AUGUSTO CESAR CARDOZO DE OLIVEIRA

UMA PROPOSTA DE ADAPTAGAO DO ACCEPTANCE TDD

Monografia apresentada aoc PECE -
Programa de Educag¢do Continuada em
Engenharia da Escola Politécnica da
Universidade de Sao Paulo como parte
dos requisitos para a conclusdo do curso
de MBA em Tecnologia de Software.

Area de Concentragdo: Tecnologia de
Software

Orientador: Prof. Dr. Kechi Hirama

Sao0 Paulo
2012

%% Escola Politecnica - EPEL

M

31

FICHA CATALOGRAFICA

N 20 1Lk

Oliveira, Augusto César Cardozo de

Uma proposta de adaptagdo do Acceptance TDD / A.C.C. de
Oliveira. -- Sd0 Paulo, 2012.

113 p.

Monografia (MBA em Tecnologia de Software) — Escola
T / Politécnica da Universidade de Sao Paulo. Programa de Edu-
cacédo Continuada em Engenharia.

1. Desenvolvimento de software |. Universidade de Séo
Paulo. Escola Politécnica. Programa de Educagédo Continuada
em Engenharia ll. t.

DEDICATORIA

Dedico este trabalho acs meus pais
Jodo Cardozo (in memoriam) e Rita
Cristina pelo apoio incondicional,
dedicacdo e perseveranc¢a nha minha
qualificagéo.

AGRADECIMENTOS

A Deus por iluminar os meus caminhos e fortalecer-me nas adversidades.

Ao PECE, Programa de Educacgao Continuada em Engenharia, e aos professores
do curso de MBA em Tecnologia de Software 2010-2011 pela oportunidade em
compartilhar experiéncias e conhecimentos que contribuiram para a minha formacao
académica e também pessoal.

Ao Professor Doutor Kechi Hirama pela sua confianga, dedicagéo, orientacéo e
incentivo, fundamentais para a conclusao deste trabalho.

Aos meus pais pela sua doag&o, amor e confianca.

A minha namorada, Majory Melo, pelo apoio, compreensdo e paciéncia nos
momentos de auséncia em fungao deste trabalho.

RESUMO

Recentemente, a qualidade de software é considerada a principal caracteristica
competitiva entre as organizagdes. A baixa qualidade do produto de software pode
oferecer impactos negativos aos negdcios, além de comprometer a credibilidade de
uma organizagdo. Portanto, & muito importante planejar e conduzir as atividades de
testes de maneira sistematica.

Este trabalho tem como objetivo caracterizar a atividade de teste de software, em
particular os testes de aceitag&o, aplicada dentro do contexto dos métodos ageis de
desenvolvimento de software, abordando a técnica do Acceptance Test Driven
Development (ATDD) para assegurar a clareza das necessidades de negécio do
cliente, garantir a implementacéo adequada do produto de software e a satisfagdo
do cliente.

Este trabalho propde uma adaptagédo do ATDD prezando pela execugdo manual dos

testes de aceitacdo, e apresenta também diretrizes para o uso desta proposta.

ABSTRACT

Currently, the software quality is considered the main competitive feature among the
organizations. Low sofiware product quality can offer negative impacts to business,
also undermine the credibility of an organization. Therefore, it is very important to
plan and conduct testing activities in a systematic way.

This work aimed to characterize the activity of software testing, in particular the
acceptance tests, applied within the context of agile software development,
addressing the technique of Acceptance Test Driven Development (ATDD), to ensure
the clarity of the business needs of the client, ensure the proper implementation of
the software product and customer satisfaction.

This work proposes an adaptation of ATDD valuing manual execution of acceptance
tests, and also presents guidelines for the use of this proposal.

LISTA DE ILUSTRACOES

Figura 1 - Ciclo do TDD. ... e 20
Figura 2 — FIuxograma do TDD.ccoveie i eeee s e e e e et reeeese s 23
Figura 3 - Perspectivas de qualidade externa e interna S — 29
Figura 4 - Giclo de ATDD.ocoiiieeeeecee ettt ee e neeas 34
Figura 5 - Relacionamento enfre 0 ATDD € TDD.ooooeeieieeieie e 37
Figura 6 - Fluxograma do ATDDooooeiiiioeeee e, 38
Figura 7 - ATDD sob a perspectiva de HendrickSonccoovoeveeeioeceeieee e, 38
Figura 8 - ATDD na linha do te€MPO.......coeeeiiii et 42
Figura 9 - Légica da ferramenta FIT..........ocoooiiinie e 47
Figura 10 - Resultado apresentado pelo FIT.........oc.oooiviiie e, 48
Figura 11 - Papéis da Proposta de Adaptac&o do ATDDcooveeiiiieoiiieeeeeee, 53
Figura 12 - Proposta de AdaptacBo do ATDD ..., 62
Figura 13 - Etapa Discutir do ATDD Proposto..........ccoeviiioeiiieeeieie e, 64
Figura 14 - Etapa Elaborar o Plano de Teste de Aceitagdo do ATDD Proposto 66
Figura 15 - Etapa Preparar os Testes de Aceitagdo do ATDD Proposto................... 69
Figura 16 - Etapas de Elaboragéo dos Casos de Testesoccoveeveevevivvceenienennne. 70
Figura 17 - Etapa Implementar do ATDD PropostO.........oooeeveioeeecieeeee e 74
Figura 18 - Etapa Executar e Controlar os Testes do ATDD Proposto 77
Figura 19 - Etapa Demonstrar do ATDD Proposto..........ccccceeivvieeciie e 82
Figura 20 - Etapa Encerrar do ATDD Propost.........occeiiviiiicie e 83
Figura 21 - Interagéo das etapas Implementar versus Executar e Controlar os Testes

da dO ATDD Proposto. ...ttt e e 85
Figura 22 — Perspectiva da Execugao dos Testes do ATDD Proposto 85
Figura 23 - Identificacao de defeitosccooeee i 86

Figura 24 — Perspectiva da Equipe de Desenvolvimento para o ATDD Proposto.....88

LISTA DE TABELAS

Tabela 1 - Sindnimos para “Acceptance TestS........cc.cvueiieeeoeeee e, 27
Tabela 2 - Framework de testes de aceitago............ccoveeeieieee oo 49
Tabela 3 - Principais Responsabilidades do Gerente de Negocios............c.oco.o....... 55
Tabela 4 - Principais Responsabilidades do Analista de Negéciosc.ocoovee...... 56
Tabela 5 - Principais Responsabilidades do Usuario Final/ Clienteccocov...... 56
Tabela 6 - Principais Responsabilidades do Lider de Teste.........cooovvv v, 57
Tabela 7 - Principais Responsabilidades do Analista de Teste........coovveeveveeveennn., 58
Tabela 8 - Principais Responsabilidades do Lider de Desenvolvimento 59
Tabela 9 - Principais Responsabilidades do Analista de Desenvolvimento 59
Tabela 10 - Principais Responsabilidades do Patrocinador do Projeto 60

Tabela 11 - Principais Responsabilidades do Gerente de Projetoc..cocovou..... 61

SUMARIO
1. INTRODUGAODcooticsscerceseessesssersssssssssssas s sessssssessoesassassssssessssssseesessemsens 11
1.1 MOUVAGOES ... e 11
1.2 ODJEIVO. ... 14
1.3 JUSHFICALIVAS.........ceiiiieieece e e ee e 14
1.4 Estrutura do Trabalho ..o 16
2. TEST DRIVEN DEVELOPMENT - TDDoiciirressssacscsssresesnssmcsnesnsssssssssnssensseses 18
251 “NOB .. 5oz, .. oozt o 2 St o8, Rl o S U Rl Bl Bl 18
2.2 OCICIO A8 TDD......iii ettt 19
2.3 Fluxograma do TDDc..oooiii oo e 22
2.4 Resultados do TDD no projeto de softwarec.ocooeeeeroeoeeeeee 24
2.5 Consideragdes do Capitulo............ccocovveiiievooieiore oo, 25
3. ACCEPTANCE TDD - ATDDccocicinnreisineincneersssressesessessessasssseemssmesesesssessnsseses 26
3.1 Testes de ACBIAGEDcuiuieecee e e, 27
3.2 ATDD ..o e 28
3.3 OCiclode ATDD ..ottt 33
3.4 ATDD dentro de uma fBraga0c.c.ovieeieee et eae e 41
3.5 Resultados do ATDD no projeto de SOftWare.............c.ccoocevveeeveee oo 43
3.6 Ferramentas de Testes de ACEITAGAOc..eieieeeeeeeeeee e 47
3.7 Consideragdes do Capitulo.............c..ccooiovveeoiieees oo eee e 50
4. ADAPTAGAO DO ACCEPTANCE TDD ...ccuouucreetreen seeeeeseensenessssesessessssessassessenns 51
4.1 Papéis e Responsabilidades..............coooooiiieioeeeee e oo 52
4.2 Proposta de Adaptaco do ATDD........ccooooiieeeeee oo 62
.21 DISCULIT. ..ottt ettt 63
4.2.2 Elaborar o Plano de Teste de ACBIHACAOooeveeveieoe et eeeeeeeeeeeeeeeeaeaen 65
4.2.3 Preparar 0s Testes de ACERAGHO.ceioviiuie et 68
4.2.4 IMPIEBMENTAT.......coiiiitiiie ettt e e 72
4.25 Executare Controlar 08 TeSIeScccoviiiii oo 75
428 DeMONSIIAT.ttt 81
.27 ENCEITAT ..ottt ettt 82
4.3 Implementar versus Executar e Controlar 0S Testes...........cooevvereevevvre e, 84

5. DIRETRIZES PARA O USO DO ATDD PROPOSTO.......ccovrureereeenesseeessesseessesaens 91
DT DISCULIN ...t ettt e ee e e e e e e e 91
5.2 Elaborar o Plano de Teste de ACSIRACEAO............ooeeovreeeeee oo eeeeeeee 93
5.3 Preparar 0s Testes de ACEIRAGHD.cooeeiiiiee oo, 94
0.4 IMPIEMENTAT e 96
5.5 Executar e Controlar 0s Testes.............ccococvveveeerenn., F T T T o e 98
8.8 DEMONSIIAr ... 99
S0 BNCOITA ..o e et 100
5.8 Implementar versus Executar e Controlar 0s TeSteSoovoovvvvevvoeeee, 101
5.9 Resultados do ATDD Proposto no projeto de software.............cooeeeevovvvovnn, 103
5.10 Consideragdes do Capitulo................cooveeiiieiiieceeee e e eeeena 106
6. CONSIDERAGOES FINAISccomiercceeececesirsesemessesseessssessessesssaseseasaseseans 107
6.1 Contribuigdes do TrabalNo.............cccoeoeeiviviieie et eee e, 107
6.2 Trabalnos FUIUMOS.............ooviiiiece e, 108

REFERENCIAS.......cottcieststeseeseeessssssessesseessotesssssesessssseessemsesem s sessessemeeeeseneeesseeen 110

11

1. INTRODUGAO

A qualidade de software tornou-se um fator de competitividade
empresarial em fungcdo da grande demanda por produtos de software e o
elevado nivel de exigéncia dos clientes que almejam softwares confiaveis e
eficientes com baixo custo e prazo.

A atividade de teste de software contribui para a melhoria da qualidade do
software, revelando a presenca de defeitos no software, minimizando os riscos

para o negdécio e garantindo a aderéncia as necessidades do cliente.

Este trabalho explora os testes de aceitacdo no contexto dos métodos
ageis, abordando o Acceptance Test Driven Development (Desenvolvimento
Dirigido a Testes de Aceitagdo) como um instrumento de comunicacéo
colaborativa que visa assegurar a clareza dos requisitos de negdcio, por
conseqliéncia, o adequado desenvolvimento do produto de software e a
satisfacao do cliente.

1.1 Motivagdes

O uso de softwares j& faz parte do cotidiano de praticamente todas as
pessoas. Muitos dos produtos e servigos incorporam de alguma forma,
computadores e softwares com finalidades diversas. Nesse contexto, as
empresas inseridas no mercado globalizado, que & dindmico e competitivo,
utitizam de produtos de software como vantagem competitiva para apoiar suas
operacOes e negdécios. Tornando-se constantes as demandas para inovar,
aumentar a produtividade e a qualidade, e disponibilizar para os clientes
produtos e servicos com menor custo e maior agilidade.

Embora a Tecnologia da Informagéo seja uma aliada na busca destes
objetivos, os projetos de software s&o, cada vez mais, vistos nas empresas nio
como investimentos, mas sim, como custos que devem ser controlados. As
equipes de desenvolvimento sdo constantemente pressionadas para reduzir

custos, prazo e produzir produtos que assegure valor ao cliente. Para

12

acompanhar esse dinamismo faz-se necessario lidar de forma mais eficiente
com as mudangas de requisitos, melhorando a comunicagdo com o cliente e
promovendo maior sinergia da equipe do projeto.

Sob esta ética, a industria de software tem exigido que a Engenharia de
Software desenvolva a capacidade de se adaptar a mudancas. Historicamente,
as abordagens de desenvolvimento tradicionais, orientadas a planos, com nivel
mais rigido de atividades, exigem densa documentagéo, dificultando que os
requisitos dos softwares sejam mutéaveis. Além disso, o pouco envolvimento do
cliente, que retém o conhecimento do negécio, ou até mesmo a sua auséncia
durante o ciclo de vida do software fez com que essa abordagem de

desenvolvimento de software se mostrasse inapropriada a atual realidade.

Como um contraponto a burocracia dos processos tradicionais da
Engenharia de Software, diversos métodos ageis de desenvolvimento estao
sendo usados em projetos de software. O enfoque dessa abordagem esta
direcionado as pessoas. Assim, a abordagem Aagil de desenvolvimento de
software, cujo foco é a satisfagdo do cliente, preza pela simplicidade, entrega
imediata de funcionalidade de valor ao cliente, documentacdo minima

necessaria e predisposigdo as mudangas (ABRAHAMSSON et al., 2002. p.11-
12)).

Considerando que algumas das razdes pelas quais projetos de software
tendem ao insucesso é a auséncia de objetivos claros de negécio, o que
remete a identificagao de defeitos tardiamente no ciclo de desenvolvimento, e o
pouco envolvimento do cliente no projeto, esse que por sua vez é responsavel
em fornecer informacgdes integras e concisas para subsidiar o desenvolvimento
do produto de software, essa situagéo controversa revela uma deficiéncia no
uso de valores como comunicagéo e feedback praticados nos métodos ageis, o

que justifica algumas das razdes para esse insucesso.

Com o cliente inserido no processo de desenvolvimento de software e a
sua satisfagdo como norteador da qualidade, a atividade de teste no contexto
dos métodos ageis possui um papel relevante para assegurar a aderéncia das
necessidades e expectativas do cliente, minimizar a probabilidade da

ocorréncia de defeitos no software e os seus riscos para o negécio.

13

Diferentemente das abordagens tradicionais de desenvolvimento onde os
testes ocorrem tardiamente, os testes em métodos ageis devem ocorrer
freqlentemente, procurando identificar os defeitos desde as fases iniciais do

desenvolvimento, com o apoio permanente do cliente através de seus
feedbacks.

Entre as préticas de testes adotadas na abordagem agil de
desenvolvimento de software destacam-se o Test Driven Development (TDD) e
0 Acceptance TDD, ambas utilizando-se da automagao de testes.

O TDD é voltado aos desenvolvedores, aborda o nivel de teste de
unidade, e a integragdo destas unidades, seu foco esta na legibilidade do
cddigo-fonte, prezando por um bom projeto (design) que promova um cédigo
limpo e funcional (BECK, 2003. p.11.).

Em contrapartida, o Acceptance TDD, conhecido também como ATDD
(Desenvolvimento Dirigido a Testes de Aceitacdo) aborda o nivel de teste de
aceitagdo, sob a dtica do cliente, e visa construir um produto de software
aderente aos requisitos de negodcio, promovendo a satisfagdo do cliente
perante a funcionalidade desenvolvida, independente da legibilidade e boa
estrutura do cédigo-fonte (KOSKELA, 2007. p.324.).

Contudo, a automagdo dos testes de aceitagdo pode exigir dos
desenvolvedores um amplo esforgo na elaboracio e manutencdo dos testes,
sobrecarregando-os, pois tornam-se responsaveis por conceber e manter o
codigo da aplicacdo, o codigo dos testes de unidade e aceitagéo. Além disso,
os testes de aceitagdo automatizados sdo restritivos a algumas interfaces
graéficas, o que pode inviabilizar a automacéo desses testes, fazendo-se
necessario o uso da execugao manual dos testes de aceitagéo.

Sob o pano de fundo dos métodos ageis, o ATDD é usado como um
instrumento de comunicagéo colaborativa no processo de desenvolvimento de
software para assegurar a clareza das necessidades de negécio do cliente, por
consequéncia, reduzir o nmero de defeitos detectados durante o ciclo de vida

do software em fungéo de requisitos incompletos e ambiguos, portanto, garantir

14

a implementacdo adequada do produto de software e minimizar os custos de

desenvolvimento e manuiengao do software.

1.2 Objetivo

O objetivo deste trabalho é propor uma adaptagio de um processo de
teste de aceitagdo de software baseado na abordagem do ATDD (Acceptance
Test Driven Development), mantendo a aderéncia do produto de software com

as necessidades de negdcio do cliente.

Essa proposta aborda o ciclo de vida do teste de aceitacéo, prezando
pela execucdo manual dos testes de aceitagdo e fornece um instrumento de

comunicagéo colaborativa no projeto de desenvolvimento de software.

1.3 Justificativas

Em suas obras, Koskela (2007) e Pugh (2011) apresentam as praticas e o
processo do ATDD no desenvolvimento de software. Ambos os trabalhos tem
suas similaridades, no entanto, como diz o provérbio chinés “Existem muitos
caminhos para o topo da montanha, mas a vista & sempre a mesma”. E muitos
dos caminhos compartilham a mesma trilha por parte da viagem (PUGH, 2011.
p.5.).

O ATDD ¢ uma pratica recente, e ha poucos estudos que apresentam os
detalhes que envoivem o ciclo de vida do teste de aceitacdo. A maioria dos
frabalhos concentram-se em evidenciar os resultados de experimentos
académicos, avaliando a eficacia do uso de ferramentas automatizadas de

testes de aceitagéo sob a perspectiva dos requisitos. Alguns exemplos desses
trabalhos sao:

¢ Meinik, Read e Maurer (2004. p.2.) propuseram um experimento em dois
ambientes académicos distintos, sob condigbes especificas, para avaliar
0 uso da ferramenta FIT (Framework for Integrated Tests) como uma

especificacdo de requisitos funcional para apoiar os desenvolvedores, e

15

realizaram uma afericao para verificar se o uso desta ferramenta ajuda a

mitigar as falhas provenientes de requisitos inconsistentes:

Read, Melnik e Maurer (2005. p.1.) realizaram uma nova experiéncia
introduzindo o uso da ferramenta FIT em um curso de Engenharia de
Software. A premissa foi que os estudantes nao possuissem
conhecimento algum da ferramenta FIT. Logo, este estudo avaliou a
habilidade de aprendizagem do uso da ferramenta durante os projetos
académicos. A finalidade do estudo concentrou-se em educar os
estudantes; investigar suas percepgbes e opinides sobre os testes de
aceitagdo e a ferramenta FIT; E por fim, determinar se a ferramenta é
eficaz como documento de requisitos:

Ricca, et al. (2007, p.280.) propuseram experimentos controlados para
avaliar a adogéo da ferramenta FIT como suporte & compreenséo de
requisitos. Este estudo tem similaridades com o trabalho proposto por
Melnik, Read e Maurer (2004). No entanto, ha algumas diferencas,
dentre elas, a mais relevante € o uso da ferramenta FIT para methor
entendimento dos requisitos, portanto, ndo ha execug¢ao automatizada
dos testes;

Sauvé, Neto e Neto (2007. p.82.) avaliaram o uso da ferramenta
EasyAccept no projeto Smart Action, desenvolvido pela Universidade
Federal de Campina Grande (UFCG da Paraiba), para a companhia de
energia CHESF. O projeto consumiu mais de dezoito meses e o relato
dos beneficios e problemas deparados com o uso da ferramenta
EasyAccept neste periodo foram relatados neste trabalho;

Hanssen e Haugset (2009. p.4.) realizaram um estudo de caso na
inddstria para avaliar qualitativamente os esfor¢os e beneficios no uso
da ferramenta FIT. Este estudo foi realizado sob a perspectiva de um
Unico projeto e o método de andlise adotado foi o uso de entrevista

estruturada com questdes abertas & quatro desenvolvedores. O escopo

16

dessa entrevisia teve seu foco em trés aspectos do FIT: Sobre o Uso: os

Efeitos e Resultados; e por fim, a Experiéncia.

O uso de ferramentas de automagdo de testes € importante,
principalmente, em projeto de desenvolvimento &gl que preza por ciclos
pequenos de desenvolvimento e feedbacks constantes. No entanto, os estudos
citados ndo apresentam as etapas e atividades que permeiam os testes de
aceitacao, desde sua concepgdo, execugdo e encerramento. Entdo, sob esta
perspectiva, o ATDD & explorado no presente trabalho cujo propésito & propor
uma adaptagdo do ATDD, abordando a execucdo manual dos testes de
aceitac@o, e algumas diretrizes para o uso do ATDD proposto.

Procura-se com este trabalho propor um conjunto de atividades
estruturadas para os testes de aceitagdo baseando-se nas praticas do ATDD.
Além disso, pretende-se encorajar os profissionais da Engenharia de Software
ao usc dessa abordagem expondo os aspectos inerentes ao uso desta
proposta no projeto de software.

1.4 Estrutura do Trabalho

O trabalho esta organizado em seis capitulos cuja breve descricdo dos
respectivos € apresentada a seguir.

Capitulo 1 - INTRODUGAO

Nesse capitulo é apresentada as motivagdes, o objetivo, as justificativas e
a estrutura do trabalho.

Capitulo 2 — TEST DRIVEN DEVELOPMENT - TDD

Nesse capitulo sdo apresentadas as caracteristicas da técnica do Test
Driven Development (TDD) e os resultados do seu uso no projeto de software.

17

Capitulo 3 - ACCEPTANCE TDD - ATDD

Nesse capitulo sdo apresentadas as praticas associadas a atividade de
testes de aceitagéo no contexto dos métodos ageis, abordando o Acceptance
TDD (ATDD). As caracteristicas do ATDD, assim como os resultados do seu

uso no projeto de software também séo descritos nesse capitulo.

Capituio 4 - ADAPTAGAO DO ATDD
Nesse capitulo & apresentada uma proposta de adaptacdo do ATDD,

descrevendo as atividades e os produtos de engenharia de software que
permeiam as etapas desta proposta.

Capitulo 5 - DIRETRIZES PARA O USO DO ATDD PROPOSTO
Nesse capitulo sdo apresentadas algumas diretrizes para o uso do ATDD

proposto, assim como sdo inferidos os principais resultados da sua aplicagao

em um projeto de desenvolvimento de software.

Capitulo 6 - CONSIDERAGOES FINAIS
Esse capitulo conclui este trabalho, destacando as contribuices para a

area de teste de software no contexto dos métodos ageis e, por fim, a
descricdo de possiveis trabalhos futuros.

REFERENCIAS

Relacionam as referéncias bibliograficas usadas como fundamentacéo as
afirmacgdes do presente trabalho.

18

2. TEST DRIVEN DEVELOPMENT - TDD

A atividade de teste vem crescendo em importancia ao longo dos anos e
isto esta diretamente relacionado a necessidade de produzir produtos de

software que atendam as exigéncias dos clientes que szo cada vez maiores.

Em projetos agsis o desenvolvimento do software é realizado em ciclos
curtos e iterativos e devido a isso os testes sdo executados frequentemente
durante todo o ciclo de vida do software.

Os métodos &geis enfatizam os niveis de teste de unidade, cujo esforco
concentra-se em garantir a aderéncia dos menores componentes do cédigo as
especificagdes funcionais e arquiteturais, e teste de aceitagéo, cujo objetivo &

assegurar a aderéncia do software aocs requisitos de negécio.

Alem de promover a detecgdo de defeitos no software desde as fases
iniciais do projeto, os testes no contexto 4&gil possibilitam que os
desenvolvedores analisem com mais critério o projeto do software, isto porque
os testes s&o escritos, impreterivelmente, antes do cédigo da aplicagéo. Entao,
os desenvolvedores sdo capazes de prover solugdes mais robustas. Além
disso, os testes sdo utilizados como um instrumento de comunicagdo e
feedback que permite nortear a qualidade do desenvolvimento do software.

Neste capitulo sdo apresentadas as caracteristicas do TDD e a atuacao

desta técnica no projeto de desenvolvimento de software.

2.1 TDD

Concebido por Kent Beck, o TDD & uma pratica do eXtreme Programming
(XP) e esta associado aos métodos ageis de desenvolvimento de software. O
TDD promove o desenvolvimento incremental do codigo que deve passar pelos
testes previamente escritos (BECK, 2003. p.7).

Escrever os testes antes do codigo faz com que os desenvolvedores

avaliem previamente os diversos aspectos da funcionalidade e as

19

circunstancias a serem consideradas, definindo o escopo e a decisdo
arquitetural do software (KOSKELA, 2007. p.16.).

O TDD aborda os testes de unidade e a integragdo destas unidades,
assegurando a implementagio de uma funcionalidade ou est6ria de usuario em
conformidade aos requisitos do sistema. Além disso, o TDD preza pelo uso de
ferramentas de automacg&o de testes para garantir a capacidade e cobertura
dos testes, por conseqiéncia, a integridade do software ao acréscimo de
fungbes e o dinamismo das mudangas (ASTELS, 2003. p.8.), promovendo a
confianga dos desenvolvedores (BECK, 2003. p.197.).

O TDD e testes de unidade s&o conceitos inter-relacionados, porém com
escopos e objetivos diferentes. Realizar os testes de unidade por si s6 nao
significa praticar o TDD. Essa distingdo é importante visto que os principais
beneficios de usar TDD est3o relacionados a entender como essa técnica
funciona e aplica-la corretamente.

Na segdo seguinte sdo descritas as etapas que compreendem o TDD, as

praticas e os resultados do seu uso no projeto de desenvolvimento de software.

2.2 O ciclo de TDD

O TDD prevé as seguintes etapas do desenvolvimento de software: Teste,
Cddigo e Projeto. A ordem das etapas é inversa da abordagem tradicional de
desenvolvimento de software. No TDD a primeira etapa & escrever o teste,
entdao o codigo e, por fim, o projeto. Esta Gitima etapa tem um significado
diferente no contexto do TDD, onde ao final o cédigo é reescrito, aprimorando o
projeto inicial, conhecido como refatoragao (KOSKELA, 2007. p.15.).

O ciclo de TDD, também é conhecido como Red-Green-Refactor, e
segundo Beck (2003. p.x-prefacio.) este € o mantra do TDD. A alus&do as cores
da-se em fungéo das ferramentas de testes que sinalizam a evolugdo das
etapas do TDD de acordo com as cores vermelho (Red), que significa que o

teste falhou, e verde (Green), que o teste foi bem sucedido.

A Figura 1 ilustra o ciclo do TDD (JEFFRIES e MELNIK, 2007. p.25).

20

1. Escreverum
teste que falhe

Falhar
[Red]

2. Implementar
codigo apenas
para passar

Figura 1 - Ciclo do TDD (adaptado de JEFFRIES e MELNIK, 2007. p.25).

Uma breve descricdo das etapas que compreendem o ciclo de TDD é
apresentada a seguir.

2.2.1 Escrever o teste

O ciclo de TDD inicia-se com a escrita de um teste e este deve falhar
(Red), pois ainda ndo ha uma funcionalidade presente.

Segundo BECK (2003. p.204.), o TDD é uma ferramenta de projeto cuja
motivagdo é encorajar os desenvolvedores a refletir e planejar melhor a

solugéo, privilegiando a simplicidade do desenvolvimento.

Iniciar com um teste falho obriga o desenvolvedor a justificar cada linha de
codigo. Entéo, o teste torna-se o termdmetro do projeto e de acordo com o seu
tamanho e dificuidade determina-se a complexidade da implementacgéo.

Nesta primeira etapa do ciclo de TDD o teste é escrito para uma pequena
funcionalidade a ser desenvolvida, implementando um caso de teste especifico

de como a aplicacdo deve invocar esta funcionalidade e qual o resultado

21

esperado. Logo, cada funcionalidade & desdobrada em comportamentos que
Sa0 necessarios para cumprir os requisitos do sistema. Em seguida, para cada
comportamento escreve-se um teste de unidade automatizado.

Uma boa pratica & escrever os testes de uma forma independente, ou
seja, testes que ndo dependam de outros testes para passarem. Evitando
situagdes onde um teste falho implique na falha de outros testes. Ou ainda, um
caso mais sutil e raro, a execugéo de um teste fazer um teste subsequente ser
bem sucedido (BECK, 2003. p. 97-98).

Agrupar os testes através de algum critério também & uma boa pratica,
pois permite que determinadas partes do sistema sejam testadas sem que seja
preciso executar todos os testes. Isto pode ser (til na execugédo dos testes de
regressdo apds aiteragdes no codigo (ASTELS, 2003. p.43.).

2.2.2 Escrever o cddigo

Apos escrever o teste que falhou, deve-se escrever o codigo que atenda
aos requisitos do sistema. Nesta etapa do ciclo de TDD deve-se escrever

apenas o codigo suficiente para satisfazer o teste previamente escrito.

Uma boa pratica & implementar o cddigo pouco a pouco (baby steps),
obtendo o feedback dos testes das pequenas fragdes do cédigo e assim
evitando criar codigos complexos desnecessariamente. Também é importante
a pratica de simular o codigo antes de sua construg¢ao, permitindo um melhor
planejamento pelo desenvolvedor (BECK, 2003. p.13.).

O TDD prega por desenvolver somente o que & realmente necessario no
momento, prezando pela simplicidade. Uma vez que o cddigo implementado
esta plenamente satisfatorio (Green), ou seja, o cédigo foi bem sucedido em
todos os testes de unidade, a refatoragdo deve melhorar o codigo e encontrar

uma arquitetura robusta e satisfatéria.

22

2.2.3 Refatorar o codigo

Esta etapa € responsavel por tornar o TDD sustentavel. Neste momento
melhorias s&o realizadas no codigo-fonte, retirando o codigo mal estruturado e
implementando melhores arquiteturas.

Em fungdo dos pequenos ciclos iterativos é previsivel que em pouco
tempo o codigo estard desbalanceado, dificil de entender e manter. Neste
contexto a refatoragéo tem relevancia no TDD, pois € uma técnica disciplinada
de reestruturagdo do codigo existente, alterando sua estrutura interna sem
alterar o comportamento externo (FOWLER, 1999. p.9.).

A refatoragdo é utilizada no TDD como um instrumento para tornar o
cédigo limpo e legivel. Portanto, é recomendavel aplici-la tanto no codigo da
aplicagao como no cédigo de teste (ASTELS, 2003. p.43.).

Para garantir o rapido feedback das mudancas que ocorrem no sistema, o
uso de ferramentas de testes automatizados faz-se necessario para a adogéo
do TDD, fornecendo uma rede de protegdo contra a introducéo inadvertida de
erros. Alem disso, as ferramentas de testes apéiam os testes regressivos de
maneira eficiente (KOSKELA, 2007. p.30.).

2.3 Fluxograma do TDD

O ciclo de TDD é apresentado na literatura sucintamente como trés
etapas: Testar, Cadificar e Projetar (Refatorar). Esta € uma maneira simplista
de sumarizar esta técnica. Portanto, para possibilitar uma melhor visualizagao

de como estas etapas se relacionam, a Figura 2 ilustra o fluxograma do TDD.

23

E 3

M Escreverum Teste

[» Executaro Teste
Passou
Remover Erros
T_ Falhou Teste
Passou
* Refatorar
ih
Falhou) Executar o Teste

Figura 2 — Fluxograma do TDD (SINIAALTO, 2006. p.6.).

Segue uma breve descrigéo das etapas fundamentais do TDD, de acordo
com o fluxograma ilustrado na Figura 2:

a) Escrever um teste para uma pequena funcionalidade;

b) Executar o teste para vé-lo falhar;

c) Escrever um cédigo para a funcionalidade:

d) Executar o teste para vé-lo passar;

e} Refatorar o codigo (aplicagao e teste); e

f) Executar todos os testes para validar se a refatoracdo ndo alterou o
comportamento externo.

Na sec&o seguinte sio descritos os resultados do TDD no projeto de
desenvolvimento de software.

24

2.4 Resultados do TDD no projeto de software

O uso adequado do TDD pode melhorar a qualidade do codigo, reduzir a
densidade de defeitos e prover uma melhor manutenibilidade do software
(ANICHE e GEROSA, 2010. p.469.).

Aplicar os preceitos do TDD com disciplina aumenta a confianca dos
desenvolvedores para com os impactos causados pelas alteragées no
software. Além disso, permite tornar o cédigo limpo, flexivel e documenta-lo de
forma n&o ambigua através dos testes (MARTIN, 2007. p.35-386.).

Embora o uso do TDD possibilite esses resultados positivos a sua adogéo
em projetos ageis ainda tem pouca representatividade de acordo com pesquisa
divulgada recentemente (VERSION ONE, 2011, p.4.). Uma das razdes para
esse cenario € a dificuldade de aplicar estritamente os preceitos do TDD, assim
equivocos como nao visualizar o teste falhar, ndo refatorar o codigo da
aplicagdo e o codigo de teste, e ignorar o principio da simplicidade
comprometem a aderéncia da técnica (ANICHE e GEROSA, 2010. p.473.).
Alem disso, a inexperiéncia dos desenvolvedores com os testes automatizados
deve ser considerada como um fator de risco na adocao do TDD (PULEIO,
20086. p.2.).

25

2.5 Consideragoes do Capitulo

O TDD fomenta o desenvolvimento sustentavel do software, encorajando
os desenvolvedores a um bom projeto e maximiza as chances de que o codigo
seja implementado de maneira correta. Contudo, esta técnica deve ser
praticada com disciplina pelos desenvolvedores prezando pelo uso estrito dos
preceitos do TDD de modo que sobressaiam os resultados positivos do seu uso
no projeto de desenvolvimento do software.

A técnica do TDD promove valor, principalmente, aos desenvolvedores do
software, pois assegura a boa legibilidade do ¢cédigo e prové mecanismos que
aumentam a confianga dos desenvolvedores para com a qualidade interna do
software, através dos testes regressivos automatizados.

No entanto, os clientes, raramente, estéo interessados em adquirir codigo,
mas sim, software que suporte seus negdcios, promovendo produtividade e

eficiéncia operacional.

Sob esta dtica os métodos 4geis enfatizam os testes de aceitagdo,
abordando o Acceptance TDD cujo objetivo & assegurar a aderéncia do produto
de software aos requisitos de negdcio, promovendo valor ao cliente perante as
funcionalidades desenvolvidas, independente da legibilidade e boa estrutura do
cédigo. O Acceptance TDD estabelece a qualidade no software sob a 6tica do
cliente (qualidade externa).

O capitulo seguinte apresenta as caracteristicas do Acceptance TDD,

suas praticas e resultados no projeto de desenvolvimento de software.

26

3. ACCEPTANCE TDD - ATDD

Compreender exatamente quais sao as necessidades do cliente & um dos
grandes desafios do desenvolvimento de software. Visando meios para
compreender melhor as necessidades do cliente, a abordagem 4&agil de
desenvolvimento de software propGe a técnica do Acceptance Test Driven
Development (Acceptance TDD ou, simplesmente, ATDD), que consiste em
criar testes de requisitos de negdcio antes de implementar o cédigo, fazendo
com que a implementacéo das fungbes sejam guiadas por testes de aceitacéo
desenvolvidos com a colaboragao do cliente (KOSKELA, 2007, p.324.).

O objetivo do ATDD é encorajar uma comunicagdo clara das
necessidades de negdcio afravés do uso de exemplos concretos de fungdes de
software. Assim, os testes s&@o parte integrante da especificagdo de requisitos
de um produto de software. Entdo, requisitos e testes estéo ligados, e ndo se
pode ter um sem o outro (PUGH, 2011. p.27).

O ATDD visa solucionar o que geralmente é falho em um projeto de
desenvolvimento de software: a colaboragio entre o cliente e o desenvolvedor,
que ao invés de basear-se somente em uma documentacéo formal, que muitas
vezes esta sujeita a erros, existe uma interagcdo estreita com o responsavel
pelo requisito, o cliente, que deve prover as informagdes de forma explicita,
IGcida e inequivoca de suas necessidades. Esta colaboragéo além de propiciar
uma sinergia entre as partes favorece ao desenvolvimento de produtos de

software cujas fungdes estdo alinhadas com as reais expectativas do cliente.

Neste capitulo s&o apresentadas as caracteristicas do ATDD, o seu

processo e 0s resultados de aplica-lo no projeto de desenvolvimento de
software.

27

3.1 Testes de Aceitagao

Na literatura é possivel encontrar varios termos diferentes associado ao
conceito de teste de aceitagdo. Alguns exemplos séo ilustrados na Tabela 1.
Apesar da variedade de termos & importante compreender a esséncia dos

testes de aceitagéo.

O teste de aceitacédo tem seu foco em verificar que o sistema atende aos
requisitos do cliente. A motivacdo dos testes de aceitagdo é mostrar que o
software funciona ao invés de encontrar defeitos, no entanto, defeitos podem
ser identificados como resultado desses testes.

A norma IEEE 1012 (1998. p.4 ; p.30.) define teste de aceitagdo como
testes formais conduzidos pelo cliente para determinar se o sistema satisfaz ou

nao seus critérios de aceitagdo, determinando também se o sistema deve ou

nao ser aceito.

Tabela 1 - Sinénimos para "Acceptance Tests” (MELNIK, 2007. p.12.)

Termo

Apresentado / Usado por

functional tests

BECK, Extreme Programming Explained

customer lests

JEFRIES, BECK, Extreme Programming
Explained

customer-inspired tests

BECK, Extreme Programming Explained

story-tests and story-test-driven development KERIEVSKY
specification by example B FOWLER
coaching fests MARICK
examples, business-facing example, and MARICK
example-driven development
conditions of satisfaction COHN
scenario tests KANER
keyword-driven test KANER, BACK, PETTICHORD
soap opera tests BUWALDA
formal qualification test e.g. DOD
user acceptance tests (UAT) e.g. IEEEG10
client acceplance tests e.g. [EEE610

system tests

e.g. [IEEE610

28

Geralmente, os testes de aceitagéo sao realizados por um grupo restrito
de usudarios finais do sistema, que simulam operacées de rotina do sistema de
modo a verificar se 0 seu comportamento estd em conformidade com o
solicitado. Os testes de aceitagéo podem contemplar os testes funcionais, de

recuperagéo de falhas, de seguranga, de configuragao, e de desempenho.

Contudo, os testes de aceitagdo apenas tem eficacia com o apéio do
cliente na definicdo dos critérios de aceitagdo, a sua auséncia torna dificil
validar se o software esta sendo construido de forma correta. Logo, ter o cliente
préximo a equipe de desenvolvimento para definir o sistema através de
cenarios € de fundamental importancia para o sucesso do projeto de software.

Melnik (2007, p.13.) define cenario como uma descricdo de um possivel
conjunto de eventos que pode ocorrer. O principal objetivo de desenvolver
cenarios € estimular a reflexdo sobre possiveis ocorréncias e suas suposi¢des,
oportunidades e riscos.

A auséncia de testes de aceitagdo e a correta compreensdo dos
requisitocs sdo as principais razbes para inimeras falhas de projeto de
desenvolvimento de software.

Definir os requisitos com clareza através de cendrios e critérios de
aceitagdo oferecem boas possibilidades para a construcdo de software que
atenda as expectativas do cliente. Neste contexto, os métodos éageis de
desenvolvimento de software propdem o ATDD cujos conceitos e praticas séo

descritos nas seg¢des seguintes.

3.2 ATDD

O ATDD, proveniente do desenvolvimento agil de software, move os
testes de aceitagéo para antes da codificagdo. O processo é similar ao TDD,
apenas abordando em um nivel de teste diferente. Enquanto o TDD trata de
comportamento de pequenas unidades, o ATDD trata de comportamento de
todo sistema (KOSKELA, 2007. p.334.).

29

Fazendo uma alusdo ao conceito de qualidade interna, perspectiva do
desenvolverdor, e qualidade externa, perspectiva do cliente, o TDD refere-se a
qualidade interna do cédigo, enquanto o ATDD refere-se a qualidade exierna
do codigo, conforme ilustrado na Figura 3.

Externa Interna

ATDD [::) <i__; TOO

Oualidade Oualidxde t

!
I

~

Figura 3 - Perspectivas de gualidade externa e interna (KOSKELA, 2007. p.7.)

No ATDD, os testes de aceitagdo sdo elaborados com base nas estérias
de usuario, que sdo escritas em pequenos cartdes contendo poucas palavras
ou frases que dentro de um contexto transmitem significado ao cliente e

desenvolvedor, e que, geralmente, expressam quem faz o qué.

As estérias de usuarios sdo sucintas para representar os requisitos do
sistema, ou seja, ndo pretendem documenta-lo, atuando como uma promessa
de didlogo futuro entre o cliente e o desenvolvedor (KOSKELA, 2007. p.325.).
Neste compromisso de reunir os stakeholders do projeto, é realizada uma
discussdo sobre os critérios de aceitagdo que envolvem os requisitos do
cliente, onde ele deve descrever, através de exemplos concretos de fungées, o
comportamento correto do sistema atraves de sua perspectiva — condigbes de
satisfagdo. Com o apoio da equipe técnica, essencialmente, desenvolvedor e
testador, os exemplos especificados pelos usudrios s&o traduzidos em forma
de testes automatizados, isto €&, testes de aceitagdo executaveis (executable
acceplance tests), que posteriormente devem ajudar os desenvolvedores a
determinar quando as novas fun¢des estdo completas ou verificar de forma agil
e eficiente se alguma fungao existente apresentou falha.

O ATDD nao determina uma técnica de implementacio do software, mas
considera o uso do TDD mais adequado ao espirito do desenvolvimento agil.
Nesta etapa, em geral, uma estoria é dividida pelos desenvolvedores em um
conjunto de tarefas necessarias para criar a funcionalidade. Entdo, os

30

desenvolvedores atuam sob essas tarefas usando quaisquer ferramentas

necessarias, incluindo o TDD. Quando uma determinada tarefa é concluida, o

desenvolvedor passa para a proxima tarefa, e assim por diante, até que a

estoria seja concluida, evidenciado pelo sucesso na execugdo de testes de

aceitacéo.

Nas se¢des seguintes sdo apresentadas em detalhes as caracteristicas

do ATDD.

3.2.1 Propriedades do ATDD

Segundo Koskela (2007. p.328.) o ATDD possui cinco propriedades,

descritas a seguir.

De propriedade do cliente: Os testes de aceitac&o devem ser de
propriedade do cliente, onde seu principal propésito & especificar os
critérios de aceitagéo para a estéria do usuario. Além disso, o cliente € o
especialista de negdcio que tem habilidades especificas para esta
tarefa. Logo, o cliente torna-se responsavel por escrever os testes de
aceitagdo. Com isso, & possivel evitar um problema muito comum com
os testes de aceitagdo escritos por desenvolvedores, que, geralmente,
especificam o0s aspectos técnicos da implementacdo ao invés de

especificar os aspectos da funcionalidade.

Escrito em conjunto com o cliente, desenvolvedor e testador:
Embora o cliente seja o Gnico proprietario dos testes, isto néo significa
que ele deve ser o Unico a escrevé-lo. A equipe {écnica deve suportar o
cliente nesta tarefa. Escrever os testes em conjunto melhora a
comunicagdo entre os stakeholders, dissemina o conhecimento e
esclarece o entendimento do sistema, possibilitando produzir software

de qualidade.

31

Pugh (2011. p.3.) refere-se a colaboracéo entre o cliente, desenvolvedor

e testador como a triade, onde:

o O Cliente pode ser representado pelo Product Owner, analistas
de negocios e especialistas de dominio, cujas responsabilidades
sao determinar os requisitos, criar os testes de aceitagdo, e definir

as prioridades.

o O Desenvolvedor implementa os requisitos e assegura que o
software atende aos critérios de aceitagdo. Também apdia o

testador no processo de automatizagéo dos testes de aceitacao.

o O Testador apoia o cliente no desenvolvimento dos testes de
aceitacao, e verifica se a implementagso faz o que deve fazer e
nédo faz o que ndo deve fazer.

e Sobre o qué e ndo como: Uma das principais caracteristicas que torna
as estorias de usuarios apropriadas a entrega antecipada de valor é o
seu foco em descrever 0 que agrega real valor para o clienie ao invés
dos mecanismos de como obter este valor. Estérias empenham-se em
transmitir as necessidades e desejos — 0 qué e, as vezes, por qué— e
deixam as questdes de implementacdo — como — de lado. Geralmente, o
cliente nao se importa como sera implementado o software, desde que
ele atenda a suas necessidades e expectativas.

» Expresso na linguagem de dominio do problema: Uma importante
propriedade dos testes de aceitagéo, no contexto do ATDD, é usar a
linguagem de dominio do cliente e nao jargées de programagdo. Esta é
uma premissa fundamental para ter o cliente envolvido no processo de
criagao e validagdo dos testes. O uso de jargdes técnicos torna os testes
vulneraveis a falhas, pois desvia o foco do cliente a verdadeira
necessidade: especificar a coisa certa.

32

e Conciso, preciso e inequivoco: Os testes de aceitacdo s&o escritos
para verificar um Unico aspecto ou cenario relevante para a estéria do
usuario. Logo, esses testes devem ser bem organizados, faceis de
entender e ftraduziveis para testes executaveis. Quanto menor a
ambigliidade, melhor & para mitigar erros. As estérias podem ser
escritas como lembretes simples na forma de uma lista com marcadores,
ou pode-se optar por explica-las como frases completas que descreve o
comportamento esperado. Em ambos os casos, o objetivo é fornecer
informagdes suficientes para lembrar as coisas importantes que
precisam ser discutidas e testadas, ao invés de documentar os detalhes
com antecedéncia. A idéia é manter os testes de aceitagio simples e
concisos, portanto, evitar escrever detalhes que sdo faceis de ser
identificados posteriormente na implementacdo, que podem ser
interpretados erroneamente, e que ndo acrescentam informacéo crucial
devem ser omitidos.

3.2.2 Perfil do cliente

Como & possivel verificar nas propriedades do ATDD, o cliente tem um

papel indispensavel a viabilidade desta técnica.

Na pratica existem variagGes de clientes em um projeto de software. O
cliente que paga pelo produto de software, quem usara o sistema, em alguns
casos, quem vendera o sistema, eic. (KOSKELA 2007. p.348.).

No contexto do ATDD, o papel do cliente deve ser preenchido por alguém
que detenha um amplo conhecimento do dominio do negécio.

Por vezes, projetos complexos exigem competéncias que ndo cabem
somente a uma Unica pessoa, fazendo-se necessario um grupo de individuos

gue represente o papel do cliente.

Portanto, ha algumas propriedades recomendaveis ao papel do cliente no
ATDD (KOSKELA, 2007. p.349):

33

e O cliente &€ membro ativo da equipe e deve estar comprometido

com o sucesso do projeto;

s O cliente tem autoridade para tomar decisbes e deve ter a
capacidade de compreender as implicagbes técnicas destas

decisdes com o apoio da equipe técnica;

» Por fim, o cliente deve ser capaz de explicar com clareza o dominio
da aplicagcéo para a equipe do projeto. Todavia, um cliente capaz
de comunicar-se efetivamente com a equipe do projeto & um fator

essencial para o sucesso do projeto.

Uma vez que conhecemos as principais caracteristicas inerentes ao
ATDD, na secdo seguinte sao apresentadas as etapas que compreendem esta
técnica.

3.3 O ciclo de ATDD

Segundo Koskela (2007) o ATDD pode ser expresso com o ciclo ilustrado
na Figura 4. Esse ciclo continua por toda a iteragdo enquanto houver estdrias
para implementar, comegando na escolha de uma estdria de usuario, em
seguida, os testes de aceitagédo s3o escritos para estéria em questdo, entdo,
esses testes sdo automatizados, tornando-se testes executaveis e, por fim, a
funcionalidade é implementada para passar pelos testes de aceitagdo
executaveis.

34

Escolher a Estoria
de Usuario
{ Escreveros Testes
| paraaEstoria
\
~
Implementara |
Funcionalidade)] p .
,[Autoratizar |
os Testes J

Figura 4 - Ciclo de ATDD (KOSKELA, 2007. p.335.).

A seguir, sdo descritos os detalhes do ciclo de ATDD.

3.3.1 Escolher a Estéria de Usuario

A primeira etapa consiste em decidir em qual estéria de usuario trabalhar.
As estorias sdo provenientes das reunides de planejamento realizadas durante
todo o projeto de desenvolvimento do software. Nesses encontros, os clientes
informam suas necessidades e expectativas através de exemplos concretos de

funcdes, ilustrando como o sistema deve funcionar para cada situag3o.

Os desenvolvedores e testadores, tipicamente, fazem perguntas sobre
essas caracteristicas, tornando um meio de intenso aprendizado e discusséo.
Algumas dessas informagdes ficam documentadas em cartdes de estdria, onde
o cliente prioriza as estorias pelo seu valor de negdcio, incluindo o risco do
negaécio, e o risco técnico é estimado pela equipe de desenvolvimento.

3.3.2 Escrever os Testes para a Estéria

Apds escolher a estéria, a segunda etapa & escrever os testes de
aceitagao para esta estéria. Esta tarefa é de responsabilidade do cliente. Logo,
0s membros da equipe técnica, desenvolvedores e testadores, devem estar

junto com o cliente e comegar a esbogar uma lista de testes para a estéria em

35

questdo, de modo que esta lista contemple os cenérios e aspectos da estéria

que serao testados e ir8o garantir que a funcionalidade sera implementada
corretamente.

Uma vez esbogada a lista de testes, é iniciada a elaboragao do teste de
aceitagdo propriamente dito, acrescentando os detalhes e discutindo sobre as
caracteristicas, especificidades sobre a interface do usuario, a melhor forma de
funcionamento, etc.

3.3.3 Automatizar os testes

A terceira etapa do ATDD é transformar os testes de aceitagéio em testes

executaveis que retorne um resultado simples: sucesso ou falha.

Existem diversas ferramentas que realizam a automatizacio desses
testes. As ferramentas mais conhecidas utilizam o conceito table-based, onde a
premissa é usar o formato tabular, linhas e colunas, para facilitar a
especificacdo dos testes de modo que sejam legiveis para o homem e a
magquina.

Uma vez que o teste é expresso em um formato tabular, a ferramenta
interpreta este conteildo em tabelas HTML e transforma-os em sequiencias de

metodos & ser invocados e interpretados pelo cédigo do sistema sob teste.

Na maioria das vezes, ndo existe uma ferramenta disponivel capaz de
compreender os testes na linguagem de dominio, em formato tabular, e ser
capaz de ligar os testes em chamadas para o sistema sob teste. Na pratica,
esta comunicagao deve ser implementada pelos desenvolvedores usando uma
linguagem de programagao.

Simplificando esta dualidade de fransformar os testes de aceitagdo em
testes executaveis, devem-se expressar os testes em um formato tabular,
legivel ao homem e magquina, e escrever o cédigo que conecte os testes ao
sistema a ser testado.

Um aspecto a ser considerado é a necessidade de desenvolver todos os
testes executaveis no inicio do projeto ou automatiza-los em pequenos passos

36

com o processo de implementagéo, semelhante ao TDD, onde implementa-se
um teste, em seguida, implementa o codigo para o parte da estéria, entio,
implementa-se um outro teste, e assim por diante. A desvantagem em
automatizar previamente todos os testes de aceitacdoc & o risco de ter
retrabalho durante o projeto. Logo, implementar os testes executaveis de forma
gradativa, além de ser mais prudente, pode evitar retrabalho.

Portanto, uma vez concluida esta etapa, tem-se um teste de aceitacao
que pode executar e informar que a funcionalidade especificada esta ausente.
A proxima etapa &, naturalmente, fazer o teste passar, isto &, implementar a
funcionalidade para satisfazer o teste que falhou.

3.3.4 Implementar a funcionalidade

A quarta etapa do ciclo de ATDD consiste em implementar a
funcionalidade. O ATDD n&o determina uma técnica de implementacao para a

funcionalidade, mas considera como uma melhor pratica o uso do TDD.

Usualmente, uma estéria representa uma funcionalidade de valor para o
cliente. Esta estéria ¢ desdobrada em um conjunto de tarefas necessarias para
criar esta funcionalidade. Entao, os desenvolvedores atuam sob essas tarefas
usando quaisquer ferramentas necessarias para garantir a implementagéo das
fun¢des, incluindo o TDD.

Na pratica, este processo contempla inimeras iteragdes pequenas dentro
de iteragGes. A Figura 5 ilustra a fransi¢éio entre os processos de ATDD e TDD.

37

Acceptance fast-driven devebpmem | Test-driven devaiopment

—

e -\
F‘?i};f:gﬁg 0 oficar
Aceitagdo . {
Implementar o . ’
Testedeﬁcemgao Testar m
Escrevers Test& de -
Azeitagdo pataEstoria /- L
h T v .
J EseremaEstom | e Codhcar
\ de Usuirio / W
\Er = 'I f !m‘” 4 II
7 Aceitagic '. —,
! Mo Cliente i | ’."f "__‘
\H = B ‘ _{; Codiflcer |
{ Refatorar A o | {
Passounes | | Testa
Testgsda Refatolar |
/ Acelagie)

Figura § - Relacionamento entre o ATDD e TDD (KOSKELA, 2007, p.342.).

”

Como é ilustrado na Figura 5, a quarta etapa do ciclo de ATDD,
implementa a funcicnalidade necesséria para corrigir o teste de aceitagdo que
falhou inicialmente, e pode ser expandido em uma seqiiéncia de pequenos
ciclos de TDD (7est-Code-Refactor), construindo a funcionalidade ausente de

forma fragmentada até que todos os testes de aceitagéo sejam bem sucedidos.

Enquanto o desenvolvedor estd trabalhando em uma estdria,
frequentemente o cliente é consultado sobre como uma funcionalidade ou outra
deveria funcionar. Desta forma, h& ocasifes onde o desenvolvedor identifica
um cendrio de teste que o sistema provaveimente deve lidar, e que nao foi
previamente elaborado pelo cliente, desenvolvedor e testador. Logo, os testes
de aceitacdo devem ser adicionados a lista apds o aval do cliente, que deve
refletir sobre 0 novo cendrio de teste. Afinal, ele pode nao atribuir tanto valor a

um determinado aspecto ou funcionalidade da estoria.

Nesta etapa do processo, dependendo de qual foi a opgéo adotada na
etapa anterior, entre automatizar previamente todos os testes ou de forma
gradativa, deve-se retornar a etapa 1 e escolher uma nova estdria para

trabalhar, ou retornar a etapa 3 e automatizar um outro teste, respectivamente.

38

Para contextualizar as quatro etapas do processo de ATDD proposta por
Koskela (2007), a Figura 6 ilustra o respectivo fluxograma.

Escolher a Estéria
de Usuario

!

Escrever os Testes
|(Linguagem Natural}

k 4

Automatizar os
Testes

| |

Especificar os Testes Implementar o
{(Formato Framework) Cédigo do Teste

|

Teste

Passou
Falhou

Implementar a
Funcionalidade

Remover Erros |

t /Iﬁta\ Passou / Novo Teste

Falhou

Passou / Nova Estéria

Figura 6 - Fluxograma do ATDD

Hendrickson (2008) descreveu em seu artigo uma abordagem ao ciclo

ATDD, conforme ilustrado na Figura 7.

39

Estérias

& Estérias >
& Estorias - j Estoﬁas
I___> mscurﬁ |:> ‘[LABORAR I
Fungée;m
Funcdes

Funcionalidade
DEMONSTRAR \ <:I l IMPLEMENTAR (‘a
Cicle
TOD ﬁ

Figura 7 - ATDD sob a perspectiva de Hendrickson (adaptado de HENDRICKSON, 2008. p.3.)

A seguir, é feita uma breve descricdo de cada uma das fases do ciclo
ATDD.

a) Discutir

Durante a reunido de planejamento da iteragdo sdo discutidas as estérias
de usuarios. Nesse evento devem estar presentes todos os stakeholders do
projeto que possuem informagdes relevantes sobre os requisitos do sistema.
Esta etapa do processo corresponde as seguintes acgoes:

* Os critérios de aceitagdo s3o definidos para cada estoria:

* A equipe técnica deve fazer as perguntas certas ao cliente cujas
respostas devem resultar em exemplos de uso que podem ser escritos
como testes/requisitos. Por exemplo: “Imagine o sistema pronto. Como o
sistema seria utilizado e o que é esperado dele?” (LARMAN e VODDE,
2010. p.2.);

40

+ O cliente deve pensar cuidadosamente sobre a funcionalidade e suas

expectativas;

* As estorias dos usuarios podem, e normalmente sdo desdobradas em
estérias menores:;

* Os testes de aceitagéo sdo esbogados com a colaboragio do cliente

para cada estoria. Os testes sao escritos em linguagem natural.

b) Elaborar

Uma vez que os testes foram esbocados com a colaboragéao do cliente &
possivel traduzi-los em um formato que seja legivel para o framework de
automacao.

Para cada estoria do usuario, os testes devem ser reescritos em formato
aderente a um framework de automagdo, por exemplo, em formato tabular.
Neste momento ainda nado ha a preocupagdo de como os testes serdo
automatizados, o foco deve estar na esséncia dos testes e os detalhes de

implementacdo devem ser ignorados.

c) Implementar

Esta etapa do processo compreende as seguintes acdes:

» Desenvolvedores executam os testes de aceitagédo executaveis para a
estéria e os testes falham, pois os testes ainda nao estao ligados ao
codigo de teste;

¢ Desenvolvedores implementam o cédigo de teste que ligara os testes de

aceitacdo e o codigo da aplicacéo;

41

» Desenvolvedores executam os testes de aceitacdo executaveis e os

testes falham, pois o cédigo da aplicagéo ainda nao foi implementado:

* Desenvolvedores implementam o cédigo da funcionalidade (estdria)
utilizando o TDD e executam os testes de aceitacdo, que devem ser
bem sucedidos.

d) Demonstrar

Na dltima etapa do processo, é importante a execucao de testes
exploratérios manuais para verificar se ha erros nos critérios de aceitacao e

eventuais riscos que nao foram identificados durante o processo.

Uma vez que os resultados da implementagéo satisfazem as expectativas
da equipe de desenvolvimento é realizada uma demonstracao da
funcionalidade para os stakeholders de negécios, apresentando os resultados

obtidos e os riscos em potencial identificados durante o processo.

Para a melhor compreensdo de como o ciclo de ATDD se encaixa em

uma iteragio, a proxima secio apresenta uma visdo do ATDD na linha do
tempo.

3.4 ATDD dentro de uma iteracio

As iteracGes devem ter duragéo de algumas horas a poucos dias para
escrever os testes de aceitagao, tornando-os testes executaveis e implementar
a funcionalidade. Portanto, as etapas do ATDD é apenas uma fragao de toda
uma iteragéo feita de multiplas, e pode ir além de dezenas de estorias de

usuario, dependendo do tamanho da equipe e das estérias.

Para compreender methor como o ciclo de ATDD se aplica a uma Gnica
estoria e encaixa-se em uma iteragéo, a Figura 8 ilustra uma iteracdo na linha
do tempo relacionado-a com as etapas do ATDD. Esta ilustragcdo apresenta
uma Unica iteragdo com cinco estérias de usuario a8 serem implementadas.

Cada uma das barras representa uma Unica estéria de usuario que move

42

através das etapas do ATDD (Escrever os Testes, Automatizar os Testes e
Implementar as Estérias).

Keracio N

R R e P
1 Escreveros |) Automatizar |, Implementar |

1 Tastes i} osTestes |1 asEstorias |

P P —— B s ol

Estéria 1 i e
Estoria 2

Figura 8 - ATDD na linha do tempo (adaptado de KOSKELA, 2007. p.344.).

Na pratica, pode haver, e geralmente ha, mais iteracdes em cada estdria
porque usualmente nédo se escreve e implementa todos os testes de aceitacao

de uma Unica vez, ao invés disto procede-se com os testes um a um.

E possivel notar na Figura 8 que a iteragdo n&o contempla a etapa de
escrever as estorias de usuario. Isto esta associado a uma pratica dos métodos
ageis, a reunido de planejamento, que é realizada no inicio de cada iteracéo
onde o cliente discute os aspectos da estéria e decide qual estdria tem
pricridade de implementagao na iteragdo. Se as estérias s&o priorizadas nesta

reuniéo, logo elas devem ter sido discutidas e escritas previamente.

Considerando o fato que ha uma reunido de planejamento a cada
iteracdo, é uma boa pratica preparar a préxima iteracdo durante a iteragio
corrente, alocando uma pequena parcela de tempo para o pré-planejamento da
préxima iteragio. A ideia & estar preparado para a proxima iteragdo. Entao,
quanto maior o conhecimento adquirido previamente, mais rapido e produtivo
sera o planejamento da iteragéo.

43

3.5 Resultados do ATDD no projeto de software

Como ja foi citado, um aspecto positivo do ATDD & que ele é um
mecanismo de comunicagéo entre o cliente, desenvolvedor e testador, que
alem de esclarecer os requisitos do cliente, especifica como o sistema deve
funcionar (PUGH, 2011. p.199.).

Outros resultados relevantes podem ser destacados na adogio do ATDD,
como:

* Guia de completude

Com a pratica do ATDD & possivel avaliar com clareza a evoluggo do
desenvolvimento de software, identificando sua situagéo atual no projeto.
O ATDD oferece um critério bindrio para isto, ao responder a seguinte

questao: "Os testes para todas as estdrias passaram?” (KOSKELA,
2011. p.351.).

A relagéo de testes de aceitagdo bem sucedidos com o nimero total de
testes podem fornecer um guia para o quanto da estéria foi
implementada. Por exemplo, se ha dez testes de aceitacdo e trés foram
executados, a estdria estd "em média" 30% concluida.

E possivel que o caso de teste mais complexo ndo foi implementado.
Assim, o esforgo para implementar essa estéria representa mais do que
sua parte justa do esforgo total. E por isso que este é apenas um guia

para determinar a completude, ao invés de uma medida exata. (PUGH,
2011. p.199.)

e Trabalho colaborativo

ATDD cria um ambiente cooperativo porque todos os envolvidos
trabalham com os mesmos objetivos ao mesmo tempo. Esta é uma
maneira mais efetiva de trabalhar, especialmente, considerando como
cada individuo colabora com seus conhecimentos e habilidades para
resolver os problemas.

44

Confianga e comprometimento

Os testes de aceitagdo s@o escritos para especificar o comportamento
de uma estéria de usuario. Quando o cliente escreve os testes de
aceitagao juntamente com a equipe de desenvolvimento, isto consolida o
significado da estéria do usuario porque ha uma conexdo direta entre o

que o cliente especificou e o que foi implementado.

O cliente vé& que suas necessidades sdo efetivamente atendidas, e os
desenvolvedores véem que o trabalho realizado oferece valor ao cliente.
Desta forma, a maneira como os testes sdo escritos no ATDD tem muito

significado & ambas as partes.

Especificacdo através de exemplos

Um aspecto importante do ATDD é que os testes de aceitagdo
representam especificagdo através de exemplos, € um modo de
especificar requisitos por meio de exemplos inteligiveis ao invés de
formulas complexas e sentengas ambiguas. Isto significa que testes
expressos com exemplos concretos de fungbes sdo faceis de
compreender, validar e, principalmente, escrever, uma vez que o
objetivo € ter o cliente envolvido na especificagcdo e elaboragdo dos
testes do sistema. Além disso, mau-entendimentos sobre os requisitos

840 minimizados.

Preenchendo a lacuna

Independente de quao bem os testes de unidade oferecem cobertura do
codigo, eles ndo testam o sistema. Os testes de unidade verifica o
codigo e os componentes isolados. Isto &, testes de unidade oferecem
um bom indicativo se o codigo funciona, mas sem alguns testes
adicionais nédo & possivel saber se o sistema como um todo funciona
como deveria. Embora os testes de unidade, especialmente na forma de
Test-First Programming, seja uma pratica extremamente (til na produgao

de software de qualidade, é preciso algo a mais para colocar todo o

45

sistema sob validagdo. Logo, as praticas de TDD e ATDD s3o

compiementares e nao substituiveis.

Visualizagdo do software em construgio

Software por natureza € algo abstrato, de dificil compreensdo. Mesmo
sabendo qual o problema que deve ser solucionado, o cliente ndo tem a
capacidade de abstrair a definicdo de uma solugdo. E muito mais facil
visualizar um software funcionando e, entdo, decidir se aquilo € ou ndo é
a solugdo do problema. Desenvolvendo os testes de aceitacéo
executaveis, os clientes terdo uma oportunidade de visualizar o software
funcionando, permitindo o aprendizado e o feedback para aprimorar os
requisitos.

Apodio a estimativa

Uma estimativa pode ser necesséria para a implementacdo de uma
estoria. O niimero e a complexidade dos testes de aceitagdo pode ser
um guia para determinar o esforgo necessario para implementar uma
estoria. Os testes para uma nova estéria pode ser comparada para os
testes executados em estérias concluidas. E possivel desenvolver uma
heuristica propria de como o nimero e a complexidade pode influenciar
no esforco. Grandes configuragdes personalizadas e numerosas
mudancgas de estado geralmente implicam em um esforco muito maior
do que os testes com configuragbes de pequenas e poucas mudancgas
de estado (PUGH, 2011. p.200.).

Teste de Regresséo

Definir testes de aceitagdo para todos os requisitos permite usar o
conjunto de testes de aceitacdo como testes de regressdo. Se uma
alteragdo ¢é feita para implementar um novo requisito, todos os testes de
aceitagdo anteriores ainda devem ser bem sucedidos. Se os testes
anteriores falham quando uma nova exigéncia ¢ introduzida, é possivel

ter problemas no projeto do cédigo. Contudo, se os testes de aceitagéo

46

sdo automatizados, executa-los rapidamente fornece um feedback

imediato sobre as modificagées no sistema.

Empregar o ATDD implica em investir um alto custo financeiro e

intelectual para automatizar os testes de aceitagéo. A seguir, sd0 descritos os

fatores criticos que podem inviabilizar o uso do ATDD:

Automatizacao de testes

Estabelecer os testes de modo & automatiza-los pode ser um grande
desafio mesmo fazendo uso de ferramentas, pois automatizar os testes
exige grande esforgo na elaboragéo e manutencgdo dos testes, além de
muita disciplina e ampla experiéncia da equipe técnica na adogdo das
ferramentas de automagao dos testes. (PARK e MAURER, 2008. p.20.).

Restri¢do a Interfaces de Usuario

Ha situacbes onde a usabilidade de algumas interfaces de usudario,
principaimente, as interfaces graficas dificultam a automatizagéo dos
testes ao ponto de inviabiliza-los (KOSKELA, 2011. p.352). E
recomendavel manter os testes de logica de negdécio separados dos
testes de interfaces de usuario (PUGH, 2011. p.136). Hoje muitos
especialistas concordam que a automacéo deve ser feito a nivel abaixo
da interface de usuario, nivel este que correspondente a légica de
negécio (MELNIK, 2007. p.22.).

Manuteng¢ao em dobro

Alteragdo nos requisitos do sistema implica na atualizagéo do cédigo da
aplicacdo e dos testes, ambos devem estar sempre sincronizados
(MARTIN, 2007. p.34. ; PARK e MAURER, 2008. p.20.). Isto exige dos
desenvolvedores, manuten¢do em dobro sobre os codigos, 0 que pode

sobrecarregar os desenvolvedores e comprometer os prazos do projeto.

47

3.6 Ferramentas de Testes de Aceitagio

Usar a ferramenta certa no desenvolvimento de software pode possibiiitar

mulita facilidade a equipe de desenvolvimento.

Ha uma variedade de frameworks que suportam os testes de aceitacéo
executaveis, o FIT (Framework for Integrated Tests) é o mais popular na
indUstria de software.

Concebido por Cunningham (2002, fit.c2.com/wiki.cgi?FitDocumentation)

o FIT permite compreender e escrever os testes de aceitagdo de maneira facil,
expressando-os através de um formato tabular (Table-based). Utilizando-se de
ferramentas convencionais como o Word e Excel, ou HTML, os clientes
especificam os testes na tabela (Fixture table), em suas linhas e colunas,
usando a terminologia regular do negécio e organizando as afirmagbes acerca
das regras de negécios que o software deve satisfazer. Entdo, um codigo de
teste (Fixture class) € implementado pelos desenvolvedores para mapear os
dados presentes nas tabelas e liga-los ao software sob teste. Para escrever a
Fixture class varias linguagens s&o suportadas pelo FIT, como o Java, C#,

Ruby, C++, Python. Este codigo deve ser transparente aos clientes.

A Figura 9 ilustra 6 mecanismo adotado pelo FIT.

P e e e T N W e e e e e o e i e e e e s M W e R ™

_ 2

g 3 1 —_ S iy \
h fi

i Fixture tables ;: Fit ;a Fixtire classes :
5] i

! e {1 = ——— 13 - “ I
§ 1§ \ HH 1

. gl L i Linguagam de

: Chgregsmidgilisate 7 Transformagio | ;; > Waguina/Computador :
] [
1 1
1 {

Figura 9 - L6gica da ferramenta FIT (KOSKELA, 2007. p.369.).

Uma vez que o cédigo de teste e o cédigo da aplicagio estio
implementados, o FIT pode atuar na execugéo dos testes que deve validar a
aplicagéo candidata & produgéo. O resultado obtido pelo FIT tem o padréo
apresentado na Figura 10, onde as células s&o destacadas com as cores verde

e vermelha para indicar o sucesso e falha do teste, respectivamente. Quando o

48

teste falha, os resultados esperados e o atual s&o apresentados um ao lado do

outro.
com.tddinaction.fit.fixtures.CalculatorFixture
Esquerda direita | Operador resultado()
'5 3 + 8 esperado
2 atual
5 3) 2 esperado
8 atual
5 3 . 15
5 3 / 1.666666667

Figura 10 - Resultado apresentado pelo FIT (KOSKELA, 2007, p.375.)

O FIT apdia a uma necessidade fundamental no desenvolvimento de
software, preencher a lacuna entre o cliente e o desenvolvedor em documentar
com clareza as regras de negécio. Contudo, como o FIT foi projetado para
trabalhar em tabelas HTML ou planilhas, entdo, Cunningham (2002) percebeu
que seria eficiente se os testes pudessem ser criados e editados em uma wiki,
tornando facil o compartihamento dos testes de aceitagdo entre os
stakeholders do projeto de software. E assim, no ano de 2005, foi concebido o
FitNesse.

FitNesse é uma wiki gue prové uma ferramenta colaborativa de feste e
documentacdo baseada na web cuja concepcéo € o FIT. Ela fornece uma
maneira simples para que as equipes de forma colaborativa possam criar
documentos, especificar testes, @ até mesmo executar os testes através da
Wiki website (FITNESSE Documentation Online).

Além dos frameworks FIT e FitNesse que utilizam do formato tabular para
expressar os testes de aceitagdo, os frameworks que utilizam dos formatos de
texto (Text-based) e linguagem de scripts (Scripting Language) também séo
adotados na indastria de software.

A Tabela 2 relaciona alguns frameworks de testes de aceitacéo

reconhecidos na industria de software, suas respectivas categorias e website.

49

Tabela 2 - Framework de testes de aceitagéo (adaptado de PUGH, 2011. p.298.).

Framework Categoria Website
Concordian Table-based http://www.concordion.org
" Cumcuber Text-based http://cukes.info
Easyb Text-based http:/iwww.easyb.org
Exactor Text-based http://exactor.sourceforge.net/
FIT Table-based http://it.c2.com
FitNesse Table-based http://ffitnesse.org
Jbehave Text-based http://jbehave.org
Robot Table-based http://cde.google.com/p/robotframework/
Selenium Table-based http:/seleniumhg.org
Systir Scripting Language http://rubyforge.org/projects/systir
Watir Scripting Language http://watir.com

50

3.7 Consideragdes do Capitulo

O ATDD apoia diversos valores e algumas praticas ageis, como por
exemplo, a importéncia dos individuos e a colaboragéo entre eles de modo que
favoreca uma comunicacgao eficaz, o respeito e beneficio mutuo; a simplicidade
dos exemplos para facilitar as solugdes de problemas e o feedback como
norteador da qualidade.

O ATDD preza pela execugdo automatizada dos testes, onde os testes de
aceitagdo sdo transformados em testes executaveis cuja finalidade & validar as
regras de negdcio do software.

A automatizagéo dos testes & importante, principalmente, em projetos de
desenvolvimento cujas mudangas sdo constantes e o rapido feedback se faz
necessario. No entanto, automatizar os testes de aceitagdo demanda aito
investimento financeiro, esforgo e exige habilidades técnicas que podem tornar
0s custos do projeto elevado, inviabilizando a automatizacdo desses testes.
Contudo, negligenciar os testes de aceitagdo, além de nido ser uma melhor
pratica, pode comprometer a qualidade do software e, consequentemente,
promover a insatisfacdo do cliente.

O capitulo seguinte descreve uma proposta de adaptagéo do ATDD cujos
principios séo preservados, no entanto, a etapa de automatizagéo dos testes é
substituida pelo planejamento e a elaboragdo estruturada dos testes de modo a
torna-los eficaz e legivel para todos os envolvidos do projeto, fornecendo os
artefatos para a execugdo manual dos testes de requisitos de negécio e
mecanismos para o cliente validar se o produto de software satisfaz suas

necessidades ao término de cada iteragéo.

A proposta de adaptacdo do ATDD tem como finalidade privilegiar a
adocg&o dos testes de aceitag@o no projeto de desenvolvimento de software, de
modo a mitigar os riscos de identificar defeitos no software quando implantado
em produgdo, que além de ndo atender as expectativas do cliente podem
causar impactos negativos ao negécio. Além disso, o ATDD proposto deve

oferecer uma alternativa & automagao dos testes de aceitagéo.

51

4. ADAPTACAO DO ACCEPTANCE TDD

Introduzir testes de aceitagéo executaveis (Executable Acceptance Tests)
no projeto de software € um grande desafio, principalmente, se a equipe
técnica ndo possui experiéncia consolidada, pois a automagao dos testes
requer habilidades, tempo e esforgo para escrever e manter os testes. Com a
auséncia de uma equipe disciplinada, os testes podem perder o sincronismo
com o codigo da aplicagdo se a equipe ndo mantiver apropriadamente os
artefatos de testes (MARTIN e MELNIK, 2008. p.57. ;: PARK e MAURER, 2008.
p.20.).

Os testes de aceitagdo executdveis podem ajudar a comunicar os
requisitos, desempenhando um importante papel no ciclo de desenvolvimento
de software porque todos na equipe do projeto de software estio envolvidos de
alguma forma na elaboragdo, no desenvolvimento, e na manutengio dos
testes. Logo, existe a confianga do cliente que os requisitos sao compreendidos
corretamente (PARK e MAURER, 2008. p.19.).

Embora a automagéo dos testes de aceitagéo exija disciplina, experiéncia
e recursos financeiros que podem elevar os custos do projeto, e até mesmo
inviabilizar os testes, simplesmente ignorar o nivel de teste aceitacao e inserir o
produto de software no mercado pode implicar em riscos para a imagem de
uma organizagao.

Independente da adogéo dos niveis de testes que antecedem os testes de
aceitacdo, dada a natureza da tecnologia, 0 dominio de negécio, entre outros
aspectos, € provavel que o novo sofiware ainda contenha problemas
inesperados (PUGH, 2011. p.89.).

As implica¢des de negligenciar ou subestimar a importancia dos testes de
aceitagdo podem variar de uma pequena inconveniéncia a uma paralisagao

total quando o software estd em producéo.

Para a credibilidade do produto de software é melhor identificar e corrigir
os defeitos durante os testes de aceitagdo, antes da implantagdo do sistema

em produgéo, do que identifica-los tardiamente quando o tempo necessario

92

para corrigi-los € mais escasso. Além disso, os custos envolvidos na
identificagéo de um defeito em ambiente produtivo podem ser maiores e fora do
ambito do orcamento original. Para tornar as coisas ainda piores, o sistema
pode ter sido formalmente enfregue e as obrigacdes contratuais finalizadas.

L.ogo, qualquer modificagdo custara mais dinheiro.

Portanto, os efeitos de uma falha em um software que ndo atende as
expectativas do cliente, normas ou funcionalidade podem causar impactos
negativos ao negoécio de uma organizagao.

A proposta do presente capitulo é preservar os aspectos relevantes do
ATDD no projeto de desenvolvimento de software. Porém, a etapa de
automagdo dos testes de aceitacdo €& substituida pelo planejamento e
organizagéo dos testes de modo que sejam fornecidos subsidios & execugao
manual dos testes de aceitagdo. Esta proposta oferece uma alternativa a
adogao dos testes de aceitagdo no dmbito do desenvolvimento agil de software

dadas as dificuldades em implantar os testes de aceitacio executaveis.

Uma adaptacéo do ATDD é apresentada neste capitulo, descrevendo as
atividades e os produtos que permeiam todas as etapas desta proposta.

4.1 Papéis e Responsabilidades

Antes de apresentar a proposta de adaptagdo do ATDD é importante
definir claramente os papéis e responsabilidades dos stakeholders de modo a
estabelecer o foco de atuac#o, as autoridades e os limites de cada individuo
atuante no projeto de desenvolvimento de software, em particular, na proposta
do ATDD descrita neste capitulo.

Pugh (2011. p.3.) faz referéncia aos papéis essenciais para a viabilidade
do ATDD como a triade, composta por: desenvolvedor, testador e cliente.
Koskela (2007. p.329.) também menciona estes trés papéis na atuacéo da
técnica do ATDD, mas ambos ndo descrevem em detalhes as

responsabilidades de cada papel nas etapas que compreendem o ATDD.

53

Na prética existe uma série de atividades de testes que devem ser
realizadas na aplicagdo do ATDD em um projetoc de desenvolvimento de
software. Certamente, um individuo pode atuar em mais de um papel, porém
dependendo da dimensao do projeto torna-se inviavel que um dnico individuo
tenha condigdes de absorver e exercer com exceléncia inUmeras
responsabilidades.

Esta proposta de adaptagédo do ATDD sugere empregar quatro equipes
com responsabilidades especificas. A organizagéo das equipes & ilustrada na
Figura 11.

PAPEIS
ATDD Proposto

Equipe de Teste de Equipe de Equipe de Gestdo
Aceitacao Desenvolvimento do Projeto

Figura 11 - Papéis da Proposta de Adaptacdo do ATDD

Essencialmente, as equipes mais atuantes na proposta do ATDD é a
equipe de negdcios, que representa os interesses do cliente, e a equipe
técnica, composta pela equipe de testes de aceitacdo e desenvolvimento. A
equipe de gestdo do projeto tem participagdo nas etapas inicias, onde as
definicbes de negécios sdo estabelecidas, e na etapa de encerramento do

processo, quando € necessario conceder a aceitacéo formal do sistema.

54

Desta forma, a esséncia dos papéis no ATDD, cliente, desenvolvedor e
testar, € preservada como prega a técnica. Alids, o foco desta proposta n&o é
modificar a atuagéo dos papéis e suas responsabilidades. Entretanto, o intuito
de criar grupos e perfis com responsabilidades especificas é evidenciar as
atividades de cada grupo que & composto por diferentes perfis dentro da
proposta de adaptag¢édo do ATDD.

Os papéis e as principais responsabilidades de cada grupo sao descritas
a seguir (KRUCHTEN, 2000 ; PMI, 2004).

4.1.1 Equipe de Negdcios

A equipe de negdcio representa os interesses do cliente no projeto. Esta
equipe € composta pelo gerente de negécios, analista de negocio e o usuario
final / cliente, que devem ter amplo conhecimento do dominio de negocio. As

responsabilidades destes papéis sao relacionadas a seguir.

4111 Gerente de Negécios

Responsavel pela geréncia e modelagem dos processos de negécio do
projeto.

A Tabela 3 relaciona as principais responsabilidades do Gerente de
Negdcios (KRUCHTEN, 2000 ; PMI, 2004).

95

Tabela 3 - Principais Responsabilidades do Gerente de Negoécios

Principais Responsabilidades

Atuar no entendimento do negdcio e suas regras (necessidades dos clientes)

Definir e modelar os requisitos de negécio

Estimar o esforgo do projeto

Colaborar na elaboragdo do Plano de Teste de Aceitag&o e aprova-lo

Acompanhar as atividades do projeto (realizagdo dos Casos e Scripts de
Testes, desenvolvimento das funcionalidades e correcéo dos defeitos, etc.),

assegurando a integridade com os requisitos especificados

Conduzir a negociagdo com o cliente em eventuais mudangas de escopo do
projeto

Ser mediador com os lideres de Teste e Desenvolvimento

Revisar e validar os entregaveis do projeto

Recomendar a aceitagdo do sistema a Equipe de Gestao do Projeto

Aceitar formaimente o novo sistema e recomendar sua implantagao

41.1.2 Analista de Negbcios

Responsavel por prospectar oportunidades de negécio, criar novos
produtos e solugdes. Detém amplo conhecimento sobre um determinado ramo
de negdcio.

A Tabela 4 relaciona as principais responsabilidades do Analista de
Negécios (KRUCHTEN, 2000).

56

Tabela 4 - Principais Responsabilidades do Analista de Negécios

Principais Responsabilidades

Colaborar na elaboragéo do Plano de Teste de Aceitacéo

Levantar os requisitos e apoiar na analise e projeto do sistema

Apoiar na preparacéo dos artefatos de testes

wAcompanhar 0 desenvolvimento das funcionalidades e correcéo dos defeitos,
assegurando a integridade com os requisitos especificados

Validar os entregaveis do projeto

Apoiar o Gerente de Negocios

4.1.1.3 Usuario Final / Cliente

Responsavel por expressar com clareza as suas necessidades e
expectativas sobre o comportamento do sisterma, escrever os testes e critérios

de aceitacéo, além de realizar os testes de aceitacdo do sistema.

A Tabela 5 relaciona as principais responsabilidades do Usuario Final /
Cliente (KRUCHTEN, 2000).

Tabela § - Principais Responsabilidades do Usuério Finalf/ Cliente

Principais Responsabilidades

Colaborar na elaboragéac do Plano de Teste de Aceitacio

Preparar os artefatos de testes (Casos e Scripis de Testes, critérios de
aceitagao, etc.)

Fornecer os dados de teste

Realizar os testes de aceitagao de acordo com os artefatos de testes

Registrar os resultados dos testes e valida-ios em conformidade com os
critérios de aceitacéo

'Documentar as ocorréncias de testes

'Reportar a concluséo dos testes

57
4.1.2 Equipe de Teste de Aceitagio

Responsavel por planejar, elaborar e manter os artefatos de testes, assim
como apoiar os stakeholders do projeto na construgdo de um produto de
software de qualidade. A equipe de teste de aceitagdo é composta pelo lider
(ou gerente) de teste e o analista de teste. As responsabilidades destes papéis
séo relacionadas a seguir.

4.1.21 Lider de Teste

Responsavel por liderar e gerenciar o projeto de teste de aceitagzo.

A Tabela 6 relaciona as principais responsabilidades do Lider de Teste
(KRUCHTEN, 2000).

Tabela 6 - Principais Responsabilidades do Lider de Teste

Principais Responsabilidades

Preparar o Plano de Teste de Aceitacdo e obter os recursos necessarios para
a viabilidade dos testes de aceitacéo

Prover o treinamento da equipe responsavel pelos testes de aceitagao

Atribuir as tarefas a equipe de teste de aceitagao

' Supervisionar a preparagao dos Casos de Teste € Scripis de Testes, com base |
nos requisitos de negocio

‘Gerenciar a configuragédo dos artefatos de testes

Reportar formalmente através de relatorios ao Gerente de Projeto e Negocios
a evolugao dos testes de aceitagao

Gerir e assegurar a comunicaggo entre os stakeholders sobre as solicitagdes
de mudangas e ocorréncias de teste

Revisar os resultados dos testes

Certificar que os testes s&o repetidos sempre que necessario

[Determinar a suspens&o ou o cancelamento do teste na impossibilidade de
prosseguir com 0s testes

Certificar que os testes s&o concluidos dentro do cronograma acordado

Gerir os relatérios de ocorréncias de testes e recomendar prioridades de
resolucao

Solicitar a aceitagdo formal do sistema ao Analista ou Gerente de Negécios

58

4.1.2.2 Analista de Teste

Responsavel por apoiar o usuario final /cliente na modelagem e
realizagdo dos Casos de Teste e Scripts de testes.

A Tabela 7 relaciona as principais responsabilidades do Analista de Teste
(KRUCHTEN, 2000).

Tabela 7 - Principais Responsabilidades do Analista de Teste

Principais Responsabilidades

Colaborar na elaboragéo do Planc de Teste de Aceitagao

'Apoiar 0s usuarios finais / clientes na“E_r-éEgE"éEgB dos artefatos de teste

| Apoiar os usuarios finais /clientes na realizacéo dos testes de aceitagio

Reportar ao Lider de Teste a identificagao de defeito com severidade critica

para tomada de deciséo

"Apoiar o Lider de Teste em suas atividades

4.1.3 Equipe de Desenvolvimento

Responséavel por implementar o produto de software e gerenciar os
aspectos do seu desenvolvimento. A equipe de desenvolvimento & composta
pelo lider (ou gerente) de desenvolvimento e o analista de desenvolvimento. As

responsabilidades destes papéis sao relacionadas a seguir.

4.1.3.1 Lider de Desenvolvimento

Responsavel por liderar e gerenciar o desenvolvimento do produto de
software, mantendo a equipe unida, coesa e motivada. Apdia na solugéo dos
problemas técnicos e na auséncia de motivagio, que sdo comuns em projetos

complexos e com prazos desafiadores.

A Tabela 8 relaciona as principais responsabilidades do Lider de
Pesenvolvimento (KRUCHTEN, 2000).

29

Tabela 8 - Principais Responsabilidades do Lider de Desenvolvimento

Principais Responsabilidades

Colaborar na elaborag&o do Plano de Teste de Aceitacao

Supervisionar a preparagao do ambiente de teste de aceitagao

atendidos, conforme compromisso prévio

'Gerenciar as versées do sistema

Mediador com os lideres de Negécios, Testes e Projeto

4.1.3.2 Analista de Desenvolvimento

Responsavel por elaborar, implementar e manter um sistema
computacional, transformando as necessidades do cliente em um produto de
software. O analista de desenvolvimento & também conhecido como
desenvoivedor ou programador.

A Tabela 9 relaciona as principais responsabilidades do Analista de
Desenvolvimento (KRUCHTEN, 2000).

Tabela 9 - Principais Responsabilidades do Analista de Desenvolvimento

Principais Responsabilidades

Colaborar na elaboragéo do Plano de Teste de Aceitagéo

Implementar as fungdes aderentes aos requisitos de negocio e os critérios de
aceitacao

Realizar os testes de unidade antes de entregar o software
Estabelecer e manter o ambiente de Teste de Aceitagao
Prover todos os requisitos de teste especificos

Definir a prioridade de solugéo dos defeitos

Solucionar os defeitos e liberar as versées atualizadas

Assegurar o estabelecimento dos parametros da aplicagao

Migrar a aplicagao para o ambiente apropriado de teste (ambiente de
homologagéo / pré-produgéo)

Apoiar os usuarios finais com os testes necessarios

60

4.1.4 Equipe de Gestédo do Projeto

Representa as maiores autoridades do projeto. A equipe de gestdo do
projeto & composta pelo patrocinador e o gerente do projeto. As

responsabilidades destes papéis s&o relacionadas a seguir.

4.1.4.1 Patrocinador do Projeto

Responsavel por fornecer os recursos financeiros e promover o projeto. A
participagdo do Patrocinador € mais ativa nas fases iniciais do projeto. Este

individuo tem o maior grau de autoridade no projeto.

A Tabela 10 relaciona as principais responsabilidades do Patrocinador do
Projeto (PMI, 2004).

Tabela 10 - Principais Responsabilidades do Patrecinador do Projeto

Principais Responsabilidades

Definir os requisitos do negécio e os respectivos beneficios para o projeto

Estabelecer objetivos estratégicos para o projeto

Definir / identificar fatores criticos de sucesso

ﬁ(gsegurar dﬁe 0S recursos adeq”hé_cmiog (equipe, tecnologia, equipamentos, etc.)
séo disponibilizados para o Gerente do Projeto

Assegurar os treinamentos necessarios a equipe do projeto para garantir o
cumprimento dos objetivos

[Monitorar continuamente o ambiente de negocios do projeto

Resolver conflitos e tomar a decisées no projeto
Atuar como executivo de contato com o cliente

Aprovar o Plano de Teste de Aceitacgo

Conceder a aceitagéo formal do sistema

61
4.1.4.2 Gerente do Projeto

Responsavel por gerenciar o progresso do projeto através das variaveis,
qualidade, custo e prazo, e verificar seus desvios. O foco do Gerente de
Projeto € minimizar as falhas inerentes aos processos e garantir a qualidade
dos produtos do projeto.

A Tabela 11 relaciona as principais responsabilidades do Gerente do
Projeto (KRUCHTEN, 2000 ; PMI, 2004).

Tabela 11 - Principais Responsabilidades do Gerente de Projeto

Principais Responsabilidades

Definir e controlar os requisitos do produto

Definir e controlar os riscos do projeto

Definir e avaliar os fatores criticos de sucesso do projeto

Definir e controlar o cronograma

Alocar e gerenciar recursos
‘Coordenar interagées entre os stakehoiders do projeto

Assegurar que os prazos sao mantidos dentro do planejado

Assegurar a qualidade dos produtos do projeto (aderente aos critérios de
qualidade e padrdes estabelecidos)
Aprovar o Plano de Teste de Aceitagdo

Elaborar relatérios de acompanhamento do projeto

Participar de reunites de acompanhamento e de revisao do projeto

Conceder a aceitaco formal do sistema

Um individuo pode assumir mais de um papel e/ou responsabilidades.

Os papéis e responsabilidades para os testes de aceitacdo devem estar
claramente definidos e descritos no Plano de Teste de Aceitac3o.

62

4.2 Proposta de Adaptagio do ATDD

A proposta de adaptacdo do ATDD descrita nesta secdo tem como
finalidade preservar os aspectos relevantes do ATDD, como a comunicacgaoc e a
efetiva colaboragdo entre os stakeholders, para desenvolver um produto de

software aderente as reais expectativas do cliente.

Esta proposta sugere a substituicdo da etapa de automagéo dos testes,
onde os testes de aceitagio s&o transformados em testes executaveis através
de ferramentas especificas, pelo planejamento e organizacéo dos testes cujos
elementos essenciais s&o a documentacgéo e sistematizagdo dos testes. Os
produtos de trabalho produzidos oferecem subsidios para a execucdo manual
dos testes de aceitacao.

Portanto, para suprir a lacuna da automag&o dos testes sdo introduzidas
irés etapas ao processo original de Hendrickson (2008. p.3.), destacadas em
vermelho na Figura 12. A etapa Encerrar foi introduzida como um complemento
a etapa Demonstrar, os detalhes destas etapas s&o descritos na se¢fo 4.2.8.

¢ Estorias

—. Estorias -~
- Estérias

G = L
o

Fungdes

Fungoes

IMPLEMENTAR

Funcio_naﬁﬁade -
N

Figura 12 - Proposta de Adaptagdo do ATDD (adaptado de HENDRICKSON, 2008, p.3.)

63

Esta proposta de adaptagéo do ATDD substitui a etapa de automacéo dos
testes de aceitagdo por um conjunto de etapas que fornecam subsidios a
execucao manual destes testes. Com isso, a sobrecarga de atribuicbes sobre o
desenvolvedor é minimizada, uma vez que ele ndo tem a necessidade de
desenvolver e manter um cédigo de teste para validar o comportamenio em
nivel de teste de aceitagdo de toda e qualquer funcionalidade implementada no
codigo da aplicagdo. Desta forma, todo o esforco do desenvolvedor &
concentrado em implementar a funcionalidade de valor ao cliente e as
validagdes que lhe competem ficam direcionadas, a principio, acs testes de
unidade e integracéo destas unidades de acordo com a técnica do TDD.

A documentagdo proveniente desta proposta nZo deve burocratizar o
processo de desenvolvimento do software. Esta documentacdo deve ser
minima e suficiente para especificar os testes de aceitacdo cujo objetivo é
esclarecer os requisitos e objetivos de negécios. Logo, informagdes fora deste

contexto sao irrelevantes e nao devem estar presentes nos produtos de testes.

No processo de testes de aceitagéo existem etapas essenciais que devem
ser consideradas, ndc importa a complexidade do projeto de desenvolvimento
de software. As etapas fundamentais dos testes de aceitacdo que
compreendem a proposta de adaptagdo do ATDD sdo apresentadas
individualmente a seguir, assim como os insumos e produtos das respectivas
etapas.

4.21 Discutir

A primeira etapa do processo mantém as caracteristicas descritas no
capitulo anterior, onde durante a reunido de planejamento da iteragdo sdo
discutidas as estdrias dos usudrios. Neste encontro & necessaria a presenca
dos stakeholders do projeto que possuem informagdes relevantes sobre os

requisitos e aspectos do sistema.

Os clientes expressam suas necessidades e expectativas através de
exemplos concretos de fungdes, ilustrando como o sistema deve funcionar para

cada situagdo, e a equipe de desenvolvimento e teste, em particular os

64

desenvolvedores e os analistas de testes, fazem perguntas para esclarecer e
alinhar os entendimentos, tornando um meio de intenso aprendizado e
discuss@o. As equipes de negdcio e projeto, também participam desta
discussio.

As estérias do usuaric sdo revisadas, aprimoradas e desdobradas em
estérias menores, o que permite torna-las independentes e simplificar a
atuacgéo dos desenvolvedores.

Os cenarios de testes e critérios de aceitagdo sdo definidos para cada
estdria e as informagdes ficam documentadas em cartées de estéria, onde o
cliente prioriza as estorias pelo seu valor de negdcio, incluindo o risco do
negdcio. O risco técnico € estimado pela equipe de desenvolvimento.

Esta etapa do processo & responsavel por fornecer os insumos e produtos
relacionados a seguir e ilustrado na Figura 13.

INSUMOS PRODUTOS

+ Estorias de Usuario e Estérias Revisadas
e Cenarios de Testes
¢ Critérios de Aceitacio

¢ Estorias

DISCUTIR

! ! !
Estorias Cenarios de Critérios de
Revisadas Testes Aceitacdo

Figura 13 - Etapa Discutir do ATDD Proposto

Nesta etapa do processo os seguintes papeis estao envolvidos.

65

PAPEIS ENVOLVIDOS

Gerente de Negécio

Analista de Negdcio

Usuario Final / Cliente

Lider de Teste

Analista de Teste

Lider de Desenvolvimento
Analista de Desenvolvimento
Patrocinador do Projeto
Gerente do Projeto

4.2.2 Elaborar o Plano de Teste de Aceitagc&o

A segunda etapa do processo tem alguma semelhanga com o processo
de ATDD descrito por Koskela (2007), onde ele sugere que nesta etapa os
testes de aceitacdo devem ser escritos pelo cliente com a colaboragdo dos
testadores e desenvolvedores. Porém, como citado na etapa anterior (Discultir),
os aspectos relevantes aos testes de aceitagao foram previamente esbogados
para cada estdria do usuario. Logo, a proposta desta etapa do processo é
documentar e organizar os produtos de trabalho da etapa anterior (as estorias,
cenarios de testes e critérios de aceitagdo) em um Plano de Teste de
Aceitagio.

O intuito é organizar os artefatos gerados inicialmente de modo que
possam ser melhorados continuamente durante o processo de
desenvolvimento do sistema, e fornega uma documentagdoc formal
especificando os requisifos e aspectos de negdcios aoc término da
implementag&o, além de gerenciar as necessidades e expectativas dos
clientes.

Esta etapa do processo é responsavel por fornecer os insumos € produtos

relacionados a seguir e ilustrado na Figura 14.

INSUMOS PRODUTOS
o Estorias Revisadas ¢ Plano de Teste de Aceitacdo (Inicial)
o Cenarios de Testes e Sign-off do Plano de Teste de Aceitagéo
o Criterios de Aceitacao

66

"I

- I Cenarios de Critérios de
Esto =
l rias | Testes Aceitagao

Plano de Teste Sign-off do
Aceitagio Plano de Teste

de Aceitagdo |
Figura 14 - Etapa Elaborar o Plano de Teste de Aceitagéo do ATDD Proposto

Um breve descritivo dos produtos fornecidos por esta etapa é descrito a
seguir.

4.2.21 Plano de Teste de Aceitagdo

O Plano de Teste de Aceitagdo nao deve burocratizar o processo de
desenvolvimento do produto de software. Logo, o contetido deste documento
deve privilegiar os artefatos dos testes de aceitagéo, esclarecendo os requisitos
e objetivos de negécios, e os aspectos relevantes aos testes de aceitacao.
Sendo assim, ndo deve ser um documento extenso e conter informacgdes
irrelevantes para a validagéo das fungdes do sistema.

A responsabilidade pela elaboracdo e manutengéo do Plano de Teste de
Aceitacdo € da Equipe de Teste de Aceitagio, cuja atribuicdo é do Lider de
Teste, que juntamente com as equipes de Negécios e Desenvolvimento devem
verificar e ratificar os entendimentos obtidos inicialmente.

O Plano de Teste de Aceitagéo deve ser concebido em um curto espaco

de tempo. Portanto, algumas horas ou poucos dias, de acordo com dimenséo

67

do projeto, devem ser consumidos na concepgédo da primeira versio deste
documento, o qual € nomeado como Plano de Teste de Aceitagdo inicial. Isto

porque este documento devera ser aprimorado continuamente durante as
iteragdes.

4.2.2.2 Sign-off do Plano de Teste de Aceitacio

Apos elaborar o Plano de Teste de Aceitagdo inicial os stakeholders
devem se reunir para validar e criticar o documento. Se alguma divergéncia for
identificada, a ocorréncia é discutida até que todos tenham o mesmo
entendimento e as expectativas sejam alinhadas. Em seguida, o sign-off do
Plano de Teste de Aceitagdo inicial deve ser concedido pelos lideres das

equipes do projeto, e a comunicacao deste documento deve contemplar todos
os stakeholders do projeto.

Para assegurar a uniformidade e sincronismo da informagéo é essencial
que toda e qualquer mudanca de requisito seja contemplada prontamente no
Plano de Teste de Aceitagio e comunicada a todos os stakeholders do projeto.

Nesta etapa do processo os seguintes papeis estao envolvidos.

PAPEIS ENVOLVIDOS

Gerente de Negdcio

Analista de Negécio

Usuario Final / Cliente

Lider de Teste

Analista de Teste

Lider de Desenvolvimento
Analista de Desenvolvimento
Patrocinador do Projeto
Gerente do Projeto

Apos a concepgdo do Plano de Teste de Aceitagao inicial, duas etapas
sao realizadas simultaneamente, a implementagéo da funcionalidade, com o
uso do TDD, e a preparag&o dos artefatos de testes (casos de testes, scripts de

68

teste, dados de testes, eic.) que serao utilizados na execugdo manual dos
testes de aceitagdo.

Os detalhes dessas etapas s&o descritos a seguir.

4.2.3 Preparar os Testes de Aceitagio

Em projeto de desenvolvimento de software, a preparagédo dos testes esta
inserida no contexto do ambiente de teste, que representa toda a infraestrutura
onde o teste serda executado, o que compreende as configuragdes de
hardware, software, ferramentas, suprimentos, rede, equipe envolvida,

aspectos organizacionais e documentacao.

O escopo desta proposta, no que diz respeito ao ambiente de testes, tem
seu foco na documentagéo dos testes de aceitagdo e equipe envolvida nas

atividades de testes. Logo, os demais aspectos de ambiente nao serdo
detalhados.

O objetivo fundamental desta etapa do processo é preparar os artefatos
de testes de aceitagéo com a finalidade produzir subsidios a realizagdo manual

dos testes de aceitagdo em condigdes conhecidas e controladas.

O responsavel por elaborar os testes de aceitagio & o cliente, como preza
0 ATDD. No entanto, o analista de teste deve estar préximo do cliente e apoia-
lo permanentemente na preparagdo dos artefatos de testes. Para promover
agilidade na preparacdo dos artefatos de testes, o analista de teste também
podera escrever os testes de aceitacdo, desde que tenha o aval do cliente.
Além disso, todo artefato produzido pelo analista de teste deve,

obrigatoriamente, ser validado pelo cliente antes de considera-lo concluido.

Esta etapa do processo é responsavel por fornecer os insumos e produtos
relacionados a seguir e ilustrado na Figura 15.

69

INSUMOS PRODUTOS
s Plano de Teste de Aceitacao
(Inicial / Signed) o Casos de Testes

¢ Dados de Testes

e Scripts de Testes

¢ Plano de Teste de Aceitacéo
(Atualizado)

l Plano de Teste |
de Aceitagio
inicial

|

A A 5

; Planc de Tests |
Casosde Teste | |Dados de Teste scf’?eps t;de de Aceitagio

(Att!alizado}_
Figura 15 - Etapa Preparar os Testes de Aceitagio do ATDD Proposto

Um breve descritivo dos produtos de testes fornecidos por esta etapa &
descrito a seguir.

4.2.31 Casos de Testes

O Piano de Teste de Aceitagéo inicial, que contempla a prévia das
estdrias de usudrio, cenarios de testes e critérios de aceitagido, fornece a base
de conhecimento para produzir os testes.

Entdo, & preciso definir um conjunto especifico de entrada de dados,
condicbes de execugdo e resultados esperados, produzindo o artefato
conhecido como Casos de Teste, cuja finalidade é avaliar os requisitos
especificados do sistema.

70

No geral, a elaboragdo dos Casos de Teste compreende as etapas
ilustradas na Figura 16.

Figura 16 - Etapas de Elaboracgéo dos Casos de Testes

Os Casos de Testes devem verificar ndo somente as condigces validas de
execugao, como também as condigdes invalidas. Por esta razéo é fundamental
a colaboracéo entre os diversos stakeholders do projeto, pois cada area de
conhecimento tem uma perspectiva particular do sistema. Por exemplo, a
equipe de teste tem uma vis@o destrutiva do sistema, em busca de defeitos,
enquanto a equipe de desenvolvimento tem uma visdo construtiva, em
implementar as fungbes do sistema, j&4 a equipe de negdcios tem um amplo

conhecimento dos aspectos de negécio e a sua respectiva operacao.

4.2.3.2 Dados de Teste

Preparar os dados de teste pode ser um processo nao trivial, uma vez que
a realizagao dos testes de aceitagéo exigem dados reais de produgdo ou dados
que simulam rigorosamente a operacgao de producéo, para que a probabilidade
de incidentes no software quando implantado seja reduzido consideravelmente.

O uso de dados "reais” pode significar um risco maior de distribuicdo
acidental de informagdes confidenciais. Por exemplo, uma informagéo
impressa, enviada por email, transferida em uma rede puablica ou em toda a
area de trabalho, etc. Para minimizar este risco, é necessério certificar que
todos os stakeholders, principalmente, os individuos envolvidos nos testes
estéo orientados € em alerta para com esses riscos. Outras formas de manter a

seguranca dos dados de testes de aceitagio incluem:

71

¢ Estabelecer uma rede fisicamente separada, assim como

impressoras.

 Caodificar ou modificar dados confidenciais como nomes e enderegos,

tornando-os irreconheciveis.
» Estabelecer servidor e diretorios especificos para os testes.
» Estabelecer contas de e-mail especifico a equipe de teste.
* Limpar regularmente os diretorios com informagées sigilosas.

¢ Retalhar regularmente os relatérios impressos.

4.2.3.3 Scripts de Teste

Uma vez que os Dados de Testes e Casos de Teste estdo preparados é
preciso identificar a necessidade de agrupa-los conforme o seu relacionamento
de dependéncia, e preparar os Scripts de Teste, também conhecido como
Roteiros de Teste, que descrevem os procedimentos e dados de testes
necessarios para a execucao dos testes de aceita¢io. O nivel de detalhamento
dos Scripts de Teste tem influéncia direta com o perfil de quem os produziu,
assim a colaboragéo do cliente € um parametro importante para determinar o

quéo detalhados deverao ser os procedimentos de teste.

Geralmente, cada Script de Teste equivale a um processo de negécio e
representa uma seqiéncia lidgica, incluindo os caminhos normais e
alternativos, e as excegbes. Além de fornecer instru¢gbes detalhadas dos
objetivos de cada colegéo de Casos de Teste e configuracdo do sistema em
uso.

4.23.4 Plano de Teste de Aceitagdo Atualizado

Durante o desenvolvimento da etapa de Preparar os Testes de Aceitacéo,

a implementag&o da funcionalidade esta ocorrendo em paralelo. Uma vez que

72

0 desenvolvedor ndo atua na impiementacdo do cédigo de teste para um
framework, pois esta proposta n&o faz uso da automacéo dos testes, e dedica-
se exclusivamente na implementagdo da funcionalidade do produto de
software, € importante que a comunica¢do seja constante entre as equipes
para alinhar quaisquer alteracbes nos cenarios de testes ou critérios de
aceitagdo, ou ainda a identificagao de uma condicéo nao prevista inicialmente e
que o sistema devera lidar.

Desta forma, os Gerentes de Projeto e Negécios, e os Lideres de
Desenvolvimento e Testes sdo responsaveis por comunicar uns aos outros
sobre toda e qualquer alteragéo ou previsibilidade de alteragéo dos cenarios de
testes e/ou critérios de aceitagao.

Além disso, a medida que os artefatos de testes sdo produzidos, o Lider
de Teste pode disponibiliza-los a equipe de desenvolvimento para certificar que
eles estdo no caminho certo e, principalmente, para motiva-los a validar
antecipadamente (“pré-homologacgéo”) se a funcionalidade desenvolvida esta
de acordo com as expectativas do cliente. Esta pratica garante a integridade da
funcionalidade e minimiza imprevistos desagradaveis na execugdo dos testes
de aceitagao pelo cliente.

Ao término desta etapa, o Plano de Teste de Aceitacdo deve ser
atualizado com os produtos de testes previstos nesta etapa para a execucdo
dos testes de aceitagao pertinentes a primeira iteragéo. Este processo deve se
repetir continuamente durante o projeto de desenvolvimento do software
conforme a introducdo de novas necessidades de negdcio (estérias /
requisitos). Logo, a etapa de Preparar Testes de Aceitacao devera permanecer
ativa e fornecer os produtos de testes com qualidade até que o projeto seja
concluido.

4.2.4 Implementar

O Plano de Teste de Aceitagio inicial, que contempla a prévia das

estorias de usuario, cenarios de testes e critérios de aceitacio, fornece a base

73

de conhecimento para a implementagéo das estérias priorizadas pelo cliente
para cada iteracao.

O ATDD n&o determina uma técnica de implementagdo para a
funcionalidade, mas considera como uma melhor pratica o uso do TDD.

A equipe de desenvolvimento, em particular, os desenvolvedores sd0 os
responsaveis por implementar a funcionalidade, e nesta proposta a principal
atribuicdo dos desenvolvedores & implementar o cédigo da aplicagéo, uma vez

que ndo ha a necessidade de implementar e manter os c6digos de testes.

No entanto, uma questdo que pode vir a tona é se a auséncia do
desenvolvedor na implementagéo do codigo de teste pode tornar vulneravel o
seu entendimento sobre os testes e, por consequéncia, as expectativas do
cliente sobre o comportamento do sistema. Para minimizar esta possivel
lacuna, o desenvolvedor deve ter acesso freqliente ao cliente, que deve ser
consultado para esclarecer as eventuais questdes sobre como as fungdes
(estorias) devem se comportar. Além disso, esta proposta recomenda que os
artefatos de testes produzidos durante a etapa Preparar os Testes de
Aceitagao sejam disponibilizados, sempre que possivel, previamente 3 equipe
de desenvolvimento, de acordo com a evolugéo da preparacéo dos artefatos de
testes. Isto significa que, enquanto as etapas Implementar e Preparar os
Testes de Aceitacdo ocorrem em paralelo, conforme a equipe de feste de
aceitacao for finalizando um conjunto de artefatos de testes, ela devera
disponibiliza-lo a4 equipe de desenvolvimento de modo que possa lhe oferecer
algum valor. Com isto, ndo € necessario aguardar a concluséo dos artefatos de
testes previstos para a iteragdo, ou seja, os desenvolvedores poderao ter
acesso aos artefatos de testes parciais que irdo compor o baseline oficial dos
testes de aceitacao.

O objetivo de antecipar os artefatos de testes de aceitagdo aos
desenvolvedores € comunicar e ratificar os entendimentos sobre os requisitos
de negécio e, consequentemente, manter atualizado todos os stakeholders
envolvidos com os testes. Além disso, esta agio deve encorajar os
desenvolvedores a validar as fungdes, em nivel de teste de aceita¢io, antes de

entregar a funcionalidade para a validagdo do cliente. Com isso, & possivel

74

minimizar a probabilidade de defeitos ou qualquer evento indesejavel durante

os testes de aceitagao oficial pelo cliente.

Esta etapa do processo ¢ responsavel por fornecer os insumos e produtos

relacionados a seguir e ilustrado na Figura 17.

INSUMOS PRODUTQS
» Plano de Teste de Aceitagdo
(inicial) » Fungdes previstas na iteragéo
o Artefatos Preliminares de Testes » Evidéncias dos testes de unidade

| Planc de Testes i Artefatos |
de Aceitacio Preliminares de
; {iniciaf) Tectes
R L'-
'
- AR 1
Fungdas v
Fungdes
EﬁPLEMENTAR
Siclo
™
| Evidéncias dos
! Testesde
Unidade

e

Figura 17 - Etapa Implementar do ATDD Proposto

4.24.1 Evidéncias dos Testes de Unidade
Os testes de unidade focalizam na menor parte do software, testando
suas unidades individuais: componentes, objetos e fungdes.

Os testes de unidade s3o realizados pelos desenvolvedores que

implementam os testes para as suas proprias rotinas.

75

As evidéncias dos testes de unidade devem ser documentadas para todos
os testes, sejam eles bem sucedidos ou nao. Assim, os desenvolvedores
proveem subsidios para promover as corregdes necessérias no codigo da
aplicagéo. Além, de garantir, através das evidéncias, a integridade das fungtes
implementadas.

Nesta etapa do processo os seguintes papeis estéo envolvidos.

PAPEIS ENVOLVIDOS
¢ Lider de Desenvolvimento

e Analista de Desenvolvimento

4.2.5 Executar e Controlar os Testes

A etapa Executar e Controlar os testes de aceitacdo devem ocorrer
imediatamente ap6s a implementacao das fungdes previstas para a iteracao.
Mas, ¢ importante ressaltar que esta etapa deve iniciar somente apds a
realizag&o dos testes que antecedem o nivel de teste de aceitacdo, ou seja, os
testes de unidade, integragéo e sistema devem ter sido previamente realizados.
Contudo, o sistema deve estar pronto para ser testado adequadamente no
nivel de teste de aceitacao.

O sucesso da etapa de execugio e controle dos testes dependera de tudo
o que foi realizado anteriormente, portanto, a qualidade dos artefatos de testes

produzidos sera determinante para o cumprimento desta etapa.

O cliente é responsavel pela a execugao manual dos testes de aceitagéo,
e pode ser representado pelos usuarios finais do sistema para esta atividade.
Além disso, o analista de teste devera presenciar a execugdo dos testes e
oferecer apéio as eventuais ocorréncias, como no relato dos defeitos pelos
usuarios finais e reportar de imediato ao Lider de Teste sobre os defeitos de
severidade critica que podem comprometer a continuidade dos testes, e assim,
as devidas agles serem tomadas. Isto porque os defeitos que inibem a

continuidade dos testes, o Lider de Teste (sob orientacdo do Gerente de

76

Projeto) podera suspender os testes de aceitacéo até que o defeito em questéo
seja solucionado. Caso a solugéo néo seja imediata, pode haver razées para o
cancelamento de quaisquer outros testes. Os critérios para a suspensido ou
cancelamento dos testes de aceitagdo devem ser documentados no Plano de
Teste de Aceitagao.

Os testes de aceitagdo devem ser realizados em conformidade com os
Casos de Teste e Scripts de Teste previamente especificados, e os resultados
apresentados pelo sistema sdo comparados com os resultados esperados
(expectativa do cliente), entdo é atribuida uma severidade a esta ocorréncia
que deve ser reportada através de relatério aos stakeholders do projeto.

O controle desta etapa do processo é essencial para garantir que os
testes planejados sejam executados corretamente e seus resultados possam
ser registrados e monitorados constantemente. Possibilitando comunicar o
progresso dos testes de aceitacdo e o estado dos defeitos pendentes. Além
disso, o controle efetivo permite obter um maior conhecimento do processo de
testes para aprimora-lo continuamente.

O lider de Teste é responsavel por monitorar permanentemente esta
etapa do processo e comunicar o progresso e o estado dos testes de aceitacao
aos stakeholders. Portanto, é altamente recomendavel o uso de ferramentas de
gestéo de defeitos cuja finalidade é controlar o ciclo de vida de um defeito. Esta
ferramenta de gestdo de defeitos pode ser manual, uma simples planilha, ou
automatizada. Certamente, o uso de uma ferramenta de gestdo de defeitos
automatizada € mais apropriado, pois oferece uma base comum para a entrada
de informagdes, além de fomentar a integragdo entre as equipes de
desenvolvimento e testes. Além disso, por meio dos relatérios gerenciais e
métricas obtidas por essas ferramentas, & possivel promover a melhoria
continua do processo de testes.

Ha uma variedade de ferramentas de gestao de defeitos, inclusive gratuita

e open source, por exemplo, o Mantis (http://www.mantisbt.org/) e Bugzilla

(http:/mwww.bugzilla.org/), que além dos beneficios citados permite customizar

solucdes de acordo com as necessidades do projeto.

77

Importante, a proposta de adaptacdo do ATDD refere-se & execugéo
manual dos testes, o que nao significa que os controles e documentos de
testes devam ser realizados de forma manual.

Esta etapa do processo é responsavel por fornecer os insumos e
produtos, conforme relacionado a seguir e ilustrado na Figura 18.

INSUMOS PRODUTOS
e Casos de Testes e logde Testes
e Dados de Testes » Relatério de Ocorréncias
e Scripts de Testes ¢ Resumo dos Testes
¢ Plano de Teste de Aceitagio
(Atualizado)

- e .

i Plano de Teste
|Casos de TesteJ iDados de Teste Scriptsde] de Aceitagio -1

{Atualizado)

Teste
e i-] """"":‘, _«-r“"“"

e :>L
N

deT Relatciriode Resumo dos
Logide Testes || Ocorréncias || Testes

Figura 18 - Etapa Executar e Controlar os Testes do ATDD Proposto

Um breve descritivo dos produtos desta etapa é apresentado a seguir
(BASTOS et al, 2007. p.211 - p.219).

78

4.251 Logde Testes

E importante estabelecer um registro de /og durante a execuc¢do dos
testes, isto €, um registro cronolégico de todos os eventos significativos da
execucdo dos testes. Além disso, o log de teste oferece uma ferramenta de

apoio aos desenvolvedores para investigar as causas de defeitos identificados

durante a execug¢do dos testes.
O log de teste pode conter informacées tais como:

¢ |dentificador
e Descrigao
o Entradas das atividades e eventos
o Descri¢cdo da execucao (identificar o que foi executado)
o Resultados (mensagens, requisicbes operacionais, etc.)
o Informagbes sobre o ambiente (configuracio, responsavel pela
execucao do teste, etc.)

o Eventos anormais (relacionar com o Relatério de Ocorréncias)
4.25.2 Relatério de Ocorréncias

O propésito do Relatério de Ocorréncias € documentar qualquer evento
inesperado identificado durante a execugao dos testes que exija algum tipo de
investigacdo e, posteriormente, podera ser reconhecido como defeito. Este
relatério também €& conhecido como Relatério de Incidentes de Testes ou
Defeitos.

Toda ocorréncia devera ter um Caso de Teste associado. Caso nio
exista, um Caso de Teste devera ser escrito, e atualizado no Plano de Teste de
Aceitagao.

Um defeito que s6 pode ser solucionado através da adequacgio de um
requisito de negécio também deve ser registrado e classificado para eventual

controle das informacdes.

79

O Relatério de Ocorréncias pode ser composto das seguintes

informagdes:

¢ |dentificador

e Sumario (Breve descrigdo da ocorréncia)

» Descrigado da ocorréncia (defeito)

O

O

O

O

O

Entradas

Resultados esperados

Resultados encontrados

Anomalias

Data € hora

Passo do procedimento (referéncia ao Script de Teste)
Tentativas de repeticao

Testadores envolvidos

Observacgbes

o Impacto

o Representa a severidade da ocorréncia na continuidade do teste.

Uma escala simples e praticada é: Critica, Grave, Média e Leve.

Durante a execugéo dos testes de aceitacéo, o cliente ou usuario final do

sistema, deve identificar os eventos inesperados, classificar a sua severidade

de acordo com a sua percepgao e relatar a ocorréncia para a analise prévia do

Lider ou Analista de Teste e, posteriormente, para o reconhecimento do defeito

pelos desenvolvedores.

4253 Resumo dos Testes

O propdsito do Resumo dos Testes é fornecer um sumario dos resultados

alcangados nos testes de aceitagdo tendo em vista um processo de melhoria

dos testes. Este relatério deve cobrir todo o Plano de Teste de Aceitagdo e

deve produzir alguns dos indicadores histéricos do projeto.

O Resumo dos Testes pode conter os seguintes campos:

80
¢ Identificador

¢ Resumo
Relacionar as fungdes testadas, as versdes de software e

documentagzo, e as caracteristicas relevantes de ambiente de teste.

o Variagdes
Registrar as discrepancias em relagéo ao planejamento inicial (Plano
de Teste de Aceitagao) e descrever as razdes que levaram a essa
variacao.

¢ Avaliagdo Funcional

Identificar as fun¢Ges que nao foram suficientemente testadas.

* Resumo dos Resultados
Numero de Casos de Teste executados, defeitos identificados, tempo

de execuc¢ao para cada Caso de Teste, etc.

o Ocorréncias Resolvidas

o Ocorréncias Nio-Resolvidas

o Avaliagao
Avaliagdo final do trabalho, apresentado as suas limitacdes, os
possiveis riscos provenientes de falhas, etc.

* Resumo de Atividades
Informag6es administrativas, como custo do teste (Hora x Homem),

equipamentos, indicadores de testes para estimativas futuras, etc.

¢ Aprovacodes

Especificar os responsaveis pela aprovacéo do relatério.

Nesta etapa do processo os seguintes papeis estio envolvidos.

81

PAPEIS ENVOLVIDOS

s Usuario Final / Cliente
s Analista de Teste
e Lider de Teste

4.2.6 Demonstrar

A etapa Demonstrar deve determinar se os requisitos de negécios e os
critérios de aceitagéo previstos para a iteragdo estdo plenamente satisfatérios.
Para isto, a Equipe de Testes de Aceitacdo, Lider e/fou Analista de Testes,
deve apresentar ao Analista de Negdcios todos os produtos da etapa Executar
e Controlar dos testes (Resumo dos Testes, Relatério de QOcorréncias e os
Logs de Teste) para a apreciagéo e analise de conformidade aos requisitos e
critérios de aceitagéo.

Alem de verificar todas as evidéncias dos testes, o Analista de Negocios
pode realizar alguns testes pontuais para validar as fungées que representam
maiores riscos ao negocio, além de realizar testes exploratorios para verificar
se existem falhas nos critérios de aceitacdo e riscos que nao foram
identificados durante o processo.

Uma vez que todos os critérios de aceitagdo foram atendidos para as
fungbes (estorias) previstas na iteracdo, se ainda houver novas estorias e
iteragdes pendentes, deve-se iniciar a etapa Discutir novamente e o processo
deve se repetir até que todas as estorias sejam implementadas e formalmente
aceita pelo Analista de Negécios. Caso nao existarn novas estérias pendentes,
o Analista de Negécios recomenda a aceitacdo formal do sistema ao Gerente
de Negdcios, que avalia o Resumo dos Testes, se existem defeitos criticos ao
negocio e, posteriormente, deve solicitar a aceitagéo formal & equipe de Gestao
do Projeto, conforme descrito na segéo seguinte.

Esta etapa do processo ¢é responsavel por fornecer os insumos e

produtos, conforme relacionado a seguir e itustrado na Figura 19.

82

INSUMOS PRODUTOS
¢ Log de Testes e Aceitacdo Parcial
+ Relatério de Ocorréncias o Artefatos e Registros dos Testes
e Resumo dos Testes

B

| Log de Testes | | Relatdriode l Resumo dos]

Ocorréncias Testes

"m—[e WW

Funcionalidads

Estorias DEMONSTRAR
Pendentes

nastggo || Aeatone
Parcial

Testesw_]

Figura 19 - Etapa Demonstrar do ATDD Proposto

Nesta etapa do processo os seguintes papeis estdo envolvidos.

PAPEIS ENVOLVIDOS

Analista de Teste
Lider de Teste
Analista de Negécios
Gerente de Negdbcios

4.2.7 Encerrar

Uma vez que todos os requisitos de negdcios e os critérios de aceitagcdo
estao plenamente satisfatorios e ndo existem novas estdrias pendentes, o

Gerente de Negdcio deve recomendar a aceitagdo formal do sistema a equipe
de Gestéo do Projeto.

83

A aceitacdo do sistema & possivel mesmo se houver defeitos pendentes
que nado oferegam riscos ao neg6cio. O sistema pode ser aceito com a
qualificagdo que esses defeitos ndo sdo criticos e serdo corrigidos
posteriormente. Desta forma, a aceitagdo do sistema pode ser obtida com o

consenso comum entre a geréncia do projeto.

A decisdo de permitir uma aceitagdo qualificada e determinar que um
defeito ndo represente risco ao negécio &€ uma prerrogativa do Gerente de
Negdcios, que é o proprietario do sistema. No entanto, com o consenso de
todos os stakeholders que o sistema esta apto para a implantagao, a aceitacao
formal é concedida pelos lideres / gerentes das equipes do projeto e o
processo de teste de aceitagéo é concluido.

Esta etapa do processo é responsavel por fornecer os insumos e
produtos, conforme relacionado a seguir e ilustrado na Figura 20.

INSUMOS PRODUTOS
* Logde Testes e Aceitagcdo Formal do Sistema
¢ Relatério de Ocorréncias s Artefatos e Registros dos Testes
¢ Resumo dos Testes

‘ » L) | e ey
Relatério de Resumo dos
i Log de Testes i | Ocorréncias Testes
s T’—. ‘ w
Sistama

:> Concluido e
Aceito!

l

L Artefatos e
Aceitacio
Formal Registro de

Testes |

Figura 20 — Etapa Encerrar do ATDD Proposto

84

Um breve descritivo dos produtos desta etapa é apresentado a seguir.

4.2.71 Artefatos e Registro de Testes

Os artefatos produzidos no processo de teste, tais como, Casos de Teste,
Scripts de Teste, Dados de Teste, Log de Teste, Relatério de Ocorréncias e
Resumo dos Testes devem ser mantidos para testar as versdes posteriores do
sistema. O Lider de Teste de Aceitagido deve entregar formalmente esses
artefatos e registros de teste para a custodia do Gerente de Negdcios.

E importante manter todos os registros dos testes ao menos durante o
periodo de garantia do produto de software.

Nesta etapa do processo os seguintes papeis estio envolvidos.

PAPEIS ENVOLVIDOS

Gerente de Negdcio
Gerente do Projeto
Patrocinador do Projeto
Lider de Teste

» Lider de Desenvolvimento

4.3 Implementar versus Executar e Controlar os Testes

A interagéo das etapas implementar e Executar e Controlar os Testes &
responsavel por garantir a integridade das fungbes implementadas, que devem
satisfazer os requisitos de negécio do cliente, e deve assegurar que os
artefatos de testes estdo em conformidade com tais exigéncias.

A Figura 21 ilustra esta interacéo.

85

Funcées

Fungodes

IMPLEMENTAR

Q

Clclo
THD E)

Figura 21 - Interagéo das etapas Implementar versus Executar e Controlar os Testes da do
ATDD Proposto

Esta interagdo oferece a perspectiva de quem executa os testes de
aceitagdo (usuarios finais / clientes com o apoio da equipe de testes), cuja
finalidade ¢ identificar os defeitos e relata-los, e a perspectiva de quem deve
reconhecer os defeitos, promover as corregbes e liberar uma nova versio de
software (equipe de desenvolvimento).

Quando as estorias de usudrio previstas para a iteragdo sdo
implementadas, assim como os respectivos artefatos de testes preparados,
deve-se iniciar a execugdo manual dos testes de aceitacso, conforme ilustrado
na Figura 22.

Fungdes

Fungdes

IMPLEMENTAR

Licto
™H E)

Funcgoes
. sob Teste

Figura 22 - Perspectiva da Execugao dos Testes do ATDD Proposto

86

Durante a execugdo dos testes de aceitagdo quando um evento
inesperado & identificado € necessario relata-lo para que os desenvolvedores

possam reconhecer o evento como um defeito valido ou nio.

A Figura 23 ilustra as etapas que compreendem a identificagdo de um
defeito.

Figura 23 - Identificacéo de defeitos (BASTOS et al, 2007. p.193)

A seguir ha uma breve descricio das etapas que compreendem a
identificagéo de um defeito. (BASTOS et al, 2007. p.193 - p.196).

* Identificar o Defeito: A identificacdo do defeito ocorre através da
execucao dos Scripfs e Casos de Testes, que devem garantir que as
fungbes do sistema estdo plenamente aderentes aos requisitos do
cliente.

» Relatar o Defeito: Ao relatar um defeito algumas caracteristicas

relevantes devem ser consideradas para assegurar a sua legibilidade:

o Resumir: Relatar claramente e de forma sucinta.

o Precisar: Deve-se entender por completo o comportamento do

defeito e a sua abrangéncia.

o Neutralizar: Informar apenas os fatos, omitir emogées.

o Reproduzir: Ao identificar um defeito, a primeira tarefa & verificar

guais foram os passos prévios para a detecgdo do defeito.

87

Reportar como reproduzi-lo é essencial para apoiar os
desenvolvedores durante a corregéo do defeito e, posteriormente,

para o usuario validar as corregoes.

O Determinar Impacto: Deve-se determinar qual a severidade
(impacto) do defeito para o funcionamento da aplicagdo. Esta
classificagéo é feita pelo usudrio que identificou o defeito e basea-

$€ na sua percepcao.

O Evidenciar: Devem-se fornecer as evidéncias da existéncia de
um defeito. A evidéncia pode ser um arquivo, imagem, video, etc.
E recomendavel fornecer também o Caso de Teste e o Script de
Teste utilizado na identificagdo do defeito. Evidenciar o defeito

oferece credibilidade ao seu relato.

>

O relato de defeitos pode ocorrer automaticamente quando utilizadas
ferramentas de gestdo de defeitos, o que promove maior agilidade no
reconhecimento do defeito. Independente do uso de ferramentas é
fundamental que os defeitos sejam relatados periodicamente durante a
iteragao.

¢ Reconhecer o Defeito: Apos receber o defeito e as evidéncias de sua
presenca, o desenvolvedor deve reconhecer o defeito como valido ou
ndo. O desenvolvedor sempre consultara a documentagio do sistema
para reconhecer o defeito e devera considera-lo se o sistema apresentar
um comportamento diferente do especificado nas estorias ou requisitos.
Sempre que houver divergéncias se um defeito & valido ou n3o, deve-se
direcionar a deciséo para o proprietario do sistema (cliente) que definira

se 0 defeito & valido ou nao.

Caso o defeito relatado ndo seja reconhecido como defeito do sistema,
mas sim, um defeito do artefato de testes efou requisito, a ocorréncia deve ser
reclassificada conforme a origem do defeito e, posteriormente, o Plano de

Teste de Aceitagdo, assim como os demais artefatos de testes deverdo ser

88

atualizados com as definicbes estabelecidas em comum acordo com os
stakeholders do projeto.

Quando o defeito & reconhecido como do sistema, ele deve ser
solucionado de acordo com a prioridade de corregdo. E recomendavel que o
desenvolvedor consulte o cliente para que ambos definam a prioridade de
corregdo. Tipicamente, a escala de prioridade é definida como: Imediata, Alia,
Normal e Baixa.

Apoés corrigir o defeito, os desenvolvedores esclarecem a natureza da
correg&o, através do documento conhecido como release notes, e estabelecem
guando a corre¢éo sera liberada para os testes de aceitagéo.

Quando uma nova versdo do sistema é liberada para os testes de
aceitagdo, a prioridade na reexecugdo dos testes deve ser os defeitos que
apresentaram falha durante a primeira execugio dos testes, conhecido também
como primeiro ciclo de testes. Caso todos os defeitos tenham sido corrigidos,
os usuarios finais devem executar os demais Casos e Scripts de Testes para
assegurar que as corre¢des nao introduziram falhas que inicialmente n&o
existiam.

A Figura 24 ilustra a perspectiva da equipe de desenvolvimento
(reconhecer o defeito, soluciona-lo e liberar nova verséo de software) com a

interagdo entre as etapas Implementar e Executar e Controlar os Testes.

Fungbes

Fungdes

EJIPLEMENTS%R % Defeitos para
a Corregao

g?::’_

Figura 24 — Perspectiva da Equipe de Desenvolvimento para o ATDD Proposto

89

Ao término da realizacédo de fodos os testes previstos para a iteragéo, se
nenhum novo defeito foi identificado, os registros de testes, assim como as
fungbes previstas na iteragcéo devem ser submetidas a aceitagao do Analista e

Gerente de Negocios, conforme descrito na etapa Demonstrar.

Nesta interacdo entre as etapas Implementar e Executar e Controlar os

Testes os seguintes papeis estao envolvidos.

PAPEIS ENVOLVIDOS

Usuario Final / Cliente

Lider de Teste

Analista de Teste

Lider de Desenvolvimento
Analista de Desenvolvimento

90

4.4 Consideragdes do Capituilo

A proposta de adaptagdo do ATDD descrita neste capitulo tem como
finalidade encorajar e privilegiar o uso dos testes de aceitagéo no contexto do
desenvolvimento agil de software que, geralmente, faz uso apenas dos testes
de unidade e suas respectivas integragées, conforme previsto na técnica do
TDD, como testes definitivos para garantir a qualidade do produto de software.
Alem disso, a substituicdo dos testes de aceitagdo executaveis pelo
planejamento e organizacgéo dos testes de modo que seja possivel a execugéo
manual dos testes de aceitagéo oferece uma alternativa para que o teste de
aceitagdo ndo seja omitido ou negligenciado dado & complexidade em
automatizar os testes de aceitagao.

Esta proposta preza pela colaboracéo e sinergia entre os stakeholders do
projeto de software, onde os interesses do cliente devem permear todas as
etapas do processo de desenvolvimento do software, visando satisfazer suas

necessidades e expectativas.

Os artefatos mencionados no ATDD proposto representam os produtos de
testes minimos para que o processo de teste funcione satisfatoriamente. Além
disso, embora a execugdo dos testes tenha o cunho manual, ndo significa que
a elaboragdo, o controle e a manutengéo dos testes devam ser realizados
manualmente. Existem ferramentas de gestdo de testes gratuitas e open
source que oferecem suporte aos documentos e as etapas citadas nesta
proposta. Desta forma, é possivel garantir com menor esforco uma gestéo

eficaz dos processos de testes descritos neste capitulo.

O capitulo seguinte apresenta algumas diretrizes para o uso do ATDD
proposto, permeando todas as etapas descritas neste capitulo.

91

5. DIRETRIZES PARA O USO DO ATDD PROPOSTO

A proposta de adaptagdo do ATDD acresce quatro etapas ao processo
original de Hendrickson (2008), conforme exposto em detalhes no capitulo
anterior. Este acréscimo tem como finalidade encorajar e privilegiar o uso dos
testes de aceitag&o no projeto de desenvolvimento de software.

Neste capitulo, a titulo de ilustragéio, sugerem-se algumas diretrizes para
0 uso do ATDD proposto, promovendo algumas recomendacées para cada
uma das etapas que compreende esta proposta. A finalidade destas diretrizes é
apoiar as equipes do projeto de software a desempenhar satisfatoriamente
algumas das atividades de engenharia de software previstas nesta proposta.

Alem disso, alguns aspectos do uso do ATDD proposto no projeto de
software s&o inferidos e descritos neste capitulo.

5.1 Discutir

Nesta etapa do processo, o cliente deve descrever através de exemplos
concretos de fungbes suas necessidades e expectativas sobre o sistema,
ilustrando como o sistema deve funcionar. Para assegurar um melhor
entendimento, a equipe de teste e desenvolvimento deve discutir com o cliente
sobre as fungdes e caracteristicas do sistema para elicitar os critérios de

aceitacéo do sistema.

Este evento promove uma intensa discusséo, estimula questionamentos e
promove o aprendizado. Permite também levantar e documentar as
informagdes dos problemas atuais, possiveis oportunidades e riscos.

Para desenvolver esta etapa adequadamente, algumas diretrizes devem
ser observadas:

* Reunir os stakeholders em um local apropriado, quiefo e sem

interrupgdes.

92

Programar um tempo habil para que todas as questées sejam
discutidas. Caso seja necessario, este encontro deve ocorrer em
mais de um momento.

E imprescindivel a participagéo de todas as equipes do projeto. Qu
seja, as equipes de: negdcios, testes, desenvolvimento e gestdo de
projeto.

O papel do cliente deve ser representado por individuos com amplo
dominio do negdcio.

Usar técnicas visuais para melhorar a comunicacido e o
entendimento.

Evitar o uso de termos técnicos.
Evitar entrar no contexto de potenciais solucées.

Evitar generalizagbes por parte do cliente (obter informacgdes
especificas).

Evitar conduzir a discuss&o com a tentativa de persuadir o cliente.

Fazer perguntas ou comentarios que encoraje o cliente a falar mais

sabre o item em discussao.

Questionar o cliente se a estoria em discussao tem dependéncias, de
modo a agrupar as estorias comuns do sistema, formando assim um
€£SCOopPOo CONCiso.

Questionar os possiveis cenarios da estéria em discussao (fluxo
principal, alternativos, excegbes, etc.).

93

» Registrar todas as informagdes relevantes da discusséo (cendrios de

testes, critérios de aceitagéo, etc.).

Uma vez que s&o colocadas as perguntas certas durante esta discussao,
o cliente deve pensar com cautela e mais critério sobre suas necessidades, e o

que pode parecer uma simples estéria pode ser desdobrada em mais de uma
estoria.

O desafio desta etapa do processo esta em extrair do cliente todas as
informagdes relevantes do negécio, esclarecer e alinhar com todos os
stakeholders as necessidades e expectativas sobre o que o sistema deve e néo
deve fazer.

5.2 Elaborar o Piano de Teste de Aceitagio

Nesta etapa o Plano de Teste de Aceitagéo é elaborado com o objetivo de
documentar e organizar os produtos de trabalho da etapa anterior (Discutir).
Este documento € elaborado colaborativamente entre as equipes de negécio,

teste e desenvolvimento, com o apoio da equipe de gestéo de projetos.

Além de documentar, esta etapa deve ratificar os entendimentos e alinhar

as expectativas discutidas inicialmente.

Para desenvolver esta etapa adequadamente, algumas diretrizes devem
ser observadas:

¢ O tempo para documentar os produtos de trabalho da etapa

discuss@o deve ser de algumas horas ou poucos dias (por iteragso).

o O Plano de Teste de Aceitagdo é insumo para as etapas
seguintes do processo, logo documenta-lo ndo deve consumir um
tempo que venha a ser prejudicial 4 evolugdo do projeto de
desenvolvimento de software.

94

» O Plano de Teste de Aceitagao ndo deve ser extenso.

o Este documento deve conter apenas informagées relevantes ao
negocio e especificar os aspectos inerentes aos testes de
aceitacao.

e Garantir o sincronismo do Plano de Teste de Aceitagéo.

o Quaisquer manutengdes nos requisitos, independente do motivo,
devem ser contempladas prontamente no Plano de Teste de

Aceitagao.

o Comunicar as atualizagées através do Plano de Teste de Aceitagéo.

o A comunicagdo face a face € a maneira mais eficiente de
transmitir informagdes entre os stakeholders, e deve ser
priorizada no projeto de desenvolvimento. Logo, a documentacéo
ndo deve ser o Unico meio de comunicagdo de mudangas.
Documentar os aspectos de negdcio e seus respectivos testes
através do Plano de Teste de Aceitagédo assegura que ao término

do projeto tenha-se um documento formal atualizado do sistema.

O desafio desta etapa do processo é garantir que o conhecimento n3o
fique tacito e minimizar o risco de que informacdes relevantes caiam no
esquecimento.

5.3 Preparar os Testes de Aceitacdo

Nesta etapa os artefatos de testes sfo preparados para a realizagéo dos
testes de aceitacdo. A produgdo destes artefatos & de responsabilidade da
equipe de testes com a participagéo efetiva do cliente, que deve escrever os

testes com o respectivo apoio técnico.

95

Ferramentas de apoio & construgéo destes artefatos de testes permitem
maior eficacia na criagdo e controle destes artefatos. Existem ferramentas
comercias € open source, que podem assegurar uma boa produtividade a esta

etapa do processo. Alguns exemplos de ferramentas open source s&o: o

Testlink (teamst.org) e o Testopia (mozilla.org/projects/testopia).

Para desenvolver esta etapa adequadamente, algumas diretrizes devem
ser observadas:

* Os artefatos de testes devem ser objetivo e bem escritos de modo

que qualquer usuario final do sistema possa compreendé-los e
utiliza-los sem dificuldades.

¢ Um Caso de Teste objetivo é aquele que valida a uma Gnica fungao.
Assim, os testadores conseguem focar melhor na idéia principal do
teste (alvo do teste).

e Um Caso de Teste deve ser auto-suficiente e conter toda a

informac&o necessaria para executa-lo.

+ Evitar Casos de Teste exaustivos, com um ndmero muito grande de
passos, pois além de tomar muito tempo durante sua execucio,
tendem a causar dispersdo durante a realizagéo do teste, perdendo o

foco principal do teste.

¢ lIdentificar e classificar os Casos de Teste mais relevantes para o

negocio que devem contemplar o baselfine do Smoke Test.

*» Um Script de Teste deve contemplar Casos de Testes eficientes,
com a maior cobertura possivel.

e Revisar os Scripts de Teste produzidos, com a finalidade de detectar

falha de compreenséo ou irrelevancia nos Casos de Teste.

» Garantir a confidencialidade dos dados reais de produgso.

96

Na auséncia de dados reais de produgéo, utilizar dados que simulem

rigorosamente a operagao de produgao.

Quando possivel, disponibilizar previamente a equipe de
desenvolvimento os ariefatos de testes produzidos e validados pelo
cliente.

Comunicar aos stakeholders a alteracdo ou previsibilidade de

alteragé&o dos cenarios de testes e/ou critérios de aceitagéo.

Garantir o sincronismo dos artefatos de testes (Casos, Scripts,
Dados de teste, etc.).

O desafio desta etapa do processo é garantir a participagdo efetiva do cliente

na elaboragéo dos artefatos de teste.

5.4 Implementar

Nesta etapa as fungGes priorizadas pelo cliente para a iteragdo sao

implementadas pela equipe de desenvolvimento. Assim como o ATDD, esta

proposta de adaptagédo do ATDD nao determina como implementar a fungao,

mas considera o uso do TDD a melhor pratica.

Para desenvolver esta etapa adequadamente, algumas diretrizes séo
relacionadas a seguir (ANICHE E GEROSA, 2010. p.473; p.475) e
(CAUSEVIC, et. al, 2011. p.341.):

Empregar desenvolvedores com experiéncia e amplo conhecimento

do TDD, e as ferramentas especificas de apoio a esta técnica.

» Prezar o mantra do TDD (ndo negligenciar nenhuma das etapas do

TDD).

97

e Iniciar com um teste simples e aprimora-lo durante a implementacgéo. |
 Implementar com simplicidade a fungao.
 Refatorar constantemente o cddigo da aplicagao e o codigo de teste.

» Executar toda suite de teste a cada correcao realizada.

Além das diretrizes inerentes a técnica do TDD, o ATDD proposto prevé
algumas diretrizes para esta etapa do processo:

* O desenvolvedor deve ter acesso freqlente ao cliente para

esclarecer duvidas sobre suas necessidades e expectativas.

* Os artefatos dos testes de aceitacdo podem ser disponibilizados
previamente aos desenvolvedores para certificar a conformidade da

fun¢do implementada.

» Os registros dos testes de unidade (evidéncias), incluindo os testes
falhos, podem prover informagdes sobre a qualidade e as limitagbes
técnicas da equipe de desenvolvimento. Desta forma, é possivel
atuar na capacitacdo dos profissionais de desenvolvimento com
treinamentos especificos.

O uso do TDD demanda esforgo, o gque tende a desviar os
desenvolvedores das boas praticas previstas pela técnica. Logo, o desafio
desta etapa do processo esta em aplicar com perseveranca e disciplina o TDD,

com o foco na solugdo sustentavel dos problemas.

98

5.5 Executar e Controlar os Testes

Apos a implementacao das fungdes previstas para a iteragéo, nesta etapa
do processo € o momento de validar a aderéncia das fungdes com os
requisitos, que estéo explicitos através dos artefatos de testes.

O cliente é responsavel pela a realizacao dos testes de aceitacao,
geralmente, representado pelos usuérios finais do sistema, que devem contar

com o apoio permanente da equipe de teste durante toda a execucio dos
testes.

Embora esta proposta preveja a execugéo dos testes manuais, é
recomendavel o uso de ferramenta de gestéio de defeitos para controlar o ciclo
de vida dos defeitos, desde o seu relato até o seu fechamento. Além disso,
oferece também uma base comum para a entrada das informacgdes e promove

a integragéo entre a equipe de desenvoivimento e a equipe de testes.

Para desenvolver esta etapa adequadamente, algumas diretrizes devem

ser observadas:

* Assegurar que os testes que antecedem o nivel de aceitacao (testes

de unidade, integrado e sistema) foram realizados.

* A equipe de teste deve apoiar a execucdo dos testes.

» Estabelecer um nivel de Jog (cronoldgico) para registrar todos os
eventos significativos dos testes.

* Documentar através de um relatdrio de ocorrénciasfincidentes

qualquer evento inesperado durante a execugéo dos testes.

* Todo e qualquer defeito identificado sem o uso de um artefato de
teste deve ser documentado para evitar a sua presenca em futuros
testes.

99

» Defeito de severidade critica, que impossibilite a continuidade dos
testes, deve ser relatado de imediato ao Lider de Teste para que
sejam tomadas as providéncias cabiveis (suspensdo ou

cancelamento dos testes).

* Controlar e monitorar o progresso e os resultados dos testes.

e Comunicar frequentemente o progresso e os resultados dos testes

através de relatorios resumo.

e Assegurar a rastreabilidade dos artefatos de testes com os

reguisitos.

e Assegurar a integridade e o versionamento dos artefatos de testes

(sincronismo com 0s requisitos).

O desafio desta etapa do processo & certificar a integridade do
planejamento dos testes, assim como seus artefatos, e assegurar a qualidade
do produto de software em conformidade com as expectativas e necessidades
do cliente. Além disso, deve-se garantir que guaisquer desvios nestes aspectos
sejam contornados adequadamente, sem comprometer o progresso dos testes

€, consequentemente, o projeto de desenvoivimento do software.

O conhecimento adquirido nesta etapa do processo deve promover a
melhoria continua dos processos de testes.

5.6 Demonstrar

Nesta etapa do processo as evidéncias dos testes para a iteracio sdo
verificadas pelo Analista de Negécios para assegurar a aderéncia aos

requisitos de negocios € os critérios de aceitagio.

Para desenvolver esta etapa adequadamente, algumas diretrizes devem
ser observadas:

100

e Utilizar como referéncia a ultima versdc do Plano de Teste de

Aceitagio para validar o produto de software implementado.

» Verificar as evidéncias dos testes (Resumo dos Testes, Relatorio de
Ocorréncias e os Logs de Teste).

* Realizar testes exploratérios no sistema para assegurar a qualidade
do produto.

o Validar a criticidade dos defeitos presentes no software para o
negocio.

o Caso seja identificado algum defeito que represente alguma

ameaca ao negoécio, o sistema deve ser recusado e o defeito
corrigido.

+ Recomendar a aceitacdo formal do sistema a equipe de Gestio do
Projeto.

Através da andlise estatica dos resultados provenientes dos testes, e
também da analise dinAmica, com a aplicagio de testes exploratérios, a equipe
de negdcio deve comprovar e ratificar a conformidade do software
implementado com as expectativas e necessidades do cliente. Isto ndo significa
que o software tenha que ser livre de defeitos, no entanto, deve ser
suficientemente bom para o uso pretendido, o qual ird determinar o grau de
confianga do produto de software.

5.7 Encerrar

Esta etapa do processo declara a aceitagdo formal do sistema pela
geréncia do projeto, permitindo também a aceitagdo qualificada do sistema.
Esta aceitagdo qualificada ndo deve representar riscos ao negécio. Isto
significa que apenas os defeitos de baixa severidade e sem impacto

significativo a operacdo sao passiveis a esta qualificagao.

101

Para desenvolver esta etapa adequadamente, algumas recomendagdes
sdo relacionadas a seguir:

* A aceitagdo qualificada € uma prerrogativa apenas dos Gerentes de
Negdcios e Projeto.

* A aceitagio formal do sistema deve ser concedida pelos lideres /

gerentes das equipes do projeto.

* Os registros de testes devem ser retidos durante a garantia do
produto de software.

¢ Os artefaios de testes devem ser mantidos em um repositério para

fins de reuso em versdes posteriores do sistema.

Esta etapa do processo formaliza a concluséo dos testes de aceitagéo e

habilita a promog&o do sistema para a implantag&o no ambiente de produgso.

5.8 Implementar versus Executar e Controlar os Testes

Esta interag@o entre as etapas, implementar e executar e controlar os
testes, tem como finalidade reconhecer e rastrear as causas que originaram um
defeito, apos identifica-los na etapa de execugio e controle, e solucionar este

defeito provendo uma nova verséo do sistema.

Para desenvolver esta etapa adequadamente, algumas diretrizes devem
ser observadas:

o Fornecer aos desenvolverdores as evidéncias da existéncia do
defeito (logs, artefatos com os procedimentos e dados do teste para
a reprodugéo do defeito, etc.).

102

» Reclassificar o status do defeito quando ele nio for reconhecido
como falha do software, mas, falha dos artefatos de testes efou
requisitos. Nesta condigdo devem-se prover as respectivas

atualizagbes dos artefatos em comum acordo entre os stakeholders.

» Corrigir os defeitos de acordo com a prioridade de correcao,

definidas em comum acordo entre o desenvolvedor e o cliente.

» Documentar a natureza dos defeitos através de um release notes.

» Priorizar a reexecugio dos testes que fatharam apos gerar uma nova

versio do sistema.

o Utiizar o Smoke Test como atalho aos testes de regressao nos

estagios avancados do desenvolvimento de software.

o Apés inimeras iteragbes, o tempo para executar os testes
regressivos de forma manual pode ser maior do que o tempo
usado para testar as novas funcdes da iteracdo em questio.
Desta forma, recomenda-se adotar o Smoke Test para validar as
fungbes de negodcio mais criticas das iteragbes anteriores e
assegurar que estas fungdes continuam funcionando. Entéo, apos
realizar o Smoke Test, se nenhuma falha for identificada no
sistema, deve-se prosseguir apenas com os testes planejados

para a iteragdo em questio.

O desafio desta etapa do processo é minimizar o namero de versdes do
sistema, que deve ser o menor possivel. Gerar muitas versées do sistema,
além de indicar a baixa qualidade no desenvolvimento do produto, promove um
trabalho adicional das equipes do projeto, e isto pode comprometer os prazos
do projeto, além da qualidade global do sistema.

Contudo, € fundamental assegurar a boa gualidade dos insumos e

produtos de trabalho das etapas anteriores. Além disso, a colaboracao e

103

comunicagao sao instrumentos determinantes para promover o sucesso desta

etapa, assim como do projeto de software.

5.9 Resultados do ATDD Proposto no projeto de software

Embora a o ATDD proposto privilegie a execugdo manual dos testes de

aceitagdo, esta proposta preza por preservar os resultados positivos do ATDD,

dentre eles, a especificagdo através de exemplos concretos de fungbes do

sistema, onde o cliente por meio de exemplos inteligiveis elucida como o

sistema deve funcionar, promovendo uma interagdo entre os membros da

equipe de projeto, que devem assumir uma postura de colaboragido e

comprometimento com o sucesso do projeto.

Considerando as afirmagées apresentadas no ATDD proposto e suas

respectivas diretrizes, & possivel inferir alguns resultados provenientes desta

proposta, conforme segue.

&

Foco na area de dominio

Recomenda-se que as areas de conhecimento do projeto de software,
representada, essencialmente, pelas equipes de negodcio, teste e
desenvolvimento, atuem com foco em suas competéncias de dominio.
Isto n&o significa que as equipes ndo devam frabalhar
colaborativamente, mas que os esforgos sejam concentrados,
principalmente, sob suas melhores habilidades e conhecimentos. Por
exemplo, o desenvolvedor tem como foco implementar a funcéo, os
analistas de testes tem como foco apoiar o cliente na modelagem dos
testes de aceitagao, efc.

Documentagéo dos requisitos de negdcio

Ao termino do projeto de desenvolvimento de software, o Plano de Teste

de Aceitagdo fornece a especificagdo dos testes de aceitagdo como

104

documentagdo dos requisitos de negécios, descritos em linguagem
natural e de dominio do cliente, sem uso de tabelas e cddigos de
suporte aos testes. Esta legibilidade permite que qualquer individuo,
sem habilidades especificas, possa compreender e fazer uso do
documento.

* Intuicao versus Rotina

O “paradoxo do pesticida" diz que quanto mais veneno se coloca nas
pragas, mais resistentes elas ficam. No contexto do teste de software,
isto significa que de tanto executar um teste automatizado, os defeitos
que existiam nao aparecem mais, o que faz com que as pessoas
acreditem que n&o existam mais defeitos no codigo da aplicagio. Porém,
se fosse alterado algum comando nos testes automatizados, existe uma

maior probabilidade de identificar novos defeitos.

Nos testes manuais esta rotina & minimizada, onde o testador,
instintivamente, procura realizar o teste por um caminho diferente do
realizado anteriormente, quando possivel. Além disso, a validagdo dos
procedimentos operacionais de forma manual permite simular situactes
reais do cotidiano, possibilitando o feedback do cliente.

* Reuso dos artefatos de testes

Os artefatos de testes produzidos durante o projeto de desenvolvimento
do software devem ser armazenados para eventual reuso em projetos de
software com caracteristicas semelhantes. O reuso dos artefatos de
testes pode minimizar o esforco na preparacéao dos testes de aceitagéo
em projetos futuro.

Alguns fatores criticos ao uso do ATDD proposto também podem ser
citados:

105

Reducdo de agilidade

Comparado com o tempo de execugédo de uma automacio de testes,
que permite executar os testes com muita agilidade e em horarios
flexiveis, por exemplo, durante toda a noite, o teste de aceitacdo
realizado de forma manual acrescenta mais tempo a etapa de execugéo
dos testes. Esta inconveniéncia, geralmente, ndao & um obstaculo por
optar pelos testes manuais, pois, os testes de aceitacdo possuem um
escopo mais abreviado. No entanto, automatizar os testes pode ser

inviavel, como ja foi citado neste trabatho.

Para otimizar o tempo de execucdo manual dos testes de aceitagao,
dependendo do escopo e situagdo do projeto de software, é
recomendavel fazer uso de um maior niamero de usuarios finais do

sistema para a realizagéo dos testes de aceitacao.

Reducio de produtividade

Apds muitas iteragdes do software, o tempo para executar os testes
regressivos de forma manual pode ser maior do que o tempo usado para

testar as novas fungdes implementadas para uma iteragao atual.

Uma maneira de minimizar esta perda de produtividade & realizar o
Smoke Test como teste de regressao para validar somente as fungdes
de negdcio mais criticas das iteragbes anteriores. Esta solucdo pode
representar riscos a qualidade do produto de software.

106
510 Consideragées do Capitulo

As diretrizes expressas neste capituio tém como finalidade apoiar os
stakeholders do projeto de desenvolvimento de software a desempenhar

satisfatoriamente cada uma das etapas que compreendem o ATDD proposto.

Estas recomendagdes norteadas pelos valores e principios da filosofia
agil, que privilegia a comunicacao direta e eficaz, a entrega frequente de
software funcionando, pessoas de negécio, testes e desenvolvimento
interagindo e colaborando com experiéncias e conhecimentos, possibilitam

produzir melhores resultados que agregue valor ao cliente.

Os aspectos positivos previstos pelo ATDD s#o preservados nesta
proposta. Além disso, os resultados inferidos ao uso desta proposta sio
fundamentados no conhecimento académico e cientifico das respectivas
afirmagdes. Logo, ndo € possivel predizer outros aspectos relevantes do uso
desta proposta, uma vez que o foco deste trabalho néo é a aplicagdo do ATDD
proposto.

O uso isolado das diretrizes presentes neste capitulo ndo assegura o
sucesso do ATDD proposto. Isto significa que é fundamental a adogéo de uma
atitude e comportamento positivo por parte dos stakeholders do projeto de
software quanto a sua adogio, considerando a relevancia dos testes de

aceitagdo a qualidade do produto de software e satisfacéo do cliente.

107

6. CONSIDERAGOES FINAIS

Conforme discutido no decorrer deste trabalho, os métodos ageis sdo um
conjunto de métodos de desenvolvimento de software adequados as mudancas
constantes. Diversos valores, principios e praticas devem ser aplicados no

projeto de desenvoivimento de software para assegurar o sucesso do projeto.

A atividade de testes esta inserida neste contexto como um instrumento

para garantir a qualidade do produto de software.

Este trabatho teve como finalidade caracterizar a atividade de teste de
software, em particular, os testes de aceitagdo aplicado dentro do contexto dos
métodos ageis, abordando a técnica do Acceptance Test Driven Development
(ATDD) para assegurar a clareza das necessidades de negdcio do cliente,
garantir a implementagéo adequada do produto de software e a satisfacao do
cliente.

Algumas diretrizes sado apresentadas com a finalidade de apoiar os
stakeholders do projeto de desenvolvimento de software a desempenhar
satisfatoriamente o uso do ATDD proposto. Estas diretrizes norteadas pelos
valores e principios da filosofia agil possibilitam produzir resuitados de valor ao
cliente.

Este capitulo apresenta também as contribuigbes do trabalho

desenvolvido e as sugestées para trabalhos futuros.

6.1 Contribui¢gdes do Trabalho

Como contribuicdo académica, este trabatho propés uma adaptagio de
um processo de teste de aceitagdo de software no contexto dos métodos ageis
para estruturar e coordenar, principalmente, as equipes de teste e
desenvolvimento. Além de recomendar algumas diretrizes para a adogéo desta
proposta.

Desta forma, procurou-se com este trabalho contribuir com a reducgso do
numero de defeitos identificados durante o projeto e a implementacdo do

108

software. Assim, procura-se reduzir os custos do desenvolvimento e a
manuiengéo do produto de software.

Este trabalho apresentou algumas dificuldades dada a escassez de
estudos descrevendo os aspectos inerentes ao processo do ATDD. A maioria
dos trabalhos destaca o ATDD sob o ponto de vista da experimentacdo de
ferramentas de automacdo dos testes, avaliando os desafios e aspectos da
utilizagdo destas ferramentas. Portanto, consolidar o conteldo do presente
trabalho e propor uma adaptacgéo do ATDD representaram um grande desafio.

Contudo, este trabalho restringiu-se ao campo tedrico e nao ha evidéncias
dos resultados do ATDD proposto. Desta forma, &€ importante que trabalhos
futuros explorem amplamente o ATDD proposto de modo a validar as
afirmagdes presentes neste trabalho e permitir a identificagdo de melhorias ao
processo.

6.2 Trabalhos Futuros

G ATDD proposto acresce novas etapas ao processo original de modo a
viabilizar a execugéo manual dos testes de aceitacéo pelos usuarios finais do
sistema, em detrimento a automacso dos testes. Portanto, trabalhos futuros
podem ser desenvolvidos experimentando o ATDD proposto para consistir a
aderéncia das novas etapas do processo. Esta experimentagdo pode ser
realizada por diferentes grupos de desenvolvimento e testes de software, com
niveis de conhecimentos distintos e sob o contexto de um projeto de software

com caracteristicas semelhantes.

Outra oportunidade de trabalho futuro é comparar o ATDD (original) e o
ATDD proposto usando o mesmo projeto de desenvolvimento de software para
mensurar precisamente as discrepancias com relagéo a produtividade entre as
etapas dos processos, as distingdes na qualidade dos testes produzidos e na
manutenibilidade desses testes. Além disso, verificar a defasagem no prazo,

custo e qualidade do projeto de software utilizando ambas as abordagens.

109

Por fim, avaliar outros aspectos do uso do ATDD proposto nao

identificados no presente trabalho em fungao da néo aplicag@o desta proposta.

110

REFERENCIAS

ABRAHAMSSON, P.; SALO, O.; RONKAINEN, J.; WARSTA. J. Agile Software
Development Methods — Review and Analysis. Relatério Técnico 478, VTT
PUBLICATIONS, 2002. 112p.

ANICHE, M.F., GEROSA, M.A. Most Common Mistakes in Test-Driven
Development Practice: Results from an Online Survey with Developers. In
ICST Workshops, 2010. p.469-478.

ASTELS, D. Test Driven Development: A Practical Guide. Upper Saddle
River, New Jersey, USA, Prentice Hall, 2003. 562p.

BASTOS, A, RIOS, E., CRISTALLI,R,, MOREIRA, T. Base de Conhecimento
em Teste de Software, Sao Paulo, SP, Martins Fontes, 2007. 263p.

BECK, K. Test Driven Development: By Example. Boston, MA, USA,
Addison-Wesley Longman Publishing Co., Inc., 2003. 220p.

BUGZILLA. Website: http://iwww.bugzilla.org/. Acessado em 18/01/2012.

CAUSEVIC, A., SUNDMARK, D. PUNNEKKAT, S. Factors Limiting
Industrial Adoption of Test Driven Development A Systematic Review,
2011. p.337-346.

CUNNINGHAM, W. FIT Documentation, 2002. Disponivel no website:
http:/fit.c2.com/wiki.cqi?FitDocumentation. Acessado em: 05/12/2011.

FITNESSE DOCUMENTATION ONLINE. Disponivel no website:
http://mww fitnesse.org/FitNesse.UserGuide. Acessado em: 20/05/2012.

111

FOWLER, M. Refactoring: Improving the Design of Existing Code. Addison
Wesley Professional, 1999. 464p.

HANSSEN, G.; HAUGSET, B. Automated Acceptance Testing Using Fit, in
Proc. HICSS, 2009. p.1-8.

HENDRICKSON, E. Driving Development with Tests: ATDD and TDD,
Conference at Software Testing Australia and New Zealand (STANZ), 2008.
p.1-9.

IEEEStd1012-1998. IEEE Standard for Software Verification and Validation.
IEEE Computer Society, July 1998. 71p.

JEFFRIES, R.; MELNIK, G. Guest editors' introduction: TDD-the art of
fearless programming, |[EEE Software, v. 24, n. 3, 2007. p.24-30.

KOSKELA, L. Test Driven: TDD and Acceptance TDD for Java Developers,
Manning Publications, 2007. 544p.

KRUCHTEN, P. The Rational Unified Process: An Introduction, 2" Edition,
2000. 320p.

LARMAN, C; VODDE, B. ATDD with Robot Framework, 2010. p.1-15.
Disponivel em:

httg:/lcode.google.com!g/robotframework/wiki/ATDDWithRobotF rameworkArticle
Acessado em: 18/01/2012

MANTIS, Website: http://www.mantisbt.org/. Acessado em 18/01/2012.

MARTIN, R. C. Professionalism and Test-Driven Development. IEEE
Software, v.24, n. 3, 2007. p.32-36.

112

MARTIN, R.C., MELNIK, G.: Tests and Requirements, Requirements and
Tests: A Mdbius Strip. IEEE Software, 2008. p.54-59.

MELNIK, G. Empirical Analyses of Executable Acceptance Test Driven
Development. PhD Thesis. University of Calgary, 2007. 191p.

MELNIK, G.; READ, K.; MAURER, F. Suitability of FIT User Acceptance
Tests for Specifying Functional Requirements Developer Perspective, in
Proc. XP Agile Universe, 2004. p.60-72.

PARK, 8., MAURER, F. The Benefits and Challenges of Executable
Acceptance Testing, Workshop on Scrutinizing Agile, In Conjunction with
ICSE, 2008. p.19-22.

PROJECT MANAGEMENT INSTITUTE (PMI), A Guide to the Project
Management Body of Knowledge, 3rd Edition, 2004. 390p.

PUGH, K. Lean-Agile Acceptance Test-Driven Development: Better
Software Through Collaboration, Addison-Wesley Professional, 2011. 345p.

PULEIO, M. How not to do agile testing. In: AGILE 2006 Conference,
Minneapolis, Minnesota, USA: IEEE Computer Society, 2006. p.305-314.

READ, K.; MELNIK G.; MAURER F. Student Experiences with Executable
Acceptance Testing, in Proc. AGILE, 2005. p.312-317.

RICCA F.; TORCHIANO, M.; PENTA, M.; CECCATO, M.; TONELLA, P. Using
acceptance tests as a support for clarifying requirements A series of
experiments, 2007. p.270-283.

SAUVE, J.; NETO, E.; NETO, O. Experience Report Using EasyAccept to
Drive Development of Software, SAST 2007. p.79-84.

113

SINIAALTO, M. Test-Driven Development: Empirical Body Of Evidence,
Volume: D.2.7, Publisher: Information Technology for European Advancement,
20086.15p.

TESTLINK. Website: http://teamst.org/. Acessado em: 20/04/2012.

TESTOPIA. Website: hitp.//mozilla.org/projects/testopia/. Acessado em:
20/04/2012.

VERSION ONE SURVEY: The State of Agile Development, 2011.12p.
Disponivel no website:

http://www.versionone.com/state of agile_development survev/11/. Acessado
em: 20/04/2012,

