
CARLOS HENRIQUE ESTEVES MENDON(,’A
CRISTINA NAOMI MAKIBARA

FABIO HIDEKI ARAGAKI

SERVIDOR DE AUTORIZAq'AO DE EVENTOS ASSfNCRONOS PARA
APLICAC'6ES DE MOBILIDADE

sAo PAULO
2006

CARLOS HENRIQUE ESTEVES MENDON(,'A
CRISTINA NAOMI MAKIBARA

FABIO HIDEKI ARAG AKI

SERVIDOR DE AUTORIZAq'AO DE EVENTOS ASSiNCRONOS PARA
APLICAq'6ES DE MOBILIDADE

PROJETO DE FORMATURA DO CURSO DE GRADUA(,'Ao
EM ENGENHARIA EL£TRIC A, £NFASE COMPUTA(,’Ao,
DA ESCOLA POLITECNICA DA UNIVERSDADE DE sAo
PAULO.

ORIENTADOR: PROF. DR. REGUVALDO ARAKAKI
CO-ORIENTADOR: ENG. MARCOS ANZAI

sAo PAULO
2006

Sumario

Introdugao
1.1 Objetivo
1.2 Motivagao
1.3 Organizagao

9 Aspectos conceituais
2. 1 Proposta
2.2 Evolugao da arquitetura

10

10

12

14

27
32
33
34
34
34
35
37
38
46
48
49
50
50
53
56
57

78
84
88

2.3 Tecnologias (conceitos)
2,4 Tecnologias (pacotes)
2.5 C)penwave

Considerag6es a cerca da escalabilidade2.6
3 Especificagao do projeto de formatura

Metodojogja
Reuso

4
4. 1

4.2 Prototipagao
Componentizagao
Extreme Programming

4.3
4.4

5 Projeto e implementagao
5.1 Cronograma
5.2 Riscos

6 Considerag6es finais
6.1 Sugest6es de estudo continuado

Refer&ncias
Lista de sjgjas
AP£NDICE A – Especificagao de Requisitos de Software
APENDICE B – Especificagao de Projeto de Software
APENDICE C – Descrigao de C6digo Fonte
AP£NDICE D – Descrigao de Testes

1 Introdugao

1.1 Objetivo

O objetivo do projeto Servidor de Autorizatao de Everrtos Asstncronos para Aplicag6es de

Mobilidade 6 conduzir um estudo de t6cnicas e tecnologias atrav6s da proposigao e criagao de

um produto final concreto utilizando-se dos conhecimentos adquiddos ao longo do curso de

graduagao em Engenharia de Computagao. O projeto, em si, visa propor uma infra-estrutura

capaz de viabilizar aplicag6es que se apresentam como solug6es para prob]emas da sociedade

resolvfveis atrav6s do emprego da tecnologia. Esta infra-estrutura viabiliza tamb6m a criagao

de produtos comerciais atrav6s da exploragao de oportunidades e formulagao de modelos de

neg6clo.

O Servidor consiste de um conjunto de componentes que atuam cooperativamente para criar

eventos assfncronos que carregam uma requisigao e que sao entregues para clientes com

mobilidade – telefones celulares, por exemplo. Esta requisigao deve consistir tipicamente de

uma pergunta cuja resposta pode ser apenas afirmativa ou negativa. o Servidor tem como

tarefa receber a resposta, mas caso nao seja possfvel contatar um dos c]ientes com mobilidade,

deve retransmitir a requisigao para os pr6ximos clientes na lista de opg6es. Ao final deste

processo, o Servidor consolida os resultados, deixando-os prontos para serem retirados.

Verifica-se, portanto, que o Servidor deve ser conectado a algum servigo legado, pois sua

fungao 6 fornecer um servigo de autorizagao totalmente assfncrono e desacoplado. Este

servigo legado fornece parametros como tempo de resposta, lista de clientes que serao

contatados e a pergunta que sera feita.

5

Atrav6s do que foi discutido, conclui-se que o projeto prop6e o estudo de caracteristicas de

neg6cio como a mobilidade, a seguranga, a algada m61tipla e o assincronismo e de

caracterfsticas de arquitetura como o desempenho, a garantia de entrega e a precisao.

O projeto de formatura foi desenvolvido ao longo de 2006 na Escola Polit&cnica da

Universidade de sao Paulo por Carlos Henrique Esteves Mendonga, Cristina Naomi Makibara

e Fabio Hideki Aragaki sob a orientagao do Prof. Dr. Reginaldo Arakaki e co-orientagao do

Eng. Marcos Anzai. A empresa Scopus Tecnologia Ltda. participou do desenvolvimento do

projeto com suporte t6cnico e de neg6cios, exercendo um imponante papel como parceira do

projeto de formatura.

1.2 Motivagao

O projeto Senidor de Autorizagao de Eventos Assincronos para Apticag6es de Mobilidade

foi idealizado a partir de discuss6es com o orientador do grupo, Prof. Dr. Reginaldo Arakaki.

A estrat6gia de formulagao da proposta foi a an£lise top-down e, para tal, elegeu-se um

problema que possufsse duas caracter{sticas especiais, a saber: fosse um problema social, isto

6, que afetasse diretamente as pessoas, e que fosse um problema resolvfvel atrav6s da

aplicagao da Engenharia para a elaboragao de uma solugao que fizesse uso de tecnologias

computacronars.

O prob]ema observado foi a dificuldade e os dscos que cdangas e idosos enfrentam ao utilizar

os sistemas financeiros, que por sua vez contam com dispositivos de seguranga cada vez mais

intrincados. O caso especial observado e explorado pelo grupo 6 o da compra em lojas atrav6s

do uso do cartao magn6tico, tanto de cr6dito quanto de d&bito. No caso do caRgo de cr6dito, a

autorizagao da transagao e a autenticagao do portador envolvem uma assinatura, cuja

verificagao costuma ser freqOentemente negligenciada pelo lojista. O cartao de d6bito, por

6

outro lado, baseia-se na senha eletr6nica como forma de autorizagao e autenticagao e, para

pessoas com dificuldade em memorizar senhas – como 6 o caso de idosos – verifica-se

freqUentemente que muitos optam por ta-la anotada consigo, fragilizando todo o sistema.

Al&m disso, o uso de cart6es de cr&dito por criangas levanta a questao da responsabilidade

inerente. Trata-se, portanto, de um dos dilemas dos pais: como garantir independ6ncia e

promover a educagao financeira ao mesmo tempo em que se evita o mau uso do dinheiro?

A resposta a estes problemas 6 o que motiva o sistema computacional desenvolvido como

projeto de formatura do grupo. Prop6e-se minimizar os problemas atrav6s da transfer6ncia da

responsabihdade de se autorizar uma transagao para outras pessoas que respondam

financeiramente e, eventualmente, legalmente pelo comprador. No caso de criangas, esta

responsabilidade sera assumida, por exemplo, pelos pais, padrinhos, irmaos ou professores e

no caso de idosos, a responsabilidade pode ser assumida, por exemplo, pelos filhos, netos ou

m6dicos. Estes respons£veis possuem, portanto, a tarefa de responder positivamente ou

negativamente a requisigao de autorizagao que podem receber a qualquer momento. O grupo

considera que o melhor meio de se receber esta requisigao 6 atrav6s do telefone celular, ja que

se trata de um dispositivo e uma rede que, por construgao, possuem caracterfsticas de

conectividade permanente e funcionamento regido por eventos assfncronos.

Sendo assim, 6 necessgrio um sistema computacional que atue como agente de transporte das

requisig6es de autodzagao e de suas respostas. Este sistema computacional 6, portanto, o

produto desenvo]vido como projeto de formatura. Em outras palavras, o que se realizou foi a

observagao da sociedade, escolha de um problema que representasse uma oportunidade de

agao, idealizagao de uma ap]icagao que resolvesse este problema e, por fim, utilizagao da

7

Engenhada como ferramenta para a construgao da infra-estrutura necess£ria para viabilizar

estas id6ias. O emprego da an£lise top-down representa este processo.

o grupo reconhece que esta aplicagao introduz riscos ao processo de compra. Entretanto, o

foco do projeto de formatura nao 6 o desenvolvimento da aplicagao, e sim o desenvolvimento

de sua infra-estrutura. Por causa disso, duas ag6es foram necess£rias: estudar os eventuais

riscos da aplicagao – a fim de rnitig£-los atrav&s da introdugao de customizag6es na infra-

estrutura e atrav6s de um conhecimento s61ido a cerca dos problemas que eventualmente

afetarao o usu&io final – e estudar outras aplicag6es que se beneficiam deste sistema

computacional e tamb6m justificam sua construgao.

o estudo de outras aplicag6es a16m da Verrda para Clientes com Necessidade Especiais , sao

mais motivag6es para o desenvolvimento do sistema computacional, pois 6 possivel perceber

que ha muitas oportunidades a serem exploradas e que podem fazer uso do Servidor de

Autorizagao de Eventos Assincronos para Apticag6es de Mobilidade, sendo necess£rio

apenas a formulagao de pIanos de implementagao ou mesmo de modelos de neg6cio.

Do ponto de vista computacional, o desenvolvimento desde sistema & motivado pela

oportunidade de se estudar as solug6es necess£das que atendem aos requisitos do sistema.

Desafios de neg6cios e de arquitetura, bem como o uso de novas tecnologias foram os t6picos

que o projeto de formatura permitiu estudar. Trata-se, portanto, de conhecimento disponfvel

para a construgao de novos projetos ou mesmo para a extensao deste.

1.3 Organizagao

O objetivo deste documento 6 apresentar de forma abrangente, por6m objetiva, o processo de

criagao do projeto Servidor de Autorizagao de Eventos Assincronos para Apticag6es de

Mobilidade , bem como apresentar conc]us6es e levantar quest6es a cerca do estudo

8

conduzido. Para tanto, este documento aborda tanto o produto final do projeto de formatura

quanto o seu processo de criagao e, para isso, o grupo estabeleceu junto com o seu orientador,

Prof. Dr. Reginaldo Arakaki, a seguinte estrutura de t6picos:

• Capftulo 2, “Aspectos conceituais“

Este capftulo & iniciado com a apresentagao da proposta do Servidor de

Autorizagao de Eventos Assincronos para Apticag6es de Mobitidade sobre o

ponto de vista de Engenhada, isto 6, a descrigao da infra-estrutura computacional

e de comunicag6es do projeto. Em seguida, 6 apresentado como foi a evo]ugao da

arquitetura do sistema e entao sao apresentadas as tecnologias utilizadas. Por fim,

sao discutidas algumas considerag6es a cerca destes aspectos conceituais e sua

influ6ncia no produto final.

• Capftulo 3, “Especificagao do projeto de formatura”

Este capftulo apresenta as especificag6es do projeto, isto 6, os requisitos de

software e os documentos pertinentes segundo as metodo]ogias de Engenharia de

Software.

• Capftulo 4, “Metodologia”

Este capftulo foca na metodologia utilizada durante o processo completo de

construgao do projeto de formatura.

• Capftulo 5, “Projeto e implementagao”

Este capftulo apresenta os documentos referentes ao planejamento do projeto de

formatura, o progresso e o resultado final do processo.

B Capitulo 7, “Considerag6es nnais”

9

Este capftulo resume as observag6es feitas pelo grupo a cerca do produto final e

do processo. Por fim, sao apresentadas sugest6es da continuagao do estudo

iniciado por este projeto para inspirar trabalhos futuros.

10

2 Aspectos conceituais

2.1 Proposta

Conforme descrito no capftulo 1.2, a proposta de construgao do Servidor de Autorizagao de

Eventos Assincronos para Aplicag6es de Mobilidade envolve garantir certas caracterfsticas

de neg6cio e de arquitetura, a saber:

2.1.1

•

Caracteristicas de neg6cio

Mobilidade: o sistema deve ser capaz de se comunicar com clientes com

mobilidade como, por exemplo, os telefones celulares. Esta comunicagao deve ser

feita atrav6s de interfaces comuns que abstraiam a implementagao eventualmente

6nica da cada rede de acesso. Por outro lado, o sistema deve tamb6m ser capaz de

interpretar os dados fornecidos pelos componentes de comunicagao a fim de

extrair informag6es de comportamento. Por exemplo, para cada rede de telefonia

celular ou operadora, pode existir um conjunto de componentes propriet£dos que

realize o envio de mensagens. Se estes componentes oferecerem medidas de

desempenho ou c6digos de resultado das operag6es, estes dados devem ser

interpretados e convertidos para os c6digos internos utilizados pelo Servidor .

• Seguranga: o projeto deve prever um nfvel mfnimo de seguranga entre os

componentes com autenticagao em nfvel de aplicagao para cada ator participante.

• Algada m61tipla: o processo de autodzagao deve ser feito atrav6s de canais

distintos, ou seja, o canal de entrada e saida que recebe do servidor legado um

novo pedido de autorizagao deve ser diferente do canal de entrada e safda que

recebe dos clientes a resposta positiva ou negativa da autorizagao.

11

Eventos assfncronos: todos os eventos ocorridos no Servidor devem ser

assfncronos, isto 6, nao 6 necess£rio que um evento seja iniciado apenas mediante

uma requisigao. Para os clientes com mobilidade, o resultado sera que irao receber

as requisig6es de autorizagao assim que elas estiverem preparadas e forem

enviadas, sem precisarem interagir com o Servidor para receb6-las.

•

2.1.2

•

Caracteristicas de arquitetura

Garantia de entrega: toda a comunicagao entre componentes deve ter garantia de

entrega, ou seja, todo componente que envia mensagens – seja internamente entre

componentes do Servidor ou externamente entre o Servidor e os servigos a ele

conectados – deve ter informag6es sobre o recebimento bem ou mal sucedido das

mensagens. Quando esta informagao nao estiver disponfvel, mecanismos de

temporizagao devem controlar a validade das informag6es.

• Desempenho: o sistema deve possuir mecanismos que permitam a escalabilidade,

isto 6, com o aumento de carga no Servidor , deve ser possfvel alocar

dinamicamente recursos de hardware para comportar esta demanda. Requisig6es

que nao puderem ser atendidas, nao podem ser perdidas. O comportamento

esperado & que elas permanegam em estado de espera at6 que seja possfvel

reservar os recursos necess£dos para o atendimento. Mecanismos de temporizagao

devem controlar a validade das informag6es que permanecem em estado de

espera.

a Precis5o: o sistema deve utilizar os mecanismos de temporizagao para garantir

tempo de resposta determinfstico em determinados pontos de comunicagao. Desta

12

forma, os servigos legados acoplados terao uma informagao at6 certo grau precisa

de quanto tempo sera necess£rio, no pior caso, para obter uma resposta.

Estes dois conjuntos de caracterfsticas foram os requisitos levantados para um sistema

computacional que permitisse implementar as funcionalidades enunciadas no capftulo 1.2.

Conforme sera discutido no capftulo 2.2, a arquitetura evoluiu para acomodar as

caracter{sticas de neg6cios e de arquitetura pretendidas e conforme evoluiu o estudo da

plataforma sobre a qual foi construfdo o Servidor .

2.2 Evolugao da arquitetura

De acordo com a proposta apresentada no capftulo 2.1, foi projetada uma arquitetura que

evoluiu conforme o estudo das tecnologias utilizadas avangou e o projeto amadureceu. Em

razao de o estudo inicial ter sido bem conduzido, nao foi necess£rio realizar mudangas

significativas na arquitetura ao longo do projeto e apenas pequenas alterag6es foram

necess£das, ora para atender requisitos de implementagao da plataforma, ora para introduzir

alguma melhoria de implement gao.

2.2.1 Primeiro passo: a definigao inicial

Precisava-se criar um conjunto de componentes que atendessem os seguintes requisitos

bgsicos:

1. utilizagao de um padrao de comunicagao entre componentes externos;

11 . desacoplamento entre componentes internos e entre componentes externos; e

111 . comunicagao atrav6s de mensagens assincronas;

13

Para atender estes requisitos, foi determinado que dois web servIces estabeleceriam os canais

de comunicagao, atendendo desta forma o requisito (i). O pdmeiro sena bidirecional e seria o

canal entre o servidor legado e o Servidor . No caso deste weh service bidirecional, para que

nao fosse desrespeitado o requisito (iii), seria utilizado o recurso de comunicagao assfncrona,

iniciando-se o envio da requisigao e obtengao da resposta em instantes determinados em

tempo de programag50. O segundo seria unidirecional (entrada apenas) e seria o canal de

comunicagao entre os dispositivos m6veis e o Servidor .

A 16gica de gerenciamento do ciclo de vida das transag6es seha implementada por um

componente central que criaria vaias instancias de objetos representando cada transagao,

cada um deles associado a n m£quinas de estado, onde n seria o n6mero de dispositivos

m6veis que cada objeto representando uma transagao poderia contatar. A comunicagao entre

os componentes internos do S AEA sena feita atrav6s de uma entidade do tipo “Topic” do

Java Messaging Service (JMS), atendendo desta forma o requisito (ii) e (iii).

2.2.2 Segundo passo: a introdugao de um wet> service adicional

Ao se estudar os exemplos de aplicagao que poderiam utilizar o Servidor , foi constatado que

tipicamente haveria um tempo de resposta da ordem de minutos a dias. Sendo assim, embora

isso nao representasse problemas para as conex6es HTFP – devido a utilizagao de web

services no modo assfncrono – entre o servidor legado e o Servidor , seria interessante separa

o canal de comunicagao para que se tivesse dois unidirecionais, aumentando o

desacoplamento de componentes e maximizando o potencial de aumento de desempenho

atrav6s do balanceamento de carga.

14

£n£nq= Terceiro passo: consideraCoes a cerca da arquitetura stateless dos
Enterprise Java Beans

Conforme sera apresentada ao longo do capftulo 2.4, a programagao para a plataforma J2EE

estabe Ieee a]gumas restrig6es inexistentes na plataforma J2SE. b o caso, por exemplo, dos

Enterprise Java Beans, que possuem como caracterfstica nao guardarem seu estado ap6s os

processos de instanciagao e execugao. Sendo assim, logo que sua execugao termina, ele pode

ser descartado em algum momento aleat6do pelo processo garbage collector e,

conseqOentemente, suas vad£veis internas que armazenam dados do estado de execugao de

uma transagao sao perdidas.

Esta caracteristica da plataforma exigiu que se reformulasse a implementagao a fim de incluir

uma camada de persist6ncia no Servidor . Esta camada de persist6ncia sena a responsgvel por

armazenar os dados referentes aos v£rios momentos de manipulagao de uma uansagao, isto 6,

da sua criagao at6 sua finalizagao. Esta foi a 61tima mudanga da arquitetura e que produziu a

versao final do Servidor .

Conforme foi discutido, a definigao da arquitetura foi um processo iterativo e que

acompanhou o estudo da plataforma e das tecnologias auxiliares. Este processo iterativo foi

necess£rio porque a p]ataforma J2EE possui diversas paticularidades e detalhes que exigem

um estudo aprofundado. Em razao de restrig6es de tempo, as atividades de estudo e

implementagao ocorram paralelamente.

2.3 Tecnologias (conceitos)

Nesta segao estao apresentados os conceitos por tMs das tecnologias utilizadas na construgao

do Servidor , independente de uma implementagao especffica. A apresentagao dos conceitos 6

feita propositalmente de forma superficial, apenas para contextualiz£-los. Sugest6es de

literatura recomendada para cada tecnologia estao relacionadas ao final de cada segao.

15

2.3.1 Web servIces

2.3.1.1 Descrigao

Web services sao definidos pelo World Wide Web Consortium (W3C) – principal 6rgao de

definigao de padr6es para a World Wide Web (W3) – como “[...] um sistema de software

projetado para prover inter-operagao mgquina-m£quina atrav6s de uma rede.” 1

Hi ao menos tr6s principais implementag6es do conceito de web services'. Remote Procedure

Call (RPC), Services Oriented Architecture (SOA) e RESTful Web Services (REST).

Entretanto, para o projeto, o interesse esti na implementagao SOA, que 6 um tipo de

arquitetura de Tecnologia de Informagao e Comunicag6es (TIC) que prov6 integragao de

operag6es de neg6cio atrav6s de servigos interligados que podem ser acessados atrav6s de

uma rede. Estes servigos sao caixas pretas e interagem com o meio – outros sistemas, tamb6m

chamados de “clientes consumidores” – atrav6s de interfaces bem definidas. Estas interag6es

sao feitas atrav6s de entidades conhecidas como “contratos de servigo”, que definem as

operag6es possiveis entre provedores de servigo e clientes consumidores. A interagao sera,

portanto, feita atrav6s de um sistema de passagem de mensagens.

As mensagens em questao e os contratos de servigo sao descritos em XML, uma linguagem

de marcagao recomendada como padrao pela W3C e, portanto, um padrao de facto de

comunicagao de dados em sistemas modernos e que buscam independencia de plataforma.

2.3.1.2 Influ6ncia no projeto

Com a utilizagao de web services para a interface entre os componentes internos do Servidor e

os componentes externos, foi possfvel garantir que at6 certo grau, o sistema garantida

1 WEB SERVICE, Wikipedia, the free encyclopedia
Disponfvel em: <http://en.wikipedia.org/wiki/Web_service>.
Acessado em: 03 de dezernbro de 2006.

16

interoperabilidade independente de plataforma. Como se espera ter diferentes p]ataformas de

clientes com mobilidade e de servidores de servigo legados, esta garantia C importante na

an91ise do fator atratividade do uso do Servidor .

2.3.1.3 Sugest6es de literatura para aprofundamento

JAVA TECHNOLOGY AND WEB SERVICES
Disponfvel em: <http://java.sun.com/webservices/>.
Acessado em: 03 de dezembro de 2006.

APACHE WEB SERVICES PROJECT

Disponfvel em: <http://ws.apache.org/>.
Acessado em: 03 de dezembro de 2006.

WEB SERVICES AND THE MICROSOFT PLATFORM

Disponivel em: <http://msdn.microsoft.com/webservices/default.aspx?pull=/library/en-
us/dnwebsrv/html/w smsplatform.asp>.
Acessado em: 03 de dezembro de 2006.

A WEB SERVICES PRIMER, wet)services.xml.com
Disponfvel em:
<http://webservices.xml.com/pub/a/ws/2001/04/CH/websewkes/hdex.html?page=2>.
Acessado em: 03 de dezembro de 2006.

2.3.2 Messaging

2.3.2.1 Descrigao

O conceito de messaging esti atrelado ao conceito de message-oriented middleware (MOM),

que se define como um software de comunicagao intra-aplicag6es e que se baseia no

mecanismo de passagem de mensagens assfncronas, ao inv6s do mecanismo mais comum de

requisigao seguida de resposta1. Ele se originou como uma a]ternativa para a integragao de

sistemas legadas e tamb6m para viabilizar o processamento distdbufdo, especialmente em

sistemas interligados atrav6s de uma rede.

1 MESSAGE ORIENTED MIDDLEWARE, Wikipedia, the free encyclopedia
Disponfvel em: <http://en.wikipedia.org/wiki/Message_Oriented_Middleware>.
Acessado em 03 de dezembro de 2006

17

Tipicamente um sistema de mensagens 6 implementado atrav6s de BIas, de forma que a

comunicagao 6 estabelecida ponto-a-ponto. Existe, entretanto, implementag6es – como a

estrutura Topic do JMS – que realizam multicast e broadcast de mensagens. As filas e as

outras estruturas com a mesma funcionalidade possuem recursos de garantia de entrega e

persist6ncia de mensagens. No caso de um sistema middleware , funcionalidades adicionais

estao tipicamente presentes, como tradugao entre protocolos e tratamento dos dados.

2.3.2.2 Influ6ncia no projeto

A necessidade de se utilizar um sistema de passagem de mensagem no projeto surgiu da

necessidade de estabelecer a comunicagao entre varios m6dulos independentes dentro do

Servidor . Conforme descrito no capftulo 2.2, a arquitetura evolui at6 o ponto em que inclui

uma camada de persist6ncia dos dados. Esta camada atua como o ponto comum de acesso

para os v£rios m6dulos e 6 possfve] demonstrar que, neste caso, nao 6 necessaHo passar

rnensagens entre os componentes,.

Entretanto, o estudo da implementagao JMS demonstrou que manter a comunicagao baseada

em mensagens traz vantagens como a eliminagao do acoplamento entre componentes internos

e entre componentes internos e externos e a possibilidade de se distribuir o processamento das

transag6es em clusters de forma totalmente transparente para a aplicagao.

2.3.2.3 Sugest6es de literatura para aprofundamento

THE JAVA EE 3 TUTORIAL
Disponfvel em: <http://java.sun.com/javaee/5/docs/tutorial/doc/>.
Acesseado em: 03 de dezembro de 2006.

JAVA EE 5 SDK
Disponfvel em: <http://java.sun.com/javaee/5/docs/api/index.html>.
Acesseado em: 03 de dezembro de 2006.

18

Object-relational mapping

Descrigao

2.3.3

O object/relational mapping ou mapeamento entre objetos e dados relacionais d uma t6cnica

de programagao que estabelece uma ligag50 direta entre a representag50 de dados da

orientagao a objetos e a representagao de dados dos bancos de dados re]acionais, criando o

efeito de um banco de dados de objetos virtual1.

2.3.3.1

Com a introdugao da programagao ohentada a objetos cHou-se um novo desafio jg que se fez

necess£rio interligar dois modelos de armazenamento de dados com caracterrsticas de

construgao distintas: o modelo de dados relacional e o modelo de dados orientado a objetos.

Este desafio 6 conhecido como o “conflito de impedancia no mapeamento objeto-relacional” e

apresenta as dificuldades de se transportar dados entre as duas representag6es sem perda de

informagao, ja que existe uma falha sem£intica, isto 6, uma diferenga na descrigao dos dados

entre as duas representag6es. Por exemplo, no modelo relaciona], nao & possfvel representar

conceitos comuns da odentagao a objetos como classes de objetos, heranga e polimorfismo.

Entretanto, o modelo relacional define a representagao de dados atrav6s de re]ag6es n-arias ,

permitindo operag6es nos dados atrav6s da 16gica de predicados.

A solugao para minimizar o problema de representagao dos dados e conversao entre os dois

modelos veio com a introdugao das ferramentas para mapeamento entre objetos e dados

relacionais. Sua fungao & atuar como uma camada de abstragao do banco de dados e se

mostrar para a aplicagao como uma camada de persist&ncia dos dados. Muitas bibliotecas que

implementam esta t6cnica foram criadas e, desde entao, alguns padr6es surgiram a fim de

normalizar as interfaces.

] OBJECT-RELATIONAL MAPPING, Wikipedia, the free encyclopedia
Disponfvel em: <http://en.wikipedia.org/wiki/Object-relational_mapping>.
Acessado em: 03 de dezembro de 2006.

19

CaO # aBc lllllUGlILFla I IV PI VIULV

No caso do projeto de formatura, foi usada a biblioteca Hibernate, um projeto de c6digo

aberto escdto na linguagem Java e que inspirou a especificag50 Enterprise Java Beans 3.0 (ou

JSR-220), tamb6m utilizado no projeto. O uso do mapeamento entre objetos e dados

relacionais permitiu que se manipulasse diretamente objetos na aplicagao, de forma que a

camada de persist&ncia – introduzida em razao da impossibilidade se manter uma c6pia em

mem6ria dos dados de cada transagao – teve sua implementagao totalmente abstrafda, de

forma que sua operagao 6 transparente para o resto da aplicagao. Detalhes como integddade

dos dados armazenados e acesso conconente ao banco de dados passaram a ser

responsabilidade da biblioteca Hibernate e da plataforma J2EE.

C.,).\).\I Sugest6es de literatura para aprofundamento

HIBERNATE
Disponfvel em: <http://www.hibernate.org>.
Acesseado em: 03 de dezembro de 2006.

2.3.4 Dependency Injection

DescriQao2.3.4.1

Dependency Injection 6 um design pattern e um modelo de arquitetura tamb6m conhecido

como Inversion of Control. A arquitetura tem como objetivo unir os componentes ao inv6s de

deixar que eles se encarreguem de estabelecer sozinhos suas conex6es. Desta forma, a uniao

de componentes passa a ser responsabilidade de um componente chamado de factory .

2.3.4.2 Influ6ncia no projeto

As aplicag6es deste design pattern sao in6meras e muitos projetos fazem uso deJa. Em

especial, pode-se mencionar o projeto Spring que entre outras fung6es facilita o trabalbo de

ligagao entre componentes dependentes e 6 a base da biblioteca Hibernate. A16m disso,

20

Dependency Injection 6 utilizado extensivamente na plataforma J2EE a partir da versao 5.

Este design pattern permite que declare depend6ncia entre a aplicagao e recursos do servidor

que sao verificados em tempo de instalagao, ao contrario da abordagem comum, onde a

verificagao ocorre em tempo de execugao. Com a exploragao deste recurso, pode-se garantir

uma redugao dos incidentes de execugao do software contanto que se tenha um forte processo

de gerenciamento de configuragao.

2.3.4.3 Sugest6es de literatura para aprofundamento

nqvERSION OF CONTROL CONTADVERS AND THE DEPENDENCY PqJECTION
PATTERN, Martin Fowler
Disponfvel em: <http://www.martinfowler.com/articles/injection.html>.
Acesseado em: 03 de dezembro de 2006.

2.3.5 Wap Push

2.3.5.1 Descrigao

O Wap Push 6 ama tecnologia utilizada para o envio de mensagens assincronamente para

dispositivos m6veis. A mensagem recebida cont6m uma Unified Resource Identifier (URD

para alguma pggina na Internet, sendo que o usugdo a acessa apenas aceitando essa

mensagem. Essa tecnologia & baseada no modelo cliente-servidor, embora nao exista uma

requisigao feita explicitamente pelo cliente ao servidor.

2.3.5.2 Arquitetura

A arquitetura do framework push\ 6 formada por tr6s entidades principais: o cliente Wap, o

Push Proxy Gateway e o Push Initiator, sendo que a comunicagao entre eles 6 feita por dois

protocolos: o Push Access Protocol e o Push Over-The-Air Protocol.

] PUSH ARCHITECTURAL OVERVIEW

Disponfvel em:
<http://www.openmobilealliance.orgtech/affiliates/LicenseAgreement.asp?DocName=/wap/wap-250-
pusharchoverview-200 1 0703-a.pdf>.
Acessado em: 03 de dezembro dc 2006.

Push Initiator realiza a montagem e envio da mensagem push•

Push Access Protocol: encapsula a mensagem push e a envia ao Push Proxy

Gateway ;

• Push Proxy Gateway: responsgvel pela conexao das redes internet e as redes

utilizadas pelos dispositivos m6veis;

• Push Over-The-Air Protocol: encapsula a mensagem push e a envia ao cliente

Wap; e

• Cliente Wap: entidade que recebe a mensagem push.

Internet
Rede Celular

Push Access
Protocol

b
Cliente Wap

Push Prox;-Gateway Push Initiator

Figura 2.1: Arquitetura do framework push.

nto do m6dulo de envio de mensagens para dispositivos m6veis do

concentrou-se no Push Initiator, ou seja, os dados necessarios foram estruturados de maneira

O desenvolvime projeto

22

que fossem encapsulados pelo protocolo Push Access Protocol e enviados ao Push Proxy

Gateway para processamento.

2.3.5.3 Push Initiator

o Push Initiator 6 uma aplicagao que realiza a montagem e envio das mensagens push (no

formato XML) utilizando o Push Access Protocol sobre o protocolo HTTP.

A montagem da mensagem push deve ser feita de acordo com o tipo de conte6do a ser

enviado (Service Indication ou Service Loading), ou seja, sao definidos os valores dos

parametros de cada tipo, sendo o Push Proxy Gateway a entidade respons£vel pela validagao

dessa mensagem. A16m disso, o Push Initiator deve definir tamb6m os valores dos parametros

de controle de entrega da mensagem push.

Os dois principais tipos de conte6do da mensagem push sao o Service Indication e o Service

Loading.

• Service Indicationt: utihzado para o envio de notificag6es ao dispositivo m6vel de

maneira assfncrona. Essas notificag6es sao compostas de uma mensagem de texto

e uma URI, sendo que sao exibidas assim que sao recebidas. O usu£rio tem a

possibilidade de acessar o servigo indicado pela URI no momento da chegada da

mensagem ou acess£-lo posteriormente, ja que a notificagao pode ficar

armazenada no dispositivo m6vel.

I WAP SERVICE INDICATION SPECIFICATION

Disponfvel em:
<http://www.openmobilealliance,org/tech/affiliates/LicenseAgreementasp'?DocName=/wap/wap- 1 67-
serviceind-2001073 1 -a.pdPdoc=wap- 1 67-serviceind-2001073 1 -a.pdf>.
Acessado em: 03 de dezembro de 2006.

23

Service Loadingl: utilizado para o envio de notincag6es ao dispositivo m6vel de

maneira assfncrona, mas nao oferecendo a possibilidade de acesso ao servigo

indicado pela URI para o usu£rio. Isso ocorre, pois, no momento em que a

notificagao 6 recebida, o servigo 6 acessado automaticamente, ou seja, a interagao

do usu£rio 6 minima.

•

O tipo de conte6do utilizado no projeto foi o Service Indication, pois um usu£rio, que tenha

recebido uma mensagem que nao era para ele, nao precisa acessar o servigo indicado pela

URI, sendo a mensagem descartada em seguida, ou seja, o usu£rio ainda tem a possibilidade

de aceit£-la ou nao, sendo que no Service Loading essa escolha nao existe.

2.3.5.4 Push Access Protocol

O protocolo Push Access Protocol foi criado com o objetivo de realizar a entrega de conte6do

do Push Initiator ao Push Proxy Gateway. Sua especificagao foi projetada de modo que ele

possa utilizar os servigos oferecidos por qualquer protocolo de transporte, embora o protocolo

predominante seja o HTTP.

A mensagem push cdada pelo Push Initiator possui duas entidades em sua estrutura, sendo

uma de controle e a outra de conte6do.

I WAP SERVICE LOADING SPECIFICATION
Disponfvel em:
<hup://www .openmobilea]liance.org/tech/affiliates/LicenseAgreement.asp?DocName=/wap/wap- 168-
serviceload-2001 073 1 -a.pdf>.
Acessado em: 03 de dezembro de 2006.

24

Entidade de Controle
(Push Access Protocon

€ntidade de ConteOdo
(Service Indication au
Service Loading)

Figura 2.2: Estrutura de uma mensagem push.

A entidade de controle1 6 um documento XML descrito por um Document Type Definition

(DTD) com a finalidade de estabelecer quais serao os parametros de entrega da mensagem

push, alan de qual operagao devera ser realizada.

A entidade de conte6do nao possui um formato especffico, pois qualquer tipo de conte6do

pode ser enviado. No caso especffico de envio de alertas, os dois pdncipais tipos de conte6dos

(Service Indication e Service Loading) estao no formato XML e cada um possui seu descritor

DTD2 3

Por meio do Push Access Protocol, o Push Initiator pode realizar as seguintes operag6es:

• Enviar mensagem push\

• Substituir uma mensagem push enviada anteriormente;

1 DOCUMENTO DTD
Disponfvel em: <http://www.openmobilealliance.org/tech/DTD/pap_2.1.dtd>.
Acessado em: 03 dezembro de 2006.
2 DOCUMENTO DTD
Disponfvel em: <http://www.openmobi]ealliance.org/tech/DTD/si_1.0.dtd>.
Acessado em: 03 de dezembro de 2006.
3 DOCUMENTO DTD
Disponfve] em: <http://www.openmobilealliance.org/tech/DTD/sl_ 1.0.dId>.
Acessado em: 03 de dezembro de 2006.

25

• Cancelar uma mensagem push\

• Verificar qual o estado de uma mensagem push no Push Proxy Gateway; e

• Consultar caracterfsticas de dispositivos m6veis.

O Push Proxy Gateway realiza somente uma operagao:

• Confirmar que um dispositivo m6vel recebeu a mensagem push ao Push Initiator.

Todas as operag6es descritas antedormente sao sfncronas, ou seja, 6 feita uma requisigao e

uma resposta & obtida, sendo que cada operagao tem uma resposta especffica1.

A 6nica operagao utilizada no projeto 6 a de envio de mensagens push, pois todas as outras

dependem da implementagao feita pelo Push Proxy Gateway, ou seja, apenas a operagao

bgsica (envio de mensagens) pode estar disponfvel.

2.3.5.5 Push Proxy Gateway

O Push Proxy Gateway 6 o elemento fundamental na arquitetura do framework push, pois ele

6 respons£vel pela conectividade entre as redes internet e as redes celulares.

As phncipais fung6es do Push Proxy Gateway sao as seguintes:

• Processamento de mensagens enviadas pelo Push Initiator: aceita ou rejeita as

mensagens push recebidas por meio de validagao contra descdtores DTD, al&m de

encaminhar as mensagens aceitas ao destinat£rio utilizando o protocolo Push

Over-The-Air;

] PUSH ACCESS PROTOCOL SPECIFICATION

Diponfvel em: <http://www.openmobilea]liance.org/tech/affiliates/LicenseAgreement.asp?DocName=/wap/wap-
247-pap-20010429-a.pdf>.
Acessado em: 03 de dezembro de 2006.

26

Notificagao ao Push Initiator de que as mensagens foram recebidas pelos

destinat£dos: envia uma mensagem ao Push Initiator notificando-o sobre o

recebimento da mensagem push pelo dispositivo m6vel. Isso ocorre somente se o

Push Initiator solicitou essa fungao;

•

• Consulta sobre o estado de uma mensagem recebida do Push Initiator: uma

vedficagao sobre o estado da mensagem push 6 feita, sendo a resposta enviada ao

Push Initiator; e

• Cancelamento de uma mensagem push. cancela o envio de uma mensagem push

desde que eIa esteja pendente, ou seja, ainda nao tenha sido enviada ao

destinatario.

O enderegamento de dispositivos m6veis1 pode ser feito por meio de um mapeamento entre

um identificador de usu£do e um dispositivo m6vel ou por meio de enderegamento direto do

dispositivo.

2.3.5.6 Push Over the Air Protocol

O protocolo Push Over-The-Air2 6 utilizado na comunicagao entre o Push Proxy Gateway e o

dispositivo m6vel para o envio da mensagem push, sendo que ele utiliza os servigos

oferecidos pelo protocolo Wireless Session Protocol (WSP) ou HTTP durante essa

comunlcagao.

I PUSH PROXY GATEWAY SERVICE SPECIFICATION
Diponfvel em: <http://www,openmobilealliance.org/tech/affiliates/LicenseAgreement.asp?DocName=/wap/wap-
249-ppgservice-200 1 07 1 3-a.pdf>.
Acessado em: 03 de dezembro de 2006.
2 PUSH OTA PROTOCOL SPECIFICATION

Diponfvel em: <http://www.openmobileaIIiance.org/tech/affi]tales/LicenseAgreement.asp?DocName=/wap/wap-
235-pushota-200] 0425-a.pdf>.
Acessado em: 03 de dezembro de 2006.

27

O modo como o dispositivo m6vel se comunica com o Push Proxy Gateway para o

recebimento da mensagem push nao esti no escopo do projeto.

2.3.5.7 Cliente Wap

O cliente Wap 6 o destinat£rio da mensagem push enviada pelo Push Initiator, sendo que o

recebimento das mensagens 6 possfve] somente se existe uma conexao com o Push Proxy

Gateway.

2.4 Tecnologias (pacotes)

Sun Java Enterprise Edition

Enterprise Java Beans

Um Enterprise Java Bean (EJB) 6 um componente de c6digo contendo vari£veis e m6todos

que implementam uma 16gica de neg6cios. Este componente pode tanto ser utilizado sozinho

ou como parte de um sistema maior atrav&s da interligagao de v£Hos EJBs. Hi dois tipos de

EJBs: Session Beans e Message Driven Beans. O primeiro 6 tipicamente uma associagao

temporaria com um cliente, isto 6, ap6s sua execugao – iniciada atrav&s da chamada e

instanciagao feitas por um cliente – ele 6 destrufdo e os dados nele armazenados sao perdidos.

O Message Driven Bean possui as mesmas caracterfsticas, mas 6 tipicamente acionado por

chamadas realizadas atrav6s do JMS.

2.4.1

2.4.1.1

At6 a versao 4 do J2EE, os Entity Beans tamb6m eram considerados EJBs. Entretanto,

atualmente eles sao simp]esmente considerados entidades da plataforma de persist&ncia do

Java. Os Entity Beans agem como uma representagao em mem6Ha de um dado armazenado

em um banco de dados tipicamente relacional. Assim que 6 usado e removido, o gerenciador

de persist6ncias do J2EE se encarrega de manter a integridade dos dados junto ao banco de

dados

28

Um EJB precisa ser executado em um container . Containers sao representados por sewidores

de aplicagao que aderem is especificag6es do J2EE. Atrav6s deles, 6 possfvel criar facilmente

aplicag6es cliente/servidor em clientes magros, pois toda a complexidade de mecanismos

como gerenciamento de estado e de transagao, multithreading, ba]anceamento de carga e

outros detalhes de implementagao de baixo nfvel sao todos de responsabilidade do sewidor de

aplicagao, de forma que o programador deve apenas se preocupar com a configuragao dos

recursos e da criagao da 16gica de neg6cios. Alguns dos pdncipais containers disponiveis

comercialmente sao o Sun Application Server, IBM WebSphere, RedHat JBoss, BEA

WebLogic e SAP NetWeaver.

Algumas das mais importantes caracterfsticas dos EJBs no contexto do Servidor sao a

possibilidade de se beneficiarem com balanceamento de carga totalmente transparente para a

aplicagao quando instalados em um cluster de servidores e o acesso direto a recursos do JMS

e da arquitetura de banco de dados do J2EE. O Sun Application Server 9.0 – tamb6m

conhecido como o projeto de c6digo aberto Glassfish – foi selecionado para o projeto de

formatura porque & um dos 6nicos atualmente que aderem as especificag6es J2EE 5,

permitindo que fossem explorados os recursos de interagao com o banco de dados segundo a

especificagao EJB 3.0, as novas ferramentas para criagao de web services mais aderentes aos

padr6es estabelecidos na ind6stna e os recursos como Java Annotations que permitem

exp]orar o design pattern Dependency Injection a fim de se obter um c6digo final mellor e

menos sujerto a erros.

2.4.1.2 Message Driven Beans

Conforme discutido no capitulo 2.4.1.1, os Message Driven Beans (MDBs) possuem

comportamento semelhante aos Session Beans, mas sao tipicamente ativados atrav6s de uma

chamada assfncrona gerada por uma mensagem do J]VIS. A 16gica de um MDB 6 totalmente

29

implementada em um m6todo onMessage () que 6 automaticamente e assincronamente

chamado pelo JMS ap6s elc ter instanciado o MDB e uma mensagem estar disponfve]. Para

isso, o MDB deve estar ligado a uma das estruturas do JMS: Topic ou Queue.

A estrutura Topic representa um instrumento para transporte de mensagens entre componentes

atrav6s de multicast segundo uma relagao de publicagao e inscrigao. Em outras pa]avras, um

componente ao publicar uma mensagem em uma estrutura Topic estar£ se comunicando com

v£dos MDBs que nela estejam inscritos. A estrutura Queue, por outro lado, funciona atrav6s

de uma relagao ponto a ponto, isto 6, apenas um componente pode entregar mensagens a

estrutura e apenas um MDB pode receb6-las. Esti 6 a implementagao mais comum entre as

arquiteturas de messaging e 6 tamb6m a mais simples e eficiente. A estrutura Topic possui um

recurso complexo de persist&ncia de mensagens no caso de MDBs s6 estiverem disponfveis e

inscritos nela ap6s a publicagao da mensagem. Ambas, entretanto, possuem mecanismos de

garantia de entrega.

2.4.1.3 Especificagao EJB 3.0 (ou JSFa-220)

A especificagao EJB 3.0 define todos os tipos de Enterprise Java Beans, suas caracterfsticas e

suas funcionalidades. Em especial, ha definig6es a cerca do gerenciador de persistancia do

J2EE que utiliza uma interface comum para ser acesso atrav6s de EJBs independente da

biblioteca de mapeamento entre objetos e dados relacionais. As definig6es, no entanto, foram

em muitos casos baseadas nas definig6es anteriormente encontradas na biblioteca Hibernate.

2.4.2 Hibernate

O Hibernate 6 uma biblioteca de mapeamento entre objetos e dados relacionais e foi escolhida

para o projeto pois a16m de ser distribufda gratuitamente, 6 a biblioteca mais usada em

ambientes Java e inspirou a definigao EJB 3.0. A16m disso, outro ponto forte desta biblioteca

30

6 que eIa possui compatibilidade com versao anteriores do J2EE, do J2SE e at6 mesmo

compatibilidade com o Microsoft .NET Framework 1.1 e 2.0. Desta forma, garantirfamos que

mais um componente do Servidor seria facilmente ponado entre as principais plataformas.

Conforme discutido no capftulo 2.3.3, uma ferramenta de mapeamento entre objetos e dados

relacionais atua como um banco de dados orientado a objetos virtual. Desta forma, do ponto

de vista da aplicagao a implementagao do banco de dados 6 transparente, pois manipula-se

objetos diretamente. Do ponto de vista do banco de dados relacional, por outro lado, hi

algumas modificag6es. Cada tabela deve representar uma classe e herangas devem ser

representadas atrav6s de relacionamentos entre chaves primadas e chaves estrangeiras. Este

m6todo de relacionamento 6 chamado one-subclass-per-table .

Conforme se pode examinar no c6digo fonte, foram utilizadas Java Annotations para

configurar o Hibernate, isto 6, para descrever os relacionamentos entre as vad£veis de cada

objeto e as colunas de cada tabela. Esta descrig6es tamb6m estabelecem o relacionamento

entre o tipo de dado de cada vad£vel na linguagem Java e o tipo de dado de cada coluna no

banco de dados relacional. Uma mudanga na estrutura do banco de dados exige tamb6m uma

mudanga da estrutura de objetos e vice-versa.

2,4.3 Microsoft SQL Server

O Microsoft SQL Server 2005 foi selecionado para o projeto de formatura por diversas

raz6es. Em primeiro lugar, o software pode ser obtido gratuitamente na versao Express, que

para fins de criagao de um prot6tipo, possui recursos suficientes. A16m disso, a Escola

Po]it&cnica disponibiliza atrav6s de sua parceira Academic Alliance com a Microsoft vers6es

mais comp]etas do Microsoft SQL Server 2005 sem custo quando usado para fins acad&micos.

31

Outra oportunidade explorada foi a de demonstrar a cdagao de um projeto totalmente

independente de plataforma, isto 6, a interface com componentes externos utiliza padr6es de

comunicagao e mesmo a implementagao de componentes internos pode se facilmente porta(la.

Por fim, o uso do Microsoft SQL Server 2005 traz a oportunidade de explorar fenamentas

como o Report Services, que atua como um servidor de armazenamento de geragao de

relat6rios baseados nos dados armazenados. Ao desenvolver estes relat6rios, o usu£rio tera

uma representagao visual dos resultado das operag6es armazenadas pelo Servidor , podendo

consolida-los a fim de extrair resultados de operagao.

2.4.4 NetBeans

O NetBeans 6 um projeto de c6digo aberto desenvolvimento em parte pela Sun. Ele se

apresenta como o melhor ambiente de desenvolvimento para atuar junto com o Sun

Application Server, pois integra ferramentas de instalagao, operagao e manutengao de

aplicag6es e recursos do container , a16m de oferecer ferramentas avangadas de documentagao

(pacote Enterprise) – com geragao de diagramas UML, por exemplo – e fenamentas de testes

(pacote Profiler).

Alan dos testes de unidade comuns, estao disponfveis testes de carga que possibilitam a

ana lise sob o ponto de vista macrosc6pico e microsc6pico. No ponto de vista microsc6pico,

pode-se analisar quais fragmentos de c6digo representam a maior carga de processador,

mem6ria e/ou dispositivos de entrada e safda, o que auxilia na etapa de anglise de

desempenho e otimizagao da aplicagao.

32

2.5 Openwave

Openwave Wap Push Library Java 1.0

Implementagao da Openwave1 para a especificagao do protocolo Push Access Protocol.

Possibilita a realizagao de todas as operag6es, a16m da eriKao de todos os documentos XML

necessarios para a geragao da mensagem push

2.5.1

2.5.2 Openwave V7 Simulator

Simulador de um dispositivo m6vel celular utilizado para a visualizagao das mensagens push

recebidas, a16m de acesso ao servigo indicado pela URI. Deve estar conectado ao gateway

Wap para que essas mensagens sejam recebidas.

2.5.3 Mobile Access Gateway

O Mobile Access Gateway 6 um gateway Wap oferecido para testes pela Openwave, sendo

que ele oferece todas as funcionalidades de um Push Proxy Gateway.

Um cadastro deve ser feito em2 para que uma identificagao seja criada, sendo que a mesma 6

utilizada como enderego de destino das mensagens push. Esse enderego deve ser sincronizado

com o enderego Internet Protocol (IP) do computador onde esti instalado o Openwave V7

Simulator para que exista um mapeamento.

1 WAP PUSH LIBRARY
Disponfvel em: < http://developer.openwave.com/docs/wappushjaval O/developer_guide.pdf >.
Acessado em: 03 de dezembro de 2006.
2 WAP GATEWAY
Dispon{vel em: <http://developer.openwave.com/dvI/tools_and_sdk/test_servers/wap_gateway/devgate2.htm>.
Acessado em: 03 de dezembro de 2006.

33

2.6 Conslderal,oes a cerca da escalabllldade

Conforme apresentado no capftulo 2.4.1, o potencial de escalabilidade do Servidor esti

intimamente relacionado com a o container sobre o qual ele 6 instalado e opera – no caso, o

Sun Application Server. Como a arquitetura de componentes foi totalmente baseada em EJBs,

e como nao hg acoplamento entre os componentes e poucas depend6ncias de tempo, isto 6,

operag6es sincronas, os EJBs podem ser distdbufdos ao longo de um cluster de servidores de

forma totalmente transparente para a aplicagao.

Por exemplo, supor o recebimento de uma nova transagao atrav&s do weh service de entrada.

o comportamento esperado 6 que os dados alimentados no web service pelo servidor legado

sejam empacotados em uma mensagem e entregues ao Java Messaging System. A partir deste

momento, a operagao do web service termina, liberando a conexao HTTP com o servidor

]egado e os recursos a]ocados para criar o Session Bean do web service . A mensagem agora

armazenada pelo Java Messaging System s6 sera atendida quando o servidor tiver recursos

para alocar um Message Driven Bean. Este Message Driven Bean, quando alocado, pode estar

localizado em qualquer servidor de um cluster. Como a camada de persist6ncia 6 centralizada,

isto 6, todos os servidores estao conectados a um mesmo banco de dados – que, internamente,

pode tamb6m estar configurado como um cluster, neste caso atuando de forma transparente

para os servidores J2EE – a integddade das informag6es 6 preservada. Neste caso, ha a

necessidade de configurag6es especiais em relagao aos limites das transag6es com o banco de

dados. Este componamento se repete durante todo o ciclo de vida da aplicagao e caracteriza o

potencial de escalabilidade do sistema.

34

3 Especificagao do projeto de formatura

O documento de Especificagao de Requisitos de Software esti inclufdo no Ap&ndice A.

4 Metodologia

Esse item trata de metodologias de desenvolvimento de software peninentes ao projeto

apresentado. Inicialmente, apresentaremos uma introdugao te6rica sobre as metodo]ogias, e

em seguida, mostraremos como cada uma delas foi utilizada no projeto, que documentos e

anefatos foram gerados, e qual o impacto da utilizagao dessas metodologias no

desenvolvimento do projeto.

4.1 Reuso

O conceito de reutilizagao 6 um processo jg utilizado em v£rias areas da engenharia. Na

engenharia de software, o aumento da complexidade de sistemas e os prazos cada vez

menores para o desenvolvimento de sistemas com qualidade, indicam a necessidade de

desenvolvimento mais organizada de reuso. A engenharia de software baseada em

componentes e o desenvolvimento utilizando-se o modelo de Orientagao a Objetos

possibilitam essa abordagem de reutilizagao.

A engenhada de software baseada em componentes (Component-based Software Engeneering

(CBSE)) foca no desenvolvimento de grandes sistemas atrav&s da integragao de componentes

de software. Uma aplicagao 6 montada a partir de um conjunto de panes, os componentes de

software padronizados e pr6-construfdos, que sao disponibilizados para a integragao.

o paradigma de Orientagao a Objetos enfatiza a criagao de classes que encapsulam os dados

tanto quanto os algoritmos usados para manipulg-los. Se bem implementadas, as classes

35

podem ser reutilizadas em vados projetos de software, atrav6s da sua disponibilizagao em

bibliotecas ou reposit6rios.

Em sistemas complexos, quando os requisitos ainda nao estao maduros ou hg a incerteza do

desenvolvedor em relagao a arquitetura, como implement£-la e incertezas sobre a integragao

dos componentes, o paradigma de prototipagao pode ser a melhor abordagem.

A prototipagao 6 o projeto rgpido de um prot6tipo que pode ser avaliado pelo usugdo para

validar os requisitos. Para os desenvolvedores, o prot6tipo valida a arquitetura de modo

r£pido, permitindo que mudangas nos projetos, caso seja constatada a necessidade atrav6s do

prot6tipo, acontegam logo no seu infcio, quando os custos de alterag6es no projeto ainda sao

baixos.

4.2 Prototipagao

Existem duas abordagens sobre o paradigma da prototipagao [Pressman]. A abordagem de

finaliddde fechada utiliza prot6tipos descart£veis, cuja finalidade 6 demonstrar, de forma

r6stica, os requisitos. Pode-se, atrav6s dele, entender o dominio da aplicagao, modelar o

problema, mas os requisitos podem ainda estar inst£veis e ambfguos.

Na abordagem de finalidade abena, o prot6tipo de software 6 uma pdmeira evolugao do

sistema acabado, que pode ser evolufdo para dar continuidade ao projeto. Nele, os requisitos

de software estao mais maduros, e ha um entendimento maior deles pela equipe de

desenvolvimento.

Para realizar a prototipagem r£pida, tr6s classes gen6ricas de m6todos e ferramentas podem

ser utilizadas, a saber:

36

T6cnicas de 4:’ Geragao;

• Componentes de software reutilizaveis; e

• Ambientes de especificagao formal e prototipagem.

O ciclo de vida da prototipagao envolve varios ciclos de revis6es sobre o prot6tipo [Yourdon],

conforme mostrado na Figura 4.1. Apesar da abordagem dada por essa autora dizer que o

pr6totipo 6 somente um modo de modelar os requisitos do sistema, e que deve ser descartado

sempre, esse ciclo de vida reflete bem o modo como um prot6tipo se desenvolve durante a

especificagao dos requisitos.

Abordagem de
especificag60

rlgorosa

Identificar
necessidades

basicas

Demonstragao em
contexto. obter

refinamento

N

;mr:= SL nD
Componentes de

especifica9ao
rlgorosa

Figura 4.1: Ciclo de vida da prototipagao.

37

4.2.1 Dificuldades

Nao havendo o claro entendimento dos desenvolvedores e dos clientes sobre qual a exata

fungao do prot6tipo, ele pode acabar a se tornar o produto pela vontade do cliente, por achar

que o sistema esti pronto, ja que atende parte de seus requisitos. Isso pode se converter em

um problema, ja que o prot6tipo pode nao atender a manipulag6es eficientes de grandes

volumes de transag6es, a16m de nao estar provido de detalhes operacionais como recuperagao

de erros, documentagao do usu£rio, entre outros.

4.3 Componentizagao

O termo componente possui diversas definig6es, dentre as quais podemos destacar:

• Uma parte nao trivial de um sistema, independente e substituivel, que preenche

uma fungao clara no contexto de uma arquitetura;

• “Componentes sao artefatos auto-contidos que n6s identificamos claramente em

nossos sistemas. Eles t6m uma interface, descrevem e/ou executam fung6es

especfficas, sao documentados separadamente e apresentam um status de

reutilizagao bem definido” [Sametinger] ; e

• “Um componente de software 6 uma unidade de composigao com interfaces

especificadas contratualmente e depend6ncias explfcitas somente de contexto. Um

componente de software pode ser implantado independentemente e 6 usado para

composigao com terceiros.” [Szyperski] .

Existem dois subprocessos relacionados a componentizagao [Pressman]: a engenharia de

domfnio e o desenvolvimento baseado em componentes.

38

A engenharia de domfnio se preocupa em identificar, construir, catalogar e disseminar um

conjunto de componentes de software que tem aplicabilidade aos softwares, em um domfnio

de aplicagao particular. Sua meta principal 6 permitir que os desenvolvedores companilhem e

reusem os componentes nos v£rios projetos.

O desenvolvimento baseado em componentes qualifica, adapta e integra os componentes

disponibilizados pela engenhada de domfnio para utilizagao em novos sistemas. Hi ainda a

engenharia de novos componentes desenvolvidos de acordo com as necessidades especificas

de um novo projeto.

4.4 Extreme Programming

Extreme Programming 6 um conjunto de pr£ticas para o desenvolvimento ggil de softwares .

Essas prgticas sao organizadas em quatro valores fundamentais:

• Simplicidade: deve-se comegar da forma mais simples, e ir aperfeigoando-a,

conforme as necessidades presentes;

• Comunicagio: o desenvolvimento de sistemas de software exige a comunicagao,

tanto entre os clientes e desenvolvedores quanto entre os pr6prios

desenvolvedores. As pr£ticas do XP colaboram para a comunicagao freqOente

durante todo o processo de desenvolvimento;

• Feedback: retorno dos clientes e do pr6prio sistema (atrav6s de testes de unidade

e de aceitagao) possibilitam manter o projeto dentro do planejado, ou ainda

permitem que falhas sejam detectadas antes de iniciar o desenvolvimento de novas

funcionalidades; e

39

Coragem: Os projetos XP partem do principio de que problemas irao ocorrer. No

entanto, a equipe deve utilizar redes de protegao para que as conseqnencias desses

problemas sejam reduzidas ou eliminadas. Iterag6es curtas, desenvolvimento

iterativo e a incorporagao do feedback de cada etapa sao algumas pr£ticas que tem

a fungao de prover essa rede de protegao ao desenvolvimento.

•

No projeto, a utilizagao do XP foi baseada em algumas das 12 prgticas [XP]. As prgticas

utilizadas e os resultados com a utilizagao sao mostrados abaixo.

4.4.1 Programagao por pares

Essa pr£tica tem por objetivos colocar dois programadores em um 6nico computador para

escrever o c6digo. As vantagens dadas por essa abordagem sao:

• As decis6es de projeto envolvem pelo menos duas pessoas;

• O c6digo 6 sempre revisado por duas pessoas; e

•

Pelo menos duas pessoas estao familiarizadas com cada parte do sistema.

Mensalmente, reunfamos-nos em duplas e realiz£vamos a programagao em pares, a16m da

revisao em dupla do c6digo gerado individualmente.

Tivemos a percepgao que a programagao em dupla realmente trouxe uma maior efici6ncia na

programagao, ja que o trabalho coIaborativo facilita tanto na definigao de m6todos, 16gicas, e

resolugao de problemas.

40

4.4.2 Testes

A metodologia XP define dois tipos de testes: testes de unidade e de aceitagao. Os testes de

unidade garantem o funcionamento das diversas panes do sistema, enquanto os testes de

aceitagao indicam quando o sistema esti com as funcionalidades implantadas conforme

especificado.

Os testes de unidade permitem que defeitos possam ser corrigidos antes de se desenvolver

novas funcionalidades, a16m de garantir que o c6digo esti funcional.

Os testes de aceitagao permitem que os clientes validem os casos de uso especificados,

ajudando a medir quanto do sistema esti pronto.

Os testes de unidade foram os mais utilizados, ja que era necess£do garantir que cada

componente, desenvolvido separadamente, teria suas funcionalidades mantidas ap6s a

integragao com os outros componentes do sistema.

Os testes de aceitagao ocorreram com o sistema devidamente integrado, verificando-se o

funcionamento do sistema como um todo.

4.4.3 Projeto simples

O XP possui a preocupagao em manter o projeto simples, funcional, mudando-o somente

quando ele nao refletir a realidade. Para isso, deve-se manter o c6digo sem duplicidades, com

o mellor n6mero possfvel de classes e m6todos, e sempre testados.

A simplicidade, no projeto, foi mantida durante a codificagao, com a simplificagao dos

m6todos, da modelagem e implementagao das classes.

41

4.4.4 Componentizagao

O desenho da arquitetura de componentes do sistema 6 mostrado na Figura 4.2.

Terminal de com6rcio Servidor de com6rcio (servidor de aplicagio)

\ : Servigo de pagamento 'I

: : : I IniciadorDeTran I :
sagao I !

Se:: iI:1:::::os : i ! I ’ i

f-I
IniciadorDeTran

sagao

I
I

I
I

I
I

I

I
I
i
I

I
I
I

Servigo de autenticagao mobile

Elf Camada de neg6cio

I
I

i ='’"iF:ESC
I
I
I
I
I

I
I
I

i 1
1 1

\n+WWWWWW=MWMMWWnMWnMn=WWnWWWH=HWWnM=WaP

\n

Servidor m6bile

Camada de neg6cio

[
WebService

ServigoDeAuten
ticagao

GeradorDeMaqu
inas WAP/SMS 11

WebService

Terminal m6bile

:’ Camada de neg6do \

i =:==„,#1 i
: I RequisigaoDeAu I :
: 1 tenticagao I :

Servidor HTTP

AcessoAoServig
oDeResposta

:“i;had; de apresent:-\

! w pTg;;==)[I i
\ /

I

Figura 4.2 : Arquitetura de componentes.

42

O componente “Gerador de Mgquinas de Estado” 6 um componente gerenciador de

transag6es. Ele possui uma interface com o web service legado, para que receba as transag6es

vindas desse componente. Com a transagao, e todas as informag6es sobre os agentes de

autorizagao, 6 capaz de inicializar as mgquinas de estado responsgveis pelos estados das

transag6es e gerenci£-las.

Possui uma interface com o componente de envio de mensagem Wap Push para o envio de

mensagens assfncronas para os celulares, acessado pelas mgquinas de estado atrav&s de um

m6todo desse componente.

As M£quinas de Estado, que tamb&m fazem parte desse componente, guardam os estados da

transagao. Para garantir a qualidade no servigo prestado pelo servidor, as mgquinas de estado

possuem um timer, utilizado para o time -out das transag6es. Desse modo, se a mensagem nao

6 entregue ao destinat£rio por problemas na operadora, as mgquinas de estado entram em

estado de time-out e iniciam o envio da transagao pendente a um outro celular respons£vel

tamb6m por aprovar tal transag50.

Na resposta do celular, o web service de reposta Wap acessa o componente Gerenciador de

Mgquinas para a entrega da mensagem. O gerenciador 6 entao capaz de identificar qual a

mgquina responsive] peIa resposta, direcionando a resposta a mgquina correta.

Os estados de uma transagao dependem da ativagao ou nao da mgquina

(“DESATIV ADO“/“ENVIADO”), erro na conexao ao gaTeway Wap (“ERRO”), envio de

mensagem com sucesso at6 o gateway Wap (“CONECTADO GATEWAY”), em time-out

(“TIME-OUT”), ou envio com sucesso ao ce luIar, identificado com a resposta do celular ao

sistema (“ENVIO SUCESSO”).

43

erroTransmissao
Enviado

timeD,tSeNid#'' envioSucessoGateway

Erro

1 C:1 a t e W a y

envioSucesso

Envio Sucesso

Figura 4.3: Diagrama de estados do componente M£quina de Estados.

4.4.5 Prototipagao

Para entender os requisitos do sistema proposto, foi utilizada uma abordagem top-down do

problema. A partir da especificagao de ap]icativos c]ientes do sistema, e da identificagao de

seus requisitos, pudemos identificar requisitos mais detalhados do nosso pr6prio sistema.

A abordagem de prototipagao no desenvo]vimento do projeto foi atrav6s do desenvolvimento

de Provas de Conceito (POCs) que demonstrassem a validade das v£rias panes do sistema,

a16m de dar matuddade aos requisitos do sistema.

Os POCs projetados foram feitos para validar a arquitetura de componentes, mostrada na

Figura 4.2, e os casos de uso especificados no Ap6ndice A. Os POCs se basearam no

desenvolvimento de componentes dummies , que implementam a 16gica de neg6cios de mc)do

simples9 muitas vezes simulando transag6es e interfaces com outros componentes, garantindo

que o foco no seu desenvolvimento seja a sua 16gica de neg6cio. Preocupag6es com interfaces

e comunicag6es entre componentes nao sao tratados em uma primeira fase de

desenvolvimento do componente.

44

POC: Iniciar transaQao

ComDonente
Parametros de entrada

Especificagao

Gerenciador de Mgquinas

WAS em com dados da transagao e dos agentes de resposta
O gerenciador de m£quinas recebe a mensagem de inicio de
transaCao.

Inicia a transagao com a mgquina de estados resultante da
busca

Parametros de safda

POC: Receber Mensagem
e e Estado
a

o) gerenciador de mgquinas recebe a mensagem, e a direciona
para a m£quina de estados repons£vel pela transagao e
resDOsta do celular
Timer da mgquina de estados cancelada, e status da mgquina
atualizada

Parametros de safda

Tabela 4.1: Descrigao dos POCs desenvolvidos.

startTransaction

I

iniciaTransacao(mensagem)

procuraMaquinas:=procuraMaquina(idTransacaoy

recebeMensagem(primitiva)

I
I

I

I

I

I

I

recebeMensagem

I

I
I

I

Figura 4.4: Diagrama de Seqa6ncia do POC Iniciar transagao.

45

maquinaDeEstados

I

timerMaquina

I

I

I

I

I

I

I

recebeMensagem(envioSucesso, idTransacao. idDispositivo)
I

I

procuraMaquina:=procuraMaquina(idTransacao, idDispositivo)

procuraMaquina:=procuraMaquina(idTransacao, idDispositivo)

cancel

I
I

I

I

I
I
I
I

I
I

I

I

I

I

I

I

I
I

I

I

I

Figura 4.5: Diagrama de SeqU6ncia do POC Receber mensagem.

46

5 Projeto e implementagao

A estruturagao dos pacotes de habalho (Work Breakdown Structure (WBS)) do projeto de

formatura pode ser observada na seguinte tabela:

Projeto Especificagao de
software

Requjsitos de Software
Arquitetura baseada em
Componentes
Casos de Uso
Diagramas de Classes
r
EnteMJava Beans
Message Beans
Web Se=
O/R Mapping -
Hibernate
WaD Push
r
Servidor

Estudo sobre
Tecnologias

Desenvolvimento Modelagem da Base de Dados
Componente de comunicagao mobile
(WAP)
WebService de interface com aDlicaGao
WebService de interface com clientes
mobile
Componente de gerenciamento do
servIQO
)

Mapping)
Desenvolvimento da aplicagao de
exemplo

Aplicagao

Documentagao Documento de Software

Documentagao de
c6djgo
I
Ambiente real

Testes

Tabela 5.1: WBS do projeto

O projeto 6 formado por cinco grandes pacotes de trabalho, especificagao de software , estudo

sobre tecnologias, desenvolvimento, documentagao e testes.

47

A especificagao de software consiste na geragao do documento de requisitos encontrado no

Ap6ndice A. Seu principal objetivo 6 a identificagao de forma clara e objetiva de todos os

requisitos de software, a16m da cHagao de modelos que possibilitem a sua implementagao.

Primeiramente foram estabelecidas as funcionalidades que o servidor deveria fornecer is

aplicag6es clientes e de que modo elas podedam acessg-las. Ap6s as definig6es, foi possfvel

elaborar uma arquitetura baseada em componentes, enfatizando o desacoplamento, ja que esta

6 a principal caracterfstica do projeto. A criagao da arquitetura, em conjunto com os requisitos

funcionais, possibilitou a geragao dos documentos seguintes do processo de desenvolvimento

de software, a saber: casos de uso, diagrama de classes e diagrama de seqU6ncia.

O estudo sobre tecnologias foi necess£rio, pois nao se sabia se elas forneceriam todas as

funcionalidades necess£rias para o desenvolvimento do projeto. Desse modo, foi necess£rio

avaliar diversas ferramentas disponfveis no mercado antes do infcio da etapa de

implementagao do projeto. O estudo foi focado na plataforma Java, mais especificamente em

Enterprise Java Beans, Java Messaging Services, framework de mapeamento de objetos e

dados relacionais Hibernate e bibliotecas e simuladores Openwave Wap Push e Smarttrust

para envio e recebimento de mensagens para dispositivos m6veis. Um estudo sobre a infra-

estrutura para a execugao do projeto foi feito, pois era necessario saber qual sistema

operacional, quais recursos computacionais, quais recursos de rede e quais servidores

deveriam ser adotados para desenvolvimento e execugao do projeto.

o desenvolvimento do projeto foi feito de forma distribufda, ou seja, cada integrante do grupo

foi respons£vel por um componente. Inicialmente, foi realizado um prova de conceito para a

validagao da arquitetura proposta, sendo esta aprovada. Em seguida, foram feitos os

componentes utilizando-se a tecnologia Enterprise Java Beans, mas problemas foram

encontrados durante o desenvolvimento e a arquitetura do projeto foi modificada de forma a

48

solucionar esses problemas, conforme deschto no capitulo 2.2. O desenvolvimento do

componente de envio de mensagens para dispositivos m6veis tamb6m teve prob]emas, pois,

apesar de existirem dois simuladores para recebimento de mensagens, apenas um funcionava

corretamente, o Openwave Wap Push. Desse modo, o simulador da Smarttrust foi exclufdo do

projeto. Os testes realizados sobre cada componente desenvolvido, tiveram a finalidade de

comprovar o seu correto funcionamento.

A documentagao gerada 6 composta de duas panes, uma do desenvolvimento do software e

outra do c6digo fonte. O documento de software 6 o mesmo que foi gerado no infcio do

projeto, especificagao de requisitos e modelagem do servidor, mas com algumas modificag6es

feitas, jg que existiram problemas durante o desenvolvimento, sendo que foram solucionados

por meio e alterag6es na modelagem. A documentagao de c6digo foi gerada conforme os

componentes estavam sendo desenvolvidos, ou seja, essa documentagao explica qual a

finalidade de cada classe e de cada m6todo criado.

Os testes realizados tiveram como objetivo a validagao dos requisitos propostos inicialmente

no projeto. Os testes em ambiente simulado possibilitaram a validagao dos requisitos. Os

testes em arnbiente real nao foram realizados.

5.1 Cronograma

O cronograma elaborado e apresentado no arquivo <Cronograma.mpp> (contido no CD-ROM

que acompanha a monografia)1 corresponde is fases de desenvolvimento, documentagao e

testes. A duragao total dessas tr6s fases foi aumentada em uma semana, devido aos problemas

encontrados durante a fase de desenvolvimento, ja que a modelagem inicial teve que ser

alterada.

I ARQU IVO DIGITAL DO PROJETO DE FORMATURA
20006, 1 CD-ROM

49

5.2 Riscos

sao dois os principais riscos do projeto: a utilizagao de componentes externos para envio de

mensagens push e os testes em ambiente real, ou seja, testes utilizando dispositivos m6veis

celulares ao inv6s de simuladores. A utilizagao de componentes externos para envio de

mensagens 6 o principal risco do projeto, pois o servidor depende desse componente para o

envio das requisig6es para dispositivos m6veis. A16m da utilizagao do componente externo,

existe a necessidade de um gateway para a utilizagao do Wap Push, ou seja, o risco 6 muito

alto, pois ele pode nao funcionar e as mensagens nunca chegarao ao seu destinat£rio. O risco

em testes em ambiente real esti relacionado a possibilidade de se alterar o c6digo fonte pronto

para poder se adequar a esse ambiente. Como nao foram feitos testes em ambiente real, esse

risco nao foi considerado

50

6 Considerag6es finais

O desenvolvimento do projeto de formatura proporcionou uma oportunidade fmpar de

pesquisa e desenvolvimento de um produto que nao s6 tem ap]icag6es acad6micas como

aplica96es sociais e comerciais. A16m do conhecimento reunido no processo de pesquisa estar

disponfvel para outros projetos, o grupo teve sucesso ao identificar oportunidades de estudo a

fim de complementar o Servidor .

Em geral, grupo avalia que teve uma experi6ncia satisfat6ria e p6de, ao longo destes dois

semestres, reunir e aplicar os conhecimentos adquiridos ao]ongo da graduagao, em especial

os conhecimentos de redes e engenhada de software . Disciplinas relacionadas a modelagem

de sistemas, modelagem de bancos de dados e gerenciamento de projetos, bem como os

Laborat6rios de Engenhaha de Software com t6picos de metodologias e estudo de design

patterns fizeram uma diferenga crucial no planejamento e execugao do projeto.

O grupo reconhece, por outro lado, que alguns objetivos nao puderam ser atingidos, a saber: a

construgao de um sistema de relat6hos dinamico acoplado ao banco de dados de transagao, a

execugao de testes de carga e observagao de testes de balanceamento de carga e a construgao

de um sistema de autenticagao integrado a operagao dos web services segundo especificag6es

de seguranga.

6.1 Sugest6es de estudo continuado

A partir da identificagao dos objetivos nao alcangados pelo projeto de formatura, mas

pdncipalmente a partir da identificagao de oportunidades de estudo, elaborou-se uma lista de

t6picos que podem ser explorados como estudo continuado, a saber:

51

Criagao de uma implementagao alternativa para acesso ao banco de dados:

ao utilizar-se o Hibernate como ferramenta de mapeamento entre objetos e dados

relacionais, introduz-se uma carga adicional ao sistema. E interessante elaborar

um estudo que compare esta implementagao com alternativas como o acesso

atrav6s de stored procedures ou outros design patterns de interesse;

•

• Criagao de sistemas de seguranga (autenticag50) utilizando-se a pr6pria

especificagao dos web services : a especificagao de web services conta com varias

especiHcag6es complementares. i o caso da especificagao WS-Security, que

prop6e autenticar os atores de uma comunicagao com um web service.

B Realizagao de testes de carga: a realizagao de testes de carga permitir£

comprovar o potencial de escalabilidade do sistema e, comprovar se o sistema, da

forma que foi implementado, 6 vigvel se operado em um ambiente de produgao.

A16m dos testes com a implementagao atual, recomenda-se a realizagao de testes

em um ambiente distribufdo (cluster de servidores) ou at6 mesmo com containers

de outros fabricantes como IBM, SAP, BEA e RedHat. No caso de sistemas

distdbufdos, estudar a problemgtica inerente a sincronizagao de tempo ao longo de

servidores conectados atrav6s de uma rede. Deve-se levar em consideragao a

impossibilidade de se ter um sincronismo absoluto entre re16gios, levantar o pior

caso e alterar a 16gica de neg6cios da aplicagao para acomodar esta limitagao da

arquitetura, isto 6, responder como os mecanismos de time-out devem ser

alterados para aceitar um intervalo pequeno, por6m significativo, de imprecisao

temporal.

52

Portar o sistema para outra plataforma: os pdncipais componentes do sistema

estao presentes nas principais plataformas utilizadas comercialmente. Um estudo

interessante envolve ponar toda a implementagao para uma plataforma alternativa,

como por exemplo o Microsoft .NET Framework, e levantar medidas de

desempenho e outras m6tdcas de interesse que comparem ambas as arquiteturas.

Explorar outros bancos de dados de fabricantes como IBM, Oracle

•

• Criar relat6rios dinamicos: utilizar o m6dulo Report Services do Microsoft SQL

Server 2005 a fim de criar relat6rios dinamicos com informag6es de avaliagao de

tempo de resposta, taxa de sucessos e falhas e outras m6tricas de interesse.

53

Refer6ncias

WEB SERVICE, Wikipedia, the free encyclopedia
Disponfvel em: <http://en.wikipedia.org/wiki/Web_service>.
Acessado em: 03 de dezembro de 2006.

JAVA TECHNOLOGY AND WEB SERVICES
Dispon ive 1 em: <http://java.sun.com/webservices/>.
Acessado em: 03 de dezembro de 2006.

APACHE WEB SERVICES PROJECT

Disponfvel em: <http://ws.apache.org/>.
Acessado em: 03 de dezembro de 2006.

WEB SERVICES AND THE MICROSOFt PLATFORM
Disponfvel em: <http://msdn.microsoft.com/webservices/default.aspx?pull=/library/en-
us/dnwebsrv/html/wsmsplatform.asp>.
Acessado em: 03 de dezembro de 2006.

A WEB SERVICES PRIMER, websewices.xml.com
Disponfvel em:
<http://webservices.xml.com/pub/a/ws/2001/04/04/webservices/index.html?page=2>.
Acessado em: 03 de dezembro de 2006.

MESSAGE ORIENTED MIDDLEWARE, Wikipedia, the free encyclopedia
Disponfvel em: <http://en.wikipedia.org/wiki/Message_Oriented_Middleware>.
Acessado em 03 de dezembro de 2006.

THE JAVA EE 3 TUTORIAL
Disponivel em: <http://java.sun.com/javaee/5/docs/tutorial/doc/>.
Acesseado em: 03 de dezembro de 2006.

JAVA EE 5 SDK
Disponfvel em: <http://java.sun.com/javaee/5/docs/api/index.html>.
Acesseado em: 03 de dezembro de 2006.

OBJECT-RELATIONAL MAPPING, Wikipedia, the free encyclopedia
Disponfvel em: <http://en.wikipedia.org/wiki/Object-relational_mapping>.
Acessado em: 03 de dezembro de 2006.

HIBERNATE
Disponfvel em: <http://www.hibernate.org>.
Acesseado em: 03 de dezembro de 2006.

54

UVVERSION OF CONTROL CONTAINERS AND THE DEPENDENCY nVJECTION
PATTERN, Martin Fowler

Disponfvel em: <http://www.martinfowler.com/articles/injection.html>.
Acesseado em: 03 de dezembro de 2006.

PUSH ARCHITECTURAL OVERVIEW
Disponfvel em:
<http://www .openmobilealliance.org/tech/affiliates/LicenseAgreement.asp?DocName=/wap/
wap-250-pusharchoverview-20010703-a.pdf>.
Acessado em: 03 de dezembro de 2006.

WAP SERVICE INDICATION SPECIFICATION
Disponfve1 em:
<http://www .openmobilealliance.org/tech/affiliates/LicenseAgreement.asp?DocName=/wap/
wap-167-serviceind-2001073 1 -a.pdf?doc=wap-167-serviceind-2001073 1-a.pdf>.
Acessado em: 03 de dezembro de 2006.

WAP SERVICE UVDICATION SPECIFICATION
Disponfvel em:
<http://www .openmobilealliance.org/tech/affiliates/LicenseAgreement.asp?DocName=/wap/
wap-167-serviceind-2001073 1 -a.pdf?doc=wap-167-serviceind-2001073 1-a.pdf>.
Acessado em: 03 de dezembro de 2006.

DOCUMENTO DTD
Disponivel em: <http://www.openmobilealliance.org/tech/DTD/pap_2. 1.dtd>.
Acessado em: 03 dezembro de 2006.

DOCUMENTO DTD
Disponfvel em: <http://www.openmobilealliance.org/tech/DTD/si_1.0.dtd>.
Acessado em: 03 de dezembro de 2006.

DOCUMENTO DTD
Disponfvel em: <http://www.openmobilealliance.org/tech/DTD/sI_1.0.dtd>.
Acessado em: 03 de dezembro de 2006.

PUSH ACCESS PROTOCOL SPECIFICATION
Diponfvel em:
<http://www .openmobilealliance.org/tech/affiliates/LicenseAgreement .asp?DocName=/wap/
wap-247-pap-20010429-a.pdf>.
Acessado em: 03 de dezembro de 2006.

PUSH PROXY GATEWAY SERVICE SPECIFICATION
Diponfvel em:
<http://www .openmobilealliance.org/tech/affiliates/LicenseAgreement .asp?DocName=/wap/
wap-249-ppgservice-20010713-a.pdf>.
Acessado em: 03 de dezembro de 2006.

PUSH OTA PROTOCOL SPECIFICATION
Diponfvel em:

55

<http://www .openmobilealliance.org/tech/affiliates/LicenseAgreement .asp?DocName=/wap/
wap-235-pushota-20010425-a.pdf>.
Acessado em: 03 de dezembro de 2006.

WAP PUSH LIBRARY
Disponfvel em: < http://developer.openwave.com/docs/wappushjava10/developer_guide.pdf
>
Acessado em: 03 de dezembro de 2006.

WAP GATEWAY
Disponfvel em:
<http://developer.openw ave.com/dvI/tools_and_sdk/test_servers/wap_gateway/devgate2.htm
>
Acessado em: 03 de dezembro de 2006.

[Pressman] Pressman, R. S. Engenhada de Software; McGraw-Hill, 2000

[Sametinger] Sametinger, J. Software Engineering with Reusable Components, Springer-

[Szyperski] Szypersky, C. Component Software: Beyond Object-Oriented Programming.
Addison Wesley, 2002

[XP] Extreme Programming: <http://www .extremeprograrnming.org/index.html>

[Yourdon] Your(ion, E. Anglise Estruturada Moderna, Editora Campus, 1990

Verlag, 1997.

56

Lista de siglas

EJB

HTTP

IP

J2EE

JMS

MDB

MOM

RPC

SOA

TIC

URI

W3C

WSP

WWW

XML

Enterprise Java Bean

HyperText Transfer Protocol

Internet Protocol

Java 2 Enterprise Edition

Java Messaging System

Message Driven Bean

Message-Oriented Middleware

Remote Procedure Call

Services Oriented Architecture

Tecnologia de Informagao e Comunicag6es

Uniform Resource Identifier

World Wide Web Consortium

Wireless Session Protocol

World Wide Web

eXtensible Markup Language

57

AP£NDICE A – Especificagao de Requisitos de Software

1 Objetivo do Documento

o objetivo do documento de Especificagao de Requisitos do Software 6 identificar de forma

comp leta e clara todos os requisitos a serem atendidos pelo projeto de formatura a

desenvolvido pelo grupo ao longo do allo.

Ne Ie, sao referenciados modelos de software do sistema, desenvolvidos e aperfeigoados

durante todo o projeto.

2 Objetivo do Sistema

2.1 Nome do Sistema

Servidor para validagao assfncrona por dispositivos m6veis

2.2 Escopo

Para o Projeto de Formatura prop6e-se construir um servidor para aplicag6es de validagao

assfncrona por dispositivos mobile (envolvendo celulares).

A proposta apresentada para o Projeto de Formatura justifica-se a partir da observagao do

modelo de desenvo]vimento de aplicag6es para dispositivos m6veis atuais. Atualmente, hi

uma crescente tend&ncia de cada vez mais agregar valor ao dispositivo, tornando-o capaz de

responder a servigos complexos e que passam a envolver privacidade e seguranga. As

solug6es comumente encontradas confiam ao dispositivo m6vel a tarefa de guardar as chaves

de acesso a esses servigos, aumentando assim sua importancia elevando a gravidade de suas

vu]nerabilidades

58

A proposta, por outro lado, aposta na manutengao das chaves de acesso ao servigo com o

usuario, que por sua vez utiliza o dispositivo m6vel unicamente como ferramenta de interagao

com os provedores. Alan disso, a construgao de um servidor provendo tal servigo permite a

exploragao de possfveis aplicag6es deste modelo de forma mais rgpida, pois os detalhes da

implementagao relacionados com a conectividade entre os sistemas descritos estariam

prontos .

Dada a componentizagao da arquitetura proposta, pode-se ainda falar na expansao da infra-

estrutura para outras aplicag6es, isto 6, uma vez que se tem uma arquitetura modular e bem

documentada, pode-se por ou tirar panes do todo a fim de agregar funcionalidades.

Por fim, o projeto explora a aplicagao das t6cnicas para um fim social. Um exemplo & o

pr6pdo exemplo de aplicagao proposto, que tem a intengao de auxiliar pessoas com

necessidades especiais a acessar servigos que requerem seguranga, transferindo a

responsabilidade da autodzagao para quem pode responder por eIa, ou seja, os respons£veis.

No caso do sistema de pagamento, o cliente com necessidades especiais pode ser desde

menores de idade at6 idosos, que nao tem condig6es de memoHzar senhas ou entender os

processos de pagamento.

Em suma, a proposta do Projeto de Formatura tenta unir os conhecimentos adquiridos na

Universidade com as necessidades tanto de mercado (empresariais) quanto sociais do mundo

nao-acad&mico

59

3 DescriQao Geral

3.1 Perspectivas do Produto

Conforme Figura I, tem-se no sistema de pagamentos classico um usu£do cliente fazendo

uma solicitagao de servigo financeiro mediante apresentagao de autorizagao eletr6nica ou nao

(respectivamente, senha ou assinatura). Munido de dados como o valor da transagao,

identificagao do cliente e, eventualmente, de autorizagao eletr6nica, o terminal comunica-se

com um servidor de aplicagao comercial. Este, por sua vez, 6 respons£vel em fazer a interface

com o servidor backoffice da instituigao comercial (banco ou operador de cartao de cr6dito).

O servidor backoffice e sua base de dados sao sistemas legados e nao 6 importante saber sua

implementagao dada a componentizagao desta arquitetura. i importante apenas saber suas

especificag6es de entrada e safda.

Ebu de Daios

JJ
ti

b
A 1)=itjQ

IRnLY

AJtorimior

60

Figura l: Transagao de autorizagao

O servidor de aplicagao comercial, por outro lado, deve ter sua implementagao aberta. Dai

surge a possibilidade de modificg-lo para incluir uma nova forma de autenticagao de

transagao: a requisigao de autorizagao assfncrona e remota por dispositivo m6vel.

Modificando-se o servidor de aplicagao comercial, pode-se inc]uir um servigo que recebe a

identificagao do cliente e o valor da transagao e que se comunica com um servidor mobile

assfncrono (novo sistema), requisitando dele a autenticagao. Caso eIa seja aprovada, o

servidor de aplicagao comercial retoma a operagao normal, conversando em seguida com o

servidor backoffice .

O pedido de autenticagao 6 realizado na forma de uma mensagem assfncrona e segura para

celulares de usu£rios cadastrados. A operagao deve ocorrer em tempo real, de forma que a

mensagem possui um tempo de validade e 6 encaminhada para usu£rios secund£rios caso o

prim£rio nao esteja disponfvel. Estes requisitos estao de acordo com a especificagao WAP

2.0. A area sombreada da Figura 1 6 na realidade uma visualizagao condensada de um sistema

maior. Sem identificar n6s especfficos do sistema de telefonia celular, poderfamos expandir a

area em questao da Figura I de acordo com a Figura 2, desta forma explicitando a

implementagao do servidor mobIle sobre a plataforma da especificagao WAP 2.0.

61

Figura 2: Implementagao do servidor mobile sobre a plataforma WAP

3.1.1 Interface com o Sistema

A interface com os sistemas externos sera realizado atrav6s de web services

3.1.2 Interfaces de usuario

A interface com o cliente m6vel se da atrav6s de um servidor de aplicagao, que disponibiliza

uma p£gina web para a visualizagao dos dados da transagao a ser aprovada.

O acesso do usu£do com dispositivo m6vel 6 feito por meio de uma URI contida na

mensagem assfncrona recebida. Desse modo, esse acesso 6 facilitado, pois o usu£do nao

precisa digitar a URI no dispositivo m6vel.

3.1.3 Interfaces de Hardware

62

A necessidade de interface de hardware sera necess£rio caso haja a disponibi]izagao de um

ambiente real para envio de mensagens para celulares.

3.1.4 Interfaces com Software

Abaixo, sao hstadas as tecnologias utilizadas no desenvolvimento do sistema.

,I. I .'t. I

3.1.4.1.1

3.1.4.1.2

3.1.4.1.3

3.1.4.2

Linguagem de desenvolvimento: Java J2EE 5.0

Enterprise Java Beans

Message Beans

Web Services

Framework para mapeamento de Banco de Dados relacionais em
classe: Hibernate

3.1.4.3 Banco de Dados: SQL Server

3.1.4.4 Ambiente de Desenvolvimento: NetBeans

3.1.4.5 Tecnologia de Envio de mensagens WAP Push: Openwave

3.1.4.5.1 Openwave Wap Push Library Java 1 .0

3.1.4.5.2 Openwave V7 Simulator

3.1.4.5.3 Mobile Access Gateway

3.1.5 Interfaces de Comunicagao

Para a comunicagao com os dispositivos m6veis, 6 utilizada a tecnologia WAP.

O envio de mensagens assfncronas para dispositivos m6veis utiliza os protocolos Push Over-

The-Air e Push Access Protocol

63

3.2

3.2.1

3.2.2

Fung6es do Software

O sistema deve receber o inicio de uma transagao e salvar todos os
dados da transagao recebidos pelo aplicativo legado

O sistema deve ser capaz de gerenciar varias transag6es
simultaneas

3.2.3 O sistema deve ser capaz de enviar mensagens para os dispositivos
m6veis

3.2.4 Devera disponibilizar uma pagina para acesso pelos usuarios do
dispositivo m6vel, que contera os dados da transagao a ser
aprovada

Ap6s cada passo da transagao, o sistema deve atualizar o estado da
transagao

O sistema devera fornecer uma interface para a verificagao do status
da transagao

Garantia de entrega: O servidor deve possuir mecanismos para
garantir a entrega das mensagens aos dispositivos m6veis.

Caracteristicas dos usuarios

3.2.5

3.2.6

3.2.7

3.3

Os usu£Hos do sistema sao aplicag6es que buscam prover o servigo de autenticagao das suas

transag6es atrav6s de dispositivos m6veis.

sao aplicag6es ji estao disponfveis no mercado (aplicag6es legado), que procuram dar uma

maior abrang&ncia aos seus servigos. Aplicag6es de transag6es banc£rias, cr6dito, que

necessitam atualmente de autorizag6es mediante uso de senhas ou assinatura, podem, com a

utilizagao dos sewigos do nosso servidor, requisitar a autoHzagao da transagao de um terceiro

(devidamente cadastrado), utilizando um dispositivo m6vel.

Al&m disso, pode ser utilizado para o desenvolvimento de novas aplicag6es, que necessitem

de taI servigo. Como exemplo, podemos citar:

64

Confirmagao de emissao de receita m6dica: No momento da venda de um

medicamento, a farmgcia envia uma confirmagao para o celular m&dico que o

receitou. Essa prgtica diminuiria o n6mero de vendas indevidas de medicamentos.

•

• Autorizagao de entrada de menores de idade em espet£culos: Pais podem autorizar

a entrada de seus filhos em espetgculos ou outros eventos atrav6s de seus

celulares.

• Confirmagao de pagamentos de alto valor: Assim como hoje os bancos utilizam a

ligagao telef6nica para confirmar transag6es de valores muito altos, que nao 6 o

perfil do correntista, esse sistema poderia ser utilizado para taI confirmagao

atrav6s dos dispositivos m6veis. Isso garantiria uma maior automagao desse

processo, deixando de depender de atendentes para efetuar a ligagao e

confirmagao da transagao.

3.3.1 Criticalidade da aplicagao

Por poder ser um servigo de Aplicag6es banc£rias e de cr6dito sao aplicag6es de alta

criticidade, o sistema deve prover seguranga dos dados nas transag6es.

3.3.2 Limitag6es

O teste com aparelhos celulares 56 sera possfvel caso haja a disponibilidade de um ambiente

real de conexao do servidor a um gateway WAP da operadora. A16m disso, somente celulares

com o browser desenvolvido pela Openwave recebem as mensagens enviadas pelo sistema.

A16m disso, o tempo de resposta do sistema 6 muito dependente do sistema de telefonia

m6vel

65

\) nq Hipoteses e Dependencias

C) projeto 6 dependente da disponibilidade do gateway WAP da OpenWa\'e , gateway atrav6s

do qual testamos o envio de mensagens WAP, e pelo qual podeda ser feito a conexao aos

celulares reais, caso estes fossem configurados com essa funcionalidade.

4 Requisitos Especificos

4.1 Modelo de Casos de Uso

4.1.1 Diagrama de Casos de Uso

Maquna de Estados

TImer da Maquna Edatkis

Figura 3: Diagrama de Casos de Uso

4.1.2

•

Descrigao dos Atores

WebSewice Aplicagao: Interface entre aplicagao e o sistema. Atrav6s dele as

transag6es sao iniciadas.

66

Gerenciador de Mgquinas (StartTransaction e TransactionResponse): Componente

responsgvel pelo gerenciamento das m£quinas de estados, respons£vel pela sua

inicializagao (StanTransaction) e pelo seu gerenciamento, com a entrega das

respostas para a mgquina de estados coneta (TransactionResponse). Por motivos

de implementagao, no diagrama de casos de uso eles sao separados, mas ambos

fazem o gerenciamento das m£quinas de estado.

•

• M6quinas de Estados: Possui os estados da transagao. Possuem um tempodzador

associado a cada transagao, para garantir que o servidor nao fique esperando uma

mensagem atrasada do celular.

• Wap Push: Interface com o servidor Web para os dispositivos m6veis.

4.1.3 Descrigao dos casos de Uso

4.1.3.1 Iniciar transagao

Descrigao: Esse caso de uso descreve o inicio de uma transagao, com o Gerenciador de
Maquinas de Estado iniciando uma nova m£quina de estados

Evento Iniciador: Envio de uma requisigao feita pelo WebService Legado

Atores: Webservice Aplicagao (WS A)

Gerenciador de Maquina de Estados (GME)

Maquina de Estados

Pr6-condigao: Gerenciador de m£quina de estados inicializado

SeqU&ncia de eventos:

1. WS A envia para o GME a requisigao de inicio de transigao, enviando os seguintes
dados: Os agentes de resposta, cada um com a sua colegao de mgquinas de estado, o
agente da requisigao.

67

2. OGME recebe a transagao e salva todos os dados referentes a essa transagao no banco
de dados

3. GME seleciona uma das maquinas de estado dessa transagao e a ativa

4. A m£quina de Estados formata os dados (usu£rio, valor, estabelecimento) em formato
padrao para envio para celular

5. M£quina de Estados envia a mensagem para o celular, muda seu estado de
DESATIVADO para ENVIADO, inicia o seu timer e salva o valor da hora atual (hora
de inicio)

P6s-condigao: M£quina no estado ENVIADO, com timer ativado, e mensagem enviada para o
celular

Extens6es

a. A mgquina de estados ji existe (passo c): o Gerenciador de M£quinas de Estados
vedfica o estado na m£quina existente.

Inclus6es:

a. Busca M£quina de Estado (passo 3)

b. Recebe mensagem (passo 5)

c. Receber mensagem do Gateway WAP (passo 5)

4.1.3.2 Busca Maquinas de Estado

Descrigao: Esse caso de uso descreve o processo de busca de m£quinas de estados atrav6s da
identificagao da transagao

Evento Iniciador: Gerenciador inicia uma nova busca

Atoms: Gerenciador de M£quina de Estados (GME)

M£quina de Estados

Pr6-condigao: Conhecer a identificag50 da transagao procurada

SeqU6ncia de eventos:

68

LlIYI IJ lal a uuDva9 UL/IIUV LUuaD aD IIla\IUll laD bAJDLDIILED pVI aL4UEJdlb CIUE' LJUbbUCllll d
identificagao da transagao igual ao buscado

P6s-condigao: Colegao de m£quinas de estado com identificagao da transagao procurada

Extens6es:

Maquina de estados nao existe: i retornada uma colegao de Maquina de Estados nula (passo
1)

Inclus6es: Nao hi

4.1.3.3 Busca Maquina de Estado

Descrigao: Esse caso de uso descreve o processo de busca de uma maquina de estados atrav6s
da identificagao da transagao e da identificagao do dispositivo do Agente de Resposta

Evento Iniciador: Gerenciador inicia uma nova

Atores: Gerenciador de M£quina de Estados

Pr6-condigao: Conhecer a identificagao da transagao procurada e a identificagao do
dispositivo do agente de resposta

Seqa&ncia de eventos:

GME faz a busca, dentre todas as m£quinas existentes, por aquela que possui a identificagao
da transagao igual a procurada, recebendo uma colegao de Mgquinas de Estados

Dentre a colegao de maquinas, o GME procura aquela que possui a identificagao do
dispositivo igual a procurada

P6s-condigao: Uma m£quina de estados, unicamente identificada

Extens6es: Nao se aplica

Inclus6es:

Busca Maquinas de Estados (passo I)

4.1.3.4 Time-out da Maquina de Estados

Descrigao: Esse caso de uso descreve o processo de time-out de uma maquina de estados.

69

Evento Iniciador: Timer indicando time-out

Atores: Timer da M£quina de Estados

M£quina de Estados

Pr6-condigao: Mgquina de Estados no estado CONECTADO ou ENVIADO e timer ativado

Sequancia de eventos:

O timer, ap6s o tempo de time-out configurado no servidor Mobile, envia a mensagem de
time-out para a sua Mgquina de Estados

A Maquina de Estados muda seu estado para TIMEOUT e para o seu timer

A M£quina de Estados salva a bora atual (hora time-out)

O sistema faz uma busca por uma nova mgquina de estado, da mesma transagao da m£quina
que dell time-out

Essa mgquina 6 iniciada, e 6 enviada uma nova mensagem para o seu Agente de Resposta

P6s-condigao: M£quina de Estados no estado TIMEOUT uma nova mensagem enviada a um
novo Agente de Resposta acionado

Extens6es: Nao se aplica

Inclus6es:

Busca Mgquinas de Estados (passo 4)

Envia mensagem para celular (passo 5)

4.1.3.5 Receber mensagem do Gateway WAP

Descrigao: Esse caso de uso descreve o processo de recebimento de uma mensagem do
gateway WAP ap6s o envio da mensagem ao celular

Evento Iniciador: Recebimento de uma mensagem pelo Gerenciador

Atoms: Wap Push

Mgquina de Estados

/U

Pr6-condigao: Recebimento de mensagem envioSucessogateway do gateway WAP

Seqa6ncia de eventos:

A mgquina de estados, no estado ENVIADO, atualiza seu estado para
CONECTADO GATEWAY

A Mgquina de Estados recebe essa mensagem, atualiza seu estado atual

P6s-condigao: M£quina de Estados com estado atualizado para CONECTADO_GATEWAY

Extens6es:

A mensagem recebida 6 mensagem de eno na transmissao wap, erroTransmissao (passo I): A
Mgquina de estados seta seu estado atual como ERRO, finaliza o seu timer e inicia uma nova
transagao com uma nova mgquina de estado, com a identificagao de transagao igual a sua.

Inclus6es:

Busca Mgquina de Estados (passo I)

4.1.3.6 Receber confirmagao do celutar

Descrigao: Esse caso de uso descreve o processo de recebimento de uma mensagem do agente
de resposta, atrav6s de seu dispositivo

Evento Iniciador: Recebimento de uma mensagem

Atoms: Wap Push

Gerenciador de M£quinas de Estados

Pr6-condigao: Recebimento de mensagem envioSucesso do Wap Push

SeqU6ncia de eventos:

O gerenciador busca pela mgquina respons£vel pela resposta da transagao que esti sendo
respondida

A m£quina de estados, no estado CONECTADO_GATEWAY, atualiza seu estado atual para
SUCESSO e finaliza o seu timer

P6s-condigao: M£quina de Estados com estado atualizado para SUCESSO e transagao
finalizada com sucesso

71

Extens6es :

Inclus6es:

Busca Mgquina de Estados (passo I)

Receber mensagem (passo 2)

4.1.3.7 Autenticagao de usuario

Descrigao: Este caso de uso descreve a autenticagao de um usu£do.

Evento iniciador: acesso a pggina de autenticagao por meio da URL fornecida pela
Push.

Atores: usu£rio

Pr6-condigao: recebimento de uma mensagem com uma URL para acesso a
autenticagao. Essa mensagem possui um identificador pessoal.

SeqU&ncia de eventos:

Usu£do insere sua senha;

Sistema valida os dados de entrada;

Sistema exibe a informagao a ser validada.

P6s-condigao: usu£ho tem acesso as informag6es necess£rias para validagao.

Extensao:

Dados de entrada invglidos (passo 2): sistema retorna mensagem de erro.

Inclusao:

Validagao de requisig6es (passo 3)

4.1.3.8 Validagao de requisig6es

Descrigao: Este caso de uso descreve a validagao de requisig6es recebidas

rnensagem

p£gina de

72

Evento iniciador: recebimento de uma mensagem com uma URL para acesso a p£gina de
autenticagao.

Atores: usu£rio

Pr6-condigao: usu£rio autenticado no sistema.

Seqii&ncia de eventos:

Sistema exibe informag6es referentes a requisigao (nome do respons£vel pela requisigao,
localizagao, hor£ho, valor);

Usu£rio responde a essa requisigao.

P6s-condigao: requisigao respondida e enviada ao servidor

Extensao:

Nao se aplica

Inclusao:

Nao se aplica

73

4.2 Modelo de Classes

Maquina de Estados

idTransacao : string)
idTransacao in idDispositivo

MessageListener

COIL llection<MaquinaDeEstados>

'idTransacao : string
FpTamLmMsacao : string) : Collection<MaquinaDeEstados>
FinidaTransacao(in menugem : string)
FonMessage(in inMessage : Message)
FprocuraMaquina(in idTransacao : string, in idDispositivo : string) : Maquina de Estados

StartTransitionBea n

int, in idTransacao : string, in idDispositivohe lgerl
idTransacao : string, in idDispositivo : string) : Maquina de Estados

+onMessage(in inMessage : Message)

m(in mensagem : string. in numeroCelular : string. in

Collection<StateMachine>

ResponseAgent

Fjgura 4: Diagrama de Classes

74

4.3 Modelo de Estados
A Figura 5 mostra os estados da m£quina de estados durante uma transagao, e quais as
mensagens a mgquina recebe para transitar entre os estados.

Desativado

enviarMensagem

erroTransmissao
Enviado Erro

envioSucesso

Envio Sucesso

Figura 5: Diagrama de estados da mgquina de estados

4.4 Requisitos de Bancos de Dados

Para que os varios componentes tenham acesso aos dados por eles compartilhados, hi uma

camada de persist&ncia tempor£Ha formada por um banco de dados e uma biblioteca de

mapeamento dos objetos. A camada de persist6ncia definitiva armazena o resultado final das

instancias da aplicagao.

Para cada operagao e conjunto de operag6es (que eventualmente formam uma transagao), sao

arrnazenados os resultados. O nfvel de detalhe destes relat6rios e a forma de armazenamento

podem ser ajustados.

75

5 Hequlsltos Nao Funcionais

Seguranga de acesso: O sistema deve exigir senhas de acesso ao respons£vel pela

autorizagao da transagao, antes de exibir os dados da transagao.

•

• Usabilidade: As interfaces do sistema devem ser simples, para a facil integragao

com o sistema legado.

• Disponibilidade: O sistema deve estar disponfvel 24 horas por dia, 7 dias da

selflana.

• Desempenho: O sistema deve possuir um tempo de tempodzadores para cada

conexao com o celular. Isso deve ser feito para garantir a qualidade de servigo,

diminuindo os efeitos de atrasos e incertezas de entrega de mensagem por parte da

operadora de celulares, e permitindo que o sistema possua tempos de resposta

determinfsticos.

6 Ap6ndices

6.1 Diagramas de Seq06ncia

eu HeR

76

Figura 6: Diagrama de Seq0&ncia de uma transagao completa e com sucesso

BEE

procwaMaqurns =procuraMaqulna (dTransacao)

recebeMensagem(IncnrTransacao) :

Figura 7: Caso de Uso Iniciar Transagao

W22eU£b

: recetnMensagem(hmeOutServldor) :

procuraMaquna.=procuraMaqulna(ldTransacao)

recetnMensagem{envlarMensagem)

lrnontaMen$a9em(mensagem, numerc£elubr, ldentlficacbrPush. ldenbhcadorUsuano) :

enviaMer6agem()

Figura 8: Caso de Uso Time-out da Mgquina de Estados

77

transactionResponse

r;cebeMensagem(primitivaResposta, idTransacao, idDispositivo)

timerMaquina

I

I
I

procuraMaquina:=procuraMaquina(idTransacao, idDispositivo)

recebeMensagem(envioSucesso)

cancelo

I

I

I
I

I

I

I

t

I

Figura 9: Caso de Uso Receber mensagem celular

78

AP£NDICE B – Especificagao de Projeto de Software

1 Objetivo do Documento

o objetivo deste documento 6 dar seqU&ncia ao estudo estabelecido pela Especificagao de

Requisitos de Software (Anexo A) e estudar a implementagao do projeto, que 6 descdta, por

sua vez, no Anexo C. Com base nos requisitos levantados atrav6s do estudo apresentado no

Anexo A, 6 proposta uma solugao t6cnica, uma plataforma que a viabiliza e mecanismos de

engenhada que serao implementados para realizar estas vis6es.

2 solugao t6cnica

2. 7 Web-services

Permite atender ao requisito de interoperabilidade atrav6s da comunicagao por um padrao de

dados, o formato XML. A16m disso, permite dividir o sistema eIn tras canais de comunicagao,

sendo um de entrada e outro de safda para os servigos legados e um de entrada para os clientes

com mobilidade.

}Yeh servIces sao definidos pelo World Wide Web Consortium (W3C) – principal 6rgao de

definigao de padr6es para a World Wide Web (W3) – como “[...] um sistema de software

projetado para plover inter-operagao m£quina-m£quina atrav6s de uma rede.” 1

Uma descrigao deta]hada pode ser encontrada no capftulo 2.3.1.

] WEB SERVICE, Wikipedia, the free encyclopedia
Disponfvel em: <http://en.wikipedia.org/wiki/Web_service>.
Acessado em: 03 de dezembro de 2006.

79

an IC MessagIng

Permite atender ao requisito de escalabilidade, de desacoplamento e de assincronismo. A

t6cnica de messaging permite que componentes conversem entre si atrav6s de um canal

comum, sem precisarem de refer&ncias entre si. A plataforma se encarrega de alocar estes

componentes e o canal de comunicagao, realizando inclusive balanceamento de carga.

O conceito de messaging esti atrelado ao conceito de message-oriented middleware (MOM),

que se define como um software de comunicagao intra-aplicag6es e que se baseia no

mecanismo de passagem de mensagens assfncronas, ao inv6s do mecanismo mais comum de

requisigao seguida de resposta1. Ele se originou como uma alternativa para a integragao de

sistemas legadas e tamb&m para viabilizar o processamento distribufdo, especialmente em

sistemas interligados atrav6s de uma rede.

Uma descrigao detalhada pode ser encontrada no capftulo 2.3.2.

2.3 Object-relational mapping

Permite acessar dados sobre o ponto de vista de objetos, abstraindo a imp]ementagao

relacional de um banco de dados tfpico e mantendo a aplicagao totalmente orientada a objetos.

Permite ainda realizar o controle de transag6es concorrentes no banco de dados de forma a

controlar a integridade das informag6es.

O object/relational mapping ou mapeamento entre objetos e dados relacionais 6 uma t6cnica

de programagao que estabelece uma ligagao direta entre a representagao de dados da

1 MESSAGE ORIENTED MIDDLEWARE, Wikipedia, the free encyclopedia
Disponfvel em: <http://en.wikipedia,orgwiki/Message_Oriented_Middleware>.
Acessado em 03 de dezembro de 2006

80

orientagao a objetos e a representagao de dados dos bancos de dados relacionais, criando o

efeito de um banco de dados de objetos virtual1.

Uma descrigao detalhada pode ser encontrada no capftulo 2.3.3.

2.4 Wap push

Permite atender ao requisito de assincronismo, ja que possibilita o contato com clientes de

mobilidade assim que uma transagao esti disponivel. Desta forma, o cliente nao precisa fazer

uma requisigao ao servidor e a aplicagao ganha agilidade.

O Wap Push 6 ama tecnologia utilizada para o envio de mensagens assincronamente para

dispositivos m6veis. A mensagem recebida cont&m uma Unified Resource Identifier (URI)

para alguma p£gina na Internet, sendo que o usu£do a acessa apenas aceitando essa

mensagem. Essa tecnologia 6 baseada no modelo cliente-servidor, embora nao exista uma

requisigao feita explicitamente pelo cliente ao servidor.

Uma descrigao detalhada pode ser encontrada no capftulo 2.3.5 .

3 Plataforma

3.1 Servidor de aplicagao

A plataforma de desenvolvimento utilizada 6 a linguagem Java, utilizando-se ainda a

plataforma J2EE para a implementagao de mecanismos de troca de mensagens entre

componentes web services e o componente Gerenciador de Mgquinas de Estados do servidor.

1 OBJECT-RELATIONAL MAPPING, Wikipedia, the free encyclopedia
Disponfvel em: <http://en. wikipedia.org/wiki/Object-relationa]_mapping>.
Acessado em: 03 de dezernbro de 2006.

81

Para a implementagao e integragao com o Sun Application Server (disponfvel no J2EE), 6

utilizado o ambiente de desenvolvimento NetBeans.

3.2 Servidor de banco de dados

£ utilizado ainda o Hibernate como um framework para mapeamento de banco de dados

relacionais em classes. O banco de dados utilizado nesse projeto 6 o Microsoft SQL Server

2005.

3.3 Bibliotecas de comunicagao com clientes com mobilidade

Para conexao com os dispositivos m6veis, 6 utilizado a implementagao do WapPush da

Openwave. Como plataforma de desenvolvimento, 6 utilizada uma biblioteca disponibilizada

pela pr6pria Openwave que prov6 acesso a m6todos de geragao de mensagens push . A16m

disso, 6 utilizado um simulador de dispositivo m6vel. Ele 6 conectado ao gateway Wap de

testes da Openwave para o recebimento das mensagens.

4 Mecanismos de engenharia

82

Componente: Tipo: web-service
TransactionRequestReceiverW S
Objetivo
Estabelecer a comunicagao entre o servidor legado e o Servidor atrav6s de um canal de
entrada. Classe que representa o web-service que cont&m a 16gica para recebimento de um
novo pedido de criagao de transagao e que sera convertido em mensagem para chegar ao
MDB
Interfaces
AckPackage setNewTransactionRequest(TransactionRequestReceiverPackage
transactionRequestReceiverPackage

Tipo: web-serviceComponente:
TransactionResponseReceiverWS

Objetivo
Estabelecer a comunicagao entre o cliente com mobilidade e o Servidor atrav6s de um canal
de entrada. Classe que representa o web-service que cont6m a 16gica para recebimento de
resDOsta Dara uma transaQao e que sera convertida em mensagem Dara chegar ao MDB
r
AckPackage setNewTransactionResponse(TransactionResponseReceiverPackage
transactionResponseReceiverPackage

Componente: Tipo: web-service
TransactionResponseSenderWS

Objetivo
Estabelecer a comunicagao entre o servidor legado e o Servidor atrav6s de um canal de safda.
Classe que representa o web-service que cont&m a 16gica para envio de resposta final da
transagao para o servidor legado e que ira interagir com o MDB a fim de obter esta
inform, LO

r
TransactionResponseSenderAckPackage
getTransactionResponse(TransactionResponseSenderPackage
transactionResponseSenderPackage)

83

Componente: Tipo: Message-driven bean
TransactionRequestReceiverMDB
Objetivo
Receber dados do web-service associado atrav6s das estruturas do Java Message System
Escuta mensagens da estrutura JMS TransactionRequestReceiverTopic
Interfaces
onMessage(Message message

Componente: Tipo: Message-driven bean
TransactionResponseReceiverMDB

Objetivo
Receber dados do web-service associado atrav6s das estruturas do Java Message System
Escuta men ;ens da estrutura JMS TransactionResponseReceiverTopic
Interfaces
onMessage(Message message);

Componente: Tipo: Message-driven bean
TransactionResponseSenderMDB
Objetivo
Receber dados do web-service associado atrav6s das estruturas do Java Message System
Escuta mensagens da estrutura JMS TransactionResponseSenderTopic
Interfaces

[essage message)onMessagel

A implementagao de todos os MDBs possui interfaces id&nticas. A diferenga fica por conta da

estrutura do Java Message Service com da qual cada MDB recebe mensagens. Detalhes de

cada tipo de classe descrito nas interfaces pode ser encontrado no Anexo C.

84

APENDICE C – Descrigao de C6digo Fonte

1 M6dulo envio de mensagens

1.1 Pacotes do m6dulo de envio de mensagens e suas classes

• br.usp.pcs.projetoformatura.messagessender:

Classe Descri uO

Sinaliza a ocorr6ncia de um erro no m6dulo de envio de
mens :ens

Interface para componentes responsaveis pelo envio de
:onsmens

ConfigurationException. java

SendMessageInterface.java

• br.usp.pcs.projetoformatura.messagessender.sms:

Classe Descric50
mque implementa o envio de mensagens para
dispositivos m6veis por meio de email

Classe respons£vel pela leitura e interpretagao do arquivo
de configuragao do m6dulo SMS

SMS.java

SMSConfiguration. java

• br.pcs.usp.projetoformatura.messagessenderwappush:

Classe Descricao

Classe que cont6m todas as classes de c6digos retornados
lo protocolo Push Access Protocol (PAP

Classe que implementa o envio de mensagens para
dispositivos m6veis por meio da tecnojogja Push
Classe respons£vel pela leitura e interpretagao do arquivo
de configuragao do m6dulo Wal>Push

CodigosRespostaPAPjava

WaI)Push.java

WapPushConfigutation.java

1.2 Arquivos de configuragao do m6dulo de envio de mensagens

Arquivo Descri IO

Mt o com dados de configuragao para envio de SMS
lor email

Arquivo com dados de configuragao para envio de
mensagens DUSh

SMSConfiguration.xml

WaDPushConfjguration

85

2 M6dulo web para dispositivos m6veis

2.1 Pacotes do m6dulo web para dispositivos rn6veis e suas
classes

• br.pcs.usp.projetoformatura.mobileweb:

Descric50
Classe que realiza a autenticagao do usuario do dispositivo m6vel no
SIsterrra.

Classe respons£vel pelo envio da resposta do usu£rio i requisigao
recebida pelo dispositivo m6vel

Autenticacao. java

ValidacaoRequisicao.java

3 M6dulo nClcleo

3.1 Pacotes do m6dulo n(lcleo e suas classes

• br.pcs.usp.projetoformatura.core:

Classe Descricao
Classe que cont6m a 16gica para recebimento de
mensagem atrav6s do JMS. Esta mensagem descrever£
uma nova transagao no sistema, isto 6, um novo conjunto
de mgquinas de estado
Classe que cont6m a 16gica para recebimento de
mensagem atrav6s do JMS. Esta mensagem descrever£ a

lostas dada por um aparelho de celular
Classe que cont6m a 16gica para recebimento de
mensagem atrav6s do JMS. Esta mensagem descreverg a
resposta final para o servidor legado que originou esta
transaQao
c
entre os diversos celulares

TransactionRequestReceiverMDB
va

TransactionResponseReceiverMDB
ava

TransdctionRes
va

StateMachineM

4DB

B.Java

• br.pcs.usp.projetoformatura.common:

Classe Descrigao

Classe pai da qual herda RequestAgent, ResponseAgent
e SubjectAgent. Cont6m as vadgveis comuns entre os
tr&s

Classe representa o agente de requisigao de uma
transagao, isto 6, no caso da aplicagao de venda para
pessoas com necessidades especiais, seria a loja que
requjsita autorizaQao Dara comDra

aasse representa o agente de resposta de uma transagao
isto 6, os ceiulares que serao contatados para autorizarem
ou negarem a transacao

Agent. java

RequestAgent.java

R :ent. java

86

Classe representa o sujeito de uma transagao, isto 6, no
caso da aplicagao de venda para pessoas necessitadas, a
pessoa que esti efetivamente fazendo a compra e requer
Eue ajgu&m autorize Por eIa

Classe representa a mgquina de estados associada a um
ResponseAgent. Cada ResponseAgent possui um ciclo
de aplicagao que vai desde o contato at6 o envio de
resposta, passando pelos casos de time-out
Classe abriga todas as outras e representa uma transagao

que cont6m um SubjectAgent, um RequestAgent e n
ResponseAgents (cada um associado a uma
StateMachine

SubjectAgent.java

StateMachine. java

Transaction. java

Cada uma destas classes possui uma tabela conespondente no banco de dados.

br.pcs.usp.projetoformatura.webservices:

Descricao

Classe que representa o web-service que cont6m a 16gica
para recebimento de um novo pedido de criagao de
transagao e que sera convertido em mensagem para
chegar ao MDB
1

para recebimento de resposta para uma transagao e que
sera convertida em mensagem para chegar ao MDB
1

para envio de resposta final da transagao para o servidor
legado e que ira interagir com o MDB a fim de obter esta
informagao

TransactionRequestReceiverWS
ava

TransactionResponseReceiverWS
ava

TransactionResponseSenderWS
va

• br.pcs.usp.projetoformatura.webservices.common:

Classe Descrigao
roqUe representa o pacote pai de uma resposta de
urn web-service

Classe que representa o pacote de uma requisigao ao
tyeb-service TransactionRequestReceiverWS
Classe que representa o pacote de uma requisigao ao
web-service TransactionResponseReceiverWS

Classe que representa o pacote de uma resposta de um
web-service TransactionResponseSenderWS
1

web-service TransactionResponseSenderWS

AckPackage. java

TransactionResponseReceiverPackage
va

erAckPackage

TransactionResponseSenderPackage

3.2 Arquivo de configuragao do m6dulo nacleo

87

Classe
rsistence.xml

Descric50
mt o de configuragao do Hibernate
DataSource que al>
banco de dados de persist6ncia tempor£da (persist6ncia
s6 durante o ciclo da aplicag50)

ConnectionPool que aponta diretamente para o banco de
rsist&ncia tempor£ria atrav6s do driver JDBC

jdbc_
TemporaryPersistenceLayerDataSource
. s';url-resource

MicrosoftSqjServerPool.sun-resource

Jms_
TopicConnectionFactory.sun-resource
J ms
TransactionRequestReceiverTopic
.sun-resource

jn IS_
TransactionR lderTopic
. sun-resource

J nls
TransactionResponseReceiverTopic
.sun-resource

Configura a estrutura ConnectionFactory do JMS

Referem-se a cada uma das estruturas do JMS utilizadas

pelos MDBs para receber as mensagens assincronamente
e pelos web-services para enviar Ihes os dados. Cada
arquivo configura uma estrutura.

88

APENDICE D – Descrigao de Testes

1 Objetivo do Documento

Esse documento possui o objetivo de descrever os testes realizados no sistema para

vehficagao e validagao das funcionalidades de cada componente do sistema.

2 Estrat6gia de testes

Os testes se basearam em desenvolvimento de m6todos inicialmente simples, valendo-se de

componentes ou m6todos dmnmy , para que a funcionalidade principal pudesse ser testada.

Uma vez que as funcionalidades estavam testadas e validadas, outros componentes, tamb6m

testados e validados, iam sendo integrados e os seus m6todos iam sendo desenvolvidos para

que pudessem implementar todos os requisitos do sistema, conforme as especificag6es. O

desenvolvimento se baseou,.portanto, em provas de conceito que eram gradualmente

incrementadas e testadas at& atingir-se a solugao final.

3 Descrigao dos testes

89

Teste n. 1 Requisito Testado:
Iniciar transagao

Tipo de Teste . [] Unidade
IX] Integragao

Estrat6gia de testes / Escopo
Testar a inicializagao de uma m£quina de estados a partir do Gerenciador de Mgquinas de
Estado.

Ambiente de teste
Gerenciador de M£quinas de estado recebendo o inicio de uma transagao.

Resultados Esperados
1. Gerenciador salvando a m£quina de estados corretamente
2. Gerenciador efetuando a busca correta pela mgquina de estado correspondente a

transagao.
3. M£quina de Estados salva, alterando o seu estado DESATIVADO para ENVIADO.

Resultados Obtidos
Os resultados obtidos foram condizentes com o esperado.

Melhorias Implementadas
Feito esse teste inicial, foi implementado o mecanismo de salvar v£rias mgquinas de estado, e
a busca dessas maquinas de estado. Como a busca de uma m£quina foi pensada para v£das
m£quinas, a adigao de v£rias maquinas foi implementada de modo r£pido.

90

Teste n. 2 Requisito Testado:
Envio de mensagem para celular.

fido a& tesla --[Z Ni8du18

[] Integragao
Estrat6gia de testes / Escopo
O objetivo desse teste & vedficar se uma mensagem 6 enviada a um simu]ador/celu]ar para que
possa ser aprovada ou nao pelo agente autodzador, ou seja, dar continuidade a transagao.
O envio de mensagens push para o simulador pode nao funcionar devido a problemas no
servidor Push Prov GaTeway .

Ambiente de teste

Simulador/celular aptos a receber mensagens SMS ou mensagens push com os seguintes dados
a serem enviados: identificagao do simulador/celu Jar, mensagem a ser enviada, enderego do
Push Prov Gateway , identificagao do usu£Ho e identificagao da transagao.

Resultados Esperados
Simulador/celular recebe uma mensagem com uma URI e os parametros, identificador da
transagao, identificador de usu£do e identificagao do simu]ador/celular.

Resultados Obtidos

Simulador/celular recebe mensagem com uma URI e os parametros, identificador da transagao,
identificador de usu£do e identificagao do simu]ador/celular.

91

Teste n. 3 Requisito Testado:
Envio de mensagem para celu]ar

Tipo de Teste } [] ii;lidade
El Integragao

Estrat6gia de testes / Escopo
Verificar a integragao dos componentes WapPush e Mgquina de estados para o envio de
mensagens.

Ambiente de teste
Mgquina de estados inicializada (estado ENVIADO)

Resultados Esperados
a) Envio com sucesso ao gateway WAP
1. Resposta de sucesso do gateway WAP sobre o envio da mensagem
2. M£quina de estados do estado ENVIADO para CONECTADO_GATEWAY

b) Erro no envio ao gateway WAP
1. Resposta de eno do gateway WAP sobre o envio da mensagem
2. M£quina de estados do estado ENVIADO para ERRO

Resultados Obtidos

Os resultados obtidos foram conforme os esperados.

Melhorias Implementadas
Como o gateway WAP utiliza n6meros para a identificagao de cada conexao, e eIa nao pode ser
duplicada, foi implementado um n6mero aleat6rio para a geragao dessa identificagao. No
inicio, estava sendo utilizado a pr6pria identificagao da m£quina de estados.

92

Teste n. 4 Requisito Testado:
Time-out da maquina de estados

Tipo de Teste : [XI Unidade
[] Integragao

Estrat6gia de testes / Escopo
Verificar o funcionamento do mecanismo de time-out das mgquinas de estado

Ambiente de teste
M£quina de estados inicializada (estados ENVIADO ou CONECTADO_GATEWAY), e timer
ativado.

Resultados Esperados
No time-out da m£quina, eIa deve ir para o estado TIME_OUT.

Resultados Obtidos
Os resultados obtidos foram conforme os esperados.

Melhorias Implementadas
No time-out da mgquina, a mgquina que sera desativada inicia a transagao com uma mgquina
de estados de mesma transagao (mgquina ji saIva, no estado DESATIV ADO, e de mesma
transagao).
Para isso, foi implementado na Mgquina de Estados o mecanismo de busca ja utilizado e
testado no Gerenciador, e o mecanismo de ativagao de Maquinas, tamb6m testado e utilizado
no Gerenciador.

93

Teste n. 5 Requisito Testado:
Autenticagao de usu£Ho pelo celular.

Tipo de Teste ; E] M6dulo
[] Integragao

Estrat6gia de testes / Escopo
O objetivo desse teste 6 verificar se o usu£rio esti autodzado a validar requisig6es, desde que
ele faga parte de uma transagao em andamento.

Ambiente de teste

Simulador/celular capaz de acessar uma pggina web para efetuar a autorizagao.
Os dados para efetuar esse teste sao: o nome de usugdo, senha, identificagao da transagao e
identificagao do simulador/celular.

Resultados Esperados
Redirecionamento para pggina de eno, caso a senha esteja incorreta e redirecionamento para
p£gina de detalhamento da transagao, caso a senha esteja correta.

Resultados Obtidos
Redirecionamento para pagina de eno, quando a senha estava inconeta e redirecionamento
para p£gina de detalhamento da transagao, quando a senha estava coneta.

94

Teste n. 6 Requisito Testado:
Validagao da requisigao pelo celular.

Tipo de Teste . IE M6dulo
[] Integragao

Estrat6gia de testes / Escopo
O objetivo desse teste 6 verificar se a resposta do usu£rio 6 enviada a m£quina de estado
correta.

Ambiente de teste
Simulador/celular capaz de acessar uma p£gina web para efetuar a validagao.
Os dados necess£rios para a realizagao do teste sao: o nome de usuario, senha, identificagao da
Uansagao, identificagao do simulador/celular e resposta do usuado.

Resultados Esperados
Redirecionamento para p£gina de eno, caso algum dos dados estejam incorretos, por exemplo,
senha errada, ou redirecionamento para p£gina de confirmagao de envio da resposta, caso todos
os dados estejam corretos.

Resultados Obtidos
Redirecionamento para pagina de eno, quando existe algum dado inconeto, e redirecionamento
para p£gina de confirmagao de envio de resposta quando todos os dados estavam corretos.

95

Teste n. 7 Requisito Testado:
Operagao dos web-services

Tipo de Teste : [R Unidade
[] Integragao

Estrat6gia de testes / Escopo
Vedficar o funcionamento dos web-services e dos mecanismos de empacotamento e
mapeamento de dados em suas interfaces.

Ambiente de teste

Web-services instaiados no Sun Application Server e chamados por aplicag6es clientes dummy .

Resultados Esperados
Coneto mapeamento dos dados transportados em XML atrav6s do envelope SOAP para objetos
Java

Resultados Obtidos
Os resultados obtidos foram conforme os esperados.

96

Teste n. 8 Requisito Testado:
Operagao dos Message Driven Beans e dos containers de
mensagens do Java Messaging System (estruturas Topic e Queue)

Tipo de Teste [R Unidade
[] Integragao

Estrat6gia de testes / Escopo
Verificar o funcionamento e tempo de resposta da operagao composta pelo envio de uma
mensagem para uma estrutura do JMS e conseqOente recebimento por um MDB atrav6s da
alocagao dinamica controlada pelo Sun Application Server.

Ambiente de teste
MDBs instalados e estruturas configuradas no Sun Application Server. Mensagens sao
enviadas as estruturas por clientes dumm) .

Resultados Esperados
Coneta entrega de mensagens para os MDBs. O teste tamb6m serve como observagao de
comportamento como diferengas entre Topic e Queue e de tempo de resposta da operagao.

Resultados Obtidos
Os resultados obtidos foram conforme os esperados, no entanto, a observagao do
comportamento do sistema em caso de erros originados do processamento da mensagem dentro
do MDB incentivou a configuragao fina das estruturas de mensagem.

Melhorias Implementadas
Atrav6s da obsewagao dos resu]tados, foi possfvel configurar parametros avangados de
operagao do JMS a fim de adequar o funcionamento aos requisitos de operagao.

97

Teste n. 9 Requisito Testado:
Operag50 com o banco de dados atrav6s das interfaces do EJB 3.0 e
atrav6s da biblioteca Hibernate

Tipo de Teste IZ Unidade
[] Integragao

Estrat6gia de testes / Escopo
Verificar o funcionamento das operag6es de insergao, edigao e remogao de dados, bem como o
controle de transag6es conconentes que garante a integridade das informag6es.

Ambiente de teste

EJBs dummY instalados no Sun Application Server acessando o banco de dados.

Resultados Esperados
Dados de exemplo hard-coded nos EJBs dmnln) corretamente persistidos e recuperados do
banco de dados.

Resultados Obtidos
Os testes realizados permitiram configurar o mapeamento de classes e a configuragao da
conexao com o banco de dados at6 obter-se uma solugao funcional. Uma vez com essa solugao
final, os resultados foram conforme o esperado.

Melhorias Implementadas
A observagao dos resultados permitiu realizar a configuragao fina do mapeamento entre tabelas
relacionais e objetos, bem como dos parametros de configuragao da conexao com o banco de
dados. Todo o mapeamento foi feito a mao, jg que as ferramentas de automagao existentes nao
otimizam a solugao e nem mapeiam a solugao de forma precisa.

98

Teste n. 10 Requisito Testado:
Integragao entre web-services, MDBs e acesso as classes de
persist6ncia.

Tipo de Teste [] Unidade
[E Integragao

Estrat6gia de testes / Escopo
Vedficar o funcionamento dos componentes em conjunto.

Ambiente de teste
Chentes dulnrn) enviando mensagens que simulam a operagao da aplicagao real. Componentes
de servidor devidamente insta]ados e configurados no Sun Application Server.

Resultados Esperados
Espera-se que o ciclo de vida da aplicagao temHna com sucesso.

Resultados Obtidos
Ap6s ajustes, os resultados obtidos foram conforme o esperado.

