrição: estrutural e comportamental. Na descrição estrutural, é 

apresentada a organização física e topológica do sistema, ou seja, são especificadas as 

entradas e/ou saídas, os componentes lógicos, a interligação deles e os sinais que compõem 

o sistema. Esta descrição pode ser usada como entrada para o processo de simulação da 

mesma forma que uma entrada esquemática. 

Na descrição comportamental é necessária somente a descrição do comportamento 

do circuito, o funcionamento de cada um de seus componentes. Um programa que utiliza 

esse tipo de descrição possui o mesmo formato de um programa fonte escrito em uma 

linguagem de programação de alto nível. Essa abordagem diminui a necessidade de 

conhecimento em projeto de hardware, aumentando a facilidade de desenvolvimento do 

sistema, no entanto, os sistemas gerados a partir desse tipo de descrição podem não ser tão 

otimizados em questões de desempenho e área de dispositivo ocupada. 

 Portanto o diferencial de uma HDL é a sua capacidade de descrever 

simultaneamente o comportamento de componentes individuais e como estão interligados 

[Tala], sendo processada seqüencialmente nas estruturas individuais e de forma 

concorrente entre estas estruturas. Em termos gerais o objetivo principal da HDL é 

caracterizar a síntese e propiciar a simulação de projetos eletrônicos. 

2.8.1. Verilog 

Verilog é uma das duas principais HDL’s juntamente da linguagem VHDL. VHDL 

foi definido com um padrão do Institute of Electrical and Electronics Engineers (IEEE) em 

1987 [Amore, 2005]. Por sua vez Verilog foi aceito por este processo de padronização 

apenas em 2001, apesar de ter sido criada em 1985 pela Gateway Design System 

Corporation, agora pertencente a Cadence Design Systems, Inc’s Systems Division. 

Verilog, por sua grande semelhança com a linguem C, é preferida pela maioria dos 
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profissionais de engenharia elétrica e da computação. Este também foi o quesito decisivo 

para a escolha do Verilog para a implementação deste projeto. 

A linguagem Verilog fornece ao designer digital um meio de descrever um sistema 

digital em uma ampla gama de níveis de abstração, e, ao mesmo tempo, fornece acesso a 

ferramentas de projeto auxiliado por computador para ajudar no processo de design a estes 

níveis. Uma representação abstrata ajuda o designer explorar alternativas de arquitetura 

através de simulações e detectar pontos críticos do projeto antes de começar o projeto 

detalhado. 

2.9. Analisador Lógico 

Na análise de circuitos digitais é importante saber o que ocorre simultaneamente 

com níveis lógicos em diversos pontos de um circuito [Ribeiro, 1989]. Normalmente os 

sistemas digitais operam com um fluxo contínuo de dados, usualmente apresentados em 

um período de tempo controlado por um sinal de temporização. Para verificar se o 

funcionamento do sistema está correto, há a necessidade de testar os dados e analisar os 

valores encontrados. O uso do analisador lógico possibilita visualizar e analisar esses 

dados. 

O Analisador Lógico é um instrumento de medida que captura os dados de um 

circuito digital para posterior análise, de modo similar a um osciloscópio, mas difere deste 

por ser capaz de visualizar os sinais de múltiplos canais. Além de verificar o correto 

funcionamento do sistema digital, os sinais capturados podem medir tempos entre 

mudanças de nível, número de estados lógicos, etc. Utiliza-se um analisador lógico quando 

é necessária a análise de uma determinada condição lógica, copiando uma grande 

quantidade de dados digitais do sistema ao que está ligado, e por último, disponibilizando a 

visualização destes dados e o diagrama de fluxo do sistema.  

Os dados podem ser apresentados através de um monitor, em forma de onda ou em 

valores numéricos (base decimal, hexadecimal ou binária). Isto pode ser realizado através 

de circuitos lógicos habilitados em um determinado intervalo de tempo. O sinal amostrado 

é uma palavra binária que deve ser armazenada em uma memória possuindo o menor 

tempo de acesso possível, para não interferir na velocidade de aquisição de dados. Esta 

memória será melhor abordada no item seguinte. 

http://pt.wikilingue.com/es/Diagrama_de_fluxo
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Um circuito de temporização interno controla a amostragem e a armazenagem dos 

sinais de entrada, possibilitando o dispositivo ver a resposta do sistema após uma 

ocorrência específica [Silva 2002]. Esta temporização normalmente é disparada por um 

sinal externo, um sinal de temporização do circuito a ser testado. Muitos analisadores 

lógicos também possuem um temporizador interno que pode ser usado para manusear 

funções de temporização. Estes sinais, tanto o externo quanto o interno, definem uma das 

principais características de um analisador lógico, sua capacidade de disparo (trigger).  

A lógica de funcionamento do analisador lógico é definida através das opções do 

modo de captura e do modo de disparo. O modo de captura possui duas formas: o modo de 

sincronismo, onde são colhidas amostras em intervalos regulares, com base em um clock 

interno ou externo; e o modo de estado, onde um ou mais sinais são definidos como clock, 

e os dados são amostrados nas bordas destes sinais. Uma vez que o modo de captura do 

analisador lógico é escolhido, a condição de disparo pode ser ajustada, podendo variar de 

uma simples borda de sinal a um conjunto de condições que devem ser cumpridas. Após 

definir ambas as configurações, o analisador lógico pode ser executado uma única vez, ou 

repetidamente. 

Atualmente, dentre as categorias de analisadores lógicos disponíveis no mercado 

encontra-se a categoria PC-based, onde o hardware se conecta a um computador através 

do cabo Universal Serial Bus (USB) ou Ethernet e retransmite os sinais capturados para o 

software no computador. Esta categoria de dispositivos é geralmente muito menor e mais 

barata, não necessitando de displays externos ou entradas de hardware, como teclados ou 

botões, sendo a categoria utilizada no projeto. 

2.9.1. Memória FIFO 

Para o armazenamento dos dados adquiridos pelo analisador lógico pode-se adotar 

uma memória do tipo First In, First Out (FIFO). Este tipo de memória é comumente usado 

em eletrônica para circuitos de controle de fluxo, usualmente partindo do hardware em 

direção ao software. Sua nomenclatura, First In, First Out, faz referência a sua forma de 

organização e manipulação de dados relativos à prioridade, o dado que vem em primeiro 

lugar é também lido em primeiro lugar, análogo ao comportamento de pessoas em uma 

fila.  

http://translate.googleusercontent.com/translate_c?hl=pt-BR&langpair=en%7Cpt&u=http://en.wikipedia.org/wiki/USB&rurl=translate.google.com&twu=1&usg=ALkJrhhu0c9RiGQmVXoEtkJWTM664X3DIA
http://translate.googleusercontent.com/translate_c?hl=pt-BR&langpair=en%7Cpt&u=http://en.wikipedia.org/wiki/Ethernet&rurl=translate.google.com&twu=1&usg=ALkJrhiAggFFY990D7QelFhOqHr9PCmdZA
http://translate.googleusercontent.com/translate_c?hl=pt-BR&sl=en&u=http://en.wikipedia.org/wiki/Electronics&prev=/search%3Fq%3Dhttp://en.wikipedia.org/wiki/FIFO%26hl%3Dpt-BR%26client%3Dfirefox-a%26hs%3DYz2%26rls%3Dorg.mozilla:pt-BR:official&rurl=translate.google.com&twu=1&usg=ALkJrhjCyRKtzhChumnxgJqCuwub2mVApQ
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A memória FIFO é caracterizada por um conjunto de ponteiros de leitura e escrita, 

armazenamento e lógica de controle. O armazenamento pode ser feito por meio de SRAM, 

flip-flops, latches ou outras formas adequadas. Sua lógica de controle é baseada em seus 

vários sinais de controle, os mais utilizados são: full, empty, write_enable e read_enable. 

Há também o sinal de clock, este define se a FIFO é síncrona, onde o mesmo clock é usado 

tanto para leitura e escrita, ou assíncrona, onde dois sinais de clock distintos são usados 

para estes processos.  

Em hardware, a memória FIFO é usada para fins de sincronização, geralmente 

implementada utilizando um ponteiro de leitura e outro de escrita. Inicialmente a memória 

se encontra vazia e estes ponteiros possuem o endereço da sua primeira posição. Quando o 

ponteiro de leitura iguala o seu endereço ao endereço do ponteiro de escrita a memória 

fornece um sinal empty em nível alto. Para o caso contrario, quando o ponteiro de escrita 

alcança o endereço do ponteiro de leitura, a memória fornece um sinal full em nível alto. O 

controle de fluxo gera os sinais empty e full para que os dados da entrada não substituam o 

conteúdo já armazenado na memória. 

A Figura 17 representa os processos de escrita e leitura, respectivamente, de uma 

memória FIFO, indicando os principais sinais de controle.  

Figura 17 - Ciclos de Escrita e Leitura da Memória FIFO 
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2.10. Considerações Finais 

Como mencionado anteriormente, foram introduzidos, de forma sucinta, os 

conceitos e as ferramentas adotadas na elaboração do projeto, necessários para o seu 

melhor entendimento. Deseja-se, portanto, que a leitura dos próximos capítulos deste 

documento possa ser feita de forma mais satisfatória  
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CAPÍTULO 3: DESENVOLVIMENTO DO 

TRABALHO 

3.1. Considerações Iniciais 

Todo o desenvolvimento das atividades realiza-se nas ferramentas computacionais 

Quartus II, da Altera, ISE, da Xilinx e Diamond, da Lattice. A elaboração de uma versão 

inicial dos códigos referentes ao Analisador lógico e sua memória é feita utilizando o 

Quartus II, devido ao fato deste projeto ser baseado no uso de dispositivos reconfiguráveis 

da própria Altera, utilizados nos trabalhos anteriores.  

Após a conclusão do desenvolvimento dos códigos mencionados, as outras duas 

ferramentas citadas, ISE e Diamond, são utilizadas para generalização dos códigos 

elaborados, a fim de se obter um código aberto. As simulações, tanto para a análise dos 

cores, quanto para a validação do funcionamento e medidas de desempenho dos mesmos, 

são executadas no Quartus II, e nos softwares integrados para simulação, ISim Simulator, 

para o ISE, e Active-HDL, para o Diamond. 

São utilizadas as linguagens de descrição de hardware VHDL e Verilog, conforme 

a necessidade, para a análise dos cores de micro controladores. A escolha da utilização de 

linguagens de descrição de hardware, ao contrário da implementação em esquemático, 

facilita a implementação e a modificação, tanto dos módulos, quanto da própria 

arquitetura.  

3.2. Projeto 

A proposta do projeto todo pode ser descrita em três etapas distintas: 

1. Estudo da ferramenta de desenvolvimento Quartus II – empresa Altera – 

para elaboração dos módulos do Analisador Lógico e de sua memória de 

armazenamento de dados, além de simulações posteriores a fim de 

validar seu funcionamento. 

2. Estudo das demais ferramentas de desenvolvimento, ISE – empresa 

Xilinx – e Diamond – empresa Lattice, para que, em posse dos módulos 
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citados, possam ser realizadas supostas modificações necessárias para 

generalizá-los, tornando-os códigos abertos.  

3. Estudo das arquiteturas das FPGA’s adotadas pelos dispositivos em 

questão, e simulação dos módulos generalizados, variando seus 

parâmetros de entrada a fim de efetuar uma análise comparativa e 

qualitativa destes dispositivos.  

3.3. Descrição das Atividades Realizadas 

Tendo como base as três etapas descritas na seção anterior, descreve-se nesta a 

implementação dos módulos referentes ao analisador lógico e sua memória FIFO. As 

demais etapas – simulação dos módulos e análise dos processos de síntese – estão descritas 

no capítulo seguinte, CAPÍTULO 4: RESULTADOS OBTIDOS.  

3.3. Implementação dos Cores  

Para a implementação do projeto do Analisador Lógico é necessário o 

desenvolvimento de dois módulos distintos: do próprio analisador e de sua memória FIFO. 

Em ambos os módulos, para definição de suas lógicas, utilizam-se máquina de estados. 

Esta modelagem requer registradores para armazenar o estado das variáveis e um bloco de 

lógica combinacional que determina o estado de máquina de estado. 

Ademais destes dois módulos implementa-se um código exemplo afim de definir a 

atuação do analisador lógico. Este código exemplo é um simples contador síncrono com a 

mesma largura de dados do analisador lógico. Desta forma podem-se comprovar quais 

dados são capturados pelo analisador lógico e se a seqüencia dos mesmos está correta. 

Vale ressaltar que todos os códigos desenvolvidos se encontram nos Apêndices ao final 

deste documento. 

3.3.1. Implementação do Analisador Lógico 

A lógica funcional de um analisador lógico pode ser descrita conforme a Figura 18. Os 

blocos nomeados como Estágio de Disparo e Base de Tempo representam o modo de 

captura e a condição de disparo, configurações abordadas anteriormente. O bloco memória 

representa a memória FIFO responsável pelo armazenamento dos dados adquiridos e o 

http://pt.wikipedia.org/wiki/Registrador
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último bloco, interface, é responsável pela forma que os dados são apresentados ao usuário, 

não implementada neste projeto.  

 

Figura 18 - Diagrama de Blocos do Analisador Lógico 

A Figura 19 a seguir representa uma máquina de estado do analisador lógico e a 

Figura 20 a um fluxograma com os principais sinais utilizados para a implementação do 

código referente ao analisador lógico.  

 

Figura 19 - Diagrama de Máquina de Estados do Analisador Lógico 
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Figura 20 - Fluxograma do Analisador Lógico 

Vale ressaltar que o fluxograma não leva em consideração a influência do sinal de 

entrada clear. Independente do estado que o dispositivo se encontra ao ocorrer uma 
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transição para nível alto deste sinal, o fluxo de dados se dirige para o estado S0, 

reiniciando todo o processo. O estado S0 representa a inicialização das funções do 

analisador lógico, zerando os pedidos de leitura e escrita e verificando a opção de trigger – 

externo ou interno - adotado pelo usuário.  

Caso a escolha tenha sido pelo trigger externo (sel_trig = 0), o fluxo de dados se 

dirige para o estado S1. Neste estado o analisador se mantém em um laço de espera 

enquanto não ocorrer uma transição positiva do sinal de entrada trig. Este sinal representa 

o trigger externo, sendo o mesmo associado a algum outro sinal advindo do código que se 

deseja analisar. Caso a memória FIFO esteja toda preenchida, a mesma envia um sinal de 

aviso (full = 1) e o próximo estado será S4, caso contrário (full = 0) o estado seguinte 

será S3. 

Caso a escolha tenha sido pelo trigger interno (sel_trig = 1) o próximo estado 

será S2. Como acontece no estado S1, o analisador se mantém em um laço de espera 

enquanto a entrada de dados não apresentar a palavra de trigger escolhida, no caso, a 

palavra “all ones” - palavra com todos seus bits em nível alto. Depois de reconhecida a 

palavra de trigger (dado = all one), o nível do sinal full da memória FIFO é analisado, 

seguindo os mesmos fluxos descritos anteriormente. 

O estado S3 é o ciclo de escrita da memória, nele a memória recebe o sinal write 

request em nível alto e começa a gravar os dados presentes em sua entrada. Pela 

implementação, a gravação se mantém enquanto a memória não estiver totalmente 

preenchida, ou seja, enquanto o sinal full não estiver em nível alto. Quando esta transição 

ocorrer (full = 1) o fluxo retorna para S0, reiniciando o processo. Este retorno para S0 

ocorre a fim de evitar que a memória, ao ser totalmente preenchida, comece a ler os dados 

armazenados automaticamente, necessitando assim de outro sinal de disparo.  

O estado S4 é o ciclo de leitura da memória, nele a memória recebe o sinal read 

request em nível alto e começa a enviar para a sua saída os sinais previamente 

armazenados no estado S3. Esta leitura se mantém enquanto a memória não estiver 

completamente vazia, ou seja, enquanto o sinal empty não estiver em nível alto. Após isso 

ocorrer (empty = 1) o analisador se dirige para S3, onde se reinicia o ciclo de escrita.  
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3.3.2. Implementação da Memória FIFO 

Este item tem como objetivo explicar a lógica adotada para a implementação de 

uma memória FIFO, descrita por meio do diagrama de máquina de estados presente na 

Figura 21 ou por meio do fluxograma presente na Figura 22. O estado q0 é o estado inicial 

da memória FIFO, onde todos seus sinais de controle apresentam resposta em nível baixo; 

q1 é o estado “esvaziar”, estado de espera pelo sinal habilitador de leitura rd_en; q2 é o 

estado de leitura, onde todas as posições da memória têm seus conteúdos direcionados para 

a saída da memória, q3 é o estado “preencher”, estado de espera pelo sinal habilitador de 

escrita wr_en, e q4 é o estado de escrita, onde os dados presentes na entrada da memória 

são enviados, um a um, para as posições da memória. 

 

Figura 21 - Diagrama de Máquina de Estados da Memória FIFO 

 

Considerando que a memória se inicia vazia (full = 0 e empty = 1), o fluxo 

segue de q0 para q3. Neste estado, o fluxo entra em loop, esperando por uma transição 

positiva do sinal habilitador de escrita (write_en = 1), e, ao recebê-la, o fluxo segue para 

q4. O dispositivo se mantém no estado de escrita até todas as posições de memória serem 

preenchidas com os dados recebidos em sua entrada, apresentando o sinal full em nível 

alto e empty em nível baixo. Ao ser completamente preenchida, a memória muda seu 

fluxo de q4 para q0. 
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Com a memória cheia, o fluxo segue de q0 para q1, neste estado a máquina entra 

em loop, até receber uma transição positiva do sinal habilitador de leitura (read_en = 1), 

quando se direciona de q1 para q2. O dispositivo se mantém neste último estado esperando 

que o conteúdo de todas as posições de memória seja lido, esvaziando novamente a 

memória, apresentando o sinal full em nível baixo e empty em nível alto. 

Vale ressaltar que esta lógica possui também um sinal de clear, independente do 

estado que o dispositivo se encontre ao receber uma transição positiva do sinal all_clear, 

ele se direciona para o estado q0, estado inicial, reiniciando o processo.   

Outra maneira de se obter um código referente à memória FIFO necessária para a 

aquisição de dados é por meio dos aplicativos de geração de IP-cores encontrados nas 

ferramentas de desenvolvimento. Foi gerada por meio da ferramenta Quartus II um IP-core 

referente à memória FIFO, este módulo combinado com o módulo do analisador lógico 

forneceu os resultados esperados. Idealmente, um IP-core deve ser totalmente portátil, isto 

é, ser facilmente inserido em tecnologias de qualquer fornecedor ou em qualquer 

metodologia de projeto, mas estes códigos não foram aceitos nas demais ferramentas 

abordadas, ISE e Diamond. Este fato justifica a implementação deste código próprio para a 

memória FIFO, adequando-o a cada ferramenta de desenvolvimento trabalhada. 
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Figura 22 - Fluxograma Memória FIFO 

3.4. Considerações Finais 

Neste capítulo foi apresentado o projeto desenvolvido e as implementações 

realizadas, focando nas considerações adotadas para as mesmas.  
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“Preencher” 

q3
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“Esvaziar” 
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= 1 = 0

wr_en
= 0

= 1
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= 1

= 0

Estado

Leitura 

q2

Estado

Escrita 

q4

Todas

Posições

Lidas ?

Memória

Cheia ?

= 1

= sim

= não= não

= sim
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CAPÍTULO 4: RESULTADOS OBTIDOS 

4.1. Considerações Iniciais 

Neste capítulo encontram-se as simulações dos cores implementados e a análise 

qualitativa e quantitativa dos três dispositivos. Consta também com a implementação física 

do projeto utilizando o kit da Altera fornecido pelo laboratório. 

4.2. Simulações do Analisador Lógico 

A fim de garantir o correto funcionamento dos módulos previamente 

implementados, foi feita a simulação dos mesmos nos três IDE’s escolhidos, realizando as 

alterações de sintaxe exigidas a cada novo dispositivo de desenvolvimento. A princípio, os 

três soft-cores foram implementados e simulados utilizando o IDE Quartus II, e como 

exemplo de alterações na sintaxe inicial tem-se: forma da declaração do sinal de saída da 

memória FIFO ao utilizar o ISE, e forma de declaração dos módulos como componentes 

dentro de um código ao utilizar o Diamond.  

Após ter garantido que a sintaxe dos mesmos fosse aceita para as três IDE’s, 

simulou-se o projeto todo, adotando como parâmetros para o analisador lógico o máximo 

de quatro palavras de quatro bits de largura. Observam-se os resultados que se seguem, 

ressaltando que, para os três casos, o projeto foi simulado com suas duas opções de trigger, 

interno e em seguida externo.  

A Figura 23apresenta a simulação realizada por meio do Quartus II e os sinais por 

ele apresentados. Para o primeiro caso, trigger interno, tem-se a indicação de cada um dos 

estados que o fluxo de dados percorre, das ocorrências da palavra definida como disparo, 

dos dados salvos e lidos da memória. Para o segundo caso, trigger externo, tem-se 

novamente a indicação dos estados percorridos, dados salvos e lidos da memória, e das 

ocorrências de pulsos externos de disparo. Como se pode observar, o fluxo dos dados 

obedece a lógica implementada do analisador lógico. O sinal aclr em nível alto mantém o 

processo no seu estado inicial, sendo direcionado para os estados S1 ou S2, dependendo do 

tipo de disparo. Estes disparos iniciam o processo de escrita, S3, encerrado após a memória 

ter adquirido a quantidade máxima de palavras, e de leitura, S4, encerrado após o último 

dado salvo na memória ser enviado para a saída. Vale ressaltar que antes de se iniciar o 
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estado de leitura, o fluxo de dados retorna ao estado inicial e em seguida ao estado de 

espera, aguardando pelo segundo sinal de disparo. 

A Figura 24 apresenta a simulação realizada por meio do ISE, e os sinais por ele 

apresentados, com exceção do sinal state. Como se pode analisar, a resposta das 

simulações é praticamente a mesma resposta apresentada pela Figura 23, seguindo as 

mesmas variações do fluxo de dados. A única mudança considerável nesta simulação se dá 

pela resposta do analisado lógico ao sinal aclr em nível alto, forçando os sinais qout, 

sel_t e trig a assumirem valores desconhecidos. 

A Figura 25 apresenta a simulação do projeto realizada por meio do Diamond, esta 

inclui além dos sinais apresentados pelo Quartus II, os sinais rdreq, wrreq, empty e full, 

sinais de controle da memória FIFO. As saídas apresentadas nesta simulação são as 

mesmas apresentadas nos dois casos anteriores. Da mesma forma que ocorreu com a 

simulação realizada por meio do ISE, enquanto o sinal aclr se mantém em nível alto, 

algumas saídas desta simulação assumem valores desconhecidos, no caso, os sinais qout, 

rdreq e wreq. Devido aos sinais de controle da memória FIFO, a Figura 25 apresenta 

outras quatro análises, a relação dos estados de escrita e leitura com os sinais wrreq e 

rdreq, respectivamente; e as transições dos sinais empty e full, representando o momento 

em que a memória começa a ser preenchida com dados e o momento em que a mesma 

inicia o envio destes dados para sua saída. Estas análises são indicadas por círculos e retas 

tracejadas, respectivamente. 
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Figura 23 - Simulação do Projeto utilizando Quartus II (Trigger Interno e Externo) 
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Figura 24 - Simulação do Projeto utilizando ISE (Trigger Interno e Externo) 
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Figura 25 - Simulação do Projeto utilizando Diamond (Trigger Interno e Externo) 
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4.3. Teste Operacional Referente à Implementação Física  

A implementação física dos módulos previamente simulados foi realizada no kit de 

desenvolvimento DK-CYCII-2C20N da empresa Altera, pertencente à família Cyclone II. 

O kit pode ser visto na Figura 24.  

 

Figura 26 - Kit DK-CYCII-2C20N 

Esta figura indica, dentre os vários componentes do kit, os utilizados nesta prática. 

Para a realização da mesma foi necessário alterar o código referente ao contador, 

relacionando as suas entradas clk, trig, sel_trig e aclr ao oscilador de 28 MHz e 

as chaves seletoras, respectivamente, e a sua saída qout ao display de 7 segmentos. O uso 

do display de 7 segmentos exigiu uma lógica de conversão do sinal advindo de qout. 

 Os demais itens indicados na Figura 26 representam os componentes responsáveis 

pela programação da FPGA existente no kit. O acionamento da placa é feita pelo botão 

ON/OFF, a conexão com o IDE se dá por meio da porta USB Blaster, e a chave Run/Prog 

habilita o envio das informações.  
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Após a configuração do kit para a programação da FPGA, posiciona-se a chave na 

opção Run e utiliza-se a ferramenta Programmer indicada pela Figura 27. As marcações 

representam os campos: hardware, responsável pela conexão (USB Blaster), modo de 

comunicação (JTAG) e início de gravação.  

Primeiramente realizaram-se simulações com o código modificado, a fim de 

verificar se ele apresenta as mesmas respostas da Figura 21, em seguida, programou-se a 

FPGA com os módulos já abordados. Devido a alta freqüência do oscilador presente no kit 

não foi possível analisar com precisão o funcionamento do analisador lógico trabalhando 

na opção trigger interno, a saída apresentada pelo display de 7 segmentos se modificava 

constantemente. Em contra partida pode-se comprovar o funcionamento do dispositivo em 

sua opção de trigger externo, já que, adotando uma chave seletora como sinal de disparo, 

fica a cargo do usuário reiniciar o ciclo de captura de dados.  

4.4. Análise do Processo de Síntese 

Para aplicações reais do analisador lógico, o mesmo necessita de um maior número 

de bits de dados e de palavras, adotaram-se então os parâmetros: 1024 palavras de 8 bits. 

Ao tentar realizar a síntese do projeto com estes novos parâmetros obtiveram-se erros em 

todos os três casos. Estes erros se devem ao fato de que as três ferramentas de síntese 

utilizaram elementos lógicos ao invés de blocos de memória na implementação do soft-

core referente à memória FIFO, sendo eles insuficientes para estes novos parâmetros.  

Figura 27 - Ferramenta Programmer 
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A fim de solucionar este problema, iniciaram-se testes utilizando as memórias 

fornecidas pelas ferramentas geradoras de IP-cores, Mega Wizard Plug-In Manager do 

Quartus II, IP (Core Generator & Architecture Wizard) do ISE e IPexpress do Diamond. 

Estes códigos gerados, ao serem submetidos ao processo de simulação, apresentam o 

mesmo comportamento que o código implementado referente à memória FIFO e utilizam 

blocos de memória em suas sínteses. Possuem como desvantagem o fato de funcionarem, 

unicamente, com os IDE’s dos seus próprios fabricantes. 

Para realizar uma análise comparativa destes três processos de síntese, verificou-se 

os reports fornecidos pelos mesmos ao utilizar tanto o soft-core implementado quanto o 

IP-core gerado. Esta análise apresenta um alto nível de dificuldade devido às diferentes 

nomenclaturas adotadas por cada arquitetura. Para a melhor compreensão do que estes 

termos representam, sintetizaram-se ambos os tipos de memória com diferentes 

parâmetros, comparando item a item, além de estudar a arquitetura das FPGA’s contidas 

nos dispositivos escolhidos. Vale ressaltar que a escolha dos dispositivos se deu pela 

disponibilidade em laboratório, sendo os três pertencentes à categoria Low Cost FPGA.  

O report fornecido pelo IDE da empresa Altera, Analysis & Synthesis Summary 

Reports, possui, dentre as suas diversas informações, o número total de elementos lógicos, 

incluindo o total de funções combinacionais e de unidades lógicas; de registradores; e de 

bits de memória utilizados e disponíveis. Na Tabela 1 encontram-se os dados referentes aos 

elementos lógicos, registradores e bits de memória. 

O report fornecido pelo ISE, Synthesis Report, possui uma forma diferente de 

abordagem. Analisa o uso de células no processo de síntese, dividindo-as entre BELS, 

elementos lógicos básicos como inversores, LUT’s, flip-flops/latches e buffers. Adota-se, 

ao verificar todo o documento, que os flip-flops/latches são considerados como 

registradores, enquanto que os LUT’s são considerados os elementos lógicos. Estas 

considerações se devem ao fato de que cada LE da arquitetura Cyclone II possui apenas 

uma LUT. Para analisar a utilização de blocos de memória, é importante verificar os 

reports gerados para o processo de Map. Na – Tabela 1 encontram-se os dados referentes 

às LUT’s, aos registradores e aos blocos de memória. Os reports desta ferramenta definem 

como bloco de memória o conjunto de 18 Kbits de memórias. 
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O Diamond fornece o documento Resource Usage Report, que também indica por 

meio de LUT’s e bits de registradores os itens a serem comparados. Da mesma forma que 

acontece com o ISE, utilizaram-se os reports gerados no processo de Map para a análise 

dos blocos de memória. Na Tabela 1 encontram-se os dados referentes às LUT’s, aos bits 

de registradores e aos blocos de memória. Nota-se que neste caso o fator limitante é 

representado pelos slices do bloco lógico PFU e não as LUT’s como nos demais, utilizando 

480 slices de um total de 405 (119%) ao sintetizar o projeto com a memória implementada. 

Os reports desta ferramenta definem como bloco de memória o conjunto de 18 Kbits de 

memórias. 

De posse dos reports devidamente analisados constrói-se a tabela 1. Nesta tabela 

são apresentados os dados referentes aos elementos reconfiguráveis e de memória 

utilizados na síntese da memória obtida por soft-core e da obtida pela ferramenta de 

geração de IP-core.  

Tabela 1 – Elementos configuráveis e bits de memória utilizados na síntese de um soft-core 

implementado e de um IP-core gerado 

 

Software 

Família 

Dispositivo 

Quartus II 

Cyclone II 

EP2C20F484C7 

ISE 

Spartan3A(N) 

XC3S50A-

5TQ144 

Diamond 

LatticeXP2 

LFXP2-5E-

6TN144C 

Memória 

Implementada 

Elementos 

Configuráveis 

Logic Element 

23.078/18.752 

(123%) 

Slice (M + L) 

7.917/704 

(1124%) 

Slice (PFU + 

PFF) 

979/2.376 

(41%) 

Memória Gerada 

(IP_Core) 

Elementos 

Configuráveis 

Logic Element 

79/18.752 

(<1%) 

Slice (M + L) 

29/704 (4%) 

Slice (PFU + 

PFF) 

97/4.752 (4%) 

Bits de Memória 
8.192/23.9616 

(3%) 

18.432/55.296 

(33%) 

18.432/165.888 

(11%) 

 

Para melhor entendimento desta tabela deve-se focar nas seguinte relações entre os 

elementos configuráveis de cada uma das três arquiteturas: 
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LAB = 16 LE’s = 16 * (LUT + registrador) 

CLB = 4 Slices (M + L) = 4*(2 LUT’s + 2 registradores) 

PFU/PFF = 4 Slices = 3*(2 LUT’s + 2 registradores) + 2LUT’s 

4.5. Discussão dos resultados 

Apesar do sucesso no funcionamento do analisador lógico, ou seja, os resultados 

obtidos nas simulações dos códigos implementados foram de acordo com o esperado, 

verificou-se a dificuldade de se obter um código genérico (open-source) compatível com 

os diversos fabricantes de FPGA’s. Isto se deve, principalmente, às características 

intrínsecas das mesmas, no caso deste projeto, exemplificadas pelos IP-cores e reports 

gerados, já que o uso de código gerado por uma ferramenta de desenvolvimento se mostrou 

altamente limitado.  

A respeito do uso dos IDE’s conclui-se que o ISE exige maior esforço devido a sua 

interface não muito amigável, ainda que não se possa negar a grande gama de recursos por 

ele apresentado. O Diamond se mostra como a melhor opção, apresenta uma interface 

amigável, semelhante à fornecida pelo IDE da empresa Altera, além de inúmeros recursos 

tais quais os do ISE, mas de uso mais simples. Mesmo seu processo de simulação 

apresentando uma forma complicada de atribuição de valores aos sinais a serem 

analisados, ele é mais simples do que o processo que se utiliza de um testbench. Por sua 

vez, seu processo de síntese também se mostrou eficiente, visto que a divisão dos blocos 

lógicos em PFF e PFU permitiu que o seu fator limitante ultrapassasse apenas 19% do total 

permitido. Pelo fato deste IDE ser um produto recente da empresa Lattice Semiconductor, 

estando em sua primeira versão, acredita-se que o mesmo sofrerá diversas atualizações em 

um futuro próximo, tornando-se um forte competidor neste mercado, sendo válido 

acompanhar o seu desenvolvimento.  

4.6. Dificuldades e Limitações 

No decorrer do desenvolvimento deste projeto foram encontradas algumas 

dificuldades relacionadas ao uso e instalação dos softwares abordados e à análise dos 

reports fornecidos pelos mesmos.  
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Para a instalação do ISE Design Suite foi necessário realizar alterações na 

configuração dos computadores utilizados no desenvolvimento deste projeto, além de 

alterar algumas configurações especificas do próprio software. Para a simulação do IP-core 

gerado pelo aplicativo IPexpress, do IDE Diamond, foi necessário acrescentar duas linhas 

de código no mesmo. Em todos os casos foi de grande ajuda pesquisar possíveis soluções 

para estes problemas em fóruns onlines. Com relação à análise dos reports, esta 

dificuldade foi descrita anteriormente. 

Além destas dificuldades, este projeto é limitado devido às próprias FPGA’s, suas 

diferentes arquiteturas, etc. Esta limitação se deve também a incompatibilidade entre os IP-

cores gerados pelas suas ferramentas de desenvolvimento e aos processos de síntese.  

4.7. Considerações Finais 

Neste capítulo foram apresentados os principais resultados obtidos. Os resultados 

mostraram que, mesmo com a evolução das aplicações envolvendo FPGA’s, o 

desenvolvimento do projeto foi limitado pelas características intrínsecas das mesmas e 

pelas técnicas de síntese de seus dispositivos.  

No próximo capítulo será apresentada a conclusão deste trabalho, além de 

contribuições desse projeto, considerações sobre o curso de graduação, e também possíveis 

trabalhos futuros em relação a esse projeto. 
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CAPÍTULO 5: CONCLUSÃO 

5.1. Contribuições 

A utilização de diferentes ferramentas de desenvolvimento é uma prática incomum, 

normalmente o projetista utiliza tecnologias – FPGA e IDE – de apenas um fabricante. 

Logo este documento fornece várias informações a respeito destes softwares e aplicativos 

que podem facilitar o trabalho de outros projetistas inexperientes em determinada 

tecnologia. Este projeto permite também, por meio de suas análises, escolher uma 

tecnologia específica para determinada aplicação.  

Num âmbito pessoal, o projeto contribuiu para que o autor pudesse se aprofundar 

na teoria dos dispositivos reconfiguráveis, FPGA especificamente. A maior parte da teoria 

apresentada neste documento foi abordada de forma superficial durante a graduação, e 

pertence à área de eletrônica digital, área de grande evolução atualmente. Com base no 

projeto, o autor foi capaz de desenvolver outro trabalho relacionado ao tema, o artigo 

“Análise Comparativa e Qualitativa de Ferramentas de Desenvolvimento de FPGA’s”, 

publicado no VII Southern Programmable Logic Conference, categoria Designer Forum. 

5.2. Trabalhos Futuros 

Ao completar este projeto observa-se que o mesmo pode ser continuado a fim de 

que o analisador lógico possa ter seus sinais apresentados externamente, utilizando 

recursos como JTAG ou mesmo comunicação I2C. Em posse de uma interface de fácil uso, 

como um display de LCD, os sinais amostrados de um código exemplo, como o contador 

neste projeto, podem ser visualizados de maneira direta por qualquer usuário, sem a 

necessidade de uma ferramenta de simulação. Logo, os desafios se baseiam na maneira de 

adquirir estes sinais, enviá-los por meio de um barramento e amostrá-los corretamente em 

alguma interface.  

Outro aspecto que pode ser melhor trabalhado em projetos futuros é a elaboração de 

módulos referentes a memórias que possam ser sintetizados utilizando blocos de memória 

ao invés de elementos lógicos, maior fator limitante neste projeto. 
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APÊNDICE A – Código Contador 

//Gabriel Santos da Silva  

//Código - Contador(exemplo de uso do analisador lógico)  

 

module count(clk, aclr, sel_t, trig, cnt, qout); 

  

//parâmetros do analisador lógico (também da memória FIFO)  

parameter largura_dado = 4;  

parameter numeros_dado = 8;  

 

//sinais de entrada e saída  

input clk;  

input aclr;  

input sel_t;  

input trig;  

wire [2:0]state;  

wire rdreq;  

wire wrreq;  

wire empty;  

wire full;  

wire [largura_dado-1:0]q;  

output reg [largura_dado-1:0]cnt;  

output reg [largura_dado-1:0]qout;  

 

//analisador lógico  

// "módulo do analisador lógico"  

// #(largura do dado, número de palavras)"nome"(entradas e saídas)  

anlog#(largura_dado,numeros_dado) 

rec(clk,cnt,q,aclr,sel_t,trig,state,rdreq,wrreq,empty,full);  

 

//incialização das variáveis  

initial  

cnt = 0;  

 

//lógica do contador  

always @(negedge clk) begin  

cnt = cnt + 1; //a cada descida de clock acrescenta um ao contador  

qout = q;  

end  

 

endmodule 
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APÊNDICE B – Analisador Lógico 

//Gabriel Santos da Silva  

//Código - Analisador Lógico  

 

//declaração de módulo com state, empty1 e full1 para analise de 

simulação  

module 

anlog(clk,data1,q2,aclr1,sel_t,trig,state,rdreq1,wrreq1,empty1,full1);  

 

//parâmetros da memória FIFO  

parameter data_width = 3;  

parameter num_palavras = 6;  

 

//sinais das entradas e saídas  

input clk;  

input sel_t;  

input trig;  

input [data_width-1:0]data1;  

input aclr1;  

output [data_width-1:0]q2;  

output [2:0]state;  

output empty1;  

output full1;  

output reg rdreq1;  

output reg wrreq1;  

 

//sinais auxiliares  

reg [data_width-1:0] flag;  

 

//máquina de estados  

reg [2:0]state;  

parameter s0 = 0, s1 = 1, s2 = 2, s3 = 3, s4 = 4;  

 

//memória FIFO  

//"módulo da memória"  

//#(largura do dado, número de palavras)  

//"nome"(entradas e saídas)  

mem_fifo#(data_width,num_palavras)  

mem(clk,aclr1,data1,rdreq1,wrreq1,full1,empty1,q2);  

 

//lógica do analisador  

always @(posedge clk or posedge aclr1)  

begin  

if (aclr1 == 1)begin //aclr além de reiniciar a gravação na memória 

também retorna ao estado 0, ideal  

state = s0; //sempre que iniciar o programa ele enviar um único pulso de 

inicialização.  

end  

else begin  

case (state)  

s0: begin //estado de inicialização  

rdreq1 = 0;  

wrreq1 = 0;  

if (sel_t == 0) //seleciona entre trigger externo ou interno  

state = s1;  
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else  

state = s2;  

end  

s1: begin //estado de trigger externo  

if (trig == 1'b1) // se o trigger receber algum sinal externo inicia o 

processo  

if (full1 == 1) //caso já tenha ocorrido o ciclo de escrita  

state = s4;  

else //caso ainda nao tenha ocorrido o ciclo de escrita  

state = s3;  

else  

state = s1; //loop de espera pelo sinal externo de trigger  

end  

s2: begin //estado de trigger interno  

flag = data1 + 1'b1; //flag para auxílio da palavra de trigger devido 

variação do seu tamanho  

if (flag == 0) // palavra de triger compatível  

if (full1 == 1) //caso já tenha ocorrido o ciclo de escrita  

state = s4;  

else  

state = s3; //se a palavra for a de trigger inicia o processo  

else  

state = s2; //loop de espera pela palavra de trigger compatível  

end  

s3: begin //estado de escrita na memória  

rdreq1 = 0;  

wrreq1 = 1; //solicitação de escrita  

if (full1 == 1) // memória atinge seu nível máximo  

state = s0;  

else //enquanto a memória não estiver preenchida mantém os mesmos pedidos 

e gravando  

state = s3;  

end  

s4: begin //estado de leitura da memória  

rdreq1 = 1; //solicitação de leitura  

wrreq1 = 0;  

if (empty1 == 1) //memória vazia  

state = s3;  

else //enquanto não estiver completamente vazia mantém os pedidos e lendo  

state = s4;  

end  

endcase  

end  

end  

endmodule 
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APÊNDICE C – Memória FIFO 

// Gabriel Santos da Silva  

// Código - Memória FIFO  

 

//OBS: todos os parametros, entradas e saídas são os encontrados em uma 

memória FIFO síncrona, tanto do QUARTUS quanto do ISE.  

 

module mem_fifo_ise(clk, all_clr, data, rd_en, wr_en, full, empty,q);  

 

//parâmetros da memória  

parameter width = 4;  

parameter num_word = 7; 

 

//sinais de entrada e saída  

input clk;  

input all_clr;  

input [width-1:0]data;  

input rd_en;  

input wr_en;  

output reg full;  

output reg empty;  

output reg [width-1:0]q;  

 

//sinais auxiliares  

//[a:0]vetor[b:0] - a indica a posição do vetor e b o vetor dentro do 

//vetor de vetores  

reg [width-1:0]mem[num_word-1:0];  

integer i;  

 

//máquina de estados  

reg [2:0]state;  

parameter s_inicial = 0, s_write = 1, s_read = 2, s_clear = 3, 

s_preencher = 4, s_esvaziar = 5;  

 

//inicialização das variáveis  

initial begin  

full = 0;  

empty = 0;  

i = 0;  

state = s_inicial;  

end  

 

//lógica da memória FIFO  

always @(negedge clk or posedge all_clr) begin  

if (all_clr == 1)  

state = s_clear;  

else begin  

case (state)  

s_inicial: begin //estado para verificar se a memória já está cheia ou 

não (obs: vale ressaltar que para efeito de testes, a memória se 

inicializará sempre vazia)  

if(full == 0)  

state = s_preencher;  

else  

state = s_esvaziar;  
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end  

s_preencher: begin //estado apenas para espera do write enable.  

if (wr_en == 1)  

state = s_write;  

else  

state = s_preencher;  

end  

s_write: begin //estado para escrita na memória. Ao inicializar a escrita 

ela continuará até preencher por completo a memória  

empty = 0;  

if (i !== num_word) begin  

mem[i]=data;  

i = i + 1;  

state = s_write;  

end  

else begin  

full=1; 

state = s_inicial;  

end  

end  

s_esvaziar: begin //estado apenas para espera do read enable.  

if (rd_en == 1)  

state = s_read;  

else  

state = s_esvaziar;  

end  

s_read: begin //estado para leitura da memória. Ao inicializar a leitura, 

ela continuará até ler todos os dados da memória  

full = 0;  

if (i !== 0) begin  

i = i-1;  

q = mem[num_word-1-i];  

state = s_read;  

end  

else begin  

empty = 1;  

state = s_inicial;  

end  

end  

s_clear: begin //estado de reset da memória, tem q ser testado.  

i = 0;  

full = 0;  

empty = 1;  

q = 0;  

while (i !== num_word) begin //preenche a memória com 0's  

mem[i] = 0;  

i = i+1;  

end  

i=0;  

state = s_inicial;  

end  

endcase  

end  

end  

endmodule 
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APÊNDICE D – Testbench (Simulação ISE) 

//Gabriel Santos da Silva  

//Código - Testebench para o contador (utilizando o analisador e a 

//memória como componentes)  

 

module sim_ise;  

 

//sinais de entrada  

reg clk;  

reg aclr;  

reg sel_t;  

reg trig;  

 

//sinais de saída  

wire [3:0] cnt;  

wire [3:0] qout; 

 

// Instantiate the Unit Under Test (UUT)  

//módulo da Unidade em Teste (UUT)  

counter_ise uut (  

.clk(clk),  

.aclr(aclr),  

.sel_t(sel_t),  

.trig(trig),  

.cnt(cnt),  

.qout(qout)  

);  

 

//período do clock para simulação  

always  

#10 clk = ~clk;  

initial begin  

 

//inicialização das variáveis  

clk = 0;  

aclr = 1;  

#20 aclr = ~aclr;  

trig = 0;  

 

//trigger interno  

sel_t = 1;  

 

//trigger externo  

/*sel_t = 0;  

 

#30 trig = ~trig;  

#20 trig = ~trig;  

#150 trig = ~trig;  

#20 trig = ~trig;  

#300 trig = ~trig;  

#20 trig = ~trig;*/  

end  

endmodule 
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APÊNDICE E –Código Contador Modificado  

// Gabriel Santos da Silva  

// Código - Contador(exemplo de uso do analisador lógico)  

 

module counter_ise(iCLK_28,cnt, qout,state,oHEX0_D, iSW);  

 

//parâmetros do analisador lógico (também da memória FIFO)  

parameter largura_dado = 4;  

parameter numeros_dado = 4;  

 

//sinais de entrada e saída  

input iCLK_28; //atribuição a pinagem do kit  

input [3:0]iSW; //atribuição a pinagem do kit  

output [2:0]state;  

wire rdreq;  

wire wrreq;  

wire empty;  

wire full;  

output reg [largura_dado-1:0]cnt; 

 

//analisador lógico  

// "módulo do analisador lógico" #(largura do dado, número de 

palavras)"nome"(entradas e saídas)  

anlog_ise 

#(largura_dado,numeros_dado)rec(iCLK_28,cnt,q,aclr,sel_t,trig,state,rdreq

,wrreq,empty,full);  

 

//incialização das variáveis  

initial cnt = 0;  

 

//lógica do contador  

always @(negedge iCLK_28) begin  

cnt = cnt + 1; //a cada descida de clock acrescenta um ao contador  

qout = q;  

sel_t = iSW[0];//associação dos sinais de entrada com sinais externos 

advindos do kit  

trig = iSW[1];  

aclr = iSW[2];  

 

case (qout) //lógica de conversão para o display de 7 segmentos  

4'h0: oHEX0_D = 7'b1000000;  

4'h1: oHEX0_D = 7'b1111001;  

4'h2: oHEX0_D = 7'b0100100;  

4'h3: oHEX0_D = 7'b0110000;  

4'h4: oHEX0_D = 7'b0011001;  

4'h5: oHEX0_D = 7'b0010010;  

4'h6: oHEX0_D = 7'b0000010;  

4'h7: oHEX0_D = 7'b1111000;  

4'h8: oHEX0_D = 7'b0000000;  

4'h9: oHEX0_D = 7'b0011000;  

4'hA: oHEX0_D = 7'b0001000;  

4'hB: oHEX0_D = 7'b0000011;  

4'hC: oHEX0_D = 7'b1000110;  

4'hD: oHEX0_D = 7'b0100001;  

4'hE: oHEX0_D = 7'b0000110;  
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4'hF: oHEX0_D = 7'b0001110;  

endcase  

end  

endmodule 

 


